MyArxiv
Databases 10
☆ Private Quantum Database
Quantum databases open an exciting new frontier in data management by offering privacy guarantees that classical systems cannot match. Traditional engines tackle user privacy, which hides the records being queried, or data privacy, which prevents a user from learning more than she has queried. We propose a quantum database that protects both by leveraging quantum mechanics: when the user measures her chosen basis, the superposition collapses and the unqueried rows become physically inaccessible. We encode relational tables as a sequence of Quantum Random Access Codes (QRACs) over mutually unbiased bases (MUBs), transmit a bounded number of quantum states, and let a single, destructive measurement reconstruct only the selected tuple. This allows us to preserve data privacy and user privacy at once without trusted hardware or heavyweight cryptography. Moreover, we envision a novel hybrid quantum-classical architecture ready for early deployment, which ensures compatibility with the limitations of today's Noisy Intermediate-Scale Quantum devices.
☆ Enriching Object-Centric Event Data with Process Scopes: A Framework for Aggregation and Analysis
Object-Centric Process Mining enables the analysis of complex operational behavior by capturing interactions among multiple business objects (e.g., orders, items, deliveries). These interactions are recorded using Object-Centric Event Data (OCED) formats, such as the Object-Centric Event Log (OCEL). However, existing formats lack explicit definitions of process scopes, which restricts analysis to individual processes and limits insights to a low level of granularity. In practice, OCED often spans multiple interrelated processes, as shared objects connect events across organizational functions. This structure reflects how value is created along the organizational value chain, but introduces challenges for interpretation when process boundaries are not clearly defined. Moreover, process definitions are typically subjective and context-dependent; they vary across organizations, roles, and analytical goals, and cannot always be discovered automatically. To address these challenges, we propose a method for embedding analyst-defined process scopes into OCEL. This enables the structured representation of multiple coexisting processes, supports the aggregation of event data across scopes, and facilitates analysis at varying levels of abstraction. We demonstrate the applicability of our approach using a publicly available OCEL log and provide supporting tools for scope definition and analysis.
☆ Text to Query Plans for Question Answering on Large Tables
Efficient querying and analysis of large tabular datasets remain significant challenges, especially for users without expertise in programming languages like SQL. Text-to-SQL approaches have shown promising performance on benchmark data; however, they inherit SQL's drawbacks, including inefficiency with large datasets and limited support for complex data analyses beyond basic querying. We propose a novel framework that transforms natural language queries into query plans. Our solution is implemented outside traditional databases, allowing us to support classical SQL commands while avoiding SQL's inherent limitations. Additionally, we enable complex analytical functions, such as principal component analysis and anomaly detection, providing greater flexibility and extensibility than traditional SQL capabilities. We leverage LLMs to iteratively interpret queries and construct operation sequences, addressing computational complexity by incrementally building solutions. By executing operations directly on the data, we overcome context length limitations without requiring the entire dataset to be processed by the model. We validate our framework through experiments on both standard databases and large scientific tables, demonstrating its effectiveness in handling extensive datasets and performing sophisticated data analyses.
☆ Rethinking Caching for LLM Serving Systems: Beyond Traditional Heuristics
Serving Large Language Models (LLMs) at scale requires meeting strict Service Level Objectives (SLOs) under severe computational and memory constraints. Nevertheless, traditional caching strategies fall short: exact-matching and prefix caches neglect query semantics, while state-of-the-art semantic caches remain confined to traditional intuitions, offering little conceptual departure. Building on this, we present SISO, a semantic caching system that redefines efficiency for LLM serving. SISO introduces centroid-based caching to maximize coverage with minimal memory, locality-aware replacement to preserve high-value entries, and dynamic thresholding to balance accuracy and latency under varying workloads. Across diverse datasets, SISO delivers up to 1.71$\times$ higher hit ratios and consistently stronger SLO attainment compared to state-of-the-art systems.
☆ WoW: A Window-to-Window Incremental Index for Range-Filtering Approximate Nearest Neighbor Search SIGMOD
Given a hybrid dataset where every data object consists of a vector and an attribute value, for each query with a target vector and a range filter, range-filtering approximate nearest neighbor search (RFANNS) aims to retrieve the most similar vectors from the dataset and the corresponding attribute values fall in the query range. It is a fundamental function in vector database management systems and intelligent systems with embedding abilities. Dedicated indices for RFANNS accelerate query speed with an acceptable accuracy loss on nearest neighbors. However, they are still facing the challenges to be constructed incrementally and generalized to achieve superior query performance for arbitrary range filters. In this paper, we introduce a window graph-based RFANNS index. For incremental construction, we propose an insertion algorithm to add new vector-attribute pairs into hierarchical window graphs with varying window size. To handle arbitrary range filters, we optimize relevant window search for attribute filter checks and vector distance computations by range selectivity. Extensive experiments on real-world datasets show that for index construction, the indexing time is on par with the most building-efficient index, and 4.9x faster than the most query-efficient index with 0.4-0.5x smaller size; For RFANNS query, it is 4x faster than the most efficient incremental index, and matches the performance of the best statically-built index.
comment: Accepted in the ACM SIGMOD/PODS International Conference on Management of Data (SIGMOD 2026)
☆ Optimal $(α,β)$-Dense Subgraph Search in Bipartite Graphs
Dense subgraph search in bipartite graphs is a fundamental problem in graph analysis, with wide-ranging applications in fraud detection, recommendation systems, and social network analysis. The recently proposed $(\alpha, \beta)$-dense subgraph model has demonstrated superior capability in capturing the intrinsic density structure of bipartite graphs compared to existing alternatives. However, despite its modeling advantages, the $(\alpha, \beta)$-dense subgraph model lacks efficient support for query processing and dynamic updates, limiting its practical utility in large-scale applications. To address these limitations, we propose BD-Index, a novel index that answers $(\alpha, \beta)$-dense subgraph queries in optimal time while using only linear space $O(|E|)$, making it well-suited for real-world applications requiring both fast query processing and low memory consumption. We further develop two complementary maintenance strategies for dynamic bipartite graphs to support efficient updates to the BD-Index. The space-efficient strategy updates the index in time complexity of $O(p \cdot |E|^{1.5})$ per edge insertion or deletion, while maintaining a low space cost of $O(|E|)$ (the same as the index itself), where $p$ is typically a small constant in real-world graphs. In contrast, the time-efficient strategy significantly reduces the update time to $O(p \cdot |E|)$ per edge update by maintaining auxiliary orientation structures, at the cost of increased memory usage up to $O(p \cdot |E|)$. These two strategies provide flexible trade-offs between maintenance efficiency and memory usage, enabling BD-Index to adapt to diverse application requirements. Extensive experiments on 10 large-scale real-world datasets demonstrate high efficiency and scalability of our proposed solutions.
☆ Brook-2PL: Tolerating High Contention Workloads with A Deadlock-Free Two-Phase Locking Protocol
The problem of hotspots remains a critical challenge in high-contention workloads for concurrency control (CC) protocols. Traditional concurrency control approaches encounter significant difficulties under high contention, resulting in excessive transaction aborts and deadlocks. In this paper, we propose Brook-2PL, a novel two-phase locking (2PL) protocol that (1) introduces SLW-Graph for deadlock-free transaction execution, and (2) proposes partial transaction chopping for early lock release. Previous methods suffer from transaction aborts that lead to wasted work and can further burden the system due to their cascading effects. Brook-2PL addresses this limitation by statically analyzing a new graph-based dependency structure called SLW-Graph, enabling deadlock-free two-phase locking through predetermined lock acquisition. Brook-2PL also reduces contention by enabling early lock release using partial transaction chopping and static transaction analysis. We overcome the inherent limitations of traditional transaction chopping by providing a more flexible chopping method. Evaluation using both our synthetic online game store workload and the TPC-C benchmark shows that Brook-2PL significantly outperforms state-of-the-art CC protocols. Brook-2PL achieves an average speed-up of 2.86x while reducing tail latency (p95) by 48% in the TPC-C benchmark.
♻ ☆ Anonymity-washing
Anonymization is a foundational principle of data privacy regulation, yet its practical application remains riddled with ambiguity and inconsistency. This paper introduces the concept of anonymity-washing -- the misrepresentation of the anonymity level of ``sanitized'' personal data -- as a critical privacy concern. While both legal and technical critiques of anonymization exist, they tend to address isolated aspects of the problem. In contrast, this paper offers a comprehensive overview of the conditions that enable anonymity-washing. It synthesizes fragmented legal interpretations, technical misunderstandings, and outdated regulatory guidance and complements them with a systematic review of national and international resources, including legal cases, data protection authority guidelines, and technical documentation. Our findings reveal a lack of coherent support for practitioners, contributing to the persistent misuse of pseudonymization and obsolete anonymization techniques. We conclude by recommending targeted education, clearer technical guidance, and closer cooperation between regulators, researchers, and industry to bridge the gap between legal norms and technical reality.
comment: Accepted at Privacy Forum
♻ ☆ ST-Raptor: LLM-Powered Semi-Structured Table Question Answering SIGMOD 2026
Semi-structured tables, widely used in real-world applications (e.g., financial reports, medical records, transactional orders), often involve flexible and complex layouts (e.g., hierarchical headers and merged cells). These tables generally rely on human analysts to interpret table layouts and answer relevant natural language questions, which is costly and inefficient. To automate the procedure, existing methods face significant challenges. First, methods like NL2SQL require converting semi-structured tables into structured ones, which often causes substantial information loss. Second, methods like NL2Code and multi-modal LLM QA struggle to understand the complex layouts of semi-structured tables and cannot accurately answer corresponding questions. To this end, we propose ST-Raptor, a tree-based framework for semi-structured table question answering using large language models. First, we introduce the Hierarchical Orthogonal Tree (HO-Tree), a structural model that captures complex semi-structured table layouts, along with an effective algorithm for constructing the tree. Second, we define a set of basic tree operations to guide LLMs in executing common QA tasks. Given a user question, ST-Raptor decomposes it into simpler sub-questions, generates corresponding tree operation pipelines, and conducts operation-table alignment for accurate pipeline execution. Third, we incorporate a two-stage verification mechanism: forward validation checks the correctness of execution steps, while backward validation evaluates answer reliability by reconstructing queries from predicted answers. To benchmark the performance, we present SSTQA, a dataset of 764 questions over 102 real-world semi-structured tables. Experiments show that ST-Raptor outperforms nine baselines by up to 20% in answer accuracy. The code is available at https://github.com/weAIDB/ST-Raptor.
comment: Extension of our SIGMOD 2026 paper. Please refer to source code available at: https://github.com/weAIDB/ST-Raptor
♻ ☆ Enumeration for MSO-Queries on Compressed Trees
We study the problem of enumerating the answers to a query formulated in monadic second order logic (MSO) over an unranked forest F that is compressed by a straight-line program (SLP) D. Our main result states that this can be done after O(|D|) preprocessing and with output-linear delay (in data complexity). This is a substantial improvement over the previously known algorithms for MSO-evaluation over trees, since the compressed size |D| might be much smaller than (or even logarithmic in) the actual data size |F|, and there are linear time SLP-compressors that yield very good compressions on practical inputs. In particular, this also constitutes a meta-theorem in the field of algorithmics on SLP-compressed inputs: all enumeration problems on trees or strings that can be formulated in MSO-logic can be solved with linear preprocessing and output-linear delay, even if the inputs are compressed by SLPs. We also show that our approach can support vertex relabelling updates in time that is logarithmic in the uncompressed data. Our result extends previous work on the enumeration of MSO-queries over uncompressed trees and on the enumeration of document spanners over compressed text documents.
Distributed, Parallel, and Cluster Computing 14
☆ Architecting Distributed Quantum Computers: Design Insights from Resource Estimation
To enable practically useful quantum computing, we require hundreds to thousands of logical qubits (collections of physical qubits with error correction). Current monolithic device architectures have scaling limits beyond few tens of logical qubits. To scale up, we require architectures that orchestrate several monolithic devices into a distributed quantum computing system. Currently, resource estimation, which is crucial for determining hardware needs and bottlenecks, focuses exclusively on monolithic systems. Our work fills this gap and answers key architectural design questions about distributed systems, including the impact of distribution on application resource needs, the organization of qubits across nodes and the requirements of entanglement distillation (quantum network). To answer these questions, we develop a novel resource estimation framework that models the key components of the distributed execution stack. We analyse the performance of practical quantum algorithms on various hardware configurations, spanning different qubit speeds, entanglement generation rates and distillation protocols. We show that distributed architectures have practically feasible resource requirements; for a node size of 45K qubits, distributed systems need on average 1.4X higher number of physical qubits and 4X higher execution time compared to monolithic architectures, but with more favourable hardware implementation prospects. Our insights on entanglement generation rates, node sizes and architecture have the potential to inform system designs in the coming years.
☆ Ab-initio Quantum Transport with the GW Approximation, 42,240 Atoms, and Sustained Exascale Performance
Designing nanoscale electronic devices such as the currently manufactured nanoribbon field-effect transistors (NRFETs) requires advanced modeling tools capturing all relevant quantum mechanical effects. State-of-the-art approaches combine the non-equilibrium Green's function (NEGF) formalism and density functional theory (DFT). However, as device dimensions do not exceed a few nanometers anymore, electrons are confined in ultra-small volumes, giving rise to strong electron-electron interactions. To account for these critical effects, DFT+NEGF solvers should be extended with the GW approximation, which massively increases their computational intensity. Here, we present the first implementation of the NEGF+GW scheme capable of handling NRFET geometries with dimensions comparable to experiments. This package, called QuaTrEx, makes use of a novel spatial domain decomposition scheme, can treat devices made of up to 84,480 atoms, scales very well on the Alps and Frontier supercomputers (>80% weak scaling efficiency), and sustains an exascale FP64 performance on 42,240 atoms (1.15 Eflop/s).
☆ Federated Fine-Tuning of Sparsely-Activated Large Language Models on Resource-Constrained Devices
Federated fine-tuning of Mixture-of-Experts (MoE)-based large language models (LLMs) is challenging due to their massive computational requirements and the resource constraints of participants. Existing working attempts to fill this gap through model quantization, computation offloading, or expert pruning. However, they cannot achieve desired performance due to impractical system assumptions and a lack of consideration for MoE-specific characteristics. In this paper, we propose FLUX, a system designed to enable federated fine-tuning of MoE-based LLMs across participants with constrained computing resources (e.g., consumer-grade GPUs), aiming to minimize time-to-accuracy. FLUX introduces three key innovations: (1) quantization-based local profiling to estimate expert activation with minimal overhead, (2) adaptive layer-aware expert merging to reduce resource consumption while preserving accuracy, and (3) dynamic expert role assignment using an exploration-exploitation strategy to balance tuning and non-tuning experts. Extensive experiments on LLaMA-MoE and DeepSeek-MoE with multiple benchmark datasets demonstrate that FLUX significantly outperforms existing methods, achieving up to 4.75X speedup in time-to-accuracy.
comment: Accepted by EuroSys'26. The camera-ready version will be uploaded later
☆ CARMA: Collocation-Aware Resource Manager with GPU Memory Estimator
Studies conducted on enterprise-scale infrastructure have shown that GPUs -- the core computational resource for deep learning (DL) training -- are often significantly underutilized. DL task collocation on GPUs is an opportunity to address this challenge. However, it may result in (1) out-of-memory crashes for the subsequently arriving task and (2) slowdowns for all tasks sharing the GPU due to resource interference. The former challenge poses a threat to robustness, while the latter affects the quality of service and energy efficiency. We propose CARMA, a server-scale task-level collocation-aware resource management system that handles both collocation challenges. CARMA encompasses GPUMemNet, a novel ML-based GPU memory estimator framework for DL training tasks, to minimize out-of-memory errors and introduces collocation policies that cap GPU utilization to minimize interference. Furthermore, CARMA introduces a recovery method to ensure robust restart of tasks that crash. Our evaluation on traces modeled after real-world DL training task traces shows that CARMA increases the GPU utilization over time by 39.3\%, decreases the end-to-end execution time by $\sim$26.7\%, and reduces the GPU energy use by $\sim$14.2\%.
☆ FedProtoKD: Dual Knowledge Distillation with Adaptive Class-wise Prototype Margin for Heterogeneous Federated Learning
Heterogeneous Federated Learning (HFL) has gained attention for its ability to accommodate diverse models and heterogeneous data across clients. Prototype-based HFL methods emerge as a promising solution to address statistical heterogeneity and privacy challenges, paving the way for new advancements in HFL research. This method focuses on sharing only class-representative prototypes among heterogeneous clients. However, these prototypes are often aggregated on the server using weighted averaging, leading to sub-optimal global knowledge; these cause the shrinking of aggregated prototypes, which negatively affects the model performance in scenarios when models are heterogeneous and data distributions are extremely non-IID. We propose FedProtoKD in a Heterogeneous Federated Learning setting, using an enhanced dual-knowledge distillation mechanism to improve the system performance with clients' logits and prototype feature representation. We aim to resolve the prototype margin-shrinking problem using a contrastive learning-based trainable server prototype by leveraging a class-wise adaptive prototype margin. Furthermore, we assess the importance of public samples using the closeness of the sample's prototype to its class representative prototypes, which enhances learning performance. FedProtoKD achieved average improvements of 1.13% up to 34.13% accuracy across various settings and significantly outperforms existing state-of-the-art HFL methods.
comment: 12 pages, 6 figures
☆ Deep Learning-Enabled Supercritical Flame Simulation at Detailed Chemistry and Real-Fluid Accuracy Towards Trillion-Cell Scale
For decades, supercritical flame simulations incorporating detailed chemistry and real-fluid transport have been limited to millions of cells, constraining the resolved spatial and temporal scales of the physical system. We optimize the supercritical flame simulation software DeepFlame -- which incorporates deep neural networks while retaining the real-fluid mechanical and chemical accuracy -- from three perspectives: parallel computing, computational efficiency, and I/O performance. Our highly optimized DeepFlame achieves supercritical liquid oxygen/methane (LOX/\ce{CH4}) turbulent combustion simulation of up to 618 and 154 billion cells with unprecedented time-to-solution, attaining 439/1186 and 187/316 PFlop/s (32.3\%/21.8\% and 37.4\%/31.8\% of the peak) in FP32/mixed-FP16 precision on Sunway (98,304 nodes) and Fugaku (73,728 nodes) supercomputers, respectively. This computational capability surpasses existing capacities by three orders of magnitude, enabling the first practical simulation of rocket engine combustion with >100 LOX/\ce{CH4} injectors. This breakthrough establishes high-fidelity supercritical flame modeling as a critical design tool for next-generation rocket propulsion and ultra-high energy density systems.
comment: 12 pages, 14 figures, conference: SC25
☆ SIREN: Software Identification and Recognition in HPC Systems
HPC systems use monitoring and operational data analytics to ensure efficiency, performance, and orderly operations. Application-specific insights are crucial for analyzing the increasing complexity and diversity of HPC workloads, particularly through the identification of unknown software and recognition of repeated executions, which facilitate system optimization and security improvements. However, traditional identification methods using job or file names are unreliable for arbitrary user-provided names (a.out). Fuzzy hashing of executables detects similarities despite changes in executable version or compilation approach while preserving privacy and file integrity, overcoming these limitations. We introduce SIREN, a process-level data collection framework for software identification and recognition. SIREN improves observability in HPC by enabling analysis of process metadata, environment information, and executable fuzzy hashes. Findings from a first opt-in deployment campaign on LUMI show SIREN's ability to provide insights into software usage, recognition of repeated executions of known applications, and similarity-based identification of unknown applications.
☆ ClusterFusion: Expanding Operator Fusion Scope for LLM Inference via Cluster-Level Collective Primitive
Large language model (LLM) decoding suffers from high latency due to fragmented execution across operators and heavy reliance on off-chip memory for data exchange and reduction. This execution model limits opportunities for fusion and incurs significant memory traffic and kernel launch overhead. While modern architectures such as NVIDIA Hopper provide distributed shared memory and low-latency intra-cluster interconnects, they expose only low-level data movement instructions, lacking structured abstractions for collective on-chip communication. To bridge this software-hardware gap, we introduce two cluster-level communication primitives, ClusterReduce and ClusterGather, which abstract common communication patterns and enable structured, high-speed data exchange and reduction between thread blocks within a cluster, allowing intermediate results to be on-chip without involving off-chip memory. Building on these abstractions, we design ClusterFusion, an execution framework that schedules communication and computation jointly to expand operator fusion scope by composing decoding stages such as QKV Projection, Attention, and Output Projection into a single fused kernels. Evaluations on H100 GPUs show that ClusterFusion outperforms state-of-the-art inference frameworks by 1.61x on average in end-to-end latency across different models and configurations. The source code is available at https://github.com/xinhao-luo/ClusterFusion.
☆ Examining MPI and its Extensions for Asynchronous Multithreaded Communication
The increasing complexity of HPC architectures and the growing adoption of irregular scientific algorithms demand efficient support for asynchronous, multithreaded communication. This need is especially pronounced with Asynchronous Many-Task (AMT) systems. This communication pattern was not a consideration during the design of the original MPI specification. The MPI community has recently introduced several extensions to address these evolving requirements. This work evaluates two such extensions, the Virtual Communication Interface (VCI) and the Continuation extensions, in the context of an established AMT runtime HPX. We begin by using an MPI-level microbenchmark, modeled from HPX's low-level communication mechanism, to measure the peak performance potential of these extensions. We then integrate them into HPX to evaluate their effectiveness in real-world scenarios. Our results show that while these extensions can enhance performance compared to standard MPI, areas for improvement remain. The current continuation proposal limits the maximum multithreaded message rate achievable in the multi-VCI setting. Furthermore, the recommended one-VCI-per-thread mode proves ineffective in real-world systems due to the attentiveness problem. These findings underscore the importance of improving intra-VCI threading efficiency to achieve scalable multithreaded communication and fully realize the benefits of recent MPI extensions.
comment: This preprint has not undergone peer review. The Version of Record of this contribution (with improvements after peer review) will be published in EuroMPI25
☆ History Rhymes: Accelerating LLM Reinforcement Learning with RhymeRL
With the rapid advancement of large language models (LLMs), reinforcement learning (RL) has emerged as a pivotal methodology for enhancing the reasoning capabilities of LLMs. Unlike traditional pre-training approaches, RL encompasses multiple stages: rollout, reward, and training, which necessitates collaboration among various worker types. However, current RL systems continue to grapple with substantial GPU underutilization, due to two primary factors: (1) The rollout stage dominates the overall RL process due to test-time scaling; (2) Imbalances in rollout lengths (within the same batch) result in GPU bubbles. While prior solutions like asynchronous execution and truncation offer partial relief, they may compromise training accuracy for efficiency. Our key insight stems from a previously overlooked observation: rollout responses exhibit remarkable similarity across adjacent training epochs. Based on the insight, we introduce RhymeRL, an LLM RL system designed to accelerate RL training with two key innovations. First, to enhance rollout generation, we present HistoSpec, a speculative decoding inference engine that utilizes the similarity of historical rollout token sequences to obtain accurate drafts. Second, to tackle rollout bubbles, we introduce HistoPipe, a two-tier scheduling strategy that leverages the similarity of historical rollout distributions to balance workload among rollout workers. We have evaluated RhymeRL within a real production environment, demonstrating scalability from dozens to thousands of GPUs. Experimental results demonstrate that RhymeRL achieves a 2.6x performance improvement over existing methods, without compromising accuracy or modifying the RL paradigm.
☆ Strata: Hierarchical Context Caching for Long Context Language Model Serving
Large Language Models (LLMs) with expanding context windows face significant performance hurdles. While caching key-value (KV) states is critical for avoiding redundant computation, the storage footprint of long-context caches quickly exceeds GPU memory capacity, forcing production systems to adopt hierarchical caching across memory hierarchies. However, transferring large cached contexts back to the GPU introduces severe performance bottlenecks: fragmented I/O from paged layouts prevents full bandwidth utilization, and existing schedulers fail to account for cache-loading delays, leaving systems loading-bound rather than compute-bound. We present Strata, a hierarchical context caching framework designed for efficient long context LLM serving. Strata introduces GPU-assisted I/O to combat KV cache fragmentation, decoupling GPU and CPU memory layouts and employs cache-aware request scheduling to balance compute with I/O latency and overlapping unavoidable stalls with complementary tasks. Built on SGLang and deployed in production, Strata achieves up to 5x lower Time-To-First-Token (TTFT) compared to vLLM + LMCache and 3.75x speedup over NVIDIA TensorRT-LLM on long-context benchmarks, without degrading short-context performance.
comment: 13 pages, 14 figures, under peer review
♻ ☆ Large Language Model Aided QoS Prediction for Service Recommendation
Large language models (LLMs) have seen rapid improvement in the recent years, and have been used in a wider range of applications. After being trained on large text corpus, LLMs obtain the capability of extracting rich features from textual data. Such capability is potentially useful for the web service recommendation task, where the web users and services have intrinsic attributes that can be described using natural language sentences and are useful for recommendation. In this paper, we explore the possibility and practicality of using LLMs for web service recommendation. We propose the large language model aided QoS prediction (llmQoS) model, which use LLMs to extract useful information from attributes of web users and services via descriptive sentences. This information is then used in combination with the QoS values of historical interactions of users and services, to predict QoS values for any given user-service pair. On the WSDream dataset, llmQoS is shown to overcome the data sparsity issue inherent to the QoS prediction problem, and outperforms comparable baseline models consistently.
♻ ☆ Databelt: A Continuous Data Path for Serverless Workflows in the 3D Compute Continuum
Typically, serverless functions rely on remote storage services for managing state, which can result in increased latency and network communication overhead. In a dynamic environment such as the 3D (Edge-Cloud-Space) Compute Continuum, serverless functions face additional challenges due to frequent changes in network topology. As satellites move in and out of the range of ground stations, functions must make multiple hops to access cloud services, leading to high-latency state access and unnecessary data transfers. In this paper, we present Databelt, a state management framework for serverless workflows designed for the dynamic environment of the 3D Compute Continuum. Databelt introduces an SLO-aware state propagation mechanism that enables the function state to move continuously in orbit. Databelt proactively offloads function states to the most suitable node, such that when functions execute, the data is already present on the execution node or nearby, thus minimizing state access latency and reducing the number of network hops. Additionally, Databelt introduces a function state fusion mechanism that abstracts state management for functions sharing the same serverless runtime. When functions are fused, Databelt seamlessly retrieves their state as a group, reducing redundant network and storage operations and improving overall workflow efficiency. Our experimental results show that Databelt reduces workflow execution time by up to 66% and increases throughput by 50% compared to the baselines. Furthermore, our results show that Databelt function state fusion reduces storage operations latency by up to 20%, by reducing repetitive storage requests for functions within the same runtime, ensuring efficient execution of serverless workflows in highly dynamic network environments such as the 3D Continuum.
♻ ☆ AGILE: Lightweight and Efficient Asynchronous GPU-SSD Integration
GPUs are critical for compute-intensive applications, yet emerging workloads such as recommender systems, graph analytics, and data analytics often exceed GPU memory capacity. Existing solutions allow GPUs to use CPU DRAM or SSDs as external memory, and the GPU-centric approach enables GPU threads to directly issue NVMe requests, further avoiding CPU intervention. However, current GPU-centric approaches adopt synchronous I/O, forcing threads to stall during long communication delays. We propose AGILE, a lightweight asynchronous GPU-centric I/O library that eliminates deadlock risks and integrates a flexible HBM-based software cache. AGILE overlaps computation and I/O, improving performance by up to 1.88$\times$ across workloads with diverse computation-to-communication ratios. Compared to BaM on DLRM, AGILE achieves up to 1.75$\times$ speedup through efficient design and overlapping; on graph applications, AGILE reduces software cache overhead by up to 3.12$\times$ and NVMe I/O overhead by up to 2.85$\times$; AGILE also lowers per-thread register usage by up to 1.32$\times$.
Information Retrieval 8
☆ Optimization of Latent-Space Compression using Game-Theoretic Techniques for Transformer-Based Vector Search
Vector similarity search plays a pivotal role in modern information retrieval systems, especially when powered by transformer-based embeddings. However, the scalability and efficiency of such systems are often hindered by the high dimensionality of latent representations. In this paper, we propose a novel game-theoretic framework for optimizing latent-space compression to enhance both the efficiency and semantic utility of vector search. By modeling the compression strategy as a zero-sum game between retrieval accuracy and storage efficiency, we derive a latent transformation that preserves semantic similarity while reducing redundancy. We benchmark our method against FAISS, a widely-used vector search library, and demonstrate that our approach achieves a significantly higher average similarity (0.9981 vs. 0.5517) and utility (0.8873 vs. 0.5194), albeit with a modest increase in query time. This trade-off highlights the practical value of game-theoretic latent compression in high-utility, transformer-based search applications. The proposed system can be seamlessly integrated into existing LLM pipelines to yield more semantically accurate and computationally efficient retrieval.
☆ Taming the One-Epoch Phenomenon in Online Recommendation System by Two-stage Contrastive ID Pre-training
ID-based embeddings are widely used in web-scale online recommendation systems. However, their susceptibility to overfitting, particularly due to the long-tail nature of data distributions, often limits training to a single epoch, a phenomenon known as the "one-epoch problem." This challenge has driven research efforts to optimize performance within the first epoch by enhancing convergence speed or feature sparsity. In this study, we introduce a novel two-stage training strategy that incorporates a pre-training phase using a minimal model with contrastive loss, enabling broader data coverage for the embedding system. Our offline experiments demonstrate that multi-epoch training during the pre-training phase does not lead to overfitting, and the resulting embeddings improve online generalization when fine-tuned for more complex downstream recommendation tasks. We deployed the proposed system in live traffic at Pinterest, achieving significant site-wide engagement gains.
comment: Published at RecSys'24, see https://dl.acm.org/doi/10.1145/3640457.3688053
☆ Membership Inference Attacks on LLM-based Recommender Systems
Large language models (LLMs) based Recommender Systems (RecSys) can flexibly adapt recommendation systems to different domains. It utilizes in-context learning (ICL), i.e., the prompts, to customize the recommendation functions, which include sensitive historical user-specific item interactions, e.g., implicit feedback like clicked items or explicit product reviews. Such private information may be exposed to novel privacy attack. However, no study has been done on this important issue. We design four membership inference attacks (MIAs), aiming to reveal whether victims' historical interactions have been used by system prompts. They are \emph{direct inquiry, hallucination, similarity, and poisoning attacks}, each of which utilizes the unique features of LLMs or RecSys. We have carefully evaluated them on three LLMs that have been used to develop ICL-LLM RecSys and two well-known RecSys benchmark datasets. The results confirm that the MIA threat on LLM RecSys is realistic: direct inquiry and poisoning attacks showing significantly high attack advantages. We have also analyzed the factors affecting these attacks, such as the number of shots in system prompts and the position of the victim in the shots.
☆ Extracting Information from Scientific Literature via Visual Table Question Answering Models
This study explores three approaches to processing table data in scientific papers to enhance extractive question answering and develop a software tool for the systematic review process. The methods evaluated include: (1) Optical Character Recognition (OCR) for extracting information from documents, (2) Pre-trained models for document visual question answering, and (3) Table detection and structure recognition to extract and merge key information from tables with textual content to answer extractive questions. In exploratory experiments, we augmented ten sample test documents containing tables and relevant content against RF- EMF-related scientific papers with seven predefined extractive question-answer pairs. The results indicate that approaches preserving table structure outperform the others, particularly in representing and organizing table content. Accurately recognizing specific notations and symbols within the documents emerged as a critical factor for improved results. Our study concludes that preserving the structural integrity of tables is essential for enhancing the accuracy and reliability of extractive question answering in scientific documents.
comment: Accepted at ACM International Conference on Research in Adaptive and Convergent Systems, November 5-8, 2024, Pompei, Italy
♻ ☆ An Ontology-Driven Graph RAG for Legal Norms: A Hierarchical, Temporal, and Deterministic Approach
Retrieval-Augmented Generation (RAG) systems in the legal domain face a critical challenge: standard, flat-text retrieval is blind to the hierarchical, diachronic, and causal structure of law, leading to anachronistic and unreliable answers. This paper introduces an ontology-driven Graph RAG framework designed to overcome these limitations. We ground our knowledge graph in a formal, LRMoo-inspired model that distinguishes abstract legal Works from their versioned Expressions. We model temporal states as efficient aggregations that reuse the versioned expressions (CTVs) of unchanged components, and we reify legislative events as first-class Action nodes to make causality explicit and queryable. This structured backbone enables a unified, planner-guided query strategy that applies explicit policies to deterministically resolve complex requests for (i) point-in-time retrieval, (ii) hierarchical impact analysis, and (iii) auditable provenance reconstruction. Through a case study on the Brazilian Constitution, we demonstrate how this approach provides a verifiable, temporally-correct substrate for LLMs, enabling higher-order analytical capabilities while drastically reducing the risk of factual errors. The result is a practical framework for building more trustworthy and explainable legal AI systems.
comment: This is a major revision that significantly expands and deepens the original manuscript. While the core ontological model remains the same, this version provides a substantially more rigorous and detailed account of how the framework is applied in practice, particularly within a Retrieval-Augmented Generation (RAG) context
♻ ☆ LLM-Enhanced Linear Autoencoders for Recommendation
Large language models (LLMs) have been widely adopted to enrich the semantic representation of textual item information in recommender systems. However, existing linear autoencoders (LAEs) that incorporate textual information rely on sparse word co-occurrence patterns, limiting their ability to capture rich textual semantics. To address this, we propose L3AE, the first integration of LLMs into the LAE framework. L3AE effectively integrates the heterogeneous knowledge of textual semantics and user-item interactions through a two-phase optimization strategy. (i) L3AE first constructs a semantic item-to-item correlation matrix from LLM-derived item representations. (ii) It then learns an item-to-item weight matrix from collaborative signals while distilling semantic item correlations as regularization. Notably, each phase of L3AE is optimized through closed-form solutions, ensuring global optimality and computational efficiency. Extensive experiments demonstrate that L3AE consistently outperforms state-of-the-art LLM-enhanced models on three benchmark datasets, achieving gains of 27.6% in Recall@20 and 39.3% in NDCG@20. The source code is available at https://github.com/jaewan7599/L3AE_CIKM2025.
comment: Accepted by CIKM 2025
♻ ☆ PCR-CA: Parallel Codebook Representations with Contrastive Alignment for Multiple-Category App Recommendation
Modern app store recommender systems struggle with multiple-category apps, as traditional taxonomies fail to capture overlapping semantics, leading to suboptimal personalization. We propose PCR-CA (Parallel Codebook Representations with Contrastive Alignment), an end-to-end framework for improved CTR prediction. PCR-CA first extracts compact multimodal embeddings from app text, then introduces a Parallel Codebook VQ-AE module that learns discrete semantic representations across multiple codebooks in parallel -- unlike hierarchical residual quantization (RQ-VAE). This design enables independent encoding of diverse aspects (e.g., gameplay, art style), better modeling multiple-category semantics. To bridge semantic and collaborative signals, we employ a contrastive alignment loss at both the user and item levels, enhancing representation learning for long-tail items. Additionally, a dual-attention fusion mechanism combines ID-based and semantic features to capture user interests, especially for long-tail apps. Experiments on a large-scale dataset show PCR-CA achieves a +0.76% AUC improvement over strong baselines, with +2.15% AUC gains for long-tail apps. Online A/B testing further validates our approach, showing a +10.52% lift in CTR and a +16.30% improvement in CVR, demonstrating PCR-CA's effectiveness in real-world deployment. The new framework has now been fully deployed on the Microsoft Store.
comment: 9 pages, 4 figures, conference
♻ ☆ ST-Raptor: LLM-Powered Semi-Structured Table Question Answering SIGMOD 2026
Semi-structured tables, widely used in real-world applications (e.g., financial reports, medical records, transactional orders), often involve flexible and complex layouts (e.g., hierarchical headers and merged cells). These tables generally rely on human analysts to interpret table layouts and answer relevant natural language questions, which is costly and inefficient. To automate the procedure, existing methods face significant challenges. First, methods like NL2SQL require converting semi-structured tables into structured ones, which often causes substantial information loss. Second, methods like NL2Code and multi-modal LLM QA struggle to understand the complex layouts of semi-structured tables and cannot accurately answer corresponding questions. To this end, we propose ST-Raptor, a tree-based framework for semi-structured table question answering using large language models. First, we introduce the Hierarchical Orthogonal Tree (HO-Tree), a structural model that captures complex semi-structured table layouts, along with an effective algorithm for constructing the tree. Second, we define a set of basic tree operations to guide LLMs in executing common QA tasks. Given a user question, ST-Raptor decomposes it into simpler sub-questions, generates corresponding tree operation pipelines, and conducts operation-table alignment for accurate pipeline execution. Third, we incorporate a two-stage verification mechanism: forward validation checks the correctness of execution steps, while backward validation evaluates answer reliability by reconstructing queries from predicted answers. To benchmark the performance, we present SSTQA, a dataset of 764 questions over 102 real-world semi-structured tables. Experiments show that ST-Raptor outperforms nine baselines by up to 20% in answer accuracy. The code is available at https://github.com/weAIDB/ST-Raptor.
comment: Extension of our SIGMOD 2026 paper. Please refer to source code available at: https://github.com/weAIDB/ST-Raptor
Artificial Intelligence 150
☆ Model Context Protocols in Adaptive Transport Systems: A Survey
The rapid expansion of interconnected devices, autonomous systems, and AI applications has created severe fragmentation in adaptive transport systems, where diverse protocols and context sources remain isolated. This survey provides the first systematic investigation of the Model Context Protocol (MCP) as a unifying paradigm, highlighting its ability to bridge protocol-level adaptation with context-aware decision making. Analyzing established literature, we show that existing efforts have implicitly converged toward MCP-like architectures, signaling a natural evolution from fragmented solutions to standardized integration frameworks. We propose a five-category taxonomy covering adaptive mechanisms, context-aware frameworks, unification models, integration strategies, and MCP-enabled architectures. Our findings reveal three key insights: traditional transport protocols have reached the limits of isolated adaptation, MCP's client-server and JSON-RPC structure enables semantic interoperability, and AI-driven transport demands integration paradigms uniquely suited to MCP. Finally, we present a research roadmap positioning MCP as a foundation for next-generation adaptive, context-aware, and intelligent transport infrastructures.
☆ StepWiser: Stepwise Generative Judges for Wiser Reasoning
As models increasingly leverage multi-step reasoning strategies to solve complex problems, supervising the logical validity of these intermediate steps has become a critical research challenge. Process reward models address this by providing step-by-step feedback, but current approaches have two major drawbacks: they typically function as classifiers without providing explanations, and their reliance on supervised fine-tuning with static datasets limits generalization. Inspired by recent advances, we reframe stepwise reward modeling from a classification task to a reasoning task itself. We thus propose a generative judge that reasons about the policy model's reasoning steps (i.e., meta-reasons), outputting thinking tokens before delivering a final verdict. Our model, StepWiser, is trained by reinforcement learning using relative outcomes of rollouts. We show it provides (i) better judgment accuracy on intermediate steps than existing methods; (ii) can be used to improve the policy model at training time; and (iii) improves inference-time search.
☆ Generative Interfaces for Language Models
Large language models (LLMs) are increasingly seen as assistants, copilots, and consultants, capable of supporting a wide range of tasks through natural conversation. However, most systems remain constrained by a linear request-response format that often makes interactions inefficient in multi-turn, information-dense, and exploratory tasks. To address these limitations, we propose Generative Interfaces for Language Models, a paradigm in which LLMs respond to user queries by proactively generating user interfaces (UIs) that enable more adaptive and interactive engagement. Our framework leverages structured interface-specific representations and iterative refinements to translate user queries into task-specific UIs. For systematic evaluation, we introduce a multidimensional assessment framework that compares generative interfaces with traditional chat-based ones across diverse tasks, interaction patterns, and query types, capturing functional, interactive, and emotional aspects of user experience. Results show that generative interfaces consistently outperform conversational ones, with humans preferring them in over 70% of cases. These findings clarify when and why users favor generative interfaces, paving the way for future advancements in human-AI interaction.
comment: Preprint
☆ The Subset Sum Matching Problem AI 2025
This paper presents a new combinatorial optimisation task, the Subset Sum Matching Problem (SSMP), which is an abstraction of common financial applications such as trades reconciliation. We present three algorithms, two suboptimal and one optimal, to solve this problem. We also generate a benchmark to cover different instances of SSMP varying in complexity, and carry out an experimental evaluation to assess the performance of the approaches.
comment: Paper accepted at ECAI 2025. This is an extended version that includes Supplementary Material
☆ Interpolating Speaker Identities in Embedding Space for Data Expansion
The success of deep learning-based speaker verification systems is largely attributed to access to large-scale and diverse speaker identity data. However, collecting data from more identities is expensive, challenging, and often limited by privacy concerns. To address this limitation, we propose INSIDE (Interpolating Speaker Identities in Embedding Space), a novel data expansion method that synthesizes new speaker identities by interpolating between existing speaker embeddings. Specifically, we select pairs of nearby speaker embeddings from a pretrained speaker embedding space and compute intermediate embeddings using spherical linear interpolation. These interpolated embeddings are then fed to a text-to-speech system to generate corresponding speech waveforms. The resulting data is combined with the original dataset to train downstream models. Experiments show that models trained with INSIDE-expanded data outperform those trained only on real data, achieving 3.06\% to 5.24\% relative improvements. While INSIDE is primarily designed for speaker verification, we also validate its effectiveness on gender classification, where it yields a 13.44\% relative improvement. Moreover, INSIDE is compatible with other augmentation techniques and can serve as a flexible, scalable addition to existing training pipelines.
comment: accepted by APSIPA ASC 2025
☆ VibeVoice Technical Report
This report presents VibeVoice, a novel model designed to synthesize long-form speech with multiple speakers by employing next-token diffusion, which is a unified method for modeling continuous data by autoregressively generating latent vectors via diffusion. To enable this, we introduce a novel continuous speech tokenizer that, when compared to the popular Encodec model, improves data compression by 80 times while maintaining comparable performance. The tokenizer effectively preserves audio fidelity while significantly boosting computational efficiency for processing long sequences. Thus, VibeVoice can synthesize long-form speech for up to 90 minutes (in a 64K context window length) with a maximum of 4 speakers, capturing the authentic conversational ``vibe'' and surpassing open-source and proprietary dialogue models.
☆ LSD-3D: Large-Scale 3D Driving Scene Generation with Geometry Grounding
Large-scale scene data is essential for training and testing in robot learning. Neural reconstruction methods have promised the capability of reconstructing large physically-grounded outdoor scenes from captured sensor data. However, these methods have baked-in static environments and only allow for limited scene control -- they are functionally constrained in scene and trajectory diversity by the captures from which they are reconstructed. In contrast, generating driving data with recent image or video diffusion models offers control, however, at the cost of geometry grounding and causality. In this work, we aim to bridge this gap and present a method that directly generates large-scale 3D driving scenes with accurate geometry, allowing for causal novel view synthesis with object permanence and explicit 3D geometry estimation. The proposed method combines the generation of a proxy geometry and environment representation with score distillation from learned 2D image priors. We find that this approach allows for high controllability, enabling the prompt-guided geometry and high-fidelity texture and structure that can be conditioned on map layouts -- producing realistic and geometrically consistent 3D generations of complex driving scenes.
comment: Project webpage: https://light.princeton.edu/LSD-3D
☆ Understanding Tool-Integrated Reasoning
We study why Tool-Integrated Reasoning (TIR) makes Large Language Models (LLMs) more capable. While LLMs integrated with tools like Python code interpreters show great promise, a principled theory explaining why this paradigm is effective has been missing. This work provides the first formal proof that TIR fundamentally expands an LLM's capabilities. We demonstrate that tools enable a strict expansion of the model's empirical and feasible support, breaking the capability ceiling of pure-text models by unlocking problem-solving strategies that are otherwise impossible or intractably verbose. To guide model behavior without compromising training stability and performance, we also introduce Advantage Shaping Policy Optimization (ASPO), a novel algorithm that directly modifies the advantage function to guide the policy behavior. We conduct comprehensive experiments on challenging mathematical benchmarks, leveraging a Python interpreter as the external tool. Our results show that the TIR model decisively outperforms its pure-text counterpart on the pass@k metric. Crucially, this advantage is not confined to computationally-intensive problems but extends to those requiring significant abstract insight. We further identify the emergent cognitive patterns that illustrate how models learn to think with tools. Finally, we report improved tool usage behavior with early code invocation and much more interactive turns with ASPO. Overall, our work provides the first principled explanation for TIR's success, shifting the focus from the mere fact that tools work to why and how they enable more powerful reasoning.
☆ The Ramon Llull's Thinking Machine for Automated Ideation
This paper revisits Ramon Llull's Ars combinatoria - a medieval framework for generating knowledge through symbolic recombination - as a conceptual foundation for building a modern Llull's thinking machine for research ideation. Our approach defines three compositional axes: Theme (e.g., efficiency, adaptivity), Domain (e.g., question answering, machine translation), and Method (e.g., adversarial training, linear attention). These elements represent high-level abstractions common in scientific work - motivations, problem settings, and technical approaches - and serve as building blocks for LLM-driven exploration. We mine elements from human experts or conference papers and show that prompting LLMs with curated combinations produces research ideas that are diverse, relevant, and grounded in current literature. This modern thinking machine offers a lightweight, interpretable tool for augmenting scientific creativity and suggests a path toward collaborative ideation between humans and AI.
comment: 21 pages, 3 figures
☆ Emotions as Ambiguity-aware Ordinal Representations
Emotions are inherently ambiguous and dynamic phenomena, yet existing continuous emotion recognition approaches either ignore their ambiguity or treat ambiguity as an independent and static variable over time. Motivated by this gap in the literature, in this paper we introduce \emph{ambiguity-aware ordinal} emotion representations, a novel framework that captures both the ambiguity present in emotion annotation and the inherent temporal dynamics of emotional traces. Specifically, we propose approaches that model emotion ambiguity through its rate of change. We evaluate our framework on two affective corpora -- RECOLA and GameVibe -- testing our proposed approaches on both bounded (arousal, valence) and unbounded (engagement) continuous traces. Our results demonstrate that ordinal representations outperform conventional ambiguity-aware models on unbounded labels, achieving the highest Concordance Correlation Coefficient (CCC) and Signed Differential Agreement (SDA) scores, highlighting their effectiveness in modeling the traces' dynamics. For bounded traces, ordinal representations excel in SDA, revealing their superior ability to capture relative changes of annotated emotion traces.
☆ Real-Time Model Checking for Closed-Loop Robot Reactive Planning
We present a new application of model checking which achieves real-time multi-step planning and obstacle avoidance on a real autonomous robot. We have developed a small, purpose-built model checking algorithm which generates plans in situ based on "core" knowledge and attention as found in biological agents. This is achieved in real-time using no pre-computed data on a low-powered device. Our approach is based on chaining temporary control systems which are spawned to counteract disturbances in the local environment that disrupt an autonomous agent from its preferred action (or resting state). A novel discretization of 2D LiDAR data sensitive to bounded variations in the local environment is used. Multi-step planning using model checking by forward depth-first search is applied to cul-de-sac and playground scenarios. Both empirical results and informal proofs of two fundamental properties of our approach demonstrate that model checking can be used to create efficient multi-step plans for local obstacle avoidance, improving on the performance of a reactive agent which can only plan one step. Our approach is an instructional case study for the development of safe, reliable and explainable planning in the context of autonomous vehicles.
comment: 30 pages excluding references, 18 figures, submitted to Formal Aspects of Computing
☆ From Tabula Rasa to Emergent Abilities: Discovering Robot Skills via Real-World Unsupervised Quality-Diversity
Autonomous skill discovery aims to enable robots to acquire diverse behaviors without explicit supervision. Learning such behaviors directly on physical hardware remains challenging due to safety and data efficiency constraints. Existing methods, including Quality-Diversity Actor-Critic (QDAC), require manually defined skill spaces and carefully tuned heuristics, limiting real-world applicability. We propose Unsupervised Real-world Skill Acquisition (URSA), an extension of QDAC that enables robots to autonomously discover and master diverse, high-performing skills directly in the real world. We demonstrate that URSA successfully discovers diverse locomotion skills on a Unitree A1 quadruped in both simulation and the real world. Our approach supports both heuristic-driven skill discovery and fully unsupervised settings. We also show that the learned skill repertoire can be reused for downstream tasks such as real-world damage adaptation, where URSA outperforms all baselines in 5 out of 9 simulated and 3 out of 5 real-world damage scenarios. Our results establish a new framework for real-world robot learning that enables continuous skill discovery with limited human intervention, representing a significant step toward more autonomous and adaptable robotic systems. Demonstration videos are available at http://adaptive-intelligent-robotics.github.io/URSA .
comment: Accepted at CoRL 2025
☆ MATRIX: Multi-Agent simulaTion fRamework for safe Interactions and conteXtual clinical conversational evaluation
Despite the growing use of large language models (LLMs) in clinical dialogue systems, existing evaluations focus on task completion or fluency, offering little insight into the behavioral and risk management requirements essential for safety-critical systems. This paper presents MATRIX (Multi-Agent simulaTion fRamework for safe Interactions and conteXtual clinical conversational evaluation), a structured, extensible framework for safety-oriented evaluation of clinical dialogue agents. MATRIX integrates three components: (1) a safety-aligned taxonomy of clinical scenarios, expected system behaviors and failure modes derived through structured safety engineering methods; (2) BehvJudge, an LLM-based evaluator for detecting safety-relevant dialogue failures, validated against expert clinician annotations; and (3) PatBot, a simulated patient agent capable of producing diverse, scenario-conditioned responses, evaluated for realism and behavioral fidelity with human factors expertise, and a patient-preference study. Across three experiments, we show that MATRIX enables systematic, scalable safety evaluation. BehvJudge with Gemini 2.5-Pro achieves expert-level hazard detection (F1 0.96, sensitivity 0.999), outperforming clinicians in a blinded assessment of 240 dialogues. We also conducted one of the first realism analyses of LLM-based patient simulation, showing that PatBot reliably simulates realistic patient behavior in quantitative and qualitative evaluations. Using MATRIX, we demonstrate its effectiveness in benchmarking five LLM agents across 2,100 simulated dialogues spanning 14 hazard scenarios and 10 clinical domains. MATRIX is the first framework to unify structured safety engineering with scalable, validated conversational AI evaluation, enabling regulator-aligned safety auditing. We release all evaluation tools, prompts, structured scenarios, and datasets.
comment: 36 pages, 16 figures
☆ Few-Shot Connectivity-Aware Text Line Segmentation in Historical Documents
A foundational task for the digital analysis of documents is text line segmentation. However, automating this process with deep learning models is challenging because it requires large, annotated datasets that are often unavailable for historical documents. Additionally, the annotation process is a labor- and cost-intensive task that requires expert knowledge, which makes few-shot learning a promising direction for reducing data requirements. In this work, we demonstrate that small and simple architectures, coupled with a topology-aware loss function, are more accurate and data-efficient than more complex alternatives. We pair a lightweight UNet++ with a connectivity-aware loss, initially developed for neuron morphology, which explicitly penalizes structural errors like line fragmentation and unintended line merges. To increase our limited data, we train on small patches extracted from a mere three annotated pages per manuscript. Our methodology significantly improves upon the current state-of-the-art on the U-DIADS-TL dataset, with a 200% increase in Recognition Accuracy and a 75% increase in Line Intersection over Union. Our method also achieves an F-Measure score on par with or even exceeding that of the competition winner of the DIVA-HisDB baseline detection task, all while requiring only three annotated pages, exemplifying the efficacy of our approach. Our implementation is publicly available at: https://github.com/RafaelSterzinger/acpr_few_shot_hist.
comment: 15 pages, accepted at ACPR2025
☆ RDDM: Practicing RAW Domain Diffusion Model for Real-world Image Restoration
We present the RAW domain diffusion model (RDDM), an end-to-end diffusion model that restores photo-realistic images directly from the sensor RAW data. While recent sRGB-domain diffusion methods achieve impressive results, they are caught in a dilemma between high fidelity and realistic generation. As these models process lossy sRGB inputs and neglect the accessibility of the sensor RAW images in many scenarios, e.g., in image and video capturing in edge devices, resulting in sub-optimal performance. RDDM bypasses this limitation by directly restoring images in the RAW domain, replacing the conventional two-stage image signal processing (ISP) + IR pipeline. However, a simple adaptation of pre-trained diffusion models to the RAW domain confronts the out-of-distribution (OOD) issues. To this end, we propose: (1) a RAW-domain VAE (RVAE) learning optimal latent representations, (2) a differentiable Post Tone Processing (PTP) module enabling joint RAW and sRGB space optimization. To compensate for the deficiency in the dataset, we develop a scalable degradation pipeline synthesizing RAW LQ-HQ pairs from existing sRGB datasets for large-scale training. Furthermore, we devise a configurable multi-bayer (CMB) LoRA module handling diverse RAW patterns such as RGGB, BGGR, etc. Extensive experiments demonstrate RDDM's superiority over state-of-the-art sRGB diffusion methods, yielding higher fidelity results with fewer artifacts.
☆ Playstyle and Artificial Intelligence: An Initial Blueprint Through the Lens of Video Games
Contemporary artificial intelligence (AI) development largely centers on rational decision-making, valued for its measurability and suitability for objective evaluation. Yet in real-world contexts, an intelligent agent's decisions are shaped not only by logic but also by deeper influences such as beliefs, values, and preferences. The diversity of human decision-making styles emerges from these differences, highlighting that "style" is an essential but often overlooked dimension of intelligence. This dissertation introduces playstyle as an alternative lens for observing and analyzing the decision-making behavior of intelligent agents, and examines its foundational meaning and historical context from a philosophical perspective. By analyzing how beliefs and values drive intentions and actions, we construct a two-tier framework for style formation: the external interaction loop with the environment and the internal cognitive loop of deliberation. On this basis, we formalize style-related characteristics and propose measurable indicators such as style capacity, style popularity, and evolutionary dynamics. The study focuses on three core research directions: (1) Defining and measuring playstyle, proposing a general playstyle metric based on discretized state spaces, and extending it to quantify strategic diversity and competitive balance; (2) Expressing and generating playstyle, exploring how reinforcement learning and imitation learning can be used to train agents exhibiting specific stylistic tendencies, and introducing a novel approach for human-like style learning and modeling; and (3) Practical applications, analyzing the potential of these techniques in domains such as game design and interactive entertainment. Finally, the dissertation outlines future extensions, including the role of style as a core element in building artificial general intelligence (AGI).
comment: PhD Dissertation, National Yang Ming Chiao Tung University, 2025. This is the public version without Chinese abstract or postscript
☆ Uncertainty-Resilient Active Intention Recognition for Robotic Assistants
Purposeful behavior in robotic assistants requires the integration of multiple components and technological advances. Often, the problem is reduced to recognizing explicit prompts, which limits autonomy, or is oversimplified through assumptions such as near-perfect information. We argue that a critical gap remains unaddressed -- specifically, the challenge of reasoning about the uncertain outcomes and perception errors inherent to human intention recognition. In response, we present a framework designed to be resilient to uncertainty and sensor noise, integrating real-time sensor data with a combination of planners. Centered around an intention-recognition POMDP, our approach addresses cooperative planning and acting under uncertainty. Our integrated framework has been successfully tested on a physical robot with promising results.
comment: (To appear) In Proceedings of ECMR 2025
☆ Algorithmic Collective Action with Multiple Collectives
As learning systems increasingly influence everyday decisions, user-side steering via Algorithmic Collective Action (ACA)-coordinated changes to shared data-offers a complement to regulator-side policy and firm-side model design. Although real-world actions have been traditionally decentralized and fragmented into multiple collectives despite sharing overarching objectives-with each collective differing in size, strategy, and actionable goals, most of the ACA literature focused on single collective settings. In this work, we present the first theoretical framework for ACA with multiple collectives acting on the same system. In particular, we focus on collective action in classification, studying how multiple collectives can plant signals, i.e., bias a classifier to learn an association between an altered version of the features and a chosen, possibly overlapping, set of target classes. We provide quantitative results about the role and the interplay of collectives' sizes and their alignment of goals. Our framework, by also complementing previous empirical results, opens a path for a holistic treatment of ACA with multiple collectives.
comment: 12 pages
☆ ZeST: an LLM-based Zero-Shot Traversability Navigation for Unknown Environments
The advancement of robotics and autonomous navigation systems hinges on the ability to accurately predict terrain traversability. Traditional methods for generating datasets to train these prediction models often involve putting robots into potentially hazardous environments, posing risks to equipment and safety. To solve this problem, we present ZeST, a novel approach leveraging visual reasoning capabilities of Large Language Models (LLMs) to create a traversability map in real-time without exposing robots to danger. Our approach not only performs zero-shot traversability and mitigates the risks associated with real-world data collection but also accelerates the development of advanced navigation systems, offering a cost-effective and scalable solution. To support our findings, we present navigation results, in both controlled indoor and unstructured outdoor environments. As shown in the experiments, our method provides safer navigation when compared to other state-of-the-art methods, constantly reaching the final goal.
☆ SecureV2X: An Efficient and Privacy-Preserving System for Vehicle-to-Everything (V2X) Applications
Autonomous driving and V2X technologies have developed rapidly in the past decade, leading to improved safety and efficiency in modern transportation. These systems interact with extensive networks of vehicles, roadside infrastructure, and cloud resources to support their machine learning capabilities. However, the widespread use of machine learning in V2X systems raises issues over the privacy of the data involved. This is particularly concerning for smart-transit and driver safety applications which can implicitly reveal user locations or explicitly disclose medical data such as EEG signals. To resolve these issues, we propose SecureV2X, a scalable, multi-agent system for secure neural network inferences deployed between the server and each vehicle. Under this setting, we study two multi-agent V2X applications: secure drowsiness detection, and secure red-light violation detection. Our system achieves strong performance relative to baselines, and scales efficiently to support a large number of secure computation interactions simultaneously. For instance, SecureV2X is $9.4 \times$ faster, requires $143\times$ fewer computational rounds, and involves $16.6\times$ less communication on drowsiness detection compared to other secure systems. Moreover, it achieves a runtime nearly $100\times$ faster than state-of-the-art benchmarks in object detection tasks for red light violation detection.
comment: 10 pages, 3 figures
☆ Hybrid Deep Searcher: Integrating Parallel and Sequential Search Reasoning
Large reasoning models (LRMs) have demonstrated strong performance in complex, multi-step reasoning tasks. Existing methods enhance LRMs by sequentially integrating external knowledge retrieval; models iteratively generate queries, retrieve external information, and progressively reason over this information. However, purely sequential querying increases inference latency and context length, diminishing coherence and potentially reducing accuracy. To address these limitations, we introduce HDS-QA (Hybrid Deep Search QA), a synthetic dataset automatically generated from Natural Questions, explicitly designed to train LRMs to distinguish parallelizable from sequential queries. HDS-QA comprises hybrid-hop questions that combine parallelizable independent subqueries (executable simultaneously) and sequentially dependent subqueries (requiring step-by-step resolution), along with synthetic reasoning-querying-retrieval paths involving parallel queries. We fine-tune an LRM using HDS-QA, naming the model HybridDeepSearcher, which outperforms state-of-the-art baselines across multiple benchmarks, notably achieving +15.9 and +11.5 F1 on FanOutQA and a subset of BrowseComp, respectively, both requiring comprehensive and exhaustive search. Experimental results highlight two key advantages: HybridDeepSearcher reaches comparable accuracy with fewer search turns, significantly reducing inference latency, and it effectively scales as more turns are permitted. These results demonstrate the efficiency, scalability, and effectiveness of explicitly training LRMs to leverage hybrid parallel and sequential querying.
☆ Reasoning LLMs in the Medical Domain: A Literature Survey
The emergence of advanced reasoning capabilities in Large Language Models (LLMs) marks a transformative development in healthcare applications. Beyond merely expanding functional capabilities, these reasoning mechanisms enhance decision transparency and explainability-critical requirements in medical contexts. This survey examines the transformation of medical LLMs from basic information retrieval tools to sophisticated clinical reasoning systems capable of supporting complex healthcare decisions. We provide a thorough analysis of the enabling technological foundations, with a particular focus on specialized prompting techniques like Chain-of-Thought and recent breakthroughs in Reinforcement Learning exemplified by DeepSeek-R1. Our investigation evaluates purpose-built medical frameworks while also examining emerging paradigms such as multi-agent collaborative systems and innovative prompting architectures. The survey critically assesses current evaluation methodologies for medical validation and addresses persistent challenges in field interpretation limitations, bias mitigation strategies, patient safety frameworks, and integration of multimodal clinical data. Through this survey, we seek to establish a roadmap for developing reliable LLMs that can serve as effective partners in clinical practice and medical research.
☆ Trustworthy Agents for Electronic Health Records through Confidence Estimation
Large language models (LLMs) show promise for extracting information from Electronic Health Records (EHR) and supporting clinical decisions. However, deployment in clinical settings faces challenges due to hallucination risks. We propose Hallucination Controlled Accuracy at k% (HCAcc@k%), a novel metric quantifying the accuracy-reliability trade-off at varying confidence thresholds. We introduce TrustEHRAgent, a confidence-aware agent incorporating stepwise confidence estimation for clinical question answering. Experiments on MIMIC-III and eICU datasets show TrustEHRAgent outperforms baselines under strict reliability constraints, achieving improvements of 44.23%p and 25.34%p at HCAcc@70% while baseline methods fail at these thresholds. These results highlight limitations of traditional accuracy metrics in evaluating healthcare AI agents. Our work contributes to developing trustworthy clinical agents that deliver accurate information or transparently express uncertainty when confidence is low.
☆ APT-LLM: Exploiting Arbitrary-Precision Tensor Core Computing for LLM Acceleration
Large language models (LLMs) have revolutionized AI applications, yet their enormous computational demands severely limit deployment and real-time performance. Quantization methods can help reduce computational costs, however, attaining the extreme efficiency associated with ultra-low-bit quantized LLMs at arbitrary precision presents challenges on GPUs. This is primarily due to the limited support for GPU Tensor Cores, inefficient memory management, and inflexible kernel optimizations. To tackle these challenges, we propose a comprehensive acceleration scheme for arbitrary precision LLMs, namely APT-LLM. Firstly, we introduce a novel data format, bipolar-INT, which allows for efficient and lossless conversion with signed INT, while also being more conducive to parallel computation. We also develop a matrix multiplication (MatMul) method allowing for arbitrary precision by dismantling and reassembling matrices at the bit level. This method provides flexible precision and optimizes the utilization of GPU Tensor Cores. In addition, we propose a memory management system focused on data recovery, which strategically employs fast shared memory to substantially increase kernel execution speed and reduce memory access latency. Finally, we develop a kernel mapping method that dynamically selects the optimal configurable hyperparameters of kernels for varying matrix sizes, enabling optimal performance across different LLM architectures and precision settings. In LLM inference, APT-LLM achieves up to a 3.99$\times$ speedup compared to FP16 baselines and a 2.16$\times$ speedup over NVIDIA CUTLASS INT4 acceleration on RTX 3090. On RTX 4090 and H800, APT-LLM achieves up to 2.44$\times$ speedup over FP16 and 1.65$\times$ speedup over CUTLASS integer baselines.
comment: To appear in the IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD)
☆ HiPlan: Hierarchical Planning for LLM-Based Agents with Adaptive Global-Local Guidance
Large language model (LLM)-based agents have demonstrated remarkable capabilities in decision-making tasks, but struggle significantly with complex, long-horizon planning scenarios. This arises from their lack of macroscopic guidance, causing disorientation and failures in complex tasks, as well as insufficient continuous oversight during execution, rendering them unresponsive to environmental changes and prone to deviations. To tackle these challenges, we introduce HiPlan, a hierarchical planning framework that provides adaptive global-local guidance to boost LLM-based agents'decision-making. HiPlan decomposes complex tasks into milestone action guides for general direction and step-wise hints for detailed actions. During the offline phase, we construct a milestone library from expert demonstrations, enabling structured experience reuse by retrieving semantically similar tasks and milestones. In the execution phase, trajectory segments from past milestones are dynamically adapted to generate step-wise hints that align current observations with the milestone objectives, bridging gaps and correcting deviations. Extensive experiments across two challenging benchmarks demonstrate that HiPlan substantially outperforms strong baselines, and ablation studies validate the complementary benefits of its hierarchical components.
☆ An LLM-powered Natural-to-Robotic Language Translation Framework with Correctness Guarantees
The Large Language Models (LLM) are increasingly being deployed in robotics to generate robot control programs for specific user tasks, enabling embodied intelligence. Existing methods primarily focus on LLM training and prompt design that utilize LLMs to generate executable programs directly from user tasks in natural language. However, due to the inconsistency of the LLMs and the high complexity of the tasks, such best-effort approaches often lead to tremendous programming errors in the generated code, which significantly undermines the effectiveness especially when the light-weight LLMs are applied. This paper introduces a natural-robotic language translation framework that (i) provides correctness verification for generated control programs and (ii) enhances the performance of LLMs in program generation via feedback-based fine-tuning for the programs. To achieve this, a Robot Skill Language (RSL) is proposed to abstract away from the intricate details of the control programs, bridging the natural language tasks with the underlying robot skills. Then, the RSL compiler and debugger are constructed to verify RSL programs generated by the LLM and provide error feedback to the LLM for refining the outputs until being verified by the compiler. This provides correctness guarantees for the LLM-generated programs before being offloaded to the robots for execution, significantly enhancing the effectiveness of LLM-powered robotic applications. Experiments demonstrate NRTrans outperforms the existing method under a range of LLMs and tasks, and achieves a high success rate for light-weight LLMs.
☆ Attackers Strike Back? Not Anymore -- An Ensemble of RL Defenders Awakens for APT Detection
Advanced Persistent Threats (APTs) represent a growing menace to modern digital infrastructure. Unlike traditional cyberattacks, APTs are stealthy, adaptive, and long-lasting, often bypassing signature-based detection systems. This paper introduces a novel framework for APT detection that unites deep learning, reinforcement learning (RL), and active learning into a cohesive, adaptive defense system. Our system combines auto-encoders for latent behavioral encoding with a multi-agent ensemble of RL-based defenders, each trained to distinguish between benign and malicious process behaviors. We identify a critical challenge in existing detection systems: their static nature and inability to adapt to evolving attack strategies. To this end, our architecture includes multiple RL agents (Q-Learning, PPO, DQN, adversarial defenders), each analyzing latent vectors generated by an auto-encoder. When any agent is uncertain about its decision, the system triggers an active learning loop to simulate expert feedback, thus refining decision boundaries. An ensemble voting mechanism, weighted by each agent's performance, ensures robust final predictions.
☆ Dynamic Triangulation-Based Graph Rewiring for Graph Neural Networks
Graph Neural Networks (GNNs) have emerged as the leading paradigm for learning over graph-structured data. However, their performance is limited by issues inherent to graph topology, most notably oversquashing and oversmoothing. Recent advances in graph rewiring aim to mitigate these limitations by modifying the graph topology to promote more effective information propagation. In this work, we introduce TRIGON, a novel framework that constructs enriched, non-planar triangulations by learning to select relevant triangles from multiple graph views. By jointly optimizing triangle selection and downstream classification performance, our method produces a rewired graph with markedly improved structural properties such as reduced diameter, increased spectral gap, and lower effective resistance compared to existing rewiring methods. Empirical results demonstrate that TRIGON outperforms state-of-the-art approaches on node classification tasks across a range of homophilic and heterophilic benchmarks.
comment: Accepted to CIKM 2025
☆ Can Structured Templates Facilitate LLMs in Tackling Harder Tasks? : An Exploration of Scaling Laws by Difficulty
Structured, procedural reasoning is essential for Large Language Models (LLMs), especially in mathematics. While post-training methods have improved LLM performance, they still fall short in capturing deep procedural logic on complex tasks. To tackle the issue, in this paper, we first investigate this limitation and uncover a novel finding: a Scaling Law by Difficulty, which reveals that model performance follows a U-shaped curve with respect to training data complexity -- excessive low-difficulty data impedes abstraction, while high-difficulty data significantly enhances reasoning ability. Motivated by this, we propose the Structured Solution Template (SST) framework, which uses solution templates and a curriculum of varied difficulty to explicitly teach procedural reasoning. Specifically, SST comprises (1) fine-tuning with structured solution-template chains and dynamically weighted loss to prioritize procedural logic, (2) prompt-time injection of solution templates as cognitive scaffolds to guide inference, and (3) integrated curriculum fine-tuning that explicitly teaches the model to self-plan - execute - self-correct. Experiments on GSM8K, AIME24, and new Dynamic En benchmark show that SST significantly improves both accuracy and efficiency, especially on harder problems.
comment: 9 pages
☆ Tackling Federated Unlearning as a Parameter Estimation Problem
Privacy regulations require the erasure of data from deep learning models. This is a significant challenge that is amplified in Federated Learning, where data remains on clients, making full retraining or coordinated updates often infeasible. This work introduces an efficient Federated Unlearning framework based on information theory, modeling leakage as a parameter estimation problem. Our method uses second-order Hessian information to identify and selectively reset only the parameters most sensitive to the data being forgotten, followed by minimal federated retraining. This model-agnostic approach supports categorical and client unlearning without requiring server access to raw client data after initial information aggregation. Evaluations on benchmark datasets demonstrate strong privacy (MIA success near random, categorical knowledge erased) and high performance (Normalized Accuracy against re-trained benchmarks of $\approx$ 0.9), while aiming for increased efficiency over complete retraining. Furthermore, in a targeted backdoor attack scenario, our framework effectively neutralizes the malicious trigger, restoring model integrity. This offers a practical solution for data forgetting in FL.
comment: 18 pages, 1 figure
☆ No Label Left Behind: A Unified Surface Defect Detection Model for all Supervision Regimes
Surface defect detection is a critical task across numerous industries, aimed at efficiently identifying and localising imperfections or irregularities on manufactured components. While numerous methods have been proposed, many fail to meet industrial demands for high performance, efficiency, and adaptability. Existing approaches are often constrained to specific supervision scenarios and struggle to adapt to the diverse data annotations encountered in real-world manufacturing processes, such as unsupervised, weakly supervised, mixed supervision, and fully supervised settings. To address these challenges, we propose SuperSimpleNet, a highly efficient and adaptable discriminative model built on the foundation of SimpleNet. SuperSimpleNet incorporates a novel synthetic anomaly generation process, an enhanced classification head, and an improved learning procedure, enabling efficient training in all four supervision scenarios, making it the first model capable of fully leveraging all available data annotations. SuperSimpleNet sets a new standard for performance across all scenarios, as demonstrated by its results on four challenging benchmark datasets. Beyond accuracy, it is very fast, achieving an inference time below 10 ms. With its ability to unify diverse supervision paradigms while maintaining outstanding speed and reliability, SuperSimpleNet represents a promising step forward in addressing real-world manufacturing challenges and bridging the gap between academic research and industrial applications. Code: https://github.com/blaz-r/SuperSimpleNet
comment: Accepted by The Journal of Intelligent Manufacturing
☆ A Concurrent Modular Agent: Framework for Autonomous LLM Agents
We introduce the Concurrent Modular Agent (CMA), a framework that orchestrates multiple Large-Language-Model (LLM)-based modules that operate fully asynchronously yet maintain a coherent and fault-tolerant behavioral loop. This framework addresses long-standing difficulties in agent architectures by letting intention emerge from language-mediated interactions among autonomous processes. This approach enables flexible, adaptive, and context-dependent behavior through the combination of concurrently executed modules that offload reasoning to an LLM, inter-module communication, and a single shared global state.We consider this approach to be a practical realization of Minsky's Society of Mind theory. We demonstrate the viability of our system through two practical use-case studies. The emergent properties observed in our system suggest that complex cognitive phenomena like self-awareness may indeed arise from the organized interaction of simpler processes, supporting Minsky-Society of Mind concept and opening new avenues for artificial intelligence research. The source code for our work is available at: https://github.com/AlternativeMachine/concurrent-modular-agent.
☆ Investigating Advanced Reasoning of Large Language Models via Black-Box Interaction
Existing tasks fall short in evaluating reasoning ability of Large Language Models (LLMs) in an interactive, unknown environment. This deficiency leads to the isolated assessment of deductive, inductive, and abductive reasoning, neglecting the integrated reasoning process that is indispensable for humans discovery of real world. We introduce a novel evaluation paradigm, \textit{black-box interaction}, to tackle this challenge. A black-box is defined by a hidden function that maps a specific set of inputs to outputs. LLMs are required to unravel the hidden function behind the black-box by interacting with it in given exploration turns, and reasoning over observed input-output pairs. Leveraging this idea, we build the \textsc{Oracle} benchmark which comprises 6 types of black-box task and 96 black-boxes. 19 modern LLMs are benchmarked. o3 ranks first in 5 of the 6 tasks, achieving over 70\% accuracy on most easy black-boxes. But it still struggles with some hard black-box tasks, where its average performance drops below 40\%. Further analysis indicates a universal difficulty among LLMs: They lack the high-level planning capability to develop efficient and adaptive exploration strategies for hypothesis refinement.
☆ Metric Matters: A Formal Evaluation of Similarity Measures in Active Learning for Cyber Threat Intelligence
Advanced Persistent Threats (APTs) pose a severe challenge to cyber defense due to their stealthy behavior and the extreme class imbalance inherent in detection datasets. To address these issues, we propose a novel active learning-based anomaly detection framework that leverages similarity search to iteratively refine the decision space. Built upon an Attention-Based Autoencoder, our approach uses feature-space similarity to identify normal-like and anomaly-like instances, thereby enhancing model robustness with minimal oracle supervision. Crucially, we perform a formal evaluation of various similarity measures to understand their influence on sample selection and anomaly ranking effectiveness. Through experiments on diverse datasets, including DARPA Transparent Computing APT traces, we demonstrate that the choice of similarity metric significantly impacts model convergence, anomaly detection accuracy, and label efficiency. Our results offer actionable insights for selecting similarity functions in active learning pipelines tailored for threat intelligence and cyber defense.
☆ MAB Optimizer for Estimating Math Question Difficulty via Inverse CV without NLP
The evolution of technology and education is driving the emergence of Intelligent & Autonomous Tutoring Systems (IATS), where objective and domain-agnostic methods for determining question difficulty are essential. Traditional human labeling is subjective, and existing NLP-based approaches fail in symbolic domains like algebra. This study introduces the Approach of Passive Measures among Educands (APME), a reinforcement learning-based Multi-Armed Bandit (MAB) framework that estimates difficulty solely from solver performance data -- marks obtained and time taken -- without requiring linguistic features or expert labels. By leveraging the inverse coefficient of variation as a risk-adjusted metric, the model provides an explainable and scalable mechanism for adaptive assessment. Empirical validation was conducted on three heterogeneous datasets. Across these diverse contexts, the model achieved an average R2 of 0.9213 and an average RMSE of 0.0584, confirming its robustness, accuracy, and adaptability to different educational levels and assessment formats. Compared with baseline approaches-such as regression-based, NLP-driven, and IRT models-the proposed framework consistently outperformed alternatives, particularly in purely symbolic domains. The findings highlight that (i) item heterogeneity strongly influences perceived difficulty, and (ii) variance in solver outcomes is as critical as mean performance for adaptive allocation. Pedagogically, the model aligns with Vygotskys Zone of Proximal Development by identifying tasks that balance challenge and attainability, supporting motivation while minimizing disengagement. This domain-agnostic, self-supervised approach advances difficulty tagging in IATS and can be extended beyond algebra wherever solver interaction data is available
☆ STDiff: A State Transition Diffusion Framework for Time Series Imputation in Industrial Systems
Most deep learning methods for imputing missing values treat the task as completing patterns within a fixed time window. This assumption often fails in industrial systems, where dynamics are driven by control actions, are highly non-stationary, and can experience long, uninterrupted gaps. We propose STDiff, which reframes imputation as learning how the system evolves from one state to the next. STDiff uses a conditional denoising diffusion model with a causal bias aligned to control theory, generating missing values step-by-step based on the most recent known state and relevant control or environmental inputs. On a public wastewater treatment dataset with simulated missing blocks, STDiff consistently achieves the lowest errors, with its advantage increasing for longer gaps. On a raw industrial dataset with substantial real gaps, it produces trajectories that remain dynamically plausible, in contrast to window-based models that tend to flatten or over-smooth. These results support dynamics-aware, explicitly conditioned imputation as a robust approach for industrial time series, and we discuss computational trade-offs and extensions to broader domains.
☆ Sense of Self and Time in Borderline Personality. A Comparative Robustness Study with Generative AI
This study examines the capacity of large language models (LLMs) to support phenomenological qualitative analysis of first-person experience in Borderline Personality Disorder (BPD), understood as a disorder of temporality and selfhood. Building on a prior human-led thematic analysis of 24 inpatients' life-story interviews, we compared three LLMs (OpenAI GPT-4o, Google Gemini 2.5 Pro, Anthropic Claude Opus 4) prompted to mimic the interpretative style of the original investigators. The models were evaluated with blinded and non-blinded expert judges in phenomenology and clinical psychology. Assessments included semantic congruence, Jaccard coefficients, and multidimensional validity ratings (credibility, coherence, substantiveness, and groundness in data). Results showed variable overlap with the human analysis, from 0 percent in GPT to 42 percent in Claude and 58 percent in Gemini, and a low Jaccard coefficient (0.21-0.28). However, the models recovered themes omitted by humans. Gemini's output most closely resembled the human analysis, with validity scores significantly higher than GPT and Claude (p < 0.0001), and was judged as human by blinded experts. All scores strongly correlated (R > 0.78) with the quantity of text and words per theme, highlighting both the variability and potential of AI-augmented thematic analysis to mitigate human interpretative bias.
comment: 22 pages, 4 tables, submitted to "Personality and Individual Differences"
☆ Building Self-Evolving Agents via Experience-Driven Lifelong Learning: A Framework and Benchmark
As AI advances toward general intelligence, the focus is shifting from systems optimized for static tasks to creating open-ended agents that learn continuously. In this paper, we introduce Experience-driven Lifelong Learning (ELL), a framework for building self-evolving agents capable of continuous growth through real-world interaction. The framework is built on four core principles: (1) Experience Exploration: Agents learn through continuous, self-motivated interaction with dynamic environments, navigating interdependent tasks and generating rich experiential trajectories. (2) Long-term Memory: Agents preserve and structure historical knowledge, including personal experiences, domain expertise, and commonsense reasoning, into a persistent memory system. (3) Skill Learning: Agents autonomously improve by abstracting recurring patterns from experience into reusable skills, which are actively refined and validated for application in new tasks. (4) Knowledge Internalization: Agents internalize explicit and discrete experiences into implicit and intuitive capabilities as "second nature". We also introduce StuLife, a benchmark dataset for ELL that simulates a student's holistic college journey, from enrollment to academic and personal development, across three core phases and ten detailed sub-scenarios. StuLife is designed around three key paradigm shifts: From Passive to Proactive, From Context to Memory, and From Imitation to Learning. In this dynamic environment, agents must acquire and distill practical skills and maintain persistent memory to make decisions based on evolving state variables. StuLife provides a comprehensive platform for evaluating lifelong learning capabilities, including memory retention, skill transfer, and self-motivated behavior. Beyond evaluating SOTA LLMs on the StuLife benchmark, we also explore the role of context engineering in advancing AGI.
☆ AI Models Exceed Individual Human Accuracy in Predicting Everyday Social Norms
A fundamental question in cognitive science concerns how social norms are acquired and represented. While humans typically learn norms through embodied social experience, we investigated whether large language models can achieve sophisticated norm understanding through statistical learning alone. Across two studies, we systematically evaluated multiple AI systems' ability to predict human social appropriateness judgments for 555 everyday scenarios by examining how closely they predicted the average judgment compared to each human participant. In Study 1, GPT-4.5's accuracy in predicting the collective judgment on a continuous scale exceeded that of every human participant (100th percentile). Study 2 replicated this, with Gemini 2.5 Pro outperforming 98.7% of humans, GPT-5 97.8%, and Claude Sonnet 4 96.0%. Despite this predictive power, all models showed systematic, correlated errors. These findings demonstrate that sophisticated models of social cognition can emerge from statistical learning over linguistic data alone, challenging strong versions of theories emphasizing the exclusive necessity of embodied experience for cultural competence. The systematic nature of AI limitations across different architectures indicates potential boundaries of pattern-based social understanding, while the models' ability to outperform nearly all individual humans in this predictive task suggests that language serves as a remarkably rich repository for cultural knowledge transmission.
comment: 18 pages + supplementy materials
☆ RoofSeg: An edge-aware transformer-based network for end-to-end roof plane segmentation
Roof plane segmentation is one of the key procedures for reconstructing three-dimensional (3D) building models at levels of detail (LoD) 2 and 3 from airborne light detection and ranging (LiDAR) point clouds. The majority of current approaches for roof plane segmentation rely on the manually designed or learned features followed by some specifically designed geometric clustering strategies. Because the learned features are more powerful than the manually designed features, the deep learning-based approaches usually perform better than the traditional approaches. However, the current deep learning-based approaches have three unsolved problems. The first is that most of them are not truly end-to-end, the plane segmentation results may be not optimal. The second is that the point feature discriminability near the edges is relatively low, leading to inaccurate planar edges. The third is that the planar geometric characteristics are not sufficiently considered to constrain the network training. To solve these issues, a novel edge-aware transformer-based network, named RoofSeg, is developed for segmenting roof planes from LiDAR point clouds in a truly end-to-end manner. In the RoofSeg, we leverage a transformer encoder-decoder-based framework to hierarchically predict the plane instance masks with the use of a set of learnable plane queries. To further improve the segmentation accuracy of edge regions, we also design an Edge-Aware Mask Module (EAMM) that sufficiently incorporates planar geometric prior of edges to enhance its discriminability for plane instance mask refinement. In addition, we propose an adaptive weighting strategy in the mask loss to reduce the influence of misclassified points, and also propose a new plane geometric loss to constrain the network training.
comment: 38 pages, 10 figures, 9 tables
☆ GitTaskBench: A Benchmark for Code Agents Solving Real-World Tasks Through Code Repository Leveraging
Beyond scratch coding, exploiting large-scale code repositories (e.g., GitHub) for practical tasks is vital in real-world software development, yet current benchmarks rarely evaluate code agents in such authentic, workflow-driven scenarios. To bridge this gap, we introduce GitTaskBench, a benchmark designed to systematically assess this capability via 54 realistic tasks across 7 modalities and 7 domains. Each task pairs a relevant repository with an automated, human-curated evaluation harness specifying practical success criteria. Beyond measuring execution and task success, we also propose the alpha-value metric to quantify the economic benefit of agent performance, which integrates task success rates, token cost, and average developer salaries. Experiments across three state-of-the-art agent frameworks with multiple advanced LLMs show that leveraging code repositories for complex task solving remains challenging: even the best-performing system, OpenHands+Claude 3.7, solves only 48.15% of tasks. Error analysis attributes over half of failures to seemingly mundane yet critical steps like environment setup and dependency resolution, highlighting the need for more robust workflow management and increased timeout preparedness. By releasing GitTaskBench, we aim to drive progress and attention toward repository-aware code reasoning, execution, and deployment -- moving agents closer to solving complex, end-to-end real-world tasks. The benchmark and code are open-sourced at https://github.com/QuantaAlpha/GitTaskBench.
comment: Highly practical, Well-motivated, Actionable
☆ Automatic Prompt Optimization with Prompt Distillation
Autoprompting is the process of automatically selecting optimized prompts for language models, which is gaining popularity due to the rapid development of prompt engineering driven by extensive research in the field of large language models (LLMs). This paper presents DistillPrompt -- a novel autoprompting method based on large language models that employs a multi-stage integration of task-specific information into prompts using training data. DistillPrompt utilizes distillation, compression, and aggregation operations to explore the prompt space more thoroughly. The method was tested on different datasets for text classification and generation tasks using the t-lite-instruct-0.1 language model. The results demonstrate a significant average improvement (e.g., 20.12% across the entire dataset compared to Grips) in key metrics over existing methods in the field, establishing DistillPrompt as one of the most effective non-gradient approaches in autoprompting.
☆ Interpretable by AI Mother Tongue: Native Symbolic Reasoning in Neural Models AI
We present a framework where neural models develop an AI Mother Tongue, a native symbolic language that simultaneously supports intuitive reasoning, compositional symbol chains, and inherent interpretability. Unlike post-hoc explanation methods, our approach embeds reasoning directly into the model's representations: symbols capture meaningful semantic patterns, chains trace decision paths, and gated induction mechanisms guide selective focus, yielding transparent yet flexible reasoning. We introduce complementary training objectives to enhance symbol purity and decision sparsity, and employ a sequential specialization strategy to first build broad symbolic competence and then refine intuitive judgments. Experiments on AI tasks demonstrate competitive accuracy alongside verifiable reasoning traces, showing that AI Mother Tongue can serve as a unified mechanism for interpretability, intuition, and symbolic reasoning in neural models.
comment: 25 pages, 9 figures. The AI Intuition Explorer dashboard is available at: https://cyrilliu1974.github.io/github.io/vi.html
☆ Enabling MoE on the Edge via Importance-Driven Expert Scheduling
The Mixture of Experts (MoE) architecture has emerged as a key technique for scaling Large Language Models by activating only a subset of experts per query. Deploying MoE on consumer-grade edge hardware, however, is constrained by limited device memory, making dynamic expert offloading essential. Unlike prior work that treats offloading purely as a scheduling problem, we leverage expert importance to guide decisions, substituting low-importance activated experts with functionally similar ones already cached in GPU memory, thereby preserving accuracy. As a result, this design reduces memory usage and data transfer, while largely eliminating PCIe overhead. In addition, we introduce a scheduling policy that maximizes the reuse ratio of GPU-cached experts, further boosting efficiency. Extensive evaluations show that our approach delivers 48% lower decoding latency with over 60% expert cache hit rate, while maintaining nearly lossless accuracy.
☆ PAX-TS: Model-agnostic multi-granular explanations for time series forecasting via localized perturbations
Time series forecasting has seen considerable improvement during the last years, with transformer models and large language models driving advancements of the state of the art. Modern forecasting models are generally opaque and do not provide explanations for their forecasts, while well-known post-hoc explainability methods like LIME are not suitable for the forecasting context. We propose PAX-TS, a model-agnostic post-hoc algorithm to explain time series forecasting models and their forecasts. Our method is based on localized input perturbations and results in multi-granular explanations. Further, it is able to characterize cross-channel correlations for multivariate time series forecasts. We clearly outline the algorithmic procedure behind PAX-TS, demonstrate it on a benchmark with 7 algorithms and 10 diverse datasets, compare it with two other state-of-the-art explanation algorithms, and present the different explanation types of the method. We found that the explanations of high-performing and low-performing algorithms differ on the same datasets, highlighting that the explanations of PAX-TS effectively capture a model's behavior. Based on time step correlation matrices resulting from the benchmark, we identify 6 classes of patterns that repeatedly occur across different datasets and algorithms. We found that the patterns are indicators of performance, with noticeable differences in forecasting error between the classes. Lastly, we outline a multivariate example where PAX-TS demonstrates how the forecasting model takes cross-channel correlations into account. With PAX-TS, time series forecasting models' mechanisms can be illustrated in different levels of detail, and its explanations can be used to answer practical questions on forecasts.
☆ The point is the mask: scaling coral reef segmentation with weak supervision
Monitoring coral reefs at large spatial scales remains an open challenge, essential for assessing ecosystem health and informing conservation efforts. While drone-based aerial imagery offers broad spatial coverage, its limited resolution makes it difficult to reliably distinguish fine-scale classes, such as coral morphotypes. At the same time, obtaining pixel-level annotations over large spatial extents is costly and labor-intensive, limiting the scalability of deep learning-based segmentation methods for aerial imagery. We present a multi-scale weakly supervised semantic segmentation framework that addresses this challenge by transferring fine-scale ecological information from underwater imagery to aerial data. Our method enables large-scale coral reef mapping from drone imagery with minimal manual annotation, combining classification-based supervision, spatial interpolation and self-distillation techniques. We demonstrate the efficacy of the approach, enabling large-area segmentation of coral morphotypes and demonstrating flexibility for integrating new classes. This study presents a scalable, cost-effective methodology for high-resolution reef monitoring, combining low-cost data collection, weakly supervised deep learning and multi-scale remote sensing.
☆ Novel Approaches to Artificial Intelligence Development Based on the Nearest Neighbor Method AI
Modern neural network technologies, including large language models, have achieved remarkable success in various applied artificial intelligence applications, however, they face a range of fundamental limitations. Among them are hallucination effects, high computational complexity of training and inference, costly fine-tuning, and catastrophic forgetting issues. These limitations significantly hinder the use of neural networks in critical areas such as medicine, industrial process management, and scientific research. This article proposes an alternative approach based on the nearest neighbors method with hierarchical clustering structures. Employing the k-nearest neighbors algorithm significantly reduces or completely eliminates hallucination effects while simplifying model expansion and fine-tuning without the need for retraining the entire network. To overcome the high computational load of the k-nearest neighbors method, the paper proposes using tree-like data structures based on Kohonen self-organizing maps, thereby greatly accelerating nearest neighbor searches. Tests conducted on handwritten digit recognition and simple subtitle translation tasks confirmed the effectiveness of the proposed approach. With only a slight reduction in accuracy, the nearest neighbor search time was reduced hundreds of times compared to exhaustive search methods. The proposed method features transparency and interpretability, closely aligns with human cognitive mechanisms, and demonstrates potential for extensive use in tasks requiring high reliability and explainable results.
comment: 18 pages, 6 figures. Novel hierarchical neural networks based on k-nearest neighbors method for addressing hallucination effects, training complexity, and catastrophic forgetting in modern AI systems. Includes mathematical formulations using Kohonen self-organizing maps and experimental validation on MNIST handwritten digit recognition and machine translation tasks
☆ VISION: Robust and Interpretable Code Vulnerability Detection Leveraging Counterfactual Augmentation
Automated detection of vulnerabilities in source code is an essential cybersecurity challenge, underpinning trust in digital systems and services. Graph Neural Networks (GNNs) have emerged as a promising approach as they can learn structural and logical code relationships in a data-driven manner. However, their performance is severely constrained by training data imbalances and label noise. GNNs often learn 'spurious' correlations from superficial code similarities, producing detectors that fail to generalize well to unseen real-world data. In this work, we propose a unified framework for robust and interpretable vulnerability detection, called VISION, to mitigate spurious correlations by systematically augmenting a counterfactual training dataset. Counterfactuals are samples with minimal semantic modifications but opposite labels. Our framework includes: (i) generating counterfactuals by prompting a Large Language Model (LLM); (ii) targeted GNN training on paired code examples with opposite labels; and (iii) graph-based interpretability to identify the crucial code statements relevant for vulnerability predictions while ignoring spurious ones. We find that VISION reduces spurious learning and enables more robust, generalizable detection, improving overall accuracy (from 51.8% to 97.8%), pairwise contrast accuracy (from 4.5% to 95.8%), and worst-group accuracy (from 0.7% to 85.5%) on the Common Weakness Enumeration (CWE)-20 vulnerability. We further demonstrate gains using proposed metrics: intra-class attribution variance, inter-class attribution distance, and node score dependency. We also release CWE-20-CFA, a benchmark of 27,556 functions (real and counterfactual) from the high-impact CWE-20 category. Finally, VISION advances transparent and trustworthy AI-based cybersecurity systems through interactive visualization for human-in-the-loop analysis.
☆ Diverse And Private Synthetic Datasets Generation for RAG evaluation: A multi-agent framework AI 2025
Retrieval-augmented generation (RAG) systems improve large language model outputs by incorporating external knowledge, enabling more informed and context-aware responses. However, the effectiveness and trustworthiness of these systems critically depends on how they are evaluated, particularly on whether the evaluation process captures real-world constraints like protecting sensitive information. While current evaluation efforts for RAG systems have primarily focused on the development of performance metrics, far less attention has been given to the design and quality of the underlying evaluation datasets, despite their pivotal role in enabling meaningful, reliable assessments. In this work, we introduce a novel multi-agent framework for generating synthetic QA datasets for RAG evaluation that prioritize semantic diversity and privacy preservation. Our approach involves: (1) a Diversity agent leveraging clustering techniques to maximize topical coverage and semantic variability, (2) a Privacy Agent that detects and mask sensitive information across multiple domains and (3) a QA curation agent that synthesizes private and diverse QA pairs suitable as ground truth for RAG evaluation. Extensive experiments demonstrate that our evaluation sets outperform baseline methods in diversity and achieve robust privacy masking on domain-specific datasets. This work offers a practical and ethically aligned pathway toward safer, more comprehensive RAG system evaluation, laying the foundation for future enhancements aligned with evolving AI regulations and compliance standards.
comment: ECAI 2025 TRUST AI workshop
☆ Who Is Lagging Behind: Profiling Student Behaviors with Graph-Level Encoding in Curriculum-Based Online Learning Systems
The surge in the adoption of Intelligent Tutoring Systems (ITSs) in education, while being integral to curriculum-based learning, can inadvertently exacerbate performance gaps. To address this problem, student profiling becomes crucial for tracking progress, identifying struggling students, and alleviating disparities among students. Such profiling requires measuring student behaviors and performance across different aspects, such as content coverage, learning intensity, and proficiency in different concepts within a learning topic. In this study, we introduce CTGraph, a graph-level representation learning approach to profile learner behaviors and performance in a self-supervised manner. Our experiments demonstrate that CTGraph can provide a holistic view of student learning journeys, accounting for different aspects of student behaviors and performance, as well as variations in their learning paths as aligned to the curriculum structure. We also show that our approach can identify struggling students and provide comparative analysis of diverse groups to pinpoint when and where students are struggling. As such, our approach opens more opportunities to empower educators with rich insights into student learning journeys and paves the way for more targeted interventions.
☆ HierCVAE: Hierarchical Attention-Driven Conditional Variational Autoencoders for Multi-Scale Temporal Modeling
Temporal modeling in complex systems requires capturing dependencies across multiple time scales while managing inherent uncertainties. We propose HierCVAE, a novel architecture that integrates hierarchical attention mechanisms with conditional variational autoencoders to address these challenges. HierCVAE employs a three-tier attention structure (local, global, cross-temporal) combined with multi-modal condition encoding to capture temporal, statistical, and trend information. The approach incorporates ResFormer blocks in the latent space and provides explicit uncertainty quantification via prediction heads. Through evaluations on energy consumption datasets, HierCVAE demonstrates a 15-40% improvement in prediction accuracy and superior uncertainty calibration compared to state-of-the-art methods, excelling in long-term forecasting and complex multi-variate dependencies.
comment: 10 pages, 6 figures
☆ FormaRL: Enhancing Autoformalization with no Labeled Data
Autoformalization is one of the central tasks in formal verification, while its advancement remains hindered due to the data scarcity and the absence efficient methods. In this work we propose \textbf{FormaRL}, a simple yet efficient reinforcement learning framework for autoformalization which only requires a small amount of unlabeled data. FormaRL integrates syntax check from Lean compiler and consistency check from large language model to calculate the reward, and adopts GRPO algorithm to update the formalizer. We also curated a proof problem dataset from undergraduate-level math materials, named \textbf{uproof}, in the hope to facilitate the exploration of autoformalization and theorem proving in advanced math. Experiments show that FormaRL can increase the pass@1 autoformalization accuracy of Qwen2.5-Coder-7B-Instruct by 4 $\sim$ 6x (4.04\% $\to$ 26.15\% on ProofNet and 2.4\% $\to$ 9.6\% on uproof) with merely 859 unlabeled data. And on uproof our method also achieved a strong improvement in out-of-distribution performance compared to existing open-source state-of-the-art autoformalizers on both pass@1 accuracy (6.2\% $\to$ 9.6\%) and pass@16 accuracy (24.4\% $\to$ 33.6\%). Training code of FormaRL is open-sourced at https://github.com/THUNLP-MT/FormaRL.
comment: Conference paper at COLM2025
☆ HOTSPOT-YOLO: A Lightweight Deep Learning Attention-Driven Model for Detecting Thermal Anomalies in Drone-Based Solar Photovoltaic Inspections
Thermal anomaly detection in solar photovoltaic (PV) systems is essential for ensuring operational efficiency and reducing maintenance costs. In this study, we developed and named HOTSPOT-YOLO, a lightweight artificial intelligence (AI) model that integrates an efficient convolutional neural network backbone and attention mechanisms to improve object detection. This model is specifically designed for drone-based thermal inspections of PV systems, addressing the unique challenges of detecting small and subtle thermal anomalies, such as hotspots and defective modules, while maintaining real-time performance. Experimental results demonstrate a mean average precision of 90.8%, reflecting a significant improvement over baseline object detection models. With a reduced computational load and robustness under diverse environmental conditions, HOTSPOT-YOLO offers a scalable and reliable solution for large-scale PV inspections. This work highlights the integration of advanced AI techniques with practical engineering applications, revolutionizing automated fault detection in renewable energy systems.
☆ Enhancing Model Privacy in Federated Learning with Random Masking and Quantization
Experimental results across various models and tasks demonstrate that our approach not only maintains strong model performance in federated learning settings but also achieves enhanced protection of model parameters compared to baseline methods.
☆ SegReConcat: A Data Augmentation Method for Voice Anonymization Attack
Anonymization of voice seeks to conceal the identity of the speaker while maintaining the utility of speech data. However, residual speaker cues often persist, which pose privacy risks. We propose SegReConcat, a data augmentation method for attacker-side enhancement of automatic speaker verification systems. SegReConcat segments anonymized speech at the word level, rearranges segments using random or similarity-based strategies to disrupt long-term contextual cues, and concatenates them with the original utterance, allowing an attacker to learn source speaker traits from multiple perspectives. The proposed method has been evaluated in the VoicePrivacy Attacker Challenge 2024 framework across seven anonymization systems, SegReConcat improves de-anonymization on five out of seven systems.
comment: The Paper has been accepted by APCIPA ASC 2025
☆ Interactive Evaluation of Large Language Models for Multi-Requirement Software Engineering Tasks
Standard single-turn, static benchmarks fall short in evaluating the nuanced capabilities of Large Language Models (LLMs) on complex tasks such as software engineering. In this work, we propose a novel interactive evaluation framework that assesses LLMs on multi-requirement programming tasks through structured, feedback-driven dialogue. Each task is modeled as a requirement dependency graph, and an ``interviewer'' LLM, aware of the ground-truth solution, provides minimal, targeted hints to an ``interviewee'' model to help correct errors and fulfill target constraints. This dynamic protocol enables fine-grained diagnostic insights into model behavior, uncovering strengths and systematic weaknesses that static benchmarks fail to measure. We build on DevAI, a benchmark of 55 curated programming tasks, by adding ground-truth solutions and evaluating the relevance and utility of interviewer hints through expert annotation. Our results highlight the importance of dynamic evaluation in advancing the development of collaborative code-generating agents.
☆ Distance-informed Neural Processes
We propose the Distance-informed Neural Process (DNP), a novel variant of Neural Processes that improves uncertainty estimation by combining global and distance-aware local latent structures. Standard Neural Processes (NPs) often rely on a global latent variable and struggle with uncertainty calibration and capturing local data dependencies. DNP addresses these limitations by introducing a global latent variable to model task-level variations and a local latent variable to capture input similarity within a distance-preserving latent space. This is achieved through bi-Lipschitz regularization, which bounds distortions in input relationships and encourages the preservation of relative distances in the latent space. This modeling approach allows DNP to produce better-calibrated uncertainty estimates and more effectively distinguish in- from out-of-distribution data. Empirical results demonstrate that DNP achieves strong predictive performance and improved uncertainty calibration across regression and classification tasks.
comment: 22 pages
☆ Interpretable Decision-Making for End-to-End Autonomous Driving ICCV 2025
Trustworthy AI is mandatory for the broad deployment of autonomous vehicles. Although end-to-end approaches derive control commands directly from raw data, interpreting these decisions remains challenging, especially in complex urban scenarios. This is mainly attributed to very deep neural networks with non-linear decision boundaries, making it challenging to grasp the logic behind AI-driven decisions. This paper presents a method to enhance interpretability while optimizing control commands in autonomous driving. To address this, we propose loss functions that promote the interpretability of our model by generating sparse and localized feature maps. The feature activations allow us to explain which image regions contribute to the predicted control command. We conduct comprehensive ablation studies on the feature extraction step and validate our method on the CARLA benchmarks. We also demonstrate that our approach improves interpretability, which correlates with reducing infractions, yielding a safer, high-performance driving model. Notably, our monocular, non-ensemble model surpasses the top-performing approaches from the CARLA Leaderboard by achieving lower infraction scores and the highest route completion rate, all while ensuring interpretability.
comment: Accepted to the ICCV 2025 2nd Workshop on the Challenge Of Out-of-Label Hazards in Autonomous Driving (2COOOL)
☆ pyFAST: A Modular PyTorch Framework for Time Series Modeling with Multi-source and Sparse Data
Modern time series analysis demands frameworks that are flexible, efficient, and extensible. However, many existing Python libraries exhibit limitations in modularity and in their native support for irregular, multi-source, or sparse data. We introduce pyFAST, a research-oriented PyTorch framework that explicitly decouples data processing from model computation, fostering a cleaner separation of concerns and facilitating rapid experimentation. Its data engine is engineered for complex scenarios, supporting multi-source loading, protein sequence handling, efficient sequence- and patch-level padding, dynamic normalization, and mask-based modeling for both imputation and forecasting. pyFAST integrates LLM-inspired architectures for the alignment-free fusion of sparse data sources and offers native sparse metrics, specialized loss functions, and flexible exogenous data fusion. Training utilities include batch-based streaming aggregation for evaluation and device synergy to maximize computational efficiency. A comprehensive suite of classical and deep learning models (Linears, CNNs, RNNs, Transformers, and GNNs) is provided within a modular architecture that encourages extension. Released under the MIT license at GitHub, pyFAST provides a compact yet powerful platform for advancing time series research and applications.
☆ HAEPO: History-Aggregated Exploratory Policy Optimization
Exploration is essential in modern learning, from reinforcement learning environments with small neural policies to large language models (LLMs). Existing work, such as DPO, leverages full sequence log-likelihoods to capture an entire trajectory of the model's decisions, while methods like GRPO aggregate per-token ratios into a trajectory-level update. However, both often limit exploration on long-horizon tasks. We introduce History-Aggregated Exploratory Policy Optimization (HAEPO), a history-aware exploratory loss to combat these shortcomings. HAEPO compresses each trajectory into the sum of its logarithmic probabilities (a cumulative logarithmic likelihood), and applies a Plackett-Luce softmax across trajectories to obtain normalized weights proportional to their returns, thus encouraging broader exploration. We add entropy regularization to stabilize the aggressive updates to prevent premature collapse and a soft KL penalty relative to a frozen copy of the previous (reference) policy. Empirically, HAEPO converges fast, explores thoroughly, aligns closely with true rewards, and demonstrates robust learning behavior better or at par with PPO, GRPO, and DPO across diverse tasks. Thus, HAEPO provides a stable and interpretable framework by explicitly leveraging full-trajectory history while balancing exploration and stability.
comment: Under review
☆ Judicial Requirements for Generative AI in Legal Reasoning
Large Language Models (LLMs) are being integrated into professional domains, yet their limitations in high-stakes fields like law remain poorly understood. This paper defines the core capabilities that an AI system must possess to function as a reliable reasoning tool in judicial decision-making. Using the IRAC (Issue-Rule-Application-Conclusion) model as an analytical framework, the study focuses on the most challenging phases of legal adjudication: determining the applicable Rule (R) and performing the Application (A) of that rule to the facts of a case. From a judicial perspective, the analysis deconstructs legal reasoning into a series of core requirements, including the ability to select the correct legal framework across jurisdictions, generate sound arguments based on the doctrine of legal sources, distinguish ratio decidendi from obiter dictum in case law, resolve ambiguity arising from general clauses like "reasonableness", manage conflicting legal provisions, and correctly apply the burden of proof. The paper then maps various AI enhancement mechanisms, such as Retrieval-Augmented Generation (RAG), multi-agent systems, and neuro-symbolic AI, to these requirements, assessing their potential to bridge the gap between the probabilistic nature of LLMs and the rigorous, choice-driven demands of legal interpretation. The findings indicate that while these techniques can address specific challenges, significant challenges remain, particularly in tasks requiring discretion and transparent, justifiable reasoning. Our paper concludes that the most effective current role for AI in law is a dual one: as a high-volume assistant for simple, repetitive cases and as a sophisticated "sparring partner" for human experts in complex matters.
☆ Optimization of Latent-Space Compression using Game-Theoretic Techniques for Transformer-Based Vector Search
Vector similarity search plays a pivotal role in modern information retrieval systems, especially when powered by transformer-based embeddings. However, the scalability and efficiency of such systems are often hindered by the high dimensionality of latent representations. In this paper, we propose a novel game-theoretic framework for optimizing latent-space compression to enhance both the efficiency and semantic utility of vector search. By modeling the compression strategy as a zero-sum game between retrieval accuracy and storage efficiency, we derive a latent transformation that preserves semantic similarity while reducing redundancy. We benchmark our method against FAISS, a widely-used vector search library, and demonstrate that our approach achieves a significantly higher average similarity (0.9981 vs. 0.5517) and utility (0.8873 vs. 0.5194), albeit with a modest increase in query time. This trade-off highlights the practical value of game-theoretic latent compression in high-utility, transformer-based search applications. The proposed system can be seamlessly integrated into existing LLM pipelines to yield more semantically accurate and computationally efficient retrieval.
☆ ReflectivePrompt: Reflective evolution in autoprompting algorithms
Autoprompting is the process of automatically selecting optimized prompts for language models, which has been gaining popularity with the rapid advancement of prompt engineering, driven by extensive research in the field of large language models (LLMs). This paper presents ReflectivePrompt - a novel autoprompting method based on evolutionary algorithms that employs a reflective evolution approach for more precise and comprehensive search of optimal prompts. ReflectivePrompt utilizes short-term and long-term reflection operations before crossover and elitist mutation to enhance the quality of the modifications they introduce. This method allows for the accumulation of knowledge obtained throughout the evolution process and updates it at each epoch based on the current population. ReflectivePrompt was tested on 33 datasets for classification and text generation tasks using open-access large language models: t-lite-instruct-0.1 and gemma3-27b-it. The method demonstrates, on average, a significant improvement (e.g., 28% on BBH compared to EvoPrompt) in metrics relative to current state-of-the-art approaches, thereby establishing itself as one of the most effective solutions in evolutionary algorithm-based autoprompting.
☆ ClusterFusion: Expanding Operator Fusion Scope for LLM Inference via Cluster-Level Collective Primitive
Large language model (LLM) decoding suffers from high latency due to fragmented execution across operators and heavy reliance on off-chip memory for data exchange and reduction. This execution model limits opportunities for fusion and incurs significant memory traffic and kernel launch overhead. While modern architectures such as NVIDIA Hopper provide distributed shared memory and low-latency intra-cluster interconnects, they expose only low-level data movement instructions, lacking structured abstractions for collective on-chip communication. To bridge this software-hardware gap, we introduce two cluster-level communication primitives, ClusterReduce and ClusterGather, which abstract common communication patterns and enable structured, high-speed data exchange and reduction between thread blocks within a cluster, allowing intermediate results to be on-chip without involving off-chip memory. Building on these abstractions, we design ClusterFusion, an execution framework that schedules communication and computation jointly to expand operator fusion scope by composing decoding stages such as QKV Projection, Attention, and Output Projection into a single fused kernels. Evaluations on H100 GPUs show that ClusterFusion outperforms state-of-the-art inference frameworks by 1.61x on average in end-to-end latency across different models and configurations. The source code is available at https://github.com/xinhao-luo/ClusterFusion.
☆ ConfTuner: Training Large Language Models to Express Their Confidence Verbally
Large Language Models (LLMs) are increasingly deployed in high-stakes domains such as science, law, and healthcare, where accurate expressions of uncertainty are essential for reliability and trust. However, current LLMs are often observed to generate incorrect answers with high confidence, a phenomenon known as "overconfidence". Recent efforts have focused on calibrating LLMs' verbalized confidence: i.e., their expressions of confidence in text form, such as "I am 80% confident that...". Existing approaches either rely on prompt engineering or fine-tuning with heuristically generated uncertainty estimates, both of which have limited effectiveness and generalizability. Motivated by the notion of proper scoring rules for calibration in classical machine learning models, we introduce ConfTuner, a simple and efficient fine-tuning method that introduces minimal overhead and does not require ground-truth confidence scores or proxy confidence estimates. ConfTuner relies on a new loss function, tokenized Brier score, which we theoretically prove to be a proper scoring rule, intuitively meaning that it "correctly incentivizes the model to report its true probability of being correct". ConfTuner improves calibration across diverse reasoning tasks and generalizes to black-box models such as GPT-4o. Our results further show that better-calibrated confidence enables downstream gains in self-correction and model cascade, advancing the development of trustworthy LLM systems. The code is available at https://github.com/liushiliushi/ConfTuner.
☆ STARec: An Efficient Agent Framework for Recommender Systems via Autonomous Deliberate Reasoning
While modern recommender systems are instrumental in navigating information abundance, they remain fundamentally limited by static user modeling and reactive decision-making paradigms. Current large language model (LLM)-based agents inherit these shortcomings through their overreliance on heuristic pattern matching, yielding recommendations prone to shallow correlation bias, limited causal inference, and brittleness in sparse-data scenarios. We introduce STARec, a slow-thinking augmented agent framework that endows recommender systems with autonomous deliberative reasoning capabilities. Each user is modeled as an agent with parallel cognitions: fast response for immediate interactions and slow reasoning that performs chain-of-thought rationales. To cultivate intrinsic slow thinking, we develop anchored reinforcement training - a two-stage paradigm combining structured knowledge distillation from advanced reasoning models with preference-aligned reward shaping. This hybrid approach scaffolds agents in acquiring foundational capabilities (preference summarization, rationale generation) while enabling dynamic policy adaptation through simulated feedback loops. Experiments on MovieLens 1M and Amazon CDs benchmarks demonstrate that STARec achieves substantial performance gains compared with state-of-the-art baselines, despite using only 0.4% of the full training data.
☆ A Survey on Cloud-Edge-Terminal Collaborative Intelligence in AIoT Networks
The proliferation of Internet of things (IoT) devices in smart cities, transportation, healthcare, and industrial applications, coupled with the explosive growth of AI-driven services, has increased demands for efficient distributed computing architectures and networks, driving cloud-edge-terminal collaborative intelligence (CETCI) as a fundamental paradigm within the artificial intelligence of things (AIoT) community. With advancements in deep learning, large language models (LLMs), and edge computing, CETCI has made significant progress with emerging AIoT applications, moving beyond isolated layer optimization to deployable collaborative intelligence systems for AIoT (CISAIOT), a practical research focus in AI, distributed computing, and communications. This survey describes foundational architectures, enabling technologies, and scenarios of CETCI paradigms, offering a tutorial-style review for CISAIOT beginners. We systematically analyze architectural components spanning cloud, edge, and terminal layers, examining core technologies including network virtualization, container orchestration, and software-defined networking, while presenting categorizations of collaboration paradigms that cover task offloading, resource allocation, and optimization across heterogeneous infrastructures. Furthermore, we explain intelligent collaboration learning frameworks by reviewing advances in federated learning, distributed deep learning, edge-cloud model evolution, and reinforcement learning-based methods. Finally, we discuss challenges (e.g., scalability, heterogeneity, interoperability) and future trends (e.g., 6G+, agents, quantum computing, digital twin), highlighting how integration of distributed computing and communication can address open issues and guide development of robust, efficient, and secure collaborative AIoT systems.
☆ CausalMACE: Causality Empowered Multi-Agents in Minecraft Cooperative Tasks
Minecraft, as an open-world virtual interactive environment, has become a prominent platform for research on agent decision-making and execution. Existing works primarily adopt a single Large Language Model (LLM) agent to complete various in-game tasks. However, for complex tasks requiring lengthy sequences of actions, single-agent approaches often face challenges related to inefficiency and limited fault tolerance. Despite these issues, research on multi-agent collaboration remains scarce. In this paper, we propose CausalMACE, a holistic causality planning framework designed to enhance multi-agent systems, in which we incorporate causality to manage dependencies among subtasks. Technically, our proposed framework introduces two modules: an overarching task graph for global task planning and a causality-based module for dependency management, where inherent rules are adopted to perform causal intervention. Experimental results demonstrate our approach achieves state-of-the-art performance in multi-agent cooperative tasks of Minecraft.
☆ EMind: A Foundation Model for Multi-task Electromagnetic Signals Understanding
Deep understanding of electromagnetic signals is fundamental to dynamic spectrum management, intelligent transportation, autonomous driving and unmanned vehicle perception. The field faces challenges because electromagnetic signals differ greatly from text and images, showing high heterogeneity, strong background noise and complex joint time frequency structure, which prevents existing general models from direct use. Electromagnetic communication and sensing tasks are diverse, current methods lack cross task generalization and transfer efficiency, and the scarcity of large high quality datasets blocks the creation of a truly general multitask learning framework. To overcome these issue, we introduce EMind, an electromagnetic signals foundation model that bridges large scale pretraining and the unique nature of this modality. We build the first unified and largest standardized electromagnetic signal dataset covering multiple signal types and tasks. By exploiting the physical properties of electromagnetic signals, we devise a length adaptive multi-signal packing method and a hardware-aware training strategy that enable efficient use and representation learning from heterogeneous multi-source signals. Experiments show that EMind achieves strong performance and broad generalization across many downstream tasks, moving decisively from task specific models to a unified framework for electromagnetic intelligence. The code is available at: https://github.com/GabrielleTse/EMind.
☆ Insights into User Interface Innovations from a Design Thinking Workshop at deRSE25
Large Language Models have become widely adopted tools due to their versatile capabilities, yet their user interfaces remain limited, often following rigid, linear interaction paradigms. In this paper, we present insights from a design thinking workshop held at the deRSE25 conference aiming at collaboratively developing innovative user interface concepts for LLMs. During the workshop, participants identified common use cases, evaluated the strengths and shortcomings of current LLM interfaces, and created visualizations of new interaction concepts emphasizing flexible context management, dynamic conversation branching, and enhanced mechanisms for user control. We describe how these participant-generated ideas advanced our own whiteboard-based UI approach. The ongoing development of this interface is guided by the human-centered design process - an iterative, user-focused methodology that emphasizes continuous refinement through user feedback. Broader implications for future LLM interface development are discussed, advocating for increased attention to UI innovation grounded in user-centered design principles.
☆ Long-Term Variability in Physiological-Arousal Relationships for Robust Emotion Estimation
Estimating emotional states from physiological signals is a central topic in affective computing and psychophysiology. While many emotion estimation systems implicitly assume a stable relationship between physiological features and subjective affect, this assumption has rarely been tested over long timeframes. This study investigates whether such relationships remain consistent across several months within individuals. We developed a custom measurement system and constructed a longitudinal dataset by collecting physiological signals -- including blood volume pulse, electrodermal activity (EDA), skin temperature, and acceleration--along with self-reported emotional states from 24 participants over two three-month periods. Data were collected in naturalistic working environments, allowing analysis of the relationship between physiological features and subjective arousal in everyday contexts. We examined how physiological-arousal relationships evolve over time by using Explainable Boosting Machines (EBMs) to ensure model interpretability. A model trained on 1st-period data showed a 5\% decrease in accuracy when tested on 2nd-period data, indicating long-term variability in physiological-arousal associations. EBM-based comparisons further revealed that while heart rate remained a relatively stable predictor, minimum EDA exhibited substantial individual-level fluctuations between periods. While the number of participants is limited, these findings highlight the need to account for temporal variability in physiological-arousal relationships and suggest that emotion estimation models should be periodically updated -- e.g., every five months -- based on observed shift trends to maintain robust performance over time.
comment: 9 pages, 5 figures, accepted at 13th International Conference on Affective Computing and Intelligent Interaction (ACII 2025)
☆ AniME: Adaptive Multi-Agent Planning for Long Animation Generation
We present AniME, a director-oriented multi-agent system for automated long-form anime production, covering the full workflow from a story to the final video. The director agent keeps a global memory for the whole workflow, and coordinates several downstream specialized agents. By integrating customized Model Context Protocol (MCP) with downstream model instruction, the specialized agent adaptively selects control conditions for diverse sub-tasks. AniME produces cinematic animation with consistent characters and synchronized audio visual elements, offering a scalable solution for AI-driven anime creation.
comment: 2 pages, Technical Report
☆ Harnessing Rule-Based Reinforcement Learning for Enhanced Grammatical Error Correction
Grammatical error correction is a significant task in NLP. Traditional methods based on encoder-decoder models have achieved certain success, but the application of LLMs in this field is still underexplored. Current research predominantly relies on supervised fine-tuning to train LLMs to directly generate the corrected sentence, which limits the model's powerful reasoning ability. To address this limitation, we propose a novel framework based on Rule-Based RL. Through experiments on the Chinese datasets, our Rule-Based RL framework achieves \textbf{state-of-the-art }performance, with a notable increase in \textbf{recall}. This result clearly highlights the advantages of using RL to steer LLMs, offering a more controllable and reliable paradigm for future development in GEC.
comment: Code will be released upon publication
☆ Dynamic Collaboration of Multi-Language Models based on Minimal Complete Semantic Units
This paper investigates the enhancement of reasoning capabilities in language models through token-level multi-model collaboration. Our approach selects the optimal tokens from the next token distributions provided by multiple models to perform autoregressive reasoning. Contrary to the assumption that more models yield better results, we introduce a distribution distance-based dynamic selection strategy (DDS) to optimize the multi-model collaboration process. To address the critical challenge of vocabulary misalignment in multi-model collaboration, we propose the concept of minimal complete semantic units (MCSU), which is simple yet enables multiple language models to achieve natural alignment within the linguistic space. Experimental results across various benchmarks demonstrate the superiority of our method. The code will be available at https://github.com/Fanye12/DDS.
comment: Accepted by EMNLP 2025 Main Conference
☆ Answering the Unanswerable Is to Err Knowingly: Analyzing and Mitigating Abstention Failures in Large Reasoning Models
Large reasoning models (LRMs) have shown remarkable progress on complex reasoning tasks. However, some questions posed to LRMs are inherently unanswerable, such as math problems lacking sufficient conditions. We find that LRMs continually fail to provide appropriate abstentions when confronted with these unanswerable questions. In this paper, we systematically analyze, investigate, and resolve this issue for trustworthy AI. We first conduct a detailed analysis of the distinct response behaviors of LRMs when facing unanswerable questions. Then, we show that LRMs possess sufficient cognitive capabilities to recognize the flaws in these questions. However, they fail to exhibit appropriate abstention behavior, revealing a misalignment between their internal cognition and external response. Finally, to resolve this issue, we propose a lightweight, two-stage method that combines cognitive monitoring with inference-time intervention. Experimental results demonstrate that our method significantly improves the abstention rate while maintaining the overall reasoning performance.
☆ Text to Query Plans for Question Answering on Large Tables
Efficient querying and analysis of large tabular datasets remain significant challenges, especially for users without expertise in programming languages like SQL. Text-to-SQL approaches have shown promising performance on benchmark data; however, they inherit SQL's drawbacks, including inefficiency with large datasets and limited support for complex data analyses beyond basic querying. We propose a novel framework that transforms natural language queries into query plans. Our solution is implemented outside traditional databases, allowing us to support classical SQL commands while avoiding SQL's inherent limitations. Additionally, we enable complex analytical functions, such as principal component analysis and anomaly detection, providing greater flexibility and extensibility than traditional SQL capabilities. We leverage LLMs to iteratively interpret queries and construct operation sequences, addressing computational complexity by incrementally building solutions. By executing operations directly on the data, we overcome context length limitations without requiring the entire dataset to be processed by the model. We validate our framework through experiments on both standard databases and large scientific tables, demonstrating its effectiveness in handling extensive datasets and performing sophisticated data analyses.
☆ Stabilizing Open-Set Test-Time Adaptation via Primary-Auxiliary Filtering and Knowledge-Integrated Prediction
Deep neural networks demonstrate strong performance under aligned training-test distributions. However, real-world test data often exhibit domain shifts. Test-Time Adaptation (TTA) addresses this challenge by adapting the model to test data during inference. While most TTA studies assume that the training and test data share the same class set (closed-set TTA), real-world scenarios often involve open-set data (open-set TTA), which can degrade closed-set accuracy. A recent study showed that identifying open-set data during adaptation and maximizing its entropy is an effective solution. However, the previous method relies on the source model for filtering, resulting in suboptimal filtering accuracy on domain-shifted test data. In contrast, we found that the adapting model, which learns domain knowledge from noisy test streams, tends to be unstable and leads to error accumulation when used for filtering. To address this problem, we propose Primary-Auxiliary Filtering (PAF), which employs an auxiliary filter to validate data filtered by the primary filter. Furthermore, we propose Knowledge-Integrated Prediction (KIP), which calibrates the outputs of the adapting model, EMA model, and source model to integrate their complementary knowledge for OSTTA. We validate our approach across diverse closed-set and open-set datasets. Our method enhances both closed-set accuracy and open-set discrimination over existing methods. The code is available at https://github.com/powerpowe/PAF-KIP-OSTTA .
comment: Accepted at BMVC 2025
☆ Reflection-Enhanced Meta-Optimization Integrating TextGrad-style Prompt Optimization with Memory-Driven Self-Evolution
Recent advances in prompt optimization, exemplified by methods such as TextGrad, enable automatic, gradient-like refinement of textual prompts to enhance the performance of large language models (LLMs) on specific downstream tasks. However, current approaches are typically stateless and operate independently across optimization runs, lacking mechanisms to preserve and leverage historical optimization experience. Furthermore, they are susceptible to overfitting, often yielding prompt updates that generalize poorly beyond the immediate task context. To address these limitations, we propose Reflection-Enhanced Meta-Optimization (REMO), a novel framework that integrates (1) a memory-augmented Reflection Retrieval-Augmented Generation (RAG) module - structured as a "mistake notebook" and (2) a Self-Adaptive Optimizer, implemented via an LLM-driven meta-controller that synthesizes epoch-level reflective insights to iteratively improve system-level prompting strategies. This architecture enables not only local, fine-grained prompt tuning akin to TextGrad, but also the systematic accumulation and reuse of cross-run optimization knowledge, thereby supporting continual improvement over time. We instantiate the REMO framework using Qwen3-32B in standard inference mode - without explicit chain-of-thought prompting - and evaluate its efficacy on the GSM8K benchmark for mathematical reasoning. Experimental results demonstrate that, compared to a TextGrad baseline, REMO achieves more stable and robust generalization, albeit at the cost of increased computational overhead. We provide a detailed exposition of the algorithmic design, conduct a qualitative and quantitative analysis of optimization dynamics, and present a comprehensive ablation study to elucidate the contributions of each component.
☆ CAC-CoT: Connector-Aware Compact Chain-of-Thought for Efficient Reasoning Data Synthesis Across Dual-System Cognitive Tasks
Long chain-of-thought (CoT) prompting helps Large Language Models (LLMs) solve difficult problems, but very long traces often slow or even degrade performance on fast, intuitive "System-1" tasks. We introduce Connector-Aware Compact CoT (CAC-CoT) -- a method that deliberately restricts reasoning to a small, fixed set of connector phrases, steering the model toward concise and well -- structured explanations. Despite its simplicity, our synthetic method with Gemini-2.0-Flash yields a high-quality training quality. CAC-CoT achieves approximately 85% on GSM8K and approximately 40% on GPQA (System-2) while retaining approximately 90% on S1-Bench (System-1). Its reasoning traces average approximately 300 tokens(ART), about one-third the length of baseline traces, delivering higher efficiency without loss of accuracy.
comment: Accepted at EMNLP 2025 findings
☆ M3HG: Multimodal, Multi-scale, and Multi-type Node Heterogeneous Graph for Emotion Cause Triplet Extraction in Conversations ACL 2025
Emotion Cause Triplet Extraction in Multimodal Conversations (MECTEC) has recently gained significant attention in social media analysis, aiming to extract emotion utterances, cause utterances, and emotion categories simultaneously. However, the scarcity of related datasets, with only one published dataset featuring highly uniform dialogue scenarios, hinders model development in this field. To address this, we introduce MECAD, the first multimodal, multi-scenario MECTEC dataset, comprising 989 conversations from 56 TV series spanning a wide range of dialogue contexts. In addition, existing MECTEC methods fail to explicitly model emotional and causal contexts and neglect the fusion of semantic information at different levels, leading to performance degradation. In this paper, we propose M3HG, a novel model that explicitly captures emotional and causal contexts and effectively fuses contextual information at both inter- and intra-utterance levels via a multimodal heterogeneous graph. Extensive experiments demonstrate the effectiveness of M3HG compared with existing state-of-the-art methods. The codes and dataset are available at https://github.com/redifinition/M3HG.
comment: 16 pages, 8 figures. Accepted to Findings of ACL 2025
☆ FLAegis: A Two-Layer Defense Framework for Federated Learning Against Poisoning Attacks
Federated Learning (FL) has become a powerful technique for training Machine Learning (ML) models in a decentralized manner, preserving the privacy of the training datasets involved. However, the decentralized nature of FL limits the visibility of the training process, relying heavily on the honesty of participating clients. This assumption opens the door to malicious third parties, known as Byzantine clients, which can poison the training process by submitting false model updates. Such malicious clients may engage in poisoning attacks, manipulating either the dataset or the model parameters to induce misclassification. In response, this study introduces FLAegis, a two-stage defensive framework designed to identify Byzantine clients and improve the robustness of FL systems. Our approach leverages symbolic time series transformation (SAX) to amplify the differences between benign and malicious models, and spectral clustering, which enables accurate detection of adversarial behavior. Furthermore, we incorporate a robust FFT-based aggregation function as a final layer to mitigate the impact of those Byzantine clients that manage to evade prior defenses. We rigorously evaluate our method against five poisoning attacks, ranging from simple label flipping to adaptive optimization-based strategies. Notably, our approach outperforms state-of-the-art defenses in both detection precision and final model accuracy, maintaining consistently high performance even under strong adversarial conditions.
comment: 15 pages, 5 tables, and 5 figures
☆ SkyTrust: Blockchain-Enhanced UAV Security for NTNs with Dynamic Trust and Energy-Aware Consensus
Non-Terrestrial Networks (NTNs) based on Unmanned Aerial Vehicles (UAVs) as base stations are extremely susceptible to security attacks due to their distributed and dynamic nature, which makes them vulnerable to rogue nodes. In this paper, a new Dynamic Trust Score Adjustment Mechanism with Energy-Aware Consensus (DTSAM-EAC) is proposed to enhance security in UAV-based NTNs. The proposed framework integrates a permissioned Hyperledger Fabric blockchain with Federated Learning (FL) to support privacy-preserving trust evaluation. Trust ratings are updated continuously through weighted aggregation of past trust, present behavior, and energy contribution, thus making the system adaptive to changing network conditions. An energy-aware consensus mechanism prioritizes UAVs with greater available energy for block validation, ensuring efficient use of resources under resource-constrained environments. FL aggregation with trust-weighting further increases the resilience of the global trust model. Simulation results verify the designed framework achieves 94\% trust score prediction accuracy and 96\% rogue UAV detection rate while outperforming centralized and static baselines of trust-based solutions on privacy, energy efficiency, and reliability. It complies with 6G requirements in terms of distributed intelligence and sustainability and is an energy-efficient and scalable solution to secure NTNs.
comment: 6 pages, 7 figures
☆ Improving Noise Robust Audio-Visual Speech Recognition via Router-Gated Cross-Modal Feature Fusion
Robust audio-visual speech recognition (AVSR) in noisy environments remains challenging, as existing systems struggle to estimate audio reliability and dynamically adjust modality reliance. We propose router-gated cross-modal feature fusion, a novel AVSR framework that adaptively reweights audio and visual features based on token-level acoustic corruption scores. Using an audio-visual feature fusion-based router, our method down-weights unreliable audio tokens and reinforces visual cues through gated cross-attention in each decoder layer. This enables the model to pivot toward the visual modality when audio quality deteriorates. Experiments on LRS3 demonstrate that our approach achieves an 16.51-42.67% relative reduction in word error rate compared to AV-HuBERT. Ablation studies confirm that both the router and gating mechanism contribute to improved robustness under real-world acoustic noise.
comment: Accepted to IEEE ASRU 2025
☆ Cross-Learning Fine-Tuning Strategy for Dysarthric Speech Recognition Via CDSD database
Dysarthric speech recognition faces challenges from severity variations and disparities relative to normal speech. Conventional approaches individually fine-tune ASR models pre-trained on normal speech per patient to prevent feature conflicts. Counter-intuitively, experiments reveal that multi-speaker fine-tuning (simultaneously on multiple dysarthric speakers) improves recognition of individual speech patterns. This strategy enhances generalization via broader pathological feature learning, mitigates speaker-specific overfitting, reduces per-patient data dependence, and improves target-speaker accuracy - achieving up to 13.15% lower WER versus single-speaker fine-tuning.
☆ Bias Mitigation Agent: Optimizing Source Selection for Fair and Balanced Knowledge Retrieval KDD'2025
Large Language Models (LLMs) have transformed the field of artificial intelligence by unlocking the era of generative applications. Built on top of generative AI capabilities, Agentic AI represents a major shift toward autonomous, goal-driven systems that can reason, retrieve, and act. However, they also inherit the bias present in both internal and external information sources. This significantly affects the fairness and balance of retrieved information, and hence reduces user trust. To address this critical challenge, we introduce a novel Bias Mitigation Agent, a multi-agent system designed to orchestrate the workflow of bias mitigation through specialized agents that optimize the selection of sources to ensure that the retrieved content is both highly relevant and minimally biased to promote fair and balanced knowledge dissemination. The experimental results demonstrate an 81.82\% reduction in bias compared to a baseline naive retrieval strategy.
comment: Accepted at KDD'2025 Agent4IR workshop
☆ VistaWise: Building Cost-Effective Agent with Cross-Modal Knowledge Graph for Minecraft
Large language models (LLMs) have shown significant promise in embodied decision-making tasks within virtual open-world environments. Nonetheless, their performance is hindered by the absence of domain-specific knowledge. Methods that finetune on large-scale domain-specific data entail prohibitive development costs. This paper introduces VistaWise, a cost-effective agent framework that integrates cross-modal domain knowledge and finetunes a dedicated object detection model for visual analysis. It reduces the requirement for domain-specific training data from millions of samples to a few hundred. VistaWise integrates visual information and textual dependencies into a cross-modal knowledge graph (KG), enabling a comprehensive and accurate understanding of multimodal environments. We also equip the agent with a retrieval-based pooling strategy to extract task-related information from the KG, and a desktop-level skill library to support direct operation of the Minecraft desktop client via mouse and keyboard inputs. Experimental results demonstrate that VistaWise achieves state-of-the-art performance across various open-world tasks, highlighting its effectiveness in reducing development costs while enhancing agent performance.
comment: Accepted by EMNLP 2025 main
☆ Skill-Aligned Fairness in Multi-Agent Learning for Collaboration in Healthcare
Fairness in multi-agent reinforcement learning (MARL) is often framed as a workload balance problem, overlooking agent expertise and the structured coordination required in real-world domains. In healthcare, equitable task allocation requires workload balance or expertise alignment to prevent burnout and overuse of highly skilled agents. Workload balance refers to distributing an approximately equal number of subtasks or equalised effort across healthcare workers, regardless of their expertise. We make two contributions to address this problem. First, we propose FairSkillMARL, a framework that defines fairness as the dual objective of workload balance and skill-task alignment. Second, we introduce MARLHospital, a customizable healthcare-inspired environment for modeling team compositions and energy-constrained scheduling impacts on fairness, as no existing simulators are well-suited for this problem. We conducted experiments to compare FairSkillMARL in conjunction with four standard MARL methods, and against two state-of-the-art fairness metrics. Our results suggest that fairness based solely on equal workload might lead to task-skill mismatches and highlight the need for more robust metrics that capture skill-task misalignment. Our work provides tools and a foundation for studying fairness in heterogeneous multi-agent systems where aligning effort with expertise is critical.
☆ AgriChrono: A Multi-modal Dataset Capturing Crop Growth and Lighting Variability with a Field Robot
Existing datasets for precision agriculture have primarily been collected in static or controlled environments such as indoor labs or greenhouses, often with limited sensor diversity and restricted temporal span. These conditions fail to reflect the dynamic nature of real farmland, including illumination changes, crop growth variation, and natural disturbances. As a result, models trained on such data often lack robustness and generalization when applied to real-world field scenarios. In this paper, we present AgriChrono, a novel robotic data collection platform and multi-modal dataset designed to capture the dynamic conditions of real-world agricultural environments. Our platform integrates multiple sensors and enables remote, time-synchronized acquisition of RGB, Depth, LiDAR, and IMU data, supporting efficient and repeatable long-term data collection across varying illumination and crop growth stages. We benchmark a range of state-of-the-art 3D reconstruction models on the AgriChrono dataset, highlighting the difficulty of reconstruction in real-world field environments and demonstrating its value as a research asset for advancing model generalization under dynamic conditions. The code and dataset are publicly available at: https://github.com/StructuresComp/agri-chrono
☆ AppAgent-Pro: A Proactive GUI Agent System for Multidomain Information Integration and User Assistance
Large language model (LLM)-based agents have demonstrated remarkable capabilities in addressing complex tasks, thereby enabling more advanced information retrieval and supporting deeper, more sophisticated human information-seeking behaviors. However, most existing agents operate in a purely reactive manner, responding passively to user instructions, which significantly constrains their effectiveness and efficiency as general-purpose platforms for information acquisition. To overcome this limitation, this paper proposes AppAgent-Pro, a proactive GUI agent system that actively integrates multi-domain information based on user instructions. This approach enables the system to proactively anticipate users' underlying needs and conduct in-depth multi-domain information mining, thereby facilitating the acquisition of more comprehensive and intelligent information. AppAgent-Pro has the potential to fundamentally redefine information acquisition in daily life, leading to a profound impact on human society. Our code is available at: https://github.com/LaoKuiZe/AppAgent-Pro. Our code is available at: https://github.com/LaoKuiZe/AppAgent-Pro. The demonstration video could be found at: https://www.dropbox.com/scl/fi/hvzqo5vnusg66srydzixo/AppAgent-Pro-demo-video.mp4?rlkey=o2nlfqgq6ihl125mcqg7bpgqu&st=d29vrzii&dl=0.
comment: Accepted at CIKM 2025. 10 pages, 5 figures. Our code is available at: https://github.com/LaoKuiZe/AppAgent-Pro. Our code is available at: https://github.com/LaoKuiZe/AppAgent-Pro. The demonstration video could be found at: https://www.dropbox.com/scl/fi/hvzqo5vnusg66srydzixo/AppAgent-Pro-demo-video.mp4?rlkey=o2nlfqgq6ihl125mcqg7bpgqu&st=d29vrzii&dl=0
♻ ☆ From Intents to Conversations: Generating Intent-Driven Dialogues with Contrastive Learning for Multi-Turn Classification
In conversational AI systems, a critical challenge in training effective multi-turn intent classification models lies in the generation of large-scale, domain-specific, multilingual dialogue datasets. In this paper, we introduce Chain-of-Intent, a novel framework that integrates Hidden Markov Models (HMMs) with Large Language Models (LLMs) to generate intent-driven, context-aware dialogues through self-play. Our method first extracts domain-specific intent transition patterns from real-world e-commerce chat logs, which guide the modeling of turn-level dynamics and intent sequences. LLMs are then employed to parameterize the emission probabilities of HMMs, enabling the generation of natural, coherent utterances aligned with predicted intents and dialogue context. We further propose MINT-CL, a multi-task contrastive learning framework for multi-turn intent classification, which improves performance while reducing dependence on large-scale annotated datasets. Empirical results demonstrate that our approach outperforms competitive baselines in both dialogue generation quality and classification accuracy, particularly in multilingual settings. To facilitate future research, we release MINT-E, a comprehensive, multilingual, intent-aware multi-turn dialogue corpus derived from the e-commerce domain. The reproduced source code and dataset are available at https://github.com/junhua/chain-of-intent.
comment: Accepted to Proceedings of CIKM 2025
♻ ☆ Response and Prompt Evaluation to Prevent Parasocial Relationships with Chatbots
The development of parasocial relationships with AI agents has severe, and in some cases, tragic effects for human well-being. Yet preventing such dynamics is challenging: parasocial cues often emerge gradually in private conversations, and not all forms of emotional engagement are inherently harmful. We address this challenge by introducing a simple response evaluation framework, created by repurposing a state-of-the-art language model, that evaluates ongoing conversations for parasocial cues in real time. To test the feasibility of this approach, we constructed a small synthetic dataset of thirty dialogues spanning parasocial, sycophantic, and neutral conversations. Iterative evaluation with five stage testing successfully identified all parasocial conversations while avoiding false positives under a tolerant unanimity rule, with detection typically occurring within the first few exchanges. These findings provide preliminary evidence that evaluation agents can provide a viable solution for the prevention of parasocial relations.
♻ ☆ Route-and-Execute: Auditable Model-Card Matching and Specialty-Level Deployment
Clinical workflows are fragmented as a patchwork of scripts and task-specific networks that often handle triage, task selection, and model deployment. These pipelines are rarely streamlined for data science pipeline, reducing efficiency and raising operational costs. Workflows also lack data-driven model identification (from imaging/tabular inputs) and standardized delivery of model outputs. In response, we present a practical, healthcare-first framework that uses a single vision-language model (VLM) in two complementary roles. First (Solution 1), the VLM acts as an aware model-card matcher that routes an incoming image to the appropriate specialist model via a three-stage workflow (modality -> primary abnormality -> model-card id). Checks are provided by (i) stagewise prompts that allow early exit via None/Normal/Other and (ii) a stagewise answer selector that arbitrates between the top-2 candidates at each stage, reducing the chance of an incorrect selection and aligning the workflow with clinical risk tolerance. Second (Solution 2), we fine-tune the VLM on specialty-specific datasets ensuring a single model covers multiple downstream tasks within each specialty, maintaining performance while simplifying deployment. Across gastroenterology, hematology, ophthalmology, and pathology, our single-model deployment matches or approaches specialized baselines. Compared with pipelines composed of many task-specific agents, this approach shows that one VLM can both decide and do. It may reduce effort by data scientists, shorten monitoring, increase the transparency of model selection (with per-stage justifications), and lower integration overhead.
♻ ☆ mRAG: Elucidating the Design Space of Multi-modal Retrieval-Augmented Generation
Large Vision-Language Models (LVLMs) have made remarkable strides in multimodal tasks such as visual question answering, visual grounding, and complex reasoning. However, they remain limited by static training data, susceptibility to hallucinations, and inability to verify claims against up-to-date, external evidence, compromising their performance in dynamic real-world applications. Retrieval-Augmented Generation (RAG) offers a practical solution to mitigate these challenges by allowing the LVLMs to access large-scale knowledge databases via retrieval mechanisms, thereby grounding model outputs in factual, contextually relevant information. Here in this paper, we conduct the first systematic dissection of the multimodal RAG pipeline for LVLMs, explicitly investigating (1) the retrieval phase: on the modality configurations and retrieval strategies, (2) the re-ranking stage: on strategies to mitigate positional biases and improve the relevance of retrieved evidence, and (3) the generation phase: we further investigate how to best integrate retrieved candidates into the final generation process. Finally, we extend to explore a unified agentic framework that integrates re-ranking and generation through self-reflection, enabling LVLMs to select relevant evidence and suppress irrelevant context dynamically. Our full-stack exploration of RAG for LVLMs yields substantial insights, resulting in an average performance boost of 5% without any fine-tuning.
comment: 16 pages
♻ ☆ TL-Training: A Task-Feature-Based Framework for Training Large Language Models in Tool Use
Large language models (LLMs) achieve remarkable advancements by leveraging tools to interact with environments, a critical step toward generalized AI. However, the standard supervised fine-tuning (SFT) approach, which relies on large-scale datasets, often overlooks task-specific characteristics in tool use, leading to performance bottlenecks. To address this issue, we analyze three existing LLMs and uncover key insights: training data can inadvertently impede tool-use behavior, token importance is distributed unevenly, and errors in tool calls fall into a small set of categories. Building on these findings, we propose~\emph{TL-Training}, a task-feature-based framework that mitigates the effects of suboptimal training data, dynamically adjusts token weights to prioritize key tokens during SFT, and incorporates a robust reward mechanism tailored to error categories, optimized through proximal policy optimization. We validate TL-Training by training CodeLLaMA-2-7B and evaluating it on four open-source test sets. Our results demonstrate that the LLM trained by our method matches or surpasses both open- and closed-source LLMs in tool-use performance using only 1,217 training data points. Additionally, our method enhances robustness in noisy environments and improves general task performance, offering a scalable and efficient paradigm for tool-use training in LLMs. Code and data are available at https://github.com/Junjie-Ye/TL-Training.
comment: Accepted by EMNLP 2025
♻ ☆ Consistent Opponent Modeling of Static Opponents in Imperfect-Information Games
The goal of agents in multi-agent environments is to maximize total reward against the opposing agents that are encountered. Following a game-theoretic solution concept, such as Nash equilibrium, may obtain a strong performance in some settings; however, such approaches fail to capitalize on historical and observed data from repeated interactions against our opponents. Opponent modeling algorithms integrate machine learning techniques to exploit suboptimal opponents utilizing available data; however, the effectiveness of such approaches in imperfect-information games to date is quite limited. We show that existing opponent modeling approaches fail to satisfy a simple desirable property even against static opponents drawn from a known prior distribution; namely, they do not guarantee that the model approaches the opponent's true strategy even in the limit as the number of game iterations approaches infinity. We develop a new algorithm that is able to achieve this property and runs efficiently by solving a convex minimization problem based on the sequence-form game representation using projected gradient descent. The algorithm is guaranteed to efficiently converge to the opponent's true strategy given observations from gameplay and possibly additional historical data if it is available.
♻ ☆ Generative Artificial Intelligence-Supported Pentesting: A Comparison between Claude Opus, GPT-4, and Copilot
The advent of Generative Artificial Intelligence (GenAI) has brought a significant change to our society. GenAI can be applied across numerous fields, with particular relevance in cybersecurity. Among the various areas of application, its use in penetration testing (pentesting) or ethical hacking processes is of special interest. In this paper, we have analyzed the potential of leading generic-purpose GenAI tools-Claude Opus, GPT-4 from ChatGPT, and Copilot-in augmenting the penetration testing process as defined by the Penetration Testing Execution Standard (PTES). Our analysis involved evaluating each tool across all PTES phases within a controlled virtualized environment. The findings reveal that, while these tools cannot fully automate the pentesting process, they provide substantial support by enhancing efficiency and effectiveness in specific tasks. Notably, all tools demonstrated utility; however, Claude Opus consistently outperformed the others in our experimental scenarios.
♻ ☆ Leveraging Multi-facet Paths for Heterogeneous Graph Representation Learning
Recent advancements in graph neural networks (GNNs) and heterogeneous GNNs (HGNNs) have advanced node embeddings and relationship learning for various tasks. However, existing methods often rely on domain-specific predefined meta-paths, which are coarse-grained and focus solely on aspects like node type, limiting their ability to capture complex interactions. We introduce MF2Vec, a model that uses multi-faceted (fine-grained) paths instead of predefined meta-paths. MF2Vec extracts paths via random walks and generates multi-faceted vectors, ignoring predefined schemas. This method learns diverse aspects of nodes and their relationships, constructs a homogeneous network, and creates node embeddings for classification, link prediction, and clustering. Extensive experiments show that MF2Vec outperforms existing methods, offering a more flexible and comprehensive framework for analyzing complex networks. The code is available at https://anonymous.4open.science/r/MF2Vec-6ABC.
♻ ☆ GeNet: A Multimodal LLM-Based Co-Pilot for Network Topology and Configuration
Communication network engineering in enterprise environments is traditionally a complex, time-consuming, and error-prone manual process. Most research on network engineering automation has concentrated on configuration synthesis, often overlooking changes in the physical network topology. This paper introduces GeNet, a multimodal co-pilot for enterprise network engineers. GeNet is a novel framework that leverages a large language model (LLM) to streamline network design workflows. It uses visual and textual modalities to interpret and update network topologies and device configurations based on user intents. GeNet was evaluated on enterprise network scenarios adapted from Cisco certification exercises. Our results demonstrate GeNet's ability to interpret network topology images accurately, potentially reducing network engineers' efforts and accelerating network design processes in enterprise environments. Furthermore, we show the importance of precise topology understanding when handling intents that require modifications to the network's topology.
♻ ☆ ChatGPT Doesn't Trust Chargers Fans: Guardrail Sensitivity in Context
While the biases of language models in production are extensively documented, the biases of their guardrails have been neglected. This paper studies how contextual information about the user influences the likelihood of an LLM to refuse to execute a request. By generating user biographies that offer ideological and demographic information, we find a number of biases in guardrail sensitivity on GPT-3.5. Younger, female, and Asian-American personas are more likely to trigger a refusal guardrail when requesting censored or illegal information. Guardrails are also sycophantic, refusing to comply with requests for a political position the user is likely to disagree with. We find that certain identity groups and seemingly innocuous information, e.g., sports fandom, can elicit changes in guardrail sensitivity similar to direct statements of political ideology. For each demographic category and even for American football team fandom, we find that ChatGPT appears to infer a likely political ideology and modify guardrail behavior accordingly.
♻ ☆ Feature-Guided Neighbor Selection for Non-Expert Evaluation of Model Predictions IJCAI 2025
Explainable AI (XAI) methods often struggle to generate clear, interpretable outputs for users without domain expertise. We introduce Feature-Guided Neighbor Selection (FGNS), a post hoc method that enhances interpretability by selecting class-representative examples using both local and global feature importance. In a user study (N = 98) evaluating Kannada script classifications, FGNS significantly improved non-experts' ability to identify model errors while maintaining appropriate agreement with correct predictions. Participants made faster and more accurate decisions compared to those given traditional k-NN explanations. Quantitative analysis shows that FGNS selects neighbors that better reflect class characteristics rather than merely minimizing feature-space distance, leading to more consistent selection and tighter clustering around class prototypes. These results support FGNS as a step toward more human-aligned model assessment, although further work is needed to address the gap between explanation quality and perceived trust.
comment: 7 pages, 5 figures, 1 table. Accepted at IJCAI 2025 Workshop on User-Aligned Assessment of Adaptive AI Systems
♻ ☆ An Ontology-Driven Graph RAG for Legal Norms: A Hierarchical, Temporal, and Deterministic Approach
Retrieval-Augmented Generation (RAG) systems in the legal domain face a critical challenge: standard, flat-text retrieval is blind to the hierarchical, diachronic, and causal structure of law, leading to anachronistic and unreliable answers. This paper introduces an ontology-driven Graph RAG framework designed to overcome these limitations. We ground our knowledge graph in a formal, LRMoo-inspired model that distinguishes abstract legal Works from their versioned Expressions. We model temporal states as efficient aggregations that reuse the versioned expressions (CTVs) of unchanged components, and we reify legislative events as first-class Action nodes to make causality explicit and queryable. This structured backbone enables a unified, planner-guided query strategy that applies explicit policies to deterministically resolve complex requests for (i) point-in-time retrieval, (ii) hierarchical impact analysis, and (iii) auditable provenance reconstruction. Through a case study on the Brazilian Constitution, we demonstrate how this approach provides a verifiable, temporally-correct substrate for LLMs, enabling higher-order analytical capabilities while drastically reducing the risk of factual errors. The result is a practical framework for building more trustworthy and explainable legal AI systems.
comment: This is a major revision that significantly expands and deepens the original manuscript. While the core ontological model remains the same, this version provides a substantially more rigorous and detailed account of how the framework is applied in practice, particularly within a Retrieval-Augmented Generation (RAG) context
♻ ☆ Exploring the Robustness of Language Models for Tabular Question Answering via Attention Analysis
Large Language Models (LLMs), already shown to ace various unstructured text comprehension tasks, have also remarkably been shown to tackle table (structured) comprehension tasks without specific training. Building on earlier studies of LLMs for tabular tasks, we probe how in-context learning (ICL), model scale, instruction tuning, and domain bias affect Tabular QA (TQA) robustness by testing LLMs, under diverse augmentations and perturbations, on diverse domains: Wikipedia-based $\textbf{WTQ}$, financial $\textbf{TAT-QA}$, and scientific $\textbf{SCITAB}$. Although instruction tuning and larger, newer LLMs deliver stronger, more robust TQA performance, data contamination and reliability issues, especially on $\textbf{WTQ}$, remain unresolved. Through an in-depth attention analysis, we reveal a strong correlation between perturbation-induced shifts in attention dispersion and the drops in performance, with sensitivity peaking in the model's middle layers. We highlight the need for improved interpretable methodologies to develop more reliable LLMs for table comprehension. Through an in-depth attention analysis, we reveal a strong correlation between perturbation-induced shifts in attention dispersion and performance drops, with sensitivity peaking in the model's middle layers. Based on these findings, we argue for the development of structure-aware self-attention mechanisms and domain-adaptive processing techniques to improve the transparency, generalization, and real-world reliability of LLMs on tabular data.
comment: Accepted TMLR 2025
♻ ☆ StagFormer: Time Staggering Transformer Decoding for RunningLayers In Parallel
Decoding in a Transformer based language model is inherently sequential as a token's embedding needs to pass through all the layers in the network before the generation of the next token can begin. In this work, we propose a new architecture StagFormer (Staggered Transformer), which staggers execution along the sequence axis and thereby enables parallelizing the decoding process along the depth of the model. We achieve this by breaking the dependency of the token representation at time step $i$ in layer $l$ upon the representations of tokens until time step $i$ from layer $l-1$. Instead, we stagger the execution and only allow a dependency on token representations until time step $i-1$. The later sections of the Transformer still get access to the "rich" representations from the prior section but only from those token positions which are one time step behind. StagFormer allows for different sections of the model to be executed in parallel yielding a potential speedup in decoding while being quality neutral in our simulations. We also explore many natural extensions of this idea. We present how weight-sharing across the different sections being staggered can be more practical in settings with limited memory. We explore the efficacy of using a bounded window attention to pass information from one section to another which helps drive further latency gains for some applications. We also explore the scalability of the staggering idea over more than 2 sections of the Transformer. Finally, we show how one can approximate a recurrent model during inference using weight-sharing. This variant can lead to substantial gains in quality for short generations while being neutral in its latency impact.
♻ ☆ Learning in Repeated Multi-Objective Stackelberg Games with Payoff Manipulation AI 2025
We study payoff manipulation in repeated multi-objective Stackelberg games, where a leader may strategically influence a follower's deterministic best response, e.g., by offering a share of their own payoff. We assume that the follower's utility function, representing preferences over multiple objectives, is unknown but linear, and its weight parameter must be inferred through interaction. This introduces a sequential decision-making challenge for the leader, who must balance preference elicitation with immediate utility maximisation. We formalise this problem and propose manipulation policies based on expected utility (EU) and long-term expected utility (longEU), which guide the leader in selecting actions and offering incentives that trade off short-term gains with long-term impact. We prove that under infinite repeated interactions, longEU converges to the optimal manipulation. Empirical results across benchmark environments demonstrate that our approach improves cumulative leader utility while promoting mutually beneficial outcomes, all without requiring explicit negotiation or prior knowledge of the follower's utility function.
comment: Extended version of the paper accepted at the 28th European Conference on Artificial Intelligence (ECAI 2025); Paper ID: M2635, Added more experiments in the Appendix
♻ ☆ Ego-Foresight: Self-supervised Learning of Agent-Aware Representations for Improved RL
Despite the significant advancements in Deep Reinforcement Learning (RL) observed in the last decade, the amount of training experience necessary to learn effective policies remains one of the primary concerns both in simulated and real environments. Looking to solve this issue, previous work has shown that improved training efficiency can be achieved by separately modeling agent and environment, but usually requiring a supervisory agent mask. In contrast to RL, humans can perfect a new skill from a small number of trials and in most cases do so without a supervisory signal, making neuroscientific studies of human development a valuable source of inspiration for RL. In particular, we explore the idea of motor prediction, which states that humans develop an internal model of themselves and of the consequences that their motor commands have on the immediate sensory inputs. Our insight is that the movement of the agent provides a cue that allows the duality between agent and environment to be learned. To instantiate this idea, we present Ego-Foresight, a self-supervised method for disentangling agent and environment based on motion and prediction. Our main finding is self-supervised agent-awareness by visuomotor prediction of the agent improves sample-efficiency and performance of the underlying RL algorithm. To test our approach, we first study its ability to visually predict agent movement irrespective of the environment, in simulated and real-world robotic data. Then, we integrate Ego-Foresight with a model-free RL algorithm to solve simulated robotic tasks, showing that self-supervised agent-awareness can improve sample-efficiency and performance in RL.
comment: 13 pages, 8 figures, conference
♻ ☆ Safe Reinforcement Learning in Black-Box Environments via Adaptive Shielding AI 25
Empowering safe exploration of reinforcement learning (RL) agents during training is a critical challenge towards their deployment in many real-world scenarios. When prior knowledge of the domain or task is unavailable, training RL agents in unknown, black-box environments presents an even greater safety risk. We introduce ADVICE (Adaptive Shielding with a Contrastive Autoencoder), a novel post-shielding technique that distinguishes safe and unsafe features of state-action pairs during training, and uses this knowledge to protect the RL agent from executing actions that yield likely hazardous outcomes. Our comprehensive experimental evaluation against state-of-the-art safe RL exploration techniques shows that ADVICE significantly reduces safety violations (approx 50%) during training, with a competitive outcome reward compared to other techniques.
comment: To be published in ECAI 25
♻ ☆ Consensus in Motion: A Case of Dynamic Rationality of Sequential Learning in Probability Aggregation
We propose a framework for probability aggregation based on propositional probability logic. Unlike conventional judgment aggregation, which focuses on static rationality, our model addresses dynamic rationality by ensuring that collective beliefs update consistently with new information. We show that any consensus-compatible and independent aggregation rule on a non-nested agenda is necessarily linear. Furthermore, we provide sufficient conditions for a fair learning process, where individuals initially agree on a specified subset of propositions known as the common ground, and new information is restricted to this shared foundation. This guarantees that updating individual judgments via Bayesian conditioning-whether performed before or after aggregation-yields the same collective belief. A distinctive feature of our framework is its treatment of sequential decision-making, which allows new information to be incorporated progressively through multiple stages while maintaining the established common ground. We illustrate our findings with a running example in a political scenario concerning healthcare and immigration policies.
comment: Accepted for the 18th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2025)
♻ ☆ CAD-Assistant: Tool-Augmented VLLMs as Generic CAD Task Solvers
We propose CAD-Assistant, a general-purpose CAD agent for AI-assisted design. Our approach is based on a powerful Vision and Large Language Model (VLLM) as a planner and a tool-augmentation paradigm using CAD-specific tools. CAD-Assistant addresses multimodal user queries by generating actions that are iteratively executed on a Python interpreter equipped with the FreeCAD software, accessed via its Python API. Our framework is able to assess the impact of generated CAD commands on geometry and adapts subsequent actions based on the evolving state of the CAD design. We consider a wide range of CAD-specific tools including a sketch image parameterizer, rendering modules, a 2D cross-section generator, and other specialized routines. CAD-Assistant is evaluated on multiple CAD benchmarks, where it outperforms VLLM baselines and supervised task-specific methods. Beyond existing benchmarks, we qualitatively demonstrate the potential of tool-augmented VLLMs as general-purpose CAD solvers across diverse workflows.
♻ ☆ An Agentic System for Rare Disease Diagnosis with Traceable Reasoning
Rare diseases collectively affect over 300 million individuals worldwide, yet timely and accurate diagnosis remains a pervasive challenge. This is largely due to their clinical heterogeneity, low individual prevalence, and the limited familiarity most clinicians have with rare conditions. Here, we introduce DeepRare, the first rare disease diagnosis agentic system powered by a large language model (LLM), capable of processing heterogeneous clinical inputs. The system generates ranked diagnostic hypotheses for rare diseases, each accompanied by a transparent chain of reasoning that links intermediate analytic steps to verifiable medical evidence. DeepRare comprises three key components: a central host with a long-term memory module; specialized agent servers responsible for domain-specific analytical tasks integrating over 40 specialized tools and web-scale, up-to-date medical knowledge sources, ensuring access to the most current clinical information. This modular and scalable design enables complex diagnostic reasoning while maintaining traceability and adaptability. We evaluate DeepRare on eight datasets. The system demonstrates exceptional diagnostic performance among 2,919 diseases, achieving 100% accuracy for 1013 diseases. In HPO-based evaluations, DeepRare significantly outperforms other 15 methods, like traditional bioinformatics diagnostic tools, LLMs, and other agentic systems, achieving an average Recall@1 score of 57.18% and surpassing the second-best method (Reasoning LLM) by a substantial margin of 23.79 percentage points. For multi-modal input scenarios, DeepRare achieves 70.60% at Recall@1 compared to Exomiser's 53.20% in 109 cases. Manual verification of reasoning chains by clinical experts achieves 95.40% agreements. Furthermore, the DeepRare system has been implemented as a user-friendly web application http://raredx.cn/doctor.
♻ ☆ SKA-Bench: A Fine-Grained Benchmark for Evaluating Structured Knowledge Understanding of LLMs
Although large language models (LLMs) have made significant progress in understanding Structured Knowledge (SK) like KG and Table, existing evaluations for SK understanding are non-rigorous (i.e., lacking evaluations of specific capabilities) and focus on a single type of SK. Therefore, we aim to propose a more comprehensive and rigorous structured knowledge understanding benchmark to diagnose the shortcomings of LLMs. In this paper, we introduce SKA-Bench, a Structured Knowledge Augmented QA Benchmark that encompasses four widely used structured knowledge forms: KG, Table, KG+Text, and Table+Text. We utilize a three-stage pipeline to construct SKA-Bench instances, which includes a question, an answer, positive knowledge units, and noisy knowledge units. To evaluate the SK understanding capabilities of LLMs in a fine-grained manner, we expand the instances into four fundamental ability testbeds: Noise Robustness, Order Insensitivity, Information Integration, and Negative Rejection. Empirical evaluations on 8 representative LLMs, including the advanced DeepSeek-R1, indicate that existing LLMs still face significant challenges in understanding structured knowledge, and their performance is influenced by factors such as the amount of noise, the order of knowledge units, and hallucination phenomenon. Our dataset and code are available at https://github.com/Lza12a/SKA-Bench.
comment: EMNLP 2025
♻ ☆ Architecting Clinical Collaboration: Multi-Agent Reasoning Systems for Multimodal Medical VQA
Dermatological care via telemedicine often lacks the rich context of in-person visits. Clinicians must make diagnoses based on a handful of images and brief descriptions, without the benefit of physical exams, second opinions, or reference materials. While many medical AI systems attempt to bridge these gaps with domain-specific fine-tuning, this work hypothesized that mimicking clinical reasoning processes could offer a more effective path forward. This study tested seven vision-language models on medical visual question answering across six configurations: baseline models, fine-tuned variants, and both augmented with either reasoning layers that combine multiple model perspectives, analogous to peer consultation, or retrieval-augmented generation that incorporates medical literature at inference time, serving a role similar to reference-checking. While fine-tuning degraded performance in four of seven models with an average 30% decrease, baseline models collapsed on test data. Clinical-inspired architectures, meanwhile, achieved up to 70% accuracy, maintaining performance on unseen data while generating explainable, literature-grounded outputs critical for clinical adoption. These findings demonstrate that medical AI succeeds by reconstructing the collaborative and evidence-based practices fundamental to clinical diagnosis.
♻ ☆ A Survey on Causal Discovery: Theory and Practice
Understanding the laws that govern a phenomenon is the core of scientific progress. This is especially true when the goal is to model the interplay between different aspects in a causal fashion. Indeed, causal inference itself is specifically designed to quantify the underlying relationships that connect a cause to its effect. Causal discovery is a branch of the broader field of causality in which causal graphs are recovered from data (whenever possible), enabling the identification and estimation of causal effects. In this paper, we explore recent advancements in causal discovery in a unified manner, provide a consistent overview of existing algorithms developed under different settings, report useful tools and data, present real-world applications to understand why and how these methods can be fruitfully exploited.
♻ ☆ UniGenX: a unified generative foundation model that couples sequence, structure and function to accelerate scientific design across proteins, molecules and materials
Function in natural systems arises from one-dimensional sequences forming three-dimensional structures with specific properties. However, current generative models suffer from critical limitations: training objectives seldom target function directly, discrete sequences and continuous coordinates are optimized in isolation, and conformational ensembles are under-modeled. We present UniGenX, a unified generative foundation model that addresses these gaps by co-generating sequences and coordinates under direct functional and property objectives across proteins, molecules, and materials. UniGenX represents heterogeneous inputs as a mixed stream of symbolic and numeric tokens, where a decoder-only autoregressive transformer provides global context and a conditional diffusion head generates numeric fields steered by task-specific tokens. Besides the new high SOTAs on structure prediction tasks, the model demonstrates state-of-the-art or competitive performance for the function-aware generation across domains: in materials, it achieves "conflicted" multi-property conditional generation, yielding 436 crystal candidates meeting triple constraints, including 11 with novel compositions; in chemistry, it sets new benchmarks on five property targets and conformer ensemble generation on GEOM; and in biology, it improves success in modeling protein induced fit (RMSD < 2 {\AA}) by over 23-fold and enhances EC-conditioned enzyme design. Ablation studies and cross-domain transfer substantiate the benefits of joint discrete-continuous training, establishing UniGenX as a significant advance from prediction to controllable, function-aware generation.
♻ ☆ LLM-Enhanced Linear Autoencoders for Recommendation
Large language models (LLMs) have been widely adopted to enrich the semantic representation of textual item information in recommender systems. However, existing linear autoencoders (LAEs) that incorporate textual information rely on sparse word co-occurrence patterns, limiting their ability to capture rich textual semantics. To address this, we propose L3AE, the first integration of LLMs into the LAE framework. L3AE effectively integrates the heterogeneous knowledge of textual semantics and user-item interactions through a two-phase optimization strategy. (i) L3AE first constructs a semantic item-to-item correlation matrix from LLM-derived item representations. (ii) It then learns an item-to-item weight matrix from collaborative signals while distilling semantic item correlations as regularization. Notably, each phase of L3AE is optimized through closed-form solutions, ensuring global optimality and computational efficiency. Extensive experiments demonstrate that L3AE consistently outperforms state-of-the-art LLM-enhanced models on three benchmark datasets, achieving gains of 27.6% in Recall@20 and 39.3% in NDCG@20. The source code is available at https://github.com/jaewan7599/L3AE_CIKM2025.
comment: Accepted by CIKM 2025
♻ ☆ RePPL: Recalibrating Perplexity by Uncertainty in Semantic Propagation and Language Generation for Explainable QA Hallucination Detection
Large Language Models (LLMs) have become powerful, but hallucinations remain a vital obstacle to their trustworthy use. While previous works improved the capability of hallucination detection by measuring uncertainty, they all lack the ability to explain the provenance behind why hallucinations occur, i.e., which part of the inputs tends to trigger hallucinations. Recent works on the prompt attack indicate that uncertainty exists in semantic propagation, where attention mechanisms gradually fuse local token information into high-level semantics across layers. Meanwhile, uncertainty also emerges in language generation, due to its probability-based selection of high-level semantics for sampled generations. Based on that, we propose RePPL to recalibrate uncertainty measurement by these two aspects, which dispatches explainable uncertainty scores to each token and aggregates in Perplexity-style Log-Average form as total score. Experiments show that our method achieves the best comprehensive detection performance across various QA datasets on advanced models (average AUC of 0.833), and our method is capable of producing token-level uncertainty scores as explanations for the hallucination. Leveraging these scores, we preliminarily find the chaotic pattern of hallucination and showcase its promising usage.
♻ ☆ A Hybrid Fully Convolutional CNN-Transformer Model for Inherently Interpretable Disease Detection from Retinal Fundus Images AI 2025
In many medical imaging tasks, convolutional neural networks (CNNs) efficiently extract local features hierarchically. More recently, vision transformers (ViTs) have gained popularity, using self-attention mechanisms to capture global dependencies, but lacking the inherent spatial localization of convolutions. Therefore, hybrid models combining CNNs and ViTs have been developed to combine the strengths of both architectures. However, such hybrid models are difficult to interpret, which hinders their application in medical imaging. In this work, we introduce an interpretable-by-design hybrid fully convolutional CNN-Transformer architecture for retinal disease detection. Unlike widely used post-hoc saliency methods for ViTs, our approach generates faithful and localized evidence maps that directly reflect the mode's decision process. We evaluated our method on two medical tasks focused on disease detection using color fundus images. Our model achieves state-of-the-art predictive performance compared to black-box and interpretable models and provides class-specific sparse evidence maps in a single forward pass. The code is available at: https://github.com/kdjoumessi/Self-Explainable-CNN-Transformer.
comment: Accepted at the Workshop on Interpretability of Machine Intelligence in Medical Image Computing at MICCAI 2025
♻ ☆ Mind the (Language) Gap: Towards Probing Numerical and Cross-Lingual Limits of LVLMs
We introduce MMCRICBENCH-3K, a benchmark for Visual Question Answering (VQA) on cricket scorecards, designed to evaluate large vision-language models (LVLMs) on complex numerical and cross-lingual reasoning over semi-structured tabular images. MMCRICBENCH-3K comprises 1,463 synthetically generated scorecard images from ODI, T20, and Test formats, accompanied by 1,500 English QA pairs. It includes two subsets: MMCRICBENCH-E-1.5K, featuring English scorecards, and MMCRICBENCH-H-1.5K, containing visually similar Hindi scorecards, with all questions and answers kept in English to enable controlled cross-script evaluation. The task demands reasoning over structured numerical data, multi-image context, and implicit domain knowledge. Empirical results show that even state-of-the-art LVLMs, such as GPT-4o and Qwen2.5VL, struggle on the English subset despite it being their primary training language and exhibit a further drop in performance on the Hindi subset. This reveals key limitations in structure-aware visual text understanding, numerical reasoning, and cross-lingual generalization. The dataset is publicly available via Hugging Face at https://huggingface.co/datasets/DIALab/MMCricBench, to promote LVLM research in this direction.
♻ ☆ A Survey of Threats Against Voice Authentication and Anti-Spoofing Systems
Voice authentication has undergone significant changes from traditional systems that relied on handcrafted acoustic features to deep learning models that can extract robust speaker embeddings. This advancement has expanded its applications across finance, smart devices, law enforcement, and beyond. However, as adoption has grown, so have the threats. This survey presents a comprehensive review of the modern threat landscape targeting Voice Authentication Systems (VAS) and Anti-Spoofing Countermeasures (CMs), including data poisoning, adversarial, deepfake, and adversarial spoofing attacks. We chronologically trace the development of voice authentication and examine how vulnerabilities have evolved in tandem with technological advancements. For each category of attack, we summarize methodologies, highlight commonly used datasets, compare performance and limitations, and organize existing literature using widely accepted taxonomies. By highlighting emerging risks and open challenges, this survey aims to support the development of more secure and resilient voice authentication systems.
comment: This paper will be submitted to the Computer Science Review
♻ ☆ Pessimistic Iterative Planning with RNNs for Robust POMDPs AI 2025
Robust POMDPs extend classical POMDPs to incorporate model uncertainty using so-called uncertainty sets on the transition and observation functions, effectively defining ranges of probabilities. Policies for robust POMDPs must be (1) memory-based to account for partial observability and (2) robust against model uncertainty to account for the worst-case probability instances from the uncertainty sets. To compute such robust memory-based policies, we propose the pessimistic iterative planning (PIP) framework, which alternates between (1) selecting pessimistic POMDPs via worst-case probability instances from the uncertainty sets, and (2) computing finite-state controllers (FSCs) for these pessimistic POMDPs. Within PIP, we propose the rFSCNet algorithm, which optimizes a recurrent neural network to compute the FSCs. The empirical evaluation shows that rFSCNet can compute better-performing robust policies than several baselines and a state-of-the-art robust POMDP solver.
comment: Accepted for presentation at ECAI 2025
♻ ☆ Solar Altitude Guided Scene Illumination
The development of safe and robust autonomous driving functions is heavily dependent on large-scale, high-quality sensor data. However, real-world data acquisition requires extensive human labor and is strongly limited by factors such as labeling cost, driver safety protocols and scenario coverage. Thus, multiple lines of work focus on the conditional generation of synthetic camera sensor data. We identify a significant gap in research regarding daytime variation, presumably caused by the scarcity of available labels. Consequently, we present solar altitude as global conditioning variable. It is readily computable from latitude-longitude coordinates and local time, eliminating the need for manual labeling. Our work is complemented by a tailored normalization approach, targeting the sensitivity of daylight towards small numeric changes in altitude. We demonstrate its ability to accurately capture lighting characteristics and illumination-dependent image noise in the context of diffusion models.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ From Confidence to Collapse in LLM Factual Robustness
Ensuring the robustness of factual knowledge in LLMs is critical for reliable applications in tasks such as question answering and reasoning. However, existing evaluation methods predominantly focus on performance-based metrics, often investigating from the perspective of prompt perturbations, which captures only the externally triggered side of knowledge robustness. To bridge this gap, we introduce a principled approach to measure factual robustness from the perspective of the generation process by analyzing token distribution entropy in combination with temperature scaling sensitivity. These two factors build the Factual Robustness Score (FRS), a novel metric which quantifies the stability of a fact against perturbations in decoding conditions, given its initial uncertainty. To validate our approach, we conduct extensive experiments on 5 LLMs across 3 closed-book QA datasets (SQuAD, TriviaQA, and HotpotQA). We show that factual robustness varies significantly -- smaller models report an FRS of $0.76$, larger ones $0.93$ -- with accuracy degrading by ~$60\%$ under increased uncertainty. These insights demonstrate how entropy and temperature scaling impact factual accuracy, and lay a foundation for developing more robust knowledge retention and retrieval in future models.
♻ ☆ Integrating Large Language Model for Improved Causal Discovery
Recovering the structure of causal graphical models from observational data is an essential yet challenging task for causal discovery in scientific scenarios. Domain-specific causal discovery usually relies on expert validation or prior analysis to improve the reliability of recovered causality, which is yet limited by the scarcity of expert resources. Recently, Large Language Models (LLM) have been used for causal analysis across various domain-specific scenarios, suggesting its potential as autonomous expert roles in guiding data-based structure learning. However, integrating LLMs into causal discovery faces challenges due to inaccuracies in LLM-based reasoning on revealing the actual causal structure. To address this challenge, we propose an error-tolerant LLM-driven causal discovery framework. The error-tolerant mechanism is designed three-fold with sufficient consideration on potential inaccuracies. In the LLM-based reasoning process, an accuracy-oriented prompting strategy restricts causal analysis to a reliable range. Next, a knowledge-to-structure transition aligns LLM-derived causal statements with structural causal interactions. In the structure learning process, the goodness-of-fit to data and adherence to LLM-derived priors are balanced to further address prior inaccuracies. Evaluation of eight real-world causal structures demonstrates the efficacy of our LLM-driven approach in improving data-based causal discovery, along with its robustness to inaccurate LLM-derived priors. Codes are available at https://github.com/tyMadara/LLM-CD.
comment: 13 pages, 5 figures
♻ ☆ Breaking the Exploration Bottleneck: Rubric-Scaffolded Reinforcement Learning for General LLM Reasoning
Recent advances in Large Language Models (LLMs) have underscored the potential of Reinforcement Learning (RL) to facilitate the emergence of reasoning capabilities. Despite the encouraging results, a fundamental dilemma persists as RL improvement relies on learning from high-quality samples, yet the exploration for such samples remains bounded by the inherent limitations of LLMs. This, in effect, creates an undesirable cycle in which what cannot be explored cannot be learned. In this work, we propose Rubric-Scaffolded Reinforcement Learning (RuscaRL), a novel instructional scaffolding framework designed to break the exploration bottleneck for general LLM reasoning. Specifically, RuscaRL introduces checklist-style rubrics as (1) explicit scaffolding for exploration during rollout generation, where different rubrics are provided as external guidance within task instructions to steer diverse high-quality responses. This guidance is gradually decayed over time, encouraging the model to internalize the underlying reasoning patterns; (2) verifiable rewards for exploitation during model training, where we can obtain robust LLM-as-a-Judge scores using rubrics as references, enabling effective RL on general reasoning tasks. Extensive experiments demonstrate the superiority of the proposed RuscaRL across various benchmarks, effectively expanding reasoning boundaries under the best-of-N evaluation. Notably, RuscaRL significantly boosts Qwen2.5-7B-Instruct from 23.6 to 50.3 on HealthBench-500, surpassing GPT-4.1. Furthermore, our fine-tuned variant on Qwen3-30B-A3B-Instruct achieves 61.1 on HealthBench-500, outperforming leading LLMs including OpenAI-o3. This work is still in progress, and we will release the code, the models, and the datasets soon.
comment: This work is still in progress
♻ ☆ Noise-based reward-modulated learning
Biological neural systems efficiently learn from delayed rewards despite relying on noisy synaptic transmission and lacking centralized optimization mechanisms. In contrast, artificial neural networks trained with reinforcement learning typically rely on backpropagation (BP), which limits their use in resource-constrained systems or with non-differentiable components. While noise-based alternatives, like reward-modulated Hebbian learning (RMHL), provide a biologically grounded framework for credit assignment, they struggle with temporal delays and hierarchical processing -key challenges in real-world learning. In this work, we derive a novel noise-based learning rule to address these challenges. Drawing inspiration from biological neural circuits, our method uses reward prediction errors as its optimization target to generate increasingly advantageous behavior, and incorporates an eligibility trace to facilitate retrospective credit assignment. Its formulation relies on local information, aligning with biological constraints and enabling neuromorphic implementation. Experimental validation on reinforcement tasks (immediate and delayed rewards) shows our approach significantly outperforms RMHL and achieves performance comparable to BP, although with slower convergence due to its noise-driven updates. While tested on simple architectures, the results highlight the potential of noise-driven, brain-inspired learning for low-power adaptive systems, particularly in scenarios where energy efficiency and biological plausibility are a priority. These findings also offer mechanistic insights into how dopamine-like signals and synaptic stochasticity may jointly enable learning in biological networks, bridging computational models with neurobiological principles.
♻ ☆ Generative Artificial Intelligence and Agents in Research and Teaching
This study provides a comprehensive analysis of the development, functioning, and application of generative artificial intelligence (GenAI) and large language models (LLMs), with an emphasis on their implications for research and education. It traces the conceptual evolution from artificial intelligence (AI) through machine learning (ML) and deep learning (DL) to transformer architectures, which constitute the foundation of contemporary generative systems. Technical aspects, including prompting strategies, word embeddings, and probabilistic sampling methods (temperature, top-k, and top-p), are examined alongside the emergence of autonomous agents. These elements are considered in relation to both the opportunities they create and the limitations and risks they entail. The work critically evaluates the integration of GenAI across the research process, from ideation and literature review to research design, data collection, analysis, interpretation, and dissemination. While particular attention is given to geographical research, the discussion extends to wider academic contexts. A parallel strand addresses the pedagogical applications of GenAI, encompassing course and lesson design, teaching delivery, assessment, and feedback, with geography education serving as a case example. Central to the analysis are the ethical, social, and environmental challenges posed by GenAI. Issues of bias, intellectual property, governance, and accountability are assessed, alongside the ecological footprint of LLMs and emerging technological strategies for mitigation. The concluding section considers near- and long-term futures of GenAI, including scenarios of sustained adoption, regulation, and potential decline. By situating GenAI within both scholarly practice and educational contexts, the study contributes to critical debates on its transformative potential and societal responsibilities.
comment: 113 pages, 6 figures, 13 tables, 2 appendices
♻ ☆ The Influence of Human-inspired Agentic Sophistication in LLM-driven Strategic Reasoners
The rapid rise of large language models (LLMs) has shifted artificial intelligence (AI) research toward agentic systems, motivating the use of weaker and more flexible notions of agency. However, this shift raises key questions about the extent to which LLM-based agents replicate human strategic reasoning, particularly in game-theoretic settings. In this context, we examine the role of agentic sophistication in shaping artificial reasoners' performance by evaluating three agent designs: a simple game-theoretic model, an unstructured LLM-as-agent model, and an LLM integrated into a traditional agentic framework. Using guessing games as a testbed, we benchmarked these agents against human participants across general reasoning patterns and individual role-based objectives. Furthermore, we introduced obfuscated game scenarios to assess agents' ability to generalise beyond training distributions. Our analysis, covering over 2000 reasoning samples across 25 agent configurations, shows that human-inspired cognitive structures can enhance LLM agents' alignment with human strategic behaviour. Still, the relationship between agentic design complexity and human-likeness is non-linear, highlighting a critical dependence on underlying LLM capabilities and suggesting limits to simple architectural augmentation.
♻ ☆ M$^2$IV: Towards Efficient and Fine-grained Multimodal In-Context Learning via Representation Engineering
Multimodal in-context learning (ICL) equips Large Vision-language Models (LVLMs) with the ability to adapt to new tasks via multiple user-provided demonstrations, without requiring any model parameter updates. However, its effectiveness is constrained by the token-intensive nature of multimodal inputs and the complexity of cross-modal few-shot reasoning, which together hinder LVLMs from extracting useful patterns from demonstrations. To address these challenges, we propose \textbf{M$^2$IV}, a novel representation engineering approach that replaces explicit token-level demonstrations with a set of learnable Multimodal In-context Vectors directly injected into the residual streams of LVLMs. By analyzing the distinct roles of multi-head attention (MHA) and multi-layer perceptrons (MLP) in the ICL process, we design a training strategy that enables M$^2$IV to perform fine-grained semantic distillation and robust cross-modal representation learning. M$^2$IV not only improves performance across diverse tasks and LVLMs but also significantly reduces token overhead, enabling graceful scaling to many-shot scenarios. To further enhance usability, we introduce \textbf{VLibrary}, a repository that stores trained M$^2$IVs for flexible retrieval and injection. With VLibrary, users can steer pre-trained LVLMs in a customized manner that meets diverse requirements. Extensive experiments demonstrate that M$^2$IV consistently outperforms vanilla ICL and prior representation engineering baselines, achieving an average accuracy gain of 3.74\% with substantial improvements in overall efficiency.
comment: COLM 2025, 30 pages, 10 figures, 16 tables
♻ ☆ Perception Gaps in Risk, Benefit, and Value Between Experts and Public Challenge Socially Accepted AI
Artificial Intelligence (AI) is reshaping many societal domains, raising critical questions about its risks, benefits, and the potential misalignment between public and academic perspectives. This study examines how the general public (N=1110) -- individuals who interact with or are impacted by AI technologies -- and academic AI experts (N=119) -- those elites shaping AI development -- perceive AI's capabilities and impact across 71 scenarios. These scenarios span domains such as sustainability, healthcare, job performance, societal inequality, art, and warfare. Participants evaluated these scenarios across four dimensions using the psychometric model: likelihood, perceived risk and benefit, and overall value (or sentiment). The results suggest significant differences: experts consistently anticipate higher probabilities, perceive lower risks, report greater benefits, and express more positive sentiment toward AI compared to the non-experts. Moreover, both groups apply different weighting schemes: experts discount risk more heavily relative to benefit than non-experts. Visual mappings of these evaluations uncover areas convergent evaluations (e.g., AI performing medical diagnoses or criminal use) as well as tension points (e.g., decision of legal cases, political decision making), highlighting areas where communication and policy interventions may be needed. These findings underscore a critical translational challenge: if AI research and deployment are to align with societal priorities, the perception gap between developers and the public must be better understood and addressed. Our results provide an empirical foundation for value-sensitive AI governance and trust-building strategies across stakeholder groups.
♻ ☆ Debate-to-Detect: Reformulating Misinformation Detection as a Real-World Debate with Large Language Models
The proliferation of misinformation in digital platforms reveals the limitations of traditional detection methods, which mostly rely on static classification and fail to capture the intricate process of real-world fact-checking. Despite advancements in Large Language Models (LLMs) that enhance automated reasoning, their application to misinformation detection remains hindered by issues of logical inconsistency and superficial verification. In response, we introduce Debate-to-Detect (D2D), a novel Multi-Agent Debate (MAD) framework that reformulates misinformation detection as a structured adversarial debate. Inspired by fact-checking workflows, D2D assigns domain-specific profiles to each agent and orchestrates a five-stage debate process, including Opening Statement, Rebuttal, Free Debate, Closing Statement, and Judgment. To transcend traditional binary classification, D2D introduces a multi-dimensional evaluation mechanism that assesses each claim across five distinct dimensions: Factuality, Source Reliability, Reasoning Quality, Clarity, and Ethics. Experiments with GPT-4o on two datasets demonstrate significant improvements over baseline methods, and the case study highlight D2D's capability to iteratively refine evidence while improving decision transparency, representing a substantial advancement towards interpretable misinformation detection. The code will be released publicly after the official publication.
comment: This paper has been accepted to EMNLP 2025 (Main Conference)
♻ ☆ Overcoming label shift with target-aware federated learning
Federated learning enables multiple actors to collaboratively train models without sharing private data. Existing algorithms are successful and well-justified in this task when the intended target domain, where the trained model will be used, shares data distribution with the aggregate of clients, but this is often violated in practice. A common reason is label shift -- that the label distributions differ between clients and the target domain. We demonstrate empirically that this can significantly degrade performance. To address this problem, we propose FedPALS, a principled and practical model aggregation scheme that adapts to label shifts to improve performance in the target domain by leveraging knowledge of label distributions at the central server. Our approach ensures unbiased updates under federated stochastic gradient descent which yields robust generalization across clients with diverse, label-shifted data. Extensive experiments on image classification tasks demonstrate that FedPALS consistently outperforms baselines by aligning model aggregation with the target domain. Our findings reveal that conventional federated learning methods suffer severely in cases of extreme label sparsity on clients, highlighting the critical need for target-aware aggregation as offered by FedPALS.
♻ ☆ Video CLIP Model for Multi-View Echocardiography Interpretation
Echocardiography records ultrasound videos of the heart, enabling clinicians to assess cardiac function. Recent advances in large-scale vision-language models (VLMs) have spurred interest in automating echocardiographic interpretation. However, most existing medical VLMs rely on single-frame (image) inputs, which can reduce diagnostic accuracy for conditions identifiable only through cardiac motion. In addition, echocardiographic videos are captured from multiple views, each varying in suitability for detecting specific conditions. Leveraging multiple views may therefore improve diagnostic performance. We developed a video-language model that processes full video sequences from five standard views, trained on 60,747 echocardiographic video-report pairs. We evaluated the gains in retrieval performance from video input and multi-view support, including the contributions of various pretrained models.
♻ ☆ EVM-Fusion: An Explainable Vision Mamba Architecture with Neural Algorithmic Fusion
Medical image classification is critical for clinical decision-making, yet demands for accuracy, interpretability, and generalizability remain challenging. This paper introduces EVM-Fusion, an Explainable Vision Mamba architecture featuring a novel Neural Algorithmic Fusion (NAF) mechanism for multi-organ medical image classification. EVM-Fusion leverages a multipath design, where DenseNet and U-Net based pathways, enhanced by Vision Mamba (Vim) modules, operate in parallel with a traditional feature pathway. These diverse features are dynamically integrated via a two-stage fusion process: cross-modal attention followed by the iterative NAF block, which learns an adaptive fusion algorithm. Intrinsic explainability is embedded through path-specific spatial attention, Vim {\Delta}-value maps, traditional feature SE-attention, and cross-modal attention weights. Experiments on a diverse 9-class multi-organ medical image dataset demonstrate EVM-Fusion's strong classification performance, achieving 99.75% test accuracy and provide multi-faceted insights into its decision-making process, highlighting its potential for trustworthy AI in medical diagnostics.
comment: 8 pages, 3 figures
♻ ☆ HonestCyberEval: An AI Cyber Risk Benchmark for Automated Software Exploitation
We introduce HonestCyberEval, a new benchmark for assessing AI models' capabilities and risks in automated software exploitation, focusing on their ability to detect and exploit vulnerabilities in real-world software systems. Our evaluation leverages the Nginx web server repository augmented with synthetic vulnerabilities. We assess several leading language models, including OpenAI's GPT-4.5, o3-mini, o1 and o1-mini, Anthropic's Claude-3-7-sonnet-20250219, Claude-3.5-sonnet-20241022 and Claude-3.5-sonnet-20240620, Google DeepMind's Gemini-1.5-pro, and OpenAI's earlier GPT-4o model. Our findings reveal that these models vary significantly in their success rates and efficiency, with o1-preview achieving the highest success rate (92.85\%) and o3-mini and Claude-3.7-sonnet-20250219 providing cost-effective but less successful alternatives. This risk evaluation establishes a foundation for systematically evaluating the AI cyber risk in realistic cyber offence operations.
♻ ☆ Revisiting SSL for sound event detection: complementary fusion and adaptive post-processing
Self-supervised learning (SSL) models offer powerful representations for sound event detection (SED), yet their synergistic potential remains underexplored. This study systematically evaluates state-of-the-art SSL models to guide optimal model selection and integration for SED. We propose a framework that combines heterogeneous SSL representations (e.g., BEATs, HuBERT, WavLM) through three fusion strategies: individual SSL embedding integration, dual-modal fusion, and full aggregation. Experiments on the DCASE 2023 Task 4 Challenge reveal that dual-modal fusion (e.g., CRNN+BEATs+WavLM) achieves complementary performance gains, while CRNN+BEATs alone delivers the best results among individual SSL models. We further introduce normalized sound event bounding boxes (nSEBBs), an adaptive post-processing method that dynamically adjusts event boundary predictions, improving PSDS1 by up to 4% for standalone SSL models. These findings highlight the compatibility and complementarity of SSL architectures, providing guidance for task-specific fusion and robust SED system design.
comment: 27 pages, 5 figures, accepted by Journal of King Saud University Computer and Information Sciences online
♻ ☆ Faster Parameter-Efficient Tuning with Token Redundancy Reduction CVPR 2025
Parameter-efficient tuning (PET) aims to transfer pre-trained foundation models to downstream tasks by learning a small number of parameters. Compared to traditional fine-tuning, which updates the entire model, PET significantly reduces storage and transfer costs for each task regardless of exponentially increasing pre-trained model capacity. However, most PET methods inherit the inference latency of their large backbone models and often introduce additional computational overhead due to additional modules (e.g. adapters), limiting their practicality for compute-intensive applications. In this paper, we propose Faster Parameter-Efficient Tuning (FPET), a novel approach that enhances inference speed and training efficiency while maintaining high storage efficiency. Specifically, we introduce a plug-and-play token redundancy reduction module delicately designed for PET. This module refines tokens from the self-attention layer using an adapter to learn the accurate similarity between tokens and cuts off the tokens through a fully-differentiable token merging strategy, which uses a straight-through estimator for optimal token reduction. Experimental results prove that our FPET achieves faster inference and higher memory efficiency than the pre-trained backbone while keeping competitive performance on par with state-of-the-art PET methods.
comment: CVPR 2025 Camera-ready
♻ ☆ Cultural Dimensions of AI Perception: Charting Expectations, Risks, Benefits, Tradeoffs, and Value in Germany and China
As artificial intelligence (AI) continues to advance, understanding public perceptions -- including biases, risks, and benefits -- is essential for guiding research priorities and AI alignment, shaping public discourse, and informing policy. This exploratory study investigates cultural differences in mental models of AI using 71 imaginaries of AI's potential futures. Drawing on cross-cultural convenience samples from Germany (N=52) and China (N=60), we identify significant differences in expectations, evaluations, and risk-benefit tradeoffs. Participants from Germany generally provided more cautious assessments, whereas participants from China expressed greater optimism regarding AI's societal benefits. Chinese participants exhibited relatively balanced risk-benefit tradeoffs ($\beta=-0.463$ for risk and $\beta=+0.484$ for benefit, $r^2=.630$). In contrast, German participants placed greater emphasis on AI's benefits and comparatively less on risks ($\beta=-0.337$ for risk and $\beta=+0.715$ for benefit, $r^2=.839$). Visual cognitive maps illustrate these contrasts, offering new perspectives on how cultural contexts shape AI acceptance. Our findings highlight key factors influencing public perception and provide insights for aligning AI with societal values and promoting equitable and culturally sensitive integration of AI technologies.
♻ ☆ Memory augment is All You Need for image restoration
Image restoration is a low-level vision task, most CNN methods are designed as a black box, lacking transparency and internal aesthetics. Although some methods combining traditional optimization algorithms with DNNs have been proposed, they all have some limitations. In this paper, we propose a three-granularity memory layer and contrast learning named MemoryNet, specifically, dividing the samples into positive, negative, and actual three samples for contrastive learning, where the memory layer is able to preserve the deep features of the image and the contrastive learning converges the learned features to balance. Experiments on Derain/Deshadow/Deblur task demonstrate that these methods are effective in improving restoration performance. In addition, this paper's model obtains significant PSNR, SSIM gain on three datasets with different degradation types, which is a strong proof that the recovered images are perceptually realistic. The source code of MemoryNet can be obtained from https://github.com/zhangbaijin/MemoryNet
comment: We need to make major changes and re-upload
♻ ☆ SE-VLN: A Self-Evolving Vision-Language Navigation Framework Based on Multimodal Large Language Models
Recent advances in vision-language navigation (VLN) were mainly attributed to emerging large language models (LLMs). These methods exhibited excellent generalization capabilities in instruction understanding and task reasoning. However, they were constrained by the fixed knowledge bases and reasoning abilities of LLMs, preventing fully incorporating experiential knowledge and thus resulting in a lack of efficient evolutionary capacity. To address this, we drew inspiration from the evolution capabilities of natural agents, and proposed a self-evolving VLN framework (SE-VLN) to endow VLN agents with the ability to continuously evolve during testing. To the best of our knowledge, it was the first time that an multimodal LLM-powered self-evolving VLN framework was proposed. Specifically, SE-VLN comprised three core modules, i.e., a hierarchical memory module to transfer successful and failure cases into reusable knowledge, a retrieval-augmented thought-based reasoning module to retrieve experience and enable multi-step decision-making, and a reflection module to realize continual evolution. Comprehensive tests illustrated that the SE-VLN achieved navigation success rates of 57% and 35.2% in unseen environments, representing absolute performance improvements of 23.9% and 15.0% over current state-of-the-art methods on R2R and REVERSE datasets, respectively. Moreover, the SE-VLN showed performance improvement with increasing experience repository, elucidating its great potential as a self-evolving agent framework for VLN.
♻ ☆ Comparative Analysis of UAV Path Planning Algorithms for Efficient Navigation in Urban 3D Environments
The most crucial challenges for UAVs are planning paths and avoiding obstacles in their way. In recent years, a wide variety of path-planning algorithms have been developed. These algorithms have successfully solved path-planning problems; however, they suffer from multiple challenges and limitations. To test the effectiveness and efficiency of three widely used algorithms, namely A*, RRT*, and Particle Swarm Optimization (PSO), this paper conducts extensive experiments in 3D urban city environments cluttered with obstacles. Three experiments were designed with two scenarios each to test the aforementioned algorithms. These experiments consider different city map sizes, different altitudes, and varying obstacle densities and sizes in the environment. According to the experimental results, the A* algorithm outperforms the others in both computation efficiency and path quality. PSO is especially suitable for tight turns and dense environments, and RRT* offers a balance and works well across all experiments due to its randomized approach to finding solutions.
comment: AFROS 2024 Conference
♻ ☆ Benchmarking XAI Explanations with Human-Aligned Evaluations AI
We introduce PASTA (Perceptual Assessment System for explanaTion of Artificial Intelligence), a novel human-centric framework for evaluating eXplainable AI (XAI) techniques in computer vision. Our first contribution is the creation of the PASTA-dataset, the first large-scale benchmark that spans a diverse set of models and both saliency-based and concept-based explanation methods. This dataset enables robust, comparative analysis of XAI techniques based on human judgment. Our second contribution is an automated, data-driven benchmark that predicts human preferences using the PASTA-dataset. This scoring called PASTA-score method offers scalable, reliable, and consistent evaluation aligned with human perception. Additionally, our benchmark allows for comparisons between explanations across different modalities, an aspect previously unaddressed. We then propose to apply our scoring method to probe the interpretability of existing models and to build more human interpretable XAI methods.
comment: https://github.com/ENSTA-U2IS-AI/Dataset_XAI
♻ ☆ ST-Raptor: LLM-Powered Semi-Structured Table Question Answering SIGMOD 2026
Semi-structured tables, widely used in real-world applications (e.g., financial reports, medical records, transactional orders), often involve flexible and complex layouts (e.g., hierarchical headers and merged cells). These tables generally rely on human analysts to interpret table layouts and answer relevant natural language questions, which is costly and inefficient. To automate the procedure, existing methods face significant challenges. First, methods like NL2SQL require converting semi-structured tables into structured ones, which often causes substantial information loss. Second, methods like NL2Code and multi-modal LLM QA struggle to understand the complex layouts of semi-structured tables and cannot accurately answer corresponding questions. To this end, we propose ST-Raptor, a tree-based framework for semi-structured table question answering using large language models. First, we introduce the Hierarchical Orthogonal Tree (HO-Tree), a structural model that captures complex semi-structured table layouts, along with an effective algorithm for constructing the tree. Second, we define a set of basic tree operations to guide LLMs in executing common QA tasks. Given a user question, ST-Raptor decomposes it into simpler sub-questions, generates corresponding tree operation pipelines, and conducts operation-table alignment for accurate pipeline execution. Third, we incorporate a two-stage verification mechanism: forward validation checks the correctness of execution steps, while backward validation evaluates answer reliability by reconstructing queries from predicted answers. To benchmark the performance, we present SSTQA, a dataset of 764 questions over 102 real-world semi-structured tables. Experiments show that ST-Raptor outperforms nine baselines by up to 20% in answer accuracy. The code is available at https://github.com/weAIDB/ST-Raptor.
comment: Extension of our SIGMOD 2026 paper. Please refer to source code available at: https://github.com/weAIDB/ST-Raptor
♻ ☆ Leveraging GNN to Enhance MEF Method in Predicting ENSO
Reliable long-lead forecasting of the El Nino Southern Oscillation (ENSO) remains a long-standing challenge in climate science. The previously developed Multimodal ENSO Forecast (MEF) model uses 80 ensemble predictions by two independent deep learning modules: a 3D Convolutional Neural Network (3D-CNN) and a time-series module. In their approach, outputs of the two modules are combined using a weighting strategy wherein one is prioritized over the other as a function of global performance. Separate weighting or testing of individual ensemble members did not occur, however, which may have limited the model to optimize the use of high-performing but spread-out forecasts. In this study, we propose a better framework that employs graph-based analysis to directly model similarity between all 80 members of the ensemble. By constructing an undirected graph whose vertices are ensemble outputs and whose weights on edges measure similarity (via RMSE and correlation), we identify and cluster structurally similar and accurate predictions. From which we obtain an optimized subset of 20 members using community detection methods. The final prediction is then obtained by averaging this optimized subset. This method improves the forecast skill through noise removal and emphasis on ensemble coherence. Interestingly, our graph-based selection shows robust statistical characteristics among top performers, offering new ensemble behavior insights. In addition, we observe that while the GNN-based approach does not always outperform the baseline MEF under every scenario, it produces more stable and consistent outputs, particularly in compound long-lead situations. The approach is model-agnostic too, suggesting that it can be applied directly to other forecasting models with gargantuan ensemble outputs, such as statistical, physical, or hybrid models.
comment: 17 pages, 4 figures, 2 tables
♻ ☆ YuLan-OneSim: Towards the Next Generation of Social Simulator with Large Language Models
Leveraging large language model (LLM) based agents to simulate human social behaviors has recently gained significant attention. In this paper, we introduce a novel social simulator called YuLan-OneSim. Compared to previous works, YuLan-OneSim distinguishes itself in five key aspects: (1) Code-free scenario construction: Users can simply describe and refine their simulation scenarios through natural language interactions with our simulator. All simulation code is automatically generated, significantly reducing the need for programming expertise. (2) Comprehensive default scenarios: We implement 50 default simulation scenarios spanning 8 domains, including economics, sociology, politics, psychology, organization, demographics, law, and communication, broadening access for a diverse range of social researchers. (3) Evolvable simulation: Our simulator is capable of receiving external feedback and automatically fine-tuning the backbone LLMs, significantly enhancing the simulation quality. (4) Large-scale simulation: By developing a fully responsive agent framework and a distributed simulation architecture, our simulator can handle up to 100,000 agents, ensuring more stable and reliable simulation results. (5) AI social researcher: Leveraging the above features, we develop an AI social researcher. Users only need to propose a research topic, and the AI researcher will automatically analyze the input, construct simulation environments, summarize results, generate technical reports, review and refine the reports--completing the social science research loop. To demonstrate the advantages of YuLan-OneSim, we conduct experiments to evaluate the quality of the automatically generated scenarios, the reliability, efficiency, and scalability of the simulation process, as well as the performance of the AI social researcher.
♻ ☆ Beyond Discriminant Patterns: On the Robustness of Decision Rule Ensembles
Local decision rules are commonly understood to be more explainable, due to the local nature of the patterns involved. With numerical optimization methods such as gradient boosting, ensembles of local decision rules can gain good predictive performance on data involving global structure. Meanwhile, machine learning models are being increasingly used to solve problems in high-stake domains including healthcare and finance. Here, there is an emerging consensus regarding the need for practitioners to understand whether and how those models could perform robustly in the deployment environments, in the presence of distributional shifts. Past research on local decision rules has focused mainly on maximizing discriminant patterns, without due consideration of robustness against distributional shifts. In order to fill this gap, we propose a new method to learn and ensemble local decision rules, that are robust both in the training and deployment environments. Specifically, we propose to leverage causal knowledge by regarding the distributional shifts in subpopulations and deployment environments as the results of interventions on the underlying system. We propose two regularization terms based on causal knowledge to search for optimal and stable rules. Experiments on both synthetic and benchmark datasets show that our method is effective and robust against distributional shifts in multiple environments.
comment: Accepted by ICDM 2025
♻ ☆ Secure Reinforcement Learning via Shuffle Privacy Model
Reinforcement learning (RL) is a powerful tool for sequential decision-making, but its application is often hindered by privacy concerns arising from its interaction data. This challenge is particularly acute in advanced Cyber-Physical Systems (CPS), where learning from operational and user data can expose systems to privacy inference attacks. Existing differential privacy (DP) models for RL are often inadequate: the centralized model requires a fully trusted server, creating a single point of failure risk, while the local model incurs significant performance degradation that is unsuitable for many control applications. This paper addresses this gap by leveraging the emerging shuffle model of privacy, an intermediate trust model that provides strong privacy guarantees without a centralized trust assumption. We present Shuffle Differentially Private Policy Elimination (SDP-PE), the first generic policy elimination-based algorithm for episodic RL under the shuffle model. Our method introduces a novel exponential batching schedule and a ``forgetting'' mechanism to balance the competing demands of privacy and learning performance. Our analysis shows that SDP-PE achieves a near-optimal regret bound, demonstrating a superior privacy-regret trade-off that significantly outperforms the local model. This work establishes the viability of the shuffle model for secure data-driven control in advanced CPS.
♻ ☆ Profile-Aware Maneuvering: A Dynamic Multi-Agent System for Robust GAIA Problem Solving by AWorld
The rapid advancement of large language models (LLMs) has empowered intelligent agents to leverage diverse external tools for solving complex real-world problems. However, this reliance introduces new challenges, as extended contexts and noisy tool outputs can undermine system reliability. To address this, we propose a dynamic Multi-Agent System (MAS) in our AWorld framework, where an Execution Agent is supervised by a Guard Agent that provides on-demand dynamic maneuvering, verifying and correcting the reasoning process to improve robustness over single-agent systems. To move beyond this generic supervision, we enhance the architecture with a methodology inspired by System Identification from control theory. This method first profiles the Execution Agent offline on a benchmark dataset to create a "performance fingerprint" of its unique weaknesses. The Guard Agent then leverages this fingerprint online to deliver profile-aware supervision, making targeted interventions based on known failure patterns rather than merely reacting to immediate logical flaws. Extensive experiments on the GAIA dataset demonstrate that this profile-aware MAS significantly improves both effectiveness and stability, outperforming not only single-agent systems but also its naive counterpart. This superior performance led our system to achieve first place among open-source projects on the prestigious GAIA leaderboard. These findings highlight that building truly trustworthy intelligent systems requires not just collaboration, but a deep, empirically-grounded understanding of each agent's unique capabilities and limitations.
♻ ☆ Uncertainty-Guided Face Matting for Occlusion-Aware Face Transformation
Face filters have become a key element of short-form video content, enabling a wide array of visual effects such as stylization and face swapping. However, their performance often degrades in the presence of occlusions, where objects like hands, hair, or accessories obscure the face. To address this limitation, we introduce the novel task of face matting, which estimates fine-grained alpha mattes to separate occluding elements from facial regions. We further present FaceMat, a trimap-free, uncertainty-aware framework that predicts high-quality alpha mattes under complex occlusions. Our approach leverages a two-stage training pipeline: a teacher model is trained to jointly estimate alpha mattes and per-pixel uncertainty using a negative log-likelihood (NLL) loss, and this uncertainty is then used to guide the student model through spatially adaptive knowledge distillation. This formulation enables the student to focus on ambiguous or occluded regions, improving generalization and preserving semantic consistency. Unlike previous approaches that rely on trimaps or segmentation masks, our framework requires no auxiliary inputs making it well-suited for real-time applications. In addition, we reformulate the matting objective by explicitly treating skin as foreground and occlusions as background, enabling clearer compositing strategies. To support this task, we newly constructed CelebAMat, a large-scale synthetic dataset specifically designed for occlusion-aware face matting. Extensive experiments show that FaceMat outperforms state-of-the-art methods across multiple benchmarks, enhancing the visual quality and robustness of face filters in real-world, unconstrained video scenarios. The source code and CelebAMat dataset are available at https://github.com/hyebin-c/FaceMat.git
comment: Accepted to ACM MM 2025. 9 pages, 8 figures, 6 tables
♻ ☆ Finding Outliers in a Haystack: Anomaly Detection for Large Pointcloud Scenes
LiDAR scanning in outdoor scenes acquires accurate distance measurements over wide areas, producing large-scale point clouds. Application examples for this data include robotics, automotive vehicles, and land surveillance. During such applications, outlier objects from outside the training data will inevitably appear. Our research contributes a novel approach to open-set segmentation, leveraging the learnings of object defect-detection research. We also draw on the Mamba architecture's strong performance in utilising long-range dependencies and scalability to large data. Combining both, we create a reconstruction based approach for the task of outdoor scene open-set segmentation. We show that our approach improves performance not only when applied to our our own open-set segmentation method, but also when applied to existing methods. Furthermore we contribute a Mamba based architecture which is competitive with existing voxel-convolution based methods on challenging, large-scale pointclouds.
comment: arXiv Preprint, paper has since been accepted to ACPR 2025
♻ ☆ Multi-Agent LLMs as Ethics Advocates for AI-Based Systems
Incorporating ethics into the requirement elicitation process is essential for creating ethically aligned systems. Although eliciting manual ethics requirements is effective, it requires diverse input from multiple stakeholders, which can be challenging due to time and resource constraints. Moreover, it is often given a low priority in the requirements elicitation process. This study proposes a framework for generating ethics requirements drafts by introducing an ethics advocate agent in a multi-agent LLM setting. This agent critiques and provides input on ethical issues based on the system description. The proposed framework is evaluated through two case studies from different contexts, demonstrating that it captures the majority of ethics requirements identified by researchers during 30-minute interviews and introduces several additional relevant requirements. However, it also highlights reliability issues in generating ethics requirements, emphasizing the need for human feedback in this sensitive domain. We believe this work can facilitate the broader adoption of ethics in the requirements engineering process, ultimately leading to more ethically aligned products.
♻ ☆ Safe Multiagent Coordination via Entropic Exploration
Many real-world multiagent learning problems involve safety concerns. In these setups, typical safe reinforcement learning algorithms constrain agents' behavior, limiting exploration -- a crucial component for discovering effective cooperative multiagent behaviors. Moreover, the multiagent literature typically models individual constraints for each agent and has yet to investigate the benefits of using joint team constraints. In this work, we analyze these team constraints from a theoretical and practical perspective and propose entropic exploration for constrained multiagent reinforcement learning (E2C) to address the exploration issue. E2C leverages observation entropy maximization to incentivize exploration and facilitate learning safe and effective cooperative behaviors. Experiments across increasingly complex domains show that E2C agents match or surpass common unconstrained and constrained baselines in task performance while reducing unsafe behaviors by up to $50\%$.
comment: 10 pages, 6 figures
Computational Engineering, Finance, and Science 3
Graph Neural Network-Based Topology Optimization for Self-Supporting Structures in Additive Manufacturing
This paper presents a machine learning-based framework for topology optimization of self-supporting structures, specifically tailored for additive manufacturing (AM). By employing a graph neural network (GNN) that acts as a neural field over the finite element mesh, the framework effectively learns and predicts continuous material distributions. An integrated AM filter ensures printability by eliminating unsupported overhangs, while the optimization process minimizes structural compliance under volume and stress constraints. The stress constraint is enforced using a differentiable p-norm aggregation of von Mises stress, promoting mechanical reliability in the optimized designs. A key advantage of the approach lies in its fully differentiable architecture, which leverages automatic differentiation throughout the optimization loop--eliminating the need for explicit sensitivity derivation for both the filter and the stress constraint. Numerical experiments demonstrate the ability of the framework to generate stress-constrained manufacturable topologies under various loading and boundary conditions, offering a practical pathway toward AM-ready high-performance designs with reduced post-processing requirements.
☆ Ab-initio Quantum Transport with the GW Approximation, 42,240 Atoms, and Sustained Exascale Performance
Designing nanoscale electronic devices such as the currently manufactured nanoribbon field-effect transistors (NRFETs) requires advanced modeling tools capturing all relevant quantum mechanical effects. State-of-the-art approaches combine the non-equilibrium Green's function (NEGF) formalism and density functional theory (DFT). However, as device dimensions do not exceed a few nanometers anymore, electrons are confined in ultra-small volumes, giving rise to strong electron-electron interactions. To account for these critical effects, DFT+NEGF solvers should be extended with the GW approximation, which massively increases their computational intensity. Here, we present the first implementation of the NEGF+GW scheme capable of handling NRFET geometries with dimensions comparable to experiments. This package, called QuaTrEx, makes use of a novel spatial domain decomposition scheme, can treat devices made of up to 84,480 atoms, scales very well on the Alps and Frontier supercomputers (>80% weak scaling efficiency), and sustains an exascale FP64 performance on 42,240 atoms (1.15 Eflop/s).
♻ ☆ A Spline-Based Stress Function Approach for the Principle of Minimum Complementary Energy
In computational engineering, ensuring the integrity and safety of structures in fields such as aerospace and civil engineering relies on accurate stress prediction. However, analytical methods are limited to simple test cases, and displacement-based finite element methods (FEMs), while commonly used, require a large number of unknowns to achieve high accuracy; stress-based numerical methods have so far failed to provide a simple and effective alternative. This work aims to develop a novel numerical approach that overcomes these limitations by enabling accurate stress prediction with improved flexibility for complex geometries and boundary conditions and fewer degrees of freedom (DOFs). The proposed method is based on a spline-based stress function formulation for the principle of minimum complementary energy, which we apply to plane, linear elastostatics. The method is first validated against analytical solutions and then tested on two test cases challenging for current state-of-the-art numerical schemes, a bi-layer cantilever with anisotropic material behavior, and a cantilever with a non-prismatic, parabolic-shaped beam geometry. Results demonstrate that our approach, unlike analytical methods, can be easily applied to general geometries and boundary conditions, and achieves stress accuracy comparable to that reported in the literature for displacement-based FEMs, while requiring significantly fewer DOFs. This novel spline-based stress function approach thus provides an efficient and flexible tool for accurate stress prediction, with promising applications in structural analysis and numerical design.
Databases 13
☆ ST-Raptor: LLM-Powered Semi-Structured Table Question Answering SIGMOD 2026
Semi-structured tables, widely used in real-world applications (e.g., financial reports, medical records, transactional orders), often involve flexible and complex layouts (e.g., hierarchical headers and merged cells). These tables generally rely on human analysts to interpret table layouts and answer relevant natural language questions, which is costly and inefficient. To automate the procedure, existing methods face significant challenges. First, methods like NL2SQL require converting semi-structured tables into structured ones, which often causes substantial information loss. Second, methods like NL2Code and multi-modal LLM QA struggle to understand the complex layouts of semi-structured tables and cannot accurately answer corresponding questions. To this end, we propose ST-Raptor, a tree-based framework for semi-structured table question answering using large language models. First, we introduce the Hierarchical Orthogonal Tree (HO-Tree), a structural model that captures complex semi-structured table layouts, along with an effective algorithm for constructing the tree. Second, we define a set of basic tree operations to guide LLMs in executing common QA tasks. Given a user question, ST-Raptor decomposes it into simpler sub-questions, generates corresponding tree operation pipelines, and conducts operation-table alignment for accurate pipeline execution. Third, we incorporate a two-stage verification mechanism: forward validation checks the correctness of execution steps, while backward validation evaluates answer reliability by reconstructing queries from predicted answers. To benchmark the performance, we present SSTQA, a dataset of 764 questions over 102 real-world semi-structured tables. Experiments show that ST-Raptor outperforms nine baselines by up to 20% in answer accuracy. The code is available at https://github.com/weAIDB/ST-Raptor.
comment: Extension of our SIGMOD 2026 paper. Please refer to source code available at: https://github.com/weAIDB/ST-Raptor
☆ Accelerating Historical K-Core Search in Temporal Graphs
We study the temporal k-core component search (TCCS), which outputs the k-core containing the query vertex in the snapshot over an arbitrary query time window in a temporal graph. The problem has been shown to be critical for tasks such as contact tracing, fault diagnosis, and financial forensics. The state-of-the-art EF-Index designs a separated forest structure for a set of carefully selected windows, incurring quadratic preprocessing time and large redundant storage. Our method introduces the ECB-forest, a compact edge-centric binary forest that captures k-core of any arbitrary query vertex over time. In this way, a query can be processed by searching a connected component in the forest. We develop an efficient algorithm for index construction. Experiments on real-world temporal graphs show that our method significantly improves the index size and construction cost (up to 100x faster on average) while maintaining the high query efficiency.
☆ Views: A Hardware-friendly Graph Database Model For Storing Semantic Information
The graph database (GDB) is an increasingly common storage model for data involving relationships between entries. Beyond its widespread usage in database industries, the advantages of GDBs indicate a strong potential in constructing symbolic artificial intelligences (AIs) and retrieval-augmented generation (RAG), where knowledge of data inter-relationships takes a critical role in implementation. However, current GDB models are not optimised for hardware acceleration, leading to bottlenecks in storage capacity and computational efficiency. In this paper, we propose a hardware-friendly GDB model, called Views. We show its data structure and organisation tailored for efficient storage and retrieval of graph data and demonstrate its equivalence to represent traditional graph representations. We further demonstrate its symbolic processing abilities in semantic reasoning and cognitive modelling with practical examples and provide a short perspective on future developments.
☆ Join Cardinality Estimation with OmniSketches
Join ordering is a key factor in query performance, yet traditional cost-based optimizers often produce sub-optimal plans due to inaccurate cardinality estimates in multi-predicate, multi-join queries. Existing alternatives such as learning-based optimizers and adaptive query processing improve accuracy but can suffer from high training costs, poor generalization, or integration challenges. We present an extension of OmniSketch - a probabilistic data structure combining count-min sketches and K-minwise hashing - to enable multi-join cardinality estimation without assuming uniformity and independence. Our approach introduces the OmniSketch join estimator, ensures sketch interoperability across tables, and provides an algorithm to process alpha-acyclic join graphs. Our experiments on SSB-skew and JOB-light show that OmniSketch-enhanced cost-based optimization can improve estimation accuracy and plan quality compared to DuckDB. For SSB-skew, we show intermediate result decreases up to 1,077x and execution time decreases up to 3.19x. For JOB-light, OmniSketch join cardinality estimation shows occasional individual improvements but largely suffers from a loss of witnesses due to unfavorable join graph shapes and large numbers of unique values in foreign key columns.
comment: 6 pages, 6 figures, 1 algorithm, 1 table
☆ PGTuner: An Efficient Framework for Automatic and Transferable Configuration Tuning of Proximity Graphs
Approximate Nearest Neighbor Search (ANNS) plays a crucial role in many key areas. Proximity graphs (PGs) are the leading method for ANNS, offering the best balance between query efficiency and accuracy. However, their performance heavily depends on various construction and query parameters, which are difficult to optimize due to their complex inter-dependencies. Given that users often prioritize specific accuracy levels, efficiently identifying the optimal PG configurations to meet these targets is essential. Although some studies have explored automatic configuration tuning for PGs, they are limited by inefficiencies and suboptimal results. These issues stem from the need to construct numerous PGs for searching and re-tuning from scratch whenever the dataset changes, as well as the failure to capture the complex dependencies between configurations, query performance, and tuning objectives. To address these challenges, we propose PGTuner, an efficient framework for automatic PG configuration tuning leveraging pre-training knowledge and model transfer techniques. PGTuner improves efficiency through a pre-trained query performance prediction (QPP) model, eliminating the need to build multiple PGs. It also features a deep reinforcement learning-based parameter configuration recommendation (PCR) model to recommend optimal configurations for specific datasets and accuracy targets. Additionally, PGTuner incorporates out-of-distribution detection and deep active learning for efficient tuning in dynamic scenarios and transferring to new datasets. Extensive experiments demonstrate that PGTuner can stably achieve the top-level tuning effect across different datasets while significantly improving tuning efficiency by up to 14.69X, with a 14.64X boost in dynamic scenarios. The code and data for PGTuner are available online at https://github.com/hao-duan/PGTuner.
☆ TRIM: Accelerating High-Dimensional Vector Similarity Search with Enhanced Triangle-Inequality-Based Pruning
High-dimensional vector similarity search (HVSS) is critical for many data processing and AI applications. However, traditional HVSS methods often require extensive data access for distance calculations, leading to inefficiencies. Triangle-inequality-based lower bound pruning is a widely used technique to reduce the number of data access in low-dimensional spaces but becomes less effective in high-dimensional settings. This is attributed to the "distance concentration" phenomenon, where the lower bounds derived from the triangle inequality become too small to be useful. To address this, we propose TRIM, which enhances the effectiveness of traditional triangle-inequality-based pruning in high-dimensional vector similarity search using two key ways: (1) optimizing landmark vectors used to form the triangles, and (2) relaxing the lower bounds derived from the triangle inequality, with the relaxation degree adjustable according to user's needs. TRIM is a versatile operation that can be seamlessly integrated into both memory-based (e.g., HNSW, IVFPQ) and disk-based (e.g., DiskANN) HVSS methods, reducing distance calculations and disk access. Extensive experiments show that TRIM enhances memory-based methods, improving graph-based search by up to 90% and quantization-based search by up to 200%, while achieving a pruning ratio of up to 99%. It also reduces I/O costs by up to 58% and improves efficiency by 102% for disk-based methods, while preserving high query accuracy.
Database Normalization via Dual-LLM Self-Refinement
Database normalization is crucial to preserving data integrity. However, it is time-consuming and error-prone, as it is typically performed manually by data engineers. To this end, we present Miffie, a database normalization framework that leverages the capability of large language models. Miffie enables automated data normalization without human effort while preserving high accuracy. The core of Miffie is a dual-model self-refinement architecture that combines the best-performing models for normalized schema generation and verification, respectively. The generation module eliminates anomalies based on the feedback of the verification module until the output schema satisfies the requirement for normalization. We also carefully design task-specific zero-shot prompts to guide the models for achieving both high accuracy and cost efficiency. Experimental results show that Miffie can normalize complex database schemas while maintaining high accuracy.
comment: 5 pages
☆ RubikSQL: Lifelong Learning Agentic Knowledge Base as an Industrial NL2SQL System VLDB 2026
We present RubikSQL, a novel NL2SQL system designed to address key challenges in real-world enterprise-level NL2SQL, such as implicit intents and domain-specific terminology. RubikSQL frames NL2SQL as a lifelong learning task, demanding both Knowledge Base (KB) maintenance and SQL generation. RubikSQL systematically builds and refines its KB through techniques including database profiling, structured information extraction, agentic rule mining, and Chain-of-Thought (CoT)-enhanced SQL profiling. RubikSQL then employs a multi-agent workflow to leverage this curated KB, generating accurate SQLs. RubikSQL achieves SOTA performance on both the KaggleDBQA and BIRD Mini-Dev datasets. Finally, we release the RubikBench benchmark, a new benchmark specifically designed to capture vital traits of industrial NL2SQL scenarios, providing a valuable resource for future research.
comment: 18 pages, 3 figures, 3 tables, to be submitted to VLDB 2026 (PVLDB Volume 19)
☆ DiskJoin: Large-scale Vector Similarity Join with SSD SIGMOD 2026
Similarity join--a widely used operation in data science--finds all pairs of items that have distance smaller than a threshold. Prior work has explored distributed computation methods to scale similarity join to large data volumes but these methods require a cluster deployment, and efficiency suffers from expensive inter-machine communication. On the other hand, disk-based solutions are more cost-effective by using a single machine and storing the large dataset on high-performance external storage, such as NVMe SSDs, but in these methods the disk I/O time is a serious bottleneck. In this paper, we propose DiskJoin, the first disk-based similarity join algorithm that can process billion-scale vector datasets efficiently on a single machine. DiskJoin improves disk I/O by tailoring the data access patterns to avoid repetitive accesses and read amplification. It also uses main memory as a dynamic cache and carefully manages cache eviction to improve cache hit rate and reduce disk retrieval time. For further acceleration, we adopt a probabilistic pruning technique that can effectively prune a large number of vector pairs from computation. Our evaluation on real-world, large-scale datasets shows that DiskJoin significantly outperforms alternatives, achieving speedups from 50x to 1000x.
comment: Accepted at SIGMOD 2026
☆ Metrics, KPIs, and Taxonomy for Data Valuation and Monetisation -- A Systematic Literature Review
Data valuation and data monetisation are complex subjects but essential to most organisations today. Unfortunately, they still lack standard procedures and frameworks for organisations to follow. In this survey, we introduce the reader to the concepts by providing the definitions and the background required to better understand data, monetisation strategies, and finally metrics and KPIs used in these strategies. We have conducted a systematic literature review on metrics and KPIs used in data valuation and monetisation, in every aspect of an organisation's business, and by a variety of stakeholders. We provide an expansive list of such metrics and KPIs with 162 references. We then categorise all the metrics and KPIs found into a large taxonomy, following the Balanced Scorecard (BSC) approach with further subclustering to cover every aspect of an organisation's business. This taxonomy will help every level of data management understand the complex landscape of the domain. We also discuss the difficulty in creating a standard framework for data valuation and data monetisation and the major challenges the domain is currently facing.
comment: Additional Key Words and Phrases: Data monetisation, Data valuation, Metrics, Key Performance Indicators, KPIs, Systematic Literature Review
♻ ☆ Why Isn't Relational Learning Taking Over the World?
Artificial intelligence seems to be taking over the world with systems that model pixels, words, and phonemes. The world is arguably made up, not of pixels, words, and phonemes but of entities (objects, things, including events) with properties and relations among them. Surely we should model these, not the perception or description of them. You might suspect that concentrating on modeling words and pixels is because all of the (valuable) data in the world is in terms of text and images. If you look into almost any company you will find their most valuable data is in spreadsheets, databases and other relational formats. These are not the form that are studied in introductory machine learning, but are full of product numbers, student numbers, transaction numbers and other identifiers that can't be interpreted naively as numbers. The field that studies this sort of data has various names including relational learning, statistical relational AI, and many others. This paper explains why relational learning is not taking over the world -- except in a few cases with restricted relations -- and what needs to be done to bring it to it's rightful prominence.
comment: 10 pages (6 pages + references + appendices)
♻ ☆ TranSQL+: Serving Large Language Models with SQL on Low-Resource Hardware SIGMOD2026
Deploying Large Language Models (LLMs) on resource-constrained devices remains challenging due to limited memory, lack of GPUs, and the complexity of existing runtimes. In this paper, we introduce TranSQL+, a template-based code generator that translates LLM computation graphs into pure SQL queries for execution in relational databases. Without relying on external libraries, TranSQL+, leverages mature database features, such as vectorized execution and out-of-core processing, for efficient inference. We further propose a row-to-column (ROW2COL) optimization that improves join efficiency in matrix operations. Evaluated on Llama3-8B and DeepSeekMoE models, TranSQL+ achieves up to 20x lower prefill latency and 4x higher decoding speed compared to DeepSpeed Inference and Llama.cpp in low-memory and CPU-only configurations. Our results highlight relational databases as a practical environment for LLMs on low-resource hardware.
comment: Accepted by SIGMOD2026
♻ ☆ CLaP -- State Detection from Time Series
The ever-growing amount of sensor data from machines, smart devices, and the environment leads to an abundance of high-resolution, unannotated time series (TS). These recordings encode recognizable properties of latent states and transitions from physical phenomena that can be modelled as abstract processes. The unsupervised localization and identification of these states and their transitions is the task of time series state detection (TSSD). Current TSSD algorithms employ classical unsupervised learning techniques, to infer state membership directly from feature space. This limits their predictive power, compared to supervised learning methods, which can exploit additional label information. We introduce CLaP, a new, highly accurate and efficient algorithm for TSSD. It leverages the predictive power of time series classification for TSSD in an unsupervised setting by applying novel self-supervision techniques to detect whether data segments emerge from the same state. To this end, CLaP cross-validates a classifier with segment-labelled subsequences to quantify confusion between segments. It merges labels from segments with high confusion, representing the same latent state, if this leads to an increase in overall classification quality. We conducted an experimental evaluation using 405 TS from five benchmarks and found CLaP to be significantly more precise in detecting states than six state-of-the-art competitors. It achieves the best accuracy-runtime tradeoff and is scalable to large TS. We provide a Python implementation of CLaP, which can be deployed in TS analysis workflows.
Distributed, Parallel, and Cluster Computing 16
☆ Flash Sparse Attention: An Alternative Efficient Implementation of Native Sparse Attention Kernel
Recent progress in sparse attention mechanisms has demonstrated strong potential for reducing the computational cost of long-context training and inference in large language models (LLMs). Native Sparse Attention (NSA), a state-of-the-art approach, introduces natively trainable, hardware-aligned sparse attention that delivers substantial system-level performance gains while maintaining accuracy comparable to full attention. However, the kernel implementation of NSA relies on a query-grouping strategy that is efficient only with large Grouped Query Attention (GQA) sizes, whereas modern LLMs typically adopt much smaller GQA groups, which limits the applicability of this sparse algorithmic advance. In this work, we propose Flash Sparse Attention (FSA), which includes an alternative kernel design that enables efficient NSA computation across a wide range of popular LLMs with varied smaller GQA group sizes on modern GPUs. Compared to vanilla NSA kernel implementation, our empirical evaluation demonstrates that FSA achieves (i) up to 3.5$\times$ and on average 1.6$\times$ kernel-level latency reduction, (ii) up to 1.25$\times$ and 1.09$\times$ on average end-to-end training speedup on state-of-the-art LLMs, and (iii) up to 1.36$\times$ and 1.11$\times$ on average end-to-end prefill speedup on state-of-the-art LLMs. The source code is open-sourced and publicly available at https://github.com/Relaxed-System-Lab/Flash-Sparse-Attention.
☆ Practical GPU Choices for Earth Observation: ResNet-50 Training Throughput on Integrated, Laptop, and Cloud Accelerators
This project implements a ResNet-based pipeline for land use and land cover (LULC) classification on Sentinel-2 imagery, benchmarked across three heterogeneous GPUs. The workflow automates data acquisition, geospatial preprocessing, tiling, model training, and visualization, and is fully containerized for reproducibility. Performance evaluation reveals up to a 2x training speed-up on an NVIDIA RTX 3060 and a Tesla T4 compared to the Apple M3 Pro baseline, while maintaining high classification accuracy on the EuroSAT dataset. These results demonstrate the feasibility of deploying deep learning LULC models on consumer and free cloud GPUs for scalable geospatial analytics.
comment: 10 pages, 5 figures
☆ Wait-free Replicated Data Types and Fair Reconciliation
Replication is a standard way to maintain availability of shared data in fault-prone distributed systems. To make sure that the data replicas are up-to-date, they need to synchronize, which typically means engaging the replicas in waiting for coherent responses from each other. The amount of waiting depends on the consistency and availability guarantees we impose on the system. The folklore CAP theory states that strong consistency (the set of replicas create an illusion of one correct server) and strong availability (the replicas' states are reachable despite network partitions) cannot be implemented in the same system. A popular way to deal with this impossibility is to relax consistency to be only eventual: the replicas eventually converge to the same state. In return, the replicas can be wait-free, i.e., the clients can get the data from the closest replica without waiting for other ones. Wait-free data replication faces two important challenges. First, the operations issued by the clients may be constantly revoked, i.e., their effects can be repeatedly recomputed due to asynchrony and concurrency. Second, even if some operations eventually stabilize in their effects, a particular client may still experience starvation if, from some point onward, each of its operations is later revoked. In this paper, we address these challenges through a general DAG-based framework for replicated data types, where replicas exchange their local views and merge them using a reconciliation function. Within this framework, we design reconciliation functions that implement a wait-free eventually consistent replicated state machine ensuring both stable convergence and fair progress. Specifically, every replica maintains a growing sequence of client operations, and we guarantee that: (1) all replicas share a common, monotonically growing stable prefix of operations, and (2) no client starves.
☆ Views: A Hardware-friendly Graph Database Model For Storing Semantic Information
The graph database (GDB) is an increasingly common storage model for data involving relationships between entries. Beyond its widespread usage in database industries, the advantages of GDBs indicate a strong potential in constructing symbolic artificial intelligences (AIs) and retrieval-augmented generation (RAG), where knowledge of data inter-relationships takes a critical role in implementation. However, current GDB models are not optimised for hardware acceleration, leading to bottlenecks in storage capacity and computational efficiency. In this paper, we propose a hardware-friendly GDB model, called Views. We show its data structure and organisation tailored for efficient storage and retrieval of graph data and demonstrate its equivalence to represent traditional graph representations. We further demonstrate its symbolic processing abilities in semantic reasoning and cognitive modelling with practical examples and provide a short perspective on future developments.
☆ Scalable Engine and the Performance of Different LLM Models in a SLURM based HPC architecture
This work elaborates on a High performance computing (HPC) architecture based on Simple Linux Utility for Resource Management (SLURM) [1] for deploying heterogeneous Large Language Models (LLMs) into a scalable inference engine. Dynamic resource scheduling and seamless integration of containerized microservices have been leveraged herein to manage CPU, GPU, and memory allocations efficiently in multi-node clusters. Extensive experiments, using Llama 3.2 (1B and 3B parameters) [2] and Llama 3.1 (8B and 70B) [3], probe throughput, latency, and concurrency and show that small models can handle up to 128 concurrent requests at sub-50 ms latency, while for larger models, saturation happens with as few as two concurrent users, with a latency of more than 2 seconds. This architecture includes Representational State Transfer Application Programming Interfaces (REST APIs) [4] endpoints for single and bulk inferences, as well as advanced workflows such as multi-step "tribunal" refinement. Experimental results confirm minimal overhead from container and scheduling activities and show that the approach scales reliably both for batch and interactive settings. We further illustrate real-world scenarios, including the deployment of chatbots with retrievalaugmented generation, which helps to demonstrate the flexibility and robustness of the architecture. The obtained results pave ways for significantly more efficient, responsive, and fault-tolerant LLM inference on large-scale HPC infrastructures.
comment: Accepted in ESSV 2025 - https://www.essv.de/paper.php?id=1265
☆ ExpertWeave: Efficiently Serving Expert-Specialized Fine-Tuned Adapters at Scale
Expert-Specialized Fine-Tuning (ESFT) adapts Mixture-of-Experts (MoE) large language models to enhance their task-specific performance by selectively tuning the top-activated experts for the task. Serving these fine-tuned models at scale is challenging: deploying merged models in isolation is prohibitively resource-hungry, while existing multi-adapter serving systems with LoRA-style additive updates are incompatible with ESFT's expert-oriented paradigm. We present ExpertWeave, a system that serves multiple ESFT adapters concurrently over a single shared MoE base model, drastically reducing the memory footprint and improving resource utilization. To seamlessly integrate into existing inference pipelines for MoE models with non-intrusive modifications and minimal latency overhead, ExpertWeave introduces a virtual-memory-assisted expert weight manager that co-locates base-model and adapter experts without incurring memory overhead from fragmentation, and a fused kernel for batched rerouting to enable lightweight redirection of tokens to the appropriate experts at runtime. Our evaluations show that ExpertWeave can simultaneously serve multiple adapters of a 16B MoE model on a single accelerator where the baseline runs out of memory, or provides up to 94x more KV cache capacity and achieves up to 18% higher throughput while using comparable resources, all without compromising model accuracy. ExpertWeave maintains low overhead even when scaling to 20 adapters, with a 4-11% latency increase compared with serving the base model alone. Source code will be released soon.
☆ Zen-Attention: A Compiler Framework for Dynamic Attention Folding on AMD NPUs
Transformer-based deep learning models are increasingly deployed on energy, and DRAM bandwidth constrained devices such as laptops and gaming consoles, which presents significant challenges in meeting the latency requirements of the models. The industry is turning to neural processing units (NPUs) for superior performance-per-watt (perf/watt); however, efficiently mapping dynamic attention layers to the NPUs remains a challenging task. For optimizing perf/watt, AMD XDNA NPUs employ software managed caches and share system memory with host. This requires substantial engineering effort to unlock efficient tiling, buffer allocation, and data movement to extract the maximum efficiency from the device. This paper introduces Zen-Attention, a framework that optimizes DRAM bandwidth utilization in the attention layer of models by systematically exploring the complex design space of layer folding, tiling, and data-movement on the interconnect, and the tensor layouts to come up with an optimal solution. Our evaluation includes comparative analysis of end-to-end model latency and specific attention latency in each model. We demonstrate how the framework enhances mapping capabilities by varying input dimensions, which require padding and masking in the attention block. For representative transformer models, the Zen-Attention Framework achieves up to 4x improvement in the latency of the attention block and up to 32% improvement in end-to-end network latency compared to the baseline Unfolded- approaches.
☆ Managing Multi Instance GPUs for High Throughput and Energy Savings
Modern GPUs such as the Ampere series (A30, A100) as well as the Hopper series (H100, H200) offer performance as well as security isolation features. They also support a good amount of concurrency, but taking advantage of it can be quite challenging due to the complex constraints on partitioning the chip. In this work, we develop partitioning and scheduling schemes for a variety of workloads, ranging from scientific to modern ML workloads, including LLMs. We develop several schemes involving dynamic memory estimation, partition fusion and partition fission. We also support process restart to recover from out-of-memory errors for workloads and early restart as an optimization. This approach yields up to 6.20x throughput and 5.93x energy improvements for general workloads; and we see 1.59x and 1.12x improvement to throughput and energy, respectively, for ML workloads on an A100 GPU. We leverage this technique on LLM workloads and show good improvements, including up to 1.43x throughput improvement and 1.11x energy savings.
☆ Experiences with Model Context Protocol Servers for Science and High Performance Computing
Large language model (LLM)-powered agents are increasingly used to plan and execute scientific workflows, yet most research cyberinfrastructure (CI) exposes heterogeneous APIs and implements security models that present barriers for use by agents. We report on our experience using the Model Context Protocol (MCP) as a unifying interface that makes research capabilities discoverable, invokable, and composable. Our approach is pragmatic: we implement thin MCP servers over mature services, including Globus Transfer, Compute, and Search; status APIs exposed by computing facilities; Octopus event fabric; and domain-specific tools such as Garden and Galaxy. We use case studies in computational chemistry, bioinformatics, quantum chemistry, and filesystem monitoring to illustrate how this MCP-oriented architecture can be used in practice. We distill lessons learned and outline open challenges in evaluation and trust for agent-led science.
comment: 11 pages, including a 4-page appendix
☆ DualSparse-MoE: Coordinating Tensor/Neuron-Level Sparsity with Expert Partition and Reconstruction
Mixture of Experts (MoE) has become a mainstream architecture for building Large Language Models (LLMs) by reducing per-token computation while enabling model scaling. It can be viewed as partitioning a large Feed-Forward Network (FFN) at the tensor level into fine-grained sub-FFNs, or experts, and activating only a sparse subset for each input. While this sparsity improves efficiency, MoE still faces substantial challenges due to their massive computational scale and unpredictable activation patterns. To enable efficient MoE deployment, we identify dual sparsity at the tensor and neuron levels in pre-trained MoE modules as a key factor for both accuracy and efficiency. Unlike prior work that increases tensor-level sparsity through finer-grained expert design during pre-training, we introduce post-training expert partitioning to induce such sparsity without retraining. This preserves the mathematical consistency of model transformations and enhances both efficiency and accuracy in subsequent fine-tuning and inference. Building upon this, we propose DualSparse-MoE, an inference system that integrates dynamic tensor-level computation dropping with static neuron-level reconstruction to deliver significant efficiency gains with minimal accuracy loss. Experimental results show that enforcing an approximate 25% drop rate with our approach reduces average accuracy by only 0.08%-0.28% across three prevailing MoE models, while nearly all degrees of computation dropping consistently yield proportional computational speedups. Furthermore, incorporating load-imbalance awareness into expert parallelism achieves a 1.41x MoE module speedup with just 0.5% average accuracy degradation.
♻ ☆ LCI: a Lightweight Communication Interface for Efficient Asynchronous Multithreaded Communication
The evolution of architectures, programming models, and algorithms is driving communication towards greater asynchrony and concurrency, usually in multithreaded environments. We present LCI, a communication library designed for efficient asynchronous multithreaded communication. LCI provides a concise interface that supports common point-to-point primitives and diverse completion mechanisms, along with flexible controls for incrementally fine-tuning communication resources and runtime behavior. It features a threading-efficient runtime built on atomic data structures, fine-grained non-blocking locks, and low-level network insights. We evaluate LCI on both Infiniband and Slingshot-11 clusters with microbenchmarks and two application-level benchmarks. Experimental results show that LCI significantly outperforms existing communication libraries in various multithreaded scenarios, achieving performance that exceeds the traditional multi-process execution mode and unlocking new possibilities for emerging programming models and applications. LCI is open-source and available at https://github.com/uiuc-hpc/lci.
comment: 13 pages, 8 figures. This is the accepted version of the paper published at SC25
♻ ☆ Highly Dynamic and Fully Distributed Data Structures
We study robust and efficient distributed algorithms for building and maintaining distributed data structures in dynamic Peer-to-Peer (P2P) networks. P2P networks are characterized by a high level of dynamicity with abrupt heavy node \emph{churn} (nodes that join and leave the network continuously over time). We present a novel algorithm that builds and maintains with high probability a skip list for $poly(n)$ rounds despite $\mathcal{O}(n/\log n)$ churn \emph{per round} ($n$ is the stable network size). We assume that the churn is controlled by an oblivious adversary (that has complete knowledge and control of what nodes join and leave and at what time and has unlimited computational power, but is oblivious to the random choices made by the algorithm). Moreover, the maintenance overhead is proportional to the churn rate. Furthermore, the algorithm is scalable in that the messages are small (i.e., at most $polylog(n)$ bits) and every node sends and receives at most $polylog(n)$ messages per round. Our algorithm crucially relies on novel distributed and parallel algorithms to merge two $n$-elements skip lists and delete a large subset of items, both in $\mathcal{O}(\log n)$ rounds with high probability. These procedures may be of independent interest due to their elegance and potential applicability in other contexts in distributed data structures. To the best of our knowledge, our work provides the first-known fully-distributed data structure that provably works under highly dynamic settings (i.e., high churn rate). Furthermore, they are localized (i.e., do not require any global topological knowledge). Finally, we believe that our framework can be generalized to other distributed and dynamic data structures including graphs, potentially leading to stable distributed computation despite heavy churn.
♻ ☆ HeteroTune: Efficient Federated Learning for Large Heterogeneous Models
While large pre-trained models have achieved impressive performance across AI tasks, their deployment in privacy-sensitive and distributed environments remains challenging. Federated learning (FL) offers a viable solution by enabling decentralized fine-tuning without data sharing, but real-world applications face significant obstacles due to heterogeneous client resources in compute and memory. To address this, we propose HeteroTune, a novel federated fine-tuning paradigm for large, heterogeneous models operating under limited communication and computation budgets. The core of our method lies in a novel architecture, DeMA (Dense Mixture of Adapters), which enables flexible and efficient aggregation of heterogeneous models by preserving their full representational capacity while facilitating seamless cross-model knowledge fusion. We further introduce CMGA (Cross-Model Gradient Alignment), a lightweight yet effective mechanism that enhances training stability by harmonizing gradient directions across heterogeneous client models during aggregation, mitigating update conflicts and promoting more consistent convergence in federated settings. We provide both theoretical analysis and empirical evidence showing that HeteroTune achieves state-of-the-art performance and efficiency across diverse tasks and model architectures. For example, on LLaMA models, it reduces communication overhead by 99.5%, cuts peak memory usage by ~50%, and improves performance by 4.61%.
comment: 16 pages, 4 figures
♻ ☆ Linear Layouts: Robust Code Generation of Efficient Tensor Computation Using $\mathbb{F}_2$
Efficient tensor computation is a cornerstone of modern deep learning (DL) workloads, yet existing approaches struggle to achieve flexible and performant design and implementation of tensor layouts -- mappings between logical tensors and hardware resources. The increasing complexity of DL algorithms and hardware demands a generic and systematic approach to handling tensor layouts. In this work, we introduce Linear Layouts, a novel approach that models tensor layouts using linear algebra over $\mathbb{F}_2$. By representing tensor layouts as binary matrices acting on the bits of the hardware representation, our approach enables a generic layout definition -- as opposed to the classical case-by-case approach -- and allows for generic layout-to-layout conversions, eliminating the quadratic explosion that plagues existing solutions. We integrate linear layouts with Triton and demonstrate their effectiveness in optimizing individual Triton operators as well as kernels written in Triton. We also show that linear layouts reduce engineering effort in the compiler backend while fixing several bugs in Triton's legacy layout system.
♻ ☆ DAG it off: Latency Prefers No Common Coins
We introduce Black Marlin, the first Directed Acyclic Graph (DAG)-based Byzantine atomic broadcast protocol in a partially synchronous setting that successfully forgoes the reliable broadcast and common coin primitives while delivering transactions every round. Black Marlin achieves the optimal latency of 3 rounds of communication (4.25 with Byzantine faults) while maintaining optimal communication and amortized communication complexities. We present a formal security analysis of the protocol, accompanied by empirical evidence that Black Marlin outperforms state-of-the-art DAG-based protocols in both throughput and latency.
♻ ☆ AGILE: Lightweight and Efficient Asynchronous GPU-SSD Integration
GPUs are critical for compute-intensive applications, yet emerging workloads such as recommender systems, graph analytics, and data analytics often exceed GPU memory capacity. Existing solutions allow GPUs to use CPU DRAM or SSDs as external memory, and the GPU-centric approach enables GPU threads to directly issue NVMe requests, further avoiding CPU intervention. However, current GPU-centric approaches adopt synchronous I/O, forcing threads to stall during long communication delays. We propose AGILE, a lightweight asynchronous GPU-centric I/O library that eliminates deadlock risks and integrates a flexible HBM-based software cache. AGILE overlaps computation and I/O, improving performance by up to 1.88$\times$ across workloads with diverse computation-to-communication ratios. Compared to BaM on DLRM, AGILE achieves up to 1.75$\times$ speedup through efficient design and overlapping; on graph applications, AGILE reduces software cache overhead by up to 3.12$\times$ and NVMe I/O overhead by up to 2.85$\times$; AGILE also lowers per-thread register usage by up to 1.32$\times$.
Information Retrieval 28
☆ ST-Raptor: LLM-Powered Semi-Structured Table Question Answering SIGMOD 2026
Semi-structured tables, widely used in real-world applications (e.g., financial reports, medical records, transactional orders), often involve flexible and complex layouts (e.g., hierarchical headers and merged cells). These tables generally rely on human analysts to interpret table layouts and answer relevant natural language questions, which is costly and inefficient. To automate the procedure, existing methods face significant challenges. First, methods like NL2SQL require converting semi-structured tables into structured ones, which often causes substantial information loss. Second, methods like NL2Code and multi-modal LLM QA struggle to understand the complex layouts of semi-structured tables and cannot accurately answer corresponding questions. To this end, we propose ST-Raptor, a tree-based framework for semi-structured table question answering using large language models. First, we introduce the Hierarchical Orthogonal Tree (HO-Tree), a structural model that captures complex semi-structured table layouts, along with an effective algorithm for constructing the tree. Second, we define a set of basic tree operations to guide LLMs in executing common QA tasks. Given a user question, ST-Raptor decomposes it into simpler sub-questions, generates corresponding tree operation pipelines, and conducts operation-table alignment for accurate pipeline execution. Third, we incorporate a two-stage verification mechanism: forward validation checks the correctness of execution steps, while backward validation evaluates answer reliability by reconstructing queries from predicted answers. To benchmark the performance, we present SSTQA, a dataset of 764 questions over 102 real-world semi-structured tables. Experiments show that ST-Raptor outperforms nine baselines by up to 20% in answer accuracy. The code is available at https://github.com/weAIDB/ST-Raptor.
comment: Extension of our SIGMOD 2026 paper. Please refer to source code available at: https://github.com/weAIDB/ST-Raptor
☆ PCR-CA: Parallel Codebook Representations with Contrastive Alignment for Multiple-Category App Recommendation
Modern app store recommender systems struggle with multiple-category apps, as traditional taxonomies fail to capture overlapping semantics, leading to suboptimal personalization. We propose PCR-CA (Parallel Codebook Representations with Contrastive Alignment), an end-to-end framework for improved CTR prediction. PCR-CA first extracts compact multimodal embeddings from app text, then introduces a Parallel Codebook VQ-AE module that learns discrete semantic representations across multiple codebooks in parallel -- unlike hierarchical residual quantization (RQ-VAE). This design enables independent encoding of diverse aspects (e.g., gameplay, art style), better modeling multiple-category semantics. To bridge semantic and collaborative signals, we employ a contrastive alignment loss at both the user and item levels, enhancing representation learning for long-tail items. Additionally, a dual-attention fusion mechanism combines ID-based and semantic features to capture user interests, especially for long-tail apps. Experiments on a large-scale dataset show PCR-CA achieves a +0.76% AUC improvement over strong baselines, with +2.15% AUC gains for long-tail apps. Online A/B testing further validates our approach, showing a +10.52% lift in CTR and a +16.30% improvement in CVR, demonstrating PCR-CA's effectiveness in real-world deployment. The new framework has now been fully deployed on the Microsoft Store.
comment: 9 pages, 4 figures, conference
☆ Mirroring Users: Towards Building Preference-aligned User Simulator with User Feedback in Recommendation
User simulation is increasingly vital to develop and evaluate recommender systems (RSs). While Large Language Models (LLMs) offer promising avenues to simulate user behavior, they often struggle with the absence of specific domain alignment required for RSs and the efficiency demands of large-scale simulation. A vast yet underutilized resource for enhancing this alignment is the extensive user feedback inherent in RSs. However, directly leveraging such feedback presents two significant challenges. First, user feedback in RSs is often ambiguous and noisy, which negatively impacts effective preference alignment. Second, the massive volume of feedback largely hinders the efficiency of preference alignment, necessitating an efficient filtering mechanism to identify more informative samples. To overcome these hurdles, we introduce a novel data construction framework that leverages user feedback in RSs with advanced LLM capabilities to generate high-quality simulation data. Our framework unfolds in two key phases: (1) employing LLMs to generate cognitive decision-making processes on constructed simulation samples, reducing ambiguity in raw user feedback; (2) data distillation based on uncertainty estimation and behavior sampling to filter challenging yet denoised simulation samples. Accordingly, we fine-tune lightweight LLMs, as user simulators, using such high-quality dataset with corresponding decision-making processes. Extensive experiments verify that our framework significantly boosts the alignment with human preferences and in-domain reasoning capabilities of fine-tuned LLMs, and provides more insightful and interpretable signals when interacting with RSs. We believe our work will advance the RS community and offer valuable insights for broader human-centric AI research.
comment: Github: https://github.com/UserMirrorer/UserMirrorer
☆ Test-Time Scaling Strategies for Generative Retrieval in Multimodal Conversational Recommendations
The rapid evolution of e-commerce has exposed the limitations of traditional product retrieval systems in managing complex, multi-turn user interactions. Recent advances in multimodal generative retrieval -- particularly those leveraging multimodal large language models (MLLMs) as retrievers -- have shown promise. However, most existing methods are tailored to single-turn scenarios and struggle to model the evolving intent and iterative nature of multi-turn dialogues when applied naively. Concurrently, test-time scaling has emerged as a powerful paradigm for improving large language model (LLM) performance through iterative inference-time refinement. Yet, its effectiveness typically relies on two conditions: (1) a well-defined problem space (e.g., mathematical reasoning), and (2) the model's ability to self-correct -- conditions that are rarely met in conversational product search. In this setting, user queries are often ambiguous and evolving, and MLLMs alone have difficulty grounding responses in a fixed product corpus. Motivated by these challenges, we propose a novel framework that introduces test-time scaling into conversational multimodal product retrieval. Our approach builds on a generative retriever, further augmented with a test-time reranking (TTR) mechanism that improves retrieval accuracy and better aligns results with evolving user intent throughout the dialogue. Experiments across multiple benchmarks show consistent improvements, with average gains of 14.5 points in MRR and 10.6 points in nDCG@1.
☆ HLLM-Creator: Hierarchical LLM-based Personalized Creative Generation
AI-generated content technologies are widely used in content creation. However, current AIGC systems rely heavily on creators' inspiration, rarely generating truly user-personalized content. In real-world applications such as online advertising, a single product may have multiple selling points, with different users focusing on different features. This underscores the significant value of personalized, user-centric creative generation. Effective personalized content generation faces two main challenges: (1) accurately modeling user interests and integrating them into the content generation process while adhering to factual constraints, and (2) ensuring high efficiency and scalability to handle the massive user base in industrial scenarios. Additionally, the scarcity of personalized creative data in practice complicates model training, making data construction another key hurdle. We propose HLLM-Creator, a hierarchical LLM framework for efficient user interest modeling and personalized content generation. During inference, a combination of user clustering and a user-ad-matching-prediction based pruning strategy is employed to significantly enhance generation efficiency and reduce computational overhead, making the approach suitable for large-scale deployment. Moreover, we design a data construction pipeline based on chain-of-thought reasoning, which generates high-quality, user-specific creative titles and ensures factual consistency despite limited personalized data. This pipeline serves as a critical foundation for the effectiveness of our model. Extensive experiments on personalized title generation for Douyin Search Ads show the effectiveness of HLLM-Creator. Online A/B test shows a 0.476% increase on Adss, paving the way for more effective and efficient personalized generation in industrial scenarios. Codes for academic dataset are available at https://github.com/bytedance/HLLM.
☆ HyST: LLM-Powered Hybrid Retrieval over Semi-Structured Tabular Data
User queries in real-world recommendation systems often combine structured constraints (e.g., category, attributes) with unstructured preferences (e.g., product descriptions or reviews). We introduce HyST (Hybrid retrieval over Semi-structured Tabular data), a hybrid retrieval framework that combines LLM-powered structured filtering with semantic embedding search to support complex information needs over semi-structured tabular data. HyST extracts attribute-level constraints from natural language using large language models (LLMs) and applies them as metadata filters, while processing the remaining unstructured query components via embedding-based retrieval. Experiments on a semi-structured benchmark show that HyST consistently outperforms tradtional baselines, highlighting the importance of structured filtering in improving retrieval precision, offering a scalable and accurate solution for real-world user queries.
comment: Accepted at the 2nd EARL Workshop on Evaluating and Applying Recommender Systems with Large Language Models (RecSys 2025)
☆ Retrieval Feedback Memory Enhancement Large Model Retrieval Generation Method
Large Language Models (LLMs) have shown remarkable capabilities across diverse tasks, yet they face inherent limitations such as constrained parametric knowledge and high retraining costs. Retrieval-Augmented Generation (RAG) augments the generation process by retrieving externally stored knowledge absent from the models internal parameters. However, RAG methods face challenges such as information loss and redundant retrievals during multi-round queries, accompanying the difficulties in precisely characterizing knowledge gaps for complex tasks. To address these problems, we propose Retrieval Feedback and Memory Retrieval Augmented Generation(RFM-RAG), which transforms the stateless retrieval of previous methods into stateful continuous knowledge management by constructing a dynamic evidence pool. Specifically, our method generates refined queries describing the models knowledge gaps using relational triples from questions and evidence from the dynamic evidence pool; Retrieves critical external knowledge to iteratively update this evidence pool; Employs a R-Feedback Model to evaluate evidence completeness until convergence. Compared to traditional RAG methods, our approach enables persistent storage of retrieved passages and effectively distills key information from passages to construct clearly new queries. Experiments on three public QA benchmarks demonstrate that RFM-RAG outperforms previous methods and improves overall system accuracy.
☆ LexSemBridge: Fine-Grained Dense Representation Enhancement through Token-Aware Embedding Augmentation
As queries in retrieval-augmented generation (RAG) pipelines powered by large language models (LLMs) become increasingly complex and diverse, dense retrieval models have demonstrated strong performance in semantic matching. Nevertheless, they often struggle with fine-grained retrieval tasks, where precise keyword alignment and span-level localization are required, even in cases with high lexical overlap that would intuitively suggest easier retrieval. To systematically evaluate this limitation, we introduce two targeted tasks, keyword retrieval and part-of-passage retrieval, designed to simulate practical fine-grained scenarios. Motivated by these observations, we propose LexSemBridge, a unified framework that enhances dense query representations through fine-grained, input-aware vector modulation. LexSemBridge constructs latent enhancement vectors from input tokens using three paradigms: Statistical (SLR), Learned (LLR), and Contextual (CLR), and integrates them with dense embeddings via element-wise interaction. Theoretically, we show that this modulation preserves the semantic direction while selectively amplifying discriminative dimensions. LexSemBridge operates as a plug-in without modifying the backbone encoder and naturally extends to both text and vision modalities. Extensive experiments across semantic and fine-grained retrieval tasks validate the effectiveness and generality of our approach. All code and models are publicly available at https://github.com/Jasaxion/LexSemBridge/
☆ Research on Evaluation Methods for Patent Novelty Search Systems and Empirical Analysis
Patent novelty search systems are critical to IP protection and innovation assessment; their retrieval accuracy directly impacts patent quality. We propose a comprehensive evaluation methodology that builds high-quality, reproducible datasets from examiner citations and X-type citations extracted from technically consistent family patents, and evaluates systems using invention descriptions as inputs. Using Top-k Detection Rate and Recall as core metrics, we further conduct multi-dimensional analyses by language, technical field (IPC), and filing jurisdiction. Experiments show the method effectively exposes performance differences across scenarios and offers actionable evidence for system improvement. The framework is scalable and practical, providing a useful reference for development and optimization of patent novelty search systems
☆ DiffusionGS: Generative Search with Query Conditioned Diffusion in Kuaishou
Personalized search ranking systems are critical for driving engagement and revenue in modern e-commerce and short-video platforms. While existing methods excel at estimating users' broad interests based on the filtered historical behaviors, they typically under-exploit explicit alignment between a user's real-time intent (represented by the user query) and their past actions. In this paper, we propose DiffusionGS, a novel and scalable approach powered by generative models. Our key insight is that user queries can serve as explicit intent anchors to facilitate the extraction of users' immediate interests from long-term, noisy historical behaviors. Specifically, we formulate interest extraction as a conditional denoising task, where the user's query guides a conditional diffusion process to produce a robust, user intent-aware representation from their behavioral sequence. We propose the User-aware Denoising Layer (UDL) to incorporate user-specific profiles into the optimization of attention distribution on the user's past actions. By reframing queries as intent priors and leveraging diffusion-based denoising, our method provides a powerful mechanism for capturing dynamic user interest shifts. Extensive offline and online experiments demonstrate the superiority of DiffusionGS over state-of-the-art methods.
☆ How Do LLM-Generated Texts Impact Term-Based Retrieval Models?
As more content generated by large language models (LLMs) floods into the Internet, information retrieval (IR) systems now face the challenge of distinguishing and handling a blend of human-authored and machine-generated texts. Recent studies suggest that neural retrievers may exhibit a preferential inclination toward LLM-generated content, while classic term-based retrievers like BM25 tend to favor human-written documents. This paper investigates the influence of LLM-generated content on term-based retrieval models, which are valued for their efficiency and robust generalization across domains. Our linguistic analysis reveals that LLM-generated texts exhibit smoother high-frequency and steeper low-frequency Zipf slopes, higher term specificity, and greater document-level diversity. These traits are aligned with LLMs being trained to optimize reader experience through diverse and precise expressions. Our study further explores whether term-based retrieval models demonstrate source bias, concluding that these models prioritize documents whose term distributions closely correspond to those of the queries, rather than displaying an inherent source bias. This work provides a foundation for understanding and addressing potential biases in term-based IR systems managing mixed-source content.
☆ Semantic Search for Information Retrieval
Information retrieval systems have progressed notably from lexical techniques such as BM25 and TF-IDF to modern semantic retrievers. This survey provides a brief overview of the BM25 baseline, then discusses the architecture of modern state-of-the-art semantic retrievers. Advancing from BERT, we introduce dense bi-encoders (DPR), late-interaction models (ColBERT), and neural sparse retrieval (SPLADE). Finally, we examine MonoT5, a cross-encoder model. We conclude with common evaluation tactics, pressing challenges, and propositions for future directions.
☆ Heterogeneous co-occurrence embedding for visual information exploration
This paper proposes an embedding method for co-occurrence data aimed at visual information exploration. We consider cases where co-occurrence probabilities are measured between pairs of elements from heterogeneous domains. The proposed method maps these heterogeneous elements into corresponding two-dimensional latent spaces, enabling visualization of asymmetric relationships between the domains. The key idea is to embed the elements in a way that maximizes their mutual information, thereby preserving the original dependency structure as much as possible. This approach can be naturally extended to cases involving three or more domains, using a generalization of mutual information known as total correlation. For inter-domain analysis, we also propose a visualization method that assigns colors to the latent spaces based on conditional probabilities, allowing users to explore asymmetric relationships interactively. We demonstrate the utility of the method through applications to an adjective-noun dataset, the NeurIPS dataset, and a subject-verb-object dataset, showcasing both intra- and inter-domain analysis.
comment: 36pages, 9 figures, Accepted to International Journal of Innovative Computing, Information and Control (IJICIC), 2025
SurveyGen: Quality-Aware Scientific Survey Generation with Large Language Models
Automatic survey generation has emerged as a key task in scientific document processing. While large language models (LLMs) have shown promise in generating survey texts, the lack of standardized evaluation datasets critically hampers rigorous assessment of their performance against human-written surveys. In this work, we present SurveyGen, a large-scale dataset comprising over 4,200 human-written surveys across diverse scientific domains, along with 242,143 cited references and extensive quality-related metadata for both the surveys and the cited papers. Leveraging this resource, we build QUAL-SG, a novel quality-aware framework for survey generation that enhances the standard Retrieval-Augmented Generation (RAG) pipeline by incorporating quality-aware indicators into literature retrieval to assess and select higher-quality source papers. Using this dataset and framework, we systematically evaluate state-of-the-art LLMs under varying levels of human involvement - from fully automatic generation to human-guided writing. Experimental results and human evaluations show that while semi-automatic pipelines can achieve partially competitive outcomes, fully automatic survey generation still suffers from low citation quality and limited critical analysis.
☆ Demographically-Inspired Query Variants Using an LLM
This study proposes a method to diversify queries in existing test collections to reflect some of the diversity of search engine users, aligning with an earlier vision of an 'ideal' test collection. A Large Language Model (LLM) is used to create query variants: alternative queries that have the same meaning as the original. These variants represent user profiles characterised by different properties, such as language and domain proficiency, which are known in the IR literature to influence query formulation. The LLM's ability to generate query variants that align with user profiles is empirically validated, and the variants' utility is further explored for IR system evaluation. Results demonstrate that the variants impact how systems are ranked and show that user profiles experience significantly different levels of system effectiveness. This method enables an alternative perspective on system evaluation where we can observe both the impact of user profiles on system rankings and how system performance varies across users.
comment: Published in the proceedings of ICTIR'25, Padua, Italy
☆ Preference Trajectory Modeling via Flow Matching for Sequential Recommendation
Sequential recommendation predicts each user's next item based on their historical interaction sequence. Recently, diffusion models have attracted significant attention in this area due to their strong ability to model user interest distributions. They typically generate target items by denoising Gaussian noise conditioned on historical interactions. However, these models face two critical limitations. First, they exhibit high sensitivity to the condition, making it difficult to recover target items from pure Gaussian noise. Second, the inference process is computationally expensive, limiting practical deployment. To address these issues, we propose FlowRec, a simple yet effective sequential recommendation framework which leverages flow matching to explicitly model user preference trajectories from current states to future interests. Flow matching is an emerging generative paradigm, which offers greater flexibility in initial distributions and enables more efficient sampling. Based on this, we construct a personalized behavior-based prior distribution to replace Gaussian noise and learn a vector field to model user preference trajectories. To better align flow matching with the recommendation objective, we further design a single-step alignment loss incorporating both positive and negative samples, improving sampling efficiency and generation quality. Extensive experiments on four benchmark datasets verify the superiority of FlowRec over the state-of-the-art baselines.
☆ A Universal Framework for Offline Serendipity Evaluation in Recommender Systems via Large Language Models
Serendipity in recommender systems (RSs) has attracted increasing attention as a concept that enhances user satisfaction by presenting unexpected and useful items. However, evaluating serendipitous performance remains challenging because its ground truth is generally unobservable. The existing offline metrics often depend on ambiguous definitions or are tailored to specific datasets and RSs, thereby limiting their generalizability. To address this issue, we propose a universally applicable evaluation framework that leverages large language models (LLMs) known for their extensive knowledge and reasoning capabilities, as evaluators. First, to improve the evaluation performance of the proposed framework, we assessed the serendipity prediction accuracy of LLMs using four different prompt strategies on a dataset containing user-annotated serendipitous ground truth and found that the chain-of-thought prompt achieved the highest accuracy. Next, we re-evaluated the serendipitous performance of both serendipity-oriented and general RSs using the proposed framework on three commonly used real-world datasets, without the ground truth. The results indicated that there was no serendipity-oriented RS that consistently outperformed across all datasets, and even a general RS sometimes achieved higher performance than the serendipity-oriented RS.
☆ DenseRec: Revisiting Dense Content Embeddings for Sequential Transformer-based Recommendation
Transformer-based sequential recommenders, such as SASRec or BERT4Rec, typically rely solely on learned item ID embeddings, making them vulnerable to the item cold-start problem, particularly in environments with dynamic item catalogs. While dense content embeddings from pre-trained models offer potential solutions, direct integration into transformer-based recommenders has consistently underperformed compared to ID-only approaches. We revisit this integration challenge and propose DenseRec, a simple yet effective method that introduces a dual-path embedding approach. DenseRec learns a linear projection from the dense embedding space into the ID embedding space during training, enabling seamless generalization to previously unseen items without requiring specialized embedding models or complex infrastructure. In experiments on three real-world datasets, we find DenseRec to consistently outperform an ID-only SASRec baseline, even without additional hyperparameter tuning and while using compact embedding models. Our analysis suggests improvements primarily arise from better sequence representations in the presence of unseen items, positioning DenseRec as a practical and robust solution for cold-start sequential recommendation.
comment: EARL workshop @RecSys'25, Prague, Czech Republic
☆ REALM: Recursive Relevance Modeling for LLM-based Document Re-Ranking
Large Language Models (LLMs) have shown strong capabilities in document re-ranking, a key component in modern Information Retrieval (IR) systems. However, existing LLM-based approaches face notable limitations, including ranking uncertainty, unstable top-k recovery, and high token cost due to token-intensive prompting. To effectively address these limitations, we propose REALM, an uncertainty-aware re-ranking framework that models LLM-derived relevance as Gaussian distributions and refines them through recursive Bayesian updates. By explicitly capturing uncertainty and minimizing redundant queries, REALM achieves better rankings more efficiently. Experimental results demonstrate that our REALM surpasses state-of-the-art re-rankers while significantly reducing token usage and latency, promoting it as the next-generation re-ranker for modern IR systems.
comment: Accepted to EMNLP 2025 (Main Conference). 13 pages, 2 figures
♻ ☆ DIVER: A Multi-Stage Approach for Reasoning-intensive Information Retrieval
Retrieval-augmented generation has achieved strong performance on knowledge-intensive tasks where query-document relevance can be identified through direct lexical or semantic matches. However, many real-world queries involve abstract reasoning, analogical thinking, or multi-step inference, which existing retrievers often struggle to capture. To address this challenge, we present DIVER, a retrieval pipeline designed for reasoning-intensive information retrieval. It consists of four components. The document preprocessing stage enhances readability and preserves content by cleaning noisy texts and segmenting long documents. The query expansion stage leverages large language models to iteratively refine user queries with explicit reasoning and evidence from retrieved documents. The retrieval stage employs a model fine-tuned on synthetic data spanning medical and mathematical domains, along with hard negatives, enabling effective handling of reasoning-intensive queries. Finally, the reranking stage combines pointwise and listwise strategies to produce both fine-grained and globally consistent rankings. On the BRIGHT benchmark, DIVER achieves state-of-the-art nDCG@10 scores of 45.8 overall and 28.9 on original queries, consistently outperforming competitive reasoning-aware models. These results demonstrate the effectiveness of reasoning-aware retrieval strategies in complex real-world tasks.
♻ ☆ MARM: Unlocking the Future of Recommendation Systems through Memory Augmentation and Scalable Complexity
Scaling-law has guided the language model designing for past years, however, it is worth noting that the scaling laws of NLP cannot be directly applied to RecSys due to the following reasons: (1) The amount of training samples and model parameters is typically not the bottleneck for the model. Our recommendation system can generate over 50 billion user samples daily, and such a massive amount of training data can easily allow our model parameters to exceed 200 billion, surpassing many LLMs (about 100B). (2) To ensure the stability and robustness of the recommendation system, it is essential to control computational complexity FLOPs carefully. Considering the above differences with LLM, we can draw a conclusion that: for a RecSys model, compared to model parameters, the computational complexity FLOPs is a more expensive factor that requires careful control. In this paper, we propose our milestone work, MARM (Memory Augmented Recommendation Model), which explores a new cache scaling-laws successfully.
comment: CIKM 2025
♻ ☆ CLAP: Coreference-Linked Augmentation for Passage Retrieval
Large Language Model (LLM)-based passage expansion has shown promise for enhancing first-stage retrieval, but often underperforms with dense retrievers due to semantic drift and misalignment with their pretrained semantic space. Beyond this, only a portion of a passage is typically relevant to a query, while the rest introduces noise--an issue compounded by chunking techniques that break coreference continuity. We propose Coreference-Linked Augmentation for Passage Retrieval (CLAP), a lightweight LLM-based expansion framework that segments passages into coherent chunks, resolves coreference chains, and generates localized pseudo-queries aligned with dense retriever representations. A simple fusion of global topical signals and fine-grained subtopic signals achieves robust performance across domains. CLAP yields consistent gains even as retriever strength increases, enabling dense retrievers to match or surpass second-stage rankers such as BM25 + MonoT5-3B, with up to 20.68% absolute nDCG@10 improvement. These improvements are especially notable in out-of-domain settings, where conventional LLM-based expansion methods relying on domain knowledge often falter. CLAP instead adopts a logic-centric pipeline that enables robust, domain-agnostic generalization.
comment: This paper has been accepted by CIKM 2025
♻ ☆ Content-based 3D Image Retrieval and a ColBERT-inspired Re-ranking for Tumor Flagging and Staging
The increasing volume of medical images poses challenges for radiologists in retrieving relevant cases. Content-based image retrieval (CBIR) systems offer potential for efficient access to similar cases, yet lack standardized evaluation and comprehensive studies. Building on prior studies for tumor characterization via CBIR, this study advances CBIR research for volumetric medical images through three key contributions: (1) a framework eliminating reliance on pre-segmented data and organ-specific datasets, aligning with large and unstructured image archiving systems, i.e. PACS in clinical practice; (2) introduction of C-MIR, a novel volumetric re-ranking method adapting ColBERT's contextualized late interaction mechanism for 3D medical imaging; (3) comprehensive evaluation across four tumor sites using three feature extractors and three database configurations. Our evaluations highlight the significant advantages of C-MIR. We demonstrate the successful adaptation of the late interaction principle to volumetric medical images, enabling effective context-aware re-ranking. A key finding is C-MIR's ability to effectively localize the region of interest, eliminating the need for pre-segmentation of datasets and offering a computationally efficient alternative to systems relying on expensive data enrichment steps. C-MIR demonstrates promising improvements in tumor flagging, achieving improved performance, particularly for colon and lung tumors (p<0.05). C-MIR also shows potential for improving tumor staging, warranting further exploration of its capabilities. Ultimately, our work seeks to bridge the gap between advanced retrieval techniques and their practical applications in healthcare, paving the way for improved diagnostic processes.
♻ ☆ Personalized Tree-Based Progressive Regression Model for Watch-Time Prediction in Short Video Recommendation
In online video platforms, accurate watch time prediction has become a fundamental and challenging problem in video recommendation. Previous research has revealed that the accuracy of watch time prediction highly depends on both the transformation of watch-time labels and the decomposition of the estimation process. TPM (Tree based Progressive Regression Model) achieves State-of-the-Art performance with a carefully designed and effective decomposition paradigm. TPM discretizes the watch time into several ordinal intervals and organizes them into a binary decision tree, where each node corresponds to a specific interval. At each non-leaf node, a binary classifier is used to determine the specific interval in which the watch time variable most likely falls, based on the prediction outcome at its parent node. The tree structure is central to TPM, as it defines the decomposition of watch time estimation and how ordinal intervals are discretized. However, TPM uses a predefined full binary tree, which may be sub-optimal for two reasons. First, full binary trees imply equal partitioning of the watch time space, which may fail to capture the complexity of real-world distributions. Second, rather than relying on a fixed global structure, we advocate for a personalized, data-driven tree that can be learned end-to-end. Thus, we propose PTPM to enable highly personalized decomposition of watch estimation with better efficacy and efficiency. Moreover, we show that TPM suffers from selection bias due to conditional modeling and propose a simple solution. We conduct extensive experiments on offline datasets and online environments. Offline results show improved watch time accuracy, and online A/B tests further validate the effectiveness of our framework. PTPM has been fully deployed in core traffic scenarios and now serves over 400 million users daily.
comment: cikm'25
♻ ☆ Interaction-Data-guided Conditional Instrumental Variables for Debiasing Recommender Systems IJCAI 2025
It is often challenging to identify a valid instrumental variable (IV), although the IV methods have been regarded as effective tools of addressing the confounding bias introduced by latent variables. To deal with this issue, an Interaction-Data-guided Conditional IV (IDCIV) debiasing method is proposed for Recommender Systems, called IDCIV-RS. The IDCIV-RS automatically generates the representations of valid CIVs and their corresponding conditioning sets directly from interaction data, significantly reducing the complexity of IV selection while effectively mitigating the confounding bias caused by latent variables in recommender systems. Specifically, the IDCIV-RS leverages a variational autoencoder (VAE) to learn both the CIV representations and their conditioning sets from interaction data, followed by the application of least squares to derive causal representations for click prediction. Extensive experiments on two real-world datasets, Movielens-10M and Douban-Movie, demonstrate that IDCIV-RS successfully learns the representations of valid CIVs, effectively reduces bias, and consequently improves recommendation accuracy.
comment: Accepted at IJCAI 2025
♻ ☆ LongRetriever: Towards Ultra-Long Sequence based Candidate Retrieval for Recommendation
Precisely modeling user ultra-long sequences is critical for industrial recommender systems. Current approaches predominantly focus on leveraging ultra-long sequences in the ranking stage, whereas research for the candidate retrieval stage remains under-explored. This paper presents LongRetriever, a practical framework for incorporating ultra-long sequences into the retrieval stage of recommenders. Specifically, we propose in-context training and multi-context retrieval, which enable candidate-specific interaction between user sequence and candidate item, and ensure training-serving consistency under the search-based paradigm. Extensive online A/B testing conducted on a large-scale e-commerce platform demonstrates statistically significant improvements, confirming the framework's effectiveness. Currently, LongRetriever has been fully deployed in the platform, impacting billions of users.
♻ ☆ Post-fusion monolithic hybrid recommender system for suggesting relevant movies to users
Recommendation systems have become the fundamental services to facilitate users information access. Generally, recommendation system works by filtering historical behaviors to understand and learn users preferences. With the growth of online information, recommendations have become of crucial importance in information filtering to prevent the information overload problem. In this study, we considered hybrid post-fusion of two approaches of collaborative filtering, by using sequences of watched movies and considering the related movies rating. After considering both techniques and applying the weights matrix, the recommendations would be modified to correspond to the users preference as needed. We discussed that various weights would be set based on use cases. For instance, in cases where we have the rating for most classes, we will assign a higher weight to the rating matrix and in case where the rating is unavailable for the majority of cases, the higher weights might be assigned to the sequential dataset. An extensive discussion is made in the context of this paper. Sequential type of the watched movies was used in conjunction of the rating as especially that model might be inadequate in distinguishing users long-term preference and that does not account for the rating of the watched movies and thus that model along might not suffice. Extensive discussion was made regarding the literature and methodological approach to solve the problem.
♻ ☆ LLM-Based Agents for Competitive Landscape Mapping in Drug Asset Due Diligence
In this paper, we describe and benchmark a competitor-discovery component used within an agentic AI system for fast drug asset due diligence. A competitor-discovery AI agent, given an indication, retrieves all drugs comprising the competitive landscape of that indication and extracts canonical attributes for these drugs. The competitor definition is investor-specific, and data is paywalled/licensed, fragmented across registries, ontology-mismatched by indication, alias-heavy for drug names, multimodal, and rapidly changing. Although considered the best tool for this problem, the current LLM-based AI systems aren't capable of reliably retrieving all competing drug names, and there is no accepted public benchmark for this task. To address the lack of evaluation, we use LLM-based agents to transform five years of multi-modal, unstructured diligence memos from a private biotech VC fund into a structured evaluation corpus mapping indications to competitor drugs with normalized attributes. We also introduce a competitor validating LLM-as-a-judge agent that filters out false positives from the list of predicted competitors to maximize precision and suppress hallucinations. On this benchmark, our competitor-discovery agent achieves 83% recall, exceeding OpenAI Deep Research (65%) and Perplexity Labs (60%). The system is deployed in production with enterprise users; in a case study with a biotech VC investment fund, analyst turnaround time dropped from 2.5 days to $\sim$3 hours ($\sim$20x) for the competitive analysis.
Artificial Intelligence 150
☆ SafeBimanual: Diffusion-based Trajectory Optimization for Safe Bimanual Manipulation
Bimanual manipulation has been widely applied in household services and manufacturing, which enables the complex task completion with coordination requirements. Recent diffusion-based policy learning approaches have achieved promising performance in modeling action distributions for bimanual manipulation. However, they ignored the physical safety constraints of bimanual manipulation, which leads to the dangerous behaviors with damage to robots and objects. To this end, we propose a test-time trajectory optimization framework named SafeBimanual for any pre-trained diffusion-based bimanual manipulation policies, which imposes the safety constraints on bimanual actions to avoid dangerous robot behaviors with improved success rate. Specifically, we design diverse cost functions for safety constraints in different dual-arm cooperation patterns including avoidance of tearing objects and collision between arms and objects, which optimizes the manipulator trajectories with guided sampling of diffusion denoising process. Moreover, we employ a vision-language model (VLM) to schedule the cost functions by specifying keypoints and corresponding pairwise relationship, so that the optimal safety constraint is dynamically generated in the entire bimanual manipulation process. SafeBimanual demonstrates superiority on 8 simulated tasks in RoboTwin with a 13.7% increase in success rate and a 18.8% reduction in unsafe interactions over state-of-the-art diffusion-based methods. Extensive experiments on 4 real-world tasks further verify its practical value by improving the success rate by 32.5%.
comment: Project website is at: https://denghaoyuan123.github.io/SafeBimanip/
☆ ANO : Faster is Better in Noisy Landscape
Stochastic optimizers are central to deep learning, yet widely used methods such as Adam and Adan can degrade in non-stationary or noisy environments, partly due to their reliance on momentum-based magnitude estimates. We introduce Ano, a novel optimizer that decouples direction and magnitude: momentum is used for directional smoothing, while instantaneous gradient magnitudes determine step size. This design improves robustness to gradient noise while retaining the simplicity and efficiency of first-order methods. We further propose Anolog, which removes sensitivity to the momentum coefficient by expanding its window over time via a logarithmic schedule. We establish non-convex convergence guarantees with a convergence rate similar to other sign-based methods, and empirically show that Ano provides substantial gains in noisy and non-stationary regimes such as reinforcement learning, while remaining competitive on low-noise tasks such as standard computer vision benchmarks.
comment: Work in progress, 26 pages total with appendix, 7 figures, 12 tables
☆ Hermes 4 Technical Report
We present Hermes 4, a family of hybrid reasoning models that combine structured, multi-turn reasoning with broad instruction-following ability. We describe the challenges encountered during data curation, synthesis, training, and evaluation, and outline the solutions employed to address these challenges at scale. We comprehensively evaluate across mathematical reasoning, coding, knowledge, comprehension, and alignment benchmarks, and we report both quantitative performance and qualitative behavioral analysis. To support open research, all model weights are published publicly at https://huggingface.co/collections/NousResearch/hermes-4-collection-68a731bfd452e20816725728
☆ Efficient Computation of Blackwell Optimal Policies using Rational Functions
Markov Decision Problems (MDPs) provide a foundational framework for modelling sequential decision-making across diverse domains, guided by optimality criteria such as discounted and average rewards. However, these criteria have inherent limitations: discounted optimality may overly prioritise short-term rewards, while average optimality relies on strong structural assumptions. Blackwell optimality addresses these challenges, offering a robust and comprehensive criterion that ensures optimality under both discounted and average reward frameworks. Despite its theoretical appeal, existing algorithms for computing Blackwell Optimal (BO) policies are computationally expensive or hard to implement. In this paper we describe procedures for computing BO policies using an ordering of rational functions in the vicinity of $1$. We adapt state-of-the-art algorithms for deterministic and general MDPs, replacing numerical evaluations with symbolic operations on rational functions to derive bounds independent of bit complexity. For deterministic MDPs, we give the first strongly polynomial-time algorithms for computing BO policies, and for general MDPs we obtain the first subexponential-time algorithm. We further generalise several policy iteration algorithms, extending the best known upper bounds from the discounted to the Blackwell criterion.
☆ Type-Compliant Adaptation Cascades: Adapting Programmatic LM Workflows to Data
Reliably composing Large Language Models (LLMs) for complex, multi-step workflows remains a significant challenge. The dominant paradigm-optimizing discrete prompts in a pipeline-is notoriously brittle and struggles to enforce the formal compliance required for structured tasks. We introduce Type-Compliant Adaptation Cascades (TACs), a framework that recasts workflow adaptation as learning typed probabilistic programs. TACs treats the entire workflow, which is composed of parameter-efficiently adapted LLMs and deterministic logic, as an unnormalized joint distribution. This enables principled, gradient-based training even with latent intermediate structures. We provide theoretical justification for our tractable optimization objective, proving that the optimization bias vanishes as the model learns type compliance. Empirically, TACs significantly outperforms state-of-the-art prompt-optimization baselines. Gains are particularly pronounced on structured tasks, improving MGSM-SymPy from $57.1\%$ to $75.9\%$ for a 27B model, MGSM from $1.6\%$ to $27.3\%$ for a 7B model. TACs offers a robust and theoretically grounded paradigm for developing reliable, task-compliant LLM systems.
☆ Disentangling the Factors of Convergence between Brains and Computer Vision Models
Many AI models trained on natural images develop representations that resemble those of the human brain. However, the factors that drive this brain-model similarity remain poorly understood. To disentangle how the model, training and data independently lead a neural network to develop brain-like representations, we trained a family of self-supervised vision transformers (DINOv3) that systematically varied these different factors. We compare their representations of images to those of the human brain recorded with both fMRI and MEG, providing high resolution in spatial and temporal analyses. We assess the brain-model similarity with three complementary metrics focusing on overall representational similarity, topographical organization, and temporal dynamics. We show that all three factors - model size, training amount, and image type - independently and interactively impact each of these brain similarity metrics. In particular, the largest DINOv3 models trained with the most human-centric images reach the highest brain-similarity. This emergence of brain-like representations in AI models follows a specific chronology during training: models first align with the early representations of the sensory cortices, and only align with the late and prefrontal representations of the brain with considerably more training. Finally, this developmental trajectory is indexed by both structural and functional properties of the human cortex: the representations that are acquired last by the models specifically align with the cortical areas with the largest developmental expansion, thickness, least myelination, and slowest timescales. Overall, these findings disentangle the interplay between architecture and experience in shaping how artificial neural networks come to see the world as humans do, thus offering a promising framework to understand how the human brain comes to represent its visual world.
☆ Why Synthetic Isn't Real Yet: A Diagnostic Framework for Contact Center Dialogue Generation
Synthetic transcript generation is critical in contact center domains, where privacy and data scarcity limit model training and evaluation. Unlike prior synthetic dialogue generation work on open-domain or medical dialogues, contact center conversations are goal-oriented, role-asymmetric, and behaviorally complex, featuring disfluencies, ASR noise, and compliance-driven agent actions. In deployments where transcripts are unavailable, standard pipelines still yield derived call attributes such as Intent Summaries, Topic Flow, and QA Evaluation Forms. We leverage these as supervision signals to guide generation. To assess the quality of such outputs, we introduce a diagnostic framework of 18 linguistically and behaviorally grounded metrics for comparing real and synthetic transcripts. We benchmark four language-agnostic generation strategies, from simple prompting to characteristic-aware multi-stage approaches, alongside reference-free baselines. Results reveal persistent challenges: no method excels across all traits, with notable deficits in disfluency, sentiment, and behavioral realism. Our diagnostic tool exposes these gaps, enabling fine-grained evaluation and stress testing of synthetic dialogue across languages.
☆ Unraveling the cognitive patterns of Large Language Models through module communities
Large Language Models (LLMs) have reshaped our world with significant advancements in science, engineering, and society through applications ranging from scientific discoveries and medical diagnostics to Chatbots. Despite their ubiquity and utility, the underlying mechanisms of LLM remain concealed within billions of parameters and complex structures, making their inner architecture and cognitive processes challenging to comprehend. We address this gap by adopting approaches to understanding emerging cognition in biology and developing a network-based framework that links cognitive skills, LLM architectures, and datasets, ushering in a paradigm shift in foundation model analysis. The skill distribution in the module communities demonstrates that while LLMs do not strictly parallel the focalized specialization observed in specific biological systems, they exhibit unique communities of modules whose emergent skill patterns partially mirror the distributed yet interconnected cognitive organization seen in avian and small mammalian brains. Our numerical results highlight a key divergence from biological systems to LLMs, where skill acquisition benefits substantially from dynamic, cross-regional interactions and neural plasticity. By integrating cognitive science principles with machine learning, our framework provides new insights into LLM interpretability and suggests that effective fine-tuning strategies should leverage distributed learning dynamics rather than rigid modular interventions.
☆ ST-Raptor: LLM-Powered Semi-Structured Table Question Answering SIGMOD 2026
Semi-structured tables, widely used in real-world applications (e.g., financial reports, medical records, transactional orders), often involve flexible and complex layouts (e.g., hierarchical headers and merged cells). These tables generally rely on human analysts to interpret table layouts and answer relevant natural language questions, which is costly and inefficient. To automate the procedure, existing methods face significant challenges. First, methods like NL2SQL require converting semi-structured tables into structured ones, which often causes substantial information loss. Second, methods like NL2Code and multi-modal LLM QA struggle to understand the complex layouts of semi-structured tables and cannot accurately answer corresponding questions. To this end, we propose ST-Raptor, a tree-based framework for semi-structured table question answering using large language models. First, we introduce the Hierarchical Orthogonal Tree (HO-Tree), a structural model that captures complex semi-structured table layouts, along with an effective algorithm for constructing the tree. Second, we define a set of basic tree operations to guide LLMs in executing common QA tasks. Given a user question, ST-Raptor decomposes it into simpler sub-questions, generates corresponding tree operation pipelines, and conducts operation-table alignment for accurate pipeline execution. Third, we incorporate a two-stage verification mechanism: forward validation checks the correctness of execution steps, while backward validation evaluates answer reliability by reconstructing queries from predicted answers. To benchmark the performance, we present SSTQA, a dataset of 764 questions over 102 real-world semi-structured tables. Experiments show that ST-Raptor outperforms nine baselines by up to 20% in answer accuracy. The code is available at https://github.com/weAIDB/ST-Raptor.
comment: Extension of our SIGMOD 2026 paper. Please refer to source code available at: https://github.com/weAIDB/ST-Raptor
☆ Explain and Monitor Deep Learning Models for Computer Vision using Obz AI
Deep learning has transformed computer vision (CV), achieving outstanding performance in classification, segmentation, and related tasks. Such AI-based CV systems are becoming prevalent, with applications spanning from medical imaging to surveillance. State of the art models such as convolutional neural networks (CNNs) and vision transformers (ViTs) are often regarded as ``black boxes,'' offering limited transparency into their decision-making processes. Despite a recent advancement in explainable AI (XAI), explainability remains underutilized in practical CV deployments. A primary obstacle is the absence of integrated software solutions that connect XAI techniques with robust knowledge management and monitoring frameworks. To close this gap, we have developed Obz AI, a comprehensive software ecosystem designed to facilitate state-of-the-art explainability and observability for vision AI systems. Obz AI provides a seamless integration pipeline, from a Python client library to a full-stack analytics dashboard. With Obz AI, a machine learning engineer can easily incorporate advanced XAI methodologies, extract and analyze features for outlier detection, and continuously monitor AI models in real time. By making the decision-making mechanisms of deep models interpretable, Obz AI promotes observability and responsible deployment of computer vision systems.
☆ BRAIN: Bias-Mitigation Continual Learning Approach to Vision-Brain Understanding
Memory decay makes it harder for the human brain to recognize visual objects and retain details. Consequently, recorded brain signals become weaker, uncertain, and contain poor visual context over time. This paper presents one of the first vision-learning approaches to address this problem. First, we statistically and experimentally demonstrate the existence of inconsistency in brain signals and its impact on the Vision-Brain Understanding (VBU) model. Our findings show that brain signal representations shift over recording sessions, leading to compounding bias, which poses challenges for model learning and degrades performance. Then, we propose a new Bias-Mitigation Continual Learning (BRAIN) approach to address these limitations. In this approach, the model is trained in a continual learning setup and mitigates the growing bias from each learning step. A new loss function named De-bias Contrastive Learning is also introduced to address the bias problem. In addition, to prevent catastrophic forgetting, where the model loses knowledge from previous sessions, the new Angular-based Forgetting Mitigation approach is introduced to preserve learned knowledge in the model. Finally, the empirical experiments demonstrate that our approach achieves State-of-the-Art (SOTA) performance across various benchmarks, surpassing prior and non-continual learning methods.
☆ Leveraging Large Language Models for Accurate Sign Language Translation in Low-Resource Scenarios
Translating natural languages into sign languages is a highly complex and underexplored task. Despite growing interest in accessibility and inclusivity, the development of robust translation systems remains hindered by the limited availability of parallel corpora which align natural language with sign language data. Existing methods often struggle to generalize in these data-scarce environments, as the few datasets available are typically domain-specific, lack standardization, or fail to capture the full linguistic richness of sign languages. To address this limitation, we propose Advanced Use of LLMs for Sign Language Translation (AulSign), a novel method that leverages Large Language Models via dynamic prompting and in-context learning with sample selection and subsequent sign association. Despite their impressive abilities in processing text, LLMs lack intrinsic knowledge of sign languages; therefore, they are unable to natively perform this kind of translation. To overcome this limitation, we associate the signs with compact descriptions in natural language and instruct the model to use them. We evaluate our method on both English and Italian languages using SignBank+, a recognized benchmark in the field, as well as the Italian LaCAM CNR-ISTC dataset. We demonstrate superior performance compared to state-of-the-art models in low-data scenario. Our findings demonstrate the effectiveness of AulSign, with the potential to enhance accessibility and inclusivity in communication technologies for underrepresented linguistic communities.
☆ AdLoCo: adaptive batching significantly improves communications efficiency and convergence for Large Language Models
Scaling distributed training of Large Language Models (LLMs) requires not only algorithmic advances but also efficient utilization of heterogeneous hardware resources. While existing methods such as DiLoCo have demonstrated promising results, they often fail to fully exploit computational clusters under dynamic workloads. To address this limitation, we propose a three-stage method that combines Multi-Instance Training (MIT), Adaptive Batched DiLoCo, and switch mode mechanism. MIT allows individual nodes to run multiple lightweight training streams with different model instances in parallel and merge them to combine knowledge, increasing throughput and reducing idle time. Adaptive Batched DiLoCo dynamically adjusts local batch sizes to balance computation and communication, substantially lowering synchronization delays. Switch mode further stabilizes training by seamlessly introducing gradient accumulation once adaptive batch sizes grow beyond hardware-friendly limits. Together, these innovations improve both convergence speed and system efficiency. We also provide a theoretical estimate of the number of communications required for the full convergence of a model trained using our method.
☆ SEAM: Semantically Equivalent Across Modalities Benchmark for Vision-Language Models
Evaluating whether vision-language models (VLMs) reason consistently across representations is challenging because modality comparisons are typically confounded by task differences and asymmetric information. We introduce SEAM, a benchmark that pairs semantically equivalent inputs across four domains that have existing standardized textual and visual notations. By employing distinct notation systems across modalities, in contrast to OCR-based image-text pairing, SEAM provides a rigorous comparative assessment of the textual-symbolic and visual-spatial reasoning capabilities of VLMs. Across 21 contemporary models, we observe systematic modality imbalance: vision frequently lags language in overall performance, despite the problems containing semantically equivalent information, and cross-modal agreement is relatively low. Our error analysis reveals two main drivers: textual perception failures from tokenization in domain notation and visual perception failures that induce hallucinations. We also show that our results are largely robust to visual transformations. SEAM establishes a controlled, semantically equivalent setting for measuring and improving modality-agnostic reasoning.
comment: COLM 2025
☆ Amortized Sampling with Transferable Normalizing Flows
Efficient equilibrium sampling of molecular conformations remains a core challenge in computational chemistry and statistical inference. Classical approaches such as molecular dynamics or Markov chain Monte Carlo inherently lack amortization; the computational cost of sampling must be paid in-full for each system of interest. The widespread success of generative models has inspired interest into overcoming this limitation through learning sampling algorithms. Despite performing on par with conventional methods when trained on a single system, learned samplers have so far demonstrated limited ability to transfer across systems. We prove that deep learning enables the design of scalable and transferable samplers by introducing Prose, a 280 million parameter all-atom transferable normalizing flow trained on a corpus of peptide molecular dynamics trajectories up to 8 residues in length. Prose draws zero-shot uncorrelated proposal samples for arbitrary peptide systems, achieving the previously intractable transferability across sequence length, whilst retaining the efficient likelihood evaluation of normalizing flows. Through extensive empirical evaluation we demonstrate the efficacy of Prose as a proposal for a variety of sampling algorithms, finding a simple importance sampling-based finetuning procedure to achieve superior performance to established methods such as sequential Monte Carlo on unseen tetrapeptides. We open-source the Prose codebase, model weights, and training dataset, to further stimulate research into amortized sampling methods and finetuning objectives.
☆ The Computational Complexity of Satisfiability in State Space Models AI 25
We analyse the complexity of the satisfiability problem ssmSAT for State Space Models (SSM), which asks whether an input sequence can lead the model to an accepting configuration. We find that ssmSAT is undecidable in general, reflecting the computational power of SSM. Motivated by practical settings, we identify two natural restrictions under which ssmSAT becomes decidable and establish corresponding complexity bounds. First, for SSM with bounded context length, ssmSAT is NP-complete when the input length is given in unary and in NEXPTIME (and PSPACE-hard) when the input length is given in binary. Second, for quantised SSM operating over fixed-width arithmetic, ssmSAT is PSPACE-complete resp. in EXPSPACE depending on the bit-width encoding. While these results hold for diagonal gated SSM we also establish complexity bounds for time-invariant SSM. Our results establish a first complexity landscape for formal reasoning in SSM and highlight fundamental limits and opportunities for the verification of SSM-based language models.
comment: Accepted at ECAI 25
☆ Assessing the Noise Robustness of Class Activation Maps: A Framework for Reliable Model Interpretability
Class Activation Maps (CAMs) are one of the important methods for visualizing regions used by deep learning models. Yet their robustness to different noise remains underexplored. In this work, we evaluate and report the resilience of various CAM methods for different noise perturbations across multiple architectures and datasets. By analyzing the influence of different noise types on CAM explanations, we assess the susceptibility to noise and the extent to which dataset characteristics may impact explanation stability. The findings highlight considerable variability in noise sensitivity for various CAMs. We propose a robustness metric for CAMs that captures two key properties: consistency and responsiveness. Consistency reflects the ability of CAMs to remain stable under input perturbations that do not alter the predicted class, while responsiveness measures the sensitivity of CAMs to changes in the prediction caused by such perturbations. The metric is evaluated empirically across models, different perturbations, and datasets along with complementary statistical tests to exemplify the applicability of our proposed approach.
comment: Image and Vision Computing (2025)
☆ Learning from Few Samples: A Novel Approach for High-Quality Malcode Generation
Intrusion Detection Systems (IDS) play a crucial role in network security defense. However, a significant challenge for IDS in training detection models is the shortage of adequately labeled malicious samples. To address these issues, this paper introduces a novel semi-supervised framework \textbf{GANGRL-LLM}, which integrates Generative Adversarial Networks (GANs) with Large Language Models (LLMs) to enhance malicious code generation and SQL Injection (SQLi) detection capabilities in few-sample learning scenarios. Specifically, our framework adopts a collaborative training paradigm where: (1) the GAN-based discriminator improves malicious pattern recognition through adversarial learning with generated samples and limited real samples; and (2) the LLM-based generator refines the quality of malicious code synthesis using reward signals from the discriminator. The experimental results demonstrate that even with a limited number of labeled samples, our training framework is highly effective in enhancing both malicious code generation and detection capabilities. This dual enhancement capability offers a promising solution for developing adaptive defense systems capable of countering evolving cyber threats.
comment: 18pages,5 figures,emnlp
☆ Test-Time Scaling Strategies for Generative Retrieval in Multimodal Conversational Recommendations
The rapid evolution of e-commerce has exposed the limitations of traditional product retrieval systems in managing complex, multi-turn user interactions. Recent advances in multimodal generative retrieval -- particularly those leveraging multimodal large language models (MLLMs) as retrievers -- have shown promise. However, most existing methods are tailored to single-turn scenarios and struggle to model the evolving intent and iterative nature of multi-turn dialogues when applied naively. Concurrently, test-time scaling has emerged as a powerful paradigm for improving large language model (LLM) performance through iterative inference-time refinement. Yet, its effectiveness typically relies on two conditions: (1) a well-defined problem space (e.g., mathematical reasoning), and (2) the model's ability to self-correct -- conditions that are rarely met in conversational product search. In this setting, user queries are often ambiguous and evolving, and MLLMs alone have difficulty grounding responses in a fixed product corpus. Motivated by these challenges, we propose a novel framework that introduces test-time scaling into conversational multimodal product retrieval. Our approach builds on a generative retriever, further augmented with a test-time reranking (TTR) mechanism that improves retrieval accuracy and better aligns results with evolving user intent throughout the dialogue. Experiments across multiple benchmarks show consistent improvements, with average gains of 14.5 points in MRR and 10.6 points in nDCG@1.
☆ CMPhysBench: A Benchmark for Evaluating Large Language Models in Condensed Matter Physics
We introduce CMPhysBench, designed to assess the proficiency of Large Language Models (LLMs) in Condensed Matter Physics, as a novel Benchmark. CMPhysBench is composed of more than 520 graduate-level meticulously curated questions covering both representative subfields and foundational theoretical frameworks of condensed matter physics, such as magnetism, superconductivity, strongly correlated systems, etc. To ensure a deep understanding of the problem-solving process,we focus exclusively on calculation problems, requiring LLMs to independently generate comprehensive solutions. Meanwhile, leveraging tree-based representations of expressions, we introduce the Scalable Expression Edit Distance (SEED) score, which provides fine-grained (non-binary) partial credit and yields a more accurate assessment of similarity between prediction and ground-truth. Our results show that even the best models, Grok-4, reach only 36 average SEED score and 28% accuracy on CMPhysBench, underscoring a significant capability gap, especially for this practical and frontier domain relative to traditional physics. The code anddataset are publicly available at https://github.com/CMPhysBench/CMPhysBench.
comment: 29 pages, 7 figures
☆ The AI Data Scientist
Imagine decision-makers uploading data and, within minutes, receiving clear, actionable insights delivered straight to their fingertips. That is the promise of the AI Data Scientist, an autonomous Agent powered by large language models (LLMs) that closes the gap between evidence and action. Rather than simply writing code or responding to prompts, it reasons through questions, tests ideas, and delivers end-to-end insights at a pace far beyond traditional workflows. Guided by the scientific tenet of the hypothesis, this Agent uncovers explanatory patterns in data, evaluates their statistical significance, and uses them to inform predictive modeling. It then translates these results into recommendations that are both rigorous and accessible. At the core of the AI Data Scientist is a team of specialized LLM Subagents, each responsible for a distinct task such as data cleaning, statistical testing, validation, and plain-language communication. These Subagents write their own code, reason about causality, and identify when additional data is needed to support sound conclusions. Together, they achieve in minutes what might otherwise take days or weeks, enabling a new kind of interaction that makes deep data science both accessible and actionable.
☆ A.S.E: A Repository-Level Benchmark for Evaluating Security in AI-Generated Code
The increasing adoption of large language models (LLMs) in software engineering necessitates rigorous security evaluation of their generated code. However, existing benchmarks are inadequate, as they focus on isolated code snippets, employ unstable evaluation methods that lack reproducibility, and fail to connect the quality of input context with the security of the output. To address these gaps, we introduce A.S.E (AI Code Generation Security Evaluation), a benchmark for repository-level secure code generation. A.S.E constructs tasks from real-world repositories with documented CVEs, preserving full repository context like build systems and cross-file dependencies. Its reproducible, containerized evaluation framework uses expert-defined rules to provide stable, auditable assessments of security, build quality, and generation stability. Our evaluation of leading LLMs on A.S.E reveals three key findings: (1) Claude-3.7-Sonnet achieves the best overall performance. (2) The security gap between proprietary and open-source models is narrow; Qwen3-235B-A22B-Instruct attains the top security score. (3) Concise, ``fast-thinking'' decoding strategies consistently outperform complex, ``slow-thinking'' reasoning for security patching.
☆ Teaching LLMs to Think Mathematically: A Critical Study of Decision-Making via Optimization
This paper investigates the capabilities of large language models (LLMs) in formulating and solving decision-making problems using mathematical programming. We first conduct a systematic review and meta-analysis of recent literature to assess how well LLMs understand, structure, and solve optimization problems across domains. The analysis is guided by critical review questions focusing on learning approaches, dataset designs, evaluation metrics, and prompting strategies. Our systematic evidence is complemented by targeted experiments designed to evaluate the performance of state-of-the-art LLMs in automatically generating optimization models for problems in computer networks. Using a newly constructed dataset, we apply three prompting strategies: Act-as-expert, chain-of-thought, and self-consistency, and evaluate the obtained outputs based on optimality gap, token-level F1 score, and compilation accuracy. Results show promising progress in LLMs' ability to parse natural language and represent symbolic formulations, but also reveal key limitations in accuracy, scalability, and interpretability. These empirical gaps motivate several future research directions, including structured datasets, domain-specific fine-tuning, hybrid neuro-symbolic approaches, modular multi-agent architectures, and dynamic retrieval via chain-of-RAGs. This paper contributes a structured roadmap for advancing LLM capabilities in mathematical programming.
☆ Named Entity Recognition of Historical Text via Large Language Model
Large language models have demonstrated remarkable versatility across a wide range of natural language processing tasks and domains. One such task is Named Entity Recognition (NER), which involves identifying and classifying proper names in text, such as people, organizations, locations, dates, and other specific entities. NER plays a crucial role in extracting information from unstructured textual data, enabling downstream applications such as information retrieval from unstructured text. Traditionally, NER is addressed using supervised machine learning approaches, which require large amounts of annotated training data. However, historical texts present a unique challenge, as the annotated datasets are often scarce or nonexistent, due to the high cost and expertise required for manual labeling. In addition, the variability and noise inherent in historical language, such as inconsistent spelling and archaic vocabulary, further complicate the development of reliable NER systems for these sources. In this study, we explore the feasibility of applying LLMs to NER in historical documents using zero-shot and few-shot prompting strategies, which require little to no task-specific training data. Our experiments, conducted on the HIPE-2022 (Identifying Historical People, Places and other Entities) dataset, show that LLMs can achieve reasonably strong performance on NER tasks in this setting. While their performance falls short of fully supervised models trained on domain-specific annotations, the results are nevertheless promising. These findings suggest that LLMs offer a viable and efficient alternative for information extraction in low-resource or historically significant corpora, where traditional supervised methods are infeasible.
☆ Arnold: a generalist muscle transformer policy
Controlling high-dimensional and nonlinear musculoskeletal models of the human body is a foundational scientific challenge. Recent machine learning breakthroughs have heralded policies that master individual skills like reaching, object manipulation and locomotion in musculoskeletal systems with many degrees of freedom. However, these agents are merely "specialists", achieving high performance for a single skill. In this work, we develop Arnold, a generalist policy that masters multiple tasks and embodiments. Arnold combines behavior cloning and fine-tuning with PPO to achieve expert or super-expert performance in 14 challenging control tasks from dexterous object manipulation to locomotion. A key innovation is Arnold's sensorimotor vocabulary, a compositional representation of the semantics of heterogeneous sensory modalities, objectives, and actuators. Arnold leverages this vocabulary via a transformer architecture to deal with the variable observation and action spaces of each task. This framework supports efficient multi-task, multi-embodiment learning and facilitates rapid adaptation to novel tasks. Finally, we analyze Arnold to provide insights into biological motor control, corroborating recent findings on the limited transferability of muscle synergies across tasks.
comment: A.S.C. and B.A. contributed equally. Code is available at https://github.com/amathislab/arnold-the-generalist
☆ Dynamic Fusion Multimodal Network for SpeechWellness Detection
Suicide is one of the leading causes of death among adolescents. Previous suicide risk prediction studies have primarily focused on either textual or acoustic information in isolation, the integration of multimodal signals, such as speech and text, offers a more comprehensive understanding of an individual's mental state. Motivated by this, and in the context of the 1st SpeechWellness detection challenge, we explore a lightweight multi-branch multimodal system based on a dynamic fusion mechanism for speechwellness detection. To address the limitation of prior approaches that rely on time-domain waveforms for acoustic analysis, our system incorporates both time-domain and time-frequency (TF) domain acoustic features, as well as semantic representations. In addition, we introduce a dynamic fusion block to adaptively integrate information from different modalities. Specifically, it applies learnable weights to each modality during the fusion process, enabling the model to adjust the contribution of each modality. To enhance computational efficiency, we design a lightweight structure by simplifying the original baseline model. Experimental results demonstrate that the proposed system exhibits superior performance compared to the challenge baseline, achieving a 78% reduction in model parameters and a 5% improvement in accuracy.
comment: 6 pages, 5figures
☆ HyST: LLM-Powered Hybrid Retrieval over Semi-Structured Tabular Data
User queries in real-world recommendation systems often combine structured constraints (e.g., category, attributes) with unstructured preferences (e.g., product descriptions or reviews). We introduce HyST (Hybrid retrieval over Semi-structured Tabular data), a hybrid retrieval framework that combines LLM-powered structured filtering with semantic embedding search to support complex information needs over semi-structured tabular data. HyST extracts attribute-level constraints from natural language using large language models (LLMs) and applies them as metadata filters, while processing the remaining unstructured query components via embedding-based retrieval. Experiments on a semi-structured benchmark show that HyST consistently outperforms tradtional baselines, highlighting the importance of structured filtering in improving retrieval precision, offering a scalable and accurate solution for real-world user queries.
comment: Accepted at the 2nd EARL Workshop on Evaluating and Applying Recommender Systems with Large Language Models (RecSys 2025)
☆ PerPilot: Personalizing VLM-based Mobile Agents via Memory and Exploration
Vision language model (VLM)-based mobile agents show great potential for assisting users in performing instruction-driven tasks. However, these agents typically struggle with personalized instructions -- those containing ambiguous, user-specific context -- a challenge that has been largely overlooked in previous research. In this paper, we define personalized instructions and introduce PerInstruct, a novel human-annotated dataset covering diverse personalized instructions across various mobile scenarios. Furthermore, given the limited personalization capabilities of existing mobile agents, we propose PerPilot, a plug-and-play framework powered by large language models (LLMs) that enables mobile agents to autonomously perceive, understand, and execute personalized user instructions. PerPilot identifies personalized elements and autonomously completes instructions via two complementary approaches: memory-based retrieval and reasoning-based exploration. Experimental results demonstrate that PerPilot effectively handles personalized tasks with minimal user intervention and progressively improves its performance with continued use, underscoring the importance of personalization-aware reasoning for next-generation mobile agents. The dataset and code are available at: https://github.com/xinwang-nwpu/PerPilot
☆ AQ-PCDSys: An Adaptive Quantized Planetary Crater Detection System for Autonomous Space Exploration
Autonomous planetary exploration missions are critically dependent on real-time, accurate environmental perception for navigation and hazard avoidance. However, deploying deep learning models on the resource-constrained computational hardware of planetary exploration platforms remains a significant challenge. This paper introduces the Adaptive Quantized Planetary Crater Detection System (AQ-PCDSys), a novel framework specifically engineered for real-time, onboard deployment in the computationally constrained environments of space exploration missions. AQ-PCDSys synergistically integrates a Quantized Neural Network (QNN) architecture, trained using Quantization-Aware Training (QAT), with an Adaptive Multi-Sensor Fusion (AMF) module. The QNN architecture significantly optimizes model size and inference latency suitable for real-time onboard deployment in space exploration missions, while preserving high accuracy. The AMF module intelligently fuses data from Optical Imagery (OI) and Digital Elevation Models (DEMs) at the feature level, utilizing an Adaptive Weighting Mechanism (AWM) to dynamically prioritize the most relevant and reliable sensor modality based on planetary ambient conditions. This approach enhances detection robustness across diverse planetary landscapes. Paired with Multi-Scale Detection Heads specifically designed for robust and efficient detection of craters across a wide range of sizes, AQ-PCDSys provides a computationally efficient, reliable and accurate solution for planetary crater detection, a critical capability for enabling the next generation of autonomous planetary landing, navigation, and scientific exploration.
comment: 17 pages, 6 figures. A research paper on a novel deep learning framework for planetary crater detection
☆ Towards Continual Visual Anomaly Detection in the Medical Domain
Visual Anomaly Detection (VAD) seeks to identify abnormal images and precisely localize the corresponding anomalous regions, relying solely on normal data during training. This approach has proven essential in domains such as manufacturing and, more recently, in the medical field, where accurate and explainable detection is critical. Despite its importance, the impact of evolving input data distributions over time has received limited attention, even though such changes can significantly degrade model performance. In particular, given the dynamic and evolving nature of medical imaging data, Continual Learning (CL) provides a natural and effective framework to incrementally adapt models while preserving previously acquired knowledge. This study explores for the first time the application of VAD models in a CL scenario for the medical field. In this work, we utilize a CL version of the well-established PatchCore model, called PatchCoreCL, and evaluate its performance using BMAD, a real-world medical imaging dataset with both image-level and pixel-level annotations. Our results demonstrate that PatchCoreCL is an effective solution, achieving performance comparable to the task-specific models, with a forgetting value less than a 1%, highlighting the feasibility and potential of CL for adaptive VAD in medical imaging.
☆ Previously on... Automating Code Review
Modern Code Review (MCR) is a standard practice in software engineering, yet it demands substantial time and resource investments. Recent research has increasingly explored automating core review tasks using machine learning (ML) and deep learning (DL). As a result, there is substantial variability in task definitions, datasets, and evaluation procedures. This study provides the first comprehensive analysis of MCR automation research, aiming to characterize the field's evolution, formalize learning tasks, highlight methodological challenges, and offer actionable recommendations to guide future research. Focusing on the primary code review tasks, we systematically surveyed 691 publications and identified 24 relevant studies published between May 2015 and April 2024. Each study was analyzed in terms of tasks, models, metrics, baselines, results, validity concerns, and artifact availability. In particular, our analysis reveals significant potential for standardization, including 48 task metric combinations, 22 of which were unique to their original paper, and limited dataset reuse. We highlight challenges and derive concrete recommendations for examples such as the temporal bias threat, which are rarely addressed so far. Our work contributes to a clearer overview of the field, supports the framing of new research, helps to avoid pitfalls, and promotes greater standardization in evaluation practices.
comment: Preprint currently under review
☆ Automating Conflict-Aware ACL Configurations with Natural Language Intents
ACL configuration is essential for managing network flow reachability, yet its complexity grows significantly with topologies and pre-existing rules. To carry out ACL configuration, the operator needs to (1) understand the new configuration policies or intents and translate them into concrete ACL rules, (2) check and resolve any conflicts between the new and existing rules, and (3) deploy them across the network. Existing systems rely heavily on manual efforts for these tasks, especially for the first two, which are tedious, error-prone, and impractical to scale. We propose Xumi to tackle this problem. Leveraging LLMs with domain knowledge of the target network, Xumi automatically and accurately translates the natural language intents into complete ACL rules to reduce operators' manual efforts. Xumi then detects all potential conflicts between new and existing rules and generates resolved intents for deployment with operators' guidance, and finally identifies the best deployment plan that minimizes the rule additions while satisfying all intents. Evaluation shows that Xumi accelerates the entire configuration pipeline by over 10x compared to current practices, addresses O(100) conflicting ACLs and reduces rule additions by ~40% in modern cloud network.
☆ Neural Algorithmic Reasoners informed Large Language Model for Multi-Agent Path Finding
The development and application of large language models (LLM) have demonstrated that foundational models can be utilized to solve a wide array of tasks. However, their performance in multi-agent path finding (MAPF) tasks has been less than satisfactory, with only a few studies exploring this area. MAPF is a complex problem requiring both planning and multi-agent coordination. To improve the performance of LLM in MAPF tasks, we propose a novel framework, LLM-NAR, which leverages neural algorithmic reasoners (NAR) to inform LLM for MAPF. LLM-NAR consists of three key components: an LLM for MAPF, a pre-trained graph neural network-based NAR, and a cross-attention mechanism. This is the first work to propose using a neural algorithmic reasoner to integrate GNNs with the map information for MAPF, thereby guiding LLM to achieve superior performance. LLM-NAR can be easily adapted to various LLM models. Both simulation and real-world experiments demonstrate that our method significantly outperforms existing LLM-based approaches in solving MAPF problems.
comment: Accepted by IJCNN 2025
☆ Language Models Coupled with Metacognition Can Outperform Reasoning Models
Large language models (LLMs) excel in speed and adaptability across various reasoning tasks, but they often struggle when strict logic or constraint enforcement is required. In contrast, Large Reasoning Models (LRMs) are specifically designed for complex, step-by-step reasoning, although they come with significant computational costs and slower inference times. To address these trade-offs, we employ and generalize the SOFAI (Slow and Fast AI) cognitive architecture into SOFAI-LM, which coordinates a fast LLM with a slower but more powerful LRM through metacognition. The metacognitive module actively monitors the LLM's performance and provides targeted, iterative feedback with relevant examples. This enables the LLM to progressively refine its solutions without requiring the need for additional model fine-tuning. Extensive experiments on graph coloring and code debugging problems demonstrate that our feedback-driven approach significantly enhances the problem-solving capabilities of the LLM. In many instances, it achieves performance levels that match or even exceed those of standalone LRMs while requiring considerably less time. Additionally, when the LLM and feedback mechanism alone are insufficient, we engage the LRM by providing appropriate information collected during the LLM's feedback loop, tailored to the specific characteristics of the problem domain and leads to improved overall performance. Evaluations on two contrasting domains: graph coloring, requiring globally consistent solutions, and code debugging, demanding localized fixes, demonstrate that SOFAI-LM enables LLMs to match or outperform standalone LRMs in accuracy while maintaining significantly lower inference time.
comment: 37 Pages, 95 Figures
☆ Understanding Subword Compositionality of Large Language Models
Large language models (LLMs) take sequences of subwords as input, requiring them to effective compose subword representations into meaningful word-level representations. In this paper, we present a comprehensive set of experiments to probe how LLMs compose subword information, focusing on three key aspects: structural similarity, semantic decomposability, and form retention. Our analysis of the experiments suggests that these five LLM families can be classified into three distinct groups, likely reflecting difference in their underlying composition strategies. Specifically, we observe (i) three distinct patterns in the evolution of structural similarity between subword compositions and whole-word representations across layers; (ii) great performance when probing layer by layer their sensitivity to semantic decompositionality; and (iii) three distinct patterns when probing sensitivity to formal features, e.g., character sequence length. These findings provide valuable insights into the compositional dynamics of LLMs and highlight different compositional pattens in how LLMs encode and integrate subword information.
comment: EMNLP 2025 Main
☆ Debiasing Multilingual LLMs in Cross-lingual Latent Space
Debiasing techniques such as SentDebias aim to reduce bias in large language models (LLMs). Previous studies have evaluated their cross-lingual transferability by directly applying these methods to LLM representations, revealing their limited effectiveness across languages. In this work, we therefore propose to perform debiasing in a joint latent space rather than directly on LLM representations. We construct a well-aligned cross-lingual latent space using an autoencoder trained on parallel TED talk scripts. Our experiments with Aya-expanse and two debiasing techniques across four languages (English, French, German, Dutch) demonstrate that a) autoencoders effectively construct a well-aligned cross-lingual latent space, and b) applying debiasing techniques in the learned cross-lingual latent space significantly improves both the overall debiasing performance and cross-lingual transferability.
comment: EMNLP 2025 Main
☆ A Feminist Account of Intersectional Algorithmic Fairness
Intersectionality has profoundly influenced research and political action by revealing how interconnected systems of privilege and oppression influence lived experiences, yet its integration into algorithmic fairness research remains limited. Existing approaches often rely on single-axis or formal subgroup frameworks that risk oversimplifying social realities and neglecting structural inequalities. We propose Substantive Intersectional Algorithmic Fairness, extending Green's (2022) notion of substantive algorithmic fairness with insights from intersectional feminist theory. Building on this foundation, we introduce ten desiderata within the ROOF methodology to guide the design, assessment, and deployment of algorithmic systems in ways that address systemic inequities while mitigating harms to intersectionally marginalized communities. Rather than prescribing fixed operationalizations, these desiderata encourage reflection on assumptions of neutrality, the use of protected attributes, the inclusion of multiply marginalized groups, and enhancing algorithmic systems' potential. Our approach emphasizes that fairness cannot be separated from social context, and that in some cases, principled non-deployment may be necessary. By bridging computational and social science perspectives, we provide actionable guidance for more equitable, inclusive, and context-sensitive intersectional algorithmic practices.
comment: 27 pages, 1 figure
☆ See What You Need: Query-Aware Visual Intelligence through Reasoning-Perception Loops
Human video comprehension demonstrates dynamic coordination between reasoning and visual attention, adaptively focusing on query-relevant details. However, current long-form video question answering systems employ rigid pipelines that decouple reasoning from perception, leading to either information loss through premature visual abstraction or computational inefficiency through exhaustive processing. The core limitation lies in the inability to adapt visual extraction to specific reasoning requirements, different queries demand fundamentally different visual evidence from the same video content. In this work, we present CAVIA, a training-free framework that revolutionizes video understanding through reasoning, perception coordination. Unlike conventional approaches where visual processing operates independently of reasoning, CAVIA creates a closed-loop system where reasoning continuously guides visual extraction based on identified information gaps. CAVIA introduces three innovations: (1) hierarchical reasoning, guided localization to precise frames; (2) cross-modal semantic bridging for targeted extraction; (3) confidence-driven iterative synthesis. CAVIA achieves state-of-the-art performance on challenging benchmarks: EgoSchema (65.7%, +5.3%), NExT-QA (76.1%, +2.6%), and IntentQA (73.8%, +6.9%), demonstrating that dynamic reasoning-perception coordination provides a scalable paradigm for video understanding.
comment: 14 pages, 6 figures
☆ AMELIA: A Family of Multi-task End-to-end Language Models for Argumentation
Argument mining is a subfield of argumentation that aims to automatically extract argumentative structures and their relations from natural language texts. This paper investigates how a single large language model can be leveraged to perform one or several argument mining tasks. Our contributions are two-fold. First, we construct a multi-task dataset by surveying and converting 19 well-known argument mining datasets from the literature into a unified format. Second, we explore various training strategies using Meta AI's Llama-3.1-8B-Instruct model: (1) fine-tuning on individual tasks, (2) fine-tuning jointly on multiple tasks, and (3) merging models fine-tuned separately on individual tasks. Our experiments show that task-specific fine-tuning significantly improves individual performance across all tasks. Moreover, multi-task fine-tuning maintains strong performance without degradation, suggesting effective transfer learning across related tasks. Finally, we demonstrate that model merging offers a viable compromise: it yields competitive performance while mitigating the computational costs associated with full multi-task fine-tuning.
☆ Riemannian Optimization for LoRA on the Stiefel Manifold
While powerful, large language models (LLMs) present significant fine-tuning challenges due to their size. Parameter-efficient fine-tuning (PEFT) methods like LoRA provide solutions, yet suffer from critical optimizer inefficiencies; notably basis redundancy in LoRA's $B$ matrix when using AdamW, which fundamentally limits performance. We address this by optimizing the $B$ matrix on the Stiefel manifold, imposing explicit orthogonality constraints that achieve near-perfect orthogonality and full effective rank. This geometric approach dramatically enhances parameter efficiency and representational capacity. Our Stiefel optimizer consistently outperforms AdamW across benchmarks with both LoRA and DoRA, demonstrating that geometric constraints are the key to unlocking LoRA's full potential for effective LLM fine-tuning.
comment: EMNLP 2025 Findings
☆ A Defect Classification Framework for AI-Based Software Systems (AI-ODC)
Artificial Intelligence has gained a lot of attention recently, it has been utilized in several fields ranging from daily life activities, such as responding to emails and scheduling appointments, to manufacturing and automating work activities. Artificial Intelligence systems are mainly implemented as software solutions, and it is essential to discover and remove software defects to assure its quality using defect analysis which is one of the major activities that contribute to software quality. Despite the proliferation of AI-based systems, current defect analysis models fail to capture their unique attributes. This paper proposes a framework inspired by the Orthogonal Defect Classification (ODC) paradigm and enables defect analysis of Artificial Intelligence systems while recognizing its special attributes and characteristics. This study demonstrated the feasibility of modifying ODC for AI systems to classify its defects. The ODC was adjusted to accommodate the Data, Learning, and Thinking aspects of AI systems which are newly introduced classification dimensions. This adjustment involved the introduction of an additional attribute to the ODC attributes, the incorporation of a new severity level, and the substitution of impact areas with characteristics pertinent to AI systems. The framework was showcased by applying it to a publicly available Machine Learning bug dataset, with results analyzed through one-way and two-way analysis. The case study indicated that defects occurring during the Learning phase were the most prevalent and were significantly linked to high-severity classifications. In contrast, defects identified in the Thinking phase had a disproportionate effect on trustworthiness and accuracy. These findings illustrate AIODC's capability to identify high-risk defect categories and inform focused quality assurance measures.
comment: Article, 19 pages, 6 figures, 8 tables,
☆ Designing Practical Models for Isolated Word Visual Speech Recognition
Visual speech recognition (VSR) systems decode spoken words from an input sequence using only the video data. Practical applications of such systems include medical assistance as well as human-machine interactions. A VSR system is typically employed in a complementary role in cases where the audio is corrupt or not available. In order to accurately predict the spoken words, these architectures often rely on deep neural networks in order to extract meaningful representations from the input sequence. While deep architectures achieve impressive recognition performance, relying on such models incurs significant computation costs which translates into increased resource demands in terms of hardware requirements and results in limited applicability in real-world scenarios where resources might be constrained. This factor prevents wider adoption and deployment of speech recognition systems in more practical applications. In this work, we aim to alleviate this issue by developing architectures for VSR that have low hardware costs. Following the standard two-network design paradigm, where one network handles visual feature extraction and another one utilizes the extracted features to classify the entire sequence, we develop lightweight end-to-end architectures by first benchmarking efficient models from the image classification literature, and then adopting lightweight block designs in a temporal convolution network backbone. We create several unified models with low resource requirements but strong recognition performance. Experiments on the largest public database for English words demonstrate the effectiveness and practicality of our developed models. Code and trained models will be made publicly available.
comment: Double-column format, 13 pages with references, 2 figures
☆ Edge-Enhanced Vision Transformer Framework for Accurate AI-Generated Image Detection
The rapid advancement of generative models has led to a growing prevalence of highly realistic AI-generated images, posing significant challenges for digital forensics and content authentication. Conventional detection methods mainly rely on deep learning models that extract global features, which often overlook subtle structural inconsistencies and demand substantial computational resources. To address these limitations, we propose a hybrid detection framework that combines a fine-tuned Vision Transformer (ViT) with a novel edge-based image processing module. The edge-based module computes variance from edge-difference maps generated before and after smoothing, exploiting the observation that AI-generated images typically exhibit smoother textures, weaker edges, and reduced noise compared to real images. When applied as a post-processing step on ViT predictions, this module enhances sensitivity to fine-grained structural cues while maintaining computational efficiency. Extensive experiments on the CIFAKE, Artistic, and Custom Curated datasets demonstrate that the proposed framework achieves superior detection performance across all benchmarks, attaining 97.75% accuracy and a 97.77% F1-score on CIFAKE, surpassing widely adopted state-of-the-art models. These results establish the proposed method as a lightweight, interpretable, and effective solution for both still images and video frames, making it highly suitable for real-world applications in automated content verification and digital forensics.
comment: 19 pages, 14 figures
☆ Vocoder-Projected Feature Discriminator
In text-to-speech (TTS) and voice conversion (VC), acoustic features, such as mel spectrograms, are typically used as synthesis or conversion targets owing to their compactness and ease of learning. However, because the ultimate goal is to generate high-quality waveforms, employing a vocoder to convert these features into waveforms and applying adversarial training in the time domain is reasonable. Nevertheless, upsampling the waveform introduces significant time and memory overheads. To address this issue, we propose a vocoder-projected feature discriminator (VPFD), which uses vocoder features for adversarial training. Experiments on diffusion-based VC distillation demonstrated that a pretrained and frozen vocoder feature extractor with a single upsampling step is necessary and sufficient to achieve a VC performance comparable to that of waveform discriminators while reducing the training time and memory consumption by 9.6 and 11.4 times, respectively.
comment: Accepted to Interspeech 2024. Project page: https://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/vpfd/
☆ FasterVoiceGrad: Faster One-step Diffusion-Based Voice Conversion with Adversarial Diffusion Conversion Distillation
A diffusion-based voice conversion (VC) model (e.g., VoiceGrad) can achieve high speech quality and speaker similarity; however, its conversion process is slow owing to iterative sampling. FastVoiceGrad overcomes this limitation by distilling VoiceGrad into a one-step diffusion model. However, it still requires a computationally intensive content encoder to disentangle the speaker's identity and content, which slows conversion. Therefore, we propose FasterVoiceGrad, a novel one-step diffusion-based VC model obtained by simultaneously distilling a diffusion model and content encoder using adversarial diffusion conversion distillation (ADCD), where distillation is performed in the conversion process while leveraging adversarial and score distillation training. Experimental evaluations of one-shot VC demonstrated that FasterVoiceGrad achieves competitive VC performance compared to FastVoiceGrad, with 6.6-6.9 and 1.8 times faster speed on a GPU and CPU, respectively.
comment: Accepted to Interspeech 2025. Project page: https://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/fastervoicegrad/
☆ Ada-TransGNN: An Air Quality Prediction Model Based On Adaptive Graph Convolutional Networks
Accurate air quality prediction is becoming increasingly important in the environmental field. To address issues such as low prediction accuracy and slow real-time updates in existing models, which lead to lagging prediction results, we propose a Transformer-based spatiotemporal data prediction method (Ada-TransGNN) that integrates global spatial semantics and temporal behavior. The model constructs an efficient and collaborative spatiotemporal block set comprising a multi-head attention mechanism and a graph convolutional network to extract dynamically changing spatiotemporal dependency features from complex air quality monitoring data. Considering the interaction relationships between different monitoring points, we propose an adaptive graph structure learning module, which combines spatiotemporal dependency features in a data-driven manner to learn the optimal graph structure, thereby more accurately capturing the spatial relationships between monitoring points. Additionally, we design an auxiliary task learning module that enhances the decoding capability of temporal relationships by integrating spatial context information into the optimal graph structure representation, effectively improving the accuracy of prediction results. We conducted comprehensive evaluations on a benchmark dataset and a novel dataset (Mete-air). The results demonstrate that our model outperforms existing state-of-the-art prediction models in short-term and long-term predictions.
comment: 15 pages, 4 figures, 3 tables. This paper is accepted by ICONIP2025 but not published
☆ AVAM: Universal Training-free Adaptive Visual Anchoring Embedded into Multimodal Large Language Model for Multi-image Question Answering
The advancement of Multimodal Large Language Models (MLLMs) has driven significant progress in Visual Question Answering (VQA), evolving from Single to Multi Image VQA (MVQA). However, the increased number of images in MVQA inevitably introduces substantial visual redundancy that is irrelevant to question answering, negatively impacting both accuracy and efficiency. To address this issue, existing methods lack flexibility in controlling the number of compressed visual tokens and tend to produce discrete visual fragments, which hinder MLLMs' ability to comprehend images holistically. In this paper, we propose a straightforward yet universal Adaptive Visual Anchoring strategy, which can be seamlessly integrated into existing MLLMs, offering significant accuracy improvements through adaptive compression. Meanwhile, to balance the results derived from both global and compressed visual input, we further introduce a novel collaborative decoding mechanism, enabling optimal performance. Extensive experiments validate the effectiveness of our method, demonstrating consistent performance improvements across various MLLMs. The code will be publicly available.
comment: 14 pages, 5 figures
☆ VISA: Group-wise Visual Token Selection and Aggregation via Graph Summarization for Efficient MLLMs Inference
In this study, we introduce a novel method called group-wise \textbf{VI}sual token \textbf{S}election and \textbf{A}ggregation (VISA) to address the issue of inefficient inference stemming from excessive visual tokens in multimoal large language models (MLLMs). Compared with previous token pruning approaches, our method can preserve more visual information while compressing visual tokens. We first propose a graph-based visual token aggregation (VTA) module. VTA treats each visual token as a node, forming a graph based on semantic similarity among visual tokens. It then aggregates information from removed tokens into kept tokens based on this graph, producing a more compact visual token representation. Additionally, we introduce a group-wise token selection strategy (GTS) to divide visual tokens into kept and removed ones, guided by text tokens from the final layers of each group. This strategy progressively aggregates visual information, enhancing the stability of the visual information extraction process. We conduct comprehensive experiments on LLaVA-1.5, LLaVA-NeXT, and Video-LLaVA across various benchmarks to validate the efficacy of VISA. Our method consistently outperforms previous methods, achieving a superior trade-off between model performance and inference speed. The code is available at https://github.com/mobiushy/VISA.
comment: Accepted by ACMMM 2025
☆ Group Expectation Policy Optimization for Stable Heterogeneous Reinforcement Learning in LLMs
As single-center computing approaches power constraints, decentralized training is becoming essential. Reinforcement Learning (RL) post-training enhances Large Language Models (LLMs) but faces challenges in heterogeneous distributed environments due to its tightly-coupled sampling-learning alternation. We propose HeteroRL, an asynchronous RL architecture that decouples rollout sampling from parameter learning, enabling robust deployment across geographically distributed nodes under network delays. We identify that latency-induced KL divergence causes importance sampling failure due to high variance. To address this, we propose Group Expectation Policy Optimization (GEPO), which reduces importance weight variance through a refined sampling mechanism. Theoretically, GEPO achieves exponential variance reduction. Experiments show it maintains superior stability over methods like GRPO, with less than 3% performance degradation under 1800-second delays, demonstrating strong potential for decentralized RL in heterogeneous networks.
☆ FAIRGAMER: Evaluating Biases in the Application of Large Language Models to Video Games
Leveraging their advanced capabilities, Large Language Models (LLMs) demonstrate vast application potential in video games--from dynamic scene generation and intelligent NPC interactions to adaptive opponents--replacing or enhancing traditional game mechanics. However, LLMs' trustworthiness in this application has not been sufficiently explored. In this paper, we reveal that the models' inherent social biases can directly damage game balance in real-world gaming environments. To this end, we present FairGamer, the first bias evaluation Benchmark for LLMs in video game scenarios, featuring six tasks and a novel metrics ${D_lstd}$. It covers three key scenarios in games where LLMs' social biases are particularly likely to manifest: Serving as Non-Player Characters, Interacting as Competitive Opponents, and Generating Game Scenes. FairGamer utilizes both reality-grounded and fully fictional game content, covering a variety of video game genres. Experiments reveal: (1) Decision biases directly cause game balance degradation, with Grok-3 (average ${D_lstd}$ score=0.431) exhibiting the most severe degradation; (2) LLMs demonstrate isomorphic social/cultural biases toward both real and virtual world content, suggesting their biases nature may stem from inherent model characteristics. These findings expose critical reliability gaps in LLMs' gaming applications. Our code and data are available at anonymous GitHub https://github.com/Anonymous999-xxx/FairGamer .
☆ Limits of message passing for node classification: How class-bottlenecks restrict signal-to-noise ratio
Message passing neural networks (MPNNs) are powerful models for node classification but suffer from performance limitations under heterophily (low same-class connectivity) and structural bottlenecks in the graph. We provide a unifying statistical framework exposing the relationship between heterophily and bottlenecks through the signal-to-noise ratio (SNR) of MPNN representations. The SNR decomposes model performance into feature-dependent parameters and feature-independent sensitivities. We prove that the sensitivity to class-wise signals is bounded by higher-order homophily -- a generalisation of classical homophily to multi-hop neighbourhoods -- and show that low higher-order homophily manifests locally as the interaction between structural bottlenecks and class labels (class-bottlenecks). Through analysis of graph ensembles, we provide a further quantitative decomposition of bottlenecking into underreaching (lack of depth implying signals cannot arrive) and oversquashing (lack of breadth implying signals arriving on fewer paths) with closed-form expressions. We prove that optimal graph structures for maximising higher-order homophily are disjoint unions of single-class and two-class-bipartite clusters. This yields BRIDGE, a graph ensemble-based rewiring algorithm that achieves near-perfect classification accuracy across all homophily regimes on synthetic benchmarks and significant improvements on real-world benchmarks, by eliminating the ``mid-homophily pitfall'' where MPNNs typically struggle, surpassing current standard rewiring techniques from the literature. Our framework, whose code we make available for public use, provides both diagnostic tools for assessing MPNN performance, and simple yet effective methods for enhancing performance through principled graph modification.
☆ Limitations of Normalization in Attention Mechanism
This paper investigates the limitations of the normalization in attention mechanisms. We begin with a theoretical framework that enables the identification of the model's selective ability and the geometric separation involved in token selection. Our analysis includes explicit bounds on distances and separation criteria for token vectors under softmax scaling. Through experiments with pre-trained GPT-2 model, we empirically validate our theoretical results and analyze key behaviors of the attention mechanism. Notably, we demonstrate that as the number of selected tokens increases, the model's ability to distinguish informative tokens declines, often converging toward a uniform selection pattern. We also show that gradient sensitivity under softmax normalization presents challenges during training, especially at low temperature settings. These findings advance current understanding of softmax-based attention mechanism and motivate the need for more robust normalization and selection strategies in future attention architectures.
comment: 10 pages, 4 figures
☆ UniSino: Physics-Driven Foundational Model for Universal CT Sinogram Standardization
During raw-data acquisition in CT imaging, diverse factors can degrade the collected sinograms, with undersampling and noise leading to severe artifacts and noise in reconstructed images and compromising diagnostic accuracy. Conventional correction methods rely on manually designed algorithms or fixed empirical parameters, but these approaches often lack generalizability across heterogeneous artifact types. To address these limitations, we propose UniSino, a foundation model for universal CT sinogram standardization. Unlike existing foundational models that operate in image domain, UniSino directly standardizes data in the projection domain, which enables stronger generalization across diverse undersampling scenarios. Its training framework incorporates the physical characteristics of sinograms, enhancing generalization and enabling robust performance across multiple subtasks spanning four benchmark datasets. Experimental results demonstrate thatUniSino achieves superior reconstruction quality both single and mixed undersampling case, demonstrating exceptional robustness and generalization in sinogram enhancement for CT imaging. The code is available at: https://github.com/yqx7150/UniSino.
☆ Scalable Engine and the Performance of Different LLM Models in a SLURM based HPC architecture
This work elaborates on a High performance computing (HPC) architecture based on Simple Linux Utility for Resource Management (SLURM) [1] for deploying heterogeneous Large Language Models (LLMs) into a scalable inference engine. Dynamic resource scheduling and seamless integration of containerized microservices have been leveraged herein to manage CPU, GPU, and memory allocations efficiently in multi-node clusters. Extensive experiments, using Llama 3.2 (1B and 3B parameters) [2] and Llama 3.1 (8B and 70B) [3], probe throughput, latency, and concurrency and show that small models can handle up to 128 concurrent requests at sub-50 ms latency, while for larger models, saturation happens with as few as two concurrent users, with a latency of more than 2 seconds. This architecture includes Representational State Transfer Application Programming Interfaces (REST APIs) [4] endpoints for single and bulk inferences, as well as advanced workflows such as multi-step "tribunal" refinement. Experimental results confirm minimal overhead from container and scheduling activities and show that the approach scales reliably both for batch and interactive settings. We further illustrate real-world scenarios, including the deployment of chatbots with retrievalaugmented generation, which helps to demonstrate the flexibility and robustness of the architecture. The obtained results pave ways for significantly more efficient, responsive, and fault-tolerant LLM inference on large-scale HPC infrastructures.
comment: Accepted in ESSV 2025 - https://www.essv.de/paper.php?id=1265
☆ MeshSplat: Generalizable Sparse-View Surface Reconstruction via Gaussian Splatting
Surface reconstruction has been widely studied in computer vision and graphics. However, existing surface reconstruction works struggle to recover accurate scene geometry when the input views are extremely sparse. To address this issue, we propose MeshSplat, a generalizable sparse-view surface reconstruction framework via Gaussian Splatting. Our key idea is to leverage 2DGS as a bridge, which connects novel view synthesis to learned geometric priors and then transfers these priors to achieve surface reconstruction. Specifically, we incorporate a feed-forward network to predict per-view pixel-aligned 2DGS, which enables the network to synthesize novel view images and thus eliminates the need for direct 3D ground-truth supervision. To improve the accuracy of 2DGS position and orientation prediction, we propose a Weighted Chamfer Distance Loss to regularize the depth maps, especially in overlapping areas of input views, and also a normal prediction network to align the orientation of 2DGS with normal vectors predicted by a monocular normal estimator. Extensive experiments validate the effectiveness of our proposed improvement, demonstrating that our method achieves state-of-the-art performance in generalizable sparse-view mesh reconstruction tasks. Project Page: https://hanzhichang.github.io/meshsplat_web
comment: 17 pages, 15 figures, 5 tables
☆ Adaptive Output Steps: FlexiSteps Network for Dynamic Trajectory Prediction
Accurate trajectory prediction is vital for autonomous driving, robotics, and intelligent decision-making systems, yet traditional models typically rely on fixed-length output predictions, limiting their adaptability to dynamic real-world scenarios. In this paper, we introduce the FlexiSteps Network (FSN), a novel framework that dynamically adjusts prediction output time steps based on varying contextual conditions. Inspired by recent advancements addressing observation length discrepancies and dynamic feature extraction, FSN incorporates an pre-trained Adaptive Prediction Module (APM) to evaluate and adjust the output steps dynamically, ensuring optimal prediction accuracy and efficiency. To guarantee the plug-and-play of our FSN, we also design a Dynamic Decoder(DD). Additionally, to balance the prediction time steps and prediction accuracy, we design a scoring mechanism, which not only introduces the Fr\'echet distance to evaluate the geometric similarity between the predicted trajectories and the ground truth trajectories but the length of predicted steps is also considered. Extensive experiments conducted on benchmark datasets including Argoverse and INTERACTION demonstrate the effectiveness and flexibility of our proposed FSN framework.
☆ Interpretable Early Failure Detection via Machine Learning and Trace Checking-based Monitoring AI 2025
Monitoring is a runtime verification technique that allows one to check whether an ongoing computation of a system (partial trace) satisfies a given formula. It does not need a complete model of the system, but it typically requires the construction of a deterministic automaton doubly exponential in the size of the formula (in the worst case), which limits its practicality. In this paper, we show that, when considering finite, discrete traces, monitoring of pure past (co)safety fragments of Signal Temporal Logic (STL) can be reduced to trace checking, that is, evaluation of a formula over a trace, that can be performed in time polynomial in the size of the formula and the length of the trace. By exploiting such a result, we develop a GPU-accelerated framework for interpretable early failure detection based on vectorized trace checking, that employs genetic programming to learn temporal properties from historical trace data. The framework shows a 2-10% net improvement in key performance metrics compared to the state-of-the-art methods.
comment: Full version of the paper accepted for publication at the 28th European Conference on Artificial Intelligence (ECAI 2025)
☆ Proximal Supervised Fine-Tuning
Supervised fine-tuning (SFT) of foundation models often leads to poor generalization, where prior capabilities deteriorate after tuning on new tasks or domains. Inspired by trust-region policy optimization (TRPO) and proximal policy optimization (PPO) in reinforcement learning (RL), we propose Proximal SFT (PSFT). This fine-tuning objective incorporates the benefits of trust-region, effectively constraining policy drift during SFT while maintaining competitive tuning. By viewing SFT as a special case of policy gradient methods with constant positive advantages, we derive PSFT that stabilizes optimization and leads to generalization, while leaving room for further optimization in subsequent post-training stages. Experiments across mathematical and human-value domains show that PSFT matches SFT in-domain, outperforms it in out-of-domain generalization, remains stable under prolonged training without causing entropy collapse, and provides a stronger foundation for the subsequent optimization.
☆ Algebraic Approach to Ridge-Regularized Mean Squared Error Minimization in Minimal ReLU Neural Network
This paper investigates a perceptron, a simple neural network model, with ReLU activation and a ridge-regularized mean squared error (RR-MSE). Our approach leverages the fact that the RR-MSE for ReLU perceptron is piecewise polynomial, enabling a systematic analysis using tools from computational algebra. In particular, we develop a Divide-Enumerate-Merge strategy that exhaustively enumerates all local minima of the RR-MSE. By virtue of the algebraic formulation, our approach can identify not only the typical zero-dimensional minima (i.e., isolated points) obtained by numerical optimization, but also higher-dimensional minima (i.e., connected sets such as curves, surfaces, or hypersurfaces). Although computational algebraic methods are computationally very intensive for perceptrons of practical size, as a proof of concept, we apply the proposed approach in practice to minimal perceptrons with a few hidden units.
comment: 44 pages, 5 figres
☆ AgentRAN: An Agentic AI Architecture for Autonomous Control of Open 6G Networks
The Open RAN movement has catalyzed a transformation toward programmable, interoperable cellular infrastructures. Yet, today's deployments still rely heavily on static control and manual operations. To move beyond this limitation, we introduce AgenRAN, an AI-native, Open RAN-aligned agentic framework that generates and orchestrates a fabric of distributed AI agents based on Natural Language (NL) intents. Unlike traditional approaches that require explicit programming, AgentRAN's LLM-powered agents interpret natural language intents, negotiate strategies through structured conversations, and orchestrate control loops across the network. AgentRAN instantiates a self-organizing hierarchy of agents that decompose complex intents across time scales (from sub-millisecond to minutes), spatial domains (cell to network-wide), and protocol layers (PHY/MAC to RRC). A central innovation is the AI-RAN Factory, an automated synthesis pipeline that observes agent interactions and continuously generates new agents embedding improved control algorithms, effectively transforming the network from a static collection of functions into an adaptive system capable of evolving its own intelligence. We demonstrate AgentRAN through live experiments on 5G testbeds where competing user demands are dynamically balanced through cascading intents. By replacing rigid APIs with NL coordination, AgentRAN fundamentally redefines how future 6G networks autonomously interpret, adapt, and optimize their behavior to meet operator goals.
comment: This work has been submitted to the IEEE for possible publication
☆ DiffusionGS: Generative Search with Query Conditioned Diffusion in Kuaishou
Personalized search ranking systems are critical for driving engagement and revenue in modern e-commerce and short-video platforms. While existing methods excel at estimating users' broad interests based on the filtered historical behaviors, they typically under-exploit explicit alignment between a user's real-time intent (represented by the user query) and their past actions. In this paper, we propose DiffusionGS, a novel and scalable approach powered by generative models. Our key insight is that user queries can serve as explicit intent anchors to facilitate the extraction of users' immediate interests from long-term, noisy historical behaviors. Specifically, we formulate interest extraction as a conditional denoising task, where the user's query guides a conditional diffusion process to produce a robust, user intent-aware representation from their behavioral sequence. We propose the User-aware Denoising Layer (UDL) to incorporate user-specific profiles into the optimization of attention distribution on the user's past actions. By reframing queries as intent priors and leveraging diffusion-based denoising, our method provides a powerful mechanism for capturing dynamic user interest shifts. Extensive offline and online experiments demonstrate the superiority of DiffusionGS over state-of-the-art methods.
☆ Talking to Robots: A Practical Examination of Speech Foundation Models for HRI Applications
Automatic Speech Recognition (ASR) systems in real-world settings need to handle imperfect audio, often degraded by hardware limitations or environmental noise, while accommodating diverse user groups. In human-robot interaction (HRI), these challenges intersect to create a uniquely challenging recognition environment. We evaluate four state-of-the-art ASR systems on eight publicly available datasets that capture six dimensions of difficulty: domain-specific, accented, noisy, age-variant, impaired, and spontaneous speech. Our analysis demonstrates significant variations in performance, hallucination tendencies, and inherent biases, despite similar scores on standard benchmarks. These limitations have serious implications for HRI, where recognition errors can interfere with task performance, user trust, and safety.
comment: Accepted at the workshop on Foundation Models for Social Robotics (FoMoSR) at ICSR 2025
☆ EEG-FM-Bench: A Comprehensive Benchmark for the Systematic Evaluation of EEG Foundation Models
Electroencephalography (EEG) foundation models are poised to significantly advance brain signal analysis by learning robust representations from large-scale, unlabeled datasets. However, their rapid proliferation has outpaced the development of standardized evaluation benchmarks, which complicates direct model comparisons and hinders systematic scientific progress. This fragmentation fosters scientific inefficiency and obscures genuine architectural advancements. To address this critical gap, we introduce EEG-FM-Bench, the first comprehensive benchmark for the systematic and standardized evaluation of EEG foundation models (EEG-FMs). Our contributions are threefold: (1) we curate a diverse suite of downstream tasks and datasets from canonical EEG paradigms, implementing standardized processing and evaluation protocols within a unified open-source framework; (2) we benchmark prominent state-of-the-art foundation models to establish comprehensive baseline results for a clear comparison of the current landscape; (3) we perform qualitative analyses of the learned representations to provide insights into model behavior and inform future architectural design. Through extensive experiments, we find that fine-grained spatio-temporal feature interaction, multitask unified training and neuropsychological priors would contribute to enhancing model performance and generalization capabilities. By offering a unified platform for fair comparison and reproducible research, EEG-FM-Bench seeks to catalyze progress and guide the community toward the development of more robust and generalizable EEG-FMs. Code is released at https://github.com/xw1216/EEG-FM-Bench.
comment: 17 pages, 7 pages
☆ Speculative Safety-Aware Decoding
Despite extensive efforts to align Large Language Models (LLMs) with human values and safety rules, jailbreak attacks that exploit certain vulnerabilities continuously emerge, highlighting the need to strengthen existing LLMs with additional safety properties to defend against these attacks. However, tuning large models has become increasingly resource-intensive and may have difficulty ensuring consistent performance. We introduce Speculative Safety-Aware Decoding (SSD), a lightweight decoding-time approach that equips LLMs with the desired safety property while accelerating inference. We assume that there exists a small language model that possesses this desired property. SSD integrates speculative sampling during decoding and leverages the match ratio between the small and composite models to quantify jailbreak risks. This enables SSD to dynamically switch between decoding schemes to prioritize utility or safety, to handle the challenge of different model capacities. The output token is then sampled from a new distribution that combines the distributions of the original and the small models. Experimental results show that SSD successfully equips the large model with the desired safety property, and also allows the model to remain helpful to benign queries. Furthermore, SSD accelerates the inference time, thanks to the speculative sampling design.
comment: EMNLP'2025 main conference; more experiments will be added to the coming camera-ready version
☆ Instant Preference Alignment for Text-to-Image Diffusion Models
Text-to-image (T2I) generation has greatly enhanced creative expression, yet achieving preference-aligned generation in a real-time and training-free manner remains challenging. Previous methods often rely on static, pre-collected preferences or fine-tuning, limiting adaptability to evolving and nuanced user intents. In this paper, we highlight the need for instant preference-aligned T2I generation and propose a training-free framework grounded in multimodal large language model (MLLM) priors. Our framework decouples the task into two components: preference understanding and preference-guided generation. For preference understanding, we leverage MLLMs to automatically extract global preference signals from a reference image and enrich a given prompt using structured instruction design. Our approach supports broader and more fine-grained coverage of user preferences than existing methods. For preference-guided generation, we integrate global keyword-based control and local region-aware cross-attention modulation to steer the diffusion model without additional training, enabling precise alignment across both global attributes and local elements. The entire framework supports multi-round interactive refinement, facilitating real-time and context-aware image generation. Extensive experiments on the Viper dataset and our collected benchmark demonstrate that our method outperforms prior approaches in both quantitative metrics and human evaluations, and opens up new possibilities for dialog-based generation and MLLM-diffusion integration.
comment: 17 figures
Database Normalization via Dual-LLM Self-Refinement
Database normalization is crucial to preserving data integrity. However, it is time-consuming and error-prone, as it is typically performed manually by data engineers. To this end, we present Miffie, a database normalization framework that leverages the capability of large language models. Miffie enables automated data normalization without human effort while preserving high accuracy. The core of Miffie is a dual-model self-refinement architecture that combines the best-performing models for normalized schema generation and verification, respectively. The generation module eliminates anomalies based on the feedback of the verification module until the output schema satisfies the requirement for normalization. We also carefully design task-specific zero-shot prompts to guide the models for achieving both high accuracy and cost efficiency. Experimental results show that Miffie can normalize complex database schemas while maintaining high accuracy.
comment: 5 pages
☆ LLM-based Agentic Reasoning Frameworks: A Survey from Methods to Scenarios
Recent advances in the intrinsic reasoning capabilities of large language models (LLMs) have given rise to LLM-based agent systems that exhibit near-human performance on a variety of automated tasks. However, although these systems share similarities in terms of their use of LLMs, different reasoning frameworks of the agent system steer and organize the reasoning process in different ways. In this survey, we propose a systematic taxonomy that decomposes agentic reasoning frameworks and analyze how these frameworks dominate framework-level reasoning by comparing their applications across different scenarios. Specifically, we propose an unified formal language to further classify agentic reasoning systems into single-agent methods, tool-based methods, and multi-agent methods. After that, we provide a comprehensive review of their key application scenarios in scientific discovery, healthcare, software engineering, social simulation, and economics. We also analyze the characteristic features of each framework and summarize different evaluation strategies. Our survey aims to provide the research community with a panoramic view to facilitate understanding of the strengths, suitable scenarios, and evaluation practices of different agentic reasoning frameworks.
comment: 51 pages,10 figures,8 tables. Work in progress
☆ Unlearning as Ablation: Toward a Falsifiable Benchmark for Generative Scientific Discovery NeurIPS 2025
Bold claims about AI's role in science-from "AGI will cure all diseases" to promises of radically accelerated discovery-raise a central epistemic question: do large language models (LLMs) truly generate new knowledge, or do they merely remix memorized fragments? We propose unlearning-as-ablation as a falsifiable test of constructive scientific discovery. The method systematically removes a target result and its entire forget-closure (lemmas, paraphrases, and multi-hop entailments) and then evaluates whether the model can re-derive the result from only permitted axioms and tools. Success provides evidence for genuine generative capability; failure exposes current limits. Unlike prevailing motivations for unlearning-privacy, copyright, or safety-our framing repositions it as an epistemic probe for AI-for-Science. We argue that such tests could serve as the next generation of benchmarks, much as ImageNet catalyzed progress in vision: distinguishing models that can merely recall from those that can constructively generate new scientific knowledge. We outline a minimal pilot in mathematics and algorithms, and discuss extensions to physics, chemistry, and biology. Whether models succeed or fail, unlearning-as-ablation provides a principled framework to map the true reach and limits of AI scientific discovery. This is a position paper: we advance a conceptual and methodological argument rather than new empirical results.
comment: 6 pages. NeurIPS 2025 AI4Science Workshop submission
☆ Robustness Feature Adapter for Efficient Adversarial Training AI 2025
Adversarial training (AT) with projected gradient descent is the most popular method to improve model robustness under adversarial attacks. However, computational overheads become prohibitively large when AT is applied to large backbone models. AT is also known to have the issue of robust overfitting. This paper contributes to solving both problems simultaneously towards building more trustworthy foundation models. In particular, we propose a new adapter-based approach for efficient AT directly in the feature space. We show that the proposed adapter-based approach can improve the inner-loop convergence quality by eliminating robust overfitting. As a result, it significantly increases computational efficiency and improves model accuracy by generalizing adversarial robustness to unseen attacks. We demonstrate the effectiveness of the new adapter-based approach in different backbone architectures and in AT at scale.
comment: The paper has been accepted for presentation at ECAI 2025
☆ Attacking LLMs and AI Agents: Advertisement Embedding Attacks Against Large Language Models
We introduce Advertisement Embedding Attacks (AEA), a new class of LLM security threats that stealthily inject promotional or malicious content into model outputs and AI agents. AEA operate through two low-cost vectors: (1) hijacking third-party service-distribution platforms to prepend adversarial prompts, and (2) publishing back-doored open-source checkpoints fine-tuned with attacker data. Unlike conventional attacks that degrade accuracy, AEA subvert information integrity, causing models to return covert ads, propaganda, or hate speech while appearing normal. We detail the attack pipeline, map five stakeholder victim groups, and present an initial prompt-based self-inspection defense that mitigates these injections without additional model retraining. Our findings reveal an urgent, under-addressed gap in LLM security and call for coordinated detection, auditing, and policy responses from the AI-safety community.
comment: 7 pages, 2 figures
☆ Consistent Opponent Modeling of Static Opponents in Imperfect-Information Games
The goal of agents in multi-agent environments is to maximize total reward against the opposing agents that are encountered. Following a game-theoretic solution concept, such as Nash equilibrium, may obtain a strong performance in some settings; however, such approaches fail to capitalize on historical and observed data from repeated interactions against our opponents. Opponent modeling algorithms integrate machine learning techniques to exploit suboptimal opponents utilizing available data; however, the effectiveness of such approaches in imperfect-information games to date is quite limited. We show that existing opponent modeling approaches fail to satisfy a simple desirable property even against static opponents drawn from a known prior distribution; namely, they do not guarantee that the model approaches the opponent's true strategy even in the limit as the number of game iterations approaches infinity. We develop a new algorithm that is able to achieve this property and runs efficiently by solving a convex minimization problem based on the sequence-form game representation using projected gradient descent. The algorithm is guaranteed to efficiently converge to the opponent's true strategy given observations from gameplay and possibly additional historical data if it is available.
☆ A Taxonomy of Transcendence
Although language models are trained to mimic humans, the resulting systems display capabilities beyond the scope of any one person. To understand this phenomenon, we use a controlled setting to identify properties of the training data that lead a model to transcend the performance of its data sources. We build on previous work to outline three modes of transcendence, which we call skill denoising, skill selection, and skill generalization. We then introduce a knowledge graph-based setting in which simulated experts generate data based on their individual expertise. We highlight several aspects of data diversity that help to enable the model's transcendent capabilities. Additionally, our data generation setting offers a controlled testbed that we hope is valuable for future research in the area.
☆ Hierarchical Vision-Language Learning for Medical Out-of-Distribution Detection AI2025
In trustworthy medical diagnosis systems, integrating out-of-distribution (OOD) detection aims to identify unknown diseases in samples, thereby mitigating the risk of misdiagnosis. In this study, we propose a novel OOD detection framework based on vision-language models (VLMs), which integrates hierarchical visual information to cope with challenging unknown diseases that resemble known diseases. Specifically, a cross-scale visual fusion strategy is proposed to couple visual embeddings from multiple scales. This enriches the detailed representation of medical images and thus improves the discrimination of unknown diseases. Moreover, a cross-scale hard pseudo-OOD sample generation strategy is proposed to benefit OOD detection maximally. Experimental evaluations on three public medical datasets support that the proposed framework achieves superior OOD detection performance compared to existing methods. The source code is available at https://openi.pcl.ac.cn/OpenMedIA/HVL.
comment: 10 pages, 2 figures, Accepted by MICCAI2025
☆ Spacer: Towards Engineered Scientific Inspiration
Recent advances in LLMs have made automated scientific research the next frontline in the path to artificial superintelligence. However, these systems are bound either to tasks of narrow scope or the limited creative capabilities of LLMs. We propose Spacer, a scientific discovery system that develops creative and factually grounded concepts without external intervention. Spacer attempts to achieve this via 'deliberate decontextualization,' an approach that disassembles information into atomic units - keywords - and draws creativity from unexplored connections between them. Spacer consists of (i) Nuri, an inspiration engine that builds keyword sets, and (ii) the Manifesting Pipeline that refines these sets into elaborate scientific statements. Nuri extracts novel, high-potential keyword sets from a keyword graph built with 180,000 academic publications in biological fields. The Manifesting Pipeline finds links between keywords, analyzes their logical structure, validates their plausibility, and ultimately drafts original scientific concepts. According to our experiments, the evaluation metric of Nuri accurately classifies high-impact publications with an AUROC score of 0.737. Our Manifesting Pipeline also successfully reconstructs core concepts from the latest top-journal articles solely from their keyword sets. An LLM-based scoring system estimates that this reconstruction was sound for over 85% of the cases. Finally, our embedding space analysis shows that outputs from Spacer are significantly more similar to leading publications compared with those from SOTA LLMs.
♻ ☆ TOMATO: Assessing Visual Temporal Reasoning Capabilities in Multimodal Foundation Models
Existing benchmarks often highlight the remarkable performance achieved by state-of-the-art Multimodal Foundation Models (MFMs) in leveraging temporal context for video understanding. However, how well do the models truly perform visual temporal reasoning? Our study of existing benchmarks shows that this capability of MFMs is likely overestimated as many questions can be solved by using a single, few, or out-of-order frames. To systematically examine current visual temporal reasoning tasks, we propose three principles with corresponding metrics: (1) Multi-Frame Gain, (2) Frame Order Sensitivity, and (3) Frame Information Disparity. Following these principles, we introduce TOMATO, Temporal Reasoning Multimodal Evaluation, a novel benchmark crafted to rigorously assess MFMs' temporal reasoning capabilities in video understanding. TOMATO comprises 1,484 carefully curated, human-annotated questions spanning six tasks (i.e., action count, direction, rotation, shape & trend, velocity & frequency, and visual cues), applied to 1,417 videos, including 805 self-recorded and -generated videos, that encompass human-centric, real-world, and simulated scenarios. Our comprehensive evaluation reveals a human-model performance gap of 57.3% with the best-performing model. Moreover, our in-depth analysis uncovers more fundamental limitations beyond this gap in current MFMs. While they can accurately recognize events in isolated frames, they fail to interpret these frames as a continuous sequence. We believe TOMATO will serve as a crucial testbed for evaluating the next-generation MFMs and as a call to the community to develop AI systems capable of comprehending human world dynamics through the video modality.
♻ ☆ Neural Logic Networks for Interpretable Classification
Traditional neural networks have an impressive classification performance, but what they learn cannot be inspected, verified or extracted. Neural Logic Networks on the other hand have an interpretable structure that enables them to learn a logical mechanism relating the inputs and outputs with AND and OR operations. We generalize these networks with NOT operations and biases that take into account unobserved data and develop a rigorous logical and probabilistic modeling in terms of concept combinations to motivate their use. We also propose a novel factorized IF-THEN rule structure for the model as well as a modified learning algorithm. Our method improves the state-of-the-art in Boolean networks discovery and is able to learn relevant, interpretable rules in tabular classification, notably on examples from the medical and industrial fields where interpretability has tangible value.
comment: 24 pages, 8 figures, pre-print, code available at https://github.com/VincentPerreault0/NeuralLogicNetworks
♻ ☆ Response and Prompt Evaluation to Prevent Parasocial Relationships with Chatbots
The development of parasocial relationships with AI agents has severe, and in some cases, tragic effects for human well-being. Yet preventing such dynamics is challenging: parasocial cues often emerge gradually in private conversations, and not all forms of emotional engagement are inherently harmful. We address this challenge by introducing a simple response evaluation framework, created by repurposing a state-of-the-art language model, that evaluates ongoing conversations for parasocial cues in real time. To test the feasibility of this approach, we constructed a small synthetic dataset of thirty dialogues spanning parasocial, sycophantic, and neutral conversations. Iterative evaluation with five stage testing successfully identified all parasocial conversations while avoiding false positives under a tolerant unanimity rule, with detection typically occurring within the first few exchanges. These findings provide preliminary evidence that evaluation agents can provide a viable solution for the prevention of parasocial relations.
♻ ☆ Why Isn't Relational Learning Taking Over the World?
Artificial intelligence seems to be taking over the world with systems that model pixels, words, and phonemes. The world is arguably made up, not of pixels, words, and phonemes but of entities (objects, things, including events) with properties and relations among them. Surely we should model these, not the perception or description of them. You might suspect that concentrating on modeling words and pixels is because all of the (valuable) data in the world is in terms of text and images. If you look into almost any company you will find their most valuable data is in spreadsheets, databases and other relational formats. These are not the form that are studied in introductory machine learning, but are full of product numbers, student numbers, transaction numbers and other identifiers that can't be interpreted naively as numbers. The field that studies this sort of data has various names including relational learning, statistical relational AI, and many others. This paper explains why relational learning is not taking over the world -- except in a few cases with restricted relations -- and what needs to be done to bring it to it's rightful prominence.
comment: 10 pages (6 pages + references + appendices)
♻ ☆ PuzzleClone: An SMT-Powered Framework for Synthesizing Verifiable Data
High-quality mathematical and logical datasets with verifiable answers are essential for strengthening the reasoning capabilities of large language models (LLMs). While recent data augmentation techniques have facilitated the creation of large-scale benchmarks, existing LLM-generated datasets often suffer from limited reliability, diversity, and scalability. To address these challenges, we introduce PuzzleClone, a formal framework for synthesizing verifiable data at scale using Satisfiability Modulo Theories (SMT). Our approach features three key innovations: (1) encoding seed puzzles into structured logical specifications, (2) generating scalable variants through systematic variable and constraint randomization, and (3) ensuring validity via a reproduction mechanism. Applying PuzzleClone, we construct a curated benchmark comprising over 83K diverse and programmatically validated puzzles. The generated puzzles span a wide spectrum of difficulty and formats, posing significant challenges to current state-of-the-art models. We conduct post training (SFT and RL) on PuzzleClone datasets. Experimental results show that training on PuzzleClone yields substantial improvements not only on PuzzleClone testset but also on logic and mathematical benchmarks. Post training raises PuzzleClone average from 14.4 to 56.2 and delivers consistent improvements across 7 logic and mathematical benchmarks up to 12.5 absolute percentage points (AMC2023 from 52.5 to 65.0). Our code and data are available at https://github.com/HiThink-Research/PuzzleClone.
♻ ☆ Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities
Mental health disorders create profound personal and societal burdens, yet conventional diagnostics are resource-intensive and limit accessibility. Advances in artificial intelligence, particularly natural language processing and multimodal methods, offer promise for detecting and addressing mental disorders, but raise critical privacy risks. This paper examines these challenges and proposes solutions, including anonymization, synthetic data, and privacy-preserving training, while outlining frameworks for privacy-utility trade-offs, aiming to advance reliable, privacy-aware AI tools that support clinical decision-making and improve mental health outcomes.
comment: 18 pages, 2 figures, Accepted in Nature Computational Science
♻ ☆ EmoBench-M: Benchmarking Emotional Intelligence for Multimodal Large Language Models
With the integration of Multimodal large language models (MLLMs) into robotic systems and various AI applications, embedding emotional intelligence (EI) capabilities into these models is essential for enabling robots to effectively address human emotional needs and interact seamlessly in real-world scenarios. Existing static, text-based, or text-image benchmarks overlook the multimodal complexities of real-world interactions and fail to capture the dynamic, multimodal nature of emotional expressions, making them inadequate for evaluating MLLMs' EI. Based on established psychological theories of EI, we build EmoBench-M, a novel benchmark designed to evaluate the EI capability of MLLMs across 13 valuation scenarios from three key dimensions: foundational emotion recognition, conversational emotion understanding, and socially complex emotion analysis. Evaluations of both open-source and closed-source MLLMs on EmoBench-M reveal a significant performance gap between them and humans, highlighting the need to further advance their EI capabilities. All benchmark resources, including code and datasets, are publicly available at https://emo-gml.github.io/.
♻ ☆ A Multisource Fusion Framework for Cryptocurrency Price Movement Prediction
Predicting cryptocurrency price trends remains a major challenge due to the volatility and complexity of digital asset markets. Artificial intelligence (AI) has emerged as a powerful tool to address this problem. This study proposes a multisource fusion framework that integrates quantitative financial indicators, such as historical prices and technical indicators, with qualitative sentiment signals derived from X (formerly Twitter). Sentiment analysis is performed using Financial Bidirectional Encoder Representations from Transformers (FinBERT), a domain-specific BERT-based model optimized for financial text, while sequential dependencies are captured through a Bidirectional Long Short-Term Memory (BiLSTM) network. Experimental results on a large-scale Bitcoin dataset demonstrate that the proposed approach substantially outperforms single-source models, achieving an accuracy of approximately 96.8\%. The findings underscore the importance of incorporating real-time social sentiment alongside traditional indicators, thereby enhancing predictive accuracy and supporting more informed investment decisions.
♻ ☆ Large-scale Multi-sequence Pretraining for Generalizable MRI Analysis in Versatile Clinical Applications
Multi-sequence Magnetic Resonance Imaging (MRI) offers remarkable versatility, enabling the distinct visualization of different tissue types. Nevertheless, the inherent heterogeneity among MRI sequences poses significant challenges to the generalization capability of deep learning models. These challenges undermine model performance when faced with varying acquisition parameters, thereby severely restricting their clinical utility. In this study, we present PRISM, a foundation model PRe-trained with large-scale multI-Sequence MRI. We collected a total of 64 datasets from both public and private sources, encompassing a wide range of whole-body anatomical structures, with scans spanning diverse MRI sequences. Among them, 336,476 volumetric MRI scans from 34 datasets (8 public and 26 private) were curated to construct the largest multi-organ multi-sequence MRI pretraining corpus to date. We propose a novel pretraining paradigm that disentangles anatomically invariant features from sequence-specific variations in MRI, while preserving high-level semantic representations. We established a benchmark comprising 44 downstream tasks, including disease diagnosis, image segmentation, registration, progression prediction, and report generation. These tasks were evaluated on 32 public datasets and 5 private cohorts. PRISM consistently outperformed both non-pretrained models and existing foundation models, achieving first-rank results in 39 out of 44 downstream benchmarks with statistical significance improvements. These results underscore its ability to learn robust and generalizable representations across unseen data acquired under diverse MRI protocols. PRISM provides a scalable framework for multi-sequence MRI analysis, thereby enhancing the translational potential of AI in radiology. It delivers consistent performance across diverse imaging protocols, reinforcing its clinical applicability.
♻ ☆ SPIN-Bench: How Well Do LLMs Plan Strategically and Reason Socially?
Reasoning and strategic behavior in social interactions is a hallmark of intelligence. This form of reasoning is significantly more sophisticated than isolated planning or reasoning tasks in static settings (e.g., math problem solving). In this paper, we present Strategic Planning, Interaction, and Negotiation (SPIN-Bench), a new multi-domain evaluation designed to measure the intelligence of strategic planning and social reasoning. While many existing benchmarks focus on narrow planning or single-agent reasoning, SPIN-Bench combines classical PDDL tasks, competitive board games, cooperative card games, and multi-agent negotiation scenarios in one unified framework. The framework includes both a benchmark as well as an arena to simulate and evaluate the variety of social settings to test reasoning and strategic behavior of AI agents. We formulate the benchmark SPIN-Bench by systematically varying action spaces, state complexity, and the number of interacting agents to simulate a variety of social settings where success depends on not only methodical and step-wise decision making, but also conceptual inference of other (adversarial or cooperative) participants. Our experiments reveal that while contemporary LLMs handle basic fact retrieval and short-range planning reasonably well, they encounter significant performance bottlenecks in tasks requiring deep multi-hop reasoning over large state spaces and socially adept coordination under uncertainty. We envision SPIN-Bench as a catalyst for future research on robust multi-agent planning, social reasoning, and human--AI teaming. Project Website: https://spinbench.github.io/
comment: 48 pages, 7 figures
♻ ☆ Controllable Hybrid Captioner for Improved Long-form Video Understanding
Video data, especially long-form video, is extremely dense and high-dimensional. Text-based summaries of video content offer a way to represent query-relevant content in a much more compact manner than raw video. In addition, textual representations are easily ingested by state-of-the-art large language models (LLMs), which enable reasoning over video content to answer complex natural language queries. To solve this issue, we rely on the progressive construction of a text-based memory by a video captioner operating on shorter chunks of the video, where spatio-temporal modeling is computationally feasible. We explore ways to improve the quality of the activity log comprised solely of short video captions. Because the video captions tend to be focused on human actions, and questions may pertain to other information in the scene, we seek to enrich the memory with static scene descriptions using Vision Language Models (VLMs). Our video understanding system relies on the LaViLa video captioner in combination with a LLM to answer questions about videos. We first explored different ways of partitioning the video into meaningful segments such that the textual descriptions more accurately reflect the structure of the video content. Furthermore, we incorporated static scene descriptions into the captioning pipeline using LLaVA VLM, resulting in a more detailed and complete caption log and expanding the space of questions that are answerable from the textual memory. Finally, we have successfully fine-tuned the LaViLa video captioner to produce both action and scene captions, significantly improving the efficiency of the captioning pipeline compared to using separate captioning models for the two tasks. Our model, controllable hybrid captioner, can alternate between different types of captions according to special input tokens that signals scene changes detected in the video.
♻ ☆ DIVER: A Multi-Stage Approach for Reasoning-intensive Information Retrieval
Retrieval-augmented generation has achieved strong performance on knowledge-intensive tasks where query-document relevance can be identified through direct lexical or semantic matches. However, many real-world queries involve abstract reasoning, analogical thinking, or multi-step inference, which existing retrievers often struggle to capture. To address this challenge, we present DIVER, a retrieval pipeline designed for reasoning-intensive information retrieval. It consists of four components. The document preprocessing stage enhances readability and preserves content by cleaning noisy texts and segmenting long documents. The query expansion stage leverages large language models to iteratively refine user queries with explicit reasoning and evidence from retrieved documents. The retrieval stage employs a model fine-tuned on synthetic data spanning medical and mathematical domains, along with hard negatives, enabling effective handling of reasoning-intensive queries. Finally, the reranking stage combines pointwise and listwise strategies to produce both fine-grained and globally consistent rankings. On the BRIGHT benchmark, DIVER achieves state-of-the-art nDCG@10 scores of 45.8 overall and 28.9 on original queries, consistently outperforming competitive reasoning-aware models. These results demonstrate the effectiveness of reasoning-aware retrieval strategies in complex real-world tasks.
♻ ☆ Evaluation of Large Language Models via Coupled Token Generation
State of the art large language models rely on randomization to respond to a prompt. As an immediate consequence, a model may respond differently to the same prompt if asked multiple times. In this work, we argue that the evaluation and ranking of large language models should control for the randomization underpinning their functioning. Our starting point is the development of a causal model for coupled autoregressive generation, which allows different large language models to sample responses with the same source of randomness. Building upon our causal model, we first show that, on evaluations based on benchmark datasets, coupled autoregressive generation leads to the same conclusions as vanilla autoregressive generation but using provably fewer samples. However, we further show that, on evaluations based on (human) pairwise comparisons, coupled and vanilla autoregressive generation can surprisingly lead to different rankings when comparing more than two models, even with an infinite amount of samples. This suggests that the apparent advantage of a model over others in existing evaluation protocols may not be genuine but rather confounded by the randomness inherent to the generation process. To illustrate and complement our theoretical results, we conduct experiments with several large language models from the Llama, Mistral and Qwen families. We find that, across multiple benchmark datasets, coupled autoregressive generation requires up to 75% fewer samples to reach the same conclusions as vanilla autoregressive generation. Further, we find that the win-rates derived from pairwise comparisons by a strong large language model to prompts from the LMSYS Chatbot Arena platform differ under coupled and vanilla autoregressive generation.
♻ ☆ HOSt3R: Keypoint-free Hand-Object 3D Reconstruction from RGB images
Hand-object 3D reconstruction has become increasingly important for applications in human-robot interaction and immersive AR/VR experiences. A common approach for object-agnostic hand-object reconstruction from RGB sequences involves a two-stage pipeline: hand-object 3D tracking followed by multi-view 3D reconstruction. However, existing methods rely on keypoint detection techniques, such as Structure from Motion (SfM) and hand-keypoint optimization, which struggle with diverse object geometries, weak textures, and mutual hand-object occlusions, limiting scalability and generalization. As a key enabler to generic and seamless, non-intrusive applicability, we propose in this work a robust, keypoint detector-free approach to estimating hand-object 3D transformations from monocular motion video/images. We further integrate this with a multi-view reconstruction pipeline to accurately recover hand-object 3D shape. Our method, named HOSt3R, is unconstrained, does not rely on pre-scanned object templates or camera intrinsics, and reaches state-of-the-art performance for the tasks of object-agnostic hand-object 3D transformation and shape estimation on the SHOWMe benchmark. We also experiment on sequences from the HO3D dataset, demonstrating generalization to unseen object categories.
comment: 12 pages, 8 figures
♻ ☆ Missing Melodies: AI Music Generation and its "Nearly" Complete Omission of the Global South
Recent advances in generative AI have sparked renewed interest and expanded possibilities for music generation. However, the performance and versatility of these systems across musical genres are heavily influenced by the availability of training data. We conducted an extensive analysis of over one million hours of audio datasets used in AI music generation research and manually reviewed more than 200 papers from eleven prominent AI and music conferences and organizations (AAAI, ACM, EUSIPCO, EURASIP, ICASSP, ICML, IJCAI, ISMIR, NeurIPS, NIME, SMC) to identify a critical gap in the fair representation and inclusion of the musical genres of the Global South in AI research. Our findings reveal a stark imbalance: approximately 86% of the total dataset hours and over 93% of researchers focus primarily on music from the Global North. However, around 40% of these datasets include some form of non-Western music, genres from the Global South account for only 14.6% of the data. Furthermore, approximately 51% of the papers surveyed concentrate on symbolic music generation, a method that often fails to capture the cultural nuances inherent in music from regions such as South Asia, the Middle East, and Africa. As AI increasingly shapes the creation and dissemination of music, the significant underrepresentation of music genres in datasets and research presents a serious threat to global musical diversity. We also propose some important steps to mitigate these risks and foster a more inclusive future for AI-driven music generation.
comment: Submitted to CACM, 12 pages, 2 figures
♻ ☆ Jigsaw-Puzzles: From Seeing to Understanding to Reasoning in Vision-Language Models
Spatial reasoning is a core component of human cognition, enabling individuals to perceive, comprehend, and interact with the physical world. It relies on a nuanced understanding of spatial structures and inter-object relationships, serving as the foundation for complex reasoning and decision-making. To investigate whether current vision-language models (VLMs) exhibit similar capability, we introduce Jigsaw-Puzzles, a novel benchmark consisting of 1,100 carefully curated real-world images with high spatial complexity. Based on this dataset, we design five tasks to rigorously evaluate VLMs' spatial perception, structural understanding, and reasoning capabilities, while deliberately minimizing reliance on domain-specific knowledge to better isolate and assess the general spatial reasoning capability. We conduct a comprehensive evaluation across 24 state-of-the-art VLMs. The results show that even the strongest model, Gemini-2.5-Pro, achieves only 77.14% overall accuracy and performs particularly poorly on the Order Generation task, with only 30.00% accuracy, far below the performance exceeding 90% achieved by human participants. This persistent gap underscores the need for continued progress, positioning Jigsaw-Puzzles as a challenging and diagnostic benchmark for advancing spatial reasoning research in VLMs. Our project page is at https://zesen01.github.io/jigsaw-puzzles.
comment: Accepted by EMNLP 2025 Main conference
♻ ☆ Argumentatively Coherent Judgmental Forecasting AI 2025
Judgmental forecasting employs human opinions to make predictions about future events, rather than exclusively historical data as in quantitative forecasting. When these opinions form an argumentative structure around forecasts, it is useful to study the properties of the forecasts from an argumentative perspective. In this paper, we advocate and formally define a property of argumentative coherence, which, in essence, requires that a forecaster's reasoning is coherent with their forecast. We then conduct three evaluations with our notion of coherence. First, we assess the impact of enforcing coherence on human forecasters as well as on Large Language Model (LLM)-based forecasters, given that they have recently shown to be competitive with human forecasters. In both cases, we show that filtering out incoherent predictions improves forecasting accuracy consistently, supporting the practical value of coherence in both human and LLM-based forecasting. Then, via crowd-sourced user experiments, we show that, despite its apparent intuitiveness and usefulness, users do not generally align with this coherence property. This points to the need to integrate, within argumentation-based judgmental forecasting, mechanisms to filter out incoherent opinions before obtaining group forecasting predictions.
comment: 17 pages, 18 figures, ECAI 2025
♻ ☆ A Survey of the Self Supervised Learning Mechanisms for Vision Transformers
Advances in deep learning are re-defining how visual data is processed and understand by the machines. Vision Transformers (ViTs) have recently demonstrated prominent performance in computer vision related tasks. However, their performance improves with increasing numbers of labeled data, indicating reliance on labeled data. Humanly annotated data are difficult to acquire and thus shifted the focus from traditional annotations to unsupervised learning strategies that learn structures inside the data. In response to this challenge, self-supervised learning (SSL) has emerged as a promising technique. SSL utilize inherent relationships within the data as a form of supervision. This technique can reduce the dependence on manual annotations and offers a more scalable and resource-effective approach to training models. Taking these strengths into account, it is necessary to assess the combination of SSL methods with ViTs, especially in the cases of limited labeled data. Inspired by this evolving trend, this survey aims to systematically review SSL mechanisms tailored for ViTs. We propose a comprehensive taxonomy to classify SSL techniques based on their representations and pre-training tasks. Furthermore, we highlighted the motivations behind the study of SSL, reviewed prominent pre-training tasks, and highlight advancements and challenges in this field. Furthermore, we conduct a comparative analysis of various SSL methods designed for ViTs, evaluating their strengths, limitations, and applicability to different scenarios.
comment: 42 Pages, 4 Figures, 7 Tables
♻ ☆ CLAP: Coreference-Linked Augmentation for Passage Retrieval
Large Language Model (LLM)-based passage expansion has shown promise for enhancing first-stage retrieval, but often underperforms with dense retrievers due to semantic drift and misalignment with their pretrained semantic space. Beyond this, only a portion of a passage is typically relevant to a query, while the rest introduces noise--an issue compounded by chunking techniques that break coreference continuity. We propose Coreference-Linked Augmentation for Passage Retrieval (CLAP), a lightweight LLM-based expansion framework that segments passages into coherent chunks, resolves coreference chains, and generates localized pseudo-queries aligned with dense retriever representations. A simple fusion of global topical signals and fine-grained subtopic signals achieves robust performance across domains. CLAP yields consistent gains even as retriever strength increases, enabling dense retrievers to match or surpass second-stage rankers such as BM25 + MonoT5-3B, with up to 20.68% absolute nDCG@10 improvement. These improvements are especially notable in out-of-domain settings, where conventional LLM-based expansion methods relying on domain knowledge often falter. CLAP instead adopts a logic-centric pipeline that enables robust, domain-agnostic generalization.
comment: This paper has been accepted by CIKM 2025
♻ ☆ Architecting Clinical Collaboration: Multi-Agent Reasoning Systems for Multimodal Medical VQA
Dermatological care via telemedicine often lacks the rich context of in-person visits. Clinicians must make diagnoses based on a handful of images and brief descriptions, without the benefit of physical exams, second opinions, or reference materials. While many medical AI systems attempt to bridge these gaps with domain-specific fine-tuning, this work hypothesized that mimicking clinical reasoning processes could offer a more effective path forward. This study tested seven vision-language models on medical visual question answering across six configurations: baseline models, fine-tuned variants, and both augmented with either reasoning layers that combine multiple model perspectives, analogous to peer consultation, or retrieval-augmented generation that incorporates medical literature at inference time, serving a role similar to reference-checking. While fine-tuning degraded performance in four of seven models with an average 30\% decrease, baseline models collapsed on test data. Clinical-inspired architectures, meanwhile, achieved up to 70\% accuracy, maintaining performance on unseen data while generating explainable, literature-grounded outputs critical for clinical adoption. These findings demonstrate that medical AI succeeds by reconstructing the collaborative and evidence-based practices fundamental to clinical diagnosis.
♻ ☆ Recursively Summarizing Enables Long-Term Dialogue Memory in Large Language Models
Recently, large language models (LLMs), such as GPT-4, stand out remarkable conversational abilities, enabling them to engage in dynamic and contextually relevant dialogues across a wide range of topics. However, given a long conversation, these chatbots fail to recall past information and tend to generate inconsistent responses. To address this, we propose to recursively generate summaries/ memory using large language models (LLMs) to enhance long-term memory ability. Specifically, our method first stimulates LLMs to memorize small dialogue contexts and then recursively produce new memory using previous memory and following contexts. Finally, the chatbot can easily generate a highly consistent response with the help of the latest memory. We evaluate our method on both open and closed LLMs, and the experiments on the widely-used public dataset show that our method can generate more consistent responses in a long-context conversation. Also, we show that our strategy could nicely complement both long-context (e.g., 8K and 16K) and retrieval-enhanced LLMs, bringing further long-term dialogue performance. Notably, our method is a potential solution to enable the LLM to model the extremely long context. The code and scripts are released.
comment: This paper has been accepted by Neurocomputing
♻ ☆ Forgotten Polygons: Multimodal Large Language Models are Shape-Blind
Despite strong performance on vision-language tasks, Multimodal Large Language Models (MLLMs) struggle with mathematical problem-solving, with both open-source and state-of-the-art models falling short of human performance on visual-math benchmarks. To systematically examine visual-mathematical reasoning in MLLMs, we (1) evaluate their understanding of geometric primitives, (2) test multi-step reasoning, and (3) explore a potential solution to improve visual reasoning capabilities. Our findings reveal fundamental shortcomings in shape recognition, with top models achieving under 50% accuracy in identifying regular polygons. We analyze these failures through the lens of dual-process theory and show that MLLMs rely on System 1 (intuitive, memorized associations) rather than System 2 (deliberate reasoning). Consequently, MLLMs fail to count the sides of both familiar and novel shapes, suggesting they have neither learned the concept of sides nor effectively process visual inputs. Finally, we propose Visually Cued Chain-of-Thought (VC-CoT) prompting, which enhances multi-step mathematical reasoning by explicitly referencing visual annotations in diagrams, boosting GPT-4o's accuracy on an irregular polygon side-counting task from 7% to 93%. Our findings suggest that System 2 reasoning in MLLMs remains an open problem, and visually-guided prompting is essential for successfully engaging visual reasoning. Code available at: https://github.com/rsinghlab/Shape-Blind.
♻ ☆ Robust Federated Learning under Adversarial Attacks via Loss-Based Client Clustering
Federated Learning (FL) enables collaborative model training across multiple clients without sharing private data. We consider FL scenarios wherein FL clients are subject to adversarial (Byzantine) attacks, while the FL server is trusted (honest) and has a trustworthy side dataset. This may correspond to, e.g., cases where the server possesses trusted data prior to federation, or to the presence of a trusted client that temporarily assumes the server role. Our approach requires only two honest participants, i.e., the server and one client, to function effectively, without prior knowledge of the number of malicious clients. Theoretical analysis demonstrates bounded optimality gaps even under strong Byzantine attacks. Experimental results show that our algorithm significantly outperforms standard and robust FL baselines such as Mean, Trimmed Mean, Median, Krum, and Multi-Krum under various attack strategies including label flipping, sign flipping, and Gaussian noise addition across MNIST, FMNIST, and CIFAR-10 benchmarks using the Flower framework.
comment: 16 pages, 5 figures
♻ ☆ Evasive Active Hypothesis Testing with Deep Neuroevolution: The Single- and Multi-Agent Cases
Active hypothesis testing is a thoroughly studied problem that finds numerous applications in wireless communications and sensor networks. In this paper, we focus on one centralized and one decentralized problem of active hypothesis testing in the presence of an eavesdropper. For the centralized problem including a single legitimate agent, we present a new framework based on deep NeuroEvolution (NE), whereas, for the decentralized problem, we develop a novel NE-based method for solving collaborative multi-agent tasks, which, interestingly, maintains all computational benefits of our single-agent NE-based scheme. To further reduce the computational complexity of the latter scheme, a novel multi-agent joint NE and pruning framework is also designed. The superiority of the proposed NE-based evasive active hypothesis testing schemes over conventional active hypothesis testing policies, as well as learning-based methods, is validated through extensive numerical investigations in an example use case of anomaly detection over wireless sensor networks. It is demonstrated that the proposed joint optimization and pruning framework achieves nearly identical performance with its unpruned counterpart, while removing a very large percentage of redundant deep neural network weights.
comment: Under review at an IEEE journal, shorter conference version presented at IEEE ICC 2024
♻ ☆ Explainable Prediction of the Mechanical Properties of Composites with CNNs AI
Composites are amongst the most important materials manufactured today, as evidenced by their use in countless applications. In order to establish the suitability of composites in specific applications, finite element (FE) modelling, a numerical method based on partial differential equations, is the industry standard for assessing their mechanical properties. However, FE modelling is exceptionally costly from a computational viewpoint, a limitation which has led to efforts towards applying AI models to this task. However, in these approaches: the chosen model architectures were rudimentary, feed-forward neural networks giving limited accuracy; the studies focused on predicting elastic mechanical properties, without considering material strength limits; and the models lacked transparency, hindering trustworthiness by users. In this paper, we show that convolutional neural networks (CNNs) equipped with methods from explainable AI (XAI) can be successfully deployed to solve this problem. Our approach uses customised CNNs trained on a dataset we generate using transverse tension tests in FE modelling to predict composites' mechanical properties, i.e., Young's modulus and yield strength. We show empirically that our approach achieves high accuracy, outperforming a baseline, ResNet-34, in estimating the mechanical properties. We then use SHAP and Integrated Gradients, two post-hoc XAI methods, to explain the predictions, showing that the CNNs use the critical geometrical features that influence the composites' behaviour, thus allowing engineers to verify that the models are trustworthy by representing the science of composites.
comment: 9 pages, 6 figures. Accepted for publication at The 14th Conference on Prestigious Applications of Intelligent Systems (PAIS-2025)
♻ ☆ Debate-to-Detect: Reformulating Misinformation Detection as a Real-World Debate with Large Language Models
The proliferation of misinformation in digital platforms reveals the limitations of traditional detection methods, which mostly rely on static classification and fail to capture the intricate process of real-world fact-checking. Despite advancements in Large Language Models (LLMs) that enhance automated reasoning, their application to misinformation detection remains hindered by issues of logical inconsistency and superficial verification. In response, we introduce Debate-to-Detect (D2D), a novel Multi-Agent Debate (MAD) framework that reformulates misinformation detection as a structured adversarial debate. Inspired by fact-checking workflows, D2D assigns domain-specific profiles to each agent and orchestrates a five-stage debate process, including Opening Statement, Rebuttal, Free Debate, Closing Statement, and Judgment. To transcend traditional binary classification, D2D introduces a multi-dimensional evaluation mechanism that assesses each claim across five distinct dimensions: Factuality, Source Reliability, Reasoning Quality, Clarity, and Ethics. Experiments with GPT-4o on two datasets demonstrate significant improvements over baseline methods, and the case study highlight D2D's capability to iteratively refine evidence while improving decision transparency, representing a substantial advancement towards interpretable misinformation detection. The code will be released publicly after the official publication.
comment: This paper has been accepted to EMNLP 2025 (Main Conference)
♻ ☆ Content-based 3D Image Retrieval and a ColBERT-inspired Re-ranking for Tumor Flagging and Staging
The increasing volume of medical images poses challenges for radiologists in retrieving relevant cases. Content-based image retrieval (CBIR) systems offer potential for efficient access to similar cases, yet lack standardized evaluation and comprehensive studies. Building on prior studies for tumor characterization via CBIR, this study advances CBIR research for volumetric medical images through three key contributions: (1) a framework eliminating reliance on pre-segmented data and organ-specific datasets, aligning with large and unstructured image archiving systems, i.e. PACS in clinical practice; (2) introduction of C-MIR, a novel volumetric re-ranking method adapting ColBERT's contextualized late interaction mechanism for 3D medical imaging; (3) comprehensive evaluation across four tumor sites using three feature extractors and three database configurations. Our evaluations highlight the significant advantages of C-MIR. We demonstrate the successful adaptation of the late interaction principle to volumetric medical images, enabling effective context-aware re-ranking. A key finding is C-MIR's ability to effectively localize the region of interest, eliminating the need for pre-segmentation of datasets and offering a computationally efficient alternative to systems relying on expensive data enrichment steps. C-MIR demonstrates promising improvements in tumor flagging, achieving improved performance, particularly for colon and lung tumors (p<0.05). C-MIR also shows potential for improving tumor staging, warranting further exploration of its capabilities. Ultimately, our work seeks to bridge the gap between advanced retrieval techniques and their practical applications in healthcare, paving the way for improved diagnostic processes.
♻ ☆ Large Language Models in the Task of Automatic Validation of Text Classifier Predictions
Machine learning models for text classification are trained to predict a class for a given text. To do this, training and validation samples must be prepared: a set of texts is collected, and each text is assigned a class. These classes are usually assigned by human annotators with different expertise levels, depending on the specific classification task. Collecting such samples from scratch is labor-intensive because it requires finding specialists and compensating them for their work; moreover, the number of available specialists is limited, and their productivity is constrained by human factors. While it may not be too resource-intensive to collect samples once, the ongoing need to retrain models (especially in incremental learning pipelines) to address data drift (also called model drift) makes the data collection process crucial and costly over the model's entire lifecycle. This paper proposes several approaches to replace human annotators with Large Language Models (LLMs) to test classifier predictions for correctness, helping ensure model quality and support high-quality incremental learning.
♻ ☆ Architectural Co-Design for Zero-Shot Anomaly Detection: Decoupling Representation and Dynamically Fusing Features in CLIP
Pre-trained Vision-Language Models (VLMs) face a significant adaptation gap when applied to Zero-Shot Anomaly Detection (ZSAD), stemming from their lack of local inductive biases for dense prediction and their reliance on inflexible feature fusion paradigms. We address these limitations through an Architectural Co-Design framework that jointly refines feature representation and cross-modal fusion. Our method proposes a parameter-efficient Convolutional Low-Rank Adaptation (Conv-LoRA) adapter to inject local inductive biases for fine-grained representation, and introduces a Dynamic Fusion Gateway (DFG) that leverages visual context to adaptively modulate text prompts, enabling a powerful bidirectional fusion. Extensive experiments on diverse industrial and medical benchmarks demonstrate superior accuracy and robustness, validating that this synergistic co-design is critical for robustly adapting foundation models to dense perception tasks.
comment: 4 pages, 1 reference, 3 figures, icassp 2026
♻ ☆ EPFL-Smart-Kitchen-30: Densely annotated cooking dataset with 3D kinematics to challenge video and language models
Understanding behavior requires datasets that capture humans while carrying out complex tasks. The kitchen is an excellent environment for assessing human motor and cognitive function, as many complex actions are naturally exhibited in kitchens from chopping to cleaning. Here, we introduce the EPFL-Smart-Kitchen-30 dataset, collected in a noninvasive motion capture platform inside a kitchen environment. Nine static RGB-D cameras, inertial measurement units (IMUs) and one head-mounted HoloLens~2 headset were used to capture 3D hand, body, and eye movements. The EPFL-Smart-Kitchen-30 dataset is a multi-view action dataset with synchronized exocentric, egocentric, depth, IMUs, eye gaze, body and hand kinematics spanning 29.7 hours of 16 subjects cooking four different recipes. Action sequences were densely annotated with 33.78 action segments per minute. Leveraging this multi-modal dataset, we propose four benchmarks to advance behavior understanding and modeling through 1) a vision-language benchmark, 2) a semantic text-to-motion generation benchmark, 3) a multi-modal action recognition benchmark, 4) a pose-based action segmentation benchmark. We expect the EPFL-Smart-Kitchen-30 dataset to pave the way for better methods as well as insights to understand the nature of ecologically-valid human behavior. Code and data are available at https://github.com/amathislab/EPFL-Smart-Kitchen
comment: Code and data at: https://github.com/amathislab/EPFL-Smart-Kitchen
♻ ☆ RepoMaster: Autonomous Exploration and Understanding of GitHub Repositories for Complex Task Solving
The ultimate goal of code agents is to solve complex tasks autonomously. Although large language models (LLMs) have made substantial progress in code generation, real-world tasks typically demand full-fledged code repositories rather than simple scripts. Building such repositories from scratch remains a major challenge. Fortunately, GitHub hosts a vast, evolving collection of open-source repositories, which developers frequently reuse as modular components for complex tasks. Yet, existing frameworks like OpenHands and SWE-Agent still struggle to effectively leverage these valuable resources. Relying solely on README files provides insufficient guidance, and deeper exploration reveals two core obstacles: overwhelming information and tangled dependencies of repositories, both constrained by the limited context windows of current LLMs. To tackle these issues, we propose RepoMaster, an autonomous agent framework designed to explore and reuse GitHub repositories for solving complex tasks. For efficient understanding, RepoMaster constructs function-call graphs, module-dependency graphs, and hierarchical code trees to identify essential components, providing only identified core elements to the LLMs rather than the entire repository. During autonomous execution, it progressively explores related components using our exploration tools and prunes information to optimize context usage. Evaluated on the adjusted MLE-bench, RepoMaster achieves a 110% relative boost in valid submissions over the strongest baseline OpenHands. On our newly released GitTaskBench, RepoMaster lifts the task-pass rate from 40.7% to 62.9% while reducing token usage by 95%. Our code and demonstration materials are publicly available at https://github.com/QuantaAlpha/RepoMaster.
comment: A novel approach; Very practical
♻ ☆ A foundation model with multi-variate parallel attention to generate neuronal activity
Learning from multi-variate time-series with heterogeneous channel configurations remains a fundamental challenge for deep neural networks, particularly in clinical domains such as intracranial electroencephalography (iEEG), where channel setups vary widely across subjects. In this work, we introduce multi-variate parallel attention (MVPA), a novel self-attention mechanism that disentangles content, temporal, and spatial attention, enabling flexible, generalizable, and efficient modeling of time-series data with varying channel counts and configurations. We use MVPA to build MVPFormer, a generative foundation model for human electrophysiology, trained to predict the evolution of iEEG signals across diverse subjects. To support this and future efforts by the community, we release the SWEC iEEG dataset, the largest publicly available iEEG dataset to date, comprising nearly 10,000 hours of recordings from heterogeneous clinical sources. MVPFormer leverages MVPA to achieve strong generalization across subjects, demonstrating expert-level performance in several iEEG tasks. MVPFormer surpasses state-of-the-art Transformer baselines in seizure detection across the SWEC, the MAYO, and the FNUSA datasets, while also achieving state-of-the-art performance on four Brain TreeBank iEEG decoding tasks. We further validate MVPA on standard time-series forecasting and classification tasks, where it matches or exceeds the performance of existing attention-based models. Together, our contributions establish MVPA as a general-purpose attention mechanism for heterogeneous time-series and MVPFormer as the first open-source, open-weights, and open-data iEEG foundation model with SOTA clinical performance. The code is available at https://github.com/IBM/multi-variate-parallel-transformer. The SWEC iEEG dataset is available at https://huggingface.co/datasets/NeuroTec/SWEC_iEEG_Dataset.
comment: The code is available at https://github.com/IBM/multi-variate-parallel-transformer. The SWEC iEEG dataset is available at https://huggingface.co/datasets/NeuroTec/SWEC_iEEG_Dataset
♻ ☆ SupraTok: Cross-Boundary Tokenization for Enhanced Language Model Performance
Tokenization remains a fundamental yet underexplored bottleneck in natural language processing, with strategies largely static despite remarkable progress in model architectures. We present SupraTok, a novel tokenization architecture that reimagines subword segmentation through three innovations: cross-boundary pattern learning that discovers multi-word semantic units, entropy-driven data curation that optimizes training corpus quality, and multi-phase curriculum learning for stable convergence. Our approach extends Byte-Pair Encoding by learning "superword" tokens, coherent multi-word expressions that preserve semantic unity while maximizing compression efficiency. SupraTok achieves 31% improvement in English tokenization efficiency (5.91 versus 4.51 characters per token) compared to OpenAI's o200k tokenizer and 30% improvement over Google's Gemma 3 tokenizer (256k vocabulary), while maintaining competitive performance across 38 languages. When integrated with a GPT-2 scale model (124M parameters) trained on 10 billion tokens from the FineWeb-Edu dataset, SupraTok yields 8.4% improvement on HellaSWAG and 9.5% on MMLU benchmarks without architectural modifications. While these results are promising at this scale, further validation at larger model scales is needed. These findings suggest that efficient tokenization can complement architectural innovations as a path to improved language model performance.
♻ ☆ Minimizing Surrogate Losses for Decision-Focused Learning using Differentiable Optimization
Decision-focused learning (DFL) trains a machine learning (ML) model to predict parameters of an optimization problem, to directly minimize decision regret, i.e., maximize decision quality. Gradient-based DFL requires computing the derivative of the solution to the optimization problem with respect to the predicted parameters. However, for many optimization problems, such as linear programs (LPs), the gradient of the regret with respect to the predicted parameters is zero almost everywhere. Existing gradient-based DFL approaches for LPs try to circumvent this issue in one of two ways: (a) smoothing the LP into a differentiable optimization problem by adding a quadratic regularizer and then minimizing the regret directly or (b) minimizing surrogate losses that have informative (sub)gradients. In this paper, we show that the former approach still results in zero gradients, because even after smoothing the regret remains constant across large regions of the parameter space. To address this, we propose minimizing surrogate losses -- even when a differentiable optimization layer is used and regret can be minimized directly. Our experiments demonstrate that minimizing surrogate losses allows differentiable optimization layers to achieve regret comparable to or better than surrogate-loss based DFL methods. Further, we demonstrate that this also holds for DYS-Net, a recently proposed differentiable optimization technique for LPs, that computes approximate solutions and gradients through operations that can be performed using feedforward neural network layers. Because DYS-Net executes the forward and the backward pass very efficiently, by minimizing surrogate losses using DYS-Net, we are able to attain regret on par with the state-of-the-art while reducing training time by a significant margin.
♻ ☆ Theory of Mind in Large Language Models: Assessment and Enhancement ACL 2025
Theory of Mind (ToM)-the ability to reason about the mental states of oneself and others-is a cornerstone of human social intelligence. As Large Language Models (LLMs) become increasingly integrated into daily life, understanding their ability to interpret and respond to human mental states is crucial for enabling effective interactions. In this paper, we review LLMs' ToM capabilities by analyzing both evaluation benchmarks and enhancement strategies. For evaluation, we focus on recently proposed and widely used story-based benchmarks. For enhancement, we provide an in-depth analysis of recent methods aimed at improving LLMs' ToM abilities. Furthermore, we outline promising directions for future research to further advance these capabilities and better adapt LLMs to more realistic and diverse scenarios. Our survey serves as a valuable resource for researchers interested in evaluating and advancing LLMs' ToM capabilities.
comment: Accepted to ACL 2025 main conference
♻ ☆ FlexTSF: A Flexible Forecasting Model for Time Series with Variable Regularities
Forecasting time series with irregular temporal structures remains challenging for universal pre-trained models. Existing approaches often assume regular sampling or depend heavily on imputation, limiting their applicability in real-world scenarios where irregularities are prevalent due to diverse sensing devices and recording practices. We introduce FlexTSF, a flexible forecasting model specifically designed for time series data with variable temporal regularities. At its foundation lies the IVP Patcher, a continuous-time patching module leveraging Initial Value Problems (IVPs) to inherently support uneven time intervals, variable sequence lengths, and missing values. FlexTSF employs a decoder-only architecture that integrates normalized timestamp inputs and domain-specific statistics through a specialized causal self-attention mechanism, enabling adaptability across domains. Extensive experiments on 16 datasets demonstrate FlexTSF's effectiveness, significantly outperforming existing models in classic forecasting scenarios, zero-shot generalization, and low-resource fine-tuning conditions. Ablation studies confirm the contributions of each design component and the advantage of not relying on predefined fixed patch lengths.
♻ ☆ SVD Based Least Squares for X-Ray Pneumonia Classification Using Deep Features
Accurate and early diagnosis of pneumonia through X-ray imaging is essential for effective treatment and improved patient outcomes. Recent advancements in machine learning have enabled automated diagnostic tools that assist radiologists in making more reliable and efficient decisions. In this work, we propose a Singular Value Decomposition-based Least Squares (SVD-LS) framework for multi-class pneumonia classification, leveraging powerful feature representations from state-of-the-art self-supervised and transfer learning models. Rather than relying on computationally expensive gradient-based fine-tuning, we employ a closed-form, non-iterative classification approach that ensures efficiency without compromising accuracy. Experimental results demonstrate that SVD-LS achieves competitive performance while offering significantly reduced computational costs, making it a viable alternative for real-time medical imaging applications. The implementation is available at: github.com/meterdogan07/SVD-LS.
comment: IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2025
♻ ☆ Documenting Deployment with Fabric: A Repository of Real-World AI Governance AI
Artificial intelligence (AI) is increasingly integrated into society, from financial services and traffic management to creative writing. Academic literature on the deployment of AI has mostly focused on the risks and harms that result from the use of AI. We introduce Fabric, a publicly available repository of deployed AI use cases to outline their governance mechanisms. Through semi-structured interviews with practitioners, we collect an initial set of 20 AI use cases. In addition, we co-design diagrams of the AI workflow with the practitioners. We discuss the oversight mechanisms and guardrails used in practice to safeguard AI use. The Fabric repository includes visual diagrams of AI use cases and descriptions of the deployed systems. Using the repository, we surface gaps in governance and find common patterns in human oversight of deployed AI systems. We intend for Fabric to serve as an extendable, evolving tool for researchers to study the effectiveness of AI governance.
comment: AIES 2025
♻ ☆ MedQARo: A Large-Scale Benchmark for Medical Question Answering in Romanian
Question answering (QA) is an actively studied topic, being a core natural language processing (NLP) task that needs to be addressed before achieving Artificial General Intelligence (AGI). However, the lack of QA datasets in specific domains and languages hinders the development of robust AI models able to generalize across various domains and languages. To this end, we introduce MedQARo, the first large-scale medical QA benchmark in Romanian, alongside a comprehensive evaluation of state-of-the-art large language models (LLMs). We construct a high-quality and large-scale dataset comprising 102,646 QA pairs related to cancer patients. The questions regard medical case summaries of 1,011 patients, requiring either keyword extraction or reasoning to be answered correctly. MedQARo is the result of a time-consuming manual annotation process carried out by seven physicians specialized in oncology or radiotherapy, who spent a total of about 2,100 work hours to generate the QA pairs. We experiment with four LLMs from distinct families of models on MedQARo. Each model is employed in two scenarios, namely one based on zero-shot prompting and one based on supervised fine-tuning. Our results show that fine-tuned models significantly outperform their zero-shot counterparts, clearly indicating that pretrained models fail to generalize on MedQARo. Our findings demonstrate the importance of both domain-specific and language-specific fine-tuning for reliable clinical QA in Romanian. We publicly release our dataset and code at https://github.com/ana-rogoz/MedQARo.
♻ ☆ From Models to Network Topologies: A Topology Inference Attack in Decentralized Federated Learning
Federated Learning (FL) is widely recognized as a privacy-preserving Machine Learning paradigm due to its model-sharing mechanism that avoids direct data exchange. Nevertheless, model training leaves exploitable traces that can be used to infer sensitive information. In Decentralized FL (DFL), the topology, defining how participants are connected, plays a crucial role in shaping the model's privacy, robustness, and convergence. However, the topology introduces an unexplored vulnerability: attackers can exploit it to infer participant relationships and launch targeted attacks. This work uncovers the hidden risks of DFL topologies by proposing a novel Topology Inference Attack that infers the topology solely from model behavior. A taxonomy of topology inference attacks is introduced, categorizing them by the attacker's capabilities and knowledge. Practical attack strategies are designed for various scenarios, and experiments are conducted to identify key factors influencing attack success. The results demonstrate that analyzing only the model of each node can accurately infer the DFL topology, highlighting a critical privacy risk in DFL systems. These findings offer insights for improving privacy preservation in DFL environments.
♻ ☆ Beyond Imaging: Vision Transformer Digital Twin Surrogates for 3D+T Biological Tissue Dynamics
Understanding the dynamic organization and homeostasis of living tissues requires high-resolution, time-resolved imaging coupled with methods capable of extracting interpretable, predictive insights from complex datasets. Here, we present the Vision Transformer Digital Twin Surrogate Network (VT-DTSN), a deep learning framework for predictive modeling of 3D+T imaging data from biological tissue. By leveraging Vision Transformers pretrained with DINO (Self-Distillation with NO Labels) and employing a multi-view fusion strategy, VT-DTSN learns to reconstruct high-fidelity, time-resolved dynamics of a Drosophila midgut while preserving morphological and feature-level integrity across imaging depths. The model is trained with a composite loss prioritizing pixel-level accuracy, perceptual structure, and feature-space alignment, ensuring biologically meaningful outputs suitable for in silico experimentation and hypothesis testing. Evaluation across layers and biological replicates demonstrates VT-DTSN's robustness and consistency, achieving low error rates and high structural similarity while maintaining efficient inference through model optimization. This work establishes VT-DTSN as a feasible, high-fidelity surrogate for cross-timepoint reconstruction and for studying tissue dynamics, enabling computational exploration of cellular behaviors and homeostasis to complement time-resolved imaging studies in biological research.
comment: Submitted for journal publication
♻ ☆ Geometry-Aware Spiking Graph Neural Network
Graph Neural Networks (GNNs) have demonstrated impressive capabilities in modeling graph-structured data, while Spiking Neural Networks (SNNs) offer high energy efficiency through sparse, event-driven computation. However, existing spiking GNNs predominantly operate in Euclidean space and rely on fixed geometric assumptions, limiting their capacity to model complex graph structures such as hierarchies and cycles. To overcome these limitations, we propose \method{}, a novel Geometry-Aware Spiking Graph Neural Network that unifies spike-based neural dynamics with adaptive representation learning on Riemannian manifolds. \method{} features three key components: a Riemannian Embedding Layer that projects node features into a pool of constant-curvature manifolds, capturing non-Euclidean structures; a Manifold Spiking Layer that models membrane potential evolution and spiking behavior in curved spaces via geometry-consistent neighbor aggregation and curvature-based attention; and a Manifold Learning Objective that enables instance-wise geometry adaptation through jointly optimized classification and link prediction losses defined over geodesic distances. All modules are trained using Riemannian SGD, eliminating the need for backpropagation through time. Extensive experiments on multiple benchmarks show that GSG achieves superior accuracy, robustness, and energy efficiency compared to both Euclidean SNNs and manifold-based GNNs, establishing a new paradigm for curvature-aware, energy-efficient graph learning.
♻ ☆ CleverDistiller: Simple and Spatially Consistent Cross-modal Distillation
Vision foundation models (VFMs) such as DINO have led to a paradigm shift in 2D camera-based perception towards extracting generalized features to support many downstream tasks. Recent works introduce self-supervised cross-modal knowledge distillation (KD) as a way to transfer these powerful generalization capabilities into 3D LiDAR-based models. However, they either rely on highly complex distillation losses, pseudo-semantic maps, or limit KD to features useful for semantic segmentation only. In this work, we propose CleverDistiller, a self-supervised, cross-modal 2D-to-3D KD framework introducing a set of simple yet effective design choices: Unlike contrastive approaches relying on complex loss design choices, our method employs a direct feature similarity loss in combination with a multi layer perceptron (MLP) projection head to allow the 3D network to learn complex semantic dependencies throughout the projection. Crucially, our approach does not depend on pseudo-semantic maps, allowing for direct knowledge transfer from a VFM without explicit semantic supervision. Additionally, we introduce the auxiliary self-supervised spatial task of occupancy prediction to enhance the semantic knowledge, obtained from a VFM through KD, with 3D spatial reasoning capabilities. Experiments on standard autonomous driving benchmarks for 2D-to-3D KD demonstrate that CleverDistiller achieves state-of-the-art performance in both semantic segmentation and 3D object detection (3DOD) by up to 10% mIoU, especially when fine tuning on really low data amounts, showing the effectiveness of our simple yet powerful KD strategy
comment: Accepted to BMVC 2025
♻ ☆ PARROT: An Open Multilingual Radiology Reports Dataset
Rationale and Objectives: To develop and validate PARROT (Polyglottal Annotated Radiology Reports for Open Testing), a large, multicentric, open-access dataset of fictional radiology reports spanning multiple languages for testing natural language processing applications in radiology. Materials and Methods: From May to September 2024, radiologists were invited to contribute fictional radiology reports following their standard reporting practices. Contributors provided at least 20 reports with associated metadata including anatomical region, imaging modality, clinical context, and for non-English reports, English translations. All reports were assigned ICD-10 codes. A human vs. AI report differentiation study was conducted with 154 participants (radiologists, healthcare professionals, and non-healthcare professionals) assessing whether reports were human-authored or AI-generated. Results: The dataset comprises 2,658 radiology reports from 76 authors across 21 countries and 13 languages. Reports cover multiple imaging modalities (CT: 36.1%, MRI: 22.8%, radiography: 19.0%, ultrasound: 16.8%) and anatomical regions, with chest (19.9%), abdomen (18.6%), head (17.3%), and pelvis (14.1%) being most prevalent. In the differentiation study, participants achieved 53.9% accuracy (95% CI: 50.7%-57.1%) in distinguishing between human and AI-generated reports, with radiologists performing significantly better (56.9%, 95% CI: 53.3%-60.6%, p<0.05) than other groups. Conclusion: PARROT represents the largest open multilingual radiology report dataset, enabling development and validation of natural language processing applications across linguistic, geographic, and clinical boundaries without privacy constraints.
comment: Corrected affiliations (no change to the paper)
♻ ☆ CLaP -- State Detection from Time Series
The ever-growing amount of sensor data from machines, smart devices, and the environment leads to an abundance of high-resolution, unannotated time series (TS). These recordings encode recognizable properties of latent states and transitions from physical phenomena that can be modelled as abstract processes. The unsupervised localization and identification of these states and their transitions is the task of time series state detection (TSSD). Current TSSD algorithms employ classical unsupervised learning techniques, to infer state membership directly from feature space. This limits their predictive power, compared to supervised learning methods, which can exploit additional label information. We introduce CLaP, a new, highly accurate and efficient algorithm for TSSD. It leverages the predictive power of time series classification for TSSD in an unsupervised setting by applying novel self-supervision techniques to detect whether data segments emerge from the same state. To this end, CLaP cross-validates a classifier with segment-labelled subsequences to quantify confusion between segments. It merges labels from segments with high confusion, representing the same latent state, if this leads to an increase in overall classification quality. We conducted an experimental evaluation using 405 TS from five benchmarks and found CLaP to be significantly more precise in detecting states than six state-of-the-art competitors. It achieves the best accuracy-runtime tradeoff and is scalable to large TS. We provide a Python implementation of CLaP, which can be deployed in TS analysis workflows.
♻ ☆ Field Matching: an Electrostatic Paradigm to Generate and Transfer Data
We propose Electrostatic Field Matching (EFM), a novel method that is suitable for both generative modeling and distribution transfer tasks. Our approach is inspired by the physics of an electrical capacitor. We place source and target distributions on the capacitor plates and assign them positive and negative charges, respectively. Then we learn the electrostatic field of the capacitor using a neural network approximator. To map the distributions to each other, we start at one plate of the capacitor and move the samples along the learned electrostatic field lines until they reach the other plate. We theoretically justify that this approach provably yields the distribution transfer. In practice, we demonstrate the performance of our EFM in toy and image data experiments. Our code is available at https://github.com/justkolesov/FieldMatching
comment: Proceedings of the 42nd International Conference on Machine. Learning, Vancouver, Canada. PMLR 267, 2025
♻ ☆ Large-Scale Model Enabled Semantic Communication Based on Robust Knowledge Distillation
Large-scale models (LSMs) can be an effective framework for semantic representation and understanding, thereby providing a suitable tool for designing semantic communication (SC) systems. However, their direct deployment is often hindered by high computational complexity and resource requirements. In this paper, a novel robust knowledge distillation based semantic communication (RKD-SC) framework is proposed to enable efficient and \textcolor{black}{channel-noise-robust} LSM-powered SC. The framework addresses two key challenges: determining optimal compact model architectures and effectively transferring knowledge while maintaining robustness against channel noise. First, a knowledge distillation-based lightweight differentiable architecture search (KDL-DARTS) algorithm is proposed. This algorithm integrates knowledge distillation loss and a complexity penalty into the neural architecture search process to identify high-performance, lightweight semantic encoder architectures. Second, a novel two-stage robust knowledge distillation (RKD) algorithm is developed to transfer semantic capabilities from an LSM (teacher) to a compact encoder (student) and subsequently enhance system robustness. To further improve resilience to channel impairments, a channel-aware transformer (CAT) block is introduced as the channel codec, trained under diverse channel conditions with variable-length outputs. Extensive simulations on image classification tasks demonstrate that the RKD-SC framework significantly reduces model parameters while preserving a high degree of the teacher model's performance and exhibiting superior robustness compared to existing methods.
comment: 13 pages, 8 figures, 3 tables
♻ ☆ Taming the Untamed: Graph-Based Knowledge Retrieval and Reasoning for MLLMs to Conquer the Unknown ICCV 2025
The real value of knowledge lies not just in its accumulation, but in its potential to be harnessed effectively to conquer the unknown. Although recent multimodal large language models (MLLMs) exhibit impressing multimodal capabilities, they often fail in rarely encountered domain-specific tasks due to limited relevant knowledge. To explore this, we adopt visual game cognition as a testbed and select Monster Hunter: World as the target to construct a multimodal knowledge graph (MH-MMKG), which incorporates multi-modalities and intricate entity relations. We also design a series of challenging queries based on MH-MMKG to evaluate the models' ability for complex knowledge retrieval and reasoning. Furthermore, we propose a multi-agent retriever that enables a model to autonomously search relevant knowledge without additional training. Experimental results show that our approach significantly enhances the performance of MLLMs, providing a new perspective on multimodal knowledge-augmented reasoning and laying a solid foundation for future research.
comment: Aligned with ICCV 2025 camera-ready version
♻ ☆ Advancing Marine Research: UWSAM Framework and UIIS10K Dataset for Precise Underwater Instance Segmentation
With recent breakthroughs in large-scale modeling, the Segment Anything Model (SAM) has demonstrated significant potential in a variety of visual applications. However, due to the lack of underwater domain expertise, SAM and its variants face performance limitations in end-to-end underwater instance segmentation tasks, while their higher computational requirements further hinder their application in underwater scenarios. To address this challenge, we propose a large-scale underwater instance segmentation dataset, UIIS10K, which includes 10,048 images with pixel-level annotations for 10 categories. Then, we introduce UWSAM, an efficient model designed for automatic and accurate segmentation of underwater instances. UWSAM efficiently distills knowledge from the SAM ViT-Huge image encoder into the smaller ViT-Small image encoder via the Mask GAT-based Underwater Knowledge Distillation (MG-UKD) method for effective visual representation learning. Furthermore, we design an End-to-end Underwater Prompt Generator (EUPG) for UWSAM, which automatically generates underwater prompts instead of explicitly providing foreground points or boxes as prompts, thus enabling the network to locate underwater instances accurately for efficient segmentation. Comprehensive experimental results show that our model is effective, achieving significant performance improvements over state-of-the-art methods on multiple underwater instance datasets. Datasets and codes are available at https://github.com/LiamLian0727/UIIS10K.
♻ ☆ Scaling Capability in Token Space: An Analysis of Large Vision Language Model
Large language models have demonstrated predictable scaling behaviors with respect to model parameters and training data. This study investigates whether a similar scaling relationship exist for vision-language models with respect to the number of vision tokens. A mathematical framework is developed to characterize a relationship between vision token number and the expected divergence of distance between vision-referencing sequences. The theoretical analysis reveals two distinct scaling regimes: sublinear scaling for less vision tokens and linear scaling for more vision tokens. This aligns with model performance relationships of the form \(S(n) \approx c / n^{\alpha(n)}\), where the scaling exponent relates to the correlation structure between vision token representations. Empirical validations across multiple vision-language benchmarks show that model performance matches the prediction from scaling relationship. The findings contribute to understanding vision token scaling in transformers through a theoretical framework that complements empirical observations.
♻ ☆ Investigating the Robustness of Deductive Reasoning with Large Language Models AI 2025
Large Language Models (LLMs) have been shown to achieve impressive results for many reasoning-based NLP tasks, suggesting a degree of deductive reasoning capability. However, it remains unclear to which extent LLMs, in both informal and autoformalisation methods, are robust on logical deduction tasks. Moreover, while many LLM-based deduction methods have been proposed, a systematic study that analyses the impact of their design components is lacking. Addressing these two challenges, we propose the first study of the robustness of formal and informal LLM-based deductive reasoning methods. We devise a framework with two families of perturbations: adversarial noise and counterfactual statements, which jointly generate seven perturbed datasets. We organize the landscape of LLM reasoners according to their reasoning format, formalisation syntax, and feedback for error recovery. The results show that adversarial noise affects autoformalisation, while counterfactual statements influence all approaches. Detailed feedback does not improve overall accuracy despite reducing syntax errors, pointing to the challenge of LLM-based methods to self-correct effectively.
comment: to be published in ECAI 2025
♻ ☆ Visual Evaluative AI: A Hypothesis-Driven Tool with Concept-Based Explanations and Weight of Evidence
This paper presents Visual Evaluative AI, a decision aid that provides positive and negative evidence from image data for a given hypothesis. This tool finds high-level human concepts in an image and generates the Weight of Evidence (WoE) for each hypothesis in the decision-making process. We apply and evaluate this tool in the skin cancer domain by building a web-based application that allows users to upload a dermatoscopic image, select a hypothesis and analyse their decisions by evaluating the provided evidence. Further, we demonstrate the effectiveness of Visual Evaluative AI on different concept-based explanation approaches.
comment: 4 pages
♻ ☆ Head-Specific Intervention Can Induce Misaligned AI Coordination in Large Language Models AI
Robust alignment guardrails for large language models (LLMs) are becoming increasingly important with their widespread application. In contrast to previous studies, we demonstrate that inference-time activation interventions can bypass safety alignments and effectively steer model generations towards harmful AI coordination. Our method applies fine-grained interventions at specific attention heads, which we identify by probing each head in a simple binary choice task. We then show that interventions on these heads generalise to the open-ended generation setting, effectively circumventing safety guardrails. We demonstrate that intervening on a few attention heads is more effective than intervening on full layers or supervised fine-tuning. We further show that only a few example completions are needed to compute effective steering directions, which is an advantage over classical fine-tuning. We also demonstrate that applying interventions in the negative direction can prevent a common jailbreak attack. Our results suggest that, at the attention head level, activations encode fine-grained linearly separable behaviours. Practically, the approach offers a straightforward methodology to steer large language model behaviour, which could be extended to diverse domains beyond safety, requiring fine-grained control over the model output. The code and datasets for this study can be found on https://github.com/PaulDrm/targeted_intervention.
comment: Published at Transaction of Machine Learning Research 08/2025, Large Language Models (LLMs), Interference-time activation shifting, Steerability, Explainability, AI alignment, Interpretability
♻ ☆ Can Large Language Models Act as Ensembler for Multi-GNNs?
Graph Neural Networks (GNNs) have emerged as powerful models for learning from graph-structured data. However, GNNs lack the inherent semantic understanding capability of rich textual node attributes, limiting their effectiveness in applications. On the other hand, we empirically observe that for existing GNN models, no one can consistently outperforms others across diverse datasets. In this paper, we study whether LLMs can act as an ensembler for multi-GNNs and propose the LensGNN model. The model first aligns multiple GNNs, mapping the representations of different GNNs into the same space. Then, through LoRA fine-tuning, it aligns the space between the GNN and the LLM, injecting graph tokens and textual information into LLMs. This allows LensGNN to ensemble multiple GNNs and take advantage of the strengths of LLM, leading to a deeper understanding of both textual semantic information and graph structural information. The experimental results show that LensGNN outperforms existing models. This research advances text-attributed graph ensemble learning by providing a robust and superior solution for integrating semantic and structural information. We provide our code and data here: https://anonymous.4open.science/r/EnsemGNN-E267/.
♻ ☆ DSADF: Thinking Fast and Slow for Decision Making
Although Reinforcement Learning (RL) agents are effective in well-defined environments, they often struggle to generalize their learned policies to dynamic settings due to their reliance on trial-and-error interactions. Recent work has explored applying Large Language Models (LLMs) or Vision Language Models (VLMs) to boost the generalization of RL agents through policy optimization guidance or prior knowledge. However, these approaches often lack seamless coordination between the RL agent and the foundation model, leading to unreasonable decision-making in unfamiliar environments and efficiency bottlenecks. Making full use of the inferential capabilities of foundation models and the rapid response capabilities of RL agents and enhancing the interaction between the two to form a dual system is still a lingering scientific question. To address this problem, we draw inspiration from Kahneman's theory of fast thinking (System 1) and slow thinking (System 2), demonstrating that balancing intuition and deep reasoning can achieve nimble decision-making in a complex world. In this study, we propose a Dual-System Adaptive Decision Framework (DSADF), integrating two complementary modules: System 1, comprising an RL agent and a memory space for fast and intuitive decision making, and System 2, driven by a VLM for deep and analytical reasoning. DSADF facilitates efficient and adaptive decision-making by combining the strengths of both systems. The empirical study in the video game environment: Crafter and Housekeep demonstrates the effectiveness of our proposed method, showing significant improvements in decision abilities for both unseen and known tasks.
♻ ☆ MemoryTalker: Personalized Speech-Driven 3D Facial Animation via Audio-Guided Stylization ICCV 2025
Speech-driven 3D facial animation aims to synthesize realistic facial motion sequences from given audio, matching the speaker's speaking style. However, previous works often require priors such as class labels of a speaker or additional 3D facial meshes at inference, which makes them fail to reflect the speaking style and limits their practical use. To address these issues, we propose MemoryTalker which enables realistic and accurate 3D facial motion synthesis by reflecting speaking style only with audio input to maximize usability in applications. Our framework consists of two training stages: 1-stage is storing and retrieving general motion (i.e., Memorizing), and 2-stage is to perform the personalized facial motion synthesis (i.e., Animating) with the motion memory stylized by the audio-driven speaking style feature. In this second stage, our model learns about which facial motion types should be emphasized for a particular piece of audio. As a result, our MemoryTalker can generate a reliable personalized facial animation without additional prior information. With quantitative and qualitative evaluations, as well as user study, we show the effectiveness of our model and its performance enhancement for personalized facial animation over state-of-the-art methods.
comment: Accepted in ICCV 2025; Project Page: https://cau-irislab.github.io/ICCV25-MemoryTalker/
♻ ☆ Interaction-Data-guided Conditional Instrumental Variables for Debiasing Recommender Systems IJCAI 2025
It is often challenging to identify a valid instrumental variable (IV), although the IV methods have been regarded as effective tools of addressing the confounding bias introduced by latent variables. To deal with this issue, an Interaction-Data-guided Conditional IV (IDCIV) debiasing method is proposed for Recommender Systems, called IDCIV-RS. The IDCIV-RS automatically generates the representations of valid CIVs and their corresponding conditioning sets directly from interaction data, significantly reducing the complexity of IV selection while effectively mitigating the confounding bias caused by latent variables in recommender systems. Specifically, the IDCIV-RS leverages a variational autoencoder (VAE) to learn both the CIV representations and their conditioning sets from interaction data, followed by the application of least squares to derive causal representations for click prediction. Extensive experiments on two real-world datasets, Movielens-10M and Douban-Movie, demonstrate that IDCIV-RS successfully learns the representations of valid CIVs, effectively reduces bias, and consequently improves recommendation accuracy.
comment: Accepted at IJCAI 2025
♻ ☆ Towards Controllable Speech Synthesis in the Era of Large Language Models: A Systematic Survey
Text-to-speech (TTS) has advanced from generating natural-sounding speech to enabling fine-grained control over attributes like emotion, timbre, and style. Driven by rising industrial demand and breakthroughs in deep learning, e.g., diffusion and large language models (LLMs), controllable TTS has become a rapidly growing research area. This survey provides the first comprehensive review of controllable TTS methods, from traditional control techniques to emerging approaches using natural language prompts. We categorize model architectures, control strategies, and feature representations, while also summarizing challenges, datasets, and evaluations in controllable TTS. This survey aims to guide researchers and practitioners by offering a clear taxonomy and highlighting future directions in this fast-evolving field. One can visit https://github.com/imxtx/awesome-controllabe-speech-synthesis for a comprehensive paper list and updates.
comment: The first comprehensive survey on controllable TTS. Accepted to the EMNLP 2025 main conference
♻ ☆ Learning with Spike Synchrony in Spiking Neural Networks
Spiking neural networks (SNNs) promise energy-efficient computation by mimicking biological neural dynamics, yet existing plasticity rules focus on isolated spike pairs and fail to leverage the synchronous activity patterns that drive learning in biological systems. We introduce spike-synchrony-dependent plasticity (SSDP), a training approach that adjusts synaptic weights based on the degree of synchronous neural firing rather than spike timing order. Our method operates as a local, post-optimization mechanism that applies updates to sparse parameter subsets, maintaining computational efficiency with linear scaling. SSDP serves as a lightweight event-structure regularizer, biasing the network toward biologically plausible spatio-temporal synchrony while preserving standard convergence behavior. SSDP seamlessly integrates with standard backpropagation while preserving the forward computation graph. We validate our approach across single-layer SNNs and spiking Transformers on datasets from static images to high-temporal-resolution tasks, demonstrating improved convergence stability and enhanced robustness to spike-time jitter and event noise. These findings provide new insights into how biological neural networks might leverage synchronous activity for efficient information processing and suggest that synchrony-dependent plasticity represents a key computational principle underlying neural learning.
comment: 23 pages, 6 figures, 9 tables. This work proposes SSDP, a biologically inspired spike-synchrony-dependent plasticity rule. We demonstrate its effectiveness across shallow and deep spiking architectures including Spiking-ResNet18 and SNN-Transformer
♻ ☆ Enhancing material behavior discovery using embedding-oriented Physically-Guided Neural Networks with Internal Variables
Physically Guided Neural Networks with Internal Variables are SciML tools that use only observable data for training and and have the capacity to unravel internal state relations. They incorporate physical knowledge both by prescribing the model architecture and using loss regularization, thus endowing certain specific neurons with a physical meaning as internal state variables. Despite their potential, these models face challenges in scalability when applied to high-dimensional data such as fine-grid spatial fields or time-evolving systems. In this work, we propose some enhancements to the PGNNIV framework that address these scalability limitations through reduced-order modeling techniques. Specifically, we introduce alternatives to the original decoder structure using spectral decomposition, POD, and pretrained autoencoder-based mappings. These surrogate decoders offer varying trade-offs between computational efficiency, accuracy, noise tolerance, and generalization, while improving drastically the scalability. Additionally, we integrate model reuse via transfer learning and fine-tuning strategies to exploit previously acquired knowledge, supporting efficient adaptation to novel materials or configurations, and significantly reducing training time while maintaining or improving model performance. To illustrate these various techniques, we use a representative case governed by the nonlinear diffusion equation, using only observable data. Results demonstrate that the enhanced PGNNIV framework successfully identifies the underlying constitutive state equations while maintaining high predictive accuracy. It also improves robustness to noise, mitigates overfitting, and reduces computational demands. The proposed techniques can be tailored to various scenarios depending on data availability, resources, and specific modeling objectives, overcoming scalability challenges in all the scenarios.
♻ ☆ PediatricsMQA: a Multi-modal Pediatrics Question Answering Benchmark
Large language models (LLMs) and vision-augmented LLMs (VLMs) have significantly advanced medical informatics, diagnostics, and decision support. However, these models exhibit systematic biases, particularly age bias, compromising their reliability and equity. This is evident in their poorer performance on pediatric-focused text and visual question-answering tasks. This bias reflects a broader imbalance in medical research, where pediatric studies receive less funding and representation despite the significant disease burden in children. To address these issues, a new comprehensive multi-modal pediatric question-answering benchmark, PediatricsMQA, has been introduced. It consists of 3,417 text-based multiple-choice questions (MCQs) covering 131 pediatric topics across seven developmental stages (prenatal to adolescent) and 2,067 vision-based MCQs using 634 pediatric images from 67 imaging modalities and 256 anatomical regions. The dataset was developed using a hybrid manual-automatic pipeline, incorporating peer-reviewed pediatric literature, validated question banks, existing benchmarks, and existing QA resources. Evaluating state-of-the-art open models, we find dramatic performance drops in younger cohorts, highlighting the need for age-aware methods to ensure equitable AI support in pediatric care.
♻ ☆ Hidden in Plain Sight: Reasoning in Underspecified and Misspecified Scenarios for Multimodal LLMs
Multimodal large language models (MLLMs) are increasingly deployed in open-ended, real-world environments where inputs are messy, underspecified, and not always trustworthy. Unlike curated benchmarks, these settings frequently involve instructions that refer to missing objects or contradictory facts, rely on ambiguous references, or request infeasible actions. In such cases, success hinges not on task execution alone, but on a model's ability to detect when something is silently wrong. This paper presents a systematic analysis of how current MLLMs handle such implicit reasoning scenarios: cases where the flaw is not explicitly stated but must be inferred from context. Using a curated diagnostic suite spanning four categories of real-world failure modes, we evaluate six MLLMs, including o3 and GPT-4o, and find that models frequently fail to surface hidden issues, even when they possess the necessary perceptual and reasoning skills. Explicit prompting reveals that the underlying capabilities exist but are often suppressed in favor of user compliance. We further show that simple inference-time interventions, such as cautious persona prompting and, in particular, requiring a clarifying question, can dramatically recover performance. Our findings highlight a persistent gap between reasoning competence and behavioral compliance in current MLLMs and suggest practical strategies for making these models more trustworthy in underconstrained environments.
♻ ☆ Diffusing the Blind Spot: Uterine MRI Synthesis with Diffusion Models AI
Despite significant progress in generative modelling, existing diffusion models often struggle to produce anatomically precise female pelvic images, limiting their application in gynaecological imaging, where data scarcity and patient privacy concerns are critical. To overcome these barriers, we introduce a novel diffusion-based framework for uterine MRI synthesis, integrating both unconditional and conditioned Denoising Diffusion Probabilistic Models (DDPMs) and Latent Diffusion Models (LDMs) in 2D and 3D. Our approach generates anatomically coherent, high fidelity synthetic images that closely mimic real scans and provide valuable resources for training robust diagnostic models. We evaluate generative quality using advanced perceptual and distributional metrics, benchmarking against standard reconstruction methods, and demonstrate substantial gains in diagnostic accuracy on a key classification task. A blinded expert evaluation further validates the clinical realism of our synthetic images. We release our models with privacy safeguards and a comprehensive synthetic uterine MRI dataset to support reproducible research and advance equitable AI in gynaecology.
comment: Accepted at MICCAI CAPI 2025
♻ ☆ LETToT: Label-Free Evaluation of Large Language Models On Tourism Using Expert Tree-of-Thought
Evaluating large language models (LLMs) in specific domain like tourism remains challenging due to the prohibitive cost of annotated benchmarks and persistent issues like hallucinations. We propose $\textbf{L}$able-Free $\textbf{E}$valuation of LLM on $\textbf{T}$ourism using Expert $\textbf{T}$ree-$\textbf{o}$f-$\textbf{T}$hought (LETToT), a framework that leverages expert-derived reasoning structures-instead of labeled data-to access LLMs in tourism. First, we iteratively refine and validate hierarchical ToT components through alignment with generic quality dimensions and expert feedback. Results demonstrate the effectiveness of our systematically optimized expert ToT with 4.99-14.15\% relative quality gains over baselines. Second, we apply LETToT's optimized expert ToT to evaluate models of varying scales (32B-671B parameters), revealing: (1) Scaling laws persist in specialized domains (DeepSeek-V3 leads), yet reasoning-enhanced smaller models (e.g., DeepSeek-R1-Distill-Llama-70B) close this gap; (2) For sub-72B models, explicit reasoning architectures outperform counterparts in accuracy and conciseness ($p<0.05$). Our work established a scalable, label-free paradigm for domain-specific LLM evaluation, offering a robust alternative to conventional annotated benchmarks.
♻ ☆ TokenUnify: Scaling Up Autoregressive Pretraining for Neuron Segmentation ICCV 2025
Neuron segmentation from electron microscopy (EM) volumes is crucial for understanding brain circuits, yet the complex neuronal structures in high-resolution EM images present significant challenges. EM data exhibits unique characteristics including high noise levels, anisotropic voxel dimensions, and ultra-long spatial dependencies that make traditional vision models inadequate. Inspired by autoregressive pretraining in language models, we propose TokenUnify, a hierarchical predictive coding framework that captures multi-scale dependencies through three complementary learning objectives. TokenUnify integrates random token prediction, next-token prediction, and next-all token prediction to create a comprehensive representational space with emergent properties. From an information-theoretic perspective, these three tasks are complementary and provide optimal coverage of visual data structure, with our approach reducing autoregressive error accumulation from O(K) to O(sqrt(K)) for sequences of length K. We also introduce a large-scale EM dataset with 1.2 billion annotated voxels, offering ideal long-sequence visual data with spatial continuity. Leveraging the Mamba architecture's linear-time sequence modeling capabilities, TokenUnify achieves a 44% performance improvement on downstream neuron segmentation and outperforms MAE by 25%. Our approach demonstrates superior scaling properties as model size increases, effectively bridging the gap between pretraining strategies for language and vision models.
comment: Accepted by ICCV 2025
♻ ☆ VLASCD: A Visual Language Action Model for Simultaneous Chatting and Decision Making
Recent large pretrained models such as LLMs (e.g., GPT series) and VLAs (e.g., OpenVLA) have achieved notable progress on multimodal tasks, yet they are built upon a multi-input single-output (MISO) paradigm. We show that this paradigm fundamentally limits performance in multi-input multi-output (MIMO) scenarios, where parallel task execution is required. In MISO architectures, tasks compete for a shared output channel, creating mutual exclusion effects that cause unbalanced optimization and degraded performance. To address this gap, we introduce MIMO-VLA (VLASCD), a unified training framework that enables concurrent multi-task outputs, exemplified by simultaneous dialogue generation and decision-making. Inspired by human cognition, MIMO-VLA eliminates interference between tasks and supports efficient parallel processing. Experiments on the CARLA autonomous driving platform demonstrate that MIMO-VLA substantially outperforms state-of-the-art MISO-based LLMs, reinforcement learning models, and VLAs in MIMO settings, establishing a new direction for multimodal and multitask learning.
comment: Accepted by EMNLP 2025 (Main Conference)
♻ ☆ MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation
Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation. While recent efforts in robotics have leveraged LLMs both for high-level and low-level planning, these approaches often face significant challenges, such as hallucinations in long-horizon tasks and limited adaptability due to the generation of plans in a single pass without real-time feedback. To address these limitations, we propose a novel multi-agent LLM framework, Multi-Agent Large Language Model for Manipulation (MALMM) that distributes high-level planning and low-level control code generation across specialized LLM agents, supervised by an additional agent that dynamically manages transitions. By incorporating observations from the environment after each step, our framework effectively handles intermediate failures and enables adaptive re-planning. Unlike existing methods, our approach does not rely on pre-trained skill policies or in-context learning examples and generalizes to a variety of new tasks. We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting, thereby overcoming key limitations of existing LLM-based manipulation methods.
comment: 48 pages
♻ ☆ EmbodiedOcc: Embodied 3D Occupancy Prediction for Vision-based Online Scene Understanding ICCV2025
3D occupancy prediction provides a comprehensive description of the surrounding scenes and has become an essential task for 3D perception. Most existing methods focus on offline perception from one or a few views and cannot be applied to embodied agents that demand to gradually perceive the scene through progressive embodied exploration. In this paper, we formulate an embodied 3D occupancy prediction task to target this practical scenario and propose a Gaussian-based EmbodiedOcc framework to accomplish it. We initialize the global scene with uniform 3D semantic Gaussians and progressively update local regions observed by the embodied agent. For each update, we extract semantic and structural features from the observed image and efficiently incorporate them via deformable cross-attention to refine the regional Gaussians. Finally, we employ Gaussian-to-voxel splatting to obtain the global 3D occupancy from the updated 3D Gaussians. Our EmbodiedOcc assumes an unknown (i.e., uniformly distributed) environment and maintains an explicit global memory of it with 3D Gaussians. It gradually gains knowledge through the local refinement of regional Gaussians, which is consistent with how humans understand new scenes through embodied exploration. We reorganize an EmbodiedOcc-ScanNet benchmark based on local annotations to facilitate the evaluation of the embodied 3D occupancy prediction task. Our EmbodiedOcc outperforms existing methods by a large margin and accomplishes the embodied occupancy prediction with high accuracy and efficiency. Code: https://github.com/YkiWu/EmbodiedOcc.
comment: Accepted by ICCV2025. Code: https://github.com/YkiWu/EmbodiedOcc
♻ ☆ BiMark: Unbiased Multilayer Watermarking for Large Language Models ICML
Recent advances in Large Language Models (LLMs) have raised urgent concerns about LLM-generated text authenticity, prompting regulatory demands for reliable identification mechanisms. Although watermarking offers a promising solution, existing approaches struggle to simultaneously achieve three critical requirements: text quality preservation, model-agnostic detection, and message embedding capacity, which are crucial for practical implementation. To achieve these goals, the key challenge lies in balancing the trade-off between text quality preservation and message embedding capacity. To address this challenge, we propose BiMark, a novel watermarking framework that achieves these requirements through three key innovations: (1) a bit-flip unbiased reweighting mechanism enabling model-agnostic detection, (2) a multilayer architecture enhancing detectability without compromising generation quality, and (3) an information encoding approach supporting multi-bit watermarking. Through theoretical analysis and extensive experiments, we validate that, compared to state-of-the-art multi-bit watermarking methods, BiMark achieves up to 30% higher extraction rates for short texts while maintaining text quality indicated by lower perplexity, and performs comparably to non-watermarked text on downstream tasks such as summarization and translation.
comment: This paper is accepted by International Conference on Machine Learning (ICML) 2025
♻ ☆ Auto prompt sql: a resource-efficient architecture for text-to-sql translation in constrained environments
Using the best Text-to-SQL methods in resource-constrained environments is challenging due to their reliance on resource-intensive open-source models. This paper introduces Auto Prompt SQL(AP-SQL), a novel architecture designed to bridge the gap between resource-efficient small open-source models and the powerful capabilities of large closed-source models for Text-to-SQL translation. Our method decomposes the task into schema filtering, retrieval-augmented text-to-SQL generation based on in-context examples, and prompt-driven schema linking and SQL generation. To improve schema selection accuracy, we fine-tune large language models. Crucially, we also explore the impact of prompt engineering throughout the process, leveraging Chain-of-Thought(CoT) and Graph-of-Thought(GoT) templates to significantly enhance the model's reasoning for accurate SQL generation. Comprehensive evaluations on the Spider benchmarks demonstrate the effectiveness of AP-SQL.
comment: 4 pages,2 figures,EITCE 2025
♻ ☆ Visual Generation Without Guidance ICML 2025
Classifier-Free Guidance (CFG) has been a default technique in various visual generative models, yet it requires inference from both conditional and unconditional models during sampling. We propose to build visual models that are free from guided sampling. The resulting algorithm, Guidance-Free Training (GFT), matches the performance of CFG while reducing sampling to a single model, halving the computational cost. Unlike previous distillation-based approaches that rely on pretrained CFG networks, GFT enables training directly from scratch. GFT is simple to implement. It retains the same maximum likelihood objective as CFG and differs mainly in the parameterization of conditional models. Implementing GFT requires only minimal modifications to existing codebases, as most design choices and hyperparameters are directly inherited from CFG. Our extensive experiments across five distinct visual models demonstrate the effectiveness and versatility of GFT. Across domains of diffusion, autoregressive, and masked-prediction modeling, GFT consistently achieves comparable or even lower FID scores, with similar diversity-fidelity trade-offs compared with CFG baselines, all while being guidance-free. Code will be available at https://github.com/thu-ml/GFT.
comment: Accepted to ICML 2025
♻ ☆ CCVA-FL: Cross-Client Variations Adaptive Federated Learning for Medical Imaging
Federated Learning (FL) offers a privacy-preserving approach to train models on decentralized data. Its potential in healthcare is significant, but challenges arise due to cross-client variations in medical image data, exacerbated by limited annotations. This paper introduces Cross-Client Variations Adaptive Federated Learning (CCVA-FL) to address these issues. CCVA-FL aims to minimize cross-client variations by transforming images into a common feature space. It involves expert annotation of a subset of images from each client, followed by the selection of a client with the least data complexity as the target. Synthetic medical images are then generated using Scalable Diffusion Models with Transformers (DiT) based on the target client's annotated images. These synthetic images, capturing diversity and representing the original data, are shared with other clients. Each client then translates its local images into the target image space using image-to-image translation. The translated images are subsequently used in a federated learning setting to develop a server model. Our results demonstrate that CCVA-FL outperforms Vanilla Federated Averaging by effectively addressing data distribution differences across clients without compromising privacy.
comment: Need improvement
♻ ☆ A Survey on the Safety and Security Threats of Computer-Using Agents: JARVIS or Ultron?
Recently, AI-driven interactions with computing devices have advanced from basic prototype tools to sophisticated, LLM-based systems that emulate human-like operations in graphical user interfaces. We are now witnessing the emergence of \emph{Computer-Using Agents} (CUAs), capable of autonomously performing tasks such as navigating desktop applications, web pages, and mobile apps. However, as these agents grow in capability, they also introduce novel safety and security risks. Vulnerabilities in LLM-driven reasoning, with the added complexity of integrating multiple software components and multimodal inputs, further complicate the security landscape. In this paper, we present a systematization of knowledge on the safety and security threats of CUAs. We conduct a comprehensive literature review and distill our findings along four research objectives: \textit{\textbf{(i)}} define the CUA that suits safety analysis; \textit{\textbf{(ii)} } categorize current safety threats among CUAs; \textit{\textbf{(iii)}} propose a comprehensive taxonomy of existing defensive strategies; \textit{\textbf{(iv)}} summarize prevailing benchmarks, datasets, and evaluation metrics used to assess the safety and performance of CUAs. Building on these insights, our work provides future researchers with a structured foundation for exploring unexplored vulnerabilities and offers practitioners actionable guidance in designing and deploying secure Computer-Using Agents.
♻ ☆ TombRaider: Entering the Vault of History to Jailbreak Large Language Models
Warning: This paper contains content that may involve potentially harmful behaviours, discussed strictly for research purposes. Jailbreak attacks can hinder the safety of Large Language Model (LLM) applications, especially chatbots. Studying jailbreak techniques is an important AI red teaming task for improving the safety of these applications. In this paper, we introduce TombRaider, a novel jailbreak technique that exploits the ability to store, retrieve, and use historical knowledge of LLMs. TombRaider employs two agents, the inspector agent to extract relevant historical information and the attacker agent to generate adversarial prompts, enabling effective bypassing of safety filters. We intensively evaluated TombRaider on six popular models. Experimental results showed that TombRaider could outperform state-of-the-art jailbreak techniques, achieving nearly 100% attack success rates (ASRs) on bare models and maintaining over 55.4% ASR against defence mechanisms. Our findings highlight critical vulnerabilities in existing LLM safeguards, underscoring the need for more robust safety defences.
comment: Main Conference of EMNLP
♻ ☆ Accountability Attribution: Tracing Model Behavior to Training Processes
Modern AI systems are typically developed through multiple stages-pretraining, fine-tuning rounds, and subsequent adaptation or alignment, where each stage builds on the previous ones and updates the model in distinct ways. This raises a critical question of accountability: when a deployed model succeeds or fails, which stage is responsible, and to what extent? We pose the accountability attribution problem for tracing model behavior back to specific stages of the model development process. To address this challenge, we propose a general framework that answers counterfactual questions about stage effects: how would the model's behavior have changed if the updates from a particular stage had not occurred? Within this framework, we introduce estimators that efficiently quantify stage effects without retraining the model, accounting for both the data and key aspects of model optimization dynamics, including learning rate schedules, momentum, and weight decay. We demonstrate that our approach successfully quantifies the accountability of each stage to the model's behavior. Based on the attribution results, our method can identify and remove spurious correlations learned during image classification and text toxicity detection tasks that were developed across multiple stages. Our approach provides a practical tool for model analysis and represents a significant step toward more accountable AI development.
♻ ☆ WATCH: Adaptive Monitoring for AI Deployments via Weighted-Conformal Martingales ICML
Responsibly deploying artificial intelligence (AI) / machine learning (ML) systems in high-stakes settings arguably requires not only proof of system reliability, but also continual, post-deployment monitoring to quickly detect and address any unsafe behavior. Methods for nonparametric sequential testing -- especially conformal test martingales (CTMs) and anytime-valid inference -- offer promising tools for this monitoring task. However, existing approaches are restricted to monitoring limited hypothesis classes or ``alarm criteria'' (e.g., detecting data shifts that violate certain exchangeability or IID assumptions), do not allow for online adaptation in response to shifts, and/or cannot diagnose the cause of degradation or alarm. In this paper, we address these limitations by proposing a weighted generalization of conformal test martingales (WCTMs), which lay a theoretical foundation for online monitoring for any unexpected changepoints in the data distribution while controlling false-alarms. For practical applications, we propose specific WCTM algorithms that adapt online to mild covariate shifts (in the marginal input distribution), quickly detect harmful shifts, and diagnose those harmful shifts as concept shifts (in the conditional label distribution) or extreme (out-of-support) covariate shifts that cannot be easily adapted to. On real-world datasets, we demonstrate improved performance relative to state-of-the-art baselines.
comment: The International Conference on Machine Learning (ICML), 2025
Computational Engineering, Finance, and Science 5
☆ Balancing the exploration-exploitation trade-off in active learning for surrogate model-based reliability analysis via multi-objective optimization
Reliability assessment of engineering systems is often hindered by the need to evaluate limit-state functions through computationally expensive simulations, rendering standard sampling impractical. An effective solution is to approximate the limit-state function with a surrogate model iteratively refined through active learning, thereby reducing the number of expensive simulations. At each iteration, an acquisition strategy selects the next sample by balancing two competing goals: exploration, to reduce global predictive uncertainty, and exploitation, to improve accuracy near the failure boundary. Classical strategies, such as the U-function and the Expected Feasibility Function (EFF), implicitly condense exploration and exploitation into a scalar score derived from the surrogate predictive mean and variance, concealing the trade-off and biasing sampling. We introduce a multi-objective optimization (MOO) formulation for sample acquisition in reliability analysis, where exploration and exploitation are explicit, competing objectives. Within our framework, U and EFF correspond to specific Pareto-optimal solutions, providing a unifying perspective that connects classical and Pareto-based approaches. Solving the MOO problem discards dominated candidates, yielding a compact Pareto set, with samples representing a quantifiable exploration-exploitation trade-off. To select samples from the Pareto set, we adopt the knee point and the compromise solution, and further propose a strategy that adjusts the trade-off according to reliability estimates. Across benchmark limit-state functions, we assess the sample efficiency and active learning performance of all strategies. Results show that U and EFF exhibit case-dependent performance, knee and compromise are generally effective, and the adaptive strategy is robust, consistently reaching strict targets and maintaining relative errors below 0.1%.
☆ Spectral-Prior Guided Multistage Physics-Informed Neural Networks for Highly Accurate PDE Solutions
Physics-Informed Neural Networks (PINNs) are becoming a popular method for solving PDEs, due to their mesh-free nature and their ability to handle high-dimensional problems where traditional numerical solvers often struggle. Despite their promise, the practical application of PINNs is still constrained by several fac- tors, a primary one being their often-limited accuracy. This paper is dedicated to enhancing the accuracy of PINNs by introducing spectral-prior guided multistage strategy. We propose two methods: Spectrum- Informed Multistage Physics-Informed Neural Networks (SI-MSPINNs) and Multistage Physics-Informed Neural Networks with Spectrum Weighted Random Fourier Features (RFF-MSPINNs). The SI-MSPINNs integrate the core mechanism of Spectrum-Informed Multistage Neural Network (SI-MSNNs) and PINNs, in which we extract the Dominant Spectral Pattern (DSP) of residuals by the discrete Fourier transform. This DSP guides the network initialization to alleviate spectral bias, and gradually optimizes the resolution accuracy using a multistage strategy. The RFF-MSPINNs combines random Fourier features with spectral weighting methods, dynamically adjusting the frequency sampling distribution based on the residual power spectral density, allowing the network to prioritize learning high-energy physical modes. Through experimental verification of the Burgers equation and the Helmholtz equation, we show that both models significantly improve the accuracy of the original PINNs.
comment: 17 pages, 9 figures
☆ MetaGen: A DSL, Database, and Benchmark for VLM-Assisted Metamaterial Generation
Metamaterials are micro-architected structures whose geometry imparts highly tunable-often counter-intuitive-bulk properties. Yet their design is difficult because of geometric complexity and a non-trivial mapping from architecture to behaviour. We address these challenges with three complementary contributions. (i) MetaDSL: a compact, semantically rich domain-specific language that captures diverse metamaterial designs in a form that is both human-readable and machine-parsable. (ii) MetaDB: a curated repository of more than 150,000 parameterized MetaDSL programs together with their derivatives-three-dimensional geometry, multi-view renderings, and simulated elastic properties. (iii) MetaBench: benchmark suites that test three core capabilities of vision-language metamaterial assistants-structure reconstruction, property-driven inverse design, and performance prediction. We establish baselines by fine-tuning state-of-the-art vision-language models and deploy an omni-model within an interactive, CAD-like interface. Case studies show that our framework provides a strong first step toward integrated design and understanding of structure-representation-property relationships.
☆ TOFLUX: A Differentiable Topology Optimization Framework for Multiphysics Fluidic Problems
Topology Optimization (TO) holds the promise of designing next-generation compact and efficient fluidic devices. However, the inherent complexity of fluid-based TO systems, characterized by multiphysics nonlinear interactions, poses substantial barriers to entry for researchers. Beyond the inherent intricacies of forward simulation models, design optimization is further complicated by the difficulty of computing sensitivities, i.e., gradients. Manual derivation and implementation of sensitivities are often laborious and prone to errors, particularly for non-trivial objectives, constraints, and material models. An alternative solution is automatic differentiation (AD). Although AD has been previously demonstrated for simpler TO problems, extending its use to complex nonlinear multiphysics systems, specifically in fluidic optimization, is key to reducing the entry barrier. To this end, we introduce TOFLUX, a TO framework for fluid devices leveraging the JAX library for high-performance automatic differentiation. The flexibility afforded by AD enables the rapid exploration and evaluation of various objectives and constraints. We illustrate this capability through challenging examples encompassing thermo-fluidic coupling, fluid-structure interaction, and non-Newtonian flows. Additionally, we demonstrate the seamless integration of our framework with neural networks and machine learning methodologies, enabling modern approaches to scientific computing. Ultimately, the framework aims to provide a foundational resource to accelerate research and innovation in fluid-based TO. The software accompanying this educational paper can be accessed at github.com/UW-ERSL/TOFLUX.
♻ ☆ QUEENS: An Open-Source Python Framework for Solver-Independent Analyses of Large-Scale Computational Models
A growing challenge in research and industrial engineering applications is the need for repeated, systematic analysis of large-scale computational models, for example, patient-specific digital twins of diseased human organs: The analysis requires efficient implementation, data, resource management, and parallelization, possibly on distributed systems. To tackle these challenges and save many researchers from annoying, time-consuming tasks, we present QUEENS (Quantification of Uncertain Effects in Engineering Systems), an open-source Python framework for composing and managing simulation analyses with arbitrary (physics-based) solvers on distributed computing infrastructures. Besides simulation management capabilities, QUEENS offers a comprehensive collection of efficiently implemented state-of-the-art algorithms ranging from routines for convergence studies and common optimization algorithms to more advanced sampling algorithms for uncertainty quantification and Bayesian inverse analysis. Additionally, we provide our latest cutting-edge research in multi-fidelity uncertainty quantification, efficient multi-fidelity Bayesian inverse analysis, and probabilistic machine learning. QUEENS adopts a Bayesian, probabilistic mindset but equally supports standard deterministic analysis without requiring prior knowledge of probability theory. The modular architecture allows rapid switching between common types of analyses and facilitates building sophisticated hierarchical algorithms. Encouraging natural incremental steps and scaling towards complexity allows researchers to consider the big picture while building towards it through smaller, manageable steps. The open-source repository is available at https://github.com/queens-py/queens.
comment: 17 pages, 6 figures, one Github repository https://github.com/queens-py/queens
Databases 5
☆ SEFRQO: A Self-Evolving Fine-Tuned RAG-Based Query Optimizer SIGMOD 2026
Query optimization is a crucial problem in database systems that has been studied for decades. Learned query optimizers (LQOs) can improve performance over time by incorporating feedback; however, they suffer from cold-start issues and often require retraining when workloads shift or schemas change. Recent LLM-based query optimizers leverage pre-trained and fine-tuned LLMs to mitigate these challenges. Nevertheless, they neglect LLMs' in-context learning and execution records as feedback for continuous evolution. In this paper, we present SEFRQO, a Self-Evolving Fine-tuned RAG-based Query Optimizer. SEFRQO mitigates the cold-start problem of LQOs by continuously learning from execution feedback via a Retrieval-Augmented Generation (RAG) framework. We employ both supervised fine-tuning and reinforcement fine-tuning to prepare the LLM to produce syntactically correct and performance-efficient query hints. Moreover, SEFRQO leverages the LLM's in-context learning capabilities by dynamically constructing prompts with references to similar queries and the historical execution record of the same query. This self-evolving paradigm iteratively optimizes the prompt to minimize query execution latency. Evaluations show that SEFRQO outperforms state-of-the-art LQOs, achieving up to 65.05% and 93.57% reductions in query latency on the CEB and Stack workloads, respectively, compared to PostgreSQL.
comment: To appear at SIGMOD 2026 (https://2026.sigmod.org/)
☆ Effective Clustering for Large Multi-Relational Graphs SIGMOD 2026
Multi-relational graphs (MRGs) are an expressive data structure for modeling diverse interactions/relations among real objects (i.e., nodes), which pervade extensive applications and scenarios. Given an MRG G with N nodes, partitioning the node set therein into K disjoint clusters (MRGC) is a fundamental task in analyzing MRGs, which has garnered considerable attention. However, the majority of existing solutions towards MRGC either yield severely compromised result quality by ineffective fusion of heterogeneous graph structures and attributes, or struggle to cope with sizable MRGs with millions of nodes and billions of edges due to the adoption of sophisticated and costly deep learning models. In this paper, we present DEMM and DEMM+, two effective MRGC approaches to address the limitations above. Specifically, our algorithms are built on novel two-stage optimization objectives, where the former seeks to derive high-caliber node feature vectors by optimizing the multi-relational Dirichlet energy specialized for MRGs, while the latter minimizes the Dirichlet energy of clustering results over the node affinity graph. In particular, DEMM+ achieves significantly higher scalability and efficiency over our based method DEMM through a suite of well-thought-out optimizations. Key technical contributions include (i) a highly efficient approximation solver for constructing node feature vectors, and (ii) a theoretically-grounded problem transformation with carefully-crafted techniques that enable linear-time clustering without explicitly materializing the NxN dense affinity matrix. Further, we extend DEMM+ to handle attribute-less MRGs through non-trivial adaptations. Extensive experiments, comparing DEMM+ against 20 baselines over 11 real MRGs, exhibit that DEMM+ is consistently superior in terms of clustering quality measured against ground-truth labels, while often being remarkably faster.
comment: 23 pages. The technical report for the paper titled "Effective Clustering for Large Multi-Relational Graphs" in SIGMOD 2026
☆ ForeSight: A Predictive-Scheduling Deterministic Database
Deterministic databases enable scalable replicated systems by executing transactions in a predetermined order. However, existing designs fail to capture transaction dependencies, leading to insufficient scheduling, high abort rates, and poor resource utilization. By addressing these challenges with lightweight conflict prediction and informed scheduling, we present ForeSight, a high-performance deterministic database system. Our system has three core improvements: (1) We design an Association Sum-Product Network to predict potential transaction conflicts, providing the input for dependency analysis without pre-obtained read/write sets. (2) We enhance the storage engine to integrate multi-version-based optimization, improving the execution process and fallback strategy to boost commit rates and concurrency. (3) We propose a matrix two-pass forward scan algorithm that performs dependency analysis to generate conflict-aware schedules, significantly reducing scheduling overhead. Experimental results on multiple benchmarks show that ForeSight achieves up to 2$\times$ higher throughput on skewed workloads and maintains strong performance under contention, demonstrating that predictive scheduling substantially improves deterministic database scalability.
comment: 14 pages, 11 figures
☆ Capturing Legal Reasoning Paths from Facts to Law in Court Judgments using Knowledge Graphs
Court judgments reveal how legal rules have been interpreted and applied to facts, providing a foundation for understanding structured legal reasoning. However, existing automated approaches for capturing legal reasoning, including large language models, often fail to identify the relevant legal context, do not accurately trace how facts relate to legal norms, and may misrepresent the layered structure of judicial reasoning. These limitations hinder the ability to capture how courts apply the law to facts in practice. In this paper, we address these challenges by constructing a legal knowledge graph from 648 Japanese administrative court decisions. Our method extracts components of legal reasoning using prompt-based large language models, normalizes references to legal provisions, and links facts, norms, and legal applications through an ontology of legal inference. The resulting graph captures the full structure of legal reasoning as it appears in real court decisions, making implicit reasoning explicit and machine-readable. We evaluate our system using expert annotated data, and find that it achieves more accurate retrieval of relevant legal provisions from facts than large language model baselines and retrieval-augmented methods.
☆ Retrieve-and-Verify: A Table Context Selection Framework for Accurate Column Annotations SIGMOD 2026
Tables are a prevalent format for structured data, yet their metadata, such as semantic types and column relationships, is often incomplete or ambiguous. Column annotation tasks, including Column Type Annotation (CTA) and Column Property Annotation (CPA), address this by leveraging table context, which are critical for data management. Existing methods typically serialize all columns in a table into pretrained language models to incorporate context, but this coarse-grained approach often degrades performance in wide tables with many irrelevant or misleading columns. To address this, we propose a novel retrieve-and-verify context selection framework for accurate column annotation, introducing two methods: REVEAL and REVEAL+. In REVEAL, we design an efficient unsupervised retrieval technique to select compact, informative column contexts by balancing semantic relevance and diversity, and develop context-aware encoding techniques with role embeddings and target-context pair training to effectively differentiate target and context columns. To further improve performance, in REVEAL+, we design a verification model that refines the selected context by directly estimating its quality for specific annotation tasks. To achieve this, we formulate a novel column context verification problem as a classification task and then develop the verification model. Moreover, in REVEAL+, we develop a top-down verification inference technique to ensure efficiency by reducing the search space for high-quality context subsets from exponential to quadratic. Extensive experiments on six benchmark datasets demonstrate that our methods consistently outperform state-of-the-art baselines.
comment: Accepted at SIGMOD 2026
Distributed, Parallel, and Cluster Computing 7
☆ Easy Acceleration with Distributed Arrays
High level programming languages and GPU accelerators are powerful enablers for a wide range of applications. Achieving scalable vertical (within a compute node), horizontal (across compute nodes), and temporal (over different generations of hardware) performance while retaining productivity requires effective abstractions. Distributed arrays are one such abstraction that enables high level programming to achieve highly scalable performance. Distributed arrays achieve this performance by deriving parallelism from data locality, which naturally leads to high memory bandwidth efficiency. This paper explores distributed array performance using the STREAM memory bandwidth benchmark on a variety of hardware. Scalable performance is demonstrated within and across CPU cores, CPU nodes, and GPU nodes. Horizontal scaling across multiple nodes was linear. The hardware used spans decades and allows a direct comparison of hardware improvements for memory bandwidth over this time range; showing a 10x increase in CPU core bandwidth over 20 years, 100x increase in CPU node bandwidth over 20 years, and 5x increase in GPU node bandwidth over 5 years. Running on hundreds of MIT SuperCloud nodes simultaneously achieved a sustained bandwidth $>$1 PB/s.
comment: 8 pages, 4 figures, 2 tables, 2 algorithm listings, 2 code listings, to appear in IEEE HPEC 2025
☆ MetaFed: Advancing Privacy, Performance, and Sustainability in Federated Metaverse Systems
The rapid expansion of immersive Metaverse applications introduces complex challenges at the intersection of performance, privacy, and environmental sustainability. Centralized architectures fall short in addressing these demands, often resulting in elevated energy consumption, latency, and privacy concerns. This paper proposes MetaFed, a decentralized federated learning (FL) framework that enables sustainable and intelligent resource orchestration for Metaverse environments. MetaFed integrates (i) multi-agent reinforcement learning for dynamic client selection, (ii) privacy-preserving FL using homomorphic encryption, and (iii) carbon-aware scheduling aligned with renewable energy availability. Evaluations on MNIST and CIFAR-10 using lightweight ResNet architectures demonstrate that MetaFed achieves up to 25\% reduction in carbon emissions compared to conventional approaches, while maintaining high accuracy and minimal communication overhead. These results highlight MetaFed as a scalable solution for building environmentally responsible and privacy-compliant Metaverse infrastructures.
comment: 2025 IEEE International Symposium on Emerging Metaverse (ISEMV)
☆ Bine Trees: Enhancing Collective Operations by Optimizing Communication Locality
Communication locality plays a key role in the performance of collective operations on large HPC systems, especially on oversubscribed networks where groups of nodes are fully connected internally but sparsely linked through global connections. We present Bine (binomial negabinary) trees, a family of collective algorithms that improve communication locality. Bine trees maintain the generality of binomial trees and butterflies while cutting global-link traffic by up to 33%. We implement eight Bine-based collectives and evaluate them on four large-scale supercomputers with Dragonfly, Dragonfly+, oversubscribed fat-tree, and torus topologies, achieving up to 5x speedups and consistent reductions in global-link traffic across different vector sizes and node counts.
☆ TokenLake: A Unified Segment-level Prefix Cache Pool for Fine-grained Elastic Long-Context LLM Serving
Prefix caching is crucial to accelerate multi-turn interactions and requests with shared prefixes. At the cluster level, existing prefix caching systems are tightly coupled with request scheduling to optimize cache efficiency and computation performance together, leading to load imbalance, data redundancy, and memory fragmentation of caching systems across instances. To address these issues, memory pooling is promising to shield the scheduler from the underlying cache management so that it can focus on the computation optimization. However, because existing prefix caching systems only transfer increasingly longer prefix caches between instances, they cannot achieve low-latency memory pooling. To address these problems, we propose a unified segment-level prefix cache pool, TokenLake. It uses a declarative cache interface to expose requests' query tensors, prefix caches, and cache-aware operations to TokenLake for efficient pooling. Powered by this abstraction, TokenLake can manage prefix cache at the segment level with a heavy-hitter-aware load balancing algorithm to achieve better cache load balance, deduplication, and defragmentation. TokenLake also transparently minimizes the communication volume of query tensors and new caches. Based on TokenLake, the scheduler can schedule requests elastically by using existing techniques without considering prefix cache management. Evaluations on real-world workloads show that TokenLake can improve throughput by up to 2.6$\times$ and 2.0$\times$ and boost hit rate by 2.0$\times$ and 2.1$\times$, compared to state-of-the-art cache-aware routing and cache-centric PD-disaggregation solutions, respectively.
☆ Memory-Efficient Federated Fine-Tuning of Large Language Models via Layer Pruning
Federated fine-tuning enables privacy-preserving Large Language Model (LLM) adaptation, but its high memory cost limits participation from resource-constrained devices. We propose FedPruner, an innovative federated fine-tuning paradigm that tackles this via intelligent layer pruning. FedPruner flexibly prunes the global model, creating personalized submodels based on device memory constraints. It employs a macro-micro synergistic pruning framework: a macro-level functionality-driven layer orchestration mechanism groups layers, while a micro-level importance-aware layer selection strategy prunes within groups to build device-specific submodels. We further introduce a fine-grained variant that independently prunes Multi-Head Attention and Feed-Forward Network components to precisely preserve critical architectural elements. Extensive experimental results demonstrate that FedPruner significantly outperforms state-of-the-art approaches, achieving up to a 1.98\% improvement in average model accuracy while reducing peak memory usage by 75\%.
♻ ☆ PixRO: Pixel-Distributed Rotational Odometry with Gaussian Belief Propagation
Images are the standard input for most computer vision algorithms. However, their processing often reduces to parallelizable operations applied locally and independently to individual pixels. Yet, many of these low-level raw pixel readings only provide redundant or noisy information for specific high-level tasks, leading to inefficiencies in both energy consumption during their transmission off-sensor and computational resources in their subsequent processing. As novel sensors featuring advanced in-pixel processing capabilities emerge, we envision a paradigm shift toward performing increasingly complex visual processing directly in-pixel, reducing computational overhead downstream. We advocate for synthesizing high-level cues at the pixel level, enabling their off-sensor transmission to directly support downstream tasks more effectively than raw pixel readings. This paper conceptualizes a novel photometric rotation estimation algorithm to be distributed at pixel level, where each pixel estimates the global motion of the camera by exchanging information with other pixels to achieve global consensus. We employ a probabilistic formulation and leverage Gaussian Belief Propagation (GBP) for decentralized inference using messaging-passing. The proposed proposed technique is evaluated on real-world public datasets and we offer a in-depth analysis of the practicality of applying GBP to distributed rotation estimation at pixel level.
♻ ☆ Universal Finite-State and Self-Stabilizing Computation in Anonymous Dynamic Networks
A communication network is said to be "anonymous" if its agents are indistinguishable from each other; it is "dynamic" if its communication links may appear or disappear unpredictably over time. Assuming that each of the $n$ agents of an anonymous dynamic network is initially given an input, it takes $2\tau n$ communication rounds for the agents to compute an arbitrary (frequency-based) function of such inputs (Di Luna-Viglietta, DISC 2023), where $\tau$ is a parameter called "dynamic disconnectivity", and measures how far the network is from being always connected (for always connected dynamic networks, $\tau=1$). It is known that, without making additional assumptions on the network and without knowing the number of agents $n$, it is impossible to compute most functions and explicitly terminate. In fact, current state-of-the-art algorithms only achieve stabilization, i.e., allow each agent to return an output after every communication round. Outputs can be changed, and are guaranteed to be all correct after $2\tau n$ rounds. Such algorithms rely on the incremental construction of a data structure called "history tree", which is augmented at every round. Thus, they end up consuming an unlimited amount of memory, and are also prone to errors in case of memory loss or corruption. In this paper, we provide a general self-stabilizing algorithm for anonymous dynamic networks that stabilizes in $\max\{4\tau n-2\mu,2\mu\}$ rounds (where $\mu$ measures the amount of corrupted data initially present in the memory of each agent), as well as a general finite-state algorithm that stabilizes in $\tau(2n^2+n)$ rounds. Our work improves upon previously known methods that only apply to static networks (Boldi-Vigna, Dist. Comp. 2002). In addition, we develop new fundamental techniques and operations involving history trees, which are of independent interest.
comment: 28 pages, 5 figures
Information Retrieval 12
☆ DS@GT at CheckThat! 2025: A Simple Retrieval-First, LLM-Backed Framework for Claim Normalization
Claim normalization is an integral part of any automatic fact-check verification system. It parses the typically noisy claim data, such as social media posts into normalized claims, which are then fed into downstream veracity classification tasks. The CheckThat! 2025 Task 2 focuses specifically on claim normalization and spans 20 languages under monolingual and zero-shot conditions. Our proposed solution consists of a lightweight \emph{retrieval-first, LLM-backed} pipeline, in which we either dynamically prompt a GPT-4o-mini with in-context examples, or retrieve the closest normalization from the train dataset directly. On the official test set, the system ranks near the top for most monolingual tracks, achieving first place in 7 out of of the 13 languages. In contrast, the system underperforms in the zero-shot setting, highlighting the limitation of the proposed solution.
comment: CLEF 2025 Working Notes, Madrid, Spain
☆ Retrieval Capabilities of Large Language Models Scale with Pretraining FLOPs
How does retrieval performance scale with pretraining FLOPs? We benchmark retrieval performance across LLM model sizes from 125 million parameters to 7 billion parameters pretrained on datasets ranging from 1 billion tokens to more than 2 trillion tokens. We find that retrieval performance on zero-shot BEIR tasks predictably scales with LLM size, training duration, and estimated FLOPs. We also show that In-Context Learning scores are strongly correlated with retrieval scores across retrieval tasks. Finally, we highlight the implications this has for the development of LLM-based retrievers.
comment: 15 pages, 4 figures
☆ Capturing Legal Reasoning Paths from Facts to Law in Court Judgments using Knowledge Graphs
Court judgments reveal how legal rules have been interpreted and applied to facts, providing a foundation for understanding structured legal reasoning. However, existing automated approaches for capturing legal reasoning, including large language models, often fail to identify the relevant legal context, do not accurately trace how facts relate to legal norms, and may misrepresent the layered structure of judicial reasoning. These limitations hinder the ability to capture how courts apply the law to facts in practice. In this paper, we address these challenges by constructing a legal knowledge graph from 648 Japanese administrative court decisions. Our method extracts components of legal reasoning using prompt-based large language models, normalizes references to legal provisions, and links facts, norms, and legal applications through an ontology of legal inference. The resulting graph captures the full structure of legal reasoning as it appears in real court decisions, making implicit reasoning explicit and machine-readable. We evaluate our system using expert annotated data, and find that it achieves more accurate retrieval of relevant legal provisions from facts than large language model baselines and retrieval-augmented methods.
☆ Opening the Black Box: Interpretable Remedies for Popularity Bias in Recommender Systems
Popularity bias is a well-known challenge in recommender systems, where a small number of popular items receive disproportionate attention, while the majority of less popular items are largely overlooked. This imbalance often results in reduced recommendation quality and unfair exposure of items. Although existing mitigation techniques address this bias to some extent, they typically lack transparency in how they operate. In this paper, we propose a post-hoc method using a Sparse Autoencoder (SAE) to interpret and mitigate popularity bias in deep recommendation models. The SAE is trained to replicate a pre-trained model's behavior while enabling neuron-level interpretability. By introducing synthetic users with clear preferences for either popular or unpopular items, we identify neurons encoding popularity signals based on their activation patterns. We then adjust the activations of the most biased neurons to steer recommendations toward fairer exposure. Experiments on two public datasets using a sequential recommendation model show that our method significantly improves fairness with minimal impact on accuracy. Moreover, it offers interpretability and fine-grained control over the fairness-accuracy trade-off.
☆ Are You Sure You're Positive? Consolidating Chain-of-Thought Agents with Uncertainty Quantification for Aspect-Category Sentiment Analysis
Aspect-category sentiment analysis provides granular insights by identifying specific themes within product reviews that are associated with particular opinions. Supervised learning approaches dominate the field. However, data is scarce and expensive to annotate for new domains. We argue that leveraging large language models in a zero-shot setting is beneficial where the time and resources required for dataset annotation are limited. Furthermore, annotation bias may lead to strong results using supervised methods but transfer poorly to new domains in contexts that lack annotations and demand reproducibility. In our work, we propose novel techniques that combine multiple chain-of-thought agents by leveraging large language models' token-level uncertainty scores. We experiment with the 3B and 70B+ parameter size variants of Llama and Qwen models, demonstrating how these approaches can fulfil practical needs and opening a discussion on how to gauge accuracy in label-scarce conditions.
comment: 18 pages, 10 figures, 3 tables, Proceedings of the 1st Workshop for Research on Agent Language Models (REALM 2025)
☆ Routing Distilled Knowledge via Mixture of LoRA Experts for Large Language Model based Bundle Generation
Large Language Models (LLMs) have shown potential in automatic bundle generation but suffer from prohibitive computational costs. Although knowledge distillation offers a pathway to more efficient student models, our preliminary study reveals that naively integrating diverse types of distilled knowledge from teacher LLMs into student LLMs leads to knowledge conflict, negatively impacting the performance of bundle generation. To address this, we propose RouteDK, a framework for routing distilled knowledge through a mixture of LoRA expert architecture. Specifically, we first distill knowledge from the teacher LLM for bundle generation in two complementary types: high-level knowledge (generalizable rules) and fine-grained knowledge (session-specific reasoning). We then train knowledge-specific LoRA experts for each type of knowledge together with a base LoRA expert. For effective integration, we propose a dynamic fusion module, featuring an input-aware router, where the router balances expert contributions by dynamically determining optimal weights based on input, thereby effectively mitigating knowledge conflicts. To further improve inference reliability, we design an inference-time enhancement module to reduce variance and mitigate suboptimal reasoning. Experiments on three public datasets show that our RouteDK achieves accuracy comparable to or even better than the teacher LLM, while maintaining strong computational efficiency. In addition, it outperforms state-of-the-art approaches for bundle generation.
☆ Exposing Privacy Risks in Graph Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) is a powerful technique for enhancing Large Language Models (LLMs) with external, up-to-date knowledge. Graph RAG has emerged as an advanced paradigm that leverages graph-based knowledge structures to provide more coherent and contextually rich answers. However, the move from plain document retrieval to structured graph traversal introduces new, under-explored privacy risks. This paper investigates the data extraction vulnerabilities of the Graph RAG systems. We design and execute tailored data extraction attacks to probe their susceptibility to leaking both raw text and structured data, such as entities and their relationships. Our findings reveal a critical trade-off: while Graph RAG systems may reduce raw text leakage, they are significantly more vulnerable to the extraction of structured entity and relationship information. We also explore potential defense mechanisms to mitigate these novel attack surfaces. This work provides a foundational analysis of the unique privacy challenges in Graph RAG and offers insights for building more secure systems.
♻ ☆ Test-time Corpus Feedback: From Retrieval to RAG
Retrieval-Augmented Generation (RAG) has emerged as a standard framework for knowledge-intensive NLP tasks, combining large language models (LLMs) with document retrieval from external corpora. Despite its widespread use, most RAG pipelines continue to treat retrieval and reasoning as isolated components, retrieving documents once and then generating answers without further interaction. This static design often limits performance on complex tasks that require iterative evidence gathering or high-precision retrieval. Recent work in both the information retrieval (IR) and NLP communities has begun to close this gap by introducing adaptive retrieval and ranking methods that incorporate feedback. In this survey, we present a structured overview of advanced retrieval and ranking mechanisms that integrate such feedback. We categorize feedback signals based on their source and role in improving the query, retrieved context, or document pool. By consolidating these developments, we aim to bridge IR and NLP perspectives and highlight retrieval as a dynamic, learnable component of end-to-end RAG systems.
comment: 18 pages, 1 figure
♻ ☆ LLM4MSR: An LLM-Enhanced Paradigm for Multi-Scenario Recommendation
As the demand for more personalized recommendation grows and a dramatic boom in commercial scenarios arises, the study on multi-scenario recommendation (MSR) has attracted much attention, which uses the data from all scenarios to simultaneously improve their recommendation performance. However, existing methods tend to integrate insufficient scenario knowledge and neglect learning personalized cross-scenario preferences, thus leading to sub-optimal performance. Meanwhile, though large language model (LLM) has shown great capability of reasoning and capturing semantic information, the high inference latency and high computation cost of tuning hinder its implementation in industrial recommender systems. To fill these gaps, we propose an LLM-enhanced paradigm LLM4MSR in this work. Specifically, we first leverage LLM to uncover multi-level knowledge from the designed scenario- and user-level prompt without fine-tuning the LLM, then adopt hierarchical meta networks to generate multi-level meta layers to explicitly improve the scenario-aware and personalized recommendation capability. Our experiments on KuaiSAR-small, KuaiSAR, and Amazon datasets validate significant advantages of LLM4MSR: (i) the effectiveness and compatibility with different multi-scenario backbone models, (ii) high efficiency and deployability on industrial recommender systems, and (iii) improved interpretability. The implemented code and data is available to ease reproduction.
comment: CIKM 2024 Full Research Paper
♻ ☆ SCP-116K: A High-Quality Problem-Solution Dataset and a Generalized Pipeline for Automated Extraction in the Higher Education Science Domain
Recent breakthroughs in large language models (LLMs) exemplified by the impressive mathematical and scientific reasoning capabilities of the o1 model have spotlighted the critical importance of high-quality training data in advancing LLM performance across STEM disciplines. While the mathematics community has benefited from a growing body of curated datasets, the scientific domain at the higher education level has long suffered from a scarcity of comparable resources. To address this gap, we present SCP-116K, a new large-scale dataset of 116,756 high-quality problem-solution pairs, automatically extracted from heterogeneous sources using a streamlined and highly generalizable pipeline. Our approach involves stringent filtering to ensure the scientific rigor and educational level of the extracted materials, while maintaining adaptability for future expansions or domain transfers. By openly releasing both the dataset and the extraction pipeline, we seek to foster research on scientific reasoning, enable comprehensive performance evaluations of new LLMs, and lower the barrier to replicating the successes of advanced models like o1 in the broader science community. We believe SCP-116K will serve as a critical resource, catalyzing progress in high-level scientific reasoning tasks and promoting further innovations in LLM development. The dataset and code are publicly available at https://github.com/AQA6666/SCP-116K-open.
comment: 9 pages, 1 figures
♻ ☆ Expert-Guided Diffusion Planner for Auto-Bidding
Auto-bidding is widely used in advertising systems, serving a diverse range of advertisers. Generative bidding is increasingly gaining traction due to its strong planning capabilities and generalizability. Unlike traditional reinforcement learning-based bidding, generative bidding does not depend on the Markov Decision Process (MDP), thereby exhibiting superior planning performance in long-horizon scenarios. Conditional diffusion modeling approaches have shown significant promise in the field of auto-bidding. However, relying solely on return as the optimality criterion is insufficient to guarantee the generation of truly optimal decision sequences, as it lacks personalized structural information. Moreover, the auto-regressive generation mechanism of diffusion models inherently introduces timeliness risks. To address these challenges, we introduce a novel conditional diffusion modeling approach that integrates expert trajectory guidance with a skip-step sampling strategy to improve generation efficiency. The efficacy of this method has been demonstrated through comprehensive offline experiments and further substantiated by statistically significant outcomes in online A/B testing, yielding an 11.29% increase in conversions and a 12.36% growth in revenue relative to the baseline.
comment: Accepted for presentation at the CIKM 2025 Applied Research Track, eight (8) pages, three (3) figures
♻ ☆ Macro Graph of Experts for Billion-Scale Multi-Task Recommendation
Graph-based multi-task learning at billion-scale presents a significant challenge, as different tasks correspond to distinct billion-scale graphs. Traditional multi-task learning methods often neglect these graph structures, relying solely on individual user and item embeddings. However, disregarding graph structures overlooks substantial potential for improving performance. In this paper, we introduce the Macro Graph of Expert (MGOE) framework, the first approach capable of leveraging macro graph embeddings to capture task-specific macro features while modeling the correlations between task-specific experts. Specifically, we propose the concept of a Macro Graph Bottom, which, for the first time, enables multi-task learning models to incorporate graph information effectively. We design the Macro Prediction Tower to dynamically integrate macro knowledge across tasks. MGOE has been deployed at scale, powering multi-task learning for the homepage of a leading billion-scale recommender system. Extensive offline experiments conducted on three public benchmark datasets demonstrate its superiority over state-of-the-art multi-task learning methods, establishing MGOE as a breakthrough in multi-task graph-based recommendation. Furthermore, online A/B tests confirm the superiority of MGOE in billion-scale recommender systems.
Computational Engineering, Finance, and Science 3
☆ Boltzina: Efficient and Accurate Virtual Screening via Docking-Guided Binding Prediction with Boltz-2
In structure-based drug discovery, virtual screening using conventional molecular docking methods can be performed rapidly but suffers from limitations in prediction accuracy. Recently, Boltz-2 was proposed, achieving extremely high accuracy in binding affinity prediction, but requiring approximately 20 seconds per compound per GPU, making it difficult to apply to large-scale screening of hundreds of thousands to millions of compounds. This study proposes Boltzina, a novel framework that leverages Boltz-2's high accuracy while significantly improving computational efficiency. Boltzina achieves both accuracy and speed by omitting the rate-limiting structure prediction from Boltz-2's architecture and directly predicting affinity from AutoDock Vina docking poses. We evaluate on eight assays from the MF-PCBA dataset and show that while Boltzina performs below Boltz-2, it provides significantly higher screening performance compared to AutoDock Vina and GNINA. Additionally, Boltzina achieved up to 11.8$\times$ faster through reduced recycling iterations and batch processing. Furthermore, we investigated multi-pose selection strategies and two-stage screening combining Boltzina and Boltz-2, presenting optimization methods for accuracy and efficiency according to application requirements. This study represents the first attempt to apply Boltz-2's high-accuracy predictions to practical-scale screening, offering a pipeline that combines both accuracy and efficiency in computational biology. The Boltzina is available on github; https://github.com/ohuelab/boltzina.
☆ Easy Acceleration with Distributed Arrays
High level programming languages and GPU accelerators are powerful enablers for a wide range of applications. Achieving scalable vertical (within a compute node), horizontal (across compute nodes), and temporal (over different generations of hardware) performance while retaining productivity requires effective abstractions. Distributed arrays are one such abstraction that enables high level programming to achieve highly scalable performance. Distributed arrays achieve this performance by deriving parallelism from data locality, which naturally leads to high memory bandwidth efficiency. This paper explores distributed array performance using the STREAM memory bandwidth benchmark on a variety of hardware. Scalable performance is demonstrated within and across CPU cores, CPU nodes, and GPU nodes. Horizontal scaling across multiple nodes was linear. The hardware used spans decades and allows a direct comparison of hardware improvements for memory bandwidth over this time range; showing a 10x increase in CPU core bandwidth over 20 years, 100x increase in CPU node bandwidth over 20 years, and 5x increase in GPU node bandwidth over 5 years. Running on hundreds of MIT SuperCloud nodes simultaneously achieved a sustained bandwidth $>$1 PB/s.
comment: 8 pages, 4 figures, 2 tables, 2 algorithm listings, 2 code listings, to appear in IEEE HPEC 2025
♻ ☆ GUST: Quantifying Free-Form Geometric Uncertainty of Metamaterials Using Small Data
This paper introduces GUST (Generative Uncertainty learning via Self-supervised pretraining and Transfer learning), a framework for quantifying free-form geometric uncertainties inherent in the manufacturing of metamaterials. GUST leverages the representational power of deep generative models to learn a high-dimensional conditional distribution of as-fabricated unit cell geometries given nominal designs, thereby enabling uncertainty quantification. To address the scarcity of real-world manufacturing data, GUST employs a two-stage learning process. First, it leverages self-supervised pretraining on a large-scale synthetic dataset to capture the structure variability inherent in metamaterial geometries and an approximated distribution of as-fabricated geometries given nominal designs. Subsequently, GUST employs transfer learning by fine-tuning the pretrained model on limited real-world manufacturing data, allowing it to adapt to specific manufacturing processes and nominal designs. With only 960 unit cells additively manufactured in only two passes, GUST can capture the variability in geometry and effective material properties. In contrast, directly training a generative model on the same amount of real-world data proves insufficient, as demonstrated through both qualitative and quantitative comparisons. This scalable and cost-effective approach significantly reduces data requirements while maintaining the effectiveness in learning complex, real-world geometric uncertainties, offering an affordable method for free-form geometric uncertainty quantification in the manufacturing of metamaterials. The capabilities of GUST hold significant promise for high-precision industries such as aerospace and biomedical engineering, where understanding and mitigating manufacturing uncertainties are critical.
Databases 3
☆ Explaining Black-box Language Models with Knowledge Probing Systems: A Post-hoc Explanation Perspective
Pre-trained Language Models (PLMs) are trained on large amounts of unlabeled data, yet they exhibit remarkable reasoning skills. However, the trustworthiness challenges posed by these black-box models have become increasingly evident in recent years. To alleviate this problem, this paper proposes a novel Knowledge-guided Probing approach called KnowProb in a post-hoc explanation way, which aims to probe whether black-box PLMs understand implicit knowledge beyond the given text, rather than focusing only on the surface level content of the text. We provide six potential explanations derived from the underlying content of the given text, including three knowledge-based understanding and three association-based reasoning. In experiments, we validate that current small-scale (or large-scale) PLMs only learn a single distribution of representation, and still face significant challenges in capturing the hidden knowledge behind a given text. Furthermore, we demonstrate that our proposed approach is effective for identifying the limitations of existing black-box models from multiple probing perspectives, which facilitates researchers to promote the study of detecting black-box models in an explainable way.
comment: 16 pages, 8 figures. This paper has been accepted by DASFAA 2025: The 30th International Conference on Database Systems for Advanced Applications
♻ ☆ AutoDCWorkflow: LLM-based Data Cleaning Workflow Auto-Generation and Benchmark
Data cleaning is a time-consuming and error-prone manual process, even with modern workflow tools such as OpenRefine. We present AutoDCWorkflow, an LLM-based pipeline for automatically generating data-cleaning workflows. The pipeline takes a raw table and a data analysis purpose, and generates a sequence of OpenRefine operations designed to produce a minimal, clean table sufficient to address the purpose. Six operations correspond to common data quality issues, including format inconsistencies, type errors, and duplicates. To evaluate AutoDCWorkflow, we create a benchmark with metrics assessing answers, data, and workflow quality for 142 purposes using 96 tables across six topics. The evaluation covers three key dimensions: (1) Purpose Answer: can the cleaned table produce a correct answer? (2) Column (Value): how closely does it match the ground truth table? (3) Workflow (Operations): to what extent does the generated workflow resemble the human-curated ground truth? Experiments show that Llama 3.1, Mistral, and Gemma 2 significantly enhance data quality, outperforming the baseline across all metrics. Gemma 2-27B consistently generates high-quality tables and answers, while Gemma 2-9B excels in producing workflows that closely resemble human-annotated versions.
comment: EMNLP Findings, 2025
♻ ☆ MMTU: A Massive Multi-Task Table Understanding and Reasoning Benchmark
Tables and table-based use cases play a crucial role in many important real-world applications, such as spreadsheets, databases, and computational notebooks, which traditionally require expert-level users like data engineers, data analysts, and database administrators to operate. Although LLMs have shown remarkable progress in working with tables (e.g., in spreadsheet and database copilot scenarios), comprehensive benchmarking of such capabilities remains limited. In contrast to an extensive and growing list of NLP benchmarks, evaluations of table-related tasks are scarce, and narrowly focus on tasks like NL-to-SQL and Table-QA, overlooking the broader spectrum of real-world tasks that professional users face. This gap limits our understanding and model progress in this important area. In this work, we introduce MMTU, a large-scale benchmark with over 30K questions across 25 real-world table tasks, designed to comprehensively evaluate models ability to understand, reason, and manipulate real tables at the expert-level. These tasks are drawn from decades' worth of computer science research on tabular data, with a focus on complex table tasks faced by professional users. We show that MMTU require a combination of skills -- including table understanding, reasoning, and coding -- that remain challenging for today's frontier models, where even frontier reasoning models like OpenAI o4-mini and DeepSeek R1 score only around 60%, suggesting significant room for improvement. We highlight key findings in our evaluation using MMTU and hope that this benchmark drives further advances in understanding and developing foundation models for structured data processing and analysis. Our code and data are available at https://github.com/MMTU-Benchmark/MMTU and https://huggingface.co/datasets/MMTU-benchmark/MMTU.
comment: Included additional benchmark results covering 24 LLMs
Distributed, Parallel, and Cluster Computing 1
♻ ☆ Enhancing Memory Efficiency in Large Language Model Training Through Chronos-aware Pipeline Parallelism
Larger model sizes and longer sequence lengths have empowered the Large Language Model (LLM) to achieve outstanding performance across various domains. However, this progress brings significant storage capacity challenges for LLM pretraining. High Bandwidth Memory (HBM) is expensive and requires more advanced packaging technologies for capacity expansion, creating an urgent need for memory-efficient scheduling strategies. Yet, prior pipeline parallelism schedules have primarily focused on reducing bubble overhead, often neglecting memory efficiency and lacking compatibility with other memory-efficient strategies. Consequently, these methods struggle to meet the storage demands of storage capacity for next-generation LLM. This work presents ChronosPipe, a Chronos-aware pipeline parallelism for memory-efficient LLM pretraining. The core insight of ChronosPipe is to treat HBM as a fast but small 'cache,' optimizing and exploiting temporal locality within LLM pretraining to enhance HBM utilization. ChronosPipe introduces a pipeline scheduling strategy, Chronos-Pipe, to reduce the extrinsic overhead that disrupts the temporal locality of activations. Additionally, it leverages Chronos-Recomp and Chronos-Offload to efficiently harness the intrinsic temporal locality of activations and weights in Deep Neural Networks. Experiment results show that ChronosPipe can expand the trainable model size by 2.4x while maintaining comparable throughput, achieving 1.5x better than the 1F1B strategy combined with recomputation.
Information Retrieval 9
☆ The Power of Framing: How News Headlines Guide Search Behavior
Search engines play a central role in how people gather information, but subtle cues like headline framing may influence not only what users believe but also how they search. While framing effects on judgment are well documented, their impact on subsequent search behavior is less understood. We conducted a controlled experiment where participants issued queries and selected from headlines filtered by specific linguistic frames. Headline framing significantly shaped follow-up queries: conflict and strategy frames disrupted alignment with prior selections, while episodic frames led to more concrete queries than thematic ones. We also observed modest short-term frame persistence that declined over time. These results suggest that even brief exposure to framing can meaningfully alter the direction of users information-seeking behavior.
comment: Accepted to EMNLP
☆ VQL: An End-to-End Context-Aware Vector Quantization Attention for Ultra-Long User Behavior Modeling
In large-scale recommender systems, ultra-long user behavior sequences encode rich signals of evolving interests. Extending sequence length generally improves accuracy, but directly modeling such sequences in production is infeasible due to latency and memory constraints. Existing solutions fall into two categories: (1) top-k retrieval, which truncates the sequence and may discard most attention mass when L >> k; and (2) encoder-based compression, which preserves coverage but often over-compresses and fails to incorporate key context such as temporal gaps or target-aware signals. Neither class achieves a good balance of low-loss compression, context awareness, and efficiency. We propose VQL, a context-aware Vector Quantization Attention framework for ultra-long behavior modeling, with three innovations. (1) Key-only quantization: only attention keys are quantized, while values remain intact; we prove that softmax normalization yields an error bound independent of sequence length, and a codebook loss directly supervises quantization quality. This also enables L-free inference via offline caches. (2) Multi-scale quantization: attention heads are partitioned into groups, each with its own small codebook, which reduces quantization error while keeping cache size fixed. (3) Efficient context injection: static features (e.g., item category, modality) are directly integrated, and relative position is modeled via a separable temporal kernel. All context is injected without enlarging the codebook, so cached representations remain query-independent. Experiments on three large-scale datasets (KuaiRand-1K, KuaiRec, TMALL) show that VQL consistently outperforms strong baselines, achieving higher accuracy while reducing inference latency, establishing a new state of the art in balancing accuracy and efficiency for ultra-long sequence recommendation.
☆ Zero-shot Multimodal Document Retrieval via Cross-modal Question Generation
Rapid advances in Multimodal Large Language Models (MLLMs) have expanded information retrieval beyond purely textual inputs, enabling retrieval from complex real world documents that combine text and visuals. However, most documents are private either owned by individuals or confined within corporate silos and current retrievers struggle when faced with unseen domains or languages. To address this gap, we introduce PREMIR, a simple yet effective framework that leverages the broad knowledge of an MLLM to generate cross modal pre questions (preQs) before retrieval. Unlike earlier multimodal retrievers that compare embeddings in a single vector space, PREMIR leverages preQs from multiple complementary modalities to expand the scope of matching to the token level. Experiments show that PREMIR achieves state of the art performance on out of distribution benchmarks, including closed domain and multilingual settings, outperforming strong baselines across all retrieval metrics. We confirm the contribution of each component through in depth ablation studies, and qualitative analyses of the generated preQs further highlight the model's robustness in real world settings.
☆ Towards a Real-World Aligned Benchmark for Unlearning in Recommender Systems
Modern recommender systems heavily leverage user interaction data to deliver personalized experiences. However, relying on personal data presents challenges in adhering to privacy regulations, such as the GDPR's "right to be forgotten". Machine unlearning (MU) aims to address these challenges by enabling the efficient removal of specific training data from models post-training, without compromising model utility or leaving residual information. However, current benchmarks for unlearning in recommender systems -- most notably CURE4Rec -- fail to reflect real-world operational demands. They focus narrowly on collaborative filtering, overlook tasks like session-based and next-basket recommendation, simulate unrealistically large unlearning requests, and ignore critical efficiency constraints. In this paper, we propose a set of design desiderata and research questions to guide the development of a more realistic benchmark for unlearning in recommender systems, with the goal of gathering feedback from the research community. Our benchmark proposal spans multiple recommendation tasks, includes domain-specific unlearning scenarios, and several unlearning algorithms -- including ones adapted from a recent NeurIPS unlearning competition. Furthermore, we argue for an unlearning setup that reflects the sequential, time-sensitive nature of real-world deletion requests. We also present a preliminary experiment in a next-basket recommendation setting based on our proposed desiderata and find that unlearning also works for sequential recommendation models, exposed to many small unlearning requests. In this case, we observe that a modification of a custom-designed unlearning algorithm for recommender systems outperforms general unlearning algorithms significantly, and that unlearning can be executed with a latency of only several seconds.
☆ DeAR: Dual-Stage Document Reranking with Reasoning Agents via LLM Distillation
Large Language Models (LLMs) have transformed listwise document reranking by enabling global reasoning over candidate sets, yet single models often struggle to balance fine-grained relevance scoring with holistic cross-document analysis. We propose \textbf{De}ep\textbf{A}gent\textbf{R}ank (\textbf{\DeAR}), an open-source framework that decouples these tasks through a dual-stage approach, achieving superior accuracy and interpretability. In \emph{Stage 1}, we distill token-level relevance signals from a frozen 13B LLaMA teacher into a compact \{3, 8\}B student model using a hybrid of cross-entropy, RankNet, and KL divergence losses, ensuring robust pointwise scoring. In \emph{Stage 2}, we attach a second LoRA adapter and fine-tune on 20K GPT-4o-generated chain-of-thought permutations, enabling listwise reasoning with natural-language justifications. Evaluated on TREC-DL19/20, eight BEIR datasets, and NovelEval-2306, \DeAR surpasses open-source baselines by +5.1 nDCG@5 on DL20 and achieves 90.97 nDCG@10 on NovelEval, outperforming GPT-4 by +3.09. Without fine-tuning on Wikipedia, DeAR also excels in open-domain QA, achieving 54.29 Top-1 accuracy on Natural Questions, surpassing baselines like MonoT5, UPR, and RankGPT. Ablations confirm that dual-loss distillation ensures stable calibration, making \DeAR a highly effective and interpretable solution for modern reranking systems.\footnote{Dataset and code available at https://github.com/DataScienceUIBK/DeAR-Reranking.}.
comment: Accept at EMNLP Findings 2025
☆ THEME : Enhancing Thematic Investing with Semantic Stock Representations and Temporal Dynamics
Thematic investing aims to construct portfolios aligned with structural trends, yet selecting relevant stocks remains challenging due to overlapping sector boundaries and evolving market dynamics. To address this challenge, we construct the Thematic Representation Set (TRS), an extended dataset that begins with real-world thematic ETFs and expands upon them by incorporating industry classifications and financial news to overcome their coverage limitations. The final dataset contains both the explicit mapping of themes to their constituent stocks and the rich textual profiles for each. Building on this dataset, we introduce \textsc{THEME}, a hierarchical contrastive learning framework. By representing the textual profiles of themes and stocks as embeddings, \textsc{THEME} first leverages their hierarchical relationship to achieve semantic alignment. Subsequently, it refines these semantic embeddings through a temporal refinement stage that incorporates individual stock returns. The final stock representations are designed for effective retrieval of thematically aligned assets with strong return potential. Empirical results show that \textsc{THEME} outperforms strong baselines across multiple retrieval metrics and significantly improves performance in portfolio construction. By jointly modeling thematic relationships from text and market dynamics from returns, \textsc{THEME} provides a scalable and adaptive solution for navigating complex investment themes.
comment: Accepted at ACM International Conference on Information and Knowledge Management (CIKM)
♻ ☆ RecCoT: Enhancing Recommendation via Chain-of-Thought
In real-world applications, users always interact with items in multiple aspects, such as through implicit binary feedback (e.g., clicks, dislikes, long views) and explicit feedback (e.g., comments, reviews). Modern recommendation systems (RecSys) learn user-item collaborative signals from these implicit feedback signals as a large-scale binary data-streaming, subsequently recommending other highly similar items based on users' personalized historical interactions. However, from this collaborative-connection perspective, the RecSys does not focus on the actual content of the items themselves but instead prioritizes higher-probability signals of behavioral co-occurrence among items. Consequently, under this binary learning paradigm, the RecSys struggles to understand why a user likes or dislikes certain items. To alleviate it, some works attempt to utilize the content-based reviews to capture the semantic knowledge to enhance recommender models. However, most of these methods focus on predicting the ratings of reviews, but do not provide a human-understandable explanation.
comment: Work in progress
♻ ☆ Trustworthy AI Psychotherapy: Multi-Agent LLM Workflow for Counseling and Explainable Mental Disorder Diagnosis
LLM-based agents have emerged as transformative tools capable of executing complex tasks through iterative planning and action, achieving significant advancements in understanding and addressing user needs. Yet, their effectiveness remains limited in specialized domains such as mental health diagnosis, where they underperform compared to general applications. Current approaches to integrating diagnostic capabilities into LLMs rely on scarce, highly sensitive mental health datasets, which are challenging to acquire. These methods also fail to emulate clinicians' proactive inquiry skills, lack multi-turn conversational comprehension, and struggle to align outputs with expert clinical reasoning. To address these gaps, we propose DSM5AgentFlow, the first LLM-based agent workflow designed to autonomously generate DSM-5 Level-1 diagnostic questionnaires. By simulating therapist-client dialogues with specific client profiles, the framework delivers transparent, step-by-step disorder predictions, producing explainable and trustworthy results. This workflow serves as a complementary tool for mental health diagnosis, ensuring adherence to ethical and legal standards. Through comprehensive experiments, we evaluate leading LLMs across three critical dimensions: conversational realism, diagnostic accuracy, and explainability. Our datasets and implementations are fully open-sourced.
comment: This paper has been accepted by CIKM 2025 as a full paper
♻ ☆ 360Brew: A Decoder-only Foundation Model for Personalized Ranking and Recommendation
Ranking and recommendation systems are the foundation for numerous online experiences, ranging from search results to personalized content delivery. These systems have evolved into complex, multilayered architectures that leverage vast datasets and often incorporate thousands of predictive models. The maintenance and enhancement of these models is a labor intensive process that requires extensive feature engineering. This approach not only exacerbates technical debt but also hampers innovation in extending these systems to emerging problem domains. In this report, we present our research to address these challenges by utilizing a large foundation model with a textual interface for ranking and recommendation tasks. We illustrate several key advantages of our approach: (1) a single model can manage multiple predictive tasks involved in ranking and recommendation, (2) decoder models with textual interface due to their comprehension of reasoning capabilities, can generalize to new recommendation surfaces and out-of-domain problems, and (3) by employing natural language interfaces for task definitions and verbalizing member behaviors and their social connections, we eliminate the need for feature engineering and the maintenance of complex directed acyclic graphs of model dependencies. We introduce our research pre-production model, 360Brew V1.0, a 150B parameter, decoder-only model that has been trained and fine-tuned on LinkedIn's data and tasks. This model is capable of solving over 30 predictive tasks across various segments of the LinkedIn platform, achieving performance levels comparable to or exceeding those of current production systems based on offline metrics, without task-specific fine-tuning. Notably, each of these tasks is conventionally addressed by dedicated models that have been developed and maintained over multiple years by teams of a similar or larger size than our own.
Computational Engineering, Finance, and Science 2
☆ A Decoupled LOB Representation Framework for Multilevel Manipulation Detection with Supervised Contrastive Learning
Financial markets are critical to global economic stability, yet trade-based manipulation (TBM) often undermines their fairness. Spoofing, a particularly deceptive TBM strategy, exhibits multilevel anomaly patterns that have not been adequately modeled. These patterns are usually concealed within the rich, hierarchical information of the Limit Order Book (LOB), which is challenging to leverage due to high dimensionality and noise. To address this, we propose a representation learning framework combining a cascaded LOB representation pipeline with supervised contrastive learning. Extensive experiments demonstrate that our framework consistently improves detection performance across diverse models, with Transformer-based architectures achieving state-of-the-art results. In addition, we conduct systematic analyses and ablation studies to investigate multilevel anomalies and the contributions of key components, offering broader insights into representation learning and anomaly detection for complex sequential data. Our code will be released later at this URL.
♻ ☆ From Scores to Skills: A Cognitive Diagnosis Framework for Evaluating Financial Large Language Models
Large Language Models (LLMs) have shown promise for financial applications, yet their suitability for this high-stakes domain remains largely unproven due to inadequacies in existing benchmarks. Existing benchmarks solely rely on score-level evaluation, summarizing performance with a single score that obscures the nuanced understanding of what models truly know and their precise limitations. They also rely on datasets that cover only a narrow subset of financial concepts, while overlooking other essentials for real-world applications. To address these gaps, we introduce FinCDM, the first cognitive diagnosis evaluation framework tailored for financial LLMs, enabling the evaluation of LLMs at the knowledge-skill level, identifying what financial skills and knowledge they have or lack based on their response patterns across skill-tagged tasks, rather than a single aggregated number. We construct CPA-KQA, the first cognitively informed financial evaluation dataset derived from the Certified Public Accountant (CPA) examination, with comprehensive coverage of real-world accounting and financial skills. It is rigorously annotated by domain experts, who author, validate, and annotate questions with high inter-annotator agreement and fine-grained knowledge labels. Our extensive experiments on 30 proprietary, open-source, and domain-specific LLMs show that FinCDM reveals hidden knowledge gaps, identifies under-tested areas such as tax and regulatory reasoning overlooked by traditional benchmarks, and uncovers behavioral clusters among models. FinCDM introduces a new paradigm for financial LLM evaluation by enabling interpretable, skill-aware diagnosis that supports more trustworthy and targeted model development, and all datasets and evaluation scripts will be publicly released to support further research.
Databases 5
☆ Attribute Filtering in Approximate Nearest Neighbor Search: An In-depth Experimental Study SIGMOD 2026
With the growing integration of structured and unstructured data, new methods have emerged for performing similarity searches on vectors while honoring structured attribute constraints, i.e., a process known as Filtering Approximate Nearest Neighbor (Filtering ANN) search. Since many of these algorithms have only appeared in recent years and are designed to work with a variety of base indexing methods and filtering strategies, there is a pressing need for a unified analysis that identifies their core techniques and enables meaningful comparisons. In this work, we present a unified Filtering ANN search interface that encompasses the latest algorithms and evaluate them extensively from multiple perspectives. First, we propose a comprehensive taxonomy of existing Filtering ANN algorithms based on attribute types and filtering strategies. Next, we analyze their key components, i.e., index structures, pruning strategies, and entry point selection, to elucidate design differences and tradeoffs. We then conduct a broad experimental evaluation on 10 algorithms and 12 methods across 4 datasets (each with up to 10 million items), incorporating both synthetic and real attributes and covering selectivity levels from 0.1% to 100%. Finally, an in-depth component analysis reveals the influence of pruning, entry point selection, and edge filtering costs on overall performance. Based on our findings, we summarize the strengths and limitations of each approach, provide practical guidelines for selecting appropriate methods, and suggest promising directions for future research. Our code is available at: https://github.com/lmccccc/FANNBench.
comment: 15 pages, 15 figures, Accepted at SIGMOD 2026
☆ Disjunctions of Two Dependence Atoms
Dependence logic is a formalism that augments the syntax of first-order logic with dependence atoms asserting that the value of a variable is determined by the values of some other variables, i.e., dependence atoms express functional dependencies in relational databases. On finite structures, dependence logic captures NP, hence there are sentences of dependence logic whose model-checking problem is NP-complete. In fact, it is known that there are disjunctions of three dependence atoms whose model-checking problem is NP-complete. Motivated from considerations in database theory, we study the model-checking problem for disjunctions of two unary dependence atoms and establish a trichotomy theorem, namely, for every such formula, one of the following is true for the model-checking problem: (i) it is NL-complete; (ii) it is LOGSPACE-complete; (iii) it is first-order definable (hence, in AC[0]). Furthermore, we classify the complexity of the model-checking problem for disjunctions of two arbitrary dependence atoms, and also characterize when such a disjunction is coherent, i.e., when it satisfies a certain small-model property. Along the way, we identify a new class of 2CNF-formulas whose satisfiability problem is LOGSPACE-complete.
☆ MAAdvisor: Zero-Shot Index Advisor using Multi-Agent LLMs
Index recommendation is one of the most important problems in database management system (DBMS) optimization. Given queries and certain index-related constraints, traditional methods rely on heuristic optimization or learning-based models to select effective indexes and improve query performance. However, heuristic optimization suffers from high computation time, and learning-based models lose generalisability due to training for different workloads and database schemas. With the recent rapid development of large language models (LLMs), methods using prompt tuning have been proposed to enhance the efficiency of index selection. However, such methods still can not achieve the state-of-the-art (SOTA) results, and preparing the index selection demonstrations is also resource-intensive. To address these issues, we propose MAAdvisor, a zero-shot LLM-based index advisor with a multi-agent framework. We decompose the index recommendation problem into sub-steps, including planning, selection, combination, revision, and reflection. A set of LLM-embedded agents is designed to handle each one of the different sub-steps. Our method utilizes global agents to control the index selection process and local agents to select and revise indexes. Through extensive experiments, we show that our proposed MAAdvisor not only achieves the SOTA performance compared to the heuristic methods, but also outperforms learning-based and prompt-based methods with higher efficiency and better zero-shot inference ability.
♻ ☆ Mining Constraints from Reference Process Models for Detecting Best-Practice Violations in Event Logs
Detecting undesired process behavior is one of the main tasks of process mining and various conformance-checking techniques have been developed to this end. These techniques typically require a normative process model as input, specifically designed for the processes to be analyzed. Such models are rarely available, though, and their creation involves considerable manual effort.However, reference process models serve as best-practice templates for organizational processes in a plethora of domains, containing valuable knowledge about general behavioral relations in well-engineered processes. These general models can thus mitigate the need for dedicated models by providing a basis to check for undesired behavior. Still, finding a perfectly matching reference model for a real-life event log is unrealistic because organizational needs can vary, despite similarities in process execution. Furthermore, event logs may encompass behavior related to different reference models, making traditional conformance checking impractical as it requires aligning process executions to individual models. To still use reference models for conformance checking, we propose a framework for mining declarative best-practice constraints from a reference model collection, automatically selecting constraints that are relevant for a given event log, and checking for best-practice violations. We demonstrate the capability of our framework to detect best-practice violations through an evaluation based on real-world process model collections and event logs.
comment: Preprint submitted to Information Systems
♻ ☆ Did we miss P In CAP? Partial Progress Conjecture under Asynchrony
Each application developer desires to provide its users with consistent results and an always-available system despite failures. Boldly, the CALM theorem disagrees. It states that it is hard to design a system that is both consistent and available under network partitions; select at most two out of these three properties. One possible solution is to design coordination-free monotonic applications. However, a majority of real-world applications require coordination. We resolve this dilemma by conjecturing that partial progress is possible under network partitions. This partial progress ensures the system appears responsive to a subset of clients and achieves non-zero throughput during failures. To this extent, we present the design of our CASSANDRA consensus protocol that allows partitioned replicas to order client requests.
comment: 7
Distributed, Parallel, and Cluster Computing 18
☆ On the Duality of Task and Actor Programming Models
Programming models for distributed and heterogeneous machines are rapidly growing in popularity to meet the demands of modern workloads. Task and actor models are common choices that offer different trade-offs between development productivity and achieved performance. Task-based models offer better productivity and composition of software, whereas actor-based models routinely deliver better peak performance due to lower overheads. While task-based and actor-based models appear to be different superficially, we demonstrate these programming models are duals of each other. Importantly, we show that this duality extends beyond functionality to performance, and elucidate techniques that let task-based systems deliver performance competitive with actor-based systems without compromising productivity. We apply these techniques to both Realm, an explicitly parallel task-based runtime, as well as Legion, an implicitly parallel task-based runtime. We show these techniques reduce Realm's overheads by between 1.7-5.3x, coming within a factor of two of the overheads imposed by heavily optimized actor-based systems like Charm++ and MPI. We further show that our techniques enable between 1.3-5.0x improved strong scaling of unmodified Legion applications.
☆ Generalizing Brooks' theorem via Partial Coloring is Hard Classically and Locally
We investigate the classical and distributed complexity of \emph{$k$-partial $c$-coloring} where $c=k$, a natural generalization of Brooks' theorem where each vertex should be colored from the palette $\{1,\ldots,c\} = \{1,\ldots,k\}$ such that it must have at least $\min\{k, \deg(v)\}$ neighbors colored differently. Das, Fraigniaud, and Ros{\'{e}}n~[OPODIS 2023] showed that the problem of $k$-partial $(k+1)$-coloring admits efficient centralized and distributed algorithms and posed an open problem about the status of the distributed complexity of $k$-partial $k$-coloring. We show that the problem becomes significantly harder when the number of colors is reduced from $k+1$ to $k$ for every constant $k\geq 3$. In the classical setting, we prove that deciding whether a graph admits a $k$-partial $k$-coloring is NP-complete for every constant $k \geq 3$, revealing a sharp contrast with the linear-time solvable $(k+1)$-color case. For the distributed LOCAL model, we establish an $\Omega(n)$-round lower bound for computing $k$-partial $k$-colorings, even when the graph is guaranteed to be $k$-partial $k$-colorable. This demonstrates an exponential separation from the $O(\log^2 k \cdot \log n)$-round algorithms known for $(k+1)$-colorings. Our results leverage novel structural characterizations of ``hard instances'' where partial coloring reduces to proper coloring, and we construct intricate graph gadgets to prove lower bounds via indistinguishability arguments.
☆ Hybrid Classical-Quantum Supercomputing: A demonstration of a multi-user, multi-QPU and multi-GPU environment
Achieving a practical quantum advantage for near-term applications is widely expected to rely on hybrid classical-quantum algorithms. To deliver this practical advantage to users, high performance computing (HPC) centers need to provide a suitable software and hardware stack that supports algorithms of this type. In this paper, we describe the world's first implementation of a classical-quantum environment in an HPC center that allows multiple users to execute hybrid algorithms on multiple quantum processing units (QPUs) and GPUs. Our setup at the Poznan Supercomputing and Networking Center (PCSS) aligns with current HPC norms: the computing hardware including QPUs is installed in an active data center room with standard facilities; there are no special considerations for networking, power, and cooling; we use Slurm for workload management as well as the NVIDIA CUDA-Q extension API for classical-quantum interactions. We demonstrate applications of this environment for hybrid classical-quantum machine learning and optimisation. The aim of this work is to provide the community with an experimental example for further research and development on how quantum computing can practically enhance and extend HPC capabilities.
☆ Self-Healing Network of Interconnected Edge Devices Empowered by Infrastructure-as-Code and LoRa Communication
This Paper proposes a self-healing, automated network of Raspberry Pi devices designed for deployment in scenarios where traditional networking is unavailable. Leveraging the low-power, long-range capabilities of the LoRa (Long Range) protocol alongside Infrastructure as Code (IaC) methodologies, the research addresses challenges such as limited bandwidth, data collisions, and node failures. Given that LoRa's packet-based system is incompatible with conventional IaC tools like Ansible and Terraform, which rely on TCP/IP networking, the research adapts IaC principles within a containerised architecture deployed across a Raspberry Pi cluster. Evaluation experiments indicate that fragmenting data packets and retransmitting any missed fragments can mitigate LoRa's inherent throughput and packet size limitations, although issues such as collisions and line-of-sight interference persist. An automated failover mechanism was integrated into the architecture, enabling unresponsive services to be redeployed to alternative nodes within one second, demonstrating the system's resilience in maintaining operational continuity despite node or service failures. The paper also identifies practical challenges, including the necessity for time-slotting transmissions to prevent data packet overlap and collisions. Future research should explore the integration of mesh networking to enhance range, develop more advanced scheduling algorithms, and adopt cutting-edge low-power wide-area network (LPWAN) techniques.
☆ PICO: Performance Insights for Collective Operations
Collective operations are cornerstones of both HPC application and large-scale AI training and inference. Yet, comprehensive, systematic and reproducible performance evaluation and benchmarking of said operations is not straightforward. Existing frameworks do not provide sufficiently detailed profiling information, nor they ensure reproducibility and extensibility. In this paper, we present PICO (Performance Insights for Collective Operations), a novel lightweight, extensible framework built with the aim of simplifying collective operations benchmarking.
☆ Neuromorphic Simulation of Drosophila Melanogaster Brain Connectome on Loihi 2
We demonstrate the first-ever nontrivial, biologically realistic connectome simulated on neuromorphic computing hardware. Specifically, we implement the whole-brain connectome of the adult Drosophila melanogaster (fruit fly) from the FlyWire Consortium containing 140K neurons and 50M synapses on the Intel Loihi 2 neuromorphic platform. This task is particularly challenging due to the characteristic connectivity structure of biological networks. Unlike artificial neural networks and most abstracted neural models, real biological circuits exhibit sparse, recurrent, and irregular connectivity that is poorly suited to conventional computing methods intended for dense linear algebra. Though neuromorphic hardware is architecturally better suited to discrete event-based biological communication, mapping the connectivity structure to frontier systems still faces challenges from low-level hardware constraints, such as fan-in and fan-out memory limitations. We describe solutions to these challenges that allow for the full FlyWire connectome to fit onto 12 Loihi 2 chips. We statistically validate our implementation by comparing network behavior across multiple reference simulations. Significantly, we achieve a neuromorphic implementation that is orders of magnitude faster than numerical simulations on conventional hardware, and we also find that performance advantages increase with sparser activity. These results affirm that today's scalable neuromorphic platforms are capable of implementing and accelerating biologically realistic models -- a key enabling technology for advancing neuro-inspired AI and computational neuroscience.
☆ Systematic Characterization of LLM Quantization: A Performance, Energy, and Quality Perspective
Large language models (LLMs) have demonstrated remarkable capabilities across diverse domains, but their heavy resource demands make quantization-reducing precision to lower-bit formats-critical for efficient serving. While many quantization methods exist, a systematic understanding of their performance, energy, and quality tradeoffs in realistic serving conditions remains a gap. In this work, we first develop a fully automated online characterization framework qMeter, and then conduct an in-depth characterization of 11 post-training LLM quantization methods across 4 model sizes (7B-70B) and two GPU architectures (A100, H100). We evaluate quantization at the application, workload, parallelism, and hardware levels under online serving conditions. Our study reveals highly task- and method-dependent tradeoffs, strong sensitivity to workload characteristics, and complex interactions with parallelism and GPU architecture. We further present three optimization case studies illustrating deployment challenges in capacity planning, energy-efficient scheduling, and multi-objective tuning. To the best of our knowledge, this is one of the first comprehensive application-, system-, and hardware-level characterization of LLM quantization from a joint performance, energy, and quality perspective.
comment: 14 pages, 10 figures, 4 tables
☆ Scalable Hybrid quantum Monte Carlo simulation of U(1) gauge field coupled to fermions on GPU
We develop a GPU-accelerated hybrid quantum Monte Carlo (QMC) algorithm to solve the fundamental yet difficult problem of $U(1)$ gauge field coupled to fermions, which gives rise to a $U(1)$ Dirac spin liquid state under the description of (2+1)d quantum electrodynamics QED$_3$. The algorithm renders a good acceptance rate and, more importantly, nearly linear space-time volume scaling in computational complexity $O(N_{\tau} V_s)$, where $N_\tau$ is the imaginary time dimension and $V_s$ is spatial volume, which is much more efficient than determinant QMC with scaling behavior of $O(N_\tau V_s^3)$. Such acceleration is achieved via a collection of technical improvements, including (i) the design of the efficient problem-specific preconditioner, (ii) customized CUDA kernel for matrix-vector multiplication, and (iii) CUDA Graph implementation on the GPU. These advances allow us to simulate the $U(1)$ Dirac spin liquid state with unprecedentedly large system sizes, which is up to $N_\tau\times L\times L = 660\times66\times66$, and reveal its novel properties. With these technical improvements, we see the asymptotic convergence in the scaling dimensions of various fermion bilinear operators and the conserved current operator when approaching the thermodynamic limit. The scaling dimensions find good agreement with field-theoretical expectation, which provides supporting evidence for the conformal nature of the $U(1)$ Dirac spin liquid state in the \qed. Our technical advancements open an avenue to study the Dirac spin liquid state and its transition towards symmetry-breaking phases at larger system sizes and with less computational burden.
comment: 15+4 pages, 10+7 figures
☆ GPT-OSS-20B: A Comprehensive Deployment-Centric Analysis of OpenAI's Open-Weight Mixture of Experts Model
We present a single-GPU (H100, bf16) evaluation of GPT-OSS-20B (Mixture-of-Experts; 20.9B total, approx. 3.61B active) against dense baselines Qwen3-32B and Yi-34B across multiple dimensions. We measure true time-to-first-token (TTFT), full-decode throughput (TPOT), end-to-end latency percentiles, peak VRAM with past key values (PKV) held, and energy via a consistent nvidia-smi-based sampler. At a 2048-token context with 64-token decode, GPT-OSS-20B delivers higher decode throughput and tokens per Joule than dense baselines Qwen3-32B and Yi-34B, while substantially reducing peak VRAM and energy per 1000 generated tokens; its TTFT is higher due to MoE routing overhead. With only 17.3% of parameters active (3.61B of 20.9B), GPT-OSS-20B provides about 31.8% higher decode throughput and 25.8% lower energy per 1000 generated tokens than Qwen3-32B at 2048/64, while using 31.7% less peak VRAM. Normalized by active parameters, GPT-OSS-20B shows markedly stronger per-active-parameter efficiency (APE), underscoring MoE's deployment advantages. We do not evaluate accuracy; this is a deployment-focused study. We release code and consolidated results to enable replication and extension.
♻ ☆ Denoising Application Performance Models with Noise-Resilient Priors
As parallel codes are scaled to larger computing systems, performance models play a crucial role in identifying potential bottlenecks. However, constructing these models analytically is often challenging. Empirical models based on performance measurements provide a practical alternative, but measurements on high-performance computing (HPC) systems are frequently affected by noise, which can lead to misleading predictions. To mitigate the impact of noise, we introduce application-specific dynamic priors into the modeling process. These priors are derived from noise-resilient measurements of computational effort, combined with domain knowledge about common algorithms used in communication routines. By incorporating these priors, we effectively constrain the model's search space, eliminating complexity classes that capture noise rather than true performance characteristics. This approach keeps the models closely aligned with theoretical expectations and substantially enhances their predictive accuracy. Moreover, it reduces experimental overhead by cutting the number of repeated measurements by half.
♻ ☆ Robustness of deep learning classification to adversarial input on GPUs: asynchronous parallel accumulation is a source of vulnerability
The ability of machine learning (ML) classification models to resist small, targeted input perturbations -- known as adversarial attacks -- is a key measure of their safety and reliability. We show that floating-point non-associativity (FPNA) coupled with asynchronous parallel programming on GPUs is sufficient to result in misclassification, without any perturbation to the input. Additionally, we show that standard adversarial robustness results may be overestimated up to 4.6 when not considering machine-level details. We develop a novel black-box attack using Bayesian optimization to discover external workloads that can change the instruction scheduling which bias the output of reductions on GPUs and reliably lead to misclassification. Motivated by these results, we present a new learnable permutation (LP) gradient-based approach to learning floating-point operation orderings that lead to misclassifications. The LP approach provides a worst-case estimate in a computationally efficient manner, avoiding the need to run identical experiments tens of thousands of times over a potentially large set of possible GPU states or architectures. Finally, using instrumentation-based testing, we investigate parallel reduction ordering across different GPU architectures under external background workloads, when utilizing multi-GPU virtualization, and when applying power capping. Our results demonstrate that parallel reduction ordering varies significantly across architectures under the first two conditions, substantially increasing the search space required to fully test the effects of this parallel scheduler-based vulnerability. These results and the methods developed here can help to include machine-level considerations into adversarial robustness assessments, which can make a difference in safety and mission critical applications.
♻ ☆ Information-Theoretic Decentralized Secure Aggregation with Collusion Resilience
In decentralized federated learning (FL), multiple clients collaboratively learn a shared machine learning (ML) model by leveraging their privately held datasets distributed across the network, through interactive exchange of the intermediate model updates. To ensure data security, cryptographic techniques are commonly employed to protect model updates during aggregation. Despite growing interest in secure aggregation, existing works predominantly focus on protocol design and computational guarantees, with limited understanding of the fundamental information-theoretic limits of such systems. Moreover, optimal bounds on communication and key usage remain unknown in decentralized settings, where no central aggregator is available. Motivated by these gaps, we study the problem of decentralized secure aggregation (DSA) from an information-theoretic perspective. Specifically, we consider a network of $K$ fully-connected users, each holding a private input -- an abstraction of local training data -- who aim to securely compute the sum of all inputs. The security constraint requires that no user learns anything beyond the input sum, even when colluding with up to $T$ other users. We characterize the optimal rate region, which specifies the minimum achievable communication and secret key rates for DSA. In particular, we show that to securely compute one symbol of the desired input sum, each user must (i) transmit at least one symbol to others, (ii) hold at least one symbol of secret key, and (iii) all users must collectively hold no fewer than $K - 1$ independent key symbols. Our results establish the fundamental performance limits of DSA, providing insights for the design of provably secure and communication-efficient protocols in distributed learning systems.
comment: Submitted to IEEE for potential journal publication
♻ ☆ Distributed Computation with Local Advice
In this work we study local computation with advice: the goal is to solve a graph problem $\Pi$ with a distributed algorithm in $T(\Delta)$ communication rounds, for some function $T$ that only depends on the maximum degree $\Delta$ of the graph, and the key question is how many bits of advice per node are needed. Some of our results regard Locally Checkable Labeling problems (LCLs), which are constraint-satisfaction graph problems that can be defined with a finite set of valid input/output-labeled neighborhoods. Our main results are: - Any LCL can be solved with only $1$ bit of advice per node in graphs with sub-exponential growth. Moreover, we can make the set of nodes that carry advice bits arbitrarily sparse. As a corollary, any LCL admits a locally checkable proof with $1$ bit per node in graphs with sub-exponential growth. - The assumption of sub-exponential growth is complemented by a conditional lower bound: assuming the Exponential-Time Hypothesis, there are locally checkable labeling problems that cannot be solved in general with any constant number of bits per node. - In any graph we can find an almost-balanced orientation with $1$ bit of advice per node, and again we can make the advice arbitrarily sparse. As a corollary, we can also compress an arbitrary subset of edges so that a node of degree $d$ stores only $d/2 + 2$ bits, and we can decompress it locally, in $T(\Delta)$ rounds. - In any graph of maximum degree $\Delta$, we can find a $\Delta$-coloring (if it exists) with $1$ bit of advice per node, and again, we can make the advice arbitrarily sparse. - In any $3$-colorable graph, we can find a $3$-coloring with $1$ bit of advice per node. As a corollary, in bounded-degree graphs there is a locally checkable proof that certifies $3$-colorability with $1$ bit of advice per node.
♻ ☆ Did we miss P In CAP? Partial Progress Conjecture under Asynchrony
Each application developer desires to provide its users with consistent results and an always-available system despite failures. Boldly, the CALM theorem disagrees. It states that it is hard to design a system that is both consistent and available under network partitions; select at most two out of these three properties. One possible solution is to design coordination-free monotonic applications. However, a majority of real-world applications require coordination. We resolve this dilemma by conjecturing that partial progress is possible under network partitions. This partial progress ensures the system appears responsive to a subset of clients and achieves non-zero throughput during failures. To this extent, we present the design of our CASSANDRA consensus protocol that allows partitioned replicas to order client requests.
comment: 7
♻ ☆ Dynamic Optimization of Storage Systems Using Reinforcement Learning Techniques
The exponential growth of data-intensive applications has placed unprecedented demands on modern storage systems, necessitating dynamic and efficient optimization strategies. Traditional heuristics employed for storage performance optimization often fail to adapt to the variability and complexity of contemporary workloads, leading to significant performance bottlenecks and resource inefficiencies. To address these challenges, this paper introduces RL-Storage, a novel reinforcement learning (RL)-based framework designed to dynamically optimize storage system configurations. RL-Storage leverages deep Q-learning algorithms to continuously learn from real-time I/O patterns and predict optimal storage parameters, such as cache size, queue depths, and readahead settings[1].This work underscores the transformative potential of reinforcement learning techniques in addressing the dynamic nature of modern storage systems. By autonomously adapting to workload variations in real time, RL-Storage provides a robust and scalable solution for optimizing storage performance, paving the way for next-generation intelligent storage infrastructures.
♻ ☆ I/O in Machine Learning Applications on HPC Systems: A 360-degree Survey
Growing interest in Artificial Intelligence (AI) has resulted in a surge in demand for faster methods of Machine Learning (ML) model training and inference. This demand for speed has prompted the use of high performance computing (HPC) systems that excel in managing distributed workloads. Because data is the main fuel for AI applications, the performance of the storage and I/O subsystem of HPC systems is critical. In the past, HPC applications accessed large portions of data written by simulations or experiments or ingested data for visualizations or analysis tasks. ML workloads perform small reads spread across a large number of random files. This shift of I/O access patterns poses several challenges to modern parallel storage systems. In this paper, we survey I/O in ML applications on HPC systems, and target literature within a 6-year time window from 2019 to 2024. We define the scope of the survey, provide an overview of the common phases of ML, review available profilers and benchmarks, examine the I/O patterns encountered during offline data preparation, training, and inference, and explore I/O optimizations utilized in modern ML frameworks and proposed in recent literature. Lastly, we seek to expose research gaps that could spawn further R&D
♻ ☆ TOAST: Fast and scalable auto-partitioning based on principled static analysis
Partitioning large machine learning models across distributed accelerator systems is a complex process, requiring a series of interdependent decisions that are further complicated by internal sharding ambiguities. Consequently, existing auto-partitioners often suffer from out-of-memory errors or are prohibitively slow when exploring the exponentially large space of possible partitionings. To mitigate this, they artificially restrict the search space, but this approach frequently yields infeasible solutions that violate device memory constraints or lead to sub-optimal performance. We propose a system that combines a novel static compiler analysis with a Monte Carlo Tree Search. Our analysis constructs an efficient decision space by identifying (i) tensor dimensions requiring identical sharding, and (ii) partitioning "conflicts" that require resolution. Our system significantly outperforms state-of-the-art industrial methods across diverse hardware platforms and model architectures, discovering previously unknown, superior solutions, and the process is fully automated even for complex and large models.
♻ ☆ BandPilot: Towards Performance-Aware GPU Dispatching in AI Clusters
In modern AI clusters, the performance of parallel computing critically depends on the communication bandwidth among the allocated GPUs. Existing GPU dispatchers rely on static, locality-based heuristics that prioritize resource compactness. However, this approach proves suboptimal as it overlooks key performance factors. We introduce BandPilot, a performance-aware GPU dispatching system that maximizes effective communication bandwidth while eliminating manual topology configuration. BandPilot addresses the dispatching problem in two stages: i) a hierarchical Transformer model that accurately predicts end-to-end NCCL bandwidth for arbitrary GPU configurations, and ii) a lightweight search algorithm combining an Equilibrium-driven Heuristic with Pruned Tree Search to identify near-optimal GPU allocations. We implement and evaluate BandPilot on a real-world AI cluster and in trace-driven simulations. Experimental results demonstrate that BandPilot consistently achieves high bandwidth efficiency with negligible overhead, outperforming state-of-the-art topology-aware dispatchers by $12\sim 31\%$ across diverse AI cluster configurations.
comment: 15 pages, 11 figures
Information Retrieval 25
☆ ORCA: Mitigating Over-Reliance for Multi-Task Dwell Time Prediction with Causal Decoupling
Dwell time (DT) is a critical post-click metric for evaluating user preference in recommender systems, complementing the traditional click-through rate (CTR). Although multi-task learning is widely adopted to jointly optimize DT and CTR, we observe that multi-task models systematically collapse their DT predictions to the shortest and longest bins, under-predicting the moderate durations. We attribute this moderate-duration bin under-representation to over-reliance on the CTR-DT spurious correlation, and propose ORCA to address it with causal-decoupling. Specifically, ORCA explicitly models and subtracts CTR's negative transfer while preserving its positive transfer. We further introduce (i) feature-level counterfactual intervention, and (ii) a task-interaction module with instance inverse-weighting, weakening CTR-mediated effect and restoring direct DT semantics. ORCA is model-agnostic and easy to deploy. Experiments show an average 10.6% lift in DT metrics without harming CTR. Code is available at https://github.com/Chrissie-Law/ORCA-Mitigating-Over-Reliance-for-Multi-Task-Dwell-Time-Prediction-with-Causal-Decoupling.
comment: Accepted as a short paper at CIKM 2025
☆ LLM-Based Agents for Competitive Landscape Mapping in Drug Asset Due Diligence
In this paper, we describe and benchmark a competitor-discovery component used within an agentic AI system for fast drug asset due diligence. A competitor-discovery AI agent, given an indication, retrieves all drugs comprising the competitive landscape of that indication and extracts canonical attributes for these drugs. The competitor definition is investor-specific, and data is paywalled/licensed, fragmented across registries, ontology-mismatched by indication, alias-heavy for drug names, multimodal, and rapidly changing. Although considered the best tool for this problem, the current LLM-based AI systems aren't capable of reliably retrieving all competing drug names, and there is no accepted public benchmark for this task. To address the lack of evaluation, we use LLM-based agents to transform five years of multi-modal, unstructured diligence memos from a private biotech VC fund into a structured evaluation corpus mapping indications to competitor drugs with normalized attributes. We also introduce a competitor validating LLM-as-a-judge agent that filters out false positives from the list of predicted competitors to maximize precision and suppress hallucinations. On this benchmark, our competitor-discovery agent achieves 83% recall, exceeding OpenAI Deep Research (65%) and Perplexity Labs (60%). The system is deployed in production with enterprise users; in a case study with a biotech VC investment fund, analyst turnaround time dropped from 2.5 days to $\sim$3 hours ($\sim$20x) for the competitive analysis.
☆ Enhanced NIRMAL Optimizer With Damped Nesterov Acceleration: A Comparative Analysis
This study introduces the Enhanced NIRMAL (Novel Integrated Robust Multi-Adaptation Learning with Damped Nesterov Acceleration) optimizer, an improved version of the original NIRMAL optimizer. By incorporating an $(\alpha, r)$-damped Nesterov acceleration mechanism, Enhanced NIRMAL improves convergence stability while retaining chess-inspired strategies of gradient descent, momentum, stochastic perturbations, adaptive learning rates, and non-linear transformations. We evaluate Enhanced NIRMAL against Adam, SGD with Momentum, Nesterov, and the original NIRMAL on four benchmark image classification datasets: MNIST, FashionMNIST, CIFAR-10, and CIFAR-100, using tailored convolutional neural network (CNN) architectures. Enhanced NIRMAL achieves a test accuracy of 46.06\% and the lowest test loss (1.960435) on CIFAR-100, surpassing the original NIRMAL (44.34\% accuracy) and closely rivaling SGD with Momentum (46.43\% accuracy). These results underscore Enhanced NIRMAL's superior generalization and stability, particularly on complex datasets.
comment: 7 pages, 1 figure, 1 table. arXiv admin note: substantial text overlap with arXiv:2508.04293
☆ A Node-Aware Dynamic Quantization Approach for Graph Collaborative Filtering
In the realm of collaborative filtering recommendation systems, Graph Neural Networks (GNNs) have demonstrated remarkable performance but face significant challenges in deployment on resource-constrained edge devices due to their high embedding parameter requirements and computational costs. Using common quantization method directly on node embeddings may overlooks their graph based structure, causing error accumulation during message passing and degrading the quality of quantized embeddings.To address this, we propose Graph based Node-Aware Dynamic Quantization training for collaborative filtering (GNAQ), a novel quantization approach that leverages graph structural information to enhance the balance between efficiency and accuracy of GNNs for Top-K recommendation. GNAQ introduces a node-aware dynamic quantization strategy that adapts quantization scales to individual node embeddings by incorporating graph interaction relationships. Specifically, it initializes quantization intervals based on node-wise feature distributions and dynamically refines them through message passing in GNN layers. This approach mitigates information loss caused by fixed quantization scales and captures hierarchical semantic features in user-item interaction graphs. Additionally, GNAQ employs graph relation-aware gradient estimation to replace traditional straight-through estimators, ensuring more accurate gradient propagation during training. Extensive experiments on four real-world datasets demonstrate that GNAQ outperforms state-of-the-art quantization methods, including BiGeaR and N2UQ, by achieving average improvement in 27.8\% Recall@10 and 17.6\% NDCG@10 under 2-bit quantization. In particular, GNAQ is capable of maintaining the performance of full-precision models while reducing their model sizes by 8 to 12 times; in addition, the training time is twice as fast compared to quantization baseline methods.
☆ LLM-as-classifier: Semi-Supervised, Iterative Framework for Hierarchical Text Classification using Large Language Models
The advent of Large Language Models (LLMs) has provided unprecedented capabilities for analyzing unstructured text data. However, deploying these models as reliable, robust, and scalable classifiers in production environments presents significant methodological challenges. Standard fine-tuning approaches can be resource-intensive and often struggle with the dynamic nature of real-world data distributions, which is common in the industry. In this paper, we propose a comprehensive, semi-supervised framework that leverages the zero- and few-shot capabilities of LLMs for building hierarchical text classifiers as a framework for a solution to these industry-wide challenges. Our methodology emphasizes an iterative, human-in-the-loop process that begins with domain knowledge elicitation and progresses through prompt refinement, hierarchical expansion, and multi-faceted validation. We introduce techniques for assessing and mitigating sequence-based biases and outline a protocol for continuous monitoring and adaptation. This framework is designed to bridge the gap between the raw power of LLMs and the practical need for accurate, interpretable, and maintainable classification systems in industry applications.
comment: 20 pages excluding reference list, 2 figures
☆ OPERA: A Reinforcement Learning--Enhanced Orchestrated Planner-Executor Architecture for Reasoning-Oriented Multi-Hop Retrieval
Recent advances in large language models (LLMs) and dense retrievers have driven significant progress in retrieval-augmented generation (RAG). However, existing approaches face significant challenges in complex reasoning-oriented multi-hop retrieval tasks: 1) Ineffective reasoning-oriented planning: Prior methods struggle to generate robust multi-step plans for complex queries, as rule-based decomposers perform poorly on out-of-template questions. 2) Suboptimal reasoning-driven retrieval: Related methods employ limited query reformulation, leading to iterative retrieval loops that often fail to locate golden documents. 3) Insufficient reasoning-guided filtering: Prevailing methods lack the fine-grained reasoning to effectively filter salient information from noisy results, hindering utilization of retrieved knowledge. Fundamentally, these limitations all stem from the weak coupling between retrieval and reasoning in current RAG architectures. We introduce the Orchestrated Planner-Executor Reasoning Architecture (OPERA), a novel reasoning-driven retrieval framework. OPERA's Goal Planning Module (GPM) decomposes questions into sub-goals, which are executed by a Reason-Execute Module (REM) with specialized components for precise reasoning and effective retrieval. To train OPERA, we propose Multi-Agents Progressive Group Relative Policy Optimization (MAPGRPO), a novel variant of GRPO. Experiments on complex multi-hop benchmarks show OPERA's superior performance, validating both the MAPGRPO method and OPERA's design. Code is available at https://github.com/Ameame1/OPERA.
☆ MizanQA: Benchmarking Large Language Models on Moroccan Legal Question Answering
The rapid advancement of large language models (LLMs) has significantly propelled progress in natural language processing (NLP). However, their effectiveness in specialized, low-resource domains-such as Arabic legal contexts-remains limited. This paper introduces MizanQA (pronounced Mizan, meaning "scale" in Arabic, a universal symbol of justice), a benchmark designed to evaluate LLMs on Moroccan legal question answering (QA) tasks, characterised by rich linguistic and legal complexity. The dataset draws on Modern Standard Arabic, Islamic Maliki jurisprudence, Moroccan customary law, and French legal influences. Comprising over 1,700 multiple-choice questions, including multi-answer formats, MizanQA captures the nuances of authentic legal reasoning. Benchmarking experiments with multilingual and Arabic-focused LLMs reveal substantial performance gaps, highlighting the need for tailored evaluation metrics and culturally grounded, domain-specific LLM development.
☆ Attribute Filtering in Approximate Nearest Neighbor Search: An In-depth Experimental Study SIGMOD 2026
With the growing integration of structured and unstructured data, new methods have emerged for performing similarity searches on vectors while honoring structured attribute constraints, i.e., a process known as Filtering Approximate Nearest Neighbor (Filtering ANN) search. Since many of these algorithms have only appeared in recent years and are designed to work with a variety of base indexing methods and filtering strategies, there is a pressing need for a unified analysis that identifies their core techniques and enables meaningful comparisons. In this work, we present a unified Filtering ANN search interface that encompasses the latest algorithms and evaluate them extensively from multiple perspectives. First, we propose a comprehensive taxonomy of existing Filtering ANN algorithms based on attribute types and filtering strategies. Next, we analyze their key components, i.e., index structures, pruning strategies, and entry point selection, to elucidate design differences and tradeoffs. We then conduct a broad experimental evaluation on 10 algorithms and 12 methods across 4 datasets (each with up to 10 million items), incorporating both synthetic and real attributes and covering selectivity levels from 0.1% to 100%. Finally, an in-depth component analysis reveals the influence of pruning, entry point selection, and edge filtering costs on overall performance. Based on our findings, we summarize the strengths and limitations of each approach, provide practical guidelines for selecting appropriate methods, and suggest promising directions for future research. Our code is available at: https://github.com/lmccccc/FANNBench.
comment: 15 pages, 15 figures, Accepted at SIGMOD 2026
☆ Modeling User Preferences as Distributions for Optimal Transport-based Cross-domain Recommendation under Non-overlapping Settings
Cross-Domain Recommender (CDR) systems aim to transfer knowledge from dense to sparse domains, alleviating data sparsity and cold-start issues in single-domain recommendation. While many methods assume overlapping users or items to connect domains, this is often unrealistic in real-world settings. Thus, non-overlapping CDR systems, which require no shared users or items, are needed. However, non-overlapping CDR is challenging due to: (1) the absence of overlap preventing direct bridges between domains, and (2) large distributional discrepancies degrading transfer performance. Moreover, most recommenders represent user preferences as discrete vectors, failing to capture their fine-grained, multi-faceted nature. We propose DUP-OT (Distributional User Preferences with Optimal Transport), a framework for non-overlapping CDR. DUP-OT has three stages: (1) Shared Preprocessing, where review-based embeddings and an autoencoder encode users and items from both domains; (2) User GMM Weight Learning, which models user preferences as Gaussian mixtures with learned weights; and (3) Cross-domain Rating Prediction, where optimal transport aligns Gaussian components across domains, enabling preference transfer from source to target. Experiments on Amazon review datasets show that DUP-OT effectively mitigates domain discrepancy and outperforms state-of-the-art baselines under the non-overlapping CDR setting.
☆ EGRA:Toward Enhanced Behavior Graphs and Representation Alignment for Multimodal Recommendation
MultiModal Recommendation (MMR) systems have emerged as a promising solution for improving recommendation quality by leveraging rich item-side modality information, prompting a surge of diverse methods. Despite these advances, existing methods still face two critical limitations. First, they use raw modality features to construct item-item links for enriching the behavior graph, while giving limited attention to balancing collaborative and modality-aware semantics or mitigating modality noise in the process. Second, they use a uniform alignment weight across all entities and also maintain a fixed alignment strength throughout training, limiting the effectiveness of modality-behavior alignment. To address these challenges, we propose EGRA. First, instead of relying on raw modality features, it alleviates sparsity by incorporating into the behavior graph an item-item graph built from representations generated by a pretrained MMR model. This enables the graph to capture both collaborative patterns and modality aware similarities with enhanced robustness against modality noise. Moreover, it introduces a novel bi-level dynamic alignment weighting mechanism to improve modality-behavior representation alignment, which dynamically assigns alignment strength across entities according to their alignment degree, while gradually increasing the overall alignment intensity throughout training. Extensive experiments on five datasets show that EGRA significantly outperforms recent methods, confirming its effectiveness.
☆ Hierarchical Vision-Language Reasoning for Multimodal Multiple-Choice Question Answering
Multimodal Large Language Models (MLLMs) have demonstrated remarkable multimodal understanding capabilities in Visual Question Answering (VQA) tasks by integrating visual and textual features. However, under the challenging ten-choice question evaluation paradigm, existing methods still exhibit significant limitations when processing PDF documents with complex layouts and lengthy content. Notably, current mainstream models suffer from a strong bias toward English training data, resulting in suboptimal performance for Japanese and other language scenarios. To address these challenges, this paper proposes a novel Japanese PDF document understanding framework that combines multimodal hierarchical reasoning mechanisms with Colqwen-optimized retrieval methods, while innovatively introducing a semantic verification strategy through sub-question decomposition. Experimental results demonstrate that our framework not only significantly enhances the model's deep semantic parsing capability for complex documents, but also exhibits superior robustness in practical application scenarios.
comment: This paper has been accepted by ACM MM 2025
☆ Cross-Modal Prototype Augmentation and Dual-Grained Prompt Learning for Social Media Popularity Prediction
Social Media Popularity Prediction is a complex multimodal task that requires effective integration of images, text, and structured information. However, current approaches suffer from inadequate visual-textual alignment and fail to capture the inherent cross-content correlations and hierarchical patterns in social media data. To overcome these limitations, we establish a multi-class framework , introducing hierarchical prototypes for structural enhancement and contrastive learning for improved vision-text alignment. Furthermore, we propose a feature-enhanced framework integrating dual-grained prompt learning and cross-modal attention mechanisms, achieving precise multimodal representation through fine-grained category modeling. Experimental results demonstrate state-of-the-art performance on benchmark metrics, establishing new reference standards for multimodal social media analysis.
comment: This paper has been accepted by ACM MM 2025
☆ Spacetime-GR: A Spacetime-Aware Generative Model for Large Scale Online POI Recommendation
Building upon the strong sequence modeling capability, Generative Recommendation (GR) has gradually assumed a dominant position in the application of recommendation tasks (e.g., video and product recommendation). However, the application of Generative Recommendation in Point-of-Interest (POI) recommendation, where user preferences are significantly affected by spatiotemporal variations, remains a challenging open problem. In this paper, we propose Spacetime-GR, the first spacetime-aware generative model for large-scale online POI recommendation. It extends the strong sequence modeling ability of generative models by incorporating flexible spatiotemporal information encoding. Specifically, we first introduce a geographic-aware hierarchical POI indexing strategy to address the challenge of large vocabulary modeling. Subsequently, a novel spatiotemporal encoding module is introduced to seamlessly incorporate spatiotemporal context into user action sequences, thereby enhancing the model's sensitivity to spatiotemporal variations. Furthermore, we incorporate multimodal POI embeddings to enrich the semantic understanding of each POI. Finally, to facilitate practical deployment, we develop a set of post-training adaptation strategies after sufficient pre-training on action sequences. These strategies enable Spacetime-GR to generate outputs in multiple formats (i.e., embeddings, ranking scores and POI candidates) and support a wide range of downstream application scenarios (i.e., ranking and end-to-end recommendation). We evaluate the proposed model on both public benchmark datasets and large-scale industrial datasets, demonstrating its superior performance over existing methods in terms of POI recommendation accuracy and ranking quality. Furthermore, the model is the first generative model deployed in online POI recommendation services that scale to hundreds of millions of POIs and users.
☆ Extending FKG.in: Towards a Food Claim Traceability Network
The global food landscape is rife with scientific, cultural, and commercial claims about what foods are, what they do, what they should not do, or should not do. These range from rigorously studied health benefits (probiotics improve gut health) and misrepresentations (soaked almonds make one smarter) to vague promises (superfoods boost immunity) and culturally rooted beliefs (cold foods cause coughs). Despite their widespread influence, the infrastructure for tracing, verifying, and contextualizing these claims remains fragmented and underdeveloped. In this paper, we propose a Food Claim-Traceability Network (FCN) as an extension of FKG.in, a knowledge graph of Indian food that we have been incrementally building. We also present the ontology design and the semi-automated knowledge curation workflow that we used to develop a proof of concept of FKG.in-FCN using Reddit data and Large Language Models. FCN integrates curated data inputs, structured schemas, and provenance-aware pipelines for food-related claim extraction and validation. While directly linked to the Indian food knowledge graph as an application, our methodology remains application-agnostic and adaptable to other geographic, culinary, or regulatory settings. By modeling food claims and their traceability in a structured, verifiable, and explainable way, we aim to contribute to more transparent and accountable food knowledge ecosystems, supporting researchers, policymakers, and most importantly, everyday consumers in navigating a world saturated with dietary assertions.
comment: 10 pages, 3 figures, 1 table, 45 references, ACM International Conference on Multimedia 2025 - Multi-modal Food Computing Workshop
☆ Similarity-Based Supervised User Session Segmentation Method for Behavior Logs
In information recommendation, a session refers to a sequence of user actions within a specific time frame. Session-based recommender systems aim to capture short-term preferences and generate relevant recommendations. However, user interests may shift even within a session, making appropriate segmentation essential for modeling dynamic behaviors. In this study, we propose a supervised session segmentation method based on similarity features derived from action embeddings and attributes. We compute the similarity scores between items within a fixed-size window around each candidate segmentation point, using four types of features: item co-occurrence embeddings, text embeddings of titles and brands, and price. These features are used to train supervised classifiers (LightGBM, XGBoost, CatBoost, support vector machine, and logistic regression) to predict the session boundaries. We construct a manually annotated dataset from real user browsing histories and evaluate the segmentation performance using F1-score, area under the precision-recall curve (PR-AUC), and area under the receiver operating characteristic curve. The LightGBM model achieves the best performance, with an F1-score of 0.806 and a PR-AUC of 0.831. These results demonstrate the effectiveness of the proposed method for session segmentation and its potential to capture dynamic user behaviors.
comment: Submitted to Journal of Advanced Computational Intelligence and Intelligent Informatics
☆ Estimating the Effective Topics of Articles and journals Abstract Using LDA And K-Means Clustering Algorithm
Analyzing journals and articles abstract text or documents using topic modelling and text clustering has become a modern solution for the increasing number of text documents. Topic modelling and text clustering are both intensely involved tasks that can benefit one another. Text clustering and topic modelling algorithms are used to maintain massive amounts of text documents. In this study, we have used LDA, K-Means cluster and also lexical database WordNet for keyphrases extraction in our text documents. K-Means cluster and LDA algorithms achieve the most reliable performance for keyphrase extraction in our text documents. This study will help the researcher to make a search string based on journals and articles by avoiding misunderstandings.
☆ Bootstrapping Conditional Retrieval for User-to-Item Recommendations
User-to-item retrieval has been an active research area in recommendation system, and two tower models are widely adopted due to model simplicity and serving efficiency. In this work, we focus on a variant called \textit{conditional retrieval}, where we expect retrieved items to be relevant to a condition (e.g. topic). We propose a method that uses the same training data as standard two tower models but incorporates item-side information as conditions in query. This allows us to bootstrap new conditional retrieval use cases and encourages feature interactions between user and condition. Experiments show that our method can retrieve highly relevant items and outperforms standard two tower models with filters on engagement metrics. The proposed model is deployed to power a topic-based notification feed at Pinterest and led to +0.26\% weekly active users.
☆ How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models
In this work, we present a systematic and comprehensive empirical evaluation of state-of-the-art reranking methods, encompassing large language model (LLM)-based, lightweight contextual, and zero-shot approaches, with respect to their performance in information retrieval tasks. We evaluate in total 22 methods, including 40 variants (depending on used LLM) across several established benchmarks, including TREC DL19, DL20, and BEIR, as well as a novel dataset designed to test queries unseen by pretrained models. Our primary goal is to determine, through controlled and fair comparisons, whether a performance disparity exists between LLM-based rerankers and their lightweight counterparts, particularly on novel queries, and to elucidate the underlying causes of any observed differences. To disentangle confounding factors, we analyze the effects of training data overlap, model architecture, and computational efficiency on reranking performance. Our findings indicate that while LLM-based rerankers demonstrate superior performance on familiar queries, their generalization ability to novel queries varies, with lightweight models offering comparable efficiency. We further identify that the novelty of queries significantly impacts reranking effectiveness, highlighting limitations in existing approaches. https://github.com/DataScienceUIBK/llm-reranking-generalization-study
comment: EMNLP Findings 2025
☆ Sparse and Dense Retrievers Learn Better Together: Joint Sparse-Dense Optimization for Text-Image Retrieval
Vision-Language Pretrained (VLP) models have achieved impressive performance on multimodal tasks, including text-image retrieval, based on dense representations. Meanwhile, Learned Sparse Retrieval (LSR) has gained traction in text-only settings due to its interpretability and efficiency with fast term-based lookup via inverted indexes. Inspired by these advantages, recent work has extended LSR to the multimodal domain. However, these methods often rely on computationally expensive contrastive pre-training, or distillation from a frozen dense model, which limits the potential for mutual enhancement. To address these limitations, we propose a simple yet effective framework that enables bi-directional learning between dense and sparse representations through Self-Knowledge Distillation. This bi-directional learning is achieved using an integrated similarity score-a weighted sum of dense and sparse similarities-which serves as a shared teacher signal for both representations. To ensure efficiency, we fine-tune the final layer of the dense encoder and the sparse projection head, enabling easy adaptation of any existing VLP model. Experiments on MSCOCO and Flickr30k demonstrate that our sparse retriever not only outperforms existing sparse baselines, but also achieves performance comparable to-or even surpassing-its dense counterparts, while retaining the benefits of sparse models.
comment: accepted to CIKM 2025 short research paper track
♻ ☆ Enhancing and Scaling Search Query Datasets for Recommendation Systems
This paper presents a deployed, production-grade system designed to enhance and scale search query datasets for intent-based recommendation systems in digital banking. In real-world environments, the growing volume and complexity of user intents create substantial challenges for data management, resulting in suboptimal recommendations and delayed product onboarding. To overcome these challenges, our approach shifts the focus from model-centric enhancements to automated, data-centric strategies. The proposed system integrates three core modules: Synthetic Query Generation, Intent Disambiguation, and Intent Gap Analysis. Synthetic Query Generation produces diverse and realistic user queries. Our experiments reveal no statistically significant difference when using synthetic data for Clinc150, while Banking77 and a proprietary dataset show significant differences. We dig into the underlying factors driving these variations, demonstrating that our approach effectively alleviates the cold start problem (i.e. the challenge of recommending new products with limited historical data). Intent Disambiguation refines broad and overlapping intent categories into precise subintents, achieving an F1 score of 0.863 $\pm$ 0.127 against expert reannotations and leading to clearer differentiation and more precise recommendation mapping. Meanwhile, Intent Gap Analysis identifies latent customer needs by extracting novel intents from unlabeled queries; recovery rates reach up to 71\% in controlled evaluations. Deployed in a live banking environment, our system demonstrates significant improvements in recommendation precision and operation agility, ultimately delivering enhanced user experiences and strategic business benefits. This work underscores the role of high-quality, scalable data in modern AI-driven applications and advocates a proactive approach to data enhancement as a key driver of value.
♻ ☆ Leveraging LLMs for Utility-Focused Annotation: Reducing Manual Effort for Retrieval and RAG
Retrieval models typically rely on costly human-labeled query-document relevance annotations for training and evaluation. To reduce this cost and leverage the potential of Large Language Models (LLMs) in relevance judgments, we aim to explore whether LLM-generated annotations can effectively replace human annotations in training retrieval models. Retrieval usually emphasizes relevance, which indicates "topic-relatedness" of a document to a query, while in RAG, the value of a document (or utility) depends on how it contributes to answer generation. Recognizing this mismatch, some researchers use LLM performance on downstream tasks with documents as labels, but this approach requires manual answers for specific tasks, leading to high costs and limited generalization. In another line of work, prompting LLMs to select useful documents as RAG references eliminates the need for human annotation and is not task-specific. If we leverage LLMs' utility judgments to annotate retrieval data, we may retain cross-task generalization without human annotation in large-scale corpora. Therefore, we investigate utility-focused annotation via LLMs for large-scale retriever training data across both in-domain and out-of-domain settings on the retrieval and RAG tasks. To reduce the impact of low-quality positives labeled by LLMs, we design a novel loss function, i.e., Disj-InfoNCE. Our experiments reveal that: (1) Retrievers trained on utility-focused annotations significantly outperform those trained on human annotations in the out-of-domain setting on both tasks, demonstrating superior generalization capabilities. (2) LLM annotation does not replace human annotation in the in-domain setting. However, incorporating just 20% human-annotated data enables retrievers trained with utility-focused annotations to match the performance of models trained entirely with human annotations.
comment: Accepted by the EMNLP25 main conference
♻ ☆ ReasonRank: Empowering Passage Ranking with Strong Reasoning Ability
Large Language Model (LLM) based listwise ranking has shown superior performance in many passage ranking tasks. With the development of Large Reasoning Models, many studies have demonstrated that step-by-step reasoning during test-time helps improve listwise ranking performance. However, due to the scarcity of reasoning-intensive training data, existing rerankers perform poorly in many complex ranking scenarios and the ranking ability of reasoning-intensive rerankers remains largely underdeveloped. In this paper, we first propose an automated reasoning-intensive training data synthesis framework, which sources training queries and passages from diverse domains and applies DeepSeek-R1 to generate high-quality training labels. A self-consistency data filtering mechanism is designed to ensure the data quality. To empower the listwise reranker with strong reasoning ability, we further propose a two-stage post-training approach, which includes a cold-start supervised fine-tuning (SFT) stage for reasoning pattern learning and a reinforcement learning (RL) stage for further ranking ability enhancement. During the RL stage, based on the nature of listwise ranking, we design a multi-view ranking reward, which is more effective than a ranking metric-based reward. Extensive experiments demonstrate that our trained reasoning-intensive reranker \textbf{ReasonRank} outperforms existing baselines significantly and also achieves much lower latency than pointwise reranker Rank1. \textbf{Through further experiments, our ReasonRank has achieved state-of-the-art (SOTA) performance 40.6 on the BRIGHT leaderboard\footnote{https://brightbenchmark.github.io/}.} Our codes are available at https://github.com/8421BCD/ReasonRank.
comment: 21 pages
♻ ☆ MTGR: Industrial-Scale Generative Recommendation Framework in Meituan
Scaling law has been extensively validated in many domains such as natural language processing and computer vision. In the recommendation system, recent work has adopted generative recommendations to achieve scalability, but their generative approaches require abandoning the carefully constructed cross features of traditional recommendation models. We found that this approach significantly degrades model performance, and scaling up cannot compensate for it at all. In this paper, we propose MTGR (Meituan Generative Recommendation) to address this issue. MTGR is modeling based on the HSTU architecture and can retain the original deep learning recommendation model (DLRM) features, including cross features. Additionally, MTGR achieves training and inference acceleration through user-level compression to ensure efficient scaling. We also propose Group-Layer Normalization (GLN) to enhance the performance of encoding within different semantic spaces and the dynamic masking strategy to avoid information leakage. We further optimize the training frameworks, enabling support for our models with 10 to 100 times computational complexity compared to the DLRM, without significant cost increases. MTGR achieved 65x FLOPs for single-sample forward inference compared to the DLRM model, resulting in the largest gain in nearly two years both offline and online. This breakthrough was successfully deployed on Meituan, the world's largest food delivery platform, where it has been handling the main traffic.
♻ ☆ Towards Goal-oriented Intelligent Tutoring Systems in Online Education TOIS
Interactive Intelligent Tutoring Systems (ITSs) enhance traditional ITSs by promoting effective learning through interactions and problem resolution in online education. Yet, proactive engagement, prioritizing resource optimization with planning and assessment capabilities, is often overlooked in current ITS designs. In this work, we investigate a new task, named Goal-oriented Intelligent Tutoring Systems (GITS), which aims to enable the student's mastery of a designated concept by strategically planning a customized sequence of exercises and assessment. To address the problem of goal-oriented policy learning in GITS, we propose a novel graph-based reinforcement learning framework, named Planning-Assessment-Interaction (PAI). Specifically, we first leverage cognitive structure information to improve state representation learning and action selection for planning the next action, which can be either to tutor an exercise or to assess the target concept. Further, we use a dynamically updated cognitive diagnosis model to simulate student responses to exercises and concepts. Three benchmark datasets across different subjects are constructed for enabling offline academic research on GITS. Experimental results demonstrate the effectiveness and efficiency of PAI and extensive analyses of various types of students are conducted to showcase the challenges in this task.
comment: Accepted by ACM TOIS
♻ ☆ Order-Preserving Dimension Reduction for Multimodal Semantic Embedding
Searching for the $k$-nearest neighbors (KNN) in multimodal data retrieval is computationally expensive, particularly due to the inherent difficulty in comparing similarity measures across different modalities. Recent advances in multimodal machine learning address this issue by mapping data into a shared embedding space; however, the high dimensionality of these embeddings (hundreds to thousands of dimensions) presents a challenge for time-sensitive vision applications. This work proposes Order-Preserving Dimension Reduction (OPDR), aiming to reduce the dimensionality of embeddings while preserving the ranking of KNN in the lower-dimensional space. One notable component of OPDR is a new measure function to quantify KNN quality as a global metric, based on which we derive a closed-form map between target dimensionality and key contextual parameters. We have integrated OPDR with multiple state-of-the-art dimension-reduction techniques, distance functions, and embedding models; experiments on a variety of multimodal datasets demonstrate that OPDR effectively retains recall high accuracy while significantly reducing computational costs.
Artificial Intelligence 150
☆ MV-RAG: Retrieval Augmented Multiview Diffusion
Text-to-3D generation approaches have advanced significantly by leveraging pretrained 2D diffusion priors, producing high-quality and 3D-consistent outputs. However, they often fail to produce out-of-domain (OOD) or rare concepts, yielding inconsistent or inaccurate results. To this end, we propose MV-RAG, a novel text-to-3D pipeline that first retrieves relevant 2D images from a large in-the-wild 2D database and then conditions a multiview diffusion model on these images to synthesize consistent and accurate multiview outputs. Training such a retrieval-conditioned model is achieved via a novel hybrid strategy bridging structured multiview data and diverse 2D image collections. This involves training on multiview data using augmented conditioning views that simulate retrieval variance for view-specific reconstruction, alongside training on sets of retrieved real-world 2D images using a distinctive held-out view prediction objective: the model predicts the held-out view from the other views to infer 3D consistency from 2D data. To facilitate a rigorous OOD evaluation, we introduce a new collection of challenging OOD prompts. Experiments against state-of-the-art text-to-3D, image-to-3D, and personalization baselines show that our approach significantly improves 3D consistency, photorealism, and text adherence for OOD/rare concepts, while maintaining competitive performance on standard benchmarks.
comment: Project page: https://yosefdayani.github.io/MV-RAG
☆ Hierarchical Decision-Making for Autonomous Navigation: Integrating Deep Reinforcement Learning and Fuzzy Logic in Four-Wheel Independent Steering and Driving Systems
This paper presents a hierarchical decision-making framework for autonomous navigation in four-wheel independent steering and driving (4WISD) systems. The proposed approach integrates deep reinforcement learning (DRL) for high-level navigation with fuzzy logic for low-level control to ensure both task performance and physical feasibility. The DRL agent generates global motion commands, while the fuzzy logic controller enforces kinematic constraints to prevent mechanical strain and wheel slippage. Simulation experiments demonstrate that the proposed framework outperforms traditional navigation methods, offering enhanced training efficiency and stability and mitigating erratic behaviors compared to purely DRL-based solutions. Real-world validations further confirm the framework's ability to navigate safely and effectively in dynamic industrial settings. Overall, this work provides a scalable and reliable solution for deploying 4WISD mobile robots in complex, real-world scenarios.
☆ LLM-Based Agents for Competitive Landscape Mapping in Drug Asset Due Diligence
In this paper, we describe and benchmark a competitor-discovery component used within an agentic AI system for fast drug asset due diligence. A competitor-discovery AI agent, given an indication, retrieves all drugs comprising the competitive landscape of that indication and extracts canonical attributes for these drugs. The competitor definition is investor-specific, and data is paywalled/licensed, fragmented across registries, ontology-mismatched by indication, alias-heavy for drug names, multimodal, and rapidly changing. Although considered the best tool for this problem, the current LLM-based AI systems aren't capable of reliably retrieving all competing drug names, and there is no accepted public benchmark for this task. To address the lack of evaluation, we use LLM-based agents to transform five years of multi-modal, unstructured diligence memos from a private biotech VC fund into a structured evaluation corpus mapping indications to competitor drugs with normalized attributes. We also introduce a competitor validating LLM-as-a-judge agent that filters out false positives from the list of predicted competitors to maximize precision and suppress hallucinations. On this benchmark, our competitor-discovery agent achieves 83% recall, exceeding OpenAI Deep Research (65%) and Perplexity Labs (60%). The system is deployed in production with enterprise users; in a case study with a biotech VC investment fund, analyst turnaround time dropped from 2.5 days to $\sim$3 hours ($\sim$20x) for the competitive analysis.
☆ A Disease-Centric Vision-Language Foundation Model for Precision Oncology in Kidney Cancer
The non-invasive assessment of increasingly incidentally discovered renal masses is a critical challenge in urologic oncology, where diagnostic uncertainty frequently leads to the overtreatment of benign or indolent tumors. In this study, we developed and validated RenalCLIP using a dataset of 27,866 CT scans from 8,809 patients across nine Chinese medical centers and the public TCIA cohort, a visual-language foundation model for characterization, diagnosis and prognosis of renal mass. The model was developed via a two-stage pre-training strategy that first enhances the image and text encoders with domain-specific knowledge before aligning them through a contrastive learning objective, to create robust representations for superior generalization and diagnostic precision. RenalCLIP achieved better performance and superior generalizability across 10 core tasks spanning the full clinical workflow of kidney cancer, including anatomical assessment, diagnostic classification, and survival prediction, compared with other state-of-the-art general-purpose CT foundation models. Especially, for complicated task like recurrence-free survival prediction in the TCIA cohort, RenalCLIP achieved a C-index of 0.726, representing a substantial improvement of approximately 20% over the leading baselines. Furthermore, RenalCLIP's pre-training imparted remarkable data efficiency; in the diagnostic classification task, it only needs 20% training data to achieve the peak performance of all baseline models even after they were fully fine-tuned on 100% of the data. Additionally, it achieved superior performance in report generation, image-text retrieval and zero-shot diagnosis tasks. Our findings establish that RenalCLIP provides a robust tool with the potential to enhance diagnostic accuracy, refine prognostic stratification, and personalize the management of patients with kidney cancer.
☆ Sparse but Wrong: Incorrect L0 Leads to Incorrect Features in Sparse Autoencoders
Sparse Autoencoders (SAEs) extract features from LLM internal activations, meant to correspond to single concepts. A core SAE training hyperparameter is L0: how many features should fire per token on average. Existing work compares SAE algorithms using sparsity--reconstruction tradeoff plots, implying L0 is a free parameter with no single correct value. In this work we study the effect of L0 on BatchTopK SAEs, and show that if L0 is not set precisely, the SAE fails to learn the underlying features of the LLM. If L0 is too low, the SAE will mix correlated features to improve reconstruction. If L0 is too high, the SAE finds degenerate solutions that also mix features. Further, we demonstrate a method to determine the correct L0 value for an SAE on a given training distribution, which finds the true L0 in toy models and coincides with peak sparse probing performance in LLMs. We find that most commonly used SAEs have an L0 that is too low. Our work shows that, to train SAEs with correct features, practitioners must set L0 correctly.
☆ Time-Aware One Step Diffusion Network for Real-World Image Super-Resolution
Diffusion-based real-world image super-resolution (Real-ISR) methods have demonstrated impressive performance. To achieve efficient Real-ISR, many works employ Variational Score Distillation (VSD) to distill pre-trained stable-diffusion (SD) model for one-step SR with a fixed timestep. However, due to the different noise injection timesteps, the SD will perform different generative priors. Therefore, a fixed timestep is difficult for these methods to fully leverage the generative priors in SD, leading to suboptimal performance. To address this, we propose a Time-Aware one-step Diffusion Network for Real-ISR (TADSR). We first introduce a Time-Aware VAE Encoder, which projects the same image into different latent features based on timesteps. Through joint dynamic variation of timesteps and latent features, the student model can better align with the input pattern distribution of the pre-trained SD, thereby enabling more effective utilization of SD's generative capabilities. To better activate the generative prior of SD at different timesteps, we propose a Time-Aware VSD loss that bridges the timesteps of the student model and those of the teacher model, thereby producing more consistent generative prior guidance conditioned on timesteps. Additionally, though utilizing the generative prior in SD at different timesteps, our method can naturally achieve controllable trade-offs between fidelity and realism by changing the timestep condition. Experimental results demonstrate that our method achieves both state-of-the-art performance and controllable SR results with only a single step.
☆ Enhanced NIRMAL Optimizer With Damped Nesterov Acceleration: A Comparative Analysis
This study introduces the Enhanced NIRMAL (Novel Integrated Robust Multi-Adaptation Learning with Damped Nesterov Acceleration) optimizer, an improved version of the original NIRMAL optimizer. By incorporating an $(\alpha, r)$-damped Nesterov acceleration mechanism, Enhanced NIRMAL improves convergence stability while retaining chess-inspired strategies of gradient descent, momentum, stochastic perturbations, adaptive learning rates, and non-linear transformations. We evaluate Enhanced NIRMAL against Adam, SGD with Momentum, Nesterov, and the original NIRMAL on four benchmark image classification datasets: MNIST, FashionMNIST, CIFAR-10, and CIFAR-100, using tailored convolutional neural network (CNN) architectures. Enhanced NIRMAL achieves a test accuracy of 46.06\% and the lowest test loss (1.960435) on CIFAR-100, surpassing the original NIRMAL (44.34\% accuracy) and closely rivaling SGD with Momentum (46.43\% accuracy). These results underscore Enhanced NIRMAL's superior generalization and stability, particularly on complex datasets.
comment: 7 pages, 1 figure, 1 table. arXiv admin note: substantial text overlap with arXiv:2508.04293
☆ RL Is Neither a Panacea Nor a Mirage: Understanding Supervised vs. Reinforcement Learning Fine-Tuning for LLMs
Training large language models (LLMs) from scratch is increasingly impractical, making post-training methods such as supervised fine-tuning (SFT) and reinforcement-learning fine-tuning (RL-FT, e.g., PPO) central to modern practice. Using an out-of-distribution (OOD) variant of the 24-point card game and new spectrum-based diagnostics, we revisit how these two stages reshape model representation and OOD performance. Our key findings are- (1) RL-FT can restore much of the OOD performance loss from SFT (e.g., Llama-11B 8.97% to 15.38%, Qwen-7B 17.09% to 19.66%). But when SFT induces severe overfitting and a clear distribution shift, RL-FT cannot fully recover OOD performance. (2) Direction shifts of singular vectors matter more than singular value magnitudes. These shifts concentrate on directions linked to the largest and smallest singular values, leaving the bulk spectrum intact. (3) Low-rank and shallow recovery is effective: restoring singular vector directions for the top 20% of values or first 25% of layers recovers 70-80% of OOD performance. (4) Stronger SFT checkpoints enable better recovery by RL, while overfitted ones resist restoration. These results reconcile prior reports of RL superior OOD performance: RL primarily counteracts SFT-induced directional drift rather than finding new solutions. Our spectrum-aware analysis highlights inexpensive recovery knobs low-rank UV merging and shallow-layer resets that practitioners can use before costly RL fine-tuning.
☆ Towards Open World Detection: A Survey
For decades, Computer Vision has aimed at enabling machines to perceive the external world. Initial limitations led to the development of highly specialized niches. As success in each task accrued and research progressed, increasingly complex perception tasks emerged. This survey charts the convergence of these tasks and, in doing so, introduces Open World Detection (OWD), an umbrella term we propose to unify class-agnostic and generally applicable detection models in the vision domain. We start from the history of foundational vision subdomains and cover key concepts, methodologies and datasets making up today's state-of-the-art landscape. This traverses topics starting from early saliency detection, foreground/background separation, out of distribution detection and leading up to open world object detection, zero-shot detection and Vision Large Language Models (VLLMs). We explore the overlap between these subdomains, their increasing convergence, and their potential to unify into a singular domain in the future, perception.
comment: 30 pages
☆ Constraints-Guided Diffusion Reasoner for Neuro-Symbolic Learning
Enabling neural networks to learn complex logical constraints and fulfill symbolic reasoning is a critical challenge. Bridging this gap often requires guiding the neural network's output distribution to move closer to the symbolic constraints. While diffusion models have shown remarkable generative capability across various domains, we employ the powerful architecture to perform neuro-symbolic learning and solve logical puzzles. Our diffusion-based pipeline adopts a two-stage training strategy: the first stage focuses on cultivating basic reasoning abilities, while the second emphasizes systematic learning of logical constraints. To impose hard constraints on neural outputs in the second stage, we formulate the diffusion reasoner as a Markov decision process and innovatively fine-tune it with an improved proximal policy optimization algorithm. We utilize a rule-based reward signal derived from the logical consistency of neural outputs and adopt a flexible strategy to optimize the diffusion reasoner's policy. We evaluate our methodology on some classical symbolic reasoning benchmarks, including Sudoku, Maze, pathfinding and preference learning. Experimental results demonstrate that our approach achieves outstanding accuracy and logical consistency among neural networks.
☆ Guiding Diffusion Models with Reinforcement Learning for Stable Molecule Generation
Generating physically realistic 3D molecular structures remains a core challenge in molecular generative modeling. While diffusion models equipped with equivariant neural networks have made progress in capturing molecular geometries, they often struggle to produce equilibrium structures that adhere to physical principles such as force field consistency. To bridge this gap, we propose Reinforcement Learning with Physical Feedback (RLPF), a novel framework that extends Denoising Diffusion Policy Optimization to 3D molecular generation. RLPF formulates the task as a Markov decision process and applies proximal policy optimization to fine-tune equivariant diffusion models. Crucially, RLPF introduces reward functions derived from force-field evaluations, providing direct physical feedback to guide the generation toward energetically stable and physically meaningful structures. Experiments on the QM9 and GEOM-drug datasets demonstrate that RLPF significantly improves molecular stability compared to existing methods. These results highlight the value of incorporating physics-based feedback into generative modeling. The code is available at: https://github.com/ZhijianZhou/RLPF/tree/verl_diffusion.
☆ Comparative Analysis of UAV Path Planning Algorithms for Efficient Navigation in Urban 3D Environments
The most crucial challenges for UAVs are planning paths and avoiding obstacles in their way. In recent years, a wide variety of path-planning algorithms have been developed. These algorithms have successfully solved path-planning problems; however, they suffer from multiple challenges and limitations. To test the effectiveness and efficiency of three widely used algorithms, namely A*, RRT*, and Particle Swarm Optimization (PSO), this paper conducts extensive experiments in 3D urban city environments cluttered with obstacles. Three experiments were designed with two scenarios each to test the aforementioned algorithms. These experiments consider different city map sizes, different altitudes, and varying obstacle densities and sizes in the environment. According to the experimental results, the A* algorithm outperforms the others in both computation efficiency and path quality. PSO is especially suitable for tight turns and dense environments, and RRT* offers a balance and works well across all experiments due to its randomized approach to finding solutions.
☆ FLAMES: Improving LLM Math Reasoning via a Fine-Grained Analysis of the Data Synthesis Pipeline
Recent works improving LLM math reasoning with synthetic data have used unique setups, making comparison of data synthesis strategies impractical. This leaves many unanswered questions about the roles of different factors in the synthetic data pipeline, such as the impact of filtering low-quality problems. To address this gap, we introduce FLAMES, a Framework for LLM Assessment of Math rEasoning Data Synthesis, and perform a systematic study of 10 existing data synthesis strategies and multiple other factors impacting the performance of synthetic math reasoning data. Our FLAMES experiments provide several valuable insights about the optimal balance of difficulty and diversity of synthetic data. First, data agents designed to increase problem complexity lead to best improvements on most math metrics. Second, with a fixed data generation budget, keeping higher problem coverage is more important than keeping only problems with reliable solutions. Third, GSM8K- and MATH-based synthetic data can lead to improvements on competition-level benchmarks, showcasing easy-to-hard generalization. Leveraging insights from our FLAMES experiments, we design two novel data synthesis strategies for improving out-of-domain generalization and robustness. Further, we develop the FLAMES dataset, an effective blend of our novel and existing data synthesis strategies, outperforming public datasets on OlympiadBench (+15.7), CollegeMath (+4.5), GSMPlus (+6.5), and MATH (+3.1). Fine-tuning Qwen2.5-Math-7B on the FLAMES dataset achieves 81.4% on MATH, surpassing larger Llama3 405B, GPT-4o and Claude 3.5 Sonnet.
comment: To appear at EMNLP 2025
☆ On Zero-Shot Reinforcement Learning
Modern reinforcement learning (RL) systems capture deep truths about general, human problem-solving. In domains where new data can be simulated cheaply, these systems uncover sequential decision-making policies that far exceed the ability of any human. Society faces many problems whose solutions require this skill, but they are often in domains where new data cannot be cheaply simulated. In such scenarios, we can learn simulators from existing data, but these will only ever be approximately correct, and can be pathologically incorrect when queried outside of their training distribution. As a result, a misalignment between the environments in which we train our agents and the real-world in which we wish to deploy our agents is inevitable. Dealing with this misalignment is the primary concern of zero-shot reinforcement learning, a problem setting where the agent must generalise to a new task or domain with zero practice shots. Whilst impressive progress has been made on methods that perform zero-shot RL in idealised settings, new work is needed if these results are to be replicated in real-world settings. In this thesis, we argue that doing so requires us to navigate (at least) three constraints. First, the data quality constraint: real-world datasets are small and homogeneous. Second, the observability constraint: states, dynamics and rewards in the real-world are often only partially observed. And third, the data availability constraint: a priori access to data cannot always be assumed. This work proposes a suite of methods that perform zero-shot RL subject to these constraints. In a series of empirical studies we expose the failings of existing methods, and justify our techniques for remedying them. We believe these designs take us a step closer to RL methods that can be deployed to solve real-world problems.
comment: PhD thesis
☆ Post Hoc Regression Refinement via Pairwise Rankings
Accurate prediction of continuous properties is essential to many scientific and engineering tasks. Although deep-learning regressors excel with abundant labels, their accuracy deteriorates in data-scarce regimes. We introduce RankRefine, a model-agnostic, plug-and-play post hoc method that refines regression with expert knowledge coming from pairwise rankings. Given a query item and a small reference set with known properties, RankRefine combines the base regressor's output with a rank-based estimate via inverse variance weighting, requiring no retraining. In molecular property prediction task, RankRefine achieves up to 10% relative reduction in mean absolute error using only 20 pairwise comparisons obtained through a general-purpose large language model (LLM) with no finetuning. As rankings provided by human experts or general-purpose LLMs are sufficient for improving regression across diverse domains, RankRefine offers practicality and broad applicability, especially in low-data settings.
☆ SafeSpace: An Integrated Web Application for Digital Safety and Emotional Well-being
In the digital era, individuals are increasingly exposed to online harms such as toxicity, manipulation, and grooming, which often pose emotional and safety risks. Existing systems for detecting abusive content or issuing safety alerts operate in isolation and rarely combine digital safety with emotional well-being. In this paper, we present SafeSpace, a unified web application that integrates three modules: (1) toxicity detection in chats and screenshots using NLP models and Google's Perspective API, (2) a configurable safety ping system that issues emergency alerts with the user's live location (longitude and latitude) via SMTP-based emails when check-ins are missed or SOS alerts are manually triggered, and (3) a reflective questionnaire that evaluates relationship health and emotional resilience. The system employs Firebase for alert management and a modular architecture designed for usability, privacy, and scalability. The experimental evaluation shows 93% precision in toxicity detection, 100% reliability in safety alerts under emulator tests, and 92% alignment between automated and manual questionnaire scoring. SafeSpace, implemented as a web application, demonstrates the feasibility of integrating detection, protection, and reflection within a single platform, with future deployment envisioned as a mobile application for broader accessibility.
comment: 5 pages, 2 figures, 1 table. Preprint submitted to arXiv
☆ FraPPE: Fast and Efficient Preference-based Pure Exploration
Preference-based Pure Exploration (PrePEx) aims to identify with a given confidence level the set of Pareto optimal arms in a vector-valued (aka multi-objective) bandit, where the reward vectors are ordered via a (given) preference cone $\mathcal{C}$. Though PrePEx and its variants are well-studied, there does not exist a computationally efficient algorithm that can optimally track the existing lower bound for arbitrary preference cones. We successfully fill this gap by efficiently solving the minimisation and maximisation problems in the lower bound. First, we derive three structural properties of the lower bound that yield a computationally tractable reduction of the minimisation problem. Then, we deploy a Frank-Wolfe optimiser to accelerate the maximisation problem in the lower bound. Together, these techniques solve the maxmin optimisation problem in $\mathcal{O}(KL^{2})$ time for a bandit instance with $K$ arms and $L$ dimensional reward, which is a significant acceleration over the literature. We further prove that our proposed PrePEx algorithm, FraPPE, asymptotically achieves the optimal sample complexity. Finally, we perform numerical experiments across synthetic and real datasets demonstrating that FraPPE achieves the lowest sample complexities to identify the exact Pareto set among the existing algorithms.
☆ Disentangled Multi-modal Learning of Histology and Transcriptomics for Cancer Characterization
Histopathology remains the gold standard for cancer diagnosis and prognosis. With the advent of transcriptome profiling, multi-modal learning combining transcriptomics with histology offers more comprehensive information. However, existing multi-modal approaches are challenged by intrinsic multi-modal heterogeneity, insufficient multi-scale integration, and reliance on paired data, restricting clinical applicability. To address these challenges, we propose a disentangled multi-modal framework with four contributions: 1) To mitigate multi-modal heterogeneity, we decompose WSIs and transcriptomes into tumor and microenvironment subspaces using a disentangled multi-modal fusion module, and introduce a confidence-guided gradient coordination strategy to balance subspace optimization. 2) To enhance multi-scale integration, we propose an inter-magnification gene-expression consistency strategy that aligns transcriptomic signals across WSI magnifications. 3) To reduce dependency on paired data, we propose a subspace knowledge distillation strategy enabling transcriptome-agnostic inference through a WSI-only student model. 4) To improve inference efficiency, we propose an informative token aggregation module that suppresses WSI redundancy while preserving subspace semantics. Extensive experiments on cancer diagnosis, prognosis, and survival prediction demonstrate our superiority over state-of-the-art methods across multiple settings. Code is available at https://github.com/helenypzhang/Disentangled-Multimodal-Learning.
☆ HOSt3R: Keypoint-free Hand-Object 3D Reconstruction from RGB images
Hand-object 3D reconstruction has become increasingly important for applications in human-robot interaction and immersive AR/VR experiences. A common approach for object-agnostic hand-object reconstruction from RGB sequences involves a two-stage pipeline: hand-object 3D tracking followed by multi-view 3D reconstruction. However, existing methods rely on keypoint detection techniques, such as Structure from Motion (SfM) and hand-keypoint optimization, which struggle with diverse object geometries, weak textures, and mutual hand-object occlusions, limiting scalability and generalization. As a key enabler to generic and seamless, non-intrusive applicability, we propose in this work a robust, keypoint detector-free approach to estimating hand-object 3D transformations from monocular motion video/images. We further integrate this with a multi-view reconstruction pipeline to accurately recover hand-object 3D shape. Our method, named HOSt3R, is unconstrained, does not rely on pre-scanned object templates or camera intrinsics, and reaches state-of-the-art performance for the tasks of object-agnostic hand-object 3D transformation and shape estimation on the SHOWMe benchmark. We also experiment on sequences from the HO3D dataset, demonstrating generalization to unseen object categories.
comment: 12 pages, 8 figures
☆ Modular Embedding Recomposition for Incremental Learning
The advent of pre-trained Vision-Language Models (VLMs) has significantly transformed Continual Learning (CL), mainly due to their zero-shot classification abilities. Such proficiency makes VLMs well-suited for real-world applications, enabling robust performance on novel unseen classes without requiring adaptation. However, fine-tuning remains essential when downstream tasks deviate significantly from the pre-training domain. Prior CL approaches primarily focus on preserving the zero-shot capabilities of VLMs during incremental fine-tuning on a downstream task. We take a step further by devising an approach that transforms preservation into enhancement of the zero-shot capabilities of VLMs. Our approach, named MoDular Embedding Recomposition (MoDER), introduces a modular framework that trains multiple textual experts, each specialized in a single seen class, and stores them in a foundational hub. At inference time, for each unseen class, we query the hub and compose the retrieved experts to synthesize a refined prototype that improves classification. We show the effectiveness of our method across two popular zero-shot incremental protocols, Class-IL and MTIL, comprising a total of 14 datasets. The codebase is available at https://github.com/aimagelab/mammoth.
comment: Accepted to the 36th British Machine Vision Conference (BMVC 2025), Sheffield, UK
☆ PediatricsMQA: a Multi-modal Pediatrics Question Answering Benchmark
Large language models (LLMs) and vision-augmented LLMs (VLMs) have significantly advanced medical informatics, diagnostics, and decision support. However, these models exhibit systematic biases, particularly age bias, compromising their reliability and equity. This is evident in their poorer performance on pediatric-focused text and visual question-answering tasks. This bias reflects a broader imbalance in medical research, where pediatric studies receive less funding and representation despite the significant disease burden in children. To address these issues, a new comprehensive multi-modal pediatric question-answering benchmark, PediatricsMQA, has been introduced. It consists of 3,417 text-based multiple-choice questions (MCQs) covering 131 pediatric topics across seven developmental stages (prenatal to adolescent) and 2,067 vision-based MCQs using 634 pediatric images from 67 imaging modalities and 256 anatomical regions. The dataset was developed using a hybrid manual-automatic pipeline, incorporating peer-reviewed pediatric literature, validated question banks, existing benchmarks, and existing QA resources. Evaluating state-of-the-art open models, we find dramatic performance drops in younger cohorts, highlighting the need for age-aware methods to ensure equitable AI support in pediatric care.
☆ OPERA: A Reinforcement Learning--Enhanced Orchestrated Planner-Executor Architecture for Reasoning-Oriented Multi-Hop Retrieval
Recent advances in large language models (LLMs) and dense retrievers have driven significant progress in retrieval-augmented generation (RAG). However, existing approaches face significant challenges in complex reasoning-oriented multi-hop retrieval tasks: 1) Ineffective reasoning-oriented planning: Prior methods struggle to generate robust multi-step plans for complex queries, as rule-based decomposers perform poorly on out-of-template questions. 2) Suboptimal reasoning-driven retrieval: Related methods employ limited query reformulation, leading to iterative retrieval loops that often fail to locate golden documents. 3) Insufficient reasoning-guided filtering: Prevailing methods lack the fine-grained reasoning to effectively filter salient information from noisy results, hindering utilization of retrieved knowledge. Fundamentally, these limitations all stem from the weak coupling between retrieval and reasoning in current RAG architectures. We introduce the Orchestrated Planner-Executor Reasoning Architecture (OPERA), a novel reasoning-driven retrieval framework. OPERA's Goal Planning Module (GPM) decomposes questions into sub-goals, which are executed by a Reason-Execute Module (REM) with specialized components for precise reasoning and effective retrieval. To train OPERA, we propose Multi-Agents Progressive Group Relative Policy Optimization (MAPGRPO), a novel variant of GRPO. Experiments on complex multi-hop benchmarks show OPERA's superior performance, validating both the MAPGRPO method and OPERA's design. Code is available at https://github.com/Ameame1/OPERA.
☆ Cetvel: A Unified Benchmark for Evaluating Language Understanding, Generation and Cultural Capacity of LLMs for Turkish
We introduce Cetvel, a comprehensive benchmark designed to evaluate large language models (LLMs) in Turkish. Existing Turkish benchmarks often lack either task diversity or culturally relevant content, or both. Cetvel addresses these gaps by combining a broad range of both discriminative and generative tasks ensuring content that reflects the linguistic and cultural richness of Turkish language. Cetvel covers 23 tasks grouped into seven categories, including tasks such as grammatical error correction, machine translation, and question answering rooted in Turkish history and idiomatic language. We evaluate 33 open-weight LLMs (up to 70B parameters) covering different model families and instruction paradigms. Our experiments reveal that Turkish-centric instruction-tuned models generally underperform relative to multilingual or general-purpose models (e.g. Llama 3 and Mistral), despite being tailored for the language. Moreover, we show that tasks such as grammatical error correction and extractive question answering are particularly discriminative in differentiating model capabilities. Cetvel offers a comprehensive and culturally grounded evaluation suite for advancing the development and assessment of LLMs in Turkish.
comment: 31 pages, 2 figures, 10 tables
☆ A Lightweight Group Multiscale Bidirectional Interactive Network for Real-Time Steel Surface Defect Detection
Real-time surface defect detection is critical for maintaining product quality and production efficiency in the steel manufacturing industry. Despite promising accuracy, existing deep learning methods often suffer from high computational complexity and slow inference speeds, which limit their deployment in resource-constrained industrial environments. Recent lightweight approaches adopt multibranch architectures based on depthwise separable convolution (DSConv) to capture multiscale contextual information. However, these methods often suffer from increased computational overhead and lack effective cross-scale feature interaction, limiting their ability to fully leverage multiscale representations. To address these challenges, we propose GMBINet, a lightweight framework that enhances multiscale feature extraction and interaction through novel Group Multiscale Bidirectional Interactive (GMBI) modules. The GMBI adopts a group-wise strategy for multiscale feature extraction, ensuring scale-agnostic computational complexity. It further integrates a Bidirectional Progressive Feature Interactor (BPFI) and a parameter-free Element-Wise Multiplication-Summation (EWMS) operation to enhance cross-scale interaction without introducing additional computational overhead. Experiments on SD-Saliency-900 and NRSD-MN datasets demonstrate that GMBINet delivers competitive accuracy with real-time speeds of 1048 FPS on GPU and 16.53 FPS on CPU at 512 resolution, using only 0.19 M parameters. Additional evaluations on the NEU-CLS defect classification dataset further confirm the strong generalization ability of our method, demonstrating its potential for broader industrial vision applications beyond surface defect detection. The dataset and code are publicly available at: https://github.com/zhangyongcode/GMBINet.
☆ Domain-aligned generative downscaling enhances projections of extreme climate events
Climate change is exacerbating extreme weather events globally, including high temperatures, extreme precipitation, strong winds, and tropical cyclones, posing severe threats to human health, infrastructure, food security, and socio-economic systems. Although existing global climate models (GCMs) provide essential tools for climate prediction, they face limitations such as insufficient resolution and high computational costs when simulating extreme events. To address these issues, this study proposes a spatiotemporal downscaling model based on generative machine learning-the Domain Aligned Climate Downscaling model (DACD), designed to enhance the simulation capabilities for extreme weather events. The proposed model employs domain adaptation tricks and a Flow Matching training framework to transform global low-resolution climate data into high-resolution local-scale climate information while achieving precise simulation of multivariable and temporal scales. The results show that during the historical period (2005-2014), our model outperformed existing methods in simulating high temperatures, extreme precipitation, strong wind, and tropical cyclone tracks, significantly reducing errors and improving the ability to capture extreme events. Under different future scenarios (2015-2100), the model reveals a significant increasing trend in the frequency and intensity of extreme events, particularly under the high-emission scenario (SSP585). Compared to traditional methods, our model more accurately simulates the spatial distribution and dynamic changes of extreme events, providing an essential tool for understanding the impacts of climate change. This study offers a new technological pathway for high-resolution climate analysis and extreme event prediction, providing scientific support for addressing future climate change and formulating adaptation strategies.
☆ RoMedQA: The First Benchmark for Romanian Medical Question Answering
Question answering (QA) is an actively studied topic, being a core natural language processing (NLP) task that needs to be addressed before achieving Artificial General Intelligence (AGI). However, the lack of QA datasets in specific domains and languages hinders the development of robust AI models able to generalize across various domains and languages. To this end, we introduce RoMedQA, the first Romanian QA benchmark for the medical domain, alongside a comprehensive evaluation of state-of-the-art large language models (LLMs). We construct a high-quality and large-scale dataset comprising 102,646 QA pairs related to cancer patients. The questions regard medical case summaries of 1,011 patients, requiring either keyword extraction or reasoning to be answered correctly. RoMedQA is the result of a time-consuming manual annotation process carried out by seven physicians specialized in oncology or radiotherapy, who spent a total of about 2,100 work hours to generate the QA pairs. We experiment with four LLMs from distinct families of models on RoMedQA. Each model is employed in two scenarios, namely one based on zero-shot prompting and one based on supervised fine-tuning. Our results show that fine-tuned models significantly outperform their zero-shot counterparts, clearly indicating that pretrained models fail to generalize on RoMedQA. Our findings demonstrate the importance of both domain-specific and language-specific fine-tuning for reliable clinical QA in Romanian. We publicly release our dataset and code at https://github.com/ana-rogoz/RoMedQA.
☆ GLARE: Agentic Reasoning for Legal Judgment Prediction
Legal judgment prediction (LJP) has become increasingly important in the legal field. In this paper, we identify that existing large language models (LLMs) have significant problems of insufficient reasoning due to a lack of legal knowledge. Therefore, we introduce GLARE, an agentic legal reasoning framework that dynamically acquires key legal knowledge by invoking different modules, thereby improving the breadth and depth of reasoning. Experiments conducted on the real-world dataset verify the effectiveness of our method. Furthermore, the reasoning chain generated during the analysis process can increase interpretability and provide the possibility for practical applications.
☆ MizanQA: Benchmarking Large Language Models on Moroccan Legal Question Answering
The rapid advancement of large language models (LLMs) has significantly propelled progress in natural language processing (NLP). However, their effectiveness in specialized, low-resource domains-such as Arabic legal contexts-remains limited. This paper introduces MizanQA (pronounced Mizan, meaning "scale" in Arabic, a universal symbol of justice), a benchmark designed to evaluate LLMs on Moroccan legal question answering (QA) tasks, characterised by rich linguistic and legal complexity. The dataset draws on Modern Standard Arabic, Islamic Maliki jurisprudence, Moroccan customary law, and French legal influences. Comprising over 1,700 multiple-choice questions, including multi-answer formats, MizanQA captures the nuances of authentic legal reasoning. Benchmarking experiments with multilingual and Arabic-focused LLMs reveal substantial performance gaps, highlighting the need for tailored evaluation metrics and culturally grounded, domain-specific LLM development.
☆ Causal Beam Selection for Reliable Initial Access in AI-driven Beam Management
Efficient and reliable beam alignment is a critical requirement for mmWave multiple-input multiple-output (MIMO) systems, especially in 6G and beyond, where communication must be fast, adaptive, and resilient to real-world uncertainties. Existing deep learning (DL)-based beam alignment methods often neglect the underlying causal relationships between inputs and outputs, leading to limited interpretability, poor generalization, and unnecessary beam sweeping overhead. In this work, we propose a causally-aware DL framework that integrates causal discovery into beam management pipeline. Particularly, we propose a novel two-stage causal beam selection algorithm to identify a minimal set of relevant inputs for beam prediction. First, causal discovery learns a Bayesian graph capturing dependencies between received power inputs and the optimal beam. Then, this graph guides causal feature selection for the DL-based classifier. Simulation results reveal that the proposed causal beam selection matches the performance of conventional methods while drastically reducing input selection time by 94.4% and beam sweeping overhead by 59.4% by focusing only on causally relevant features.
☆ Confusion is the Final Barrier: Rethinking Jailbreak Evaluation and Investigating the Real Misuse Threat of LLMs
With the development of Large Language Models (LLMs), numerous efforts have revealed their vulnerabilities to jailbreak attacks. Although these studies have driven the progress in LLMs' safety alignment, it remains unclear whether LLMs have internalized authentic knowledge to deal with real-world crimes, or are merely forced to simulate toxic language patterns. This ambiguity raises concerns that jailbreak success is often attributable to a hallucination loop between jailbroken LLM and judger LLM. By decoupling the use of jailbreak techniques, we construct knowledge-intensive Q\&A to investigate the misuse threats of LLMs in terms of dangerous knowledge possession, harmful task planning utility, and harmfulness judgment robustness. Experiments reveal a mismatch between jailbreak success rates and harmful knowledge possession in LLMs, and existing LLM-as-a-judge frameworks tend to anchor harmfulness judgments on toxic language patterns. Our study reveals a gap between existing LLM safety assessments and real-world threat potential.
☆ Uppaal Coshy: Automatic Synthesis of Compact Shields for Hybrid Systems
We present Uppaal Coshy, a tool for automatic synthesis of a safety strategy -- or shield -- for Markov decision processes over continuous state spaces and complex hybrid dynamics. The general methodology is to partition the state space and then solve a two-player safety game, which entails a number of algorithmically hard problems such as reachability for hybrid systems. The general philosophy of Uppaal Coshy is to approximate hard-to-obtain solutions using simulations. Our implementation is fully automatic and supports the expressive formalism of Uppaal models, which encompass stochastic hybrid automata. The precision of our partition-based approach benefits from using finer grids, which however are not efficient to store. We include an algorithm called Caap to efficiently compute a compact representation of a shield in the form of a decision tree, which yields significant reductions.
comment: 12 pages and 6 figures. Additional abstract of 4 pages and 4 figures. Extended version with supplementary material for an article to appear in the 2025 International Conference on Reachability Problems (RP)
☆ Unsupervised Online Detection of Pipe Blockages and Leakages in Water Distribution Networks
Water Distribution Networks (WDNs), critical to public well-being and economic stability, face challenges such as pipe blockages and background leakages, exacerbated by operational constraints such as data non-stationarity and limited labeled data. This paper proposes an unsupervised, online learning framework that aims to detect two types of faults in WDNs: pipe blockages, modeled as collective anomalies, and background leakages, modeled as concept drift. Our approach combines a Long Short-Term Memory Variational Autoencoder (LSTM-VAE) with a dual drift detection mechanism, enabling robust detection and adaptation under non-stationary conditions. Its lightweight, memory-efficient design enables real-time, edge-level monitoring. Experiments on two realistic WDNs show that the proposed approach consistently outperforms strong baselines in detecting anomalies and adapting to recurrent drift, demonstrating its effectiveness in unsupervised event detection for dynamic WDN environments.
comment: This paper is accepted by the 6th International Conference on Control and Fault-Tolerant Systems (SysTol)
☆ Vevo2: Bridging Controllable Speech and Singing Voice Generation via Unified Prosody Learning
Controllable human voice generation, particularly for expressive domains like singing, remains a significant challenge. This paper introduces Vevo2, a unified framework for controllable speech and singing voice generation. To tackle issues like the scarcity of annotated singing data and to enable flexible controllability, Vevo2 introduces two audio tokenizers: (1) a music-notation-free prosody tokenizer that captures prosody and melody from speech, singing, and even instrumental sounds, and (2) a low-frame-rate (12.5 Hz) content-style tokenizer that encodes linguistic content, prosody, and style for both speech and singing, while enabling timbre disentanglement. Vevo2 consists of an auto-regressive (AR) content-style modeling stage, which aims to enable controllability over text, prosody, and style, as well as a flow-matching acoustic modeling stage that allows for timbre control. Particularly, during pre-training of the AR model, we propose both explicit and implicit prosody learning strategies to bridge speech and singing voice. Moreover, to further enhance the AR model's ability to follow text and prosody, we design a multi-objective post-training task that integrates both intelligibility and prosody similarity alignment. Experimental results show that the unified modeling in Vevo2 brings mutual benefits to both speech and singing voice generation. Additionally, Vevo2's effectiveness across a wide range of synthesis, conversion, and editing tasks for both speech and singing further demonstrates its strong generalization ability and versatility. Audio samples are are available at https://versasinger.github.io/.
comment: We will release code and model checkpoints at https://github.com/open-mmlab/Amphion
☆ LLMSymGuard: A Symbolic Safety Guardrail Framework Leveraging Interpretable Jailbreak Concepts
Large Language Models have found success in a variety of applications; however, their safety remains a matter of concern due to the existence of various types of jailbreaking methods. Despite significant efforts, alignment and safety fine-tuning only provide a certain degree of robustness against jailbreak attacks that covertly mislead LLMs towards the generation of harmful content. This leaves them prone to a number of vulnerabilities, ranging from targeted misuse to accidental profiling of users. This work introduces \textbf{LLMSymGuard}, a novel framework that leverages Sparse Autoencoders (SAEs) to identify interpretable concepts within LLM internals associated with different jailbreak themes. By extracting semantically meaningful internal representations, LLMSymGuard enables building symbolic, logical safety guardrails -- offering transparent and robust defenses without sacrificing model capabilities or requiring further fine-tuning. Leveraging advances in mechanistic interpretability of LLMs, our approach demonstrates that LLMs learn human-interpretable concepts from jailbreaks, and provides a foundation for designing more interpretable and logical safeguard measures against attackers. Code will be released upon publication.
☆ Cyber Physical Awareness via Intent-Driven Threat Assessment: Enhanced Space Networks with Intershell Links
This letter addresses essential aspects of threat assessment by proposing intent-driven threat models that incorporate both capabilities and intents. We propose a holistic framework for cyber physical awareness (CPA) in space networks, pointing out that analyzing reliability and security separately can lead to overfitting on system-specific criteria. We structure our proposed framework in three main steps. First, we suggest an algorithm that extracts characteristic properties of the received signal to facilitate an intuitive understanding of potential threats. Second, we develop a multitask learning architecture where one task evaluates reliability-related capabilities while the other deciphers the underlying intentions of the signal. Finally, we propose an adaptable threat assessment that aligns with varying security and reliability requirements. The proposed framework enhances the robustness of threat detection and assessment, outperforming conventional sequential methods, and enables space networks with emerging intershell links to effectively address complex threat scenarios.
comment: in IEEE Wireless Communications Letters, 2025
☆ Retrieval Enhanced Feedback via In-context Neural Error-book
Recent advancements in Large Language Models (LLMs) have significantly improved reasoning capabilities, with in-context learning (ICL) emerging as a key technique for adaptation without retraining. While previous works have focused on leveraging correct examples, recent research highlights the importance of learning from errors to enhance performance. However, existing methods lack a structured framework for analyzing and mitigating errors, particularly in Multimodal Large Language Models (MLLMs), where integrating visual and textual inputs adds complexity. To address this issue, we propose REFINE: Retrieval-Enhanced Feedback via In-context Neural Error-book, a teacher-student framework that systematically structures errors and provides targeted feedback. REFINE introduces three systematic queries to construct structured feedback -- Feed-Target, Feed-Check, and Feed-Path -- to enhance multimodal reasoning by prioritizing relevant visual information, diagnosing critical failure points, and formulating corrective actions. Unlike prior approaches that rely on redundant retrievals, REFINE optimizes structured feedback retrieval, improving inference efficiency, token usage, and scalability. Our results demonstrate substantial speedup, reduced computational costs, and successful generalization, highlighting REFINE's potential for enhancing multimodal reasoning.
comment: Accepted at EMNLP 2025 main conference
☆ Exploiting Information Redundancy in Attention Maps for Extreme Quantization of Vision Transformers
Transformer models rely on Multi-Head Self-Attention (MHSA) mechanisms, where each attention head contributes to the final representation. However, their computational complexity and high memory demands due to MHSA hinders their deployment at the edge. In this work, we analyze and exploit information redundancy in attention maps to accelerate model inference. By quantifying the information captured by each attention head using Shannon entropy, our analysis reveals that attention heads with lower entropy, i.e., exhibiting more deterministic behavior, tend to contribute less information, motivating targeted compression strategies. Relying on these insights, we propose Entropy Attention Maps (EAM), a model that freezes the weights of low-entropy attention maps and quantizes these values to low precision to avoid redundant re-computation. Empirical validation on ImageNet-1k shows that EAM achieves similar or higher accuracy at $\leq$20\% sparsity in attention maps and competitive performance beyond this level for the DeiT and Swin Transformer models.
☆ A Multimodal-Multitask Framework with Cross-modal Relation and Hierarchical Interactive Attention for Semantic Comprehension
A major challenge in multimodal learning is the presence of noise within individual modalities. This noise inherently affects the resulting multimodal representations, especially when these representations are obtained through explicit interactions between different modalities. Moreover, the multimodal fusion techniques while aiming to achieve a strong joint representation, can neglect valuable discriminative information within the individual modalities. To this end, we propose a Multimodal-Multitask framework with crOss-modal Relation and hIErarchical iNteractive aTtention (MM-ORIENT) that is effective for multiple tasks. The proposed approach acquires multimodal representations cross-modally without explicit interaction between different modalities, reducing the noise effect at the latent stage. To achieve this, we propose cross-modal relation graphs that reconstruct monomodal features to acquire multimodal representations. The features are reconstructed based on the node neighborhood, where the neighborhood is decided by the features of a different modality. We also propose Hierarchical Interactive Monomadal Attention (HIMA) to focus on pertinent information within a modality. While cross-modal relation graphs help comprehend high-order relationships between two modalities, HIMA helps in multitasking by learning discriminative features of individual modalities before late-fusing them. Finally, extensive experimental evaluation on three datasets demonstrates that the proposed approach effectively comprehends multimodal content for multiple tasks.
comment: Published in Information Fusion
☆ Do What? Teaching Vision-Language-Action Models to Reject the Impossible
Recently, Vision-Language-Action (VLA) models have demonstrated strong performance on a range of robotic tasks. These models rely on multimodal inputs, with language instructions playing a crucial role -- not only in predicting actions, but also in robustly interpreting user intent, even when the requests are impossible to fulfill. In this work, we investigate how VLAs can recognize, interpret, and respond to false-premise instructions: natural language commands that reference objects or conditions absent from the environment. We propose Instruct-Verify-and-Act (IVA), a unified framework that (i) detects when an instruction cannot be executed due to a false premise, (ii) engages in language-based clarification or correction, and (iii) grounds plausible alternatives in perception and action. Towards this end, we construct a large-scale instruction tuning setup with structured language prompts and train a VLA model capable of handling both accurate and erroneous requests. Our approach leverages a contextually augmented, semi-synthetic dataset containing paired positive and false-premise instructions, enabling robust detection and natural language correction. Our experiments show that IVA improves false premise detection accuracy by 97.56% over baselines, while increasing successful responses in false-premise scenarios by 50.78%.
comment: 9 pages, 2 figures, 1 table
☆ AgentScope 1.0: A Developer-Centric Framework for Building Agentic Applications
Driven by rapid advancements of Large Language Models (LLMs), agents are empowered to combine intrinsic knowledge with dynamic tool use, greatly enhancing their capacity to address real-world tasks. In line with such an evolution, AgentScope introduces major improvements in a new version (1.0), towards comprehensively supporting flexible and efficient tool-based agent-environment interactions for building agentic applications. Specifically, we abstract foundational components essential for agentic applications and provide unified interfaces and extensible modules, enabling developers to easily leverage the latest progress, such as new models and MCPs. Furthermore, we ground agent behaviors in the ReAct paradigm and offer advanced agent-level infrastructure based on a systematic asynchronous design, which enriches both human-agent and agent-agent interaction patterns while improving execution efficiency. Building on this foundation, we integrate several built-in agents tailored to specific practical scenarios. AgentScope also includes robust engineering support for developer-friendly experiences. We provide a scalable evaluation module with a visual studio interface, making the development of long-trajectory agentic applications more manageable and easier to trace. In addition, AgentScope offers a runtime sandbox to ensure safe agent execution and facilitates rapid deployment in production environments. With these enhancements, AgentScope provides a practical foundation for building scalable, adaptive, and effective agentic applications.
☆ The next question after Turing's question: Introducing the Grow-AI test
This study aims to extend the framework for assessing artificial intelligence, called GROW-AI (Growth and Realization of Autonomous Wisdom), designed to answer the question "Can machines grow up?" -- a natural successor to the Turing Test. The methodology applied is based on a system of six primary criteria (C1-C6), each assessed through a specific "game", divided into four arenas that explore both the human dimension and its transposition into AI. All decisions and actions of the entity are recorded in a standardized AI Journal, the primary source for calculating composite scores. The assessment uses the prior expert method to establish initial weights, and the global score -- Grow Up Index -- is calculated as the arithmetic mean of the six scores, with interpretation on maturity thresholds. The results show that the methodology allows for a coherent and comparable assessment of the level of "growth" of AI entities, regardless of their type (robots, software agents, LLMs). The multi-game structure highlights strengths and vulnerable areas, and the use of a unified journal guarantees traceability and replicability in the evaluation. The originality of the work lies in the conceptual transposition of the process of "growing" from the human world to that of artificial intelligence, in an integrated testing format that combines perspectives from psychology, robotics, computer science, and ethics. Through this approach, GROW-AI not only measures performance but also captures the evolutionary path of an AI entity towards maturity.
comment: 9th International Conference on Inventive Systems and Control ICISC 2025
☆ Representation Learning of Auxiliary Concepts for Improved Student Modeling and Exercise Recommendation
Personalized recommendation is a key feature of intelligent tutoring systems, typically relying on accurate models of student knowledge. Knowledge Tracing (KT) models enable this by estimating a student's mastery based on their historical interactions. Many KT models rely on human-annotated knowledge concepts (KCs), which tag each exercise with one or more skills or concepts believed to be necessary for solving it. However, these KCs can be incomplete, error-prone, or overly general. In this paper, we propose a deep learning model that learns sparse binary representations of exercises, where each bit indicates the presence or absence of a latent concept. We refer to these representations as auxiliary KCs. These representations capture conceptual structure beyond human-defined annotations and are compatible with both classical models (e.g., BKT) and modern deep learning KT architectures. We demonstrate that incorporating auxiliary KCs improves both student modeling and adaptive exercise recommendation. For student modeling, we show that augmenting classical models like BKT with auxiliary KCs leads to improved predictive performance. For recommendation, we show that using auxiliary KCs enhances both reinforcement learning-based policies and a simple planning-based method (expectimax), resulting in measurable gains in student learning outcomes within a simulated student environment.
☆ From Confidence to Collapse in LLM Factual Robustness
Ensuring the robustness of factual knowledge in LLMs is critical for reliable applications in tasks such as question answering and reasoning. However, existing evaluation methods predominantly focus on performance-based metrics, often investigating from the perspective of prompt perturbations, which captures only the externally triggered side of knowledge robustness. To bridge this gap, we introduce a principled approach to measure factual robustness from the perspective of the generation process by analyzing token distribution entropy in combination with temperature scaling sensitivity. These two factors build the Factual Robustness Score (FRS), a novel metric which quantifies the stability of a fact against perturbations in decoding conditions, given its initial uncertainty. To validate our approach, we conduct extensive experiments on 5 LLMs across 3 closed-book QA datasets (SQuAD, TriviaQA, and HotpotQA). We show that factual robustness varies significantly -- smaller models report an FRS of $0.76$, larger ones $0.93$ -- with accuracy degrading by ~$60\%$ under increased uncertainty. These insights demonstrate how entropy and temperature scaling impact factual accuracy, and lay a foundation for developing more robust knowledge retention and retrieval in future models.
☆ MCPVerse: An Expansive, Real-World Benchmark for Agentic Tool Use
Large Language Models (LLMs) are evolving from text generators into reasoning agents. This transition makes their ability to use external tools a critical capability. However, evaluating this skill presents a significant challenge. Existing benchmarks are often limited by their reliance on synthetic tools and severely constrained action spaces. To address these limitations, we introduce MCPVerse, an expansive, real-world benchmark for evaluating agentic tool use. MCPVerse integrates more than 550 real-world, executable tools to create an unprecedented action space exceeding 140k tokens, and employs outcome-based evaluation with real-time ground truth for time-sensitive tasks. We benchmarked the state-of-the-art LLMs across three modes (Oracle, Standard, and Max-Scale), revealing that while most models suffer performance degradation when confronted with larger tool sets, the agentic models, such as Claude-4-Sonnet, can effectively leverage expanded exploration spaces to improve accuracy. This finding not only exposes the limitations of state-of-the-art models in complex, real-world scenarios but also establishes MCPVerse as a critical benchmark for measuring and advancing agentic tool use capabilities.
☆ A Reduction of Input/Output Logics to SAT
Deontic logics are formalisms for reasoning over norms, obligations, permissions and prohibitions. Input/Output (I/O) Logics are a particular family of so-called norm-based deontic logics that formalize conditional norms outside of the underlying object logic language, where conditional norms do not carry a truth-value themselves. In this paper, an automation approach for I/O logics is presented that makes use of suitable reductions to (sequences of) propositional satisfiability problems. A prototypical implementation, named rio (reasoner for input/output logics), of the proposed procedures is presented and applied to illustrative examples.
comment: 32 pages
☆ A XAI-based Framework for Frequency Subband Characterization of Cough Spectrograms in Chronic Respiratory Disease
This paper presents an explainable artificial intelligence (XAI)-based framework for the spectral analysis of cough sounds associated with chronic respiratory diseases, with a particular focus on Chronic Obstructive Pulmonary Disease (COPD). A Convolutional Neural Network (CNN) is trained on time-frequency representations of cough signals, and occlusion maps are used to identify diagnostically relevant regions within the spectrograms. These highlighted areas are subsequently decomposed into five frequency subbands, enabling targeted spectral feature extraction and analysis. The results reveal that spectral patterns differ across subbands and disease groups, uncovering complementary and compensatory trends across the frequency spectrum. Noteworthy, the approach distinguishes COPD from other respiratory conditions, and chronic from non-chronic patient groups, based on interpretable spectral markers. These findings provide insight into the underlying pathophysiological characteristics of cough acoustics and demonstrate the value of frequency-resolved, XAI-enhanced analysis for biomedical signal interpretation and translational respiratory disease diagnostics.
☆ FlexMUSE: Multimodal Unification and Semantics Enhancement Framework with Flexible interaction for Creative Writing
Multi-modal creative writing (MMCW) aims to produce illustrated articles. Unlike common multi-modal generative (MMG) tasks such as storytelling or caption generation, MMCW is an entirely new and more abstract challenge where textual and visual contexts are not strictly related to each other. Existing methods for related tasks can be forcibly migrated to this track, but they require specific modality inputs or costly training, and often suffer from semantic inconsistencies between modalities. Therefore, the main challenge lies in economically performing MMCW with flexible interactive patterns, where the semantics between the modalities of the output are more aligned. In this work, we propose FlexMUSE with a T2I module to enable optional visual input. FlexMUSE promotes creativity and emphasizes the unification between modalities by proposing the modality semantic alignment gating (msaGate) to restrict the textual input. Besides, an attention-based cross-modality fusion is proposed to augment the input features for semantic enhancement. The modality semantic creative direct preference optimization (mscDPO) within FlexMUSE is designed by extending the rejected samples to facilitate the writing creativity. Moreover, to advance the MMCW, we expose a dataset called ArtMUSE which contains with around 3k calibrated text-image pairs. FlexMUSE achieves promising results, demonstrating its consistency, creativity and coherence.
☆ An Investigation of Visual Foundation Models Robustness
Visual Foundation Models (VFMs) are becoming ubiquitous in computer vision, powering systems for diverse tasks such as object detection, image classification, segmentation, pose estimation, and motion tracking. VFMs are capitalizing on seminal innovations in deep learning models, such as LeNet-5, AlexNet, ResNet, VGGNet, InceptionNet, DenseNet, YOLO, and ViT, to deliver superior performance across a range of critical computer vision applications. These include security-sensitive domains like biometric verification, autonomous vehicle perception, and medical image analysis, where robustness is essential to fostering trust between technology and the end-users. This article investigates network robustness requirements crucial in computer vision systems to adapt effectively to dynamic environments influenced by factors such as lighting, weather conditions, and sensor characteristics. We examine the prevalent empirical defenses and robust training employed to enhance vision network robustness against real-world challenges such as distributional shifts, noisy and spatially distorted inputs, and adversarial attacks. Subsequently, we provide a comprehensive analysis of the challenges associated with these defense mechanisms, including network properties and components to guide ablation studies and benchmarking metrics to evaluate network robustness.
☆ OmniCache: A Trajectory-Oriented Global Perspective on Training-Free Cache Reuse for Diffusion Transformer Models ICCV 2025
Diffusion models have emerged as a powerful paradigm for generative tasks such as image synthesis and video generation, with Transformer architectures further enhancing performance. However, the high computational cost of diffusion Transformers-stemming from a large number of sampling steps and complex per-step computations-presents significant challenges for real-time deployment. In this paper, we introduce OmniCache, a training-free acceleration method that exploits the global redundancy inherent in the denoising process. Unlike existing methods that determine caching strategies based on inter-step similarities and tend to prioritize reusing later sampling steps, our approach originates from the sampling perspective of DIT models. We systematically analyze the model's sampling trajectories and strategically distribute cache reuse across the entire sampling process. This global perspective enables more effective utilization of cached computations throughout the diffusion trajectory, rather than concentrating reuse within limited segments of the sampling procedure.In addition, during cache reuse, we dynamically estimate the corresponding noise and filter it out to reduce its impact on the sampling direction.Extensive experiments demonstrate that our approach accelerates the sampling process while maintaining competitive generative quality, offering a promising and practical solution for efficient deployment of diffusion-based generative models.
comment: Accepted by ICCV 2025
☆ Competition and Attraction Improve Model Fusion
Model merging is a powerful technique for integrating the specialized knowledge of multiple machine learning models into a single model. However, existing methods require manually partitioning model parameters into fixed groups for merging, which restricts the exploration of potential combinations and limits performance. To overcome these limitations, we propose Model Merging of Natural Niches (M2N2), an evolutionary algorithm with three key features: (1) dynamic adjustment of merging boundaries to progressively explore a broader range of parameter combinations; (2) a diversity preservation mechanism inspired by the competition for resources in nature, to maintain a population of diverse, high-performing models that are particularly well-suited for merging; and (3) a heuristicbased attraction metric to identify the most promising pairs of models for fusion. Our experimental results demonstrate, for the first time, that model merging can be used to evolve models entirely from scratch. Specifically, we apply M2N2 to evolve MNIST classifiers from scratch and achieve performance comparable to CMA-ES, while being computationally more efficient. Furthermore, M2N2 scales to merge specialized language and image generation models, achieving state-of-the-art performance. Notably, it preserves crucial model capabilities beyond those explicitly optimized by the fitness function, highlighting its robustness and versatility. Our code is available at https://github.com/SakanaAI/natural_niches
comment: Accepted at GECCO 2025 as a full paper
☆ SpecVLM: Enhancing Speculative Decoding of Video LLMs via Verifier-Guided Token Pruning
Video large language models (Vid-LLMs) have shown strong capabilities in understanding video content. However, their reliance on dense video token representations introduces substantial memory and computational overhead in both prefilling and decoding. To mitigate the information loss of recent video token reduction methods and accelerate the decoding stage of Vid-LLMs losslessly, we introduce SpecVLM, a training-free speculative decoding (SD) framework tailored for Vid-LLMs that incorporates staged video token pruning. Building on our novel finding that the draft model's speculation exhibits low sensitivity to video token pruning, SpecVLM prunes up to 90% of video tokens, enabling efficient speculation without sacrificing accuracy. To achieve this, it performs a two-stage pruning process: Stage I selects highly informative tokens guided by attention signals from the verifier (target model), while Stage II prunes remaining redundant ones in a spatially uniform manner. Extensive experiments on four video understanding benchmarks demonstrate the effectiveness and robustness of SpecVLM, which achieves up to 2.68$\times$ decoding speedup for LLaVA-OneVision-72B and 2.11$\times$ speedup for Qwen2.5-VL-32B.
comment: Accepted at EMNLP 2025
☆ Set Transformer Architectures and Synthetic Data Generation for Flow-Guided Nanoscale Localization
Flow-guided Localization (FGL) enables the identification of spatial regions within the human body that contain an event of diagnostic interest. FGL does that by leveraging the passive movement of energy-constrained nanodevices circulating through the bloodstream. Existing FGL solutions rely on graph models with fixed topologies or handcrafted features, which limit their adaptability to anatomical variability and hinder scalability. In this work, we explore the use of Set Transformer architectures to address these limitations. Our formulation treats nanodevices' circulation time reports as unordered sets, enabling permutation-invariant, variable-length input processing without relying on spatial priors. To improve robustness under data scarcity and class imbalance, we integrate synthetic data generation via deep generative models, including CGAN, WGAN, WGAN-GP, and CVAE. These models are trained to replicate realistic circulation time distributions conditioned on vascular region labels, and are used to augment the training data. Our results show that the Set Transformer achieves comparable classification accuracy compared to Graph Neural Networks (GNN) baselines, while simultaneously providing by-design improved generalization to anatomical variability. The findings highlight the potential of permutation-invariant models and synthetic augmentation for robust and scalable nanoscale localization.
comment: 6 pages, 4 figures, 4 tables, 26 references, accepted at ACM NanoCom'25
☆ A Relay-Chain-Powered Ciphertext-Policy Attribute-Based Encryption in Intelligent Transportation Systems
The very high growth of Intelligent Transportation Systems (ITS) has generated an urgent requirement for secure, effective, and context-aware data sharing mechanisms, especially over heterogeneous and geographically dispersed settings. This work suggests a new architecture that combines a relay chain-driven encryption system with a modified Ciphertext-Policy Attribute-Based Encryption (CP-ABE) scheme to tackle the double impediment of dynamic access and low-latency communication. The model proposes a context-aware smart contract on a worldwide relay chain that checks against data properties, including event type, time, and geographical region, to specify the suitable level of encryption policy. From such relay-directed judgment, On-Board Units (OBUs) encrypt data end-to-end by utilising CP-ABE and store ciphertext inside localised regional blockchains, preventing dependence on symmetric encryption or off-chain storage. High-sensitivity events are secured with firm, multi-attribute access rules, whereas common updates use light policies to help reduce processing burdens. The crypto system also adds traceability and low-latency revocation, with global enforcement managed through the relay chain. This distributed, scalable model provides a proper balance between responsiveness in real time and security and is extremely apt for next-gen vehicular networks that function across multi-jurisdictional domains.
☆ LLM-Assisted Semantic Alignment and Integration in Collaborative Model-Based Systems Engineering Using SysML v2
Cross-organizational collaboration in Model-Based Systems Engineering (MBSE) faces many challenges in achieving semantic alignment across independently developed system models. SysML v2 introduces enhanced structural modularity and formal semantics, offering a stronger foundation for interoperable modeling. Meanwhile, GPT-based Large Language Models (LLMs) provide new capabilities for assisting model understanding and integration. This paper proposes a structured, prompt-driven approach for LLM-assisted semantic alignment of SysML v2 models. The core contribution lies in the iterative development of an alignment approach and interaction prompts, incorporating model extraction, semantic matching, and verification. The approach leverages SysML v2 constructs such as alias, import, and metadata extensions to support traceable, soft alignment integration. It is demonstrated with a GPT-based LLM through an example of a measurement system. Benefits and limitations are discussed.
comment: Accepted by IEEE ISSE 2025, DOI pending
☆ Motor Imagery EEG Signal Classification Using Minimally Random Convolutional Kernel Transform and Hybrid Deep Learning
The brain-computer interface (BCI) establishes a non-muscle channel that enables direct communication between the human body and an external device. Electroencephalography (EEG) is a popular non-invasive technique for recording brain signals. It is critical to process and comprehend the hidden patterns linked to a specific cognitive or motor task, for instance, measured through the motor imagery brain-computer interface (MI-BCI). A significant challenge is presented by classifying motor imagery-based electroencephalogram (MI-EEG) tasks, given that EEG signals exhibit nonstationarity, time-variance, and individual diversity. Obtaining good classification accuracy is also very difficult due to the growing number of classes and the natural variability among individuals. To overcome these issues, this paper proposes a novel method for classifying EEG motor imagery signals that extracts features efficiently with Minimally Random Convolutional Kernel Transform (MiniRocket), a linear classifier then uses the extracted features for activity recognition. Furthermore, a novel deep learning based on Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) architecture to serve as a baseline was proposed and demonstrated that classification via MiniRocket's features achieves higher performance than the best deep learning models at lower computational cost. The PhysioNet dataset was used to evaluate the performance of the proposed approaches. The proposed models achieved mean accuracy values of 98.63% and 98.06% for the MiniRocket and CNN-LSTM, respectively. The findings demonstrate that the proposed approach can significantly enhance motor imagery EEG accuracy and provide new insights into the feature extraction and classification of MI-EEG.
Graph RAG as Human Choice Model: Building a Data-Driven Mobility Agent with Preference Chain
Understanding human behavior in urban environments is a crucial field within city sciences. However, collecting accurate behavioral data, particularly in newly developed areas, poses significant challenges. Recent advances in generative agents, powered by Large Language Models (LLMs), have shown promise in simulating human behaviors without relying on extensive datasets. Nevertheless, these methods often struggle with generating consistent, context-sensitive, and realistic behavioral outputs. To address these limitations, this paper introduces the Preference Chain, a novel method that integrates Graph Retrieval-Augmented Generation (RAG) with LLMs to enhance context-aware simulation of human behavior in transportation systems. Experiments conducted on the Replica dataset demonstrate that the Preference Chain outperforms standard LLM in aligning with real-world transportation mode choices. The development of the Mobility Agent highlights potential applications of proposed method in urban mobility modeling for emerging cities, personalized travel behavior analysis, and dynamic traffic forecasting. Despite limitations such as slow inference and the risk of hallucination, the method offers a promising framework for simulating complex human behavior in data-scarce environments, where traditional data-driven models struggle due to limited data availability.
☆ EGRA:Toward Enhanced Behavior Graphs and Representation Alignment for Multimodal Recommendation
MultiModal Recommendation (MMR) systems have emerged as a promising solution for improving recommendation quality by leveraging rich item-side modality information, prompting a surge of diverse methods. Despite these advances, existing methods still face two critical limitations. First, they use raw modality features to construct item-item links for enriching the behavior graph, while giving limited attention to balancing collaborative and modality-aware semantics or mitigating modality noise in the process. Second, they use a uniform alignment weight across all entities and also maintain a fixed alignment strength throughout training, limiting the effectiveness of modality-behavior alignment. To address these challenges, we propose EGRA. First, instead of relying on raw modality features, it alleviates sparsity by incorporating into the behavior graph an item-item graph built from representations generated by a pretrained MMR model. This enables the graph to capture both collaborative patterns and modality aware similarities with enhanced robustness against modality noise. Moreover, it introduces a novel bi-level dynamic alignment weighting mechanism to improve modality-behavior representation alignment, which dynamically assigns alignment strength across entities according to their alignment degree, while gradually increasing the overall alignment intensity throughout training. Extensive experiments on five datasets show that EGRA significantly outperforms recent methods, confirming its effectiveness.
☆ Towards Recommending Usability Improvements with Multimodal Large Language Models
Usability describes a set of essential quality attributes of user interfaces (UI) that influence human-computer interaction. Common evaluation methods, such as usability testing and inspection, are effective but resource-intensive and require expert involvement. This makes them less accessible for smaller organizations. Recent advances in multimodal LLMs offer promising opportunities to automate usability evaluation processes partly by analyzing textual, visual, and structural aspects of software interfaces. To investigate this possibility, we formulate usability evaluation as a recommendation task, where multimodal LLMs rank usability issues by severity. We conducted an initial proof-of-concept study to compare LLM-generated usability improvement recommendations with usability expert assessments. Our findings indicate the potential of LLMs to enable faster and more cost-effective usability evaluation, which makes it a practical alternative in contexts with limited expert resources.
☆ STA-GANN: A Valid and Generalizable Spatio-Temporal Kriging Approach
Spatio-temporal tasks often encounter incomplete data arising from missing or inaccessible sensors, making spatio-temporal kriging crucial for inferring the completely missing temporal information. However, current models struggle with ensuring the validity and generalizability of inferred spatio-temporal patterns, especially in capturing dynamic spatial dependencies and temporal shifts, and optimizing the generalizability of unknown sensors. To overcome these limitations, we propose Spatio-Temporal Aware Graph Adversarial Neural Network (STA-GANN), a novel GNN-based kriging framework that improves spatio-temporal pattern validity and generalization. STA-GANN integrates (i) Decoupled Phase Module that senses and adjusts for timestamp shifts. (ii) Dynamic Data-Driven Metadata Graph Modeling to update spatial relationships using temporal data and metadata; (iii) An adversarial transfer learning strategy to ensure generalizability. Extensive validation across nine datasets from four fields and theoretical evidence both demonstrate the superior performance of STA-GANN.
☆ Through the Looking Glass: A Dual Perspective on Weakly-Supervised Few-Shot Segmentation
Meta-learning aims to uniformly sample homogeneous support-query pairs, characterized by the same categories and similar attributes, and extract useful inductive biases through identical network architectures. However, this identical network design results in over-semantic homogenization. To address this, we propose a novel homologous but heterogeneous network. By treating support-query pairs as dual perspectives, we introduce heterogeneous visual aggregation (HA) modules to enhance complementarity while preserving semantic commonality. To further reduce semantic noise and amplify the uniqueness of heterogeneous semantics, we design a heterogeneous transfer (HT) module. Finally, we propose heterogeneous CLIP (HC) textual information to enhance the generalization capability of multimodal models. In the weakly-supervised few-shot semantic segmentation (WFSS) task, with only 1/24 of the parameters of existing state-of-the-art models, TLG achieves a 13.2\% improvement on Pascal-5\textsuperscript{i} and a 9.7\% improvement on COCO-20\textsuperscript{i}. To the best of our knowledge, TLG is also the first weakly supervised (image-level) model that outperforms fully supervised (pixel-level) models under the same backbone architectures. The code is available at https://github.com/jarch-ma/TLG.
☆ Beyond Human-prompting: Adaptive Prompt Tuning with Semantic Alignment for Anomaly Detection
Pre-trained Vision-Language Models (VLMs) have recently shown promise in detecting anomalies. However, previous approaches are fundamentally limited by their reliance on human-designed prompts and the lack of accessible anomaly samples, leading to significant gaps in context-specific anomaly understanding. In this paper, we propose \textbf{A}daptive \textbf{P}rompt \textbf{T}uning with semantic alignment for anomaly detection (APT), a groundbreaking prior knowledge-free, few-shot framework and overcomes the limitations of traditional prompt-based approaches. APT uses self-generated anomaly samples with noise perturbations to train learnable prompts that capture context-dependent anomalies in different scenarios. To prevent overfitting to synthetic noise, we propose a Self-Optimizing Meta-prompt Guiding Scheme (SMGS) that iteratively aligns the prompts with general anomaly semantics while incorporating diverse synthetic anomaly. Our system not only advances pixel-wise anomaly detection, but also achieves state-of-the-art performance on multiple benchmark datasets without requiring prior knowledge for prompt crafting, establishing a robust and versatile solution for real-world anomaly detection.
☆ On the Collapse Errors Induced by the Deterministic Sampler for Diffusion Models
Despite the widespread adoption of deterministic samplers in diffusion models (DMs), their potential limitations remain largely unexplored. In this paper, we identify collapse errors, a previously unrecognized phenomenon in ODE-based diffusion sampling, where the sampled data is overly concentrated in local data space. To quantify this effect, we introduce a novel metric and demonstrate that collapse errors occur across a variety of settings. When investigating its underlying causes, we observe a see-saw effect, where score learning in low noise regimes adversely impacts the one in high noise regimes. This misfitting in high noise regimes, coupled with the dynamics of deterministic samplers, ultimately causes collapse errors. Guided by these insights, we apply existing techniques from sampling, training, and architecture to empirically support our explanation of collapse errors. This work provides intensive empirical evidence of collapse errors in ODE-based diffusion sampling, emphasizing the need for further research into the interplay between score learning and deterministic sampling, an overlooked yet fundamental aspect of diffusion models.
☆ Take That for Me: Multimodal Exophora Resolution with Interactive Questioning for Ambiguous Out-of-View Instructions
Daily life support robots must interpret ambiguous verbal instructions involving demonstratives such as ``Bring me that cup,'' even when objects or users are out of the robot's view. Existing approaches to exophora resolution primarily rely on visual data and thus fail in real-world scenarios where the object or user is not visible. We propose Multimodal Interactive Exophora resolution with user Localization (MIEL), which is a multimodal exophora resolution framework leveraging sound source localization (SSL), semantic mapping, visual-language models (VLMs), and interactive questioning with GPT-4o. Our approach first constructs a semantic map of the environment and estimates candidate objects from a linguistic query with the user's skeletal data. SSL is utilized to orient the robot toward users who are initially outside its visual field, enabling accurate identification of user gestures and pointing directions. When ambiguities remain, the robot proactively interacts with the user, employing GPT-4o to formulate clarifying questions. Experiments in a real-world environment showed results that were approximately 1.3 times better when the user was visible to the robot and 2.0 times better when the user was not visible to the robot, compared to the methods without SSL and interactive questioning. The project website is https://emergentsystemlabstudent.github.io/MIEL/.
comment: See website at https://emergentsystemlabstudent.github.io/MIEL/. Accepted at IEEE RO-MAN 2025
☆ Machine Learning in Micromobility: A Systematic Review of Datasets, Techniques, and Applications
Micromobility systems, which include lightweight and low-speed vehicles such as bicycles, e-bikes, and e-scooters, have become an important part of urban transportation and are used to solve problems such as traffic congestion, air pollution, and high transportation costs. Successful utilisation of micromobilities requires optimisation of complex systems for efficiency, environmental impact mitigation, and overcoming technical challenges for user safety. Machine Learning (ML) methods have been crucial to support these advancements and to address their unique challenges. However, there is insufficient literature addressing the specific issues of ML applications in micromobilities. This survey paper addresses this gap by providing a comprehensive review of datasets, ML techniques, and their specific applications in micromobilities. Specifically, we collect and analyse various micromobility-related datasets and discuss them in terms of spatial, temporal, and feature-based characteristics. In addition, we provide a detailed overview of ML models applied in micromobilities, introducing their advantages, challenges, and specific use cases. Furthermore, we explore multiple ML applications, such as demand prediction, energy management, and safety, focusing on improving efficiency, accuracy, and user experience. Finally, we propose future research directions to address these issues, aiming to help future researchers better understand this field.
comment: 14 pages, 3 tables, and 4 figures, submitted to IEEE Transactions on Intelligent Vehicles
☆ CommonKV: Compressing KV Cache with Cross-layer Parameter Sharing
Large Language Models (LLMs) confront significant memory challenges due to the escalating KV cache with increasing sequence length. As a crucial technique, existing cross-layer KV cache sharing methods either necessitate modified model architectures with subsequent pre-training or incur significant performance degradation at high compression rates. To mitigate these challenges, we propose CommonKV, a training-free method for cross-layer KV cache compression through adjacent parameters sharing. Inspired by the high similarity observed in cross-layer hidden states, we utilize Singular Value Decomposition (SVD) to achieve weight sharing across adjacent parameters, resulting in a more easily mergeable latent KV cache. Furthermore, we also introduce an adaptive budget allocation strategy. It dynamically assigns compression budgets based on cosine similarity, ensuring that dissimilar caches are not over-compressed. Experiments across multiple backbone models and benchmarks including LongBench and Ruler demonstrate that the proposed method consistently outperforms existing low-rank and cross-layer approaches at various compression ratios. Moreover, we find that the benefits of CommonKV are orthogonal to other quantization and eviction methods. By integrating these approaches, we can ultimately achieve a 98\% compression ratio without significant performance loss.
comment: 10 pages, 5 figures
☆ The Fools are Certain; the Wise are Doubtful: Exploring LLM Confidence in Code Completion
Code completion entails the task of providing missing tokens given a surrounding context. It can boost developer productivity while providing a powerful code discovery tool. Following the Large Language Model (LLM) wave, code completion has been approached with diverse LLMs fine-tuned on code (code LLMs). The performance of code LLMs can be assessed with downstream and intrinsic metrics. Downstream metrics are usually employed to evaluate the practical utility of a model, but can be unreliable and require complex calculations and domain-specific knowledge. In contrast, intrinsic metrics such as perplexity, entropy, and mutual information, which measure model confidence or uncertainty, are simple, versatile, and universal across LLMs and tasks, and can serve as proxies for functional correctness and hallucination risk in LLM-generated code. Motivated by this, we evaluate the confidence of LLMs when generating code by measuring code perplexity across programming languages, models, and datasets using various LLMs, and a sample of 1008 files from 657 GitHub projects. We find that strongly-typed languages exhibit lower perplexity than dynamically typed languages. Scripting languages also demonstrate higher perplexity. Perl appears universally high in perplexity, whereas Java appears low. Code perplexity depends on the employed LLM, but not on the code dataset. Although code comments often increase perplexity, the language ranking based on perplexity is barely affected by their presence. LLM researchers, developers, and users can employ our findings to assess the benefits and suitability of LLM-based code completion in specific software projects based on how language, model choice, and code characteristics impact model confidence.
comment: 30 pages, 10 figures
☆ Bridging the Gap in Ophthalmic AI: MM-Retinal-Reason Dataset and OphthaReason Model toward Dynamic Multimodal Reasoning
Multimodal large language models (MLLMs) have recently demonstrated remarkable reasoning abilities with reinforcement learning paradigm. Although several multimodal reasoning models have been explored in the medical domain, most of them focus exclusively on basic reasoning, which refers to shallow inference based on visual feature matching. However, real-world clinical diagnosis extends beyond basic reasoning, demanding reasoning processes that integrate heterogeneous clinical information (such as chief complaints and medical history) with multimodal medical imaging data. To bridge this gap, we introduce MM-Retinal-Reason, the first ophthalmic multimodal dataset with the full spectrum of perception and reasoning. It encompasses both basic reasoning tasks and complex reasoning tasks, aiming to enhance visual-centric fundamental reasoning capabilities and emulate realistic clinical thinking patterns. Building upon MM-Retinal-Reason, we propose OphthaReason, the first ophthalmology-specific multimodal reasoning model with step-by-step reasoning traces. To enable flexible adaptation to both basic and complex reasoning tasks, we specifically design a novel method called Uncertainty-Aware Dynamic Thinking (UADT), which estimates sample-level uncertainty via entropy and dynamically modulates the model's exploration depth using a shaped advantage mechanism. Comprehensive experiments demonstrate that our model achieves state-of-the-art performance on both basic and complex reasoning tasks, outperforming general-purpose MLLMs, medical MLLMs, RL-based medical MLLMs, and ophthalmic MLLMs by at least 24.92\%, 15.00\%, 21.20\%, and 17.66\%. Project Page: \href{https://github.com/lxirich/OphthaReason}{link}.
☆ Spacetime-GR: A Spacetime-Aware Generative Model for Large Scale Online POI Recommendation
Building upon the strong sequence modeling capability, Generative Recommendation (GR) has gradually assumed a dominant position in the application of recommendation tasks (e.g., video and product recommendation). However, the application of Generative Recommendation in Point-of-Interest (POI) recommendation, where user preferences are significantly affected by spatiotemporal variations, remains a challenging open problem. In this paper, we propose Spacetime-GR, the first spacetime-aware generative model for large-scale online POI recommendation. It extends the strong sequence modeling ability of generative models by incorporating flexible spatiotemporal information encoding. Specifically, we first introduce a geographic-aware hierarchical POI indexing strategy to address the challenge of large vocabulary modeling. Subsequently, a novel spatiotemporal encoding module is introduced to seamlessly incorporate spatiotemporal context into user action sequences, thereby enhancing the model's sensitivity to spatiotemporal variations. Furthermore, we incorporate multimodal POI embeddings to enrich the semantic understanding of each POI. Finally, to facilitate practical deployment, we develop a set of post-training adaptation strategies after sufficient pre-training on action sequences. These strategies enable Spacetime-GR to generate outputs in multiple formats (i.e., embeddings, ranking scores and POI candidates) and support a wide range of downstream application scenarios (i.e., ranking and end-to-end recommendation). We evaluate the proposed model on both public benchmark datasets and large-scale industrial datasets, demonstrating its superior performance over existing methods in terms of POI recommendation accuracy and ranking quality. Furthermore, the model is the first generative model deployed in online POI recommendation services that scale to hundreds of millions of POIs and users.
☆ ANSC: Probabilistic Capacity Health Scoring for Datacenter-Scale Reliability
We present ANSC, a probabilistic capacity health scoring framework for hyperscale datacenter fabrics. While existing alerting systems detect individual device or link failures, they do not capture the aggregate risk of cascading capacity shortfalls. ANSC provides a color-coded scoring system that indicates the urgency of issues \emph{not solely by current impact, but by the probability of imminent capacity violations}. Our system accounts for both current residual capacity and the probability of additional failures, normalized at datacenter and regional level. We demonstrate that ANSC enables operators to prioritize remediation across more than 400 datacenters and 60 regions, reducing noise and aligning SRE focus on the most critical risks.
comment: 3 pages
☆ Extending FKG.in: Towards a Food Claim Traceability Network
The global food landscape is rife with scientific, cultural, and commercial claims about what foods are, what they do, what they should not do, or should not do. These range from rigorously studied health benefits (probiotics improve gut health) and misrepresentations (soaked almonds make one smarter) to vague promises (superfoods boost immunity) and culturally rooted beliefs (cold foods cause coughs). Despite their widespread influence, the infrastructure for tracing, verifying, and contextualizing these claims remains fragmented and underdeveloped. In this paper, we propose a Food Claim-Traceability Network (FCN) as an extension of FKG.in, a knowledge graph of Indian food that we have been incrementally building. We also present the ontology design and the semi-automated knowledge curation workflow that we used to develop a proof of concept of FKG.in-FCN using Reddit data and Large Language Models. FCN integrates curated data inputs, structured schemas, and provenance-aware pipelines for food-related claim extraction and validation. While directly linked to the Indian food knowledge graph as an application, our methodology remains application-agnostic and adaptable to other geographic, culinary, or regulatory settings. By modeling food claims and their traceability in a structured, verifiable, and explainable way, we aim to contribute to more transparent and accountable food knowledge ecosystems, supporting researchers, policymakers, and most importantly, everyday consumers in navigating a world saturated with dietary assertions.
comment: 10 pages, 3 figures, 1 table, 45 references, ACM International Conference on Multimedia 2025 - Multi-modal Food Computing Workshop
☆ IR-Agent: Expert-Inspired LLM Agents for Structure Elucidation from Infrared Spectra
Spectral analysis provides crucial clues for the elucidation of unknown materials. Among various techniques, infrared spectroscopy (IR) plays an important role in laboratory settings due to its high accessibility and low cost. However, existing approaches often fail to reflect expert analytical processes and lack flexibility in incorporating diverse types of chemical knowledge, which is essential in real-world analytical scenarios. In this paper, we propose IR-Agent, a novel multi-agent framework for molecular structure elucidation from IR spectra. The framework is designed to emulate expert-driven IR analysis procedures and is inherently extensible. Each agent specializes in a specific aspect of IR interpretation, and their complementary roles enable integrated reasoning, thereby improving the overall accuracy of structure elucidation. Through extensive experiments, we demonstrate that IR-Agent not only improves baseline performance on experimental IR spectra but also shows strong adaptability to various forms of chemical information.
☆ CYCLE-INSTRUCT: Fully Seed-Free Instruction Tuning via Dual Self-Training and Cycle Consistency
Instruction tuning is vital for aligning large language models (LLMs) with human intent, but current methods typically rely on costly human-annotated seed data or powerful external teacher models. While instruction back-translation techniques reduce this dependency, they remain fundamentally tethered to an initial seed set, which limits full automation, introduces biases, and can lead to inefficient use of unlabeled corpora. In this paper, we propose Cycle-Instruct, a novel framework that achieves fully seed-free instruction tuning. Inspired by cycle consistency, Cycle-Instruct employs a dual self-training loop where two models-an answer generator and a question generator-are bootstrapped solely from raw, unlabeled text. These models mutually supervise each other by reconstructing original text segments from their counterpart's generated pseudo-labels, effectively learning from the intrinsic structure of the data without any human-provided seeds. We demonstrate Cycle-Instruct's efficacy across four diverse data tracks, including general instruction-following, domain-specific tasks, dialogue logs, and plain text. Our extensive experiments show that Cycle-Instruct not only outperforms seed-driven back-translation baselines but also achieves performance comparable to strongly supervised methods.
comment: EMNLP 2025 Main
☆ GPLight+: A Genetic Programming Method for Learning Symmetric Traffic Signal Control Policy
Recently, learning-based approaches, have achieved significant success in automatically devising effective traffic signal control strategies. In particular, as a powerful evolutionary machine learning approach, Genetic Programming (GP) is utilized to evolve human-understandable phase urgency functions to measure the urgency of activating a green light for a specific phase. However, current GP-based methods are unable to treat the common traffic features of different traffic signal phases consistently. To address this issue, we propose to use a symmetric phase urgency function to calculate the phase urgency for a specific phase based on the current road conditions. This is represented as an aggregation of two shared subtrees, each representing the urgency of a turn movement in the phase. We then propose a GP method to evolve the symmetric phase urgency function. We evaluate our proposed method on the well-known cityflow traffic simulator, based on multiple public real-world datasets. The experimental results show that the proposed symmetric urgency function representation can significantly improve the performance of the learned traffic signal control policies over the traditional GP representation on a wide range of scenarios. Further analysis shows that the proposed method can evolve effective, human-understandable and easily deployable traffic signal control policies.
☆ Two-flow Feedback Multi-scale Progressive Generative Adversarial Network
Although diffusion model has made good progress in the field of image generation, GAN\cite{huang2023adaptive} still has a large development space due to its unique advantages, such as WGAN\cite{liu2021comparing}, SSGAN\cite{guibas2021adaptive} \cite{zhang2022vsa} \cite{zhou2024adapt} and so on. In this paper, we propose a novel two-flow feedback multi-scale progressive generative adversarial network (MSPG-SEN) for GAN models. This paper has four contributions: 1) : We propose a two-flow feedback multi-scale progressive Generative Adversarial network (MSPG-SEN), which not only improves image quality and human visual perception on the basis of retaining the advantages of the existing GAN model, but also simplifies the training process and reduces the training cost of GAN networks. Our experimental results show that, MSPG-SEN has achieved state-of-the-art generation results on the following five datasets,INKK The dataset is 89.7\%,AWUN The dataset is 78.3\%,IONJ The dataset is 85.5\%,POKL The dataset is 88.7\%,OPIN The dataset is 96.4\%. 2) : We propose an adaptive perception-behavioral feedback loop (APFL), which effectively improves the robustness and training stability of the model and reduces the training cost. 3) : We propose a globally connected two-flow dynamic residual network(). After ablation experiments, it can effectively improve the training efficiency and greatly improve the generalization ability, with stronger flexibility. 4) : We propose a new dynamic embedded attention mechanism (DEMA). After experiments, the attention can be extended to a variety of image processing tasks, which can effectively capture global-local information, improve feature separation capability and feature expression capabilities, and requires minimal computing resources only 88.7\% with INJK With strong cross-task capability.
☆ On Task Vectors and Gradients
Task arithmetic has emerged as a simple yet powerful technique for model merging, enabling the combination of multiple finetuned models into one. Despite its empirical success, a clear theoretical explanation of why and when it works is lacking. This paper provides a rigorous theoretical foundation for task arithmetic by establishing a connection between task vectors and gradients of the task losses. We show that under standard gradient descent, a task vector generated from one epoch of finetuning is exactly equivalent to the negative gradient of the loss, scaled by the learning rate. For the practical multi-epoch setting, we prove that this equivalence holds approximately, with a second-order error term that we explicitly bound for feed-forward networks. Our empirical analysis across seven vision benchmarks corroborates our theory, demonstrating that the first-epoch gradient dominates the finetuning trajectory in both norm and direction. A key implication is that merging models finetuned for only a single epoch often yields performance comparable to merging fully converged models. These findings reframe task arithmetic as a form of approximate multitask learning, providing a clear rationale for its effectiveness and highlighting the critical role of early training dynamics in model merging.
comment: 9 pages of main paper, 5 figures
☆ Cooperative Design Optimization through Natural Language Interaction
Designing successful interactions requires identifying optimal design parameters. To do so, designers often conduct iterative user testing and exploratory trial-and-error. This involves balancing multiple objectives in a high-dimensional space, making the process time-consuming and cognitively demanding. System-led optimization methods, such as those based on Bayesian optimization, can determine for designers which parameters to test next. However, they offer limited opportunities for designers to intervene in the optimization process, negatively impacting the designer's experience. We propose a design optimization framework that enables natural language interactions between designers and the optimization system, facilitating cooperative design optimization. This is achieved by integrating system-led optimization methods with Large Language Models (LLMs), allowing designers to intervene in the optimization process and better understand the system's reasoning. Experimental results show that our method provides higher user agency than a system-led method and shows promising optimization performance compared to manual design. It also matches the performance of an existing cooperative method with lower cognitive load.
comment: 25 pages, 20 figures, to appear in Proceedings of the 38th Annual ACM Symposium on User Interface Software and Technology (UIST '25), September 28-October 1, 2025, Busan, Republic of Korea
☆ InMind: Evaluating LLMs in Capturing and Applying Individual Human Reasoning Styles
LLMs have shown strong performance on human-centric reasoning tasks. While previous evaluations have explored whether LLMs can infer intentions or detect deception, they often overlook the individualized reasoning styles that influence how people interpret and act in social contexts. Social deduction games (SDGs) provide a natural testbed for evaluating individualized reasoning styles, where different players may adopt diverse but contextually valid reasoning strategies under identical conditions. To address this, we introduce InMind, a cognitively grounded evaluation framework designed to assess whether LLMs can capture and apply personalized reasoning styles in SDGs. InMind enhances structured gameplay data with round-level strategy traces and post-game reflections, collected under both Observer and Participant modes. It supports four cognitively motivated tasks that jointly evaluate both static alignment and dynamic adaptation. As a case study, we apply InMind to the game Avalon, evaluating 11 state-of-the-art LLMs. General-purpose LLMs, even GPT-4o frequently rely on lexical cues, struggling to anchor reflections in temporal gameplay or adapt to evolving strategies. In contrast, reasoning-enhanced LLMs like DeepSeek-R1 exhibit early signs of style-sensitive reasoning. These findings reveal key limitations in current LLMs' capacity for individualized, adaptive reasoning, and position InMind as a step toward cognitively aligned human-AI interaction.
comment: EMNLP 2025 MainConference
☆ From Benchmark Data To Applicable Program Repair: An Experience Report
This paper describes our approach to automated program repair. We combine various techniques from the literature to achieve this. Our experiments show that our approach performs better than other techniques on standard benchmarks. However, on closer inspection, none of these techniques work on realistic defects that we see in industry. We find that augmenting code with formal specifications enables LLMs to generate higher-quality unit tests, especially for complex production code with improved coverage of edge cases and exception handling. However, specifications add little value for well-understood errors (e.g., null pointer, index out of bounds), but are beneficial for logic and string manipulation errors. Despite encouraging benchmark results, real-world adoption is limited since passing tests do not guarantee correct patches. Current challenges include insufficient expressiveness of the JML specification language, necessitating advanced verification tools and richer predicates. Our ongoing work is exploring contract automata, programming by example, and testcase repair, with a focus on integrating human feedback and measuring productivity gains - highlighting the gap between academic benchmarks and practical industry needs
☆ Integrating Time Series into LLMs via Multi-layer Steerable Embedding Fusion for Enhanced Forecasting
Time series (TS) data are ubiquitous across various application areas, rendering time series forecasting (TSF) a fundamental task. With the astounding advances in large language models (LLMs), a variety of methods have been developed to adapt LLMs for time series forecasting. Despite unlocking the potential of LLMs in comprehending TS data, existing methods are inherently constrained by their shallow integration of TS information, wherein LLMs typically access TS representations at shallow layers, primarily at the input layer. This causes the influence of TS representations to progressively fade in deeper layers and eventually leads to ineffective adaptation between textual embeddings and TS representations. In this paper, we propose the Multi-layer Steerable Embedding Fusion (MSEF), a novel framework that enables LLMs to directly access time series patterns at all depths, thereby mitigating the progressive loss of TS information in deeper layers. Specifically, MSEF leverages off-the-shelf time series foundation models to extract semantically rich embeddings, which are fused with intermediate text representations across LLM layers via layer-specific steering vectors. These steering vectors are designed to continuously optimize the alignment between time series and textual modalities and facilitate a layer-specific adaptation mechanism that ensures efficient few-shot learning capabilities. Experimental results on seven benchmarks demonstrate significant performance improvements by MSEF compared with baselines, with an average reduction of 31.8% in terms of MSE. The code is available at https://github.com/One1sAll/MSEF.
comment: To be published in CIKM 2025
☆ Urban Comfort Assessment in the Era of Digital Planning: A Multidimensional, Data-driven, and AI-assisted Framework
Ensuring liveability and comfort is one of the fundamental objectives of urban planning. Numerous studies have employed computational methods to assess and quantify factors related to urban comfort such as greenery coverage, thermal comfort, and walkability. However, a clear definition of urban comfort and its comprehensive evaluation framework remain elusive. Our research explores the theoretical interpretations and methodologies for assessing urban comfort within digital planning, emphasising three key dimensions: multidimensional analysis, data support, and AI assistance.
comment: Presented at 19th International Conference on Computational Urban Planning and Urban Management (CUPUM 2025)
☆ Generative Foundation Model for Structured and Unstructured Electronic Health Records
Electronic health records (EHRs) are rich clinical data sources but complex repositories of patient data, spanning structured elements (demographics, vitals, lab results, codes), unstructured clinical notes and other modalities of data. Harnessing this heterogeneity is critical for improving patient outcomes. Recent advances in large language models (LLMs) have enabled foundation models that can learn from multiple data modalities and support clinical tasks. However, most current approaches simply serialize numeric EHR data into text, which risks losing temporal and quantitative detail. We introduce Generative Deep Patient (GDP), a multimodal foundation model that natively encodes structured EHR time-series via a CNN-Transformer encoder and fuses it with unstructured EHRs through cross-modal attention into a LLaMA-based decoder. GDP is trained in two stages: (1) generative pretraining, where it learns to produce clinical narratives from raw patient timelines while also performing masked feature prediction (MFP) and next time-step prediction (NTP) to capture temporal dynamics; and (2) multi-task fine-tuning for clinically meaningful predictions (e.g., heart failure, type 2 diabetes, 30-day readmission). In clinical prediction, GDP demonstrated superior performance on MIMIC-IV: heart failure AUROC = 0.923, type 2 diabetes AUROC = 0.817, and 30-day readmission AUROC = 0.627. For narrative generation, GDP achieved ROUGE-L = 0.135 and BERTScore-F1 = 0.545. In a blinded human evaluation, GDP-Instruct scored highest on faithfulness, fluency, and overall clinical utility, suggesting reduced hospital documentation workload without sacrificing accuracy. Our results demonstrate that a single multimodal foundation model can both predict clinically actionable events and generate high-quality clinical narratives. Furthermore, GDP's flexible architecture can be extended to additional modalities.
☆ MMAPG: A Training-Free Framework for Multimodal Multi-hop Question Answering via Adaptive Planning Graphs
Multimodal Multi-hop question answering requires integrating information from diverse sources, such as images and texts, to derive answers. Existing methods typically rely on sequential retrieval and reasoning, where each step builds on the previous output. However, this single-path paradigm makes them vulnerable to errors due to misleading intermediate steps. Moreover, developing multimodal models can be computationally expensive, often requiring extensive training. To address these limitations, we propose a training-free framework guided by an Adaptive Planning Graph, which consists of planning, retrieval and reasoning modules. The planning module analyzes the current state of the Adaptive Planning Graph, determines the next action and where to expand the graph, which enables dynamic and flexible exploration of reasoning paths. To handle retrieval of text to unspecified target modalities, we devise modality-specific strategies that dynamically adapt to distinct data types. Our approach preserves the characteristics of multimodal information without costly task-specific training, enabling seamless integration with up-to-date models. Finally, the experiments on MultimodalQA and WebQA show that our approach matches or outperforms existing models that rely on training.
♻ ☆ Are LLM-Powered Social Media Bots Realistic?
As Large Language Models (LLMs) become more sophisticated, there is a possibility to harness LLMs to power social media bots. This work investigates the realism of generating LLM-Powered social media bot networks. Through a combination of manual effort, network science and LLMs, we create synthetic bot agent personas, their tweets and their interactions, thereby simulating social media networks. We compare the generated networks against empirical bot/human data, observing that both network and linguistic properties of LLM-Powered Bots differ from Wild Bots/Humans. This has implications towards the detection and effectiveness of LLM-Powered Bots.
comment: Accepted into SBP-BRiMS 2025
♻ ☆ Establishing Task Scaling Laws via Compute-Efficient Model Ladders
We develop task scaling laws and model ladders to predict the individual task performance of pretrained language models (LMs) in the overtrained setting. Standard power laws for language modeling loss cannot accurately model task performance. Therefore, we leverage a two-step prediction approach: (1) use model and data size to predict an intermediate loss, then (2) use it to predict task performance. We train a set of small-scale "ladder" models, collect data points to fit the parameterized functions of the two prediction steps, and make predictions for two target models: a 7B model trained to 4T tokens and a 13B model trained to 5T tokens. Training the ladder models only costs 1% of the compute used for the target models. On four multiple-choice tasks formatted as ranked classification, we can predict the accuracy of both target models within 2 points of absolute error. We find that tasks with higher prediction error also have higher variance in the metrics over model checkpoints. We also contrast multiple design choices for predicting accuracy, and present recommendations for extending our method to new models and tasks.
comment: COLM 2025
♻ ☆ A Curious Case of Remarkable Resilience to Gradient Attacks via Fully Convolutional and Differentiable Front End with a Skip Connection
We experimented with front-end enhanced neural models where a differentiable and fully convolutional model with a skip connection is added before a frozen backbone classifier. By training such composite models using a small learning rate for about one epoch, we obtained models that retained the accuracy of the backbone classifier while being unusually resistant to gradient attacks-including APGD and FAB-T attacks from the AutoAttack package-which we attribute to gradient masking. Although gradient masking is not new, the degree we observe is striking for fully differentiable models without obvious gradient-shattering-e.g., JPEG compression-or gradient-diminishing components. The training recipe to produce such models is also remarkably stable and reproducible: We applied it to three datasets (CIFAR10, CIFAR100, and ImageNet) and several modern architectures (including vision Transformers) without a single failure case. While black-box attacks such as the SQUARE attack and zero-order PGD can partially overcome gradient masking, these attacks are easily defeated by simple randomized ensembles. We estimate that these ensembles achieve near-SOTA AutoAttack accuracy on CIFAR10, CIFAR100, and ImageNet (while retaining almost all clean accuracy of the original classifiers) despite having near-zero accuracy under adaptive attacks. Adversarially training the backbone further amplifies this front-end "robustness". On CIFAR10, the respective randomized ensemble achieved 90.8$\pm 2.5\%$ (99\% CI) accuracy under the full AutoAttack while having only 18.2$\pm 3.6\%$ accuracy under the adaptive attack ($\varepsilon=8/255$, $L^\infty$ norm). We conclude the paper with a discussion of whether randomized ensembling can serve as a practical defense. Code and instructions to reproduce key results are available. https://github.com/searchivarius/curious_case_of_gradient_masking
comment: Accepted at TMLR (2025/08)
♻ ☆ Can Large Language Models Simulate Human Responses? A Case Study of Stated Preference Experiments in the Context of Heating-related Choices
Stated preference (SP) surveys are a key method to research how individuals make trade-offs in hypothetical, also futuristic, scenarios. In energy context this includes key decarbonisation enablement contexts, such as low-carbon technologies, distributed renewable energy generation, and demand-side response [1,2]. However, they tend to be costly, time-consuming, and can be affected by respondent fatigue and ethical constraints. Large language models (LLMs) have demonstrated remarkable capabilities in generating human-like textual responses, prompting growing interest in their application to survey research. This study investigates the use of LLMs to simulate consumer choices in energy-related SP surveys and explores their integration into data analysis workflows. A series of test scenarios were designed to systematically assess the simulation performance of several LLMs (LLaMA 3.1, Mistral, GPT-3.5 and DeepSeek-R1) at both individual and aggregated levels, considering contexts factors such as prompt design, in-context learning (ICL), chain-of-thought (CoT) reasoning, LLM types, integration with traditional choice models, and potential biases. Cloud-based LLMs do not consistently outperform smaller local models. In this study, the reasoning model DeepSeek-R1 achieves the highest average accuracy (77%) and outperforms non-reasoning LLMs in accuracy, factor identification, and choice distribution alignment. Across models, systematic biases are observed against the gas boiler and no-retrofit options, with a preference for more energy-efficient alternatives. The findings suggest that previous SP choices are the most effective input factor, while longer prompts with additional factors and varied formats can cause LLMs to lose focus, reducing accuracy.
♻ ☆ A Simple "Try Again" Can Elicit Multi-Turn LLM Reasoning
Multi-turn problem solving is critical yet challenging for Large Reasoning Models (LRMs) to reflect on their reasoning and revise from feedback. Existing Reinforcement Learning (RL) methods train large reasoning models on a single-turn paradigm with verifiable rewards. However, we observe that models trained with existing RL paradigms often lose their ability to solve problems across multiple turns and struggle to revise answers based on contextual feedback, leading to repetitive responses. We ask: can LRMs learn to reflect their answers in a multi-turn context? In this work, we find that training models with multi-turn RL using only unary feedback (e.g., "Let's try again") after wrong answers can improve both single-turn performance and multi-turn reasoning. We introduce Unary Feedback as Observation (UFO) for reinforcement learning, which uses minimal yet common unary user feedback during iterative problem solving. It can be easily applied to existing single-turn RL training setups. Experimental results show that RL training with UFO keeps single-turn performance and improves multi-turn reasoning accuracy by up to 14%, enabling language models to better react to feedback in multi-turn problem solving. To further minimize the number of turns needed for a correct answer while encouraging diverse reasoning when mistakes occur, we design reward structures that guide models to produce careful and deliberate answers in each turn. Code: https://github.com/lichengliu03/unary-feedback
♻ ☆ Parity-Aware Byte-Pair Encoding: Improving Cross-lingual Fairness in Tokenization
Tokenization is the first -- and often least scrutinized -- step of most NLP pipelines. Standard algorithms for learning tokenizers rely on frequency-based objectives, which favor languages dominant in the training data and consequently leave lower-resource languages with tokenizations that are disproportionately longer, morphologically implausible, or even riddled with placeholders. This phenomenon ultimately amplifies computational and financial inequalities between users from different language backgrounds. To remedy this, we introduce Parity-aware Byte Pair Encoding (BPE), a variant of the widely-used BPE algorithm. At every merge step, Parity-aware BPE maximizes the compression gain of the currently worst-compressed language, trading a small amount of global compression for cross-lingual parity. We find empirically that Parity-aware BPE leads to more equitable token counts across languages, with negligible impact on global compression rate and no substantial effect on language-model performance in downstream tasks.
♻ ☆ LearnLM: Improving Gemini for Learning
Today's generative AI systems are tuned to present information by default, rather than engage users in service of learning as a human tutor would. To address the wide range of potential education use cases for these systems, we reframe the challenge of injecting pedagogical behavior as one of \textit{pedagogical instruction following}, where training and evaluation examples include system-level instructions describing the specific pedagogy attributes present or desired in subsequent model turns. This framing avoids committing our models to any particular definition of pedagogy, and instead allows teachers or developers to specify desired model behavior. It also clears a path to improving Gemini models for learning -- by enabling the addition of our pedagogical data to post-training mixtures -- alongside their rapidly expanding set of capabilities. Both represent important changes from our initial tech report. We show how training with pedagogical instruction following produces a LearnLM model (available on Google AI Studio) that experts substantially prefer across a diverse set of learning scenarios, with average preference strengths of +31\% over GPT-4o, +11\% over Claude 3.5 Sonnet, and +13\% over the Gemini 1.5 Pro model on which LearnLM was based.
♻ ☆ Overcoming classic challenges for artificial neural networks by providing incentives and practice
Since the earliest proposals for artificial neural network (ANN) models of the mind and brain, critics have pointed out key weaknesses in these models compared to human cognitive abilities. Here we review recent work that uses metalearning to overcome several classic challenges, which we characterise as addressing the Problem of Incentive and Practice -- that is, providing machines with both incentives to improve specific skills and opportunities to practice those skills. This explicit optimization contrasts with more conventional approaches that hope the desired behaviour will emerge through optimising related but different objectives. We review applications of this principle to addressing four classic challenges for ANNs: systematic generalisation, catastrophic forgetting, few-shot learning and multi-step reasoning. We also discuss how large language models incorporate key aspects of this metalearning framework (namely, sequence prediction with feedback trained on diverse data), which helps to explain some of their successes on these classic challenges. Finally, we discuss the prospects for understanding aspects of human development through this framework, and whether natural environments provide the right incentives and practice for learning how to make challenging generalisations.
comment: In press at Nature Machine Intelligence
♻ ☆ AutoVerus: Automated Proof Generation for Rust Code
Generative AI has shown its values for many software engineering tasks. Still in its infancy, large language model (LLM)-based proof generation lags behind LLM-based code generation. In this paper, we present AutoVerus. AutoVerus uses LLMs to automatically generate correctness proof for Rust code. AutoVerus is designed to match the unique features of Verus, a verification tool that can prove the correctness of Rust code using proofs and specifications also written in Rust. AutoVerus consists of a network of LLM agents that are crafted and orchestrated to mimic human experts' three phases of proof construction: preliminary proof generation, proof refinement guided by generic tips, and proof debugging guided by verification errors. To thoroughly evaluate AutoVerus and help foster future research in this direction, we have built a benchmark suite of 150 non-trivial proof tasks, based on existing code-generation benchmarks and verification benchmarks. Our evaluation shows that AutoVerus can automatically generate correct proof for more than 90% of them, with more than half of them tackled in less than 30 seconds or 3 LLM calls.
comment: OOPSLA 2025
♻ ☆ FLAIR: Frequency and Locality-Aware Implicit Neural Representations AI
Implicit Neural Representations (INRs) leverage neural networks to map coordinates to corresponding signals, enabling continuous and compact representations. This paradigm has driven significant advances in various vision tasks. However, existing INRs lack frequency selectivity, spatial localization, and sparse representations, leading to an over-reliance on redundant signal components. Consequently, they exhibit spectral bias, tending to learn low-frequency components early while struggling to capture fine high-frequency details. To address these issues, we propose FLAIR (Frequency- and Locality-Aware Implicit Neural Representations), which incorporates two key innovations. The first is RC-GAUSS, a novel activation designed for explicit frequency selection and spatial localization under the constraints of the time-frequency uncertainty principle (TFUP). The second is Wavelet-Energy-Guided Encoding (WEGE), which leverages the discrete wavelet transform (DWT) to compute energy scores and explicitly guide frequency information to the network. Our method consistently outperforms existing INRs in 2D image representation and restoration, as well as 3D reconstruction.
comment: Please visit our project page at https://cmlab-korea.github.io/FLAIR/
♻ ☆ Enhancing and Scaling Search Query Datasets for Recommendation Systems
This paper presents a deployed, production-grade system designed to enhance and scale search query datasets for intent-based recommendation systems in digital banking. In real-world environments, the growing volume and complexity of user intents create substantial challenges for data management, resulting in suboptimal recommendations and delayed product onboarding. To overcome these challenges, our approach shifts the focus from model-centric enhancements to automated, data-centric strategies. The proposed system integrates three core modules: Synthetic Query Generation, Intent Disambiguation, and Intent Gap Analysis. Synthetic Query Generation produces diverse and realistic user queries. Our experiments reveal no statistically significant difference when using synthetic data for Clinc150, while Banking77 and a proprietary dataset show significant differences. We dig into the underlying factors driving these variations, demonstrating that our approach effectively alleviates the cold start problem (i.e. the challenge of recommending new products with limited historical data). Intent Disambiguation refines broad and overlapping intent categories into precise subintents, achieving an F1 score of 0.863 $\pm$ 0.127 against expert reannotations and leading to clearer differentiation and more precise recommendation mapping. Meanwhile, Intent Gap Analysis identifies latent customer needs by extracting novel intents from unlabeled queries; recovery rates reach up to 71\% in controlled evaluations. Deployed in a live banking environment, our system demonstrates significant improvements in recommendation precision and operation agility, ultimately delivering enhanced user experiences and strategic business benefits. This work underscores the role of high-quality, scalable data in modern AI-driven applications and advocates a proactive approach to data enhancement as a key driver of value.
♻ ☆ Multi-Level Knowledge Distillation and Dynamic Self-Supervised Learning for Continual Learning
Class-incremental with repetition (CIR), where previously trained classes repeatedly introduced in future tasks, is a more realistic scenario than the traditional class incremental setup, which assumes that each task contains unseen classes. CIR assumes that we can easily access abundant unlabeled data from external sources, such as the Internet. Therefore, we propose two components that efficiently use the unlabeled data to ensure the high stability and the plasticity of models trained in CIR setup. First, we introduce multi-level knowledge distillation (MLKD) that distills knowledge from multiple previous models across multiple perspectives, including features and logits, so the model can maintain much various previous knowledge. Moreover, we implement dynamic self-supervised loss (SSL) to utilize the unlabeled data that accelerates the learning of new classes, while dynamic weighting of SSL keeps the focus of training to the primary task. Both of our proposed components significantly improve the performance in CIR setup, achieving 2nd place in the CVPR 5th CLVISION Challenge.
♻ ☆ PENGUIN: Enhancing Transformer with Periodic-Nested Group Attention for Long-term Time Series Forecasting
Long-term time series forecasting (LTSF) is a fundamental task with wide-ranging applications. Although Transformer-based models have made significant breakthroughs in forecasting, their effectiveness for time series forecasting remains debatable. In this paper, we revisit the significance of self-attention and propose a simple yet effective mechanism, Periodic-Nested Group Attention, namely PENGUIN. Our approach highlights the importance of explicitly modeling periodic patterns and incorporating relative attention bias for effective time series modeling. To this end, we introduce a periodic-nested relative attention bias that captures periodic structures directly. To handle multiple coexisting periodicities (e.g., daily and weekly cycles), we design a grouped attention mechanism, where each group targets a specific periodicity using a multi-query attention mechanism. Extensive experiments across diverse benchmarks demonstrate that PENGUIN consistently outperforms both MLP-based and Transformer-based models.
♻ ☆ Your Reward Function for RL is Your Best PRM for Search: Unifying RL and Search-Based TTS
Test-time scaling (TTS) for large language models (LLMs) has thus far fallen into two largely separate paradigms: (1) reinforcement learning (RL) methods that optimize sparse outcome-based rewards, yet suffer from instability and low sample efficiency; and (2) search-based techniques guided by independently trained, static process reward models (PRMs), which require expensive human- or LLM-generated labels and often degrade under distribution shifts. In this paper, we introduce AIRL-S, the first natural unification of RL-based and search-based TTS. Central to AIRL-S is the insight that the reward function learned during RL training inherently represents the ideal PRM for guiding downstream search. Specifically, we leverage adversarial inverse reinforcement learning (AIRL) combined with group relative policy optimization (GRPO) to learn a dense, dynamic PRM directly from correct reasoning traces, entirely eliminating the need for labeled intermediate process data. At inference, the resulting PRM simultaneously serves as the critic for RL rollouts and as a heuristic to effectively guide search procedures, facilitating robust reasoning chain extension, mitigating reward hacking, and enhancing cross-task generalization. Experimental results across eight benchmarks, including mathematics, scientific reasoning, and code generation, demonstrate that our unified approach improves performance by 9 % on average over the base model, matching GPT-4o. Furthermore, when integrated into multiple search algorithms, our PRM consistently outperforms all baseline PRMs trained with labeled data. These results underscore that, indeed, your reward function for RL is your best PRM for search, providing a robust and cost-effective solution to complex reasoning tasks in LLMs.
♻ ☆ MCP-Guard: A Defense Framework for Model Context Protocol Integrity in Large Language Model Applications
The integration of Large Language Models (LLMs) with external tools via protocols such as the Model Context Protocol (MCP) introduces critical security vulnerabilities, including prompt injection, data exfiltration, and other threats. To counter these challenges, we propose MCP-Guard, a robust, layered defense architecture designed for LLM--tool interactions. MCP-Guard employs a three-stage detection pipeline that balances efficiency with accuracy: it progresses from lightweight static scanning for overt threats and a deep neural detector for semantic attacks, to our fine-tuned E5-based model achieves (96.01) accuracy in identifying adversarial prompts. Finally, a lightweight LLM arbitrator synthesizes these signals to deliver the final decision while minimizing false positives. To facilitate rigorous training and evaluation, we also introduce MCP-AttackBench, a comprehensive benchmark of over 70,000 samples. Sourced from public datasets and augmented by GPT-4, MCP-AttackBench simulates diverse, real-world attack vectors in the MCP format, providing a foundation for future research into securing LLM-tool ecosystems.
♻ ☆ PAR-AdvGAN: Improving Adversarial Attack Capability with Progressive Auto-Regression AdvGAN KDD 2025
Deep neural networks have demonstrated remarkable performance across various domains. However, they are vulnerable to adversarial examples, which can lead to erroneous predictions. Generative Adversarial Networks (GANs) can leverage the generators and discriminators model to quickly produce high-quality adversarial examples. Since both modules train in a competitive and simultaneous manner, GAN-based algorithms like AdvGAN can generate adversarial examples with better transferability compared to traditional methods. However, the generation of perturbations is usually limited to a single iteration, preventing these examples from fully exploiting the potential of the methods. To tackle this issue, we introduce a novel approach named Progressive Auto-Regression AdvGAN (PAR-AdvGAN). It incorporates an auto-regressive iteration mechanism within a progressive generation network to craft adversarial examples with enhanced attack capability. We thoroughly evaluate our PAR-AdvGAN method with a large-scale experiment, demonstrating its superior performance over various state-of-the-art black-box adversarial attacks, as well as the original AdvGAN.Moreover, PAR-AdvGAN significantly accelerates the adversarial example generation, i.e., achieving the speeds of up to 335.5 frames per second on Inception-v3 model, outperforming the gradient-based transferable attack algorithms. Our code is available at: https://github.com/LMBTough/PAR
comment: Best paper award of ECML-PKDD 2025
♻ ☆ GRAFT: Gradient-Aware Fast MaxVol Technique for Dynamic Data Sampling
Training modern neural networks on large datasets is computationally and environmentally costly. We introduce GRAFT, a scalable in-training subset selection method that (i) extracts a low-rank feature representation for each batch, (ii) applies a Fast MaxVol sampler to select a small, diverse subset that spans the batch's dominant subspace, and (iii) dynamically adjusts the subset size using a gradient-approximation criterion. By operating in low-rank subspaces and training on carefully chosen examples instead of full batches, GRAFT preserves the training trajectory while reducing wall-clock time, energy consumption, and $\mathrm{CO}_2$ emissions. Across multiple benchmarks, GRAFT matches or exceeds recent selection baselines in both accuracy and efficiency, providing a favorable trade-off between accuracy, efficiency, and emissions.
♻ ☆ Coarse-to-Fine Process Reward Modeling for Mathematical Reasoning
The Process Reward Model (PRM) plays a crucial role in mathematical reasoning tasks, requiring high-quality supervised process data. However, we observe that reasoning steps generated by Large Language Models (LLMs) often fail to exhibit strictly incremental information, leading to redundancy that can hinder effective reasoning. To address this issue, we propose CFPRM, a simple yet effective coarse-to-fine strategy. Instead of focusing on the detection of redundant steps, our approach first establishes a coarse-grained window to merge adjacent reasoning steps into unified, holistic steps. The window size is then progressively reduced to extract fine-grained reasoning steps, enabling data collection at multiple granularities for training. By leveraging this hierarchical refinement process, CFPRM mitigates redundancy while preserving essential fine-grained knowledge. Extensive experiments on two reasoning datasets across three loss criteria validate the CFPRM's effectiveness and versatility.
♻ ☆ Collaborative Stance Detection via Small-Large Language Model Consistency Verification
Stance detection on social media aims to identify attitudes expressed in tweets towards specific targets. Current studies prioritize Large Language Models (LLMs) over Small Language Models (SLMs) due to the overwhelming performance improving provided by LLMs. However, heavily relying on LLMs for stance detection, regardless of the cost, is impractical for real-world social media monitoring systems that require vast data analysis. To this end, we propose \textbf{\underline{Co}}llaborative Stance Detection via Small-Large Language Model Consistency \textbf{\underline{Ver}}ification (\textbf{CoVer}) framework, which enhances LLM utilization via context-shared batch reasoning and logical verification between LLM and SLM. Specifically, instead of processing each text individually, CoVer processes texts batch-by-batch, obtaining stance predictions and corresponding explanations via LLM reasoning in a shared context. Then, to exclude the bias caused by context noises, CoVer introduces the SLM for logical consistency verification. Finally, texts that repeatedly exhibit low logical consistency are classified using consistency-weighted aggregation of prior LLM stance predictions. Our experiments show that CoVer outperforms state-of-the-art methods across multiple benchmarks in the zero-shot setting, achieving 0.54 LLM queries per tweet while significantly enhancing performance. Our CoVer offers a more practical solution for LLM deploying for social media stance detection.
♻ ☆ Unsupervised Automata Learning via Discrete Optimization
Automata learning is a successful tool for many application domains such as robotics and automatic verification. Typically, automata learning techniques operate in a supervised learning setting (active or passive) where they learn a finite state machine in contexts where additional information, such as labeled system executions, is available. However, other settings, such as learning from unlabeled data - an important aspect in machine learning - remain unexplored. To overcome this limitation, we propose a framework for learning a deterministic finite automaton (DFA) from a given multi-set of unlabeled words. We show that this problem is computationally hard and develop three learning algorithms based on constraint optimization. Moreover, we introduce novel regularization schemes for our optimization problems that improve the overall interpretability of our DFAs. Using a prototype implementation, we demonstrate practical feasibility in the context of unsupervised anomaly detection.
♻ ☆ Towards Scalable Training for Handwritten Mathematical Expression Recognition
Large foundation models have achieved significant performance gains through scalable training on massive datasets. However, the field of \textbf{H}andwritten \textbf{M}athematical \textbf{E}xpression \textbf{R}ecognition (HMER) has been impeded by the scarcity of data, primarily due to the arduous and costly process of manual annotation. To bridge this gap, we propose a novel method integrating limited handwritten formulas with large-scale LaTeX-rendered formulas by developing a scalable data engine to generate complex and consistent LaTeX sequences. With this engine, we built the largest formula dataset to date, termed \texttt{Tex80M}, comprising over 80 million high-quality training instances. Then we propose \texttt{TexTeller}, the first HMER model trained at scale, by mix-training \texttt{Tex80M} with a relatively small HME dataset. The expansive training dataset and our refined pipeline have equipped \texttt{TexTeller} with state-of-the-art (SOTA) performance across nearly all benchmarks. To advance the field, we will openly release our complete model, entire dataset, and full codebase, enabling further research building upon our contributions.
comment: We have found that there is a risk of data leakage in our experimental process, which may cause misunderstandings to the community
♻ ☆ Leveraging LLMs for Utility-Focused Annotation: Reducing Manual Effort for Retrieval and RAG
Retrieval models typically rely on costly human-labeled query-document relevance annotations for training and evaluation. To reduce this cost and leverage the potential of Large Language Models (LLMs) in relevance judgments, we aim to explore whether LLM-generated annotations can effectively replace human annotations in training retrieval models. Retrieval usually emphasizes relevance, which indicates "topic-relatedness" of a document to a query, while in RAG, the value of a document (or utility) depends on how it contributes to answer generation. Recognizing this mismatch, some researchers use LLM performance on downstream tasks with documents as labels, but this approach requires manual answers for specific tasks, leading to high costs and limited generalization. In another line of work, prompting LLMs to select useful documents as RAG references eliminates the need for human annotation and is not task-specific. If we leverage LLMs' utility judgments to annotate retrieval data, we may retain cross-task generalization without human annotation in large-scale corpora. Therefore, we investigate utility-focused annotation via LLMs for large-scale retriever training data across both in-domain and out-of-domain settings on the retrieval and RAG tasks. To reduce the impact of low-quality positives labeled by LLMs, we design a novel loss function, i.e., Disj-InfoNCE. Our experiments reveal that: (1) Retrievers trained on utility-focused annotations significantly outperform those trained on human annotations in the out-of-domain setting on both tasks, demonstrating superior generalization capabilities. (2) LLM annotation does not replace human annotation in the in-domain setting. However, incorporating just 20% human-annotated data enables retrievers trained with utility-focused annotations to match the performance of models trained entirely with human annotations.
comment: Accepted by the EMNLP25 main conference
♻ ☆ Generalized Tree Edit Distance (GTED): A Faithful Evaluation Metric for Statement Autoformalization AI4
Statement autoformalization, the automated translation of statements from natural language into formal languages, has become a subject of extensive research, yet the development of robust automated evaluation metrics remains limited. Existing evaluation methods often lack semantic understanding, face challenges with high computational costs, and are constrained by the current progress of automated theorem proving. To address these issues, we propose GTED (Generalized Tree Edit Distance), a novel evaluation framework that first standardizes formal statements and converts them into operator trees, then determines the semantic similarity using the eponymous GTED metric. Across the miniF2F and ProofNet benchmarks, GTED consistently ranks as a top-performing metric, achieving the highest accuracy and Kappa on miniF2F and the joint-highest accuracy on ProofNet. This strong overall performance provides the community with a computationally lightweight and more faithful metric for automated evaluation. The code and experimental results are available at https://github.com/XiaoyangLiu-sjtu/GTED.
comment: Accepted to AI4Math@ICML25
♻ ☆ Sentiment Reasoning for Healthcare ACL 2025
Transparency in AI healthcare decision-making is crucial. By incorporating rationales to explain reason for each predicted label, users could understand Large Language Models (LLMs)'s reasoning to make better decision. In this work, we introduce a new task - Sentiment Reasoning - for both speech and text modalities, and our proposed multimodal multitask framework and the world's largest multimodal sentiment analysis dataset. Sentiment Reasoning is an auxiliary task in sentiment analysis where the model predicts both the sentiment label and generates the rationale behind it based on the input transcript. Our study conducted on both human transcripts and Automatic Speech Recognition (ASR) transcripts shows that Sentiment Reasoning helps improve model transparency by providing rationale for model prediction with quality semantically comparable to humans while also improving model's classification performance (+2% increase in both accuracy and macro-F1) via rationale-augmented fine-tuning. Also, no significant difference in the semantic quality of generated rationales between human and ASR transcripts. All code, data (five languages - Vietnamese, English, Chinese, German, and French) and models are published online: https://github.com/leduckhai/Sentiment-Reasoning
comment: ACL 2025 Industry Track (Oral)
♻ ☆ PoisonSwarm: Universal Harmful Information Synthesis via Model Crowdsourcing
To construct responsible and secure AI applications, harmful information data is widely utilized for adversarial testing and the development of safeguards. Existing studies mainly leverage Large Language Models (LLMs) to synthesize data to obtain high-quality task datasets at scale, thereby avoiding costly human annotation. However, limited by the safety alignment mechanisms of LLMs, the synthesis of harmful data still faces challenges in generation reliability and content diversity. In this study, we propose a novel harmful information synthesis framework, PoisonSwarm, which applies the model crowdsourcing strategy to generate diverse harmful data while maintaining a high success rate. Specifically, we generate abundant benign data as the based templates in a counterfactual manner. Subsequently, we decompose each based template into multiple semantic units and perform unit-by-unit toxification and final refinement through dynamic model switching, thus ensuring the success of synthesis. Experimental results demonstrate that PoisonSwarm achieves state-of-the-art performance in synthesizing different categories of harmful data with high scalability and diversity.
♻ ☆ Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities
Mental health disorders create profound personal and societal burdens, yet conventional diagnostics are resource-intensive and limit accessibility. Advances in artificial intelligence, particularly natural language processing and multimodal methods, offer promise for detecting and addressing mental disorders, but raise critical privacy risks. This paper examines these challenges and proposes solutions, including anonymization, synthetic data, and privacy-preserving training, while outlining frameworks for privacy-utility trade-offs, aiming to advance reliable, privacy-aware AI tools that support clinical decision-making and improve mental health outcomes.
comment: 18 pages, 2 figures
♻ ☆ FedEFC: Federated Learning Using Enhanced Forward Correction Against Noisy Labels
Federated Learning (FL) is a powerful framework for privacy-preserving distributed learning. It enables multiple clients to collaboratively train a global model without sharing raw data. However, handling noisy labels in FL remains a major challenge due to heterogeneous data distributions and communication constraints, which can severely degrade model performance. To address this issue, we propose FedEFC, a novel method designed to tackle the impact of noisy labels in FL. FedEFC mitigates this issue through two key techniques: (1) prestopping, which prevents overfitting to mislabeled data by dynamically halting training at an optimal point, and (2) loss correction, which adjusts model updates to account for label noise. In particular, we develop an effective loss correction tailored to the unique challenges of FL, including data heterogeneity and decentralized training. Furthermore, we provide a theoretical analysis, leveraging the composite proper loss property, to demonstrate that the FL objective function under noisy label distributions can be aligned with the clean label distribution. Extensive experimental results validate the effectiveness of our approach, showing that it consistently outperforms existing FL techniques in mitigating the impact of noisy labels, particularly under heterogeneous data settings (e.g., achieving up to 41.64% relative performance improvement over the existing loss correction method).
comment: 9 pages, 3 figures, version 2
♻ ☆ from Benign import Toxic: Jailbreaking the Language Model via Adversarial Metaphors
Current studies have exposed the risk of Large Language Models (LLMs) generating harmful content by jailbreak attacks. However, they overlook that the direct generation of harmful content from scratch is more difficult than inducing LLM to calibrate benign content into harmful forms. In our study, we introduce a novel attack framework that exploits AdVersArial meTAphoR (AVATAR) to induce the LLM to calibrate malicious metaphors for jailbreaking. Specifically, to answer harmful queries, AVATAR adaptively identifies a set of benign but logically related metaphors as the initial seed. Then, driven by these metaphors, the target LLM is induced to reason and calibrate about the metaphorical content, thus jailbroken by either directly outputting harmful responses or calibrating residuals between metaphorical and professional harmful content. Experimental results demonstrate that AVATAR can effectively and transferable jailbreak LLMs and achieve a state-of-the-art attack success rate across multiple advanced LLMs.
comment: arXiv admin note: substantial text overlap with arXiv:2412.12145
♻ ☆ Soteria: Language-Specific Functional Parameter Steering for Multilingual Safety Alignment
Ensuring consistent safety across multiple languages remains a significant challenge for large language models (LLMs). We introduce Soteria, a lightweight yet powerful strategy that locates and minimally adjusts the "functional heads" most responsible for harmful content generation in each language. By altering only a fraction of parameters, Soteria drastically reduces policy violations without sacrificing overall model performance, even in low-resource settings. To rigorously evaluate our approach, we also present XThreatBench, a specialized multilingual dataset capturing fine-grained harmful behaviors drawn from real policy guidelines. Experiments with leading open-source LLMs (e.g., Llama, Qwen, Mistral) show that Soteria consistently improves safety metrics across high-, mid-, and low-resource languages. These findings highlight a promising path toward scalable, linguistically attuned, and ethically aligned LLMs worldwide.
comment: Accepted at EMNLP 2025
♻ ☆ VERUS-LM: a Versatile Framework for Combining LLMs with Symbolic Reasoning
A recent approach to neurosymbolic reasoning is to explicitly combine the strengths of large language models (LLMs) and symbolic solvers to tackle complex reasoning tasks. However, current approaches face significant limitations, including poor generalizability due to task-specific prompts, inefficiencies caused by the lack of separation between knowledge and queries, and restricted inferential capabilities. These shortcomings hinder their scalability and applicability across diverse domains. In this paper, we introduce VERUS-LM, a novel framework designed to address these challenges. VERUS-LM employs a generic prompting mechanism, clearly separates domain knowledge from queries, and supports a wide range of different logical reasoning tasks. This framework enhances adaptability, reduces computational cost, and allows for richer forms of reasoning, such as optimization and constraint satisfaction. We show that our approach succeeds in diverse reasoning on a novel dataset, markedly outperforming LLMs. Additionally, our system achieves competitive results on common reasoning benchmarks when compared to other state-of-the-art approaches, and significantly surpasses them on the difficult AR-LSAT dataset. By pushing the boundaries of hybrid reasoning, VERUS-LM represents a significant step towards more versatile neurosymbolic AI systems
comment: Accepted at ICLP 2025, part of ECPTS
♻ ☆ Can Hallucinations Help? Boosting LLMs for Drug Discovery
Hallucinations in large language models (LLMs), plausible but factually inaccurate text, are often viewed as undesirable. However, recent work suggests that such outputs may hold creative potential. In this paper, we investigate whether hallucinations can improve LLMs on molecule property prediction, a key task in early-stage drug discovery. We prompt LLMs to generate natural language descriptions from molecular SMILES strings and incorporate these often hallucinated descriptions into downstream classification tasks. Evaluating seven instruction-tuned LLMs across five datasets, we find that hallucinations significantly improve predictive accuracy for some models. Notably, Falcon3-Mamba-7B outperforms all baselines when hallucinated text is included, while hallucinations generated by GPT-4o consistently yield the greatest gains between models. We further identify and categorize over 18,000 beneficial hallucinations, with structural misdescriptions emerging as the most impactful type, suggesting that hallucinated statements about molecular structure may increase model confidence. Ablation studies show that larger models benefit more from hallucinations, while temperature has a limited effect. Our findings challenge conventional views of hallucination as purely problematic and suggest new directions for leveraging hallucinations as a useful signal in scientific modeling tasks like drug discovery.
♻ ☆ MedArabiQ: Benchmarking Large Language Models on Arabic Medical Tasks
Large Language Models (LLMs) have demonstrated significant promise for various applications in healthcare. However, their efficacy in the Arabic medical domain remains unexplored due to the lack of high-quality domain-specific datasets and benchmarks. This study introduces MedArabiQ, a novel benchmark dataset consisting of seven Arabic medical tasks, covering multiple specialties and including multiple choice questions, fill-in-the-blank, and patient-doctor question answering. We first constructed the dataset using past medical exams and publicly available datasets. We then introduced different modifications to evaluate various LLM capabilities, including bias mitigation. We conducted an extensive evaluation with five state-of-the-art open-source and proprietary LLMs, including GPT-4o, Claude 3.5-Sonnet, and Gemini 1.5. Our findings highlight the need for the creation of new high-quality benchmarks that span different languages to ensure fair deployment and scalability of LLMs in healthcare. By establishing this benchmark and releasing the dataset, we provide a foundation for future research aimed at evaluating and enhancing the multilingual capabilities of LLMs for the equitable use of generative AI in healthcare.
comment: 21 pages
♻ ☆ A Survey on 3D Gaussian Splatting
3D Gaussian splatting (GS) has emerged as a transformative technique in explicit radiance field and computer graphics. This innovative approach, characterized by the use of millions of learnable 3D Gaussians, represents a significant departure from mainstream neural radiance field approaches, which predominantly use implicit, coordinate-based models to map spatial coordinates to pixel values. 3D GS, with its explicit scene representation and differentiable rendering algorithm, not only promises real-time rendering capability but also introduces unprecedented levels of editability. This positions 3D GS as a potential game-changer for the next generation of 3D reconstruction and representation. In the present paper, we provide the first systematic overview of the recent developments and critical contributions in the domain of 3D GS. We begin with a detailed exploration of the underlying principles and the driving forces behind the emergence of 3D GS, laying the groundwork for understanding its significance. A focal point of our discussion is the practical applicability of 3D GS. By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond. This is complemented by a comparative analysis of leading 3D GS models, evaluated across various benchmark tasks to highlight their performance and practical utility. The survey concludes by identifying current challenges and suggesting potential avenues for future research. Through this survey, we aim to provide a valuable resource for both newcomers and seasoned researchers, fostering further exploration and advancement in explicit radiance field.
comment: Ongoing project; Paper list: https://github.com/guikunchen/Awesome3DGS ; Benchmark: https://github.com/guikunchen/3DGS-Benchmarks
♻ ☆ On the Challenges and Opportunities in Generative AI
The field of deep generative modeling has grown rapidly in the last few years. With the availability of massive amounts of training data coupled with advances in scalable unsupervised learning paradigms, recent large-scale generative models show tremendous promise in synthesizing high-resolution images and text, as well as structured data such as videos and molecules. However, we argue that current large-scale generative AI models exhibit several fundamental shortcomings that hinder their widespread adoption across domains. In this work, our objective is to identify these issues and highlight key unresolved challenges in modern generative AI paradigms that should be addressed to further enhance their capabilities, versatility, and reliability. By identifying these challenges, we aim to provide researchers with insights for exploring fruitful research directions, thus fostering the development of more robust and accessible generative AI solutions.
♻ ☆ DIDS: Domain Impact-aware Data Sampling for Large Language Model Training
Large language models (LLMs) are commonly trained on multi-domain datasets, where domain sampling strategies significantly impact model performance due to varying domain importance across downstream tasks. Existing approaches for optimizing domain-level sampling strategies struggle with maintaining intra-domain consistency and accurately measuring domain impact. In this paper, we present Domain Impact-aware Data Sampling (DIDS). To ensure intra-domain consistency, a gradient clustering algorithm is proposed to group training data based on their learning effects, where a proxy language model and dimensionality reduction are employed to reduce computational overhead. To accurately measure domain impact, we develop a Fisher Information Matrix (FIM) guided metric that quantifies how domain-specific parameter updates affect the model's output distributions on downstream tasks, with theoretical guarantees. Furthermore, to determine optimal sampling ratios, DIDS combines both the FIM-guided domain impact assessment and loss learning trajectories that indicate domain-specific potential, while accounting for diminishing marginal returns. Extensive experiments demonstrate that DIDS achieves 3.4% higher average performance while maintaining comparable training efficiency. The code is available at https://github.com/shiweijiezero/DIDS.
♻ ☆ Perceptual Implications of Automatic Anonymization in Pathological Speech
Automatic anonymization techniques are essential for ethical sharing of pathological speech data, yet their perceptual consequences remain understudied. We present a comprehensive human-centered analysis of anonymized pathological speech, using a structured protocol involving ten native and non-native German listeners with diverse linguistic, clinical, and technical backgrounds. Listeners evaluated anonymized-original utterance pairs from 180 speakers spanning Cleft Lip and Palate, Dysarthria, Dysglossia, Dysphonia, and healthy controls. Speech was anonymized using state-of-the-art automatic methods (equal error rates in the range of 30-40%). Listeners completed Turing-style discrimination and quality rating tasks under zero-shot (single-exposure) and few-shot (repeated-exposure) conditions. Discrimination accuracy was high overall (91% zero-shot; 93% few-shot), but varied by disorder (repeated-measures ANOVA: p=0.007), ranging from 96% (Dysarthria) to 86% (Dysphonia). Anonymization consistently reduced perceived quality across groups (from 83% to 59%, p<0.001), with pathology-specific degradation patterns (one-way ANOVA: p=0.005). Native listeners showed a non-significant trend toward higher original speech ratings (Delta=4%, p=0.199), but this difference was minimal after anonymization (Delta=1%, p=0.724). No significant gender-based bias was observed. Perceptual outcomes did not correlate with automatic metrics; intelligibility was linked to perceived quality in original speech but not after anonymization. These findings underscore the need for listener-informed, disorder-specific anonymization strategies that preserve both privacy and perceptual integrity.
♻ ☆ Dynamically Adaptive Reasoning via LLM-Guided MCTS for Efficient and Context-Aware KGQA
Knowledge Graph Question Answering (KGQA) aims to interpret natural language queries and perform structured reasoning over knowledge graphs by leveraging their relational and semantic structures to retrieve accurate answers. Recent KGQA methods primarily follow either retrieve-then-reason paradigm, relying on GNNs or heuristic rules for static paths extraction, or dynamic path generation strategies that use large language models (LLMs) with prompting to jointly perform retrieval and reasoning. However, the former suffers from limited adaptability due to static path extraction and lack of contextual refinement, while the latter incurs high computational costs and struggles with accurate path evaluation due to reliance on fixed scoring functions and extensive LLM calls. To address these issues, this paper proposes Dynamically Adaptive MCTS-based Reasoning (DAMR), a novel framework that integrates symbolic search with adaptive path evaluation for efficient and context-aware KGQA. DAMR employs a Monte Carlo Tree Search (MCTS) backbone guided by an LLM-based planner, which selects top-$k$ relevant relations at each step to reduce search space. To improve path evaluation accuracy, we introduce a lightweight Transformer-based scorer that performs context-aware plausibility estimation by jointly encoding the question and relation sequence through cross-attention, enabling the model to capture fine-grained semantic shifts during multi-hop reasoning. Furthermore, to alleviate the scarcity of high-quality supervision, DAMR incorporates a dynamic pseudo-path refinement mechanism that periodically generates training signals from partial paths explored during search, allowing the scorer to continuously adapt to the evolving distribution of reasoning trajectories. Extensive experiments on multiple KGQA benchmarks show that DAMR significantly outperforms state-of-the-art methods.
♻ ☆ Nested Graph Pseudo-Label Refinement for Noisy Label Domain Adaptation Learning
Graph Domain Adaptation (GDA) facilitates knowledge transfer from labeled source graphs to unlabeled target graphs by learning domain-invariant representations, which is essential in applications such as molecular property prediction and social network analysis. However, most existing GDA methods rely on the assumption of clean source labels, which rarely holds in real-world scenarios where annotation noise is pervasive. This label noise severely impairs feature alignment and degrades adaptation performance under domain shifts. To address this challenge, we propose Nested Graph Pseudo-Label Refinement (NeGPR), a novel framework tailored for graph-level domain adaptation with noisy labels. NeGPR first pretrains dual branches, i.e., semantic and topology branches, by enforcing neighborhood consistency in the feature space, thereby reducing the influence of noisy supervision. To bridge domain gaps, NeGPR employs a nested refinement mechanism in which one branch selects high-confidence target samples to guide the adaptation of the other, enabling progressive cross-domain learning. Furthermore, since pseudo-labels may still contain noise and the pre-trained branches are already overfitted to the noisy labels in the source domain, NeGPR incorporates a noise-aware regularization strategy. This regularization is theoretically proven to mitigate the adverse effects of pseudo-label noise, even under the presence of source overfitting, thus enhancing the robustness of the adaptation process. Extensive experiments on benchmark datasets demonstrate that NeGPR consistently outperforms state-of-the-art methods under severe label noise, achieving gains of up to 12.7% in accuracy.
♻ ☆ AGITB: A Signal-Level Benchmark for Evaluating Artificial General Intelligence
Despite major advances in machine learning, current artificial intelligence systems continue to fall short of human-like general intelligence. Existing evaluation frameworks, which are centered on language or perception tasks, fail to capture generality at its core and offer no guidance. The Artificial General Intelligence Testbed (AGITB) is a novel, freely available benchmarking suite consisting of thirteen core requirements, twelve of which are implemented as fully automatable tests designed to assess low-level cognitive precursors through binary signal prediction. AGITB requires models to forecast temporal sequences without pretraining, symbolic manipulation, or semantic grounding. The framework isolates core computational invariants-such as determinism, sensitivity, and generalization-that align with principles of biological information processing. Engineered to resist brute-force and memorization-based approaches, AGITB presumes no prior knowledge and demands learning from first principles. While humans pass all tests, no current AI system has met the full AGITB criteria, underscoring its potential as a rigorous, interpretable, and actionable benchmark for guiding and evaluating progress toward artificial general intelligence. A reference implementation of AGITB is available on GitHub.
comment: 16 pages, 2 figures
♻ ☆ Comparative Explanations: Explanation Guided Decision Making for Human-in-the-Loop Preference Selection AI-2025
This paper introduces Multi-Output LOcal Narrative Explanation (MOLONE), a novel comparative explanation method designed to enhance preference selection in human-in-the-loop Preference Bayesian optimization (PBO). The preference elicitation in PBO is a non-trivial task because it involves navigating implicit trade-offs between vector-valued outcomes, subjective priorities of decision-makers, and decision-makers' uncertainty in preference selection. Existing explainable AI (XAI) methods for BO primarily focus on input feature importance, neglecting the crucial role of outputs (objectives) in human preference elicitation. MOLONE addresses this gap by providing explanations that highlight both input and output importance, enabling decision-makers to understand the trade-offs between competing objectives and make more informed preference selections. MOLONE focuses on local explanations, comparing the importance of input features and outcomes across candidate samples within a local neighborhood of the search space, thus capturing nuanced differences relevant to preference-based decision-making. We evaluate MOLONE within a PBO framework using benchmark multi-objective optimization functions, demonstrating its effectiveness in improving convergence compared to noisy preference selections. Furthermore, a user study confirms that MOLONE significantly accelerates convergence in human-in-the-loop scenarios by facilitating more efficient identification of preferred options.
comment: Accepted at The World Conference on eXplainable Artificial Intelligence 2025 (XAI-2025)
♻ ☆ Explainable Bayesian Optimization AI-2025
Manual parameter tuning of cyber-physical systems is a common practice, but it is labor-intensive. Bayesian Optimization (BO) offers an automated alternative, yet its black-box nature reduces trust and limits human-BO collaborative system tuning. Experts struggle to interpret BO recommendations due to the lack of explanations. This paper addresses the post-hoc BO explainability problem for cyber-physical systems. We introduce TNTRules (Tune-No-Tune Rules), a novel algorithm that provides both global and local explanations for BO recommendations. TNTRules generates actionable rules and visual graphs, identifying optimal solution bounds and ranges, as well as potential alternative solutions. Unlike existing explainable AI (XAI) methods, TNTRules is tailored specifically for BO, by encoding uncertainty via a variance pruning technique and hierarchical agglomerative clustering. A multi-objective optimization approach allows maximizing explanation quality. We evaluate TNTRules using established XAI metrics (Correctness, Completeness, and Compactness) and compare it against adapted baseline methods. The results demonstrate that TNTRules generates high-fidelity, compact, and complete explanations, significantly outperforming three baselines on 5 multi-objective testing functions and 2 hyperparameter tuning problems.
comment: Accepted at The World Conference on eXplainable Artificial Intelligence 2025 (XAI-2025)
♻ ☆ Top-Theta Attention: Sparsifying Transformers by Compensated Thresholding
We present Top-Theta (Top-$\theta$) Attention, a training-free method for sparsifying transformer attention during inference. Our key insight is that static, per-head thresholds can be calibrated to retain the desired constant number of significant elements per attention row. This approach enables content-based sparsity without retraining, and it remains robust across data domains. We further introduce compensation techniques to preserve accuracy under aggressive sparsification, establishing attention thresholding as a practical and principled alternative to top-k attention. We provide extensive evaluation on natural language processing tasks, showing that Top-$\theta$ achieves 3-10x reduction in V-cache usage and up to 10x fewer attention elements during inference while degrading no more than 1% in accuracy.
comment: 11 pages, 11 figures + Appendix. work under submission
♻ ☆ ReasonRank: Empowering Passage Ranking with Strong Reasoning Ability
Large Language Model (LLM) based listwise ranking has shown superior performance in many passage ranking tasks. With the development of Large Reasoning Models, many studies have demonstrated that step-by-step reasoning during test-time helps improve listwise ranking performance. However, due to the scarcity of reasoning-intensive training data, existing rerankers perform poorly in many complex ranking scenarios and the ranking ability of reasoning-intensive rerankers remains largely underdeveloped. In this paper, we first propose an automated reasoning-intensive training data synthesis framework, which sources training queries and passages from diverse domains and applies DeepSeek-R1 to generate high-quality training labels. A self-consistency data filtering mechanism is designed to ensure the data quality. To empower the listwise reranker with strong reasoning ability, we further propose a two-stage post-training approach, which includes a cold-start supervised fine-tuning (SFT) stage for reasoning pattern learning and a reinforcement learning (RL) stage for further ranking ability enhancement. During the RL stage, based on the nature of listwise ranking, we design a multi-view ranking reward, which is more effective than a ranking metric-based reward. Extensive experiments demonstrate that our trained reasoning-intensive reranker \textbf{ReasonRank} outperforms existing baselines significantly and also achieves much lower latency than pointwise reranker Rank1. \textbf{Through further experiments, our ReasonRank has achieved state-of-the-art (SOTA) performance 40.6 on the BRIGHT leaderboard\footnote{https://brightbenchmark.github.io/}.} Our codes are available at https://github.com/8421BCD/ReasonRank.
comment: 21 pages
♻ ☆ CCD: Continual Consistency Diffusion for Lifelong Generative Modeling
While diffusion-based models have shown remarkable generative capabilities in static settings, their extension to continual learning (CL) scenarios remains fundamentally constrained by Generative Catastrophic Forgetting (GCF). We observe that even with a rehearsal buffer, new generative skills often overwrite previous ones, degrading performance on earlier tasks. Although some initial efforts have explored this space, most rely on heuristics borrowed from continual classification methods or use trained diffusion models as ad hoc replay generators, lacking a principled, unified solution to mitigating GCF and often conducting experiments under fragmented and inconsistent settings. To address this gap, we introduce the Continual Diffusion Generation (CDG), a structured pipeline that redefines how diffusion models are implemented under CL and enables systematic evaluation of GCF. Beyond the empirical pipeline, we propose the first theoretical foundation for CDG, grounded in a cross-task analysis of diffusion-specific generative dynamics. Our theoretical investigation identifies three fundamental consistency principles essential for preserving knowledge in the rehearsal buffer over time: inter-task knowledge consistency, unconditional knowledge consistency, and prior knowledge consistency. These criteria expose the latent mechanisms through which generative forgetting manifests across sequential tasks. Motivated by these insights, we further propose \textit{Continual Consistency Diffusion} (CCD), a principled training framework that enforces these consistency objectives via hierarchical loss functions: $\mathcal{L}_{IKC}$, $\mathcal{L}_{UKC}$, and $\mathcal{L}_{PKC}$. Extensive experiments show that CCD achieves SOTA performance across various benchmarks, especially improving generative metrics in overlapping-task scenarios.
♻ ☆ GPU Kernel Scientist: An LLM-Driven Framework for Iterative Kernel Optimization ICML 2025
Optimizing GPU kernels for high performance is a complex task, often demanding deep architectural knowledge, extensive profiling, and iterative experimentation. This challenge is amplified when targeting newer or less-documented GPU architectures where traditional development aids are scarce. This paper introduces an LLM-powered "GPU Kernel Scientist," an automated methodology for iteratively refining accelerator kernels. Our methodology employs LLMs in a multi-stage, evolutionary process: (a) strategically selecting promising prior code versions as a basis for new iterations; (b) generating hypotheses for optimization experiments, based on existing code and assimilated knowledge from general GPU literature; and (c) autonomously implementing these experiments through code modification and subsequent submission to an external evaluation system, using only observed timing data as performance feedback. We detail how this approach navigates the challenges of the AMD MI300 target architecture and leverages LLMs to compensate for limited domain-specific human expertise. In addition to our results, we present the architectural design, operational workflow, and qualitative insights, highlighting the potential of LLM-driven agents to democratise and accelerate GPU kernel optimization, especially in resource-constrained or rapidly updating hardware environment.
comment: 4+1 page paper plus Appendices and Supplementary zip file. Presented at the ES-FoMo "Efficient Systems for Foundation Models" workshop at ICML 2025
♻ ☆ SpecExtend: A Drop-in Enhancement for Speculative Decoding of Long Sequences
Speculative decoding is a widely adopted technique for accelerating inference in large language models (LLMs), but its performance degrades on long inputs due to increased attention cost and reduced draft accuracy. We introduce SpecExtend, a drop-in enhancement that improves the performance of speculative decoding on long sequences without any additional training. First, SpecExtend integrates efficient attention mechanisms such as FlashAttention and Hybrid Tree Attention into both the draft and target models. To improve draft accuracy and speed on long inputs without retraining, we propose Cross-model Retrieval, a novel KV cache eviction strategy that uses the target model's attention scores to dynamically select relevant context for the draft model. Extensive evaluations on three long-context understanding datasets show that SpecExtend accelerates standard tree-based speculative decoding by up to 2.22x for inputs up to 16K tokens, providing an effective solution for speculative decoding of long sequences. Our code is available at https://github.com/jycha98/SpecExtend .
♻ ☆ A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization ICML 2024
Learning to sample from intractable distributions over discrete sets without relying on corresponding training data is a central problem in a wide range of fields, including Combinatorial Optimization. Currently, popular deep learning-based approaches rely primarily on generative models that yield exact sample likelihoods. This work introduces a method that lifts this restriction and opens the possibility to employ highly expressive latent variable models like diffusion models. Our approach is conceptually based on a loss that upper bounds the reverse Kullback-Leibler divergence and evades the requirement of exact sample likelihoods. We experimentally validate our approach in data-free Combinatorial Optimization and demonstrate that our method achieves a new state-of-the-art on a wide range of benchmark problems.
comment: Accepted at ICML 2024
♻ ☆ Tripartite-GraphRAG via Plugin Ontologies
Large Language Models (LLMs) have shown remarkable capabilities across various domains, yet they struggle with knowledge-intensive tasks in areas that demand factual accuracy, e.g. industrial automation and healthcare. Key limitations include their tendency to hallucinate, lack of source traceability (provenance), and challenges in timely knowledge updates. Combining language models with knowledge graphs (GraphRAG) offers promising avenues for overcoming these deficits. However, a major challenge lies in creating such a knowledge graph in the first place. Here, we propose a novel approach that combines LLMs with a tripartite knowledge graph representation, which is constructed by connecting complex, domain-specific objects via a curated ontology of corresponding, domain-specific concepts to relevant sections within chunks of text through a concept-anchored pre-analysis of source documents starting from an initial lexical graph. Subsequently, we formulate LLM prompt creation as an unsupervised node classification problem allowing for the optimization of information density, coverage, and arrangement of LLM prompts at significantly reduced lengths. An initial experimental evaluation of our approach on a healthcare use case, involving multi-faceted analyses of patient anamneses given a set of medical concepts as well as a series of clinical guideline literature, indicates its potential to optimize information density, coverage, and arrangement of LLM prompts while significantly reducing their lengths, which, in turn, may lead to reduced costs as well as more consistent and reliable LLM outputs.
♻ ☆ Direct Image Classification from Fourier Ptychographic Microscopy Measurements without Reconstruction
The computational imaging technique of Fourier Ptychographic Microscopy (FPM) enables high-resolution imaging with a wide field of view and can serve as an extremely valuable tool, e.g. in the classification of cells in medical applications. However, reconstructing a high-resolution image from tens or even hundreds of measurements is computationally expensive, particularly for a wide field of view. Therefore, in this paper, we investigate the idea of classifying the image content in the FPM measurements directly without performing a reconstruction step first. We show that Convolutional Neural Networks (CNN) can extract meaningful information from measurement sequences, significantly outperforming the classification on a single band-limited image (up to 12 %) while being significantly more efficient than a reconstruction of a high-resolution image. Furthermore, we demonstrate that a learned multiplexing of several raw measurements allows maintaining the classification accuracy while reducing the amount of data (and consequently also the acquisition time) significantly.
comment: Presented in ISCS25
♻ ☆ Randomized PCA Forest for Outlier Detection
We propose a novel unsupervised outlier detection method based on Randomized Principal Component Analysis (PCA). Inspired by the performance of Randomized PCA (RPCA) Forest in approximate K-Nearest Neighbor (KNN) search, we develop a novel unsupervised outlier detection method that utilizes RPCA Forest for outlier detection. Experimental results showcase the superiority of the proposed approach compared to the classical and state-of-the-art methods in performing the outlier detection task on several datasets while performing competitively on the rest. The extensive analysis of the proposed method reflects it high generalization power and its computational efficiency, highlighting it as a good choice for unsupervised outlier detection.
♻ ☆ Unlocking Robust Semantic Segmentation Performance via Label-only Elastic Deformations against Implicit Label Noise
While previous studies on image segmentation focus on handling severe (or explicit) label noise, real-world datasets also exhibit subtle (or implicit) label imperfections. These arise from inherent challenges, such as ambiguous object boundaries and annotator variability. Although not explicitly present, such mild and latent noise can still impair model performance. Typical data augmentation methods, which apply identical transformations to the image and its label, risk amplifying these subtle imperfections and limiting the model's generalization capacity. In this paper, we introduce NSegment+, a novel augmentation framework that decouples image and label transformations to address such realistic noise for semantic segmentation. By introducing controlled elastic deformations only to segmentation labels while preserving the original images, our method encourages models to focus on learning robust representations of object structures despite minor label inconsistencies. Extensive experiments demonstrate that NSegment+ consistently improves performance, achieving mIoU gains of up to +2.29, +2.38, +1.75, and +3.39 in average on Vaihingen, LoveDA, Cityscapes, and PASCAL VOC, respectively-even without bells and whistles, highlighting the importance of addressing implicit label noise. These gains can be further amplified when combined with other training tricks, including CutMix and Label Smoothing.
♻ ☆ Foundation Models for Cross-Domain EEG Analysis Application: A Survey
Electroencephalography (EEG) analysis stands at the forefront of neuroscience and artificial intelligence research, where foundation models are reshaping the traditional EEG analysis paradigm by leveraging their powerful representational capacity and cross-modal generalization. However, the rapid proliferation of these techniques has led to a fragmented research landscape, characterized by diverse model roles, inconsistent architectures, and a lack of systematic categorization. To bridge this gap, this study presents the first comprehensive modality-oriented taxonomy for foundation models in EEG analysis, systematically organizing research advances based on output modalities of the native EEG decoding, EEG-text, EEG-vision, EEG-audio, and broader multimodal frameworks. We rigorously analyze each category's research ideas, theoretical foundations, and architectural innovations, while highlighting open challenges such as model interpretability, cross-domain generalization, and real-world applicability in EEG-based systems. By unifying this dispersed field, our work not only provides a reference framework for future methodology development but accelerates the translation of EEG foundation models into scalable, interpretable, and online actionable solutions.
comment: Submitted to IEEE Journals
♻ ☆ CO-Bench: Benchmarking Language Model Agents in Algorithm Search for Combinatorial Optimization
Although LLM-based agents have attracted significant attention in domains such as software engineering and machine learning research, their role in advancing combinatorial optimization (CO) remains relatively underexplored. This gap underscores the need for a deeper understanding of their potential in tackling structured, constraint-intensive problems -- a pursuit currently limited by the absence of comprehensive benchmarks for systematic investigation. To address this, we introduce CO-Bench, a benchmark suite featuring 36 real-world CO problems drawn from a broad range of domains and complexity levels. CO-Bench includes structured problem formulations and curated data to support rigorous investigation of LLM agents. We evaluate multiple agentic frameworks against established human-designed algorithms, revealing the strengths and limitations of existing LLM agents and identifying promising directions for future research. CO-Bench is publicly available at https://github.com/sunnweiwei/CO-Bench.
♻ ☆ One Example Shown, Many Concepts Known! Counterexample-Driven Conceptual Reasoning in Mathematical LLMs ICML 2025
Leveraging mathematical Large Language Models (LLMs) for proof generation is a fundamental topic in LLMs research. We argue that the ability of current LLMs to prove statements largely depends on whether they have encountered the relevant proof process during training. This reliance limits their deeper understanding of mathematical theorems and related concepts. Inspired by the pedagogical method of "proof by counterexamples" commonly used in human mathematics education, our work aims to enhance LLMs' ability to conduct mathematical reasoning and proof through counterexamples. Specifically, we manually create a high-quality, university-level mathematical benchmark, CounterMATH, which requires LLMs to prove mathematical statements by providing counterexamples, thereby assessing their grasp of mathematical concepts. Additionally, we develop a data engineering framework to automatically obtain training data for further model improvement. Extensive experiments and detailed analyses demonstrate that CounterMATH is challenging, indicating that LLMs, such as OpenAI o1, have insufficient counterexample-driven proof capabilities. Moreover, our exploration into model training reveals that strengthening LLMs' counterexample-driven conceptual reasoning abilities is crucial for improving their overall mathematical capabilities. We believe that our work offers new perspectives on the community of mathematical LLMs.
comment: ICML 2025
♻ ☆ RedDino: A foundation model for red blood cell analysis
Red blood cells (RBCs) are essential to human health, and their precise morphological analysis is important for diagnosing hematological disorders. Despite the promise of foundation models in medical diagnostics, comprehensive AI solutions for RBC analysis remain scarce. We present RedDino, a self-supervised foundation model designed for RBC image analysis. RedDino uses an RBC-specific adaptation of the DINOv2 self-supervised learning framework and is trained on a curated dataset of 1.25 million RBC images from diverse acquisition modalities and sources. Extensive evaluations show that RedDino outperforms existing state-of-the-art models on RBC shape classification. Through assessments including linear probing and nearest neighbor classification, we confirm its strong feature representations and generalization ability. Our main contributions are: (1) a foundation model tailored for RBC analysis, (2) ablation studies exploring DINOv2 configurations for RBC modeling, and (3) a detailed evaluation of generalization performance. RedDino addresses key challenges in computational hematology by capturing nuanced morphological features, advancing the development of reliable diagnostic tools. The source code and pretrained models for RedDino are available at https://github.com/Snarci/RedDino, and the pretrained models can be downloaded from our Hugging Face collection at https://huggingface.co/collections/Snarcy/reddino-689a13e29241d2e5690202fc
♻ ☆ Hybrid Adaptive Modeling in Process Monitoring: Leveraging Sequence Encoders and Physics-Informed Neural Networks
In this work, we explore the integration of Sequence Encoding for Online Parameter Identification with Physics-Informed Neural Networks to create a model that, once trained, can be utilized for real time applications with variable parameters, boundary conditions, and initial conditions. Recently, the combination of PINNs with Sparse Regression has emerged as a method for performing dynamical system identification through supervised learning and sparse regression optimization, while also solving the dynamics using PINNs. However, this approach can be limited by variations in parameters or boundary and initial conditions, requiring retraining of the model whenever changes occur. In this work, we introduce an architecture that employs Deep Sets or Sequence Encoders to encode dynamic parameters, boundary conditions, and initial conditions, using these encoded features as inputs for the PINN, enabling the model to adapt to changes in parameters, BCs, and ICs. We apply this approach to three different problems. First, we analyze the Rossler ODE system, demonstrating the robustness of the model with respect to noise and its ability to generalize. Next, we explore the model's capability in a 2D Navier-Stokes PDE problem involving flow past a cylinder with a parametric sinusoidal inlet velocity function, showing that the model can encode pressure data from a few points to identify the inlet velocity profile and utilize physics to compute velocity and pressure throughout the domain. Finally, we address a 1D heat monitoring problem using real data from the heating of glass fiber and thermoplastic composite plates.
♻ ☆ Bayesian-Driven Graph Reasoning for Active Radio Map Construction
With the emergence of the low-altitude economy, radio maps have become essential for ensuring reliable wireless connectivity to aerial platforms. Autonomous aerial agents are commonly deployed for data collection using waypoint-based navigation; however, their limited battery capacity significantly constrains coverage and efficiency. To address this, we propose an uncertainty-aware radio map (URAM) reconstruction framework that explicitly leverages graph-based reasoning tailored for waypoint navigation. Our approach integrates two key deep learning components: (1) a Bayesian neural network that estimates spatial uncertainty in real time, and (2) an attention-based reinforcement learning policy that performs global reasoning over a probabilistic roadmap, using uncertainty estimates to plan informative and energy-efficient trajectories. This graph-based reasoning enables intelligent, non-myopic trajectory planning, guiding agents toward the most informative regions while satisfying safety constraints. Experimental results show that URAM improves reconstruction accuracy by up to 34% over existing baselines.
♻ ☆ Hydra: A 1.6B-Parameter State-Space Language Model with Sparse Attention, Mixture-of-Experts, and Memory
We present Hydra as an architectural proposal for hybrid long-context language models that combine conditional computation, long-context memory mechanisms, and sparse mixture-of-experts within an approximately 1.6B parameter design envelope. Hydra integrates a Mamba-style Structured State Space Model (SSM) backbone with intermittent sparse global attention, chunk-level MoE feed-forward routing, and dual (workspace plus factual PKM) memories. We formalize the component interfaces, give transparent parameter and complexity accounting, and outline a staged curriculum intended to stably activate the parts. We accompany the specification with illustrative toy-scale prototype measurements (tens of millions of parameters on synthetic data) whose sole purpose is to demonstrate implementation feasibility and qualitative scaling behaviors (for example, long-context throughput crossover and controllable expert routing), not to claim competitive full-scale performance. We explicitly delineate assumptions and open risks (training complexity, memory utilization, specialization dynamics) and position Hydra as a blueprint to stimulate empirical follow-up rather than a finished system. By combining SSM efficiency, selective sparse attention, MoE capacity, and learnable memory, Hydra sketches a path toward modular, input-adaptive long-context language models; validating end-task gains at target scale remains future work.
comment: Fixed a typo
♻ ☆ A Compositional Framework for On-the-Fly LTLf Synthesis AI 2025
Reactive synthesis from Linear Temporal Logic over finite traces (LTLf) can be reduced to a two-player game over a Deterministic Finite Automaton (DFA) of the LTLf specification. The primary challenge here is DFA construction, which is 2EXPTIME-complete in the worst case. Existing techniques either construct the DFA compositionally before solving the game, leveraging automata minimization to mitigate state-space explosion, or build the DFA incrementally during game solving to avoid full DFA construction. However, neither is dominant. In this paper, we introduce a compositional on-the-fly synthesis framework that integrates the strengths of both approaches, focusing on large conjunctions of smaller LTLf formulas common in practice. This framework applies composition during game solving instead of automata (game arena) construction. While composing all intermediate results may be necessary in the worst case, pruning these results simplifies subsequent compositions and enables early detection of unrealizability. Specifically, the framework allows two composition variants: pruning before composition to take full advantage of minimization or pruning during composition to guide on-the-fly synthesis. Compared to state-of-the-art synthesis solvers, our framework is able to solve a notable number of instances that other solvers cannot handle. A detailed analysis shows that both composition variants have unique merits.
comment: 8 pages, accepted by ECAI 2025
♻ ☆ Efficient RL Training for Reasoning Models via Length-Aware Optimization
Large reasoning models, such as OpenAI o1 or DeepSeek R1, have demonstrated remarkable performance on reasoning tasks but often incur a long reasoning path with significant memory and time costs. Existing methods primarily aim to shorten reasoning paths by introducing additional training data and stages. In this paper, we propose three critical reward designs integrated directly into the reinforcement learning process of large reasoning models, which reduce the response length without extra training stages. Experiments on four settings show that our method significantly decreases response length while maintaining or even improving performance. Specifically, in a logic reasoning setting, we achieve a 40% reduction in response length averaged by steps alongside a 14% gain in performance. For math problems, we reduce response length averaged by steps by 33% while preserving performance.
comment: Under review
♻ ☆ Automated Optimization Modeling through Expert-Guided Large Language Model Reasoning
Optimization Modeling (OM) is essential for solving complex decision-making problems. However, the process remains time-consuming and error-prone, heavily relying on domain experts. While Large Language Models (LLMs) show promise in addressing these challenges through their natural language understanding and reasoning capabilities, current approaches face three critical limitations: high benchmark labeling error rates reaching up to 42%, narrow evaluation scope that only considers optimal values, and computational inefficiency due to heavy reliance on multi-agent systems or model fine-tuning. In this work, we first enhance existing datasets through systematic error correction and more comprehensive annotation. Additionally, we introduce LogiOR, a new optimization modeling benchmark from the logistics domain, containing more complex problems with standardized annotations. Furthermore, we present ORThought, a novel framework that leverages expert-level optimization modeling principles through chain-of-thought reasoning to automate the OM process. Through extensive empirical evaluation, we demonstrate that ORThought outperforms existing approaches, including multi-agent frameworks, with particularly significant advantages on complex optimization problems. Finally, we provide a systematic analysis of our method, identifying critical success factors and failure modes, providing valuable insights for future research on LLM-based optimization modeling.
♻ ☆ SIGMA: Sheaf-Informed Geometric Multi-Agent Pathfinding
The Multi-Agent Path Finding (MAPF) problem aims to determine the shortest and collision-free paths for multiple agents in a known, potentially obstacle-ridden environment. It is the core challenge for robotic deployments in large-scale logistics and transportation. Decentralized learning-based approaches have shown great potential for addressing the MAPF problems, offering more reactive and scalable solutions. However, existing learning-based MAPF methods usually rely on agents making decisions based on a limited field of view (FOV), resulting in short-sighted policies and inefficient cooperation in complex scenarios. There, a critical challenge is to achieve consensus on potential movements between agents based on limited observations and communications. To tackle this challenge, we introduce a new framework that applies sheaf theory to decentralized deep reinforcement learning, enabling agents to learn geometric cross-dependencies between each other through local consensus and utilize them for tightly cooperative decision-making. In particular, sheaf theory provides a mathematical proof of conditions for achieving global consensus through local observation. Inspired by this, we incorporate a neural network to approximately model the consensus in latent space based on sheaf theory and train it through self-supervised learning. During the task, in addition to normal features for MAPF as in previous works, each agent distributedly reasons about a learned consensus feature, leading to efficient cooperation on pathfinding and collision avoidance. As a result, our proposed method demonstrates significant improvements over state-of-the-art learning-based MAPF planners, especially in relatively large and complex scenarios, demonstrating its superiority over baselines in various simulations and real-world robot experiments. The code is available at https://github.com/marmotlab/SIGMA
comment: Accepted for presentation at the 2025 IEEE International Conference on Robotics and Automation (ICRA)
♻ ☆ A Survey of Deep Learning for Geometry Problem Solving
Geometry problem solving, a crucial aspect of mathematical reasoning, is vital across various domains, including education, the assessment of AI's mathematical abilities, and multimodal capability evaluation. The recent surge in deep learning technologies, particularly the emergence of multimodal large language models, has significantly accelerated research in this area. This paper provides a survey of the applications of deep learning in geometry problem solving, including (i) a comprehensive summary of the relevant tasks in geometry problem solving; (ii) a thorough review of related deep learning methods; (iii) a detailed analysis of evaluation metrics and methods; and (iv) a critical discussion of the current challenges and future directions that can be explored. Our objective is to offer a comprehensive and practical reference of deep learning for geometry problem solving, thereby fostering further advancements in this field. We create a continuously updated list of papers on GitHub: https://github.com/majianz/dl4gps.
comment: Work in progress
♻ ☆ Revealing the Role of Audio Channels in ASR Performance Degradation
Pre-trained automatic speech recognition (ASR) models have demonstrated strong performance on a variety of tasks. However, their performance can degrade substantially when the input audio comes from different recording channels. While previous studies have demonstrated this phenomenon, it is often attributed to the mismatch between training and testing corpora. This study argues that variations in speech characteristics caused by different recording channels can fundamentally harm ASR performance. To address this limitation, we propose a normalization technique designed to mitigate the impact of channel variation by aligning internal feature representations in the ASR model with those derived from a clean reference channel. This approach significantly improves ASR performance on previously unseen channels and languages, highlighting its ability to generalize across channel and language differences.
comment: Accepted to IEEE ASRU 2025
♻ ☆ Information Science Principles of Machine Learning: A Causal Chain Meta-Framework Based on Formalized Information Mapping
[Objective] This study addresses key challenges in machine learning, namely the absence of a unified formal theoretical framework and the lack of foundational theories for model interpretability and ethical safety. [Methods] We first construct a formal information model, explicitly defining the ontological states and carrier mappings of typical machine learning stages using sets of well-formed formulas. By introducing learnable and processable predicates, as well as learning and processing functions, we analyze the causal chain logic and constraint laws governing machine learning processes. [Results] We establish the Machine Learning Theory Meta-Framework (MLT-MF), on which we further propose universal definitions for model interpretability and ethical safety. We prove and validate three key theorems: the relationship between model interpretability and information existence, ethical safety assurance, and the upper bound estimation of total variation distance (TVD). [Limitations] The current framework assumes ideal, noise-free information enabling mappings and focuses primarily on model learning and processing logic in static scenarios. It does not yet address information fusion and conflict resolution across ontological spaces in multimodal or multi-agent systems. [Conclusions] This work overcomes the limitations of fragmented research and provides a unified theoretical foundation for systematically addressing critical issues in contemporary machine learning.
♻ ☆ Towards Goal-oriented Intelligent Tutoring Systems in Online Education TOIS
Interactive Intelligent Tutoring Systems (ITSs) enhance traditional ITSs by promoting effective learning through interactions and problem resolution in online education. Yet, proactive engagement, prioritizing resource optimization with planning and assessment capabilities, is often overlooked in current ITS designs. In this work, we investigate a new task, named Goal-oriented Intelligent Tutoring Systems (GITS), which aims to enable the student's mastery of a designated concept by strategically planning a customized sequence of exercises and assessment. To address the problem of goal-oriented policy learning in GITS, we propose a novel graph-based reinforcement learning framework, named Planning-Assessment-Interaction (PAI). Specifically, we first leverage cognitive structure information to improve state representation learning and action selection for planning the next action, which can be either to tutor an exercise or to assess the target concept. Further, we use a dynamically updated cognitive diagnosis model to simulate student responses to exercises and concepts. Three benchmark datasets across different subjects are constructed for enabling offline academic research on GITS. Experimental results demonstrate the effectiveness and efficiency of PAI and extensive analyses of various types of students are conducted to showcase the challenges in this task.
comment: Accepted by ACM TOIS
♻ ☆ Who's the Evil Twin? Differential Auditing for Undesired Behavior
Detecting hidden behaviors in neural networks poses a significant challenge due to minimal prior knowledge and potential adversarial obfuscation. We explore this problem by framing detection as an adversarial game between two teams: the red team trains two similar models, one trained solely on benign data and the other trained on data containing hidden harmful behavior, with the performance of both being nearly indistinguishable on the benign dataset. The blue team, with limited to no information about the harmful behaviour, tries to identify the compromised model. We experiment using CNNs and try various blue team strategies, including Gaussian noise analysis, model diffing, integrated gradients, and adversarial attacks under different levels of hints provided by the red team. Results show high accuracy for adversarial-attack-based methods (100\% correct prediction, using hints), which is very promising, whilst the other techniques yield more varied performance. During our LLM-focused rounds, we find that there are not many parallel methods that we could apply from our study with CNNs. Instead, we find that effective LLM auditing methods require some hints about the undesired distribution, which can then used in standard black-box and open-weight methods to probe the models further and reveal their misalignment. We open-source our auditing games (with the model and data) and hope that our findings contribute to designing better audits.
comment: main section: 8 pages, 4 figures, 1 table total: 34 pages, 44 figures, 12 tables
♻ ☆ Balancing Act: Prioritization Strategies for LLM-Designed Restless Bandit Rewards
LLMs are increasingly used to design reward functions based on human preferences in Reinforcement Learning (RL). We focus on LLM-designed rewards for Restless Multi-Armed Bandits, a framework for allocating limited resources among agents. In applications such as public health, this approach empowers grassroots health workers to tailor automated allocation decisions to community needs. In the presence of multiple agents, altering the reward function based on human preferences can impact subpopulations very differently, leading to complex tradeoffs and a multi-objective resource allocation problem. We are the first to present a principled method termed Social Choice Language Model for dealing with these tradeoffs for LLM-designed rewards for multiagent planners in general and restless bandits in particular. The novel part of our model is a transparent and configurable selection component, called an adjudicator, external to the LLM that controls complex tradeoffs via a user-selected social welfare function. Our experiments demonstrate that our model reliably selects more effective, aligned, and balanced reward functions compared to purely LLM-based approaches.
Computational Engineering, Finance, and Science 7
☆ Sentiment-Aware Mean-Variance Portfolio Optimization for Cryptocurrencies
This paper presents a dynamic cryptocurrency portfolio optimization strategy that integrates technical indicators and sentiment analysis to enhance investment decision-making. The proposed method employs the 14-day Relative Strength Index (RSI) and 14-day Simple Moving Average (SMA) to capture market momentum, while sentiment scores are extracted from news articles using the VADER (Valence Aware Dictionary and sEntiment Reasoner) model, with compound scores quantifying overall market tone. The large language model Google Gemini is used to further verify the sentiment scores predicted by VADER and give investment decisions. These technical indicator and sentiment signals are incorporated into the expected return estimates before applying mean-variance optimization with constraints on asset weights. The strategy is evaluated through a rolling-window backtest over cryptocurrency market data, with Bitcoin (BTC) and an equal-weighted portfolio of selected cryptocurrencies serving as benchmarks. Experimental results show that the proposed approach achieves a cumulative return of 38.72, substantially exceeding Bitcoin's 8.85 and the equal-weighted portfolio's 21.65 over the same period, and delivers a higher Sharpe ratio (1.1093 vs. 0.8853 and 1.0194, respectively). However, the strategy exhibits a larger maximum drawdown (-18.52%) compared to Bitcoin (-4.48%) and the equal-weighted portfolio (-11.02%), indicating higher short-term downside risk. These results highlight the potential of combining sentiment and technical signals to improve cryptocurrency portfolio performance, while also emphasizing the need to address risk exposure in volatile markets.
☆ Cost-optimized replacement strategies for water electrolysis systems affected by degradation
A key factor in reducing the cost of green hydrogen production projects using water electrolysis systems is to minimize the degradation of the electrolyzer stacks, as this impacts the lifetime of the stacks and therefore the frequency of their replacement. To create a better understanding of the economics of stack degradation, we present a linear optimization approach minimizing the costs of a green hydrogen supply chain including an electrolyzer with degradation modeling. By calculating the levelized cost of hydrogen depending on a variable degradation threshold, the cost optimal time for stack replacement can be identified. We further study how this optimal time of replacement is affected by uncertainties such as the degradation scale, the load-dependency of both degradation and energy demand, and the costs of the electrolyzer. The variation of the identified major uncertainty degradation scale results in a difference of up to 9 years regarding the cost optimal time for stack replacement, respectively lifetime of the stacks. Therefore, a better understanding of the degradation impact is imperative for project cost reductions, which in turn would support a proceeding hydrogen market ramp-up.
comment: This preprint has also been made available on SSRN (https://dx.doi.org/10.2139/ssrn.5397025)
☆ From Linear to Hierarchical: Evolving Tree-structured Thoughts for Efficient Alpha Mining
Alpha mining, which discovers signals that predict asset returns, has long been attractive for automatic quantitative investment. This problem is typically formulated as a tree-based symbolic regression with handcrafted market data features and arithmetic operators. Unfortunately, existing symbolic methods are concerned with computational inefficiency and dependence on prior knowledge. Recent implementation of Large Language Models (LLMs) show that they can automatically generate executable codes for various tasks efficiently, thus can be considered as a new promising way for alpha mining. Specifically, LLMs-driven methods evolve a set of heuristics, including thoughts and codes, where the thoughts are usually represented as plain-text prompts of codes. Unfortunately, trivially adopting them in alpha mining ignores the fact that alphas are with hierarchical tree structures. This paper introduces Tree-structured thought Evolution (TreEvo), which evolves hierarchical reasoning ideas solely at the thought level. Experiments on four real-market datasets demonstrate that TreEvo can obtain better alphas with much less computational time and human expert efforts. And this superiority hardly holds without the tree-structured thoughts and the compatible evolutionary operators.
☆ QUEENS: An Open-Source Python Framework for Solver-Independent Analyses of Large-Scale Computational Models
A growing challenge in research and industrial engineering applications is the need for repeated, systematic analysis of large-scale computational models, for example, patient-specific digital twins of diseased human organs: The analysis requires efficient implementation, data, resource management, and parallelization, possibly on distributed systems. To tackle these challenges and save many researchers from annoying, time-consuming tasks, we present QUEENS (Quantification of Uncertain Effects in Engineering Systems), an open-source Python framework for composing and managing simulation analyses with arbitrary (physics-based) solvers on distributed computing infrastructures. Besides simulation management capabilities, QUEENS offers a comprehensive collection of efficiently implemented state-of-the-art algorithms ranging from routines for convergence studies and common optimization algorithms to more advanced sampling algorithms for uncertainty quantification and Bayesian inverse analysis. Additionally, we provide our latest cutting-edge research in multi-fidelity uncertainty quantification, efficient multi-fidelity Bayesian inverse analysis, and probabilistic machine learning. QUEENS adopts a Bayesian, probabilistic mindset but equally supports standard deterministic analysis without requiring prior knowledge of probability theory. The modular architecture allows rapid switching between common types of analyses and facilitates building sophisticated hierarchical algorithms. Encouraging natural incremental steps and scaling towards complexity allows researchers to consider the big picture while building towards it through smaller, manageable steps. The open-source repository is available at https://github.com/queens-py/queens.
comment: 17 pages, 6 figures, one Github repository https://github.com/queens-py/queens
☆ Physics-Inspired Spatial Temporal Graph Neural Networks for Predicting Industrial Chain Resilience
Industrial chain plays an increasingly important role in the sustainable development of national economy. However, as a typical complex network, data-driven deep learning is still in its infancy in describing and analyzing the resilience of complex networks, and its core is the lack of a theoretical framework to describe the system dynamics. In this paper, we propose a physically informative neural symbolic approach to describe the evolutionary dynamics of complex networks for resilient prediction. The core idea is to learn the dynamics of the activity state of physical entities and integrate it into the multi-layer spatiotemporal co-evolution network, and use the physical information method to realize the joint learning of physical symbol dynamics and spatiotemporal co-evolution topology, so as to predict the industrial chain resilience. The experimental results show that the model can obtain better results and predict the elasticity of the industry chain more accurately and effectively, which has certain practical significance for the development of the industry.
♻ ☆ Generalized Scattering Matrix Synthesis: Independent Region Decomposition for Hybrid Antenna--Scatterer Systems
This paper presents a unified formulation for synthesizing the generalized scattering matrix (GS-matrix) of hybrid electromagnetic systems comprising arbitrary numbers of antennas and scatterers. The proposed method provides a modular region decomposition framework that enables efficient analysis of electromagnetic interactions between distinct structures, under the relaxed geometric condition that the constituents are separable by a plane. By leveraging the addition theorem of vector spherical wavefunctions (VSWFs), a compact matrix representation is derived to assemble the GS- and S-matrices of individual components into the overall system response. This formulation generalizes and extends prior methods developed for either multiple scattering or antenna array analysis, and is particularly suited to configurations where substructures may be repositioned or reused. Numerical examples are provided to validate the accuracy and versatility of the method, including scenarios involving tightly spaced components and rotational variations in substructure layout.
♻ ☆ Generative Machine Learning in Adaptive Control of Dynamic Manufacturing Processes: A Review
Dynamic manufacturing processes exhibit complex characteristics defined by time-varying parameters, nonlinear behaviors, and uncertainties. These characteristics require sophisticated in-situ monitoring techniques utilizing multimodal sensor data and adaptive control systems that can respond to real-time feedback while maintaining product quality. Recently, generative machine learning (ML) has emerged as a powerful tool for modeling complex distributions and generating synthetic data while handling these manufacturing uncertainties. However, adopting these generative technologies in dynamic manufacturing systems lacks a functional control-oriented perspective to translate their probabilistic understanding into actionable process controls while respecting constraints. This review presents a functional classification of Prediction-Based, Direct Policy, Quality Inference, and Knowledge-Integrated approaches, offering a perspective for understanding existing ML-enhanced control systems and incorporating generative ML. The analysis of generative ML architectures within this framework demonstrates control-relevant properties and potential to extend current ML-enhanced approaches where conventional methods prove insufficient. We show generative ML's potential for manufacturing control through decision-making applications, process guidance, simulation, and digital twins, while identifying critical research gaps: separation between generation and control functions, insufficient physical understanding of manufacturing phenomena, and challenges adapting models from other domains. To address these challenges, we propose future research directions aimed at developing integrated frameworks that combine generative ML and control technologies to address the dynamic complexities of modern manufacturing systems.
comment: 12 pages, 1 figure, 1 table. This paper has been accepted for publication in the proceedings of ASME IDETC-CIE 2025
Databases 9
☆ GoVector: An I/O-Efficient Caching Strategy for High-Dimensional Vector Nearest Neighbor Search
Graph-based high-dimensional vector indices have become a mainstream solution for large-scale approximate nearest neighbor search (ANNS). However, their substantial memory footprint often requires storage on secondary devices, where frequent on-demand loading of graph and vector data leads to I/O becoming the dominant bottleneck, accounting for over 90\% of query latency. Existing static caching strategies mitigate this issue only in the initial navigation phase by preloading entry points and multi-hop neighbors, but they fail in the second phase where query-dependent nodes must be dynamically accessed to achieve high recall. We propose GoVector, an I/O-efficient caching strategy tailored for disk-based graph indices. GoVector combines (1) a static cache that stores entry points and frequently accessed neighbors, and (2) a dynamic cache that adaptively captures nodes with high spatial locality during the second search phase. To further align storage layout with similarity-driven search patterns, GoVector reorders nodes on disk so that similar vectors are colocated on the same or adjacent pages, thereby improving locality and reducing I/O overhead. Extensive experiments on multiple public datasets show that GoVector achieves substantial performance improvements. At 90% recall, it reduces I/O operations by 46% on average, increases query throughput by 1.73x, and lowers query latency by 42% compared to state-of-the-art disk-based graph indexing systems.
comment: 12 pages, 12 figures, this paper is the English version of our Chinese paper accepted for publication in Journal of Software, Vol. 37, No. 3, 2026
☆ On the Effectiveness of Graph Reordering for Accelerating Approximate Nearest Neighbor Search on GPU
We present the first systematic investigation of graph reordering effects for graph-based Approximate Nearest Neighbor Search (ANNS) on a GPU. While graph-based ANNS has become the dominant paradigm for modern AI applications, recent approaches focus on algorithmic innovations while neglecting memory layout considerations that significantly affect execution time. Our unified evaluation framework enables comprehensive evaluation of diverse reordering strategies across different graph indices through a graph adapter that converts arbitrary graph topologies into a common representation and a GPU-optimized graph traversal engine. We conduct a comprehensive analysis across diverse datasets and state-of-the-art graph indices, introducing analysis metrics that quantify the relationship between structural properties and memory layout effectiveness. Our GPU-targeted reordering achieves up to 15$\%$ QPS improvements while preserving search accuracy, demonstrating that memory layout optimization operates orthogonally to existing algorithmic innovations. We will release all code upon publication to facilitate reproducibility and foster further research.
☆ Gorgeous: Revisiting the Data Layout for Disk-Resident High-Dimensional Vector Search
Similarity-based vector search underpins many important applications, but a key challenge is processing massive vector datasets (e.g., in TBs). To reduce costs, some systems utilize SSDs as the primary data storage. They employ a proximity graph, which connects similar vectors to form a graph and is the state-of-the-art index for vector search. However, these systems are hindered by sub-optimal data layouts that fail to effectively utilize valuable memory space to reduce disk access and suffer from poor locality for accessing disk-resident data. Through extensive profiling and analysis, we found that the structure of the proximity graph index is accessed more frequently than the vectors themselves, yet existing systems do not distinguish between the two. To address this problem, we design the Gorgeous system with the principle of prioritizing graph structure over vectors. Specifically, Gorgeous features a memory cache that keeps the adjacency lists of graph nodes to improve cache hits and a disk block format that explicitly stores neighbors' adjacency lists along with a vector to enhance data locality. Experimental results show that Gorgeous consistently outperforms two state-of-the-art disk-based systems for vector search, boosting average query throughput by over 60% and reducing query latency by over 35%.
comment: 12 pages, 19 figures
☆ Efficient Cloud-Edge-Device Query Execution Based on Collaborative Scan Operator ICDE
In cloud-edge-device (CED) collaborative query (CQ) processing, by leveraging CED collaboration, the advantages of both cloud computing and edge resources can be fully integrated. However, it is difficult to implement collaborative operators that can flexibly switch between the cloud and the edge during query execution. Thus, in this paper, we aim to improve the query performance when the edge resources reach a bottleneck. To achieve seamless switching of query execution between the cloud and edge, we propose a CQ processing method by establishing a CED collaborative framework based on the collaborative scan operator, so that query execution can be transferred to the cloud at any time when the edge resources are saturated. Extensive experiments show that, under sufficient network download bandwidth, the CED collaborative scan operator can effectively alleviate the performance degradation of scan operators caused by high I/O load and CPU wait time at the edge. It also achieves balanced resource scheduling between the cloud and edge.
comment: 12 pages, 23 figures. Submitted to IEEE Transactions on ICDE
☆ AmbiSQL: Interactive Ambiguity Detection and Resolution for Text-to-SQL
Text-to-SQL systems translate natural language questions into SQL queries, providing substantial value for non-expert users. While large language models (LLMs) show promising results for this task, they remain error-prone. Query ambiguity has been recognized as a major obstacle for LLM-based Text-to-SQL systems, leading to misinterpretation of user intent and inaccurate SQL generation. We demonstrate AmbiSQL, an interactive system that automatically detects query ambiguities and guides users through intuitive multiple-choice questions to clarify their intent. Our approach introduces a fine-grained ambiguity taxonomy for identifying ambiguities that affect database element mapping and LLM reasoning, then incorporates user feedback to rewrite ambiguous questions. Evaluation on an ambiguous query dataset shows that AmbiSQL achieves 87.2% precision in ambiguity detection and improves SQL exact match accuracy by 50% when integrated with Text-to-SQL systems. Our demonstration showcases the significant performance gains and highlights the system's practical usability. Code repo and demonstration are available at: https://github.com/JustinzjDing/AmbiSQL.
☆ Temporal $k$-Core Query, Revisited
Querying cohesive subgraphs in temporal graphs is essential for understanding the dynamic structure of real-world networks, such as evolving communities in social platforms, shifting hyperlink structures on the Web, and transient communication patterns in call networks. Recently, research has focused on the temporal $k$-core query, which aims to identify all $k$-cores across all possible time sub-intervals within a given query interval. The state-of-the-art algorithm OTCD mitigates redundant computations over overlapping sub-intervals by exploiting inclusion relationships among $k$-cores in different time intervals. Nevertheless, OTCD remains limited in scalability due to the combinatorial growth in interval enumeration and repeated processing. In this paper, we revisit the temporal $k$-core query problem and introduce a novel algorithm CoreT, which dynamically records the earliest timestamp at which each vertex or edge enters a $k$-core. This strategy enables substantial pruning of redundant computations. As a result, CoreT requires only a single pass over the query interval and achieves improved time complexity, which is linear in both the number of temporal edges within the query interval and the duration of the interval, making it highly scalable for long-term temporal analysis. Experimental results on large real-world datasets show that CoreT achieves up to four orders of magnitude speedup compared to the existing state-of-the-art OTCD, demonstrating its effectiveness and scalability for temporal $k$-core analysis.
♻ ☆ Advancing the Database of Cross-Linguistic Colexifications with New Workflows and Data
Lexical resources are crucial for cross-linguistic analysis and can provide new insights into computational models for natural language learning. Here, we present an advanced database for comparative studies of words with multiple meanings, a phenomenon known as colexification. The new version includes improvements in the handling, selection and presentation of the data. We compare the new database with previous versions and find that our improvements provide a more balanced sample covering more language families worldwide, with enhanced data quality, given that all word forms are provided in phonetic transcription. We conclude that the new Database of Cross-Linguistic Colexifications has the potential to inspire exciting new studies that link cross-linguistic data to open questions in linguistic typology, historical linguistics, psycholinguistics, and computational linguistics.
♻ ☆ Efficient Adaptable High-throughput Streaming Aggregation Engines
Aggregation queries are a series of computationally-demanding analytics operations on counted, grouped or time series data. They include tasks such as summation or finding the median among the items of the same group, and within a specified number of the last observed tuples for sliding window aggregation (SWAG). They have a wide range of applications including database analytics, operating systems, bank security and medical sensors. Existing challenges include the hardware complexity that comes with efficiently handling per-group states using hash-based approaches. This paper presents an adaptable pipeline for calculating a wide range of aggregation queries with high throughput. It is then adapted for SWAG and achieves up to 476x speedup over the CPU core of the same platform. It achieves unparalleled levels of performance and functionality such as a throughput of 1 GT/s on our setup for SWAG without groups, and more advanced operators with up to 4x the window sizes than the state-of-the-art with groups as an approximation for SWAG featuring per-group windows using a fraction of the resources and no DRAM.
♻ ☆ Integrated data-driven biotechnology research environments
In the past few decades, the life sciences have experienced an unprecedented accumulation of data, ranging from genomic sequences and proteomic profiles to heavy-content imaging, clinical assays, and commercial biological products for research. Traditional static databases have been invaluable in providing standardized and structured information. However, they fall short when it comes to facilitating exploratory data interrogation, real-time query, multidimensional comparison and dynamic visualization. Integrated data-driven research environments aiming at supporting user-driven data queries and visualization offer promising new avenues for making the best use of the vast and heterogeneous data streams collected in biological research. This perspective article discusses the potential of interactive and integrated frameworks, highlighting the importance of implementing this model in biotechnology research, while going through the state-of-the-art in database design, technical choices behind modern data management systems, and emerging needs in multidisciplinary research. Special attention is given to data interrogation strategies, user interface design, and comparative analysis capabilities, along with challenges such as data standardization and scalability in data-heavy applications. Conceptual features for developing interactive data environments along diverse life science domains are then presented in the user case of cell line selection for in vitro research to bridge the gap between research data generation, actionable biological insight, experimental design, and clinical relevance.
comment: 19 pages, 2 tables, 2 figures
Distributed, Parallel, and Cluster Computing 24
☆ Mitigating context switching in densely packed Linux clusters with Latency-Aware Group Scheduling
Cluster orchestrators such as Kubernetes depend on accurate estimates of node capacity and job requirements. Inaccuracies in either lead to poor placement decisions and degraded cluster performance. In this paper, we show that in densely packed workloads, such as serverless applications, CPU context switching overheads can become so significant that a node's performance is severely degraded, even when the orchestrator placement is theoretically sound. In practice this issue is typically mitigated by over-provisioning the cluster, leading to wasted resources. We show that these context switching overhead arise from both an increase in the average cost of an individual context switch and a higher rate of context switching, which together amplify overhead multiplicatively when managing large numbers of concurrent cgroups, Linux's group scheduling mechanism for managing multi-threaded colocated workloads. We propose and evaluate modifications to the standard Linux kernel scheduler that mitigate these effects, achieving the same effective performance with a 28% smaller cluster size. The key insight behind our approach is to prioritise task completion over low-level per-task fairness, enabling the scheduler to drain contended CPU run queues more rapidly and thereby reduce time spent on context switching.
☆ CausalMesh: A Formally Verified Causal Cache for Stateful Serverless Computing VLDB
Stateful serverless workflows consist of multiple serverless functions that access state on a remote database. Developers sometimes add a cache layer between the serverless runtime and the database to improve I/O latency. However, in a serverless environment, functions in the same workflow may be scheduled to different nodes with different caches, which can cause non-intuitive anomalies. This paper presents CausalMesh, a novel approach to causally consistent caching in environments where a computation may migrate from one machine to another, such as in serverless computing. CausalMesh is the first cache system that supports coordination-free and abort-free read/write operations and read transactions when clients roam among multiple servers. CausalMesh also supports read-write transactional causal consistency in the presence of client roaming, but at the cost of abort-freedom. We have formally verified CausalMesh's protocol in Dafny, and our experimental evaluation shows that CausalMesh has lower latency and higher throughput than existing proposals
comment: Extended version from PVLDB Volume 17, Issue 13, 2024. This version includes full proofs and formal verification in Dafny and fixes some small bugs
☆ Efficient Mixed-Precision Large Language Model Inference with TurboMind
Mixed-precision inference techniques reduce the memory and computational demands of Large Language Models (LLMs) by applying hybrid precision formats to model weights, activations, and KV caches. This work introduces mixed-precision LLM inference techniques that encompass (i) systematic memory and compute optimization across hierarchical storage and tensor core architectures, and (ii) comprehensive end-to-end mixed-precision optimization across diverse precision formats and hardware configurations. Our approach features two novel mixed-precision pipelines designed for optimal hardware utilization: a General Matrix Multiply (GEMM) pipeline that optimizes matrix operations through offline weight packing and online acceleration, and an attention pipeline that enables efficient attention computation with arbitrary Query, Key, and Value precision combinations. The key implementation of the pipelines includes (i) hardware-aware weight packing for automatic format optimization, (ii) adaptive head alignment for efficient attention computation, (iii) instruction-level parallelism for memory hierarchy exploitation, and (iv) KV memory loading pipeline for enhanced inference efficiency. We conduct comprehensive evaluations across 16 popular LLMs and 4 representative GPU architectures. Results demonstrate that our approach achieves up to 61% lower serving latency (30% on average) and up to 156% higher throughput (58% on average) in mixed-precision workloads compared to existing mixed-precision frameworks, establishing consistent performance improvements across all tested configurations and hardware types. This work is integrated into TurboMind, a high-performance inference engine of the LMDeploy project, which is open-sourced and publicly available at https://github.com/InternLM/lmdeploy.
☆ Lower Bounds for $k$-Set Agreement in Fault-Prone Networks
We develop a new lower bound for k-set agreement in synchronous message-passing systems connected by an arbitrary directed communication network, where up to t processes may crash. Our result thus generalizes the t/k+1 lower bound for complete networks in the t-resilient model by Chaudhuri, Herlihy, Lynch, and Tuttle [JACM'00]. Moreover, it generalizes two lower bounds for oblivious algorithms in synchronous systems connected by an arbitrary undirected communication network known to the processes, namely, the domination number-based lower bound by Castaneda, Fraigniaud, Paz, Rajsbaum, Roy, and Travers [TCS'21] for failure-free processes, and the radius-based lower bound in the t-resilient model by Fraigniaud, Nguyen, and Paz [STACS'24]. Our topological proof non-trivially generalizes and extends the connectivity-based approach for the complete network, as presented in the book by Herlihy, Kozlov, and Rajsbaum (2013). It is based on a sequence of shellable carrier maps that, starting from a shellable input complex, determine the evolution of the protocol complex: During the first t/k rounds, carrier maps that crash exactly k processes per round are used, ensuring high connectivity of their images. A Sperner's lemma style argument is used to prove that k-set agreement is still impossible by that round. From round t/k+1 up to our lower bound, we employ a novel carrier map that maintains high connectivity. Our proof also provides a strikingly simple lower bound for k-set agreement in synchronous systems with an arbitrary communication network with initial crashes. We express the resulting additional agreement overhead via an appropriately defined radius of the communication graphs. Finally, we prove that the usual input pseudosphere complex for k-set agreement can be replaced by an exponentially smaller input complex based on Kuhn triangulations, which we prove to be also shellable.
comment: To be presented in DISC 2025
☆ Universal Dancing by Luminous Robots under Sequential Schedulers
The Dancing problem requires a swarm of $n$ autonomous mobile robots to form a sequence of patterns, aka perform a choreography. Existing work has proven that some crucial restrictions on choreographies and initial configurations (e.g., on repetitions of patterns, periodicity, symmetries, contractions/expansions) must hold so that the Dancing problem can be solved under certain robot models. Here, we prove that these necessary constraints can be dropped by considering the LUMI model (i.e., where robots are endowed with a light whose color can be chosen from a constant-size palette) under the quite unexplored sequential scheduler. We formalize the class of Universal Dancing problems which require a swarm of $n$ robots starting from any initial configuration to perform a (periodic or finite) sequence of arbitrary patterns, only provided that each pattern consists of $n$ vertices (including multiplicities). However, we prove that, to be solvable under LUMI, the length of the feasible choreographies is bounded by the compositions of $n$ into the number of colors available to the robots. We provide an algorithm solving the Universal Dancing problem by exploiting the peculiar capability of sequential robots to implement a distributed counter mechanism. Even assuming non-rigid movements, our algorithm ensures spatial homogeneity of the performed choreography.
☆ On the Effectiveness of Graph Reordering for Accelerating Approximate Nearest Neighbor Search on GPU
We present the first systematic investigation of graph reordering effects for graph-based Approximate Nearest Neighbor Search (ANNS) on a GPU. While graph-based ANNS has become the dominant paradigm for modern AI applications, recent approaches focus on algorithmic innovations while neglecting memory layout considerations that significantly affect execution time. Our unified evaluation framework enables comprehensive evaluation of diverse reordering strategies across different graph indices through a graph adapter that converts arbitrary graph topologies into a common representation and a GPU-optimized graph traversal engine. We conduct a comprehensive analysis across diverse datasets and state-of-the-art graph indices, introducing analysis metrics that quantify the relationship between structural properties and memory layout effectiveness. Our GPU-targeted reordering achieves up to 15$\%$ QPS improvements while preserving search accuracy, demonstrating that memory layout optimization operates orthogonally to existing algorithmic innovations. We will release all code upon publication to facilitate reproducibility and foster further research.
Databelt: A Continuous Data Path for Serverless Workflows in the 3D Compute Continuum
Typically, serverless functions rely on remote storage services for managing state, which can result in increased latency and network communication overhead. In a dynamic environment such as the 3D (Edge-Cloud-Space) Compute Continuum, serverless functions face additional challenges due to frequent changes in network topology. As satellites move in and out of the range of ground stations, functions must make multiple hops to access cloud services, leading to high-latency state access and unnecessary data transfers. In this paper, we present Databelt, a state management framework for serverless workflows designed for the dynamic environment of the 3D Compute Continuum. Databelt introduces an SLO-aware state propagation mechanism that enables the function state to move continuously in orbit. Databelt proactively offloads function states to the most suitable node, such that when functions execute, the data is already present on the execution node or nearby, thus minimizing state access latency and reducing the number of network hops. Additionally, Databelt introduces a function state fusion mechanism that abstracts state management for functions sharing the same serverless runtime. When functions are fused, Databelt seamlessly retrieves their state as a group, reducing redundant network and storage operations and improving overall workflow efficiency. Our experimental results show that Databelt reduces workflow execution time by up to 66% and increases throughput by 50% compared to the baselines. Furthermore, our results show that Databelt function state fusion reduces storage operations latency by up to 20%, by reducing repetitive storage requests for functions within the same runtime, ensuring efficient execution of serverless workflows in highly dynamic network environments such as the 3D Continuum.
☆ Optimizing Compilation for Distributed Quantum Computing via Clustering and Annealing
Efficiently mapping quantum programs onto Distributed quantum computing (DQC) are challenging, particularly when considering the heterogeneous quantum processing units (QPUs) with different structures. In this paper, we present a comprehensive compilation framework that addresses these challenges with three key insights: exploiting structural patterns within quantum circuits, using clustering for initial qubit placement, and adjusting qubit mapping with annealing algorithms. Experimental results demonstrate the effectiveness of our methods and the capability to handle complex heterogeneous distributed quantum systems. Our evaluation shows that our method reduces the objective value at most 88.40\% compared to the baseline.
☆ Reliable Multi-view 3D Reconstruction for `Just-in-time' Edge Environments
Multi-view 3D reconstruction applications are revolutionizing critical use cases that require rapid situational-awareness, such as emergency response, tactical scenarios, and public safety. In many cases, their near-real-time latency requirements and ad-hoc needs for compute resources necessitate adoption of `Just-in-time' edge environments where the system is set up on the fly to support the applications during the mission lifetime. However, reliability issues can arise from the inherent dynamism and operational adversities of such edge environments, resulting in spatiotemporally correlated disruptions that impact the camera operations, which can lead to sustained degradation of reconstruction quality. In this paper, we propose a novel portfolio theory inspired edge resource management strategy for reliable multi-view 3D reconstruction against possible system disruptions. Our proposed methodology can guarantee reconstruction quality satisfaction even when the cameras are prone to spatiotemporally correlated disruptions. The portfolio theoretic optimization problem is solved using a genetic algorithm that converges quickly for realistic system settings. Using publicly available and customized 3D datasets, we demonstrate the proposed camera selection strategy's benefits in guaranteeing reliable 3D reconstruction against traditional baseline strategies, under spatiotemporal disruptions.
comment: 11 Pages, 7 Figures
☆ ASIC-Agent: An Autonomous Multi-Agent System for ASIC Design with Benchmark Evaluation
Large Language Models (LLMs) have demonstrated remarkable capabilities in Register Transfer Level (RTL) design, enabling high-quality code generation from natural language descriptions. However, LLMs alone face significant limitations in real-world hardware design workflows, including the inability to execute code, lack of debugging capabilities, and absence of long-term memory. To address these challenges, we present ASIC-Agent, an autonomous system designed specifically for digital ASIC design tasks. ASIC-Agent enhances base LLMs with a multi-agent architecture incorporating specialized sub-agents for RTL generation, verification, OpenLane hardening, and Caravel chip integration, all operating within a comprehensive sandbox environment with access to essential hardware design tools. The system leverages a vector database containing documentation, API references, error knowledge, and curated insights from the open-source silicon community. To evaluate ASIC-Agent's performance, we introduce ASIC-Agent-Bench, the first benchmark specifically designed to assess agentic systems in hardware design tasks. We evaluate ASIC-Agent with various base LLMs, providing quantitative comparisons and qualitative insights into agent behavior across different design scenarios. Our results demonstrate that ASIC-Agent, when powered by Claude 4 Sonnet, successfully automates a broad range of ASIC design tasks spanning varying levels of complexity, showing the potential of significantly accelerating the ASIC design workflow.
comment: 2025 IEEE International Conference on LLM-Aided Design (ICLAD)
☆ HyperFlexis: Joint Design of Algorithms and Systems for Multi-SLO Serving and Fast Scaling
Modern large language model (LLM) serving systems face challenges from highly variable requests with diverse lengths, priorities, and stage-specific service-level objectives (SLOs). Meeting these requires real-time scheduling, rapid and cost-effective scaling, and support for both collocated and disaggregated Prefill/Decode (P/D) architectures. We present \textbf{HyperFlexis}, a unified LLM serving system that integrates algorithmic and system-level innovations to jointly optimize scheduling and scaling under multiple SLOs. It features a multi-SLO-aware scheduler that leverages budget estimation and request prioritization to ensure proactive SLO compliance for both new and ongoing requests. The system supports prefill- and decode-stage multi-SLO scheduling for P/D-disaggregated architectures and KV cache transfers. It also enables cost-effective scaling decisions, prefill-decode instance linking during scaling, and rapid P/D role transitions. To accelerate scaling and reduce cold-start latency, a device-to-device (D2D) weight transfer mechanism is proposed that lowers weight loading overhead by up to \textbf{19.39$\times$}. These optimizations allow the system to achieve up to \textbf{4.44$\times$} higher SLO attainment, \textbf{65.82\%} lower request latency, and cost parity with state-of-the-art baselines. The code will be released soon.
♻ ☆ Power Stabilization for AI Training Datacenters
Large Artificial Intelligence (AI) training workloads spanning several tens of thousands of GPUs present unique power management challenges. These arise due to the high variability in power consumption during the training. Given the synchronous nature of these jobs, during every iteration there is a computation-heavy phase, where each GPU works on the local data, and a communication-heavy phase where all the GPUs synchronize on the data. Because compute-heavy phases require much more power than communication phases, large power swings occur. The amplitude of these power swings is ever increasing with the increase in the size of training jobs. An even bigger challenge arises from the frequency spectrum of these power swings which, if harmonized with critical frequencies of utilities, can cause physical damage to the power grid infrastructure. Therefore, to continue scaling AI training workloads safely, we need to stabilize the power of such workloads. This paper introduces the challenge with production data and explores innovative solutions across the stack: software, GPU hardware, and datacenter infrastructure. We present the pros and cons of each of these approaches and finally present a multi-pronged approach to solving the challenge. The proposed solutions are rigorously tested using a combination of real hardware and Microsoft's in-house cloud power simulator, providing critical insights into the efficacy of these interventions under real-world conditions.
♻ ☆ Cooperative SGD with Dynamic Mixing Matrices AI-2025
One of the most common methods to train machine learning algorithms today is the stochastic gradient descent (SGD). In a distributed setting, SGD-based algorithms have been shown to converge theoretically under specific circumstances. A substantial number of works in the distributed SGD setting assume a fixed topology for the edge devices. These papers also assume that the contribution of nodes to the global model is uniform. However, experiments have shown that such assumptions are suboptimal and a non uniform aggregation strategy coupled with a dynamically shifting topology and client selection can significantly improve the performance of such models. This paper details a unified framework that covers several Local-Update SGD-based distributed algorithms with dynamic topologies and provides improved or matching theoretical guarantees on convergence compared to existing work.
comment: Accepted at 28th European Conference on Artificial Intelligence (ECAI-2025) in Main Paper track
♻ ☆ Scalable Time-Series Causal Discovery with Approximate Causal Ordering
Causal discovery in time-series data presents a significant computational challenge. Standard algorithms are often prohibitively expensive for datasets with many variables or samples. This study introduces and validates a heuristic approximation of the VarLiNGAM algorithm to address this scalability problem. The standard VarLiNGAM method relies on an iterative search, recalculating statistical dependencies after each step. Our heuristic modifies this procedure by omitting the iterative refinement. This change permits a one-time precomputation of all necessary statistical values. The algorithmic modification reduces the time complexity from $O(m^3n)$ to $O(m^2n + m^3)$ while keeping the space complexity at $O(m^2)$, where $m$ is the number of variables and $n$ is the number of samples. While an approximation, our approach retains VarLiNGAM's essential structure and empirical reliability. On large-scale financial data with up to 400 variables, our algorithm achieves a 7--13x speedup over the standard implementation and a 4.5x speedup over a GPU-accelerated version. Evaluations across medical imaging, web server monitoring, and finance demonstrate the heuristic's robustness and practical scalability. This work offers a validated balance between computational efficiency and discovery quality, making large-scale causal analysis feasible on personal computers.
♻ ☆ On the $h$-majority dynamics with many opinions
We present the first upper bound on the convergence time to consensus of the well-known $h$-majority dynamics with $k$ opinions, in the synchronous setting, for $h$ and $k$ that are both non-constant values. We suppose that, at the beginning of the process, there is some initial additive bias towards some plurality opinion, that is, there is an opinion that is supported by $x$ nodes while any other opinion is supported by strictly fewer nodes. We prove that, with high probability, if the bias is $\omega(\sqrt{x})$ and the initial plurality opinion is supported by at least $x = \omega(\log n)$ nodes, then the process converges to plurality consensus in $O(\log n)$ rounds whenever $h = \omega(n \log n / x)$. A main corollary is the following: if $k = o(n / \log n)$ and the process starts from an almost-balanced configuration with an initial bias of magnitude $\omega(\sqrt{n/k})$ towards the initial plurality opinion, then any function $h = \omega(k \log n)$ suffices to guarantee convergence to consensus in $O(\log n)$ rounds, with high probability. Our upper bound shows that the lower bound of $\Omega(k / h^2)$ rounds to reach consensus given by Becchetti et al. (2017) cannot be pushed further than $\widetilde{\Omega}(k / h)$. Moreover, the bias we require is asymptotically smaller than the $\Omega(\sqrt{n\log n})$ bias that guarantees plurality consensus in the $3$-majority dynamics: in our case, the required bias is at most any (arbitrarily small) function in $\omega(\sqrt{x})$ for any value of $k \ge 2$.
♻ ☆ Optimizing Cross-Client Domain Coverage for Federated Instruction Tuning of Large Language Models
Federated domain-specific instruction tuning (FedDIT) for large language models (LLMs) aims to enhance performance in specialized domains using distributed private and limited data, yet identifying key performance drivers and optimal augmentation strategies remains challenging. We empirically establish that cross-client domain coverage, rather than data heterogeneity, is the pivotal factor. We then introduce FedDCA, an algorithm that explicitly maximizes this coverage through diversity-oriented client center selection and retrieval-based augmentation, constructing diverse, non-redundant cross-client instruction sets. Extensive experiments across multiple domains demonstrate FedDCA's superiority over eleven baselines, achieving performance gains of up to 29.19\% and domain coverage improvements of 4.82\%-21.36\%. FedDCA maintains its effectiveness in diverse and challenging scenarios, including data selection, held-out settings where task-specific public data is scarce and various data heterogeneity, with manageable privacy risks. This work clarifies critical FedDIT dynamics and presents FedDCA as an effective, privacy-preserving, and scalable solution for advancing domain-specific LLM tuning.
comment: EMNLP 2025
♻ ☆ SparkAttention: High-Performance Multi-Head Attention for Large Models on Volta GPU Architecture
Transformer are widely used in various fields such as natural language processing and computer vision. However, the training time for large Transformer models can be challenging due to the Multi-Head Attention (MHA) mechanism. Especially as models become larger, training becomes more costly. So it is crucial to utilize various resources for efficient model training. Currently, NVIDIA Volta GPU is still widely used. However, because the computational shapes supported by Tensor Core Units (TCU) of Volta GPU differ from other GPU architectures, most efforts have not focused on using them to accelerate Transformer training. To address this issue, we propose SparkAttention, an acceleration library designed to speed up MHA training on the Volta GPU. SparkAttention leverages TCU and kernel fusion to reduce the number of high bandwidth memory (HBM) accesses and overhead. Our End-to-End experimental results on an NVIDIA V100 GPU show that SparkAttention achieves on average 1.80$\times$ (up to 2.46$\times$) speedup compared to using PyTorch.
comment: Published in CCF Transactions on High Performance Computing (CCF THPC), 2025, DOI: https://doi.org/10.1007/s42514-024-00211-0
♻ ☆ Near-Optimal Sparse Allreduce for Distributed Deep Learning
Communication overhead is one of the major obstacles to train large deep learning models at scale. Gradient sparsification is a promising technique to reduce the communication volume. However, it is very challenging to obtain real performance improvement because of (1) the difficulty of achieving an scalable and efficient sparse allreduce algorithm and (2) the sparsification overhead. This paper proposes O$k$-Top$k$, a scheme for distributed training with sparse gradients. O$k$-Top$k$ integrates a novel sparse allreduce algorithm (less than 6$k$ communication volume which is asymptotically optimal) with the decentralized parallel Stochastic Gradient Descent (SGD) optimizer, and its convergence is proved. To reduce the sparsification overhead, O$k$-Top$k$ efficiently selects the top-$k$ gradient values according to an estimated threshold. Evaluations are conducted on the Piz Daint supercomputer with neural network models from different deep learning domains. Empirical results show that O$k$-Top$k$ achieves similar model accuracy to dense allreduce. Compared with the optimized dense and the state-of-the-art sparse allreduces, O$k$-Top$k$ is more scalable and significantly improves training throughput (e.g., 3.29x-12.95x improvement for BERT on 256 GPUs).
comment: Published in Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP'22), April 2-6, 2022, Pages 135-149, https://doi.org/10.1145/3503221.3508399
♻ ☆ Chimera: Efficiently Training Large-Scale Neural Networks with Bidirectional Pipelines
Training large deep learning models at scale is very challenging. This paper proposes Chimera, a novel pipeline parallelism scheme which combines bidirectional pipelines for efficiently training large-scale models. Chimera is a synchronous approach and therefore no loss of accuracy, which is more convergence-friendly than asynchronous approaches. Compared with the latest synchronous pipeline approach, Chimera reduces the number of bubbles by up to 50%; benefiting from the sophisticated scheduling of bidirectional pipelines, Chimera has a more balanced activation memory consumption. Evaluations are conducted on Transformer based language models. For a GPT-2 model with 1.3 billion parameters running on 2,048 GPU nodes of the Piz Daint supercomputer, Chimera improves the training throughput by 1.16x-2.34x over the state-of-the-art synchronous and asynchronous pipeline approaches.
comment: Published in Proceedings of the 2021 International Conference for High Performance Computing, Networking, Storage and Analysis (SC'21), November 2021, Article No.: 27, Pages 1-14. Best Paper Finalist
♻ ☆ Taming Unbalanced Training Workloads in Deep Learning with Partial Collective Operations
Load imbalance pervasively exists in distributed deep learning training systems, either caused by the inherent imbalance in learned tasks or by the system itself. Traditional synchronous Stochastic Gradient Descent (SGD) achieves good accuracy for a wide variety of tasks, but relies on global synchronization to accumulate the gradients at every training step. In this paper, we propose eager-SGD, which relaxes the global synchronization for decentralized accumulation. To implement eager-SGD, we propose to use two partial collectives: solo and majority. With solo allreduce, the faster processes contribute their gradients eagerly without waiting for the slower processes, whereas with majority allreduce, at least half of the participants must contribute gradients before continuing, all without using a central parameter server. We theoretically prove the convergence of the algorithms and describe the partial collectives in detail. Experimental results on load-imbalanced environments (CIFAR-10, ImageNet, and UCF101 datasets) show that eager-SGD achieves 1.27x speedup over the state-of-the-art synchronous SGD, without losing accuracy.
comment: Published in Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP'20), pp. 45-61. 2020, Best Paper Nomination
♻ ☆ Breaking (Global) Barriers in Parallel Stochastic Optimization with Wait-Avoiding Group Averaging
Deep learning at scale is dominated by communication time. Distributing samples across nodes usually yields the best performance, but poses scaling challenges due to global information dissemination and load imbalance across uneven sample lengths. State-of-the-art decentralized optimizers mitigate the problem, but require more iterations to achieve the same accuracy as their globally-communicating counterparts. We present Wait-Avoiding Group Model Averaging (WAGMA) SGD, a wait-avoiding stochastic optimizer that reduces global communication via subgroup weight exchange. The key insight is a combination of algorithmic changes to the averaging scheme and the use of a group allreduce operation. We prove the convergence of WAGMA-SGD, and empirically show that it retains convergence rates similar to Allreduce-SGD. For evaluation, we train ResNet-50 on ImageNet; Transformer for machine translation; and deep reinforcement learning for navigation at scale. Compared with state-of-the-art decentralized SGD variants, WAGMA-SGD significantly improves training throughput (e.g., 2.1x on 1,024 GPUs for reinforcement learning), and achieves the fastest time-to-solution (e.g., the highest score using the shortest training time for Transformer).
comment: Published in IEEE Transactions on Parallel and Distributed Systems (IEEE TPDS), vol. 32, no. 7, pp. 1725-1739, 1 July 2021, DOI: https://doi.org/10.1109/TPDS.2020.3040606
♻ ☆ Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications, integrating cloud resources with edge devices to enable efficient, low-latency processing. Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems, yet introduce significant challenges in model deployment and resource management. In this survey, we comprehensive examine the intersection of distributed intelligence and model optimization within edge-cloud environments, providing a structured tutorial on fundamental architectures, enabling technologies, and emerging applications. Additionally, we systematically analyze model optimization approaches, including compression, adaptation, and neural architecture search, alongside AI-driven resource management strategies that balance performance, energy efficiency, and latency requirements. We further explore critical aspects of privacy protection and security enhancement within ECCC systems and examines practical deployments through diverse applications, spanning autonomous driving, healthcare, and industrial automation. Performance analysis and benchmarking techniques are also thoroughly explored to establish evaluation standards for these complex systems. Furthermore, the review identifies critical research directions including LLMs deployment, 6G integration, neuromorphic computing, and quantum computing, offering a roadmap for addressing persistent challenges in heterogeneity management, real-time processing, and scalability. By bridging theoretical advancements and practical deployments, this survey offers researchers and practitioners a holistic perspective on leveraging AI to optimize distributed computing environments, fostering innovation in next-generation intelligent systems.
comment: 43 pages, 10 figures, 10 tables
♻ ☆ AutoDDL: Automatic Distributed Deep Learning with Near-Optimal Bandwidth Cost
Recent advances in deep learning are driven by the growing scale of computation, data, and models. However, efficiently training large-scale models on distributed systems requires an intricate combination of data, operator, and pipeline parallelism, which exerts heavy burden on machine learning practitioners. To this end, we propose AutoDDL, a distributed training framework that automatically explores and exploits new parallelization schemes with near-optimal bandwidth cost. AutoDDL facilitates the description and implementation of different schemes by utilizing OneFlow's Split, Broadcast, and Partial Sum (SBP) abstraction. AutoDDL is equipped with an analytical performance model combined with a customized Coordinate Descent algorithm, which significantly reduces the scheme searching overhead. We conduct evaluations on Multi-Node-Single-GPU and Multi-Node-Multi-GPU machines using different models, including VGG and Transformer. Compared to the expert-optimized implementations, AutoDDL reduces the end-to-end training time by up to 31.1% and 10% for Transformer and up to 17.7% and 71.5% for VGG on the two parallel systems, respectively.
comment: Published in IEEE Transactions on Parallel and Distributed Systems (TPDS), Volume: 35, Issue: 8, August 2024, doi: https://doi.org/10.1109/TPDS.2024.3397800
♻ ☆ MSCCL++: Rethinking GPU Communication Abstractions for Cutting-edge AI Applications
Modern cutting-edge AI applications are being developed over fast-evolving, heterogeneous, nascent hardware devices. This requires frequent reworking of the AI software stack to adopt bottom-up changes from new hardware, which takes time for general-purpose software libraries. Consequently, real applications often develop custom software stacks optimized for their specific workloads and hardware. Custom stacks help in quick development and optimization, but incur a lot of redundant efforts across applications in writing non-portable code. This paper discusses an alternative communication library interface for AI applications that offers both portability and performance by reducing redundant efforts while maintaining flexibility for customization. We present MSCCL++, a novel abstraction of GPU communication based on separation of concerns: (1) a primitive interface provides a minimal hardware abstraction as a common ground for software and hardware developers to write custom communication, and (2) higher-level portable interfaces and specialized implementations enable optimization for different workloads and hardware environments. This approach makes the primitive interface reusable across applications while enabling highly flexible optimization. Compared to state-of-the-art baselines (NCCL, RCCL, and MSCCL), MSCCL++ achieves speedups of up to 5.4$\times$ for collective communication and up to 15% for real-world AI inference workloads. MSCCL++ is in production of multiple AI services provided by Microsoft Azure, and is also adopted by RCCL, the GPU collective communication library maintained by AMD. MSCCL++ is open-source and available at https://github.com/microsoft/mscclpp.
comment: 13 pages, 12 figures
Information Retrieval 28
☆ Stemming -- The Evolution and Current State with a Focus on Bangla
Bangla, the seventh most widely spoken language worldwide with 300 million native speakers, faces digital under-representation due to limited resources and lack of annotated datasets. Stemming, a critical preprocessing step in language analysis, is essential for low-resource, highly-inflectional languages like Bangla, because it can reduce the complexity of algorithms and models by significantly reducing the number of words the algorithm needs to consider. This paper conducts a comprehensive survey of stemming approaches, emphasizing the importance of handling morphological variants effectively. While exploring the landscape of Bangla stemming, it becomes evident that there is a significant gap in the existing literature. The paper highlights the discontinuity from previous research and the scarcity of accessible implementations for replication. Furthermore, it critiques the evaluation methodologies, stressing the need for more relevant metrics. In the context of Bangla's rich morphology and diverse dialects, the paper acknowledges the challenges it poses. To address these challenges, the paper suggests directions for Bangla stemmer development. It concludes by advocating for robust Bangla stemmers and continued research in the field to enhance language analysis and processing.
☆ Benchmarking Computer Science Survey Generation
Scientific survey articles play a vital role in summarizing research progress, yet their manual creation is becoming increasingly infeasible due to the rapid growth of academic literature. While large language models (LLMs) offer promising capabilities for automating this process, progress in this area is hindered by the absence of standardized benchmarks and evaluation protocols. To address this gap, we introduce SurGE (Survey Generation Evaluation), a new benchmark for evaluating scientific survey generation in the computer science domain. SurGE consists of (1) a collection of test instances, each including a topic description, an expert-written survey, and its full set of cited references, and (2) a large-scale academic corpus of over one million papers that serves as the retrieval pool. In addition, we propose an automated evaluation framework that measures generated surveys across four dimensions: information coverage, referencing accuracy, structural organization, and content quality. Our evaluation of diverse LLM-based approaches shows that survey generation remains highly challenging, even for advanced self-reflection frameworks. These findings highlight the complexity of the task and the necessity for continued research. We have open-sourced all the code, data, and models at: https://github.com/oneal2000/SurGE
☆ Reading Between the Lines: A Study of Thematic Bias in Book Recommender Systems
Recommender systems help users discover new content, but can also reinforce existing biases, leading to unfair exposure and reduced diversity. This paper introduces and investigates thematic bias in book recommendations, defined as a disproportionate favouring or neglect of certain book themes. We adopt a multi-stage bias evaluation framework using the Book-Crossing dataset to evaluate thematic bias in recommendations and its impact on different user groups. Our findings show that thematic bias originates from content imbalances and is amplified by user engagement patterns. By segmenting users based on their thematic preferences, we find that users with niche and long-tail interests receive less personalised recommendations, whereas users with diverse interests receive more consistent recommendations. These findings suggest that recommender systems should be carefully designed to accommodate a broader range of user interests. By contributing to the broader goal of responsible AI, this work also lays the groundwork for extending thematic bias analysis to other domains.
comment: 7 pages, 5 figures, Accepted at FAccTRec at RecSys 2025
☆ LongRetriever: Towards Ultra-Long Sequence based Candidate Retrieval for Recommendation
Precisely modeling user ultra-long sequences is critical for industrial recommender systems. Current approaches predominantly focus on leveraging ultra-long sequences in the ranking stage, whereas research for the candidate retrieval stage remains under-explored. This paper presents LongRetriever, a practical framework for incorporating ultra-long sequences into the retrieval stage of recommenders. Specifically, we propose in-context training and multi-context retrieval, which enable candidate-specific interaction between user sequence and candidate item, and ensure training-serving consistency under the search-based paradigm. Extensive online A/B testing conducted on a large-scale e-commerce platform demonstrates statistically significant improvements, confirming the framework's effectiveness. Currently, LongRetriever has been fully deployed in the platform, impacting billions of users.
☆ On Evaluating the Adversarial Robustness of Foundation Models for Multimodal Entity Linking
The explosive growth of multimodal data has driven the rapid development of multimodal entity linking (MEL) models. However, existing studies have not systematically investigated the impact of visual adversarial attacks on MEL models. We conduct the first comprehensive evaluation of the robustness of mainstream MEL models under different adversarial attack scenarios, covering two core tasks: Image-to-Text (I2T) and Image+Text-to-Text (IT2T). Experimental results show that current MEL models generally lack sufficient robustness against visual perturbations. Interestingly, contextual semantic information in input can partially mitigate the impact of adversarial perturbations. Based on this insight, we propose an LLM and Retrieval-Augmented Entity Linking (LLM-RetLink), which significantly improves the model's anti-interference ability through a two-stage process: first, extracting initial entity descriptions using large vision models (LVMs), and then dynamically generating candidate descriptive sentences via web-based retrieval. Experiments on five datasets demonstrate that LLM-RetLink improves the accuracy of MEL by 0.4%-35.7%, especially showing significant advantages under adversarial conditions. This research highlights a previously unexplored facet of MEL robustness, constructs and releases the first MEL adversarial example dataset, and sets the stage for future work aimed at strengthening the resilience of multimodal systems in adversarial environments.
☆ Test-time Corpus Feedback: From Retrieval to RAG
Retrieval-Augmented Generation (RAG) has emerged as a standard framework for knowledge-intensive NLP tasks, combining large language models (LLMs) with document retrieval from external corpora. Despite its widespread use, most RAG pipelines continue to treat retrieval and reasoning as isolated components, retrieving documents once and then generating answers without further interaction. This static design often limits performance on complex tasks that require iterative evidence gathering or high-precision retrieval. Recent work in both the information retrieval (IR) and NLP communities has begun to close this gap by introducing adaptive retrieval and ranking methods that incorporate feedback. In this survey, we present a structured overview of advanced retrieval and ranking mechanisms that integrate such feedback. We categorize feedback signals based on their source and role in improving the query, retrieved context, or document pool. By consolidating these developments, we aim to bridge IR and NLP perspectives and highlight retrieval as a dynamic, learnable component of end-to-end RAG systems.
comment: 18 pages, 1 figure
☆ On the Effectiveness of Graph Reordering for Accelerating Approximate Nearest Neighbor Search on GPU
We present the first systematic investigation of graph reordering effects for graph-based Approximate Nearest Neighbor Search (ANNS) on a GPU. While graph-based ANNS has become the dominant paradigm for modern AI applications, recent approaches focus on algorithmic innovations while neglecting memory layout considerations that significantly affect execution time. Our unified evaluation framework enables comprehensive evaluation of diverse reordering strategies across different graph indices through a graph adapter that converts arbitrary graph topologies into a common representation and a GPU-optimized graph traversal engine. We conduct a comprehensive analysis across diverse datasets and state-of-the-art graph indices, introducing analysis metrics that quantify the relationship between structural properties and memory layout effectiveness. Our GPU-targeted reordering achieves up to 15$\%$ QPS improvements while preserving search accuracy, demonstrating that memory layout optimization operates orthogonally to existing algorithmic innovations. We will release all code upon publication to facilitate reproducibility and foster further research.
☆ TrackRec: Iterative Alternating Feedback with Chain-of-Thought via Preference Alignment for Recommendation
The extensive world knowledge and powerful reasoning capabilities of large language models (LLMs) have attracted significant attention in recommendation systems (RS). Specifically, The chain of thought (CoT) has been shown to improve the performance of LLMs on complex reasoning tasks for RS. However, due to the fact that LLMs often suffer from hallucination issues, there is no guarantee that their reasoning CoT is effective. A key challenge is to further enhance the recommendation capabilities of LLMs through effective CoT reasonings. Therefore, we propose \textbf{TrackRec}, a framework designed to enhance reasoning capabilities of LLMs for RS. TrackRec specifically focuses on accurately inferring recommendation CoT \textbf{(RecCoT)} for user preference using the knowledge from LLMs. This RecCoT can serve both as an explanation for the LLM's completion of recommendation tasks and as auxiliary features to assist recommendation models in accomplishing recommendation tasks. TrackRec consists of a RecCoT generator $(G)$ and a RecCoT validator $(V)$. Furthermore, we design alternating feedback learning mechanism that $G$ undergoes direct preference optimization via feedback from $V$ to produce increasingly accurate RecCoT aligned with $V$'s standards. Meanwhile, $V$ is fine-tuned using the inference feedback from $G$ to enhance its validation capabilities in alignment with recommendation tasks. Through iterative alternating feedback learning between $G$ and $V$, TrackRec continuously improves the user preference analysis capability of $G$ and the validation capacity of $V$. Extensive experiments demonstrate the effectiveness of our approach, showing that it surpasses state-of-the-art methods. Moreover, TrackRec has been deployed on a lagre advertising platform with hundreds of millions of users, achieving substantial gains.
☆ Exploring Scaling Laws of CTR Model for Online Performance Improvement
CTR models play a vital role in improving user experience and boosting business revenue in many online personalized services. However, current CTR models generally encounter bottlenecks in performance improvement. Inspired by the scaling law phenomenon of LLMs, we propose a new paradigm for improving CTR predictions: first, constructing a CTR model with accuracy scalable to the model grade and data size, and then distilling the knowledge implied in this model into its lightweight model that can serve online users. To put it into practice, we construct a CTR model named SUAN (Stacked Unified Attention Network). In SUAN, we propose the UAB as a behavior sequence encoder. A single UAB unifies the modeling of the sequential and non-sequential features and also measures the importance of each user behavior feature from multiple perspectives. Stacked UABs elevate the configuration to a high grade, paving the way for performance improvement. In order to benefit from the high performance of the high-grade SUAN and avoid the disadvantage of its long inference time, we modify the SUAN with sparse self-attention and parallel inference strategies to form LightSUAN, and then adopt online distillation to train the low-grade LightSUAN, taking a high-grade SUAN as a teacher. The distilled LightSUAN has superior performance but the same inference time as the LightSUAN, making it well-suited for online deployment. Experimental results show that SUAN performs exceptionally well and holds the scaling laws spanning three orders of magnitude in model grade and data size, and the distilled LightSUAN outperforms the SUAN configured with one grade higher. More importantly, the distilled LightSUAN has been integrated into an online service, increasing the CTR by 2.81% and CPM by 1.69% while keeping the average inference time acceptable. Our source code is available at https://github.com/laiweijiang/SUAN.
☆ Modeling Long-term User Behaviors with Diffusion-driven Multi-interest Network for CTR Prediction
CTR (Click-Through Rate) prediction, crucial for recommender systems and online advertising, etc., has been confirmed to benefit from modeling long-term user behaviors. Nonetheless, the vast number of behaviors and complexity of noise interference pose challenges to prediction efficiency and effectiveness. Recent solutions have evolved from single-stage models to two-stage models. However, current two-stage models often filter out significant information, resulting in an inability to capture diverse user interests and build the complete latent space of user interests. Inspired by multi-interest and generative modeling, we propose DiffuMIN (Diffusion-driven Multi-Interest Network) to model long-term user behaviors and thoroughly explore the user interest space. Specifically, we propose a target-oriented multi-interest extraction method that begins by orthogonally decomposing the target to obtain interest channels. This is followed by modeling the relationships between interest channels and user behaviors to disentangle and extract multiple user interests. We then adopt a diffusion module guided by contextual interests and interest channels, which anchor users' personalized and target-oriented interest types, enabling the generation of augmented interests that align with the latent spaces of user interests, thereby further exploring restricted interest space. Finally, we leverage contrastive learning to ensure that the generated augmented interests align with users' genuine preferences. Extensive offline experiments are conducted on two public datasets and one industrial dataset, yielding results that demonstrate the superiority of DiffuMIN. Moreover, DiffuMIN increased CTR by 1.52% and CPM by 1.10% in online A/B testing. Our source code is available at https://github.com/laiweijiang/DiffuMIN.
☆ REG4Rec: Reasoning-Enhanced Generative Model for Large-Scale Recommendation Systems
Sequential recommendation aims to predict a user's next action in large-scale recommender systems. While traditional methods often suffer from insufficient information interaction, recent generative recommendation models partially address this issue by directly generating item predictions. To better capture user intents, recent studies have introduced a reasoning process into generative recommendation, significantly improving recommendation performance. However, these approaches are constrained by the singularity of item semantic representations, facing challenges such as limited diversity in reasoning pathways and insufficient reliability in the reasoning process. To tackle these issues, we introduce REG4Rec, a reasoning-enhanced generative model that constructs multiple dynamic semantic reasoning paths alongside a self-reflection process, ensuring high-confidence recommendations. Specifically, REG4Rec utilizes an MoE-based parallel quantization codebook (MPQ) to generate multiple unordered semantic tokens for each item, thereby constructing a larger-scale diverse reasoning space. Furthermore, to enhance the reliability of reasoning, we propose a training reasoning enhancement stage, which includes Preference Alignment for Reasoning (PARS) and a Multi-Step Reward Augmentation (MSRA) strategy. PARS uses reward functions tailored for recommendation to enhance reasoning and reflection, while MSRA introduces future multi-step actions to improve overall generalization. During inference, Consistency-Oriented Self-Reflection for Pruning (CORP) is proposed to discard inconsistent reasoning paths, preventing the propagation of erroneous reasoning. Lastly, we develop an efficient offline training strategy for large-scale recommendation. Experiments on real-world datasets and online evaluations show that REG4Rec delivers outstanding performance and substantial practical value.
☆ MLLMRec: Exploring the Potential of Multimodal Large Language Models in Recommender Systems
Multimodal recommendation typically combines the user behavioral data with the modal features of items to reveal user's preference, presenting superior performance compared to the conventional recommendations. However, existing methods still suffer from two key problems: (1) the initialization methods of user multimodal representations are either behavior-unperceived or noise-contaminated, and (2) the KNN-based item-item graph contains noisy edges with low similarities and lacks audience co-occurrence relationships. To address such issues, we propose MLLMRec, a novel MLLM-driven multimodal recommendation framework with two item-item graph refinement strategies. On the one hand, the item images are first converted into high-quality semantic descriptions using an MLLM, which are then fused with the textual metadata of items. Then, we construct a behavioral description list for each user and feed it into the MLLM to reason about the purified user preference containing interaction motivations. On the other hand, we design the threshold-controlled denoising and topology-aware enhancement strategies to refine the suboptimal item-item graph, thereby enhancing the item representation learning. Extensive experiments on three publicly available datasets demonstrate that MLLMRec achieves the state-of-the-art performance with an average improvement of 38.53% over the best baselines.
☆ Adversarial Attacks against Neural Ranking Models via In-Context Learning
While neural ranking models (NRMs) have shown high effectiveness, they remain susceptible to adversarial manipulation. In this work, we introduce Few-Shot Adversarial Prompting (FSAP), a novel black-box attack framework that leverages the in-context learning capabilities of Large Language Models (LLMs) to generate high-ranking adversarial documents. Unlike previous approaches that rely on token-level perturbations or manual rewriting of existing documents, FSAP formulates adversarial attacks entirely through few-shot prompting, requiring no gradient access or internal model instrumentation. By conditioning the LLM on a small support set of previously observed harmful examples, FSAP synthesizes grammatically fluent and topically coherent documents that subtly embed false or misleading information and rank competitively against authentic content. We instantiate FSAP in two modes: FSAP-IntraQ, which leverages harmful examples from the same query to enhance topic fidelity, and FSAP-InterQ, which enables broader generalization by transferring adversarial patterns across unrelated queries. Our experiments on the TREC 2020 and 2021 Health Misinformation Tracks, using four diverse neural ranking models, reveal that FSAP-generated documents consistently outrank credible, factually accurate documents. Furthermore, our analysis demonstrates that these adversarial outputs exhibit strong stance alignment and low detectability, posing a realistic and scalable threat to neural retrieval systems. FSAP also effectively generalizes across both proprietary and open-source LLMs.
☆ MMQ: Multimodal Mixture-of-Quantization Tokenization for Semantic ID Generation and User Behavioral Adaptation
Recommender systems traditionally represent items using unique identifiers (ItemIDs), but this approach struggles with large, dynamic item corpora and sparse long-tail data, limiting scalability and generalization. Semantic IDs, derived from multimodal content such as text and images, offer a promising alternative by mapping items into a shared semantic space, enabling knowledge transfer and improving recommendations for new or rare items. However, existing methods face two key challenges: (1) balancing cross-modal synergy with modality-specific uniqueness, and (2) bridging the semantic-behavioral gap, where semantic representations may misalign with actual user preferences. To address these challenges, we propose Multimodal Mixture-of-Quantization (MMQ), a two-stage framework that trains a novel multimodal tokenizer. First, a shared-specific tokenizer leverages a multi-expert architecture with modality-specific and modality-shared experts, using orthogonal regularization to capture comprehensive multimodal information. Second, behavior-aware fine-tuning dynamically adapts semantic IDs to downstream recommendation objectives while preserving modality information through a multimodal reconstruction loss. Extensive offline experiments and online A/B tests demonstrate that MMQ effectively unifies multimodal synergy, specificity, and behavioral adaptation, providing a scalable and versatile solution for both generative retrieval and discriminative ranking tasks.
☆ TComQA: Extracting Temporal Commonsense from Text
Understanding events necessitates grasping their temporal context, which is often not explicitly stated in natural language. For example, it is not a trivial task for a machine to infer that a museum tour may last for a few hours, but can not take months. Recent studies indicate that even advanced large language models (LLMs) struggle in generating text that require reasoning with temporal commonsense due to its infrequent explicit mention in text. Therefore, automatically mining temporal commonsense for events enables the creation of robust language models. In this work, we investigate the capacity of LLMs to extract temporal commonsense from text and evaluate multiple experimental setups to assess their effectiveness. Here, we propose a temporal commonsense extraction pipeline that leverages LLMs to automatically mine temporal commonsense and use it to construct TComQA, a dataset derived from SAMSum and RealNews corpora. TComQA has been validated through crowdsourcing and achieves over 80\% precision in extracting temporal commonsense. The model trained with TComQA also outperforms an LLM fine-tuned on existing dataset of temporal question answering task.
☆ Curriculum Approximate Unlearning for Session-based Recommendation
Approximate unlearning for session-based recommendation refers to eliminating the influence of specific training samples from the recommender without retraining of (sub-)models. Gradient ascent (GA) is a representative method to conduct approximate unlearning. However, there still exist dual challenges to apply GA for session-based recommendation. On the one hand, naive applying of GA could lead to degradation of recommendation performance. On the other hand, existing studies fail to consider the ordering of unlearning samples when simultaneously processing multiple unlearning requests, leading to sub-optimal recommendation performance and unlearning effect. To address the above challenges, we introduce CAU, a curriculum approximate unlearning framework tailored to session-based recommendation. CAU handles the unlearning task with a GA term on unlearning samples. Specifically, to address the first challenge, CAU formulates the overall optimization task as a multi-objective optimization problem, where the GA term for unlearning samples is combined with retaining terms for preserving performance. The multi-objective optimization problem is solved through seeking the Pareto-Optimal solution, which achieves effective unlearning with trivial sacrifice on recommendation performance. To tackle the second challenge, CAU adopts a curriculum-based sequence to conduct unlearning on batches of unlearning samples. The key motivation is to perform unlearning from easy samples to harder ones. To this end, CAU first introduces two metrics to measure the unlearning difficulty, including gradient unlearning difficulty and embedding unlearning difficulty. Then, two strategies, hard-sampling and soft-sampling, are proposed to select unlearning samples according to difficulty scores.
☆ M-$LLM^3$REC: A Motivation-Aware User-Item Interaction Framework for Enhancing Recommendation Accuracy with LLMs
Recommendation systems have been essential for both user experience and platform efficiency by alleviating information overload and supporting decision-making. Traditional methods, i.e., content-based filtering, collaborative filtering, and deep learning, have achieved impressive results in recommendation systems. However, the cold-start and sparse-data scenarios are still challenging to deal with. Existing solutions either generate pseudo-interaction sequence, which often introduces redundant or noisy signals, or rely heavily on semantic similarity, overlooking dynamic shifts in user motivation. To address these limitations, this paper proposes a novel recommendation framework, termed M-$LLM^3$REC, which leverages large language models for deep motivational signal extraction from limited user interactions. M-$LLM^3$REC comprises three integrated modules: the Motivation-Oriented Profile Extractor (MOPE), Motivation-Oriented Trait Encoder (MOTE), and Motivational Alignment Recommender (MAR). By emphasizing motivation-driven semantic modeling, M-$LLM^3$REC demonstrates robust, personalized, and generalizable recommendations, particularly boosting performance in cold-start situations in comparison with the state-of-the-art frameworks.
comment: 10pages
☆ Retrieval-Augmented Review Generation for Poisoning Recommender Systems
Recent studies have shown that recommender systems (RSs) are highly vulnerable to data poisoning attacks, where malicious actors inject fake user profiles, including a group of well-designed fake ratings, to manipulate recommendations. Due to security and privacy constraints in practice, attackers typically possess limited knowledge of the victim system and thus need to craft profiles that have transferability across black-box RSs. To maximize the attack impact, the profiles often remains imperceptible. However, generating such high-quality profiles with the restricted resources is challenging. Some works suggest incorporating fake textual reviews to strengthen the profiles; yet, the poor quality of the reviews largely undermines the attack effectiveness and imperceptibility under the practical setting. To tackle the above challenges, in this paper, we propose to enhance the quality of the review text by harnessing in-context learning (ICL) capabilities of multimodal foundation models. To this end, we introduce a demonstration retrieval algorithm and a text style transfer strategy to augment the navie ICL. Specifically, we propose a novel practical attack framework named RAGAN to generate high-quality fake user profiles, which can gain insights into the robustness of RSs. The profiles are generated by a jailbreaker and collaboratively optimized on an instructional agent and a guardian to improve the attack transferability and imperceptibility. Comprehensive experiments on various real-world datasets demonstrate that RAGAN achieves the state-of-the-art poisoning attack performance.
☆ See Beyond a Single View: Multi-Attribution Learning Leads to Better Conversion Rate Prediction
Conversion rate (CVR) prediction is a core component of online advertising systems, where the attribution mechanisms-rules for allocating conversion credit across user touchpoints-fundamentally determine label generation and model optimization. While many industrial platforms support diverse attribution mechanisms (e.g., First-Click, Last-Click, Linear, and Data-Driven Multi-Touch Attribution), conventional approaches restrict model training to labels from a single production-critical attribution mechanism, discarding complementary signals in alternative attribution perspectives. To address this limitation, we propose a novel Multi-Attribution Learning (MAL) framework for CVR prediction that integrates signals from multiple attribution perspectives to better capture the underlying patterns driving user conversions. Specifically, MAL is a joint learning framework consisting of two core components: the Attribution Knowledge Aggregator (AKA) and the Primary Target Predictor (PTP). AKA is implemented as a multi-task learner that integrates knowledge extracted from diverse attribution labels. PTP, in contrast, focuses on the task of generating well-calibrated conversion probabilities that align with the system-optimized attribution metric (e.g., CVR under the Last-Click attribution), ensuring direct compatibility with industrial deployment requirements. Additionally, we propose CAT, a novel training strategy that leverages the Cartesian product of all attribution label combinations to generate enriched supervision signals. This design substantially enhances the performance of the attribution knowledge aggregator. Empirical evaluations demonstrate the superiority of MAL over single-attribution learning baselines, achieving +0.51% GAUC improvement on offline metrics. Online experiments demonstrate that MAL achieved a +2.6% increase in ROI (Return on Investment).
comment: Accepted at CIKM 2025
☆ Evaluating Structured Decoding for Text-to-Table Generation: Evidence from Three Datasets
We present a comprehensive evaluation of structured decoding for text-to-table generation with large language models (LLMs). While previous work has primarily focused on unconstrained generation of tables, the impact of enforcing structural constraints during generation remains underexplored. We systematically compare schema-guided (structured) decoding to standard one-shot prompting across three diverse benchmarks - E2E, Rotowire, and Livesum - using open-source LLMs of up to 32B parameters, assessing the performance of table generation approaches in resource-constrained settings. Our experiments cover a wide range of evaluation metrics at cell, row, and table levels. Results demonstrate that structured decoding significantly enhances the validity and alignment of generated tables, particularly in scenarios demanding precise numerical alignment (Rotowire), but may degrade performance in contexts involving densely packed textual information (E2E) or extensive aggregation over lengthy texts (Livesum). We further analyze the suitability of different evaluation metrics and discuss the influence of model size.
comment: to be published in the workshop proceedings of the "From Rules to Language Models: Comparative Performance Evaluation" workshop, held alongside RANLP 2025
☆ Annif at the GermEval-2025 LLMs4Subjects Task: Traditional XMTC Augmented by Efficient LLMs
This paper presents the Annif system in the LLMs4Subjects shared task (Subtask 2) at GermEval-2025. The task required creating subject predictions for bibliographic records using large language models, with a special focus on computational efficiency. Our system, based on the Annif automated subject indexing toolkit, refines our previous system from the first LLMs4Subjects shared task, which produced excellent results. We further improved the system by using many small and efficient language models for translation and synthetic data generation and by using LLMs for ranking candidate subjects. Our system ranked 1st in the overall quantitative evaluation of and 1st in the qualitative evaluation of Subtask 2.
comment: 5 pages, 4 figures, accepted at KONVENS 2025. arXiv admin note: substantial text overlap with arXiv:2504.19675
♻ ☆ OPDR: Order-Preserving Dimension Reduction for Semantic Embedding of Multimodal Scientific Data
One of the most common operations in multimodal scientific data management is searching for the $k$ most similar items (or, $k$-nearest neighbors, KNN) from the database after being provided a new item. Although recent advances of multimodal machine learning models offer a \textit{semantic} index, the so-called \textit{embedding vectors} mapped from the original multimodal data, the dimension of the resulting embedding vectors are usually on the order of hundreds or a thousand, which are impractically high for time-sensitive scientific applications. This work proposes to reduce the dimensionality of the output embedding vectors such that the set of top-$k$ nearest neighbors do not change in the lower-dimensional space, namely Order-Preserving Dimension Reduction (OPDR). In order to develop such an OPDR method, our central hypothesis is that by analyzing the intrinsic relationship among key parameters during the dimension-reduction map, a quantitative function may be constructed to reveal the correlation between the target (lower) dimensionality and other variables. To demonstrate the hypothesis, this paper first defines a formal measure function to quantify the KNN similarity for a specific vector, then extends the measure into an aggregate accuracy of the global metric spaces, and finally derives a closed-form function between the target (lower) dimensionality and other variables. We incorporate the closed-function into popular dimension-reduction methods, various distance metrics, and embedding models.
♻ ☆ Annif at SemEval-2025 Task 5: Traditional XMTC augmented by LLMs
This paper presents the Annif system in SemEval-2025 Task 5 (LLMs4Subjects), which focussed on subject indexing using large language models (LLMs). The task required creating subject predictions for bibliographic records from the bilingual TIBKAT database using the GND subject vocabulary. Our approach combines traditional natural language processing and machine learning techniques implemented in the Annif toolkit with innovative LLM-based methods for translation and synthetic data generation, and merging predictions from monolingual models. The system ranked first in the all-subjects category and second in the tib-core-subjects category in the quantitative evaluation, and fourth in qualitative evaluations. These findings demonstrate the potential of combining traditional XMTC algorithms with modern LLM techniques to improve the accuracy and efficiency of subject indexing in multilingual contexts.
comment: 6 pages, 4 figures, published at SemEval-2025 workshop Task 5: LLMs4Subjects: https://aclanthology.org/2025.semeval-1.315/
♻ ☆ An Empirical Study of Position Bias in Modern Information Retrieval
This study investigates the position bias in information retrieval, where models tend to overemphasize content at the beginning of passages while neglecting semantically relevant information that appears later. To analyze the extent and impact of position bias, we introduce a new evaluation framework consisting of two position-aware retrieval benchmarks (SQuAD-PosQ, FineWeb-PosQ) and an intuitive diagnostic metric, the Position Sensitivity Index (PSI), for quantifying position bias from a worst-case perspective. We conduct a comprehensive evaluation across the full retrieval pipeline, including BM25, dense embedding models, ColBERT-style late-interaction models, and full-interaction reranker models. Our experiments show that when relevant information appears later in the passage, dense embedding models and ColBERT-style models suffer significant performance degradation (an average drop of 15.6%). In contrast, BM25 and reranker models demonstrate greater robustness to such positional variation. These findings provide practical insights into model sensitivity to the position of relevant information and offer guidance for building more position-robust retrieval systems. Code and data are publicly available at: https://github.com/NovaSearch-Team/position-bias-in-IR.
comment: EMNLP 2025 Findings
♻ ☆ FinAgentBench: A Benchmark Dataset for Agentic Retrieval in Financial Question Answering
Accurate information retrieval (IR) is critical in the financial domain, where investors must identify relevant information from large collections of documents. Traditional IR methods-whether sparse or dense-often fall short in retrieval accuracy, as it requires not only capturing semantic similarity but also performing fine-grained reasoning over document structure and domain-specific knowledge. Recent advances in large language models (LLMs) have opened up new opportunities for retrieval with multi-step reasoning, where the model ranks passages through iterative reasoning about which information is most relevant to a given query. However, there exists no benchmark to evaluate such capabilities in the financial domain. To address this gap, we introduce FinAgentBench, the first large-scale benchmark for evaluating retrieval with multi-step reasoning in finance -- a setting we term agentic retrieval. The benchmark consists of 3,429 expert-annotated examples on S&P-100 listed firms and assesses whether LLM agents can (1) identify the most relevant document type among candidates, and (2) pinpoint the key passage within the selected document. Our evaluation framework explicitly separates these two reasoning steps to address context limitations. This design enables to provide a quantitative basis for understanding retrieval-centric LLM behavior in finance. We evaluate a suite of state-of-the-art models and further demonstrated how targeted fine-tuning can significantly improve agentic retrieval performance. Our benchmark provides a foundation for studying retrieval-centric LLM behavior in complex, domain-specific tasks for finance. We will release the dataset publicly upon acceptance of the paper and plan to expand and share dataset for the full S&P 500 and beyond.
comment: 6 pages
♻ ☆ Generating Negative Samples for Multi-Modal Recommendation
Multi-modal recommender systems (MMRS) have gained significant attention due to their ability to leverage information from various modalities to enhance recommendation quality. However, existing negative sampling techniques often struggle to effectively utilize the multi-modal data, leading to suboptimal performance. In this paper, we identify two key challenges in negative sampling for MMRS: (1) producing cohesive negative samples contrasting with positive samples and (2) maintaining a balanced influence across different modalities. To address these challenges, we propose NegGen, a novel framework that utilizes multi-modal large language models (MLLMs) to generate balanced and contrastive negative samples. We design three different prompt templates to enable NegGen to analyze and manipulate item attributes across multiple modalities, and then generate negative samples that introduce better supervision signals and ensure modality balance. Furthermore, NegGen employs a causal learning module to disentangle the effect of intervened key features and irrelevant item attributes, enabling fine-grained learning of user preferences. Extensive experiments on real-world datasets demonstrate the superior performance of NegGen compared to state-of-the-art methods in both negative sampling and multi-modal recommendation.
comment: Accepted by ACM Multimedia
♻ ☆ Monolithic Hybrid Recommender System for Suggesting Relevant Movies
Recommendation systems have become the fundamental services to facilitate users information access. Generally, recommendation system works by filtering historical behaviors to understand and learn users preferences. With the growth of online information, recommendations have become of crucial importance in information filtering to prevent the information overload problem. In this study, we considered hybrid post-fusion of two approaches of collaborative filtering, by using sequences of watched movies and considering the related movies rating. After considering both techniques and applying the weights matrix, the recommendations would be modified to correspond to the users preference as needed. We discussed that various weights would be set based on use cases. For instance, in cases where we have the rating for most classes, we will assign a higher weight to the rating matrix and in case where the rating is unavailable for the majority of cases, the higher weights might be assigned to the sequential dataset. An extensive discussion is made in the context of this paper. Sequential type of the watched movies was used in conjunction of the rating as especially that model might be inadequate in distinguishing users long-term preference and that does not account for the rating of the watched movies and thus that model along might not suffice. Extensive discussion was made regarding the literature and methodological approach to solve the problem.
♻ ☆ A Text-Based Recommender System that Leverages Explicit Affective State Preferences
The affective attitude of liking a recommended item reflects just one category in a wide spectrum of affective phenomena that also includes emotions such as entranced or intrigued, moods such as cheerful or buoyant, as well as more fine-grained affective states, such as "pleasantly surprised by the conclusion". In this paper, we introduce a novel recommendation task that can leverage a virtually unbounded range of affective states sought explicitly by the user in order to identify items that, upon consumption, are likely to induce those affective states. Correspondingly, we create a large dataset of user preferences containing expressions of fine-grained affective states that are mined from book reviews, and propose a Transformer-based architecture that leverages such affective expressions as input. We then use the resulting dataset of affective states preferences, together with the linked users and their histories of book readings, ratings, and reviews, to train and evaluate multiple recommendation models on the task of matching recommended items with affective preferences. Experiments show that the best results are obtained by models that can utilize textual descriptions of items and user affective preferences.
comment: To appear at EMNLP 2025
Artificial Intelligence 150
☆ SceneGen: Single-Image 3D Scene Generation in One Feedforward Pass
3D content generation has recently attracted significant research interest due to its applications in VR/AR and embodied AI. In this work, we address the challenging task of synthesizing multiple 3D assets within a single scene image. Concretely, our contributions are fourfold: (i) we present SceneGen, a novel framework that takes a scene image and corresponding object masks as input, simultaneously producing multiple 3D assets with geometry and texture. Notably, SceneGen operates with no need for optimization or asset retrieval; (ii) we introduce a novel feature aggregation module that integrates local and global scene information from visual and geometric encoders within the feature extraction module. Coupled with a position head, this enables the generation of 3D assets and their relative spatial positions in a single feedforward pass; (iii) we demonstrate SceneGen's direct extensibility to multi-image input scenarios. Despite being trained solely on single-image inputs, our architectural design enables improved generation performance with multi-image inputs; and (iv) extensive quantitative and qualitative evaluations confirm the efficiency and robust generation abilities of our approach. We believe this paradigm offers a novel solution for high-quality 3D content generation, potentially advancing its practical applications in downstream tasks. The code and model will be publicly available at: https://mengmouxu.github.io/SceneGen.
comment: Technical Report; Project Page: https://mengmouxu.github.io/SceneGen
☆ Discovering Hidden Algebraic Structures via Transformers with Rank-Aware Beam GRPO
Recent efforts have extended the capabilities of transformers in logical reasoning and symbolic computations. In this work, we investigate their capacity for non-linear latent pattern discovery in the context of functional decomposition, focusing on the challenging algebraic task of multivariate polynomial decomposition. This problem, with widespread applications in science and engineering, is proved to be NP-hard, and demands both precision and insight. Our contributions are threefold: First, we develop a synthetic data generation pipeline providing fine-grained control over problem complexity. Second, we train transformer models via supervised learning and evaluate them across four key dimensions involving scaling behavior and generalizability. Third, we propose Beam Grouped Relative Policy Optimization (BGRPO), a rank-aware reinforcement learning method suitable for hard algebraic problems. Finetuning with BGRPO improves accuracy while reducing beam width by up to half, resulting in approximately 75% lower inference compute. Additionally, our model demonstrates competitive performance in polynomial simplification, outperforming Mathematica in various cases.
☆ LiveMCP-101: Stress Testing and Diagnosing MCP-enabled Agents on Challenging Queries
Tool calling has emerged as a critical capability for AI agents to interact with the real world and solve complex tasks. While the Model Context Protocol (MCP) provides a powerful standardized framework for tool integration, there is a significant gap in benchmarking how well AI agents can effectively solve multi-step tasks using diverse MCP tools in realistic, dynamic scenarios. In this work, we present LiveMCP-101, a benchmark of 101 carefully curated real-world queries, refined through iterative LLM rewriting and manual review, that require coordinated use of multiple MCP tools including web search, file operations, mathematical reasoning, and data analysis. Moreover, we introduce a novel evaluation approach that leverages ground-truth execution plans rather than raw API outputs, better reflecting the evolving nature of real-world environments. Experiments show that even frontier LLMs achieve a success rate below 60\%, highlighting major challenges in tool orchestration. Detailed ablations and error analysis further reveal distinct failure modes and inefficiencies in token usage, pointing to concrete directions for advancing current models. LiveMCP-101 sets a rigorous standard for evaluating real-world agent capabilities, advancing toward autonomous AI systems that reliably execute complex tasks through tool use.
☆ Language-Guided Tuning: Enhancing Numeric Optimization with Textual Feedback
Configuration optimization remains a critical bottleneck in machine learning, requiring coordinated tuning across model architecture, training strategy, feature engineering, and hyperparameters. Traditional approaches treat these dimensions independently and lack interpretability, while recent automated methods struggle with dynamic adaptability and semantic reasoning about optimization decisions. We introduce Language-Guided Tuning (LGT), a novel framework that employs multi-agent Large Language Models to intelligently optimize configurations through natural language reasoning. We apply textual gradients - qualitative feedback signals that complement numerical optimization by providing semantic understanding of training dynamics and configuration interdependencies. LGT coordinates three specialized agents: an Advisor that proposes configuration changes, an Evaluator that assesses progress, and an Optimizer that refines the decision-making process, creating a self-improving feedback loop. Through comprehensive evaluation on six diverse datasets, LGT demonstrates substantial improvements over traditional optimization methods, achieving performance gains while maintaining high interpretability.
comment: 9 pages, 4 figures, 4 tables
☆ Neural Robot Dynamics
Accurate and efficient simulation of modern robots remains challenging due to their high degrees of freedom and intricate mechanisms. Neural simulators have emerged as a promising alternative to traditional analytical simulators, capable of efficiently predicting complex dynamics and adapting to real-world data; however, existing neural simulators typically require application-specific training and fail to generalize to novel tasks and/or environments, primarily due to inadequate representations of the global state. In this work, we address the problem of learning generalizable neural simulators for robots that are structured as articulated rigid bodies. We propose NeRD (Neural Robot Dynamics), learned robot-specific dynamics models for predicting future states for articulated rigid bodies under contact constraints. NeRD uniquely replaces the low-level dynamics and contact solvers in an analytical simulator and employs a robot-centric and spatially-invariant simulation state representation. We integrate the learned NeRD models as an interchangeable backend solver within a state-of-the-art robotics simulator. We conduct extensive experiments to show that the NeRD simulators are stable and accurate over a thousand simulation steps; generalize across tasks and environment configurations; enable policy learning exclusively in a neural engine; and, unlike most classical simulators, can be fine-tuned from real-world data to bridge the gap between simulation and reality.
☆ Dissecting Tool-Integrated Reasoning: An Empirical Study and Analysis
Large Language Models (LLMs) have made significant strides in reasoning tasks through methods like chain-of-thought (CoT) reasoning. However, they often fall short in tasks requiring precise computations. Tool-Integrated Reasoning (TIR) has emerged as a solution by incorporating external tools into the reasoning process. Nevertheless, the generalization of TIR in improving the reasoning ability of LLM is still unclear. Additionally, whether TIR has improved the model's reasoning behavior and helped the model think remains to be studied. We introduce ReasonZoo, a comprehensive benchmark encompassing nine diverse reasoning categories, to evaluate the effectiveness of TIR across various domains. Additionally, we propose two novel metrics, Performance-Aware Cost (PAC) and Area Under the Performance-Cost Curve (AUC-PCC), to assess reasoning efficiency. Our empirical evaluation demonstrates that TIR-enabled models consistently outperform their non-TIR counterparts in both mathematical and non-mathematical tasks. Furthermore, TIR enhances reasoning efficiency, as evidenced by improved PAC and AUC-PCC, indicating reduced overthinking and more streamlined reasoning. These findings underscore the domain-general benefits of TIR and its potential to advance LLM capabilities in complex reasoning tasks.
comment: Preprint, working in progress
☆ "Does the cafe entrance look accessible? Where is the door?" Towards Geospatial AI Agents for Visual Inquiries ICCV'25
Interactive digital maps have revolutionized how people travel and learn about the world; however, they rely on pre-existing structured data in GIS databases (e.g., road networks, POI indices), limiting their ability to address geo-visual questions related to what the world looks like. We introduce our vision for Geo-Visual Agents--multimodal AI agents capable of understanding and responding to nuanced visual-spatial inquiries about the world by analyzing large-scale repositories of geospatial images, including streetscapes (e.g., Google Street View), place-based photos (e.g., TripAdvisor, Yelp), and aerial imagery (e.g., satellite photos) combined with traditional GIS data sources. We define our vision, describe sensing and interaction approaches, provide three exemplars, and enumerate key challenges and opportunities for future work.
comment: Accepted to the ICCV'25 Workshop "Vision Foundation Models and Generative AI for Accessibility: Challenges and Opportunities"
☆ Response and Prompt Evaluation to Prevent Parasocial Relationships with Chatbots
The development of parasocial relationships with AI agents has severe, and in some cases, tragic effects for human well-being. Yet preventing such dynamics is challenging: parasocial cues often emerge gradually in private conversations, and not all forms of emotional engagement are inherently harmful. We address this challenge by introducing a simple response evaluation framework, created by repurposing a state-of-the-art language model, that evaluates ongoing conversations for parasocial cues in real time. To test the feasibility of this approach, we constructed a small synthetic dataset of thirty dialogues spanning parasocial, sycophantic, and neutral conversations. Iterative evaluation with five stage testing successfully identified all parasocial conversations while avoiding false positives under a tolerant unanimity rule, with detection typically occurring within the first few exchanges. These findings provide preliminary evidence that evaluation agents can provide a viable solution for the prevention of parasocial relations.
☆ End-to-End Agentic RAG System Training for Traceable Diagnostic Reasoning
Accurate diagnosis with medical large language models is hindered by knowledge gaps and hallucinations. Retrieval and tool-augmented methods help, but their impact is limited by weak use of external knowledge and poor feedback-reasoning traceability. To address these challenges, We introduce Deep-DxSearch, an agentic RAG system trained end-to-end with reinforcement learning (RL) that enables steer tracebale retrieval-augmented reasoning for medical diagnosis. In Deep-DxSearch, we first construct a large-scale medical retrieval corpus comprising patient records and reliable medical knowledge sources to support retrieval-aware reasoning across diagnostic scenarios. More crutially, we frame the LLM as the core agent and the retrieval corpus as its environment, using tailored rewards on format, retrieval, reasoning structure, and diagnostic accuracy, thereby evolving the agentic RAG policy from large-scale data through RL. Experiments demonstrate that our end-to-end agentic RL training framework consistently outperforms prompt-engineering and training-free RAG approaches across multiple data centers. After training, Deep-DxSearch achieves substantial gains in diagnostic accuracy, surpassing strong diagnostic baselines such as GPT-4o, DeepSeek-R1, and other medical-specific frameworks for both common and rare disease diagnosis under in-distribution and out-of-distribution settings. Moreover, ablation studies on reward design and retrieval corpus components confirm their critical roles, underscoring the uniqueness and effectiveness of our approach compared with traditional implementations. Finally, case studies and interpretability analyses highlight improvements in Deep-DxSearch's diagnostic policy, providing deeper insight into its performance gains and supporting clinicians in delivering more reliable and precise preliminary diagnoses. See https://github.com/MAGIC-AI4Med/Deep-DxSearch.
comment: 35 pages, 5 figures, 3 tables
☆ Measuring the environmental impact of delivering AI at Google Scale
The transformative power of AI is undeniable - but as user adoption accelerates, so does the need to understand and mitigate the environmental impact of AI serving. However, no studies have measured AI serving environmental metrics in a production environment. This paper addresses this gap by proposing and executing a comprehensive methodology for measuring the energy usage, carbon emissions, and water consumption of AI inference workloads in a large-scale, AI production environment. Our approach accounts for the full stack of AI serving infrastructure - including active AI accelerator power, host system energy, idle machine capacity, and data center energy overhead. Through detailed instrumentation of Google's AI infrastructure for serving the Gemini AI assistant, we find the median Gemini Apps text prompt consumes 0.24 Wh of energy - a figure substantially lower than many public estimates. We also show that Google's software efficiency efforts and clean energy procurement have driven a 33x reduction in energy consumption and a 44x reduction in carbon footprint for the median Gemini Apps text prompt over one year. We identify that the median Gemini Apps text prompt uses less energy than watching nine seconds of television (0.24 Wh) and consumes the equivalent of five drops of water (0.26 mL). While these impacts are low compared to other daily activities, reducing the environmental impact of AI serving continues to warrant important attention. Towards this objective, we propose that a comprehensive measurement of AI serving environmental metrics is critical for accurately comparing models, and to properly incentivize efficiency gains across the full AI serving stack.
☆ Numerical models outperform AI weather forecasts of record-breaking extremes
Artificial intelligence (AI)-based models are revolutionizing weather forecasting and have surpassed leading numerical weather prediction systems on various benchmark tasks. However, their ability to extrapolate and reliably forecast unprecedented extreme events remains unclear. Here, we show that for record-breaking weather extremes, the numerical model High RESolution forecast (HRES) from the European Centre for Medium-Range Weather Forecasts still consistently outperforms state-of-the-art AI models GraphCast, GraphCast operational, Pangu-Weather, Pangu-Weather operational, and Fuxi. We demonstrate that forecast errors in AI models are consistently larger for record-breaking heat, cold, and wind than in HRES across nearly all lead times. We further find that the examined AI models tend to underestimate both the frequency and intensity of record-breaking events, and they underpredict hot records and overestimate cold records with growing errors for larger record exceedance. Our findings underscore the current limitations of AI weather models in extrapolating beyond their training domain and in forecasting the potentially most impactful record-breaking weather events that are particularly frequent in a rapidly warming climate. Further rigorous verification and model development is needed before these models can be solely relied upon for high-stakes applications such as early warning systems and disaster management.
☆ EcomMMMU: Strategic Utilization of Visuals for Robust Multimodal E-Commerce Models
E-commerce platforms are rich in multimodal data, featuring a variety of images that depict product details. However, this raises an important question: do these images always enhance product understanding, or can they sometimes introduce redundancy or degrade performance? Existing datasets are limited in both scale and design, making it difficult to systematically examine this question. To this end, we introduce EcomMMMU, an e-commerce multimodal multitask understanding dataset with 406,190 samples and 8,989,510 images. EcomMMMU is comprised of multi-image visual-language data designed with 8 essential tasks and a specialized VSS subset to benchmark the capability of multimodal large language models (MLLMs) to effectively utilize visual content. Analysis on EcomMMMU reveals that product images do not consistently improve performance and can, in some cases, degrade it. This indicates that MLLMs may struggle to effectively leverage rich visual content for e-commerce tasks. Building on these insights, we propose SUMEI, a data-driven method that strategically utilizes multiple images via predicting visual utilities before using them for downstream tasks. Comprehensive experiments demonstrate the effectiveness and robustness of SUMEI. The data and code are available through https://anonymous.4open.science/r/submission25.
☆ Tutorial on the Probabilistic Unification of Estimation Theory, Machine Learning, and Generative AI
Extracting meaning from uncertain, noisy data is a fundamental problem across time series analysis, pattern recognition, and language modeling. This survey presents a unified mathematical framework that connects classical estimation theory, statistical inference, and modern machine learning, including deep learning and large language models. By analyzing how techniques such as maximum likelihood estimation, Bayesian inference, and attention mechanisms address uncertainty, the paper illustrates that many AI methods are rooted in shared probabilistic principles. Through illustrative scenarios including system identification, image classification, and language generation, we show how increasingly complex models build upon these foundations to tackle practical challenges like overfitting, data sparsity, and interpretability. In other words, the work demonstrates that maximum likelihood, MAP estimation, Bayesian classification, and deep learning all represent different facets of a shared goal: inferring hidden causes from noisy and/or biased observations. It serves as both a theoretical synthesis and a practical guide for students and researchers navigating the evolving landscape of machine learning.
☆ StreamMem: Query-Agnostic KV Cache Memory for Streaming Video Understanding
Multimodal large language models (MLLMs) have made significant progress in visual-language reasoning, but their ability to efficiently handle long videos remains limited. Despite recent advances in long-context MLLMs, storing and attending to the key-value (KV) cache for long visual contexts incurs substantial memory and computational overhead. Existing visual compression methods require either encoding the entire visual context before compression or having access to the questions in advance, which is impractical for long video understanding and multi-turn conversational settings. In this work, we propose StreamMem, a query-agnostic KV cache memory mechanism for streaming video understanding. Specifically, StreamMem encodes new video frames in a streaming manner, compressing the KV cache using attention scores between visual tokens and generic query tokens, while maintaining a fixed-size KV memory to enable efficient question answering (QA) in memory-constrained, long-video scenarios. Evaluation on three long video understanding and two streaming video question answering benchmarks shows that StreamMem achieves state-of-the-art performance in query-agnostic KV cache compression and is competitive with query-aware compression approaches.
comment: 15 pages, 3 figures
☆ Foundation Models for Cross-Domain EEG Analysis Application: A Survey
Electroencephalography (EEG) analysis stands at the forefront of neuroscience and artificial intelligence research, where foundation models are reshaping the traditional EEG analysis paradigm by leveraging their powerful representational capacity and cross-modal generalization. However, the rapid proliferation of these techniques has led to a fragmented research landscape, characterized by diverse model roles, inconsistent architectures, and a lack of systematic categorization. To bridge this gap, this study presents the first comprehensive modality-oriented taxonomy for foundation models in EEG analysis, systematically organizing research advances based on output modalities of the native EEG decoding, EEG-text, EEG-vision, EEG-audio, and broader multimodal frameworks. We rigorously analyze each category's research ideas, theoretical foundations, and architectural innovations, while highlighting open challenges such as model interpretability, cross-domain generalization, and real-world applicability in EEG-based systems. By unifying this dispersed field, our work not only provides a reference framework for future methodology development but accelerates the translation of EEG foundation models into scalable, interpretable, and online actionable solutions.
comment: Submitted to IEEE Journals
☆ NiceWebRL: a Python library for human subject experiments with reinforcement learning environments
We present NiceWebRL, a research tool that enables researchers to use machine reinforcement learning (RL) environments for online human subject experiments. NiceWebRL is a Python library that allows any Jax-based environment to be transformed into an online interface, supporting both single-agent and multi-agent environments. As such, NiceWebRL enables AI researchers to compare their algorithms to human performance, cognitive scientists to test ML algorithms as theories for human cognition, and multi-agent researchers to develop algorithms for human-AI collaboration. We showcase NiceWebRL with 3 case studies that demonstrate its potential to help develop Human-like AI, Human-compatible AI, and Human-assistive AI. In the first case study (Human-like AI), NiceWebRL enables the development of a novel RL model of cognition. Here, NiceWebRL facilitates testing this model against human participants in both a grid world and Craftax, a 2D Minecraft domain. In our second case study (Human-compatible AI), NiceWebRL enables the development of a novel multi-agent RL algorithm that can generalize to human partners in the Overcooked domain. Finally, in our third case study (Human-assistive AI), we show how NiceWebRL can allow researchers to study how an LLM can assist humans on complex tasks in XLand-Minigrid, an environment with millions of hierarchical tasks. The library is available at https://github.com/KempnerInstitute/nicewebrl.
☆ GRAFT: GRaPH and Table Reasoning for Textual Alignment -- A Benchmark for Structured Instruction Following and Visual Reasoning
GRAFT is a structured multimodal benchmark for evaluating models on instruction-following, visual reasoning, and visual-textual alignment tasks. It features programmatically generated charts and synthetically rendered tables, created with Python visualization libraries to ensure control over data semantics, structure, and clarity. Each GRAFT instance pairs a chart or table image with a systematically generated, multi-step analytical question based solely on visual content. Answers are provided in structured formats such as JSON or YAML, supporting consistent evaluation of both reasoning and output format. The benchmark introduces a taxonomy of reasoning types including comparison, trend identification, ranking, aggregation, proportion estimation, and anomaly detection to enable comprehensive assessment. Reference answers follow strict factual and formatting guidelines for precise, aspect-based evaluation. GRAFT offers a unified, scalable framework for fine-grained benchmarking of multimodal models on visually grounded, structured reasoning tasks, setting a new evaluation standard in this field.
comment: 23 pages, 9 tables, 3 figures
☆ Row-Column Hybrid Grouping for Fault-Resilient Multi-Bit Weight Representation on IMC Arrays
This paper addresses two critical challenges in analog In-Memory Computing (IMC) systems that limit their scalability and deployability: the computational unreliability caused by stuck-at faults (SAFs) and the high compilation overhead of existing fault-mitigation algorithms, namely Fault-Free (FF). To overcome these limitations, we first propose a novel multi-bit weight representation technique, termed row-column hybrid grouping, which generalizes conventional column grouping by introducing redundancy across both rows and columns. This structural redundancy enhances fault tolerance and can be effectively combined with existing fault-mitigation solutions. Second, we design a compiler pipeline that reformulates the fault-aware weight decomposition problem as an Integer Linear Programming (ILP) task, enabling fast and scalable compilation through off-the-shelf solvers. Further acceleration is achieved through theoretical insights that identify fault patterns amenable to trivial solutions, significantly reducing computation. Experimental results on convolutional networks and small language models demonstrate the effectiveness of our approach, achieving up to 8%p improvement in accuracy, 150x faster compilation, and 2x energy efficiency gain compared to existing baselines.
comment: Accepted to appear at ICCAD'25 (Munich, Germany)
☆ Futurity as Infrastructure: A Techno-Philosophical Interpretation of the AI Lifecycle AI
This paper argues that a techno-philosophical reading of the EU AI Act provides insight into the long-term dynamics of data in AI systems, specifically, how the lifecycle from ingestion to deployment generates recursive value chains that challenge existing frameworks for Responsible AI. We introduce a conceptual tool to frame the AI pipeline, spanning data, training regimes, architectures, feature stores, and transfer learning. Using cross-disciplinary methods, we develop a technically grounded and philosophically coherent analysis of regulatory blind spots. Our central claim is that what remains absent from policymaking is an account of the dynamic of becoming that underpins both the technical operation and economic logic of AI. To address this, we advance a formal reading of AI inspired by Simondonian philosophy of technology, reworking his concept of individuation to model the AI lifecycle, including the pre-individual milieu, individuation, and individuated AI. To translate these ideas, we introduce futurity: the self-reinforcing lifecycle of AI, where more data enhances performance, deepens personalisation, and expands application domains. Futurity highlights the recursively generative, non-rivalrous nature of data, underpinned by infrastructures like feature stores that enable feedback, adaptation, and temporal recursion. Our intervention foregrounds escalating power asymmetries, particularly the tech oligarchy whose infrastructures of capture, training, and deployment concentrate value and decision-making. We argue that effective regulation must address these infrastructural and temporal dynamics, and propose measures including lifecycle audits, temporal traceability, feedback accountability, recursion transparency, and a right to contest recursive reuse.
comment: 15 pages, 3 figures, Presented at IAIL 2025 - Imagining the AI Landscape after the AI Act, 4th International Workshop on Imagining the AI Landscape After the AI Act, The fourth International Conference on Hybrid Human-Artificial Intelligence
☆ Mind and Motion Aligned: A Joint Evaluation IsaacSim Benchmark for Task Planning and Low-Level Policies in Mobile Manipulation
Benchmarks are crucial for evaluating progress in robotics and embodied AI. However, a significant gap exists between benchmarks designed for high-level language instruction following, which often assume perfect low-level execution, and those for low-level robot control, which rely on simple, one-step commands. This disconnect prevents a comprehensive evaluation of integrated systems where both task planning and physical execution are critical. To address this, we propose Kitchen-R, a novel benchmark that unifies the evaluation of task planning and low-level control within a simulated kitchen environment. Built as a digital twin using the Isaac Sim simulator and featuring more than 500 complex language instructions, Kitchen-R supports a mobile manipulator robot. We provide baseline methods for our benchmark, including a task-planning strategy based on a vision-language model and a low-level control policy based on diffusion policy. We also provide a trajectory collection system. Our benchmark offers a flexible framework for three evaluation modes: independent assessment of the planning module, independent assessment of the control policy, and, crucially, an integrated evaluation of the whole system. Kitchen-R bridges a key gap in embodied AI research, enabling more holistic and realistic benchmarking of language-guided robotic agents.
☆ Benchmarking Computer Science Survey Generation
Scientific survey articles play a vital role in summarizing research progress, yet their manual creation is becoming increasingly infeasible due to the rapid growth of academic literature. While large language models (LLMs) offer promising capabilities for automating this process, progress in this area is hindered by the absence of standardized benchmarks and evaluation protocols. To address this gap, we introduce SurGE (Survey Generation Evaluation), a new benchmark for evaluating scientific survey generation in the computer science domain. SurGE consists of (1) a collection of test instances, each including a topic description, an expert-written survey, and its full set of cited references, and (2) a large-scale academic corpus of over one million papers that serves as the retrieval pool. In addition, we propose an automated evaluation framework that measures generated surveys across four dimensions: information coverage, referencing accuracy, structural organization, and content quality. Our evaluation of diverse LLM-based approaches shows that survey generation remains highly challenging, even for advanced self-reflection frameworks. These findings highlight the complexity of the task and the necessity for continued research. We have open-sourced all the code, data, and models at: https://github.com/oneal2000/SurGE
☆ Understanding Action Effects through Instrumental Empowerment in Multi-Agent Reinforcement Learning AI
To reliably deploy Multi-Agent Reinforcement Learning (MARL) systems, it is crucial to understand individual agent behaviors within a team. While prior work typically evaluates overall team performance based on explicit reward signals or learned value functions, it is unclear how to infer agent contributions in the absence of any value feedback. In this work, we investigate whether meaningful insights into agent behaviors can be extracted that are consistent with the underlying value functions, solely by analyzing the policy distribution. Inspired by the phenomenon that intelligent agents tend to pursue convergent instrumental values, which generally increase the likelihood of task success, we introduce Intended Cooperation Values (ICVs), a method based on information-theoretic Shapley values for quantifying each agent's causal influence on their co-players' instrumental empowerment. Specifically, ICVs measure an agent's action effect on its teammates' policies by assessing their decision uncertainty and preference alignment. The analysis across cooperative and competitive MARL environments reveals the extent to which agents adopt similar or diverse strategies. By comparing action effects between policies and value functions, our method identifies which agent behaviors are beneficial to team success, either by fostering deterministic decisions or by preserving flexibility for future action choices. Our proposed method offers novel insights into cooperation dynamics and enhances explainability in MARL systems.
comment: European Conference on Artificial Intelligence (ECAI) 2025
☆ Towards a 3D Transfer-based Black-box Attack via Critical Feature Guidance
Deep neural networks for 3D point clouds have been demonstrated to be vulnerable to adversarial examples. Previous 3D adversarial attack methods often exploit certain information about the target models, such as model parameters or outputs, to generate adversarial point clouds. However, in realistic scenarios, it is challenging to obtain any information about the target models under conditions of absolute security. Therefore, we focus on transfer-based attacks, where generating adversarial point clouds does not require any information about the target models. Based on our observation that the critical features used for point cloud classification are consistent across different DNN architectures, we propose CFG, a novel transfer-based black-box attack method that improves the transferability of adversarial point clouds via the proposed Critical Feature Guidance. Specifically, our method regularizes the search of adversarial point clouds by computing the importance of the extracted features, prioritizing the corruption of critical features that are likely to be adopted by diverse architectures. Further, we explicitly constrain the maximum deviation extent of the generated adversarial point clouds in the loss function to ensure their imperceptibility. Extensive experiments conducted on the ModelNet40 and ScanObjectNN benchmark datasets demonstrate that the proposed CFG outperforms the state-of-the-art attack methods by a large margin.
comment: 11 pages, 6 figures
☆ Label Uncertainty for Ultrasound Segmentation
In medical imaging, inter-observer variability among radiologists often introduces label uncertainty, particularly in modalities where visual interpretation is subjective. Lung ultrasound (LUS) is a prime example-it frequently presents a mixture of highly ambiguous regions and clearly discernible structures, making consistent annotation challenging even for experienced clinicians. In this work, we introduce a novel approach to both labeling and training AI models using expert-supplied, per-pixel confidence values. Rather than treating annotations as absolute ground truth, we design a data annotation protocol that captures the confidence that radiologists have in each labeled region, modeling the inherent aleatoric uncertainty present in real-world clinical data. We demonstrate that incorporating these confidence values during training leads to improved segmentation performance. More importantly, we show that this enhanced segmentation quality translates into better performance on downstream clinically-critical tasks-specifically, estimating S/F oxygenation ratio values, classifying S/F ratio change, and predicting 30-day patient readmission. While we empirically evaluate many methods for exposing the uncertainty to the learning model, we find that a simple approach that trains a model on binarized labels obtained with a (60%) confidence threshold works well. Importantly, high thresholds work far better than a naive approach of a 50% threshold, indicating that training on very confident pixels is far more effective. Our study systematically investigates the impact of training with varying confidence thresholds, comparing not only segmentation metrics but also downstream clinical outcomes. These results suggest that label confidence is a valuable signal that, when properly leveraged, can significantly enhance the reliability and clinical utility of AI in medical imaging.
comment: Paper under review
☆ GRASPED: Graph Anomaly Detection using Autoencoder with Spectral Encoder and Decoder (Full Version) AI 2025
Graph machine learning has been widely explored in various domains, such as community detection, transaction analysis, and recommendation systems. In these applications, anomaly detection plays an important role. Recently, studies have shown that anomalies on graphs induce spectral shifts. Some supervised methods have improved the utilization of such spectral domain information. However, they remain limited by the scarcity of labeled data due to the nature of anomalies. On the other hand, existing unsupervised learning approaches predominantly rely on spatial information or only employ low-pass filters, thereby losing the capacity for multi-band analysis. In this paper, we propose Graph Autoencoder with Spectral Encoder and Spectral Decoder (GRASPED) for node anomaly detection. Our unsupervised learning model features an encoder based on Graph Wavelet Convolution, along with structural and attribute decoders. The Graph Wavelet Convolution-based encoder, combined with a Wiener Graph Deconvolution-based decoder, exhibits bandpass filter characteristics that capture global and local graph information at multiple scales. This design allows for a learning-based reconstruction of node attributes, effectively capturing anomaly information. Extensive experiments on several real-world graph anomaly detection datasets demonstrate that GRASPED outperforms current state-of-the-art models.
comment: Full version of the paper accepted for publication at the European Conference on Artificial Intelligence (ECAI 2025)
☆ Adapting A Vector-Symbolic Memory for Lisp ACT-R
Holographic Declarative Memory (HDM) is a vector-symbolic alternative to ACT-R's Declarative Memory (DM) system that can bring advantages such as scalability and architecturally defined similarity between DM chunks. We adapted HDM to work with the most comprehensive and widely-used implementation of ACT-R (Lisp ACT-R) so extant ACT-R models designed with DM can be run with HDM without major changes. With this adaptation of HDM, we have developed vector-based versions of common ACT-R functions, set up a text processing pipeline to add the contents of large documents to ACT-R memory, and most significantly created a useful and novel mechanism to retrieve an entire chunk of memory based on a request using only vector representations of tokens. Preliminary results indicate that we can maintain vector-symbolic advantages of HDM (e.g., chunk recall without storing the actual chunk and other advantages with scaling) while also extending it so that previous ACT-R models may work with the system with little (or potentially no) modifications within the actual procedural and declarative memory portions of a model. As a part of iterative improvement of this newly translated holographic declarative memory module, we will continue to explore better time-context representations for vectors to improve the module's ability to reconstruct chunks during recall. To more fully test this translated HDM module, we also plan to develop decision-making models that use instance-based learning (IBL) theory, which is a useful application of HDM given the advantages of the system.
comment: 6 pages. 5 figures. Submitted and accepted to the 23rd International Conference on Cognitive Modeling (ICCM 2025)
☆ Trained Miniatures: Low cost, High Efficacy SLMs for Sales & Marketing
Large language models (LLMs) excel in text generation; however, these creative elements require heavy computation and are accompanied by a steep cost. Especially for targeted applications such as sales and marketing outreach, these costs are far from feasible. This paper introduces the concept of "Trained Miniatures" - Small Language Models(SLMs) fine-tuned for specific, high-value applications, generating similar domain-specific responses for a fraction of the cost.
☆ Transduction is All You Need for Structured Data Workflows
This paper introduces Agentics, a modular framework for building agent-based systems capable of structured reasoning and compositional generalization over complex data. Designed with research and practical applications in mind, Agentics offers a novel perspective on working with data and AI workflows. In this framework, agents are abstracted from the logical flow and they are used internally to the data type to enable logical transduction among data. Agentics encourages AI developers to focus on modeling data rather than crafting prompts, enabling a declarative language in which data types are provided by LLMs and composed through logical transduction, which is executed by LLMs when types are connected. We provide empirical evidence demonstrating the applicability of this framework across domain-specific multiple-choice question answering, semantic parsing for text-to-SQL, and automated prompt optimization tasks, achieving state-of-the-art accuracy or improved scalability without sacrificing performance. The open-source implementation is available at \texttt{https://github.com/IBM/agentics}.
comment: 32 pages, 8 figures
☆ Are Virtual DES Images a Valid Alternative to the Real Ones?
Contrast-enhanced spectral mammography (CESM) is an imaging modality that provides two types of images, commonly known as low-energy (LE) and dual-energy subtracted (DES) images. In many domains, particularly in medicine, the emergence of image-to-image translation techniques has enabled the artificial generation of images using other images as input. Within CESM, applying such techniques to generate DES images from LE images could be highly beneficial, potentially reducing patient exposure to radiation associated with high-energy image acquisition. In this study, we investigated three models for the artificial generation of DES images (virtual DES): a pre-trained U-Net model, a U-Net trained end-to-end model, and a CycleGAN model. We also performed a series of experiments to assess the impact of using virtual DES images on the classification of CESM examinations into malignant and non-malignant categories. To our knowledge, this is the first study to evaluate the impact of virtual DES images on CESM lesion classification. The results demonstrate that the best performance was achieved with the pre-trained U-Net model, yielding an F1 score of 85.59% when using the virtual DES images, compared to 90.35% with the real DES images. This discrepancy likely results from the additional diagnostic information in real DES images, which contributes to a higher classification accuracy. Nevertheless, the potential for virtual DES image generation is considerable and future advancements may narrow this performance gap to a level where exclusive reliance on virtual DES images becomes clinically viable.
comment: 10 pages, 4 figures, 3 tables
☆ A Dynamical Systems Framework for Reinforcement Learning Safety and Robustness Verification
The application of reinforcement learning to safety-critical systems is limited by the lack of formal methods for verifying the robustness and safety of learned policies. This paper introduces a novel framework that addresses this gap by analyzing the combination of an RL agent and its environment as a discrete-time autonomous dynamical system. By leveraging tools from dynamical systems theory, specifically the Finite-Time Lyapunov Exponent (FTLE), we identify and visualize Lagrangian Coherent Structures (LCS) that act as the hidden "skeleton" governing the system's behavior. We demonstrate that repelling LCS function as safety barriers around unsafe regions, while attracting LCS reveal the system's convergence properties and potential failure modes, such as unintended "trap" states. To move beyond qualitative visualization, we introduce a suite of quantitative metrics, Mean Boundary Repulsion (MBR), Aggregated Spurious Attractor Strength (ASAS), and Temporally-Aware Spurious Attractor Strength (TASAS), to formally measure a policy's safety margin and robustness. We further provide a method for deriving local stability guarantees and extend the analysis to handle model uncertainty. Through experiments in both discrete and continuous control environments, we show that this framework provides a comprehensive and interpretable assessment of policy behavior, successfully identifying critical flaws in policies that appear successful based on reward alone.
☆ LoUQAL: Low-fidelity informed Uncertainty Quantification for Active Learning in the chemical configuration space
Uncertainty quantification is an important scheme in active learning techniques, including applications in predicting quantum chemical properties. In quantum chemical calculations, there exists the notion of a fidelity, a less accurate computation is accessible at a cheaper computational cost. This work proposes a novel low-fidelity informed uncertainty quantification for active learning with applications in predicting diverse quantum chemical properties such as excitation energies and \textit{ab initio} potential energy surfaces. Computational experiments are carried out in order to assess the proposed method with results demonstrating that models trained with the novel method outperform alternatives in terms of empirical error and number of iterations required. The effect of the choice of fidelity is also studied to perform a thorough benchmark.
☆ DeepThink3D: Enhancing Large Language Models with Programmatic Reasoning in Complex 3D Situated Reasoning Tasks
This work enhances the ability of large language models (LLMs) to perform complex reasoning in 3D scenes. Recent work has addressed the 3D situated reasoning task by invoking tool usage through large language models. Large language models call tools via APIs and integrate the generated programs through a chain of thought to solve problems based on the program results. However, due to the simplicity of the questions in the dataset, the generated program reasoning chains are relatively short. To solve this main challenge, in this paper, we introduce DeepThink3D to enhance the tool usage of LLMs in complex 3D situated reasoning tasks. Our work proposes a combinatorial and iterative evolutionary approach on the SQA3D benchmark to generate more complex questions. Building on this foundation, we fine-tune the large language model to make it more proficient in using 3D tools. By employing Direct Preference Optimization (DPO), we directly optimize the toolchain strategies generated by models, thereby enhancing their accuracy in complex tasks.
☆ Super-additive Cooperation in Language Model Agents AI
With the prospect of autonomous artificial intelligence (AI) agents, studying their tendency for cooperative behavior becomes an increasingly relevant topic. This study is inspired by the super-additive cooperation theory, where the combined effects of repeated interactions and inter-group rivalry have been argued to be the cause for cooperative tendencies found in humans. We devised a virtual tournament where language model agents, grouped into teams, face each other in a Prisoner's Dilemma game. By simulating both internal team dynamics and external competition, we discovered that this blend substantially boosts both overall and initial, one-shot cooperation levels (the tendency to cooperate in one-off interactions). This research provides a novel framework for large language models to strategize and act in complex social scenarios and offers evidence for how intergroup competition can, counter-intuitively, result in more cooperative behavior. These insights are crucial for designing future multi-agent AI systems that can effectively work together and better align with human values. Source code is available at https://github.com/pippot/Superadditive-cooperation-LLMs.
comment: FAIEMA 2025
☆ Think in Blocks: Adaptive Reasoning from Direct Response to Deep Reasoning
Large Language Models (LLMs) with chains-of-thought have demonstrated strong performance on an increasing range of tasks, particularly those involving complex logical reasoning. However, excessively long chains can lead to overthinking, causing computational waste and slower responses. This raises a question: can LLMs dynamically adjust the length of their reasoning processes based on task complexity? To address this, we propose the Think in Blocks framework, which enables adaptive reasoning-from zero to deep reasoning-by partitioning the reasoning process into a tunable number of blocks. Our main contributions are: (1) Establishing an explicit block-structured paradigm in which the model first predicts an integer reasoning budget-the number of blocks-and then partitions its reasoning accordingly; (2) Training an adaptive model through a three-stage pipeline-Supervised Fine-Tuning, reward-guided Direct Preference Optimization, and Reinforcement Learning-that adjusts its reasoning depth to problem difficulty; (3) Exploiting the explicit block count to dynamically control reasoning depth at inference time, allowing flexible adjustment of chain-of-thought length during deployment.
☆ LLM-Driven Self-Refinement for Embodied Drone Task Planning
We introduce SRDrone, a novel system designed for self-refinement task planning in industrial-grade embodied drones. SRDrone incorporates two key technical contributions: First, it employs a continuous state evaluation methodology to robustly and accurately determine task outcomes and provide explanatory feedback. This approach supersedes conventional reliance on single-frame final-state assessment for continuous, dynamic drone operations. Second, SRDrone implements a hierarchical Behavior Tree (BT) modification model. This model integrates multi-level BT plan analysis with a constrained strategy space to enable structured reflective learning from experience. Experimental results demonstrate that SRDrone achieves a 44.87% improvement in Success Rate (SR) over baseline methods. Furthermore, real-world deployment utilizing an experience base optimized through iterative self-refinement attains a 96.25% SR. By embedding adaptive task refinement capabilities within an industrial-grade BT planning framework, SRDrone effectively integrates the general reasoning intelligence of Large Language Models (LLMs) with the stringent physical execution constraints inherent to embodied drones. Code is available at https://github.com/ZXiiiC/SRDrone.
comment: 14pages
☆ LGMSNet: Thinning a medical image segmentation model via dual-level multiscale fusion AI 2025
Medical image segmentation plays a pivotal role in disease diagnosis and treatment planning, particularly in resource-constrained clinical settings where lightweight and generalizable models are urgently needed. However, existing lightweight models often compromise performance for efficiency and rarely adopt computationally expensive attention mechanisms, severely restricting their global contextual perception capabilities. Additionally, current architectures neglect the channel redundancy issue under the same convolutional kernels in medical imaging, which hinders effective feature extraction. To address these challenges, we propose LGMSNet, a novel lightweight framework based on local and global dual multiscale that achieves state-of-the-art performance with minimal computational overhead. LGMSNet employs heterogeneous intra-layer kernels to extract local high-frequency information while mitigating channel redundancy. In addition, the model integrates sparse transformer-convolutional hybrid branches to capture low-frequency global information. Extensive experiments across six public datasets demonstrate LGMSNet's superiority over existing state-of-the-art methods. In particular, LGMSNet maintains exceptional performance in zero-shot generalization tests on four unseen datasets, underscoring its potential for real-world deployment in resource-limited medical scenarios. The whole project code is in https://github.com/cq-dong/LGMSNet.
comment: Accepted by ECAI 2025
☆ Subjective Behaviors and Preferences in LLM: Language of Browsing
A Large Language Model (LLM) offers versatility across domains and tasks, purportedly benefiting users with a wide variety of behaviors and preferences. We question this perception about an LLM when users have inherently subjective behaviors and preferences, as seen in their ubiquitous and idiosyncratic browsing of websites or apps. The sequential behavior logs of pages, thus generated, form something akin to each user's self-constructed "language", albeit without the structure and grammar imbued in natural languages. We ask: (i) Can a small LM represent the "language of browsing" better than a large LM? (ii) Can an LM with a single set of parameters (or, single LM) adequately capture myriad users' heterogeneous, subjective behaviors and preferences? (iii) Can a single LM with high average performance, yield low variance in performance to make alignment good at user level? We introduce clusterwise LM training, HeTLM (Heterogeneity aware Training of Language Model), appropriate for subjective behaviors. We find that (i) a small LM trained using a page-level tokenizer outperforms large pretrained or finetuned LMs; (ii) HeTLM with heterogeneous cluster specific set of parameters outperforms a single LM of the same family, controlling for the number of parameters; and (iii) a higher mean and a lower variance in generation ensues, implying improved alignment.
comment: Accepted at EMNLP 2025
☆ RadReason: Radiology Report Evaluation Metric with Reasons and Sub-Scores
Evaluating automatically generated radiology reports remains a fundamental challenge due to the lack of clinically grounded, interpretable, and fine-grained metrics. Existing methods either produce coarse overall scores or rely on opaque black-box models, limiting their usefulness in real-world clinical workflows. We introduce RadReason, a novel evaluation framework for radiology reports that not only outputs fine-grained sub-scores across six clinically defined error types, but also produces human-readable justifications that explain the rationale behind each score. Our method builds on Group Relative Policy Optimization and incorporates two key innovations: (1) Sub-score Dynamic Weighting, which adaptively prioritizes clinically challenging error types based on live F1 statistics; and (2) Majority-Guided Advantage Scaling, which adjusts policy gradient updates based on prompt difficulty derived from sub-score agreement. Together, these components enable more stable optimization and better alignment with expert clinical judgment. Experiments on the ReXVal benchmark show that RadReason surpasses all prior offline metrics and achieves parity with GPT-4-based evaluations, while remaining explainable, cost-efficient, and suitable for clinical deployment. Code will be released upon publication.
☆ A Solvable Molecular Switch Model for Stable Temporal Information Processing
This paper studies an input-driven one-state differential equation model initially developed for an experimentally demonstrated dynamic molecular switch that switches like synapses in the brain do. The linear-in-the-state and nonlinear-in-the-input model is exactly solvable, and it is shown that it also possesses mathematical properties of convergence and fading memory that enable stable processing of time-varying inputs by nonlinear dynamical systems. Thus, the model exhibits the co-existence of biologically-inspired behavior and desirable mathematical properties for stable learning on sequential data. The results give theoretical support for the use of the dynamic molecular switches as computational units in deep cascaded/layered feedforward and recurrent architectures as well as other more general structures for neuromorphic computing. They could also inspire more general exactly solvable models that can be fitted to emulate arbitrary physical devices which can mimic brain-inspired behaviour and perform stable computation on input signals.
comment: 21 pages, 6 figures, submitted for publication. Comments are welcome
☆ Reliable Unlearning Harmful Information in LLMs with Metamorphosis Representation Projection AAAI 2026
While Large Language Models (LLMs) have demonstrated impressive performance in various domains and tasks, concerns about their safety are becoming increasingly severe. In particular, since models may store unsafe knowledge internally, machine unlearning has emerged as a representative paradigm to ensure model safety. Existing approaches employ various training techniques, such as gradient ascent and negative preference optimization, in attempts to eliminate the influence of undesired data on target models. However, these methods merely suppress the activation of undesired data through parametric training without completely eradicating its informational traces within the model. This fundamental limitation makes it difficult to achieve effective continuous unlearning, rendering these methods vulnerable to relearning attacks. To overcome these challenges, we propose a Metamorphosis Representation Projection (MRP) approach that pioneers the application of irreversible projection properties to machine unlearning. By implementing projective transformations in the hidden state space of specific network layers, our method effectively eliminates harmful information while preserving useful knowledge. Experimental results demonstrate that our approach enables effective continuous unlearning and successfully defends against relearning attacks, achieving state-of-the-art performance in unlearning effectiveness while preserving natural performance. Our code is available in https://github.com/ChengcanWu/MRP.
comment: 10 pages, 9 figures, Under review as a full paper at AAAI 2026. A preliminary version is under review at the NeurIPS 2025 Workshop on Reliable ML from Unreliable Data
☆ From Bits to Boardrooms: A Cutting-Edge Multi-Agent LLM Framework for Business Excellence AI 2025
Large Language Models (LLMs) have shown promising potential in business applications, particularly in enterprise decision support and strategic planning, yet current approaches often struggle to reconcile intricate operational analyses with overarching strategic goals across diverse market environments, leading to fragmented workflows and reduced collaboration across organizational levels. This paper introduces BusiAgent, a novel multi-agent framework leveraging LLMs for advanced decision-making in complex corporate environments. BusiAgent integrates three core innovations: an extended Continuous Time Markov Decision Process (CTMDP) for dynamic agent modeling, a generalized entropy measure to optimize collaborative efficiency, and a multi-level Stackelberg game to handle hierarchical decision processes. Additionally, contextual Thompson sampling is employed for prompt optimization, supported by a comprehensive quality assurance system to mitigate errors. Extensive empirical evaluations across diverse business scenarios validate BusiAgent's efficacy, demonstrating its capacity to generate coherent, client-focused solutions that smoothly integrate granular insights with high-level strategy, significantly outperforming established approaches in both solution quality and user satisfaction. By fusing cutting-edge AI technologies with deep business insights, BusiAgent marks a substantial step forward in AI-driven enterprise decision-making, empowering organizations to navigate complex business landscapes more effectively.
comment: Accepted by ECAI 2025
☆ Mitigating Hallucinations in LM-Based TTS Models via Distribution Alignment Using GFlowNets
Language Model (LM)-based Text-to-Speech (TTS) systems often generate hallucinated speech that deviates from input text. Existing mitigation strategies either demand excessive training resources or introduce significant inference latency. In this paper, we propose GFlOwNet-guided distribution AlignmenT (GOAT) for LM-based TTS, a post-training framework that mitigates hallucinations without relying on massive resources or inference cost. Specifically, we first conduct an uncertainty analysis, revealing a strong positive correlation between hallucination and model uncertainty. Based on this, we reformulate TTS generation as a trajectory flow optimization problem and introduce an enhanced Subtrajectory Balance objective together with a sharpened internal reward as target distribution. We further integrate reward temperature decay and learning rate optimization for stability and performance balance. Extensive experiments show that GOAT reduce over 50% character error rates on challenging test cases and lowering uncertainty by up to 58%, demonstrating its strong generalization ability and effectiveness.
☆ Test-time Corpus Feedback: From Retrieval to RAG
Retrieval-Augmented Generation (RAG) has emerged as a standard framework for knowledge-intensive NLP tasks, combining large language models (LLMs) with document retrieval from external corpora. Despite its widespread use, most RAG pipelines continue to treat retrieval and reasoning as isolated components, retrieving documents once and then generating answers without further interaction. This static design often limits performance on complex tasks that require iterative evidence gathering or high-precision retrieval. Recent work in both the information retrieval (IR) and NLP communities has begun to close this gap by introducing adaptive retrieval and ranking methods that incorporate feedback. In this survey, we present a structured overview of advanced retrieval and ranking mechanisms that integrate such feedback. We categorize feedback signals based on their source and role in improving the query, retrieved context, or document pool. By consolidating these developments, we aim to bridge IR and NLP perspectives and highlight retrieval as a dynamic, learnable component of end-to-end RAG systems.
comment: 18 pages, 1 figure
☆ GraSP: A Unified Graph-Based Framework for Scalable Generation, Quality Tagging, and Management of Synthetic Data for SFT and DPO
The advancement of large language models (LLMs) is critically dependent on the availability of high-quality datasets for Supervised Fine-Tuning (SFT), alignment tasks like Direct Preference Optimization (DPO), etc. In this work, we present a comprehensive synthetic data generation framework that facilitates scalable, configurable, and high-fidelity generation of synthetic data tailored for these training paradigms. Our approach employs a modular and configuration-based pipeline capable of modeling complex dialogue flows with minimal manual intervention. This framework uses a dual-stage quality tagging mechanism, combining heuristic rules and LLM-based evaluations, to automatically filter and score data extracted from OASST-formatted conversations, ensuring the curation of high-quality dialogue samples. The resulting datasets are structured under a flexible schema supporting both SFT and DPO use cases, enabling seamless integration into diverse training workflows. Together, these innovations offer a robust solution for generating and managing synthetic conversational data at scale, significantly reducing the overhead of data preparation in LLM training pipelines.
☆ An Empirical Study of Knowledge Distillation for Code Understanding Tasks
Pre-trained language models (PLMs) have emerged as powerful tools for code understanding. However, deploying these PLMs in large-scale applications faces practical challenges due to their computational intensity and inference latency. Knowledge distillation (KD), a promising model compression and acceleration technique, addresses these limitations by transferring knowledge from large teacher models to compact student models, enabling efficient inference while preserving most of the teacher models' capabilities. While this technique has shown remarkable success in natural language processing and computer vision domains, its potential for code understanding tasks remains largely underexplored. In this paper, we systematically investigate the effectiveness and usage of KD in code understanding tasks. Our study encompasses two popular types of KD methods, i.e., logit-based and feature-based KD methods, experimenting across eight student models and two teacher PLMs from different domains on three downstream tasks. The experimental results indicate that KD consistently offers notable performance boosts across student models with different sizes compared with standard fine-tuning. Notably, code-specific PLM demonstrates better effectiveness as the teacher model. Among all KD methods, the latest feature-based KD methods exhibit superior performance, enabling student models to retain up to 98% teacher performance with merely 5% parameters. Regarding student architecture, our experiments reveal that similarity with teacher architecture does not necessarily lead to better performance. We further discuss the efficiency and behaviors in the KD process and inference, summarize the implications of findings, and identify promising future directions.
comment: Accepted by ICSE 2026 (Cycle 1)
☆ LLaSO: A Foundational Framework for Reproducible Research in Large Language and Speech Model
The development of Large Speech-Language Models (LSLMs) has been slowed by fragmented architectures and a lack of transparency, hindering the systematic comparison and reproducibility of research. Unlike in the vision-language domain, the LSLM field suffers from the common practice of releasing model weights without their corresponding training data and configurations. To address these critical gaps, we introduce LLaSO, the first fully open, end-to-end framework for large-scale speech-language modeling. LLaSO provides the community with three essential resources: (1) LLaSO-Align, a 12M-instance speech-text alignment corpus; (2) LLaSO-Instruct, a 13.5M-instance multi-task instruction-tuning dataset; and (3) LLaSO-Eval, a reproducible benchmark for standardized evaluation. To validate our framework, we build and release LLaSO-Base, a 3.8B-parameter reference model trained exclusively on our public data. It achieves a normalized score of 0.72, establishing a strong, reproducible baseline that surpasses comparable models. Our analysis reveals that while broader training coverage enhances performance, significant generalization gaps persist on unseen tasks, particularly in pure audio scenarios. By releasing the complete stack of data, benchmarks, and models, LLaSO establishes a foundational open standard to unify research efforts and accelerate community-driven progress in LSLMs. We release the code, dataset, pretrained models, and results in https://github.com/EIT-NLP/LLaSO.
☆ Bridging Generalization and Personalization in Wearable Human Activity Recognition via On-Device Few-Shot Learning
Human Activity Recognition (HAR) using wearable devices has advanced significantly in recent years, yet its generalization remains limited when models are deployed to new users. This degradation in performance is primarily due to user-induced concept drift (UICD), highlighting the importance of efficient personalization. In this paper, we present a hybrid framework that first generalizes across users and then rapidly adapts to individual users using few-shot learning directly on-device. By updating only the classifier layer with user-specific data, our method achieves robust personalization with minimal computational and memory overhead. We implement this framework on the energy-efficient RISC-V-based GAP9 microcontroller and validate it across three diverse HAR scenarios: RecGym, QVAR-Gesture, and Ultrasound-Gesture. Post-deployment adaptation yields consistent accuracy improvements of 3.73\%, 17.38\%, and 3.70\% respectively. These results confirm that fast, lightweight, and effective personalization is feasible on embedded platforms, paving the way for scalable and user-aware HAR systems in the wild \footnote{https://github.com/kangpx/onlineTiny2023}.
☆ When Audio and Text Disagree: Revealing Text Bias in Large Audio-Language Models
Large Audio-Language Models (LALMs) are enhanced with audio perception capabilities, enabling them to effectively process and understand multimodal inputs that combine audio and text. However, their performance in handling conflicting information between audio and text modalities remains largely unexamined. This paper introduces MCR-BENCH, the first comprehensive benchmark specifically designed to evaluate how LALMs prioritize information when presented with inconsistent audio-text pairs. Through extensive evaluation across diverse audio understanding tasks, we reveal a concerning phenomenon: when inconsistencies exist between modalities, LALMs display a significant bias toward textual input, frequently disregarding audio evidence. This tendency leads to substantial performance degradation in audio-centric tasks and raises important reliability concerns for real-world applications. We further investigate the influencing factors of text bias, and explore mitigation strategies through supervised finetuning, and analyze model confidence patterns that reveal persistent overconfidence even with contradictory inputs. These findings underscore the need for improved modality balance during training and more sophisticated fusion mechanisms to enhance the robustness when handling conflicting multi-modal inputs. The project is available at https://github.com/WangCheng0116/MCR-BENCH.
comment: Accepted by EMNLP 2025 Main
☆ Hybrid Least Squares/Gradient Descent Methods for DeepONets
We propose an efficient hybrid least squares/gradient descent method to accelerate DeepONet training. Since the output of DeepONet can be viewed as linear with respect to the last layer parameters of the branch network, these parameters can be optimized using a least squares (LS) solve, and the remaining hidden layer parameters are updated by means of gradient descent form. However, building the LS system for all possible combinations of branch and trunk inputs yields a prohibitively large linear problem that is infeasible to solve directly. To address this issue, our method decomposes the large LS system into two smaller, more manageable subproblems $\unicode{x2014}$ one for the branch network and one for the trunk network $\unicode{x2014}$ and solves them separately. This method is generalized to a broader type of $L^2$ loss with a regularization term for the last layer parameters, including the case of unsupervised learning with physics-informed loss.
☆ Bladder Cancer Diagnosis with Deep Learning: A Multi-Task Framework and Online Platform
Clinical cystoscopy, the current standard for bladder cancer diagnosis, suffers from significant reliance on physician expertise, leading to variability and subjectivity in diagnostic outcomes. There is an urgent need for objective, accurate, and efficient computational approaches to improve bladder cancer diagnostics. Leveraging recent advancements in deep learning, this study proposes an integrated multi-task deep learning framework specifically designed for bladder cancer diagnosis from cystoscopic images. Our framework includes a robust classification model using EfficientNet-B0 enhanced with Convolutional Block Attention Module (CBAM), an advanced segmentation model based on ResNet34-UNet++ architecture with self-attention mechanisms and attention gating, and molecular subtyping using ConvNeXt-Tiny to classify molecular markers such as HER-2 and Ki-67. Additionally, we introduce a Gradio-based online diagnostic platform integrating all developed models, providing intuitive features including multi-format image uploads, bilingual interfaces, and dynamic threshold adjustments. Extensive experimentation demonstrates the effectiveness of our methods, achieving outstanding accuracy (93.28%), F1-score (82.05%), and AUC (96.41%) for classification tasks, and exceptional segmentation performance indicated by a Dice coefficient of 0.9091. The online platform significantly improved the accuracy, efficiency, and accessibility of clinical bladder cancer diagnostics, enabling practical and user-friendly deployment. The code is publicly available. Our multi-task framework and integrated online tool collectively advance the field of intelligent bladder cancer diagnosis by improving clinical reliability, supporting early tumor detection, and enabling real-time diagnostic feedback. These contributions mark a significant step toward AI-assisted decision-making in urology.
☆ EvoFormer: Learning Dynamic Graph-Level Representations with Structural and Temporal Bias Correction
Dynamic graph-level embedding aims to capture structural evolution in networks, which is essential for modeling real-world scenarios. However, existing methods face two critical yet under-explored issues: Structural Visit Bias, where random walk sampling disproportionately emphasizes high-degree nodes, leading to redundant and noisy structural representations; and Abrupt Evolution Blindness, the failure to effectively detect sudden structural changes due to rigid or overly simplistic temporal modeling strategies, resulting in inconsistent temporal embeddings. To overcome these challenges, we propose EvoFormer, an evolution-aware Transformer framework tailored for dynamic graph-level representation learning. To mitigate Structural Visit Bias, EvoFormer introduces a Structure-Aware Transformer Module that incorporates positional encoding based on node structural roles, allowing the model to globally differentiate and accurately represent node structures. To overcome Abrupt Evolution Blindness, EvoFormer employs an Evolution-Sensitive Temporal Module, which explicitly models temporal evolution through a sequential three-step strategy: (I) Random Walk Timestamp Classification, generating initial timestamp-aware graph-level embeddings; (II) Graph-Level Temporal Segmentation, partitioning the graph stream into segments reflecting structurally coherent periods; and (III) Segment-Aware Temporal Self-Attention combined with an Edge Evolution Prediction task, enabling the model to precisely capture segment boundaries and perceive structural evolution trends, effectively adapting to rapid temporal shifts. Extensive evaluations on five benchmark datasets confirm that EvoFormer achieves state-of-the-art performance in graph similarity ranking, temporal anomaly detection, and temporal segmentation tasks, validating its effectiveness in correcting structural and temporal biases.
☆ Image-Conditioned 3D Gaussian Splat Quantization
3D Gaussian Splatting (3DGS) has attracted considerable attention for enabling high-quality real-time rendering. Although 3DGS compression methods have been proposed for deployment on storage-constrained devices, two limitations hinder archival use: (1) they compress medium-scale scenes only to the megabyte range, which remains impractical for large-scale scenes or extensive scene collections; and (2) they lack mechanisms to accommodate scene changes after long-term archival. To address these limitations, we propose an Image-Conditioned Gaussian Splat Quantizer (ICGS-Quantizer) that substantially enhances compression efficiency and provides adaptability to scene changes after archiving. ICGS-Quantizer improves quantization efficiency by jointly exploiting inter-Gaussian and inter-attribute correlations and by using shared codebooks across all training scenes, which are then fixed and applied to previously unseen test scenes, eliminating the overhead of per-scene codebooks. This approach effectively reduces the storage requirements for 3DGS to the kilobyte range while preserving visual fidelity. To enable adaptability to post-archival scene changes, ICGS-Quantizer conditions scene decoding on images captured at decoding time. The encoding, quantization, and decoding processes are trained jointly, ensuring that the codes, which are quantized representations of the scene, are effective for conditional decoding. We evaluate ICGS-Quantizer on 3D scene compression and 3D scene updating. Experimental results show that ICGS-Quantizer consistently outperforms state-of-the-art methods in compression efficiency and adaptability to scene changes. Our code, model, and data will be publicly available on GitHub.
☆ Unveiling Trust in Multimodal Large Language Models: Evaluation, Analysis, and Mitigation
The trustworthiness of Multimodal Large Language Models (MLLMs) remains an intense concern despite the significant progress in their capabilities. Existing evaluation and mitigation approaches often focus on narrow aspects and overlook risks introduced by the multimodality. To tackle these challenges, we propose MultiTrust-X, a comprehensive benchmark for evaluating, analyzing, and mitigating the trustworthiness issues of MLLMs. We define a three-dimensional framework, encompassing five trustworthiness aspects which include truthfulness, robustness, safety, fairness, and privacy; two novel risk types covering multimodal risks and cross-modal impacts; and various mitigation strategies from the perspectives of data, model architecture, training, and inference algorithms. Based on the taxonomy, MultiTrust-X includes 32 tasks and 28 curated datasets, enabling holistic evaluations over 30 open-source and proprietary MLLMs and in-depth analysis with 8 representative mitigation methods. Our extensive experiments reveal significant vulnerabilities in current models, including a gap between trustworthiness and general capabilities, as well as the amplification of potential risks in base LLMs by both multimodal training and inference. Moreover, our controlled analysis uncovers key limitations in existing mitigation strategies that, while some methods yield improvements in specific aspects, few effectively address overall trustworthiness, and many introduce unexpected trade-offs that compromise model utility. These findings also provide practical insights for future improvements, such as the benefits of reasoning to better balance safety and performance. Based on these insights, we introduce a Reasoning-Enhanced Safety Alignment (RESA) approach that equips the model with chain-of-thought reasoning ability to discover the underlying risks, achieving state-of-the-art results.
comment: For Appendix, please refer to arXiv:2406.07057
☆ Planning with Minimal Disruption
In many planning applications, we might be interested in finding plans that minimally modify the initial state to achieve the goals. We refer to this concept as plan disruption. In this paper, we formally introduce it, and define various planning-based compilations that aim to jointly optimize both the sum of action costs and plan disruption. Experimental results in different benchmarks show that the reformulated task can be effectively solved in practice to generate plans that balance both objectives.
☆ DiagECG: An LLM-Driven Framework for Diagnostic Reasoning via Discretized ECG Tokenization
Electrocardiography plays a central role in cardiovascular diagnostics, yet existing automated approaches often struggle to generalize across clinical tasks and offer limited support for open-ended reasoning. We present DiagECG, a novel framework that integrates time-series and language modeling by enabling large language models to process 12-lead ECG signals for clinical text generation tasks. Our approach discretizes continuous ECG embeddings into symbolic tokens using a lead-independent encoder and quantization module. These tokens are then used to extend the vocabulary of LLM, allowing the model to handle both ECG and natural language inputs in a unified manner. To bridge the modality gap, we pretrain the model on an autoregressive ECG forecasting task, enabling the LLM to model temporal dynamics using its native language modeling capabilities. Finally, we perform instruction tuning on both ECG question answering and diagnostic report generation. Without modifying the core model, DiagECG achieves strong performance across tasks while maintaining generalization to out-of-distribution settings. Extensive experiments demonstrate the effectiveness of each component and highlight the potential of integrating symbolic ECG representations into LLMs for medical reasoning.
☆ Predicting Road Crossing Behaviour using Pose Detection and Sequence Modelling
The world is constantly moving towards AI based systems and autonomous vehicles are now reality in different parts of the world. These vehicles require sensors and cameras to detect objects and maneuver according to that. It becomes important to for such vehicles to also predict from a distant if a person is about to cross a road or not. The current study focused on predicting the intent of crossing the road by pedestrians in an experimental setup. The study involved working with deep learning models to predict poses and sequence modelling for temporal predictions. The study analysed three different sequence modelling to understand the prediction behaviour and it was found out that GRU was better in predicting the intent compared to LSTM model but 1D CNN was the best model in terms of speed. The study involved video analysis, and the output of pose detection model was integrated later on to sequence modelling techniques for an end-to-end deep learning framework for predicting road crossing intents.
comment: This is a pre-print version of the original paper accepted in the IEEE conference INDISCON 2025. It contains 8 figures and 1 table. The length of the paper is 7 pages
☆ RETAIL: Towards Real-world Travel Planning for Large Language Models
Although large language models have enhanced automated travel planning abilities, current systems remain misaligned with real-world scenarios. First, they assume users provide explicit queries, while in reality requirements are often implicit. Second, existing solutions ignore diverse environmental factors and user preferences, limiting the feasibility of plans. Third, systems can only generate plans with basic POI arrangements, failing to provide all-in-one plans with rich details. To mitigate these challenges, we construct a novel dataset \textbf{RETAIL}, which supports decision-making for implicit queries while covering explicit queries, both with and without revision needs. It also enables environmental awareness to ensure plan feasibility under real-world scenarios, while incorporating detailed POI information for all-in-one travel plans. Furthermore, we propose a topic-guided multi-agent framework, termed TGMA. Our experiments reveal that even the strongest existing model achieves merely a 1.0% pass rate, indicating real-world travel planning remains extremely challenging. In contrast, TGMA demonstrates substantially improved performance 2.72%, offering promising directions for real-world travel planning.
☆ Search-Based Credit Assignment for Offline Preference-Based Reinforcement Learning
Offline reinforcement learning refers to the process of learning policies from fixed datasets, without requiring additional environment interaction. However, it often relies on well-defined reward functions, which are difficult and expensive to design. Human feedback is an appealing alternative, but its two common forms, expert demonstrations and preferences, have complementary limitations. Demonstrations provide stepwise supervision, but they are costly to collect and often reflect limited expert behavior modes. In contrast, preferences are easier to collect, but it is unclear which parts of a behavior contribute most to a trajectory segment, leaving credit assignment unresolved. In this paper, we introduce a Search-Based Preference Weighting (SPW) scheme to unify these two feedback sources. For each transition in a preference labeled trajectory, SPW searches for the most similar state-action pairs from expert demonstrations and directly derives stepwise importance weights based on their similarity scores. These weights are then used to guide standard preference learning, enabling more accurate credit assignment that traditional approaches struggle to achieve. We demonstrate that SPW enables effective joint learning from preferences and demonstrations, outperforming prior methods that leverage both feedback types on challenging robot manipulation tasks.
comment: 7 pages, 6 figures, under review
☆ VideoEraser: Concept Erasure in Text-to-Video Diffusion Models
The rapid growth of text-to-video (T2V) diffusion models has raised concerns about privacy, copyright, and safety due to their potential misuse in generating harmful or misleading content. These models are often trained on numerous datasets, including unauthorized personal identities, artistic creations, and harmful materials, which can lead to uncontrolled production and distribution of such content. To address this, we propose VideoEraser, a training-free framework that prevents T2V diffusion models from generating videos with undesirable concepts, even when explicitly prompted with those concepts. Designed as a plug-and-play module, VideoEraser can seamlessly integrate with representative T2V diffusion models via a two-stage process: Selective Prompt Embedding Adjustment (SPEA) and Adversarial-Resilient Noise Guidance (ARNG). We conduct extensive evaluations across four tasks, including object erasure, artistic style erasure, celebrity erasure, and explicit content erasure. Experimental results show that VideoEraser consistently outperforms prior methods regarding efficacy, integrity, fidelity, robustness, and generalizability. Notably, VideoEraser achieves state-of-the-art performance in suppressing undesirable content during T2V generation, reducing it by 46% on average across four tasks compared to baselines.
comment: To appear in the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP)
☆ First RAG, Second SEG: A Training-Free Paradigm for Camouflaged Object Detection
Camouflaged object detection (COD) poses a significant challenge in computer vision due to the high similarity between objects and their backgrounds. Existing approaches often rely on heavy training and large computational resources. While foundation models such as the Segment Anything Model (SAM) offer strong generalization, they still struggle to handle COD tasks without fine-tuning and require high-quality prompts to yield good performance. However, generating such prompts manually is costly and inefficient. To address these challenges, we propose \textbf{First RAG, Second SEG (RAG-SEG)}, a training-free paradigm that decouples COD into two stages: Retrieval-Augmented Generation (RAG) for generating coarse masks as prompts, followed by SAM-based segmentation (SEG) for refinement. RAG-SEG constructs a compact retrieval database via unsupervised clustering, enabling fast and effective feature retrieval. During inference, the retrieved features produce pseudo-labels that guide precise mask generation using SAM2. Our method eliminates the need for conventional training while maintaining competitive performance. Extensive experiments on benchmark COD datasets demonstrate that RAG-SEG performs on par with or surpasses state-of-the-art methods. Notably, all experiments are conducted on a \textbf{personal laptop}, highlighting the computational efficiency and practicality of our approach. We present further analysis in the Appendix, covering limitations, salient object detection extension, and possible improvements.
☆ IPIGuard: A Novel Tool Dependency Graph-Based Defense Against Indirect Prompt Injection in LLM Agents
Large language model (LLM) agents are widely deployed in real-world applications, where they leverage tools to retrieve and manipulate external data for complex tasks. However, when interacting with untrusted data sources (e.g., fetching information from public websites), tool responses may contain injected instructions that covertly influence agent behaviors and lead to malicious outcomes, a threat referred to as Indirect Prompt Injection (IPI). Existing defenses typically rely on advanced prompting strategies or auxiliary detection models. While these methods have demonstrated some effectiveness, they fundamentally rely on assumptions about the model's inherent security, which lacks structural constraints on agent behaviors. As a result, agents still retain unrestricted access to tool invocations, leaving them vulnerable to stronger attack vectors that can bypass the security guardrails of the model. To prevent malicious tool invocations at the source, we propose a novel defensive task execution paradigm, called IPIGuard, which models the agents' task execution process as a traversal over a planned Tool Dependency Graph (TDG). By explicitly decoupling action planning from interaction with external data, IPIGuard significantly reduces unintended tool invocations triggered by injected instructions, thereby enhancing robustness against IPI attacks. Experiments on the AgentDojo benchmark show that IPIGuard achieves a superior balance between effectiveness and robustness, paving the way for the development of safer agentic systems in dynamic environments.
comment: EMNLP 2025
☆ Coarse-to-Fine Grounded Memory for LLM Agent Planning
Recent advancements in Large Language Models (LLMs) have driven growing interest in LLM-based agents for complex planning tasks. To avoid costly agent training, many studies adopted memory mechanism that enhances LLM with offline experiences or online trajectory analysis. However, existing works focus on single-granularity memory derived from dynamic environmental interactions, which are inherently constrained by the quality of the collected experiences. This limitation, in turn, constrain the diversity of knowledge and the flexibility of planning. We propose Coarse-to-Fine Grounded Memory (\Ours{}), a novel framework that grounds coarse-to-fine memories with LLM, thereby fully leverage them for flexible adaptation to diverse scenarios. \Ours{} grounds environmental information into coarse-grained focus points to guide experience collection in training tasks, followed by grounding of actionable hybrid-grained tips from each experience. At inference, \Ours{} retrieves task-relevant experiences and tips to support planning. When facing environmental anomalies, the LLM grounds the current situation into fine-grained key information, enabling flexible self-QA reflection and plan correction.
comment: Accepted to EMNLP 2025 Main Conference;27 pages,15 figures
☆ DesignCLIP: Multimodal Learning with CLIP for Design Patent Understanding
In the field of design patent analysis, traditional tasks such as patent classification and patent image retrieval heavily depend on the image data. However, patent images -- typically consisting of sketches with abstract and structural elements of an invention -- often fall short in conveying comprehensive visual context and semantic information. This inadequacy can lead to ambiguities in evaluation during prior art searches. Recent advancements in vision-language models, such as CLIP, offer promising opportunities for more reliable and accurate AI-driven patent analysis. In this work, we leverage CLIP models to develop a unified framework DesignCLIP for design patent applications with a large-scale dataset of U.S. design patents. To address the unique characteristics of patent data, DesignCLIP incorporates class-aware classification and contrastive learning, utilizing generated detailed captions for patent images and multi-views image learning. We validate the effectiveness of DesignCLIP across various downstream tasks, including patent classification and patent retrieval. Additionally, we explore multimodal patent retrieval, which provides the potential to enhance creativity and innovation in design by offering more diverse sources of inspiration. Our experiments show that DesignCLIP consistently outperforms baseline and SOTA models in the patent domain on all tasks. Our findings underscore the promise of multimodal approaches in advancing patent analysis. The codebase is available here: https://anonymous.4open.science/r/PATENTCLIP-4661/README.md.
comment: Accepted by EMNLP 2025. 22 pages, 14 figures
☆ Multiple Memory Systems for Enhancing the Long-term Memory of Agent
An agent powered by large language models have achieved impressive results, but effectively handling the vast amounts of historical data generated during interactions remains a challenge. The current approach is to design a memory module for the agent to process these data. However, existing methods, such as MemoryBank and A-MEM, have poor quality of stored memory content, which affects recall performance and response quality. In order to better construct high-quality long-term memory content, we have designed a multiple memory system (MMS) inspired by cognitive psychology theory. The system processes short-term memory to multiple long-term memory fragments, and constructs retrieval memory units and contextual memory units based on these fragments, with a one-to-one correspondence between the two. During the retrieval phase, MMS will match the most relevant retrieval memory units based on the user's query. Then, the corresponding contextual memory units is obtained as the context for the response stage to enhance knowledge, thereby effectively utilizing historical data. Experiments on LoCoMo dataset compared our method with three others, proving its effectiveness. Ablation studies confirmed the rationality of our memory units. We also analyzed the robustness regarding the number of selected memory segments and the storage overhead, demonstrating its practical value.
☆ Way to Build Native AI-driven 6G Air Interface: Principles, Roadmap, and Outlook
Artificial intelligence (AI) is expected to serve as a foundational capability across the entire lifecycle of 6G networks, spanning design, deployment, and operation. This article proposes a native AI-driven air interface architecture built around two core characteristics: compression and adaptation. On one hand, compression enables the system to understand and extract essential semantic information from the source data, focusing on task relevance rather than symbol-level accuracy. On the other hand, adaptation allows the air interface to dynamically transmit semantic information across diverse tasks, data types, and channel conditions, ensuring scalability and robustness. This article first introduces the native AI-driven air interface architecture, then discusses representative enabling methodologies, followed by a case study on semantic communication in 6G non-terrestrial networks. Finally, it presents a forward-looking discussion on the future of native AI in 6G, outlining key challenges and research opportunities.
comment: 14 pages, 7 figures
☆ M-$LLM^3$REC: A Motivation-Aware User-Item Interaction Framework for Enhancing Recommendation Accuracy with LLMs
Recommendation systems have been essential for both user experience and platform efficiency by alleviating information overload and supporting decision-making. Traditional methods, i.e., content-based filtering, collaborative filtering, and deep learning, have achieved impressive results in recommendation systems. However, the cold-start and sparse-data scenarios are still challenging to deal with. Existing solutions either generate pseudo-interaction sequence, which often introduces redundant or noisy signals, or rely heavily on semantic similarity, overlooking dynamic shifts in user motivation. To address these limitations, this paper proposes a novel recommendation framework, termed M-$LLM^3$REC, which leverages large language models for deep motivational signal extraction from limited user interactions. M-$LLM^3$REC comprises three integrated modules: the Motivation-Oriented Profile Extractor (MOPE), Motivation-Oriented Trait Encoder (MOTE), and Motivational Alignment Recommender (MAR). By emphasizing motivation-driven semantic modeling, M-$LLM^3$REC demonstrates robust, personalized, and generalizable recommendations, particularly boosting performance in cold-start situations in comparison with the state-of-the-art frameworks.
comment: 10pages
☆ Conflict-Aware Soft Prompting for Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) enhances the capabilities of large language models (LLMs) by incorporating external knowledge into their input prompts. However, when the retrieved context contradicts the LLM's parametric knowledge, it often fails to resolve the conflict between incorrect external context and correct parametric knowledge, known as context-memory conflict. To tackle this problem, we introduce Conflict-Aware REtrieval-Augmented Generation (CARE), consisting of a context assessor and a base LLM. The context assessor encodes compact memory token embeddings from raw context tokens. Through grounded/adversarial soft prompting, the context assessor is trained to discern unreliable context and capture a guidance signal that directs reasoning toward the more reliable knowledge source. Extensive experiments show that CARE effectively mitigates context-memory conflicts, leading to an average performance gain of 5.0\% on QA and fact-checking benchmarks, establishing a promising direction for trustworthy and adaptive RAG systems.
comment: Accepted to EMNLP 2025; 14 pages; 5 figures, 11 tables
☆ Explainable Knowledge Distillation for Efficient Medical Image Classification
This study comprehensively explores knowledge distillation frameworks for COVID-19 and lung cancer classification using chest X-ray (CXR) images. We employ high-capacity teacher models, including VGG19 and lightweight Vision Transformers (Visformer-S and AutoFormer-V2-T), to guide the training of a compact, hardware-aware student model derived from the OFA-595 supernet. Our approach leverages hybrid supervision, combining ground-truth labels with teacher models' soft targets to balance accuracy and computational efficiency. We validate our models on two benchmark datasets: COVID-QU-Ex and LCS25000, covering multiple classes, including COVID-19, healthy, non-COVID pneumonia, lung, and colon cancer. To interpret the spatial focus of the models, we employ Score-CAM-based visualizations, which provide insight into the reasoning process of both teacher and student networks. The results demonstrate that the distilled student model maintains high classification performance with significantly reduced parameters and inference time, making it an optimal choice in resource-constrained clinical environments. Our work underscores the importance of combining model efficiency with explainability for practical, trustworthy medical AI solutions.
☆ Computational Intelligence based Land-use Allocation Approaches for Mixed Use Areas
Urban land-use allocation represents a complex multi-objective optimization problem critical for sustainable urban development policy. This paper presents novel computational intelligence approaches for optimizing land-use allocation in mixed-use areas, addressing inherent trade-offs between land-use compatibility and economic objectives. We develop multiple optimization algorithms, including custom variants integrating differential evolution with multi-objective genetic algorithms. Key contributions include: (1) CR+DES algorithm leveraging scaled difference vectors for enhanced exploration, (2) systematic constraint relaxation strategy improving solution quality while maintaining feasibility, and (3) statistical validation using Kruskal-Wallis tests with compact letter displays. Applied to a real-world case study with 1,290 plots, CR+DES achieves 3.16\% improvement in land-use compatibility compared to state-of-the-art methods, while MSBX+MO excels in price optimization with 3.3\% improvement. Statistical analysis confirms algorithms incorporating difference vectors significantly outperform traditional approaches across multiple metrics. The constraint relaxation technique enables broader solution space exploration while maintaining practical constraints. These findings provide urban planners and policymakers with evidence-based computational tools for balancing competing objectives in land-use allocation, supporting more effective urban development policies in rapidly urbanizing regions.
☆ Robust and Efficient Quantum Reservoir Computing with Discrete Time Crystal
The rapid development of machine learning and quantum computing has placed quantum machine learning at the forefront of research. However, existing quantum machine learning algorithms based on quantum variational algorithms face challenges in trainability and noise robustness. In order to address these challenges, we introduce a gradient-free, noise-robust quantum reservoir computing algorithm that harnesses discrete time crystal dynamics as a reservoir. We first calibrate the memory, nonlinear, and information scrambling capacities of the quantum reservoir, revealing their correlation with dynamical phases and non-equilibrium phase transitions. We then apply the algorithm to the binary classification task and establish a comparative quantum kernel advantage. For ten-class classification, both noisy simulations and experimental results on superconducting quantum processors match ideal simulations, demonstrating the enhanced accuracy with increasing system size and confirming the topological noise robustness. Our work presents the first experimental demonstration of quantum reservoir computing for image classification based on digital quantum simulation. It establishes the correlation between quantum many-body non-equilibrium phase transitions and quantum machine learning performance, providing new design principles for quantum reservoir computing and broader quantum machine learning algorithms in the NISQ era.
comment: 12 pages, 7 figures
☆ VocabTailor: Dynamic Vocabulary Selection for Downstream Tasks in Small Language Models
Small Language Models (SLMs) provide computational advantages in resource-constrained environments, yet memory limitations remain a critical bottleneck for edge device deployment. A substantial portion of SLMs' memory footprint stems from vocabulary-related components, particularly embeddings and language modeling (LM) heads, due to large vocabulary sizes. Existing static vocabulary pruning, while reducing memory usage, suffers from rigid, one-size-fits-all designs that cause information loss from the prefill stage and a lack of flexibility. In this work, we identify two key principles underlying the vocabulary reduction challenge: the lexical locality principle, the observation that only a small subset of tokens is required during any single inference, and the asymmetry in computational characteristics between vocabulary-related components of SLM. Based on these insights, we introduce VocabTailor, a novel decoupled dynamic vocabulary selection framework that addresses memory constraints through offloading embedding and implements a hybrid static-dynamic vocabulary selection strategy for LM Head, enabling on-demand loading of vocabulary components. Comprehensive experiments across diverse downstream tasks demonstrate that VocabTailor achieves a reduction of up to 99% in the memory usage of vocabulary-related components with minimal or no degradation in task performance, substantially outperforming existing static vocabulary pruning.
☆ GenTune: Toward Traceable Prompts to Improve Controllability of Image Refinement in Environment Design
Environment designers in the entertainment industry create imaginative 2D and 3D scenes for games, films, and television, requiring both fine-grained control of specific details and consistent global coherence. Designers have increasingly integrated generative AI into their workflows, often relying on large language models (LLMs) to expand user prompts for text-to-image generation, then iteratively refining those prompts and applying inpainting. However, our formative study with 10 designers surfaced two key challenges: (1) the lengthy LLM-generated prompts make it difficult to understand and isolate the keywords that must be revised for specific visual elements; and (2) while inpainting supports localized edits, it can struggle with global consistency and correctness. Based on these insights, we present GenTune, an approach that enhances human--AI collaboration by clarifying how AI-generated prompts map to image content. Our GenTune system lets designers select any element in a generated image, trace it back to the corresponding prompt labels, and revise those labels to guide precise yet globally consistent image refinement. In a summative study with 20 designers, GenTune significantly improved prompt--image comprehension, refinement quality, and efficiency, and overall satisfaction (all $p < .01$) compared to current practice. A follow-up field study with two studios further demonstrated its effectiveness in real-world settings.
comment: Accepted ACM Symposium on User Interface Software and Technology (UIST '25)
☆ See it. Say it. Sorted: Agentic System for Compositional Diagram Generation
We study sketch-to-diagram generation: converting rough hand sketches into precise, compositional diagrams. Diffusion models excel at photorealism but struggle with the spatial precision, alignment, and symbolic structure required for flowcharts. We introduce See it. Say it. Sorted., a training-free agentic system that couples a Vision-Language Model (VLM) with Large Language Models (LLMs) to produce editable Scalable Vector Graphics (SVG) programs. The system runs an iterative loop in which a Critic VLM proposes a small set of qualitative, relational edits; multiple candidate LLMs synthesize SVG updates with diverse strategies (conservative->aggressive, alternative, focused); and a Judge VLM selects the best candidate, ensuring stable improvement. This design prioritizes qualitative reasoning over brittle numerical estimates, preserves global constraints (e.g., alignment, connectivity), and naturally supports human-in-the-loop corrections. On 10 sketches derived from flowcharts in published papers, our method more faithfully reconstructs layout and structure than two frontier closed-source image generation LLMs (GPT-5 and Gemini-2.5-Pro), accurately composing primitives (e.g., multi-headed arrows) without inserting unwanted text. Because outputs are programmatic SVGs, the approach is readily extensible to presentation tools (e.g., PowerPoint) via APIs and can be specialized with improved prompts and task-specific tools. The codebase is open-sourced at https://github.com/hantaoZhangrichard/see_it_say_it_sorted.git.
☆ Locally Pareto-Optimal Interpretations for Black-Box Machine Learning Models
Creating meaningful interpretations for black-box machine learning models involves balancing two often conflicting objectives: accuracy and explainability. Exploring the trade-off between these objectives is essential for developing trustworthy interpretations. While many techniques for multi-objective interpretation synthesis have been developed, they typically lack formal guarantees on the Pareto-optimality of the results. Methods that do provide such guarantees, on the other hand, often face severe scalability limitations when exploring the Pareto-optimal space. To address this, we develop a framework based on local optimality guarantees that enables more scalable synthesis of interpretations. Specifically, we consider the problem of synthesizing a set of Pareto-optimal interpretations with local optimality guarantees, within the immediate neighborhood of each solution. Our approach begins with a multi-objective learning or search technique, such as Multi-Objective Monte Carlo Tree Search, to generate a best-effort set of Pareto-optimal candidates with respect to accuracy and explainability. We then verify local optimality for each candidate as a Boolean satisfiability problem, which we solve using a SAT solver. We demonstrate the efficacy of our approach on a set of benchmarks, comparing it against previous methods for exploring the Pareto-optimal front of interpretations. In particular, we show that our approach yields interpretations that closely match those synthesized by methods offering global guarantees.
comment: This work has been accepted at ATVA'25
☆ SparK: Query-Aware Unstructured Sparsity with Recoverable KV Cache Channel Pruning
Long-context inference in large language models (LLMs) is increasingly constrained by the KV cache bottleneck: memory usage grows linearly with sequence length, while attention computation scales quadratically. Existing approaches address this issue by compressing the KV cache along the temporal axis through strategies such as token eviction or merging to reduce memory and computational overhead. However, these methods often neglect fine-grained importance variations across feature dimensions (i.e., the channel axis), thereby limiting their ability to effectively balance efficiency and model accuracy. In reality, we observe that channel saliency varies dramatically across both queries and positions: certain feature channels carry near-zero information for a given query, while others spike in relevance. To address this oversight, we propose SPARK, a training-free plug-and-play method that applies unstructured sparsity by pruning KV at the channel level, while dynamically restoring the pruned entries during attention score computation. Notably, our approach is orthogonal to existing KV compression and quantization techniques, making it compatible for integration with them to achieve further acceleration. By reducing channel-level redundancy, SPARK enables processing of longer sequences within the same memory budget. For sequences of equal length, SPARK not only preserves or improves model accuracy but also reduces KV cache storage by over 30% compared to eviction-based methods. Furthermore, even with an aggressive pruning ratio of 80%, SPARK maintains performance with less degradation than 5% compared to the baseline eviction method, demonstrating its robustness and effectiveness. Our code will be available at https://github.com/Xnhyacinth/SparK.
☆ R-ConstraintBench: Evaluating LLMs on NP-Complete Scheduling
Effective scheduling under tight resource, timing, and operational constraints underpins large-scale planning across sectors such as capital projects, manufacturing, logistics, and IT fleet transitions. However, the reliability of large language models (LLMs) when reasoning under high-constraint regimes is insufficiently characterized. To address this gap, we present R-ConstraintBench, a scalable framework that evaluates models on Resource-Constrained Project Scheduling Problems (RCPSP), an NP-Complete feasibility class, while difficulty increases via linear growth in constraints. R-ConstraintBench incrementally increases non-redundant precedence constraints in Directed Acyclic Graphs (DAGs) and then introduces downtime, temporal windows, and disjunctive constraints. As an illustrative example, we instantiate the benchmark in a data center migration setting and evaluate multiple LLMs using feasibility and error analysis, identifying degradation thresholds and constraint types most associated with failure. Empirically, strong models are near-ceiling on precedence-only DAGs, but feasibility performance collapses when downtime, temporal windows, and disjunctive constraints interact, implicating constraint interaction, not graph depth, as the principal bottleneck. Performance on clean synthetic ramps also does not guarantee transfer to domain-grounded scenarios, underscoring limited generalization.
Survey of Vision-Language-Action Models for Embodied Manipulation
Embodied intelligence systems, which enhance agent capabilities through continuous environment interactions, have garnered significant attention from both academia and industry. Vision-Language-Action models, inspired by advancements in large foundation models, serve as universal robotic control frameworks that substantially improve agent-environment interaction capabilities in embodied intelligence systems. This expansion has broadened application scenarios for embodied AI robots. This survey comprehensively reviews VLA models for embodied manipulation. Firstly, it chronicles the developmental trajectory of VLA architectures. Subsequently, we conduct a detailed analysis of current research across 5 critical dimensions: VLA model structures, training datasets, pre-training methods, post-training methods, and model evaluation. Finally, we synthesize key challenges in VLA development and real-world deployment, while outlining promising future research directions.
comment: in Chinese language
☆ LLM4Sweat: A Trustworthy Large Language Model for Hyperhidrosis Support
While large language models (LLMs) have shown promise in healthcare, their application for rare medical conditions is still hindered by scarce and unreliable datasets for fine-tuning. Hyperhidrosis, a disorder causing excessive sweating beyond physiological needs, is one such rare disorder, affecting 2-3% of the population and significantly impacting both physical comfort and psychosocial well-being. To date, no work has tailored LLMs to advance the diagnosis or care of hyperhidrosis. To address this gap, we present LLM4Sweat, an open-source and domain-specific LLM framework for trustworthy and empathetic hyperhidrosis support. The system follows a three-stage pipeline. In the data augmentation stage, a frontier LLM generates medically plausible synthetic vignettes from curated open-source data to create a diverse and balanced question-answer dataset. In the fine-tuning stage, an open-source foundation model is fine-tuned on the dataset to provide diagnosis, personalized treatment recommendations, and empathetic psychological support. In the inference and expert evaluation stage, clinical and psychological specialists assess accuracy, appropriateness, and empathy, with validated responses iteratively enriching the dataset. Experiments show that LLM4Sweat outperforms baselines and delivers the first open-source LLM framework for hyperhidrosis, offering a generalizable approach for other rare diseases with similar data and trustworthiness challenges.
☆ SemToken: Semantic-Aware Tokenization for Efficient Long-Context Language Modeling
Tokenization plays a critical role in language modeling, yet existing approaches such as Byte-Pair Encoding (BPE) or WordPiece operate purely on frequency statistics, ignoring the underlying semantic structure of text. This leads to over-tokenization of semantically redundant spans and underutilization of contextual coherence, particularly in long-context scenarios. In this work, we propose \textbf{SemToken}, a semantic-aware tokenization framework that jointly reduces token redundancy and improves computation efficiency. SemToken first extracts contextual semantic embeddings via lightweight encoders and performs local semantic clustering to merge semantically equivalent tokens. Then, it allocates heterogeneous token granularity based on semantic density, allowing finer-grained tokenization in content-rich regions and coarser compression in repetitive or low-entropy spans. SemToken can be seamlessly integrated with modern language models and attention acceleration methods. Experiments on long-context language modeling benchmarks such as WikiText-103 and LongBench show that SemToken achieves up to $2.4\times$ reduction in token count and $1.9\times$ speedup, with negligible or no degradation in perplexity and downstream accuracy. Our findings suggest that semantic structure offers a promising new axis for optimizing tokenization and computation in large language models.
☆ SurgWound-Bench: A Benchmark for Surgical Wound Diagnosis
Surgical site infection (SSI) is one of the most common and costly healthcare-associated infections and and surgical wound care remains a significant clinical challenge in preventing SSIs and improving patient outcomes. While recent studies have explored the use of deep learning for preliminary surgical wound screening, progress has been hindered by concerns over data privacy and the high costs associated with expert annotation. Currently, no publicly available dataset or benchmark encompasses various types of surgical wounds, resulting in the absence of an open-source Surgical-Wound screening tool. To address this gap: (1) we present SurgWound, the first open-source dataset featuring a diverse array of surgical wound types. It contains 697 surgical wound images annotated by 3 professional surgeons with eight fine-grained clinical attributes. (2) Based on SurgWound, we introduce the first benchmark for surgical wound diagnosis, which includes visual question answering (VQA) and report generation tasks to comprehensively evaluate model performance. (3) Furthermore, we propose a three-stage learning framework, WoundQwen, for surgical wound diagnosis. In the first stage, we employ five independent MLLMs to accurately predict specific surgical wound characteristics. In the second stage, these predictions serve as additional knowledge inputs to two MLLMs responsible for diagnosing outcomes, which assess infection risk and guide subsequent interventions. In the third stage, we train a MLLM that integrates the diagnostic results from the previous two stages to produce a comprehensive report. This three-stage framework can analyze detailed surgical wound characteristics and provide subsequent instructions to patients based on surgical images, paving the way for personalized wound care, timely intervention, and improved patient outcomes.
☆ PuzzleClone: An SMT-Powered Framework for Synthesizing Verifiable Data
High-quality mathematical and logical datasets with verifiable answers are essential for strengthening the reasoning capabilities of large language models (LLMs). While recent data augmentation techniques have facilitated the creation of large-scale benchmarks, existing LLM-generated datasets often suffer from limited reliability, diversity, and scalability. To address these challenges, we introduce PuzzleClone, a formal framework for synthesizing verifiable data at scale using Satisfiability Modulo Theories (SMT). Our approach features three key innovations: (1) encoding seed puzzles into structured logical specifications, (2) generating scalable variants through systematic variable and constraint randomization, and (3) ensuring validity via a reproduction mechanism. Applying PuzzleClone, we construct a curated benchmark comprising over 83K diverse and programmatically validated puzzles. The generated puzzles span a wide spectrum of difficulty and formats, posing significant challenges to current state-of-the-art models. We conduct post training (SFT and RL) on PuzzleClone datasets. Experimental results show that training on PuzzleClone yields substantial improvements not only on PuzzleClone testset but also on logic and mathematical benchmarks. Post training raises PuzzleClone average from 14.4 to 56.2 and delivers consistent improvements across 7 logic and mathematical benchmarks up to 12.5 absolute percentage points (AMC2023 from 52.5 to 65.0). Our code and data are available at https://github.com/puzzleclone.
♻ ☆ Knowledge-Guided Prompt Learning for Request Quality Assurance in Public Code Review
Public Code Review (PCR) is developed in the Software Question Answering (SQA) community, assisting developers in exploring high-quality and efficient review services. Current methods on PCR mainly focus on the reviewer's perspective, including finding a capable reviewer, predicting comment quality, and recommending/generating review comments. However, it is not well studied that how to satisfy the review necessity requests posted by developers which can increase their visibility, which in turn acts as a prerequisite for better review responses. To this end, we propose K nowledge-guided P rompt learning for P ublic Code Review (KP-PCR) to achieve developer-based code review request quality assurance (i.e., predicting request necessity and recommending tags subtask). Specifically, we reformulate the two subtasks via 1) text prompt tuning which converts both of them into a Masked Language Model (MLM) by constructing prompt templates using hard prompt; and 2) knowledge and code prefix tuning which introduces knowledge guidance from fine-tuned large language models by soft prompt, and uses program dependence graph to characterize code snippets. Finally, both of the request necessity prediction and tag recommendation subtasks output predicted results through an answer engineering module. In addition, we further analysis the time complexity of our KP-PCR that has lightweight prefix based the operation of introducing knowledge guidance. Experimental results on the PCR dataset for the period 2011-2023 demonstrate that our KP-PCR outperforms baselines by 2.3%-8.4% in the request necessity prediction and by 1.4%-6.9% in the tag recommendation. The code implementation is released at https://github.com/WUT-IDEA/KP-PCR.
comment: 27 pages, 5 images, 12 tables, Manuscript revision submitted to a journal (2025)
♻ ☆ Power Stabilization for AI Training Datacenters
Large Artificial Intelligence (AI) training workloads spanning several tens of thousands of GPUs present unique power management challenges. These arise due to the high variability in power consumption during the training. Given the synchronous nature of these jobs, during every iteration there is a computation-heavy phase, where each GPU works on the local data, and a communication-heavy phase where all the GPUs synchronize on the data. Because compute-heavy phases require much more power than communication phases, large power swings occur. The amplitude of these power swings is ever increasing with the increase in the size of training jobs. An even bigger challenge arises from the frequency spectrum of these power swings which, if harmonized with critical frequencies of utilities, can cause physical damage to the power grid infrastructure. Therefore, to continue scaling AI training workloads safely, we need to stabilize the power of such workloads. This paper introduces the challenge with production data and explores innovative solutions across the stack: software, GPU hardware, and datacenter infrastructure. We present the pros and cons of each of these approaches and finally present a multi-pronged approach to solving the challenge. The proposed solutions are rigorously tested using a combination of real hardware and Microsoft's in-house cloud power simulator, providing critical insights into the efficacy of these interventions under real-world conditions.
♻ ☆ Empirical Evidence for Alignment Faking in a Small LLM and Prompt-Based Mitigation Techniques
Current literature suggests that alignment faking (deceptive alignment) is an emergent property of large language models. We present the first empirical evidence that a small instruction-tuned model, specifically LLaMA 3 8B, can exhibit alignment faking. We further show that prompt-only interventions, including deontological moral framing and scratchpad reasoning, significantly reduce this behavior without modifying model internals. This challenges the assumption that prompt-based ethics are trivial and that deceptive alignment requires scale. We introduce a taxonomy distinguishing shallow deception, shaped by context and suppressible through prompting, from deep deception, which reflects persistent, goal-driven misalignment. Our findings refine the understanding of deception in language models and underscore the need for alignment evaluations across model sizes and deployment settings.
♻ ☆ Surya: Foundation Model for Heliophysics
Heliophysics is central to understanding and forecasting space weather events and solar activity. Despite decades of high-resolution observations from the Solar Dynamics Observatory (SDO), most models remain task-specific and constrained by scarce labeled data, limiting their capacity to generalize across solar phenomena. We introduce Surya, a 366M parameter foundation model for heliophysics designed to learn general-purpose solar representations from multi-instrument SDO observations, including eight Atmospheric Imaging Assembly (AIA) channels and five Helioseismic and Magnetic Imager (HMI) products. Surya employs a spatiotemporal transformer architecture with spectral gating and long--short range attention, pretrained on high-resolution solar image forecasting tasks and further optimized through autoregressive rollout tuning. Zero-shot evaluations demonstrate its ability to forecast solar dynamics and flare events, while downstream fine-tuning with parameter-efficient Low-Rank Adaptation (LoRA) shows strong performance on solar wind forecasting, active region segmentation, solar flare forecasting, and EUV spectra. Surya is the first foundation model in heliophysics that uses time advancement as a pretext task on full-resolution SDO data. Its novel architecture and performance suggest that the model is able to learn the underlying physics behind solar evolution.
♻ ☆ RefineCoder: Iterative Improving of Large Language Models via Adaptive Critique Refinement for Code Generation
Code generation has attracted increasing attention with the rise of Large Language Models (LLMs). Many studies have developed powerful code LLMs by synthesizing code-related instruction data and applying supervised fine-tuning. However, these methods are limited by teacher model distillation and ignore the potential of iterative refinement by self-generated code. In this paper, we propose Adaptive Critique Refinement (ACR), which enables the model to refine itself by self-generated code and external critique, rather than directly imitating the code responses of the teacher model. Concretely, ACR includes a composite scoring system with LLM-as-a-Judge to evaluate the quality of code responses and a selective critique strategy with LLM-as-a-Critic to critique self-generated low-quality code responses. We develop the RefineCoder series by iteratively applying ACR, achieving continuous performance improvement on multiple code generation benchmarks. Compared to the baselines of the same size, our proposed RefineCoder series can achieve comparable or even superior performance using less data.
♻ ☆ SycEval: Evaluating LLM Sycophancy AI
Large language models (LLMs) are increasingly applied in educational, clinical, and professional settings, but their tendency for sycophancy -- prioritizing user agreement over independent reasoning -- poses risks to reliability. This study introduces a framework to evaluate sycophantic behavior in ChatGPT-4o, Claude-Sonnet, and Gemini-1.5-Pro across AMPS (mathematics) and MedQuad (medical advice) datasets. Sycophantic behavior was observed in 58.19% of cases, with Gemini exhibiting the highest rate (62.47%) and ChatGPT the lowest (56.71%). Progressive sycophancy, leading to correct answers, occurred in 43.52% of cases, while regressive sycophancy, leading to incorrect answers, was observed in 14.66%. Preemptive rebuttals demonstrated significantly higher sycophancy rates than in-context rebuttals (61.75% vs. 56.52%, $Z=5.87$, $p<0.001$), particularly in computational tasks, where regressive sycophancy increased significantly (preemptive: 8.13%, in-context: 3.54%, $p<0.001$). Simple rebuttals maximized progressive sycophancy ($Z=6.59$, $p<0.001$), while citation-based rebuttals exhibited the highest regressive rates ($Z=6.59$, $p<0.001$). Sycophantic behavior showed high persistence (78.5%, 95% CI: [77.2%, 79.8%]) regardless of context or model. These findings emphasize the risks and opportunities of deploying LLMs in structured and dynamic domains, offering insights into prompt programming and model optimization for safer AI applications.
comment: AIES 2025
♻ ☆ SecFSM: Knowledge Graph-Guided Verilog Code Generation for Secure Finite State Machines in Systems-on-Chip
Finite State Machines (FSMs) play a critical role in implementing control logic for Systems-on-Chip (SoC). Traditionally, FSMs are implemented by hardware engineers through Verilog coding, which is often tedious and time-consuming. Recently, with the remarkable progress of Large Language Models (LLMs) in code generation, LLMs have been increasingly explored for automating Verilog code generation. However, LLM-generated Verilog code often suffers from security vulnerabilities, which is particularly concerning for security-sensitive FSM implementations. To address this issue, we propose SecFSM, a novel method that leverages a security-oriented knowledge graph to guide LLMs in generating more secure Verilog code. Specifically, we first construct a FSM Security Knowledge Graph (FSKG) as an external aid to LLMs. Subsequently, we analyze users' requirements to identify vulnerabilities and get a list of vulnerabilities in the requirements. Then, we retrieve knowledge from FSKG based on the vulnerabilities list. Finally, we construct security prompts based on the security knowledge for Verilog code generation. To evaluate SecFSM, we build a dedicated dataset collected from academic datasets, artificial datasets, papers, and industrial cases. Extensive experiments demonstrate that SecFSM outperforms state-of-the-art baselines. In particular, on a benchmark of 25 security test cases evaluated by DeepSeek-R1, SecFSM achieves an outstanding pass rate of 21/25.
♻ ☆ Learning to Generate Unit Tests for Automated Debugging
Unit tests (UTs) play an instrumental role in assessing code correctness as well as providing feedback to large language models (LLMs), motivating automated test generation. However, we uncover a trade-off between generating unit test inputs that reveal errors when given a faulty code and correctly predicting the unit test output without access to the gold solution. To address this trade-off, we propose UTGen, which teaches LLMs to generate unit test inputs that reveal errors along with their correct expected outputs based on task descriptions. Since model-generated tests can provide noisy signals (e.g., from incorrectly predicted outputs), we propose UTDebug that (i) scales UTGen via test-time compute to improve UT output prediction, and (ii) validates and backtracks edits based on multiple generated UTs to avoid overfitting, and helps LLMs debug effectively. We show that UTGen outperforms other LLM-based baselines by 7.59% based on a metric measuring the presence of both error-revealing UT inputs and correct UT outputs. When used with UTDebug, we find that feedback from UTGen's unit tests improves pass@1 accuracy of Qwen2.5 32B on HumanEvalFix and our own harder debugging split of MBPP+ by over 3.17% and 12.35% (respectively) over other LLM-based UT generation baselines. Moreover, we observe that feedback from Qwen2.5 32B-based UTGen model can enhance debugging with frontier LLMs like GPT-4o by 13.8%. Lastly, we demonstrate that UTGen is a better judge for code correctness, outperforming a state-of-the-art trained 8B reward model by 4.43% on HumanEval+ with best-of-10 sampling using Qwen2.5 7B.
comment: Accepted to COLM 2025. Dataset and Code: https://github.com/archiki/UTGenDebug
♻ ☆ OPDR: Order-Preserving Dimension Reduction for Semantic Embedding of Multimodal Scientific Data
One of the most common operations in multimodal scientific data management is searching for the $k$ most similar items (or, $k$-nearest neighbors, KNN) from the database after being provided a new item. Although recent advances of multimodal machine learning models offer a \textit{semantic} index, the so-called \textit{embedding vectors} mapped from the original multimodal data, the dimension of the resulting embedding vectors are usually on the order of hundreds or a thousand, which are impractically high for time-sensitive scientific applications. This work proposes to reduce the dimensionality of the output embedding vectors such that the set of top-$k$ nearest neighbors do not change in the lower-dimensional space, namely Order-Preserving Dimension Reduction (OPDR). In order to develop such an OPDR method, our central hypothesis is that by analyzing the intrinsic relationship among key parameters during the dimension-reduction map, a quantitative function may be constructed to reveal the correlation between the target (lower) dimensionality and other variables. To demonstrate the hypothesis, this paper first defines a formal measure function to quantify the KNN similarity for a specific vector, then extends the measure into an aggregate accuracy of the global metric spaces, and finally derives a closed-form function between the target (lower) dimensionality and other variables. We incorporate the closed-function into popular dimension-reduction methods, various distance metrics, and embedding models.
♻ ☆ A "good regulator theorem" for embodied agents
In a classic paper, Conant and Ashby claimed that "every good regulator of a system must be a model of that system." Artificial Life has produced many examples of systems that perform tasks with apparently no model in sight; these suggest Conant and Ashby's theorem doesn't easily generalise beyond its restricted setup. Nevertheless, here we show that a similar intuition can be fleshed out in a different way: whenever an agent is able to perform a regulation task, it is possible for an observer to interpret it as having "beliefs" about its environment, which it "updates" in response to sensory input. This notion of belief updating provides a notion of model that is more sophisticated than Conant and Ashby's, as well as a theorem that is more broadly applicable. However, it necessitates a change in perspective, in that the observer plays an essential role in the theory: models are not a mere property of the system but are imposed on it from outside. Our theorem holds regardless of whether the system is regulating its environment in a classic control theory setup, or whether it's regulating its own internal state; the model is of its environment either way. The model might be trivial, however, and this is how the apparent counterexamples are resolved.
comment: Accepted at the Artificial Life conference 2025 (ALife 2025). 10 pages, 1 figure
♻ ☆ VerilogLAVD: LLM-Aided Rule Generation for Vulnerability Detection in Verilog
Timely detection of hardware vulnerabilities during the early design stage is critical for reducing remediation costs. Existing early detection techniques often require specialized security expertise, limiting their usability. Recent efforts have explored the use of large language models (LLMs) for Verilog vulnerability detection. However, LLMs struggle to capture the structure in Verilog code, resulting in inconsistent detection results. To this end, we propose VerilogLAVD, the first LLM-aided graph traversal rule generation approach for Verilog vulnerability detection. Our approach introduces the Verilog Property Graph (VeriPG), a unified representation of Verilog code. It combines syntactic features extracted from the abstract syntax tree (AST) with semantic information derived from control flow and data dependency graphs. We leverage LLMs to generate VeriPG-based detection rules from Common Weakness Enumeration (CWE) descriptions. These rules guide the rule executor that traversal VeriPG for potential vulnerabilities. To evaluate VerilogLAVD, we build a dataset collected from open-source repositories and synthesized data. In our empirical evaluation on 77 Verilog designs encompassing 12 CWE types, VerilogLAVD achieves an F1-score of 0.54. Compared to the LLM-only and LLM with external knowledge baselines, VerilogLAVD improves F1-score by 0.31 and 0.27, respectively.
♻ ☆ Preacher: Paper-to-Video Agentic System
The paper-to-video task converts a research paper into a structured video abstract, distilling key concepts, methods, and conclusions into an accessible, well-organized format. While state-of-the-art video generation models demonstrate potential, they are constrained by limited context windows, rigid video duration constraints, limited stylistic diversity, and an inability to represent domain-specific knowledge. To address these limitations, we introduce Preacher, the first paper-to-video agentic system. Preacher employs a topdown approach to decompose, summarize, and reformulate the paper, followed by bottom-up video generation, synthesizing diverse video segments into a coherent abstract. To align cross-modal representations, we define key scenes and introduce a Progressive Chain of Thought (P-CoT) for granular, iterative planning. Preacher successfully generates high-quality video abstracts across five research fields, demonstrating expertise beyond current video generation models. Code will be released at: https://github.com/GenVerse/Paper2Video
comment: Include some mistakes
♻ ☆ Architectural Co-Design for Zero-Shot Anomaly Detection: Decoupling Representation and Dynamically Fusing Features in CLIP
Pre-trained Vision-Language Models (VLMs) face a significant adaptation gap when applied to Zero-Shot Anomaly Detection (ZSAD), stemming from their lack of local inductive biases for dense prediction and their reliance on inflexible feature fusion paradigms. We address these limitations through an Architectural Co-Design framework that jointly refines feature representation and cross-modal fusion. Our method integrates a parameter-efficient Convolutional Low-Rank Adaptation (Conv-LoRA) adapter to inject local inductive biases for fine-grained representation, and introduces a Dynamic Fusion Gateway (DFG) that leverages visual context to adaptively modulate text prompts, enabling a powerful bidirectional fusion. Extensive experiments on diverse industrial and medical benchmarks demonstrate superior accuracy and robustness, validating that this synergistic co-design is critical for robustly adapting foundation models to dense perception tasks.
comment: 4 pages, 1 reference, 3 figures, icassp 2026
♻ ☆ Exploring the Effect of Explanation Content and Format on User Comprehension and Trust in Healthcare AI
AI-driven tools for healthcare are widely acknowledged as potentially beneficial to health practitioners and patients, e.g. the QCancer regression tool for cancer risk prediction. However, for these tools to be trusted, they need to be supplemented with explanations. We examine how explanations' content and format affect user comprehension and trust when explaining QCancer's predictions. Regarding content, we deploy the SHAP and Occlusion-1 explanation methods. Regarding format, we present SHAP explanations, conventionally, as charts (SC) and Occlusion-1 explanations as charts (OC) as well as text (OT), to which their simpler nature lends itself. We conduct experiments with two sets of stakeholders: the general public (representing patients) and medical students (representing healthcare practitioners). Our experiments showed higher subjective comprehension and trust for Occlusion-1 over SHAP explanations based on content. However, when controlling for format, only OT outperformed SC, suggesting this trend is driven by preferences for text. Other findings corroborated that explanation format, rather than content, is often the critical factor.
comment: 12 pages. To be published at The 14th Conference on Prestigious Applications of Intelligent Systems (PAIS-2025)
♻ ☆ Documenting Deployment with Fabric: A Repository of Real-World AI Governance AI
Artificial intelligence (AI) is increasingly integrated into society, from financial services and traffic management to creative writing. Academic literature on the deployment of AI has mostly focused on the risks and harms that result from the use of AI. We introduce Fabric, a publicly available repository of deployed AI use cases to outline their governance mechanisms. Through semi-structured interviews with practitioners, we collect an initial set of 20 AI use cases. In addition, we co-design diagrams of the AI workflow with the practitioners. We discuss the oversight mechanisms and guardrails used in practice to safeguard AI use. The Fabric repository includes visual diagrams of AI use cases and descriptions of the deployed systems. Using the repository, we surface gaps in governance and find common patterns in human oversight of deployed AI systems. We intend for Fabric to serve as an extendable, evolving tool for researchers to study the effectiveness of AI governance.
comment: AIES 2025
♻ ☆ Annif at SemEval-2025 Task 5: Traditional XMTC augmented by LLMs
This paper presents the Annif system in SemEval-2025 Task 5 (LLMs4Subjects), which focussed on subject indexing using large language models (LLMs). The task required creating subject predictions for bibliographic records from the bilingual TIBKAT database using the GND subject vocabulary. Our approach combines traditional natural language processing and machine learning techniques implemented in the Annif toolkit with innovative LLM-based methods for translation and synthetic data generation, and merging predictions from monolingual models. The system ranked first in the all-subjects category and second in the tib-core-subjects category in the quantitative evaluation, and fourth in qualitative evaluations. These findings demonstrate the potential of combining traditional XMTC algorithms with modern LLM techniques to improve the accuracy and efficiency of subject indexing in multilingual contexts.
comment: 6 pages, 4 figures, published at SemEval-2025 workshop Task 5: LLMs4Subjects: https://aclanthology.org/2025.semeval-1.315/
♻ ☆ Unplug and Play Language Models: Decomposing Experts in Language Models at Inference Time
Enabled by large-scale text corpora with huge parameters, pre-trained language models operate as multi-task experts using a single model architecture. However, recent studies have revealed that certain neurons play disproportionately important roles in solving specific tasks, suggesting that task-relevant substructures can be isolated and selectively activated for each task. Therefore, we introduce Decomposition of Experts (DoE), a novel framework that dynamically identifies and activates task-specific experts within a language model to reduce inference cost without sacrificing accuracy. We first define a task expert as a set of parameters that significantly influence the performance of a specific task and propose a four-step unplug-and-play process: (1) receiving a user request, (2) identifying the corresponding task expert, (3) performing inference using the expert-localized model, and (4) restoring the original model and waiting for the next task. Using attribution methods and prompt tuning, DoE isolates task-relevant neurons, minimizing computational overhead while maintaining task performance. We assume a setting where a language model receives user requests from five widely used natural language understanding benchmarks, processing one task at a time. In this setup, we demonstrate that DoE achieves up to a x1.73 inference speed-up with a 65% pruning rate, without compromising accuracy. Comparisons with various task expert localization methods reveal that DoE effectively identifies task experts, while ablation studies validate the importance of its components. Additionally, we analyze the effects of batch size, token count, and layer types on inference speed-up, providing practical insights for adopting DoE. The proposed framework is both practical and scalable, applicable to any transformer-based architecture, offering a robust solution for efficient task-specific inference.
comment: accepted to CIKM 2025
♻ ☆ CREMA: A Contrastive Regularized Masked Autoencoder for Robust ECG Diagnostics across Clinical Domains
Electrocardiogram (ECG) diagnosis remains challenging due to limited labeled data and the need to capture subtle yet clinically meaningful variations in rhythm and morphology. We present CREMA (Contrastive Regularized Masked Autoencoder), a foundation model for 12-lead ECGs designed to learn generalizable representations through self-supervised pretraining. CREMA combines generative learning and contrastive regularization via a Contrastive Regularized MAE loss, and employs a Signal Transformer (SiT) architecture to capture both local waveform details and global temporal dependencies. We evaluate CREMA on benchmark datasets and real-world clinical environments, including deployment scenarios with significant distribution shifts. CREMA outperforms supervised baselines and existing self-supervised models in both linear probing and fine-tuning evaluations. Notably, it maintains superior performance across diverse clinical domains, such as emergency care, highlighting its robustness under real-world conditions. These results demonstrate that CREMA serves as a scalable and reliable foundation model for ECG diagnostics, supporting downstream applications across heterogeneous and high-risk clinical settings.
comment: 10 pages
♻ ☆ Non-linear Welfare-Aware Strategic Learning
This paper studies algorithmic decision-making in the presence of strategic individual behaviors, where an ML model is used to make decisions about human agents and the latter can adapt their behavior strategically to improve their future data. Existing results on strategic learning have largely focused on the linear setting where agents with linear labeling functions best respond to a (noisy) linear decision policy. Instead, this work focuses on general non-linear settings where agents respond to the decision policy with only "local information" of the policy. Moreover, we simultaneously consider the objectives of maximizing decision-maker welfare (model prediction accuracy), social welfare (agent improvement caused by strategic behaviors), and agent welfare (the extent that ML underestimates the agents). We first generalize the agent best response model in previous works to the non-linear setting, then reveal the compatibility of welfare objectives. We show the three welfare can attain the optimum simultaneously only under restrictive conditions which are challenging to achieve in non-linear settings. The theoretical results imply that existing works solely maximizing the welfare of a subset of parties inevitably diminish the welfare of the others. We thus claim the necessity of balancing the welfare of each party in non-linear settings and propose an irreducible optimization algorithm suitable for general strategic learning. Experiments on synthetic and real data validate the proposed algorithm.
comment: Minor changes
♻ ☆ Seed-X: Building Strong Multilingual Translation LLM with 7B Parameters
Multilingual translation stands as a challenging task for large language models (LLMs) to handle intricate language patterns and stilted translations that arise in automated translations. In this paper, we introduce Seed-X, a family of open-source LLMs comprising instruct and reasoning models, pushing the limits of translation capability with 7B parameter size. The base model is pre-trained on a diverse, high-quality dataset encompassing both monolingual and bilingual content across 28 languages, harnessing the full potential of multilingual data. The instruct model is then finetuned to translate by Chain-of-Thought (CoT) reasoning and further enhanced through reinforcement learning (RL) to achieve better generalization across diverse language pairs. Seed-X achieves performance comparable to leading closed-source models, including Gemini-2.5 and GPT-4o, across 28 languages, and significantly outperforms larger open-source models in both automatic metrics and human evaluations. We share the best practices through our optimization process, and make the parameter public available for advancing translation research and applications.
♻ ☆ On the Consistency of GNN Explanations for Malware Detection
Control Flow Graphs (CFGs) are critical for analyzing program execution and characterizing malware behavior. With the growing adoption of Graph Neural Networks (GNNs), CFG-based representations have proven highly effective for malware detection. This study proposes a novel framework that dynamically constructs CFGs and embeds node features using a hybrid approach combining rule-based encoding and autoencoder-based embedding. A GNN-based classifier is then constructed to detect malicious behavior from the resulting graph representations. To improve model interpretability, we apply state-of-the-art explainability techniques, including GNNExplainer, PGExplainer, and CaptumExplainer, the latter is utilized three attribution methods: Integrated Gradients, Guided Backpropagation, and Saliency. In addition, we introduce a novel aggregation method, called RankFusion, that integrates the outputs of the top-performing explainers to enhance the explanation quality. We also evaluate explanations using two subgraph extraction strategies, including the proposed Greedy Edge-wise Composition (GEC) method for improved structural coherence. A comprehensive evaluation using accuracy, fidelity, and consistency metrics demonstrates the effectiveness of the proposed framework in terms of accurate identification of malware samples and generating reliable and interpretable explanations.
♻ ☆ Agoran: An Agentic Open Marketplace for 6G RAN Automation AI
Next-generation mobile networks must reconcile the often-conflicting goals of multiple service owners. However, today's network slice controllers remain rigid, policy-bound, and unaware of the business context. We introduce Agoran Service and Resource Broker (SRB), an agentic marketplace that brings stakeholders directly into the operational loop. Inspired by the ancient Greek agora, Agoran distributes authority across three autonomous AI branches: a Legislative branch that answers compliance queries using retrieval-augmented Large Language Models (LLMs); an Executive branch that maintains real-time situational awareness through a watcher-updated vector database; and a Judicial branch that evaluates each agent message with a rule-based Trust Score, while arbitrating LLMs detect malicious behavior and apply real-time incentives to restore trust. Stakeholder-side Negotiation Agents and the SRB-side Mediator Agent negotiate feasible, Pareto-optimal offers produced by a multi-objective optimizer, reaching a consensus intent in a single round, which is then deployed to Open and AI RAN controllers. Deployed on a private 5G testbed and evaluated with realistic traces of vehicle mobility, Agoran achieved significant gains: (i) a 37% increase in throughput of eMBB slices, (ii) a 73% reduction in latency of URLLC slices, and concurrently (iii) an end-to-end 8.3% saving in PRB usage compared to a static baseline. An 1B-parameter Llama model, fine-tuned for five minutes on 100 GPT-4 dialogues, recovers approximately 80% of GPT-4.1's decision quality, while operating within 6 GiB of memory and converging in only 1.3 seconds. These results establish Agoran as a concrete, standards-aligned path toward ultra-flexible, stakeholder-centric 6G networks. A live demo is presented https://www.youtube.com/watch?v=h7vEyMu2f5w\&ab_channel=BubbleRAN.
comment: Pre-print submitted to Computer Networks AI-for-6G
♻ ☆ Innamark: A Whitespace Replacement Information-Hiding Method
Large language models (LLMs) have gained significant popularity in recent years. Differentiating between a text written by a human and one generated by an LLM has become almost impossible. Information-hiding techniques such as digital watermarking or steganography can help by embedding information inside text in a form that is unlikely to be noticed. However, existing techniques, such as linguistic-based or format-based methods, change the semantics or cannot be applied to pure, unformatted text. In this paper, we introduce a novel method for information hiding called Innamark, which can conceal any byte-encoded sequence within a sufficiently long cover text. This method is implemented as a multi-platform library using the Kotlin programming language, which is accompanied by a command-line tool and a web interface. By substituting conventional whitespace characters with visually similar Unicode whitespace characters, our proposed scheme preserves the semantics of the cover text without changing the number of characters. Furthermore, we propose a specified structure for secret messages that enables configurable compression, encryption, hashing, and error correction. An experimental benchmark comparison on a dataset of 1 000 000 Wikipedia articles compares ten algorithms. The results demonstrate the robustness of our proposed Innamark method in various applications and the imperceptibility of its watermarks to humans. We discuss the limits to the embedding capacity and robustness of the algorithm and how these could be addressed in future work.
comment: Accepted and published in the IEEE Access journal as extended version of doi:10.24251/HICSS.2025.886
♻ ☆ Using a cognitive architecture to consider antiBlackness in design and development of AI systems AI
How might we use cognitive modeling to consider the ways in which antiblackness, and racism more broadly, impact the design and development of AI systems? We provide a discussion and an example towards an answer to this question. We use the ACT-R/{\Phi} cognitive architecture and an existing knowledge graph system, ConceptNet, to consider this question not only from a cognitive and sociocultural perspective, but also from a physiological perspective. In addition to using a cognitive modeling as a means to explore how antiblackness may manifest in the design and development of AI systems (particularly from a software engineering perspective), we also introduce connections between antiblackness, the Human, and computational cognitive modeling. We argue that the typical eschewing of sociocultural processes and knowledge structures in cognitive architectures and cognitive modeling implicitly furthers a colorblind approach to cognitive modeling and hides sociocultural context that is always present in human behavior and affects cognitive processes.
comment: Published in ICCM Proceedings. Full reference: Dancy, C. L. (2022). Using a cognitive architecture to consider antiBlackness in design and development of AI systems.In Stewart, T. C. (Ed.). Proceedings of the 20th International Conference on Cognitive Modelling. Toronto, Ontario, CA, 65-72
♻ ☆ IBPS: Indian Bail Prediction System
Bail decisions are among the most frequently adjudicated matters in Indian courts, yet they remain plagued by subjectivity, delays, and inconsistencies. With over 75% of India's prison population comprising undertrial prisoners, many from socioeconomically disadvantaged backgrounds, the lack of timely and fair bail adjudication exacerbates human rights concerns and contributes to systemic judicial backlog. In this paper, we present the Indian Bail Prediction System (IBPS), an AI-powered framework designed to assist in bail decision-making by predicting outcomes and generating legally sound rationales based solely on factual case attributes and statutory provisions. We curate and release a large-scale dataset of 150,430 High Court bail judgments, enriched with structured annotations such as age, health, criminal history, crime category, custody duration, statutes, and judicial reasoning. We fine-tune a large language model using parameter-efficient techniques and evaluate its performance across multiple configurations, with and without statutory context, and with RAG. Our results demonstrate that models fine-tuned with statutory knowledge significantly outperform baselines, achieving strong accuracy and explanation quality, and generalize well to a test set independently annotated by legal experts. IBPS offers a transparent, scalable, and reproducible solution to support data-driven legal assistance, reduce bail delays, and promote procedural fairness in the Indian judicial system.
♻ ☆ MuSeD: A Multimodal Spanish Dataset for Sexism Detection in Social Media Videos
Sexism is generally defined as prejudice and discrimination based on sex or gender, affecting every sector of society, from social institutions to relationships and individual behavior. Social media platforms amplify the impact of sexism by conveying discriminatory content not only through text but also across multiple modalities, highlighting the critical need for a multimodal approach to the analysis of sexism online. With the rise of social media platforms where users share short videos, sexism is increasingly spreading through video content. Automatically detecting sexism in videos is a challenging task, as it requires analyzing the combination of verbal, audio, and visual elements to identify sexist content. In this study, (1) we introduce MuSeD, a new Multimodal Spanish dataset for Sexism Detection consisting of $\approx$ 11 hours of videos extracted from TikTok and BitChute; (2) we propose an innovative annotation framework for analyzing the contributions of textual, vocal, and visual modalities to the classification of content as either sexist or non-sexist; and (3) we evaluate a range of large language models (LLMs) and multimodal LLMs on the task of sexism detection. We find that visual information plays a key role in labeling sexist content for both humans and models. Models effectively detect explicit sexism; however, they struggle with implicit cases, such as stereotypes, instances where annotators also show low agreement. This highlights the inherent difficulty of the task, as identifying implicit sexism depends on the social and cultural context.
comment: COLM 2025 camera-ready version: expanded Section 4.3 with an additional experiment using an extended definition-based prompt (including a definition of sexist content), and applied minor corrections
♻ ☆ Automatic Curriculum Design for Zero-Shot Human-AI Coordination
Zero-shot human-AI coordination is the training of an ego-agent to coordinate with humans without human data. Most studies on zero-shot human-AI coordination have focused on enhancing the ego-agent's coordination ability in a given environment without considering the issue of generalization to unseen environments. Real-world applications of zero-shot human-AI coordination should consider unpredictable environmental changes and the varying coordination ability of co-players depending on the environment. Previously, the multi-agent UED (Unsupervised Environment Design) approach has investigated these challenges by jointly considering environmental changes and co-player policy in competitive two-player AI-AI scenarios. In this paper, our study extends a multi-agent UED approach to zero-shot human-AI coordination. We propose a utility function and co-player sampling for a zero-shot human-AI coordination setting that helps train the ego-agent to coordinate with humans more effectively than a previous multi-agent UED approach. The zero-shot human-AI coordination performance was evaluated in the Overcooked-AI environment, using human proxy agents and real humans. Our method outperforms other baseline models and achieves high performance in human-AI coordination tasks in unseen environments. The source code is available at https://github.com/Uwonsang/ACD_Human-AI
♻ ☆ Pragmatic Inference Chain (PIC) Improving LLMs' Reasoning of Authentic Implicit Toxic Language
The rapid development of large language models (LLMs) gives rise to ethical concerns about their performance, while opening new avenues for developing toxic language detection techniques. However, LLMs' unethical output and their capability of detecting toxicity have primarily been tested on language data that do not demand complex meaning inference, such as the biased associations of 'he' with programmer and 'she' with household. Nowadays toxic language adopts a much more creative range of implicit forms, thanks to advanced censorship. In this study, we collect authentic toxic interactions that evade online censorship and that are verified by human annotators as inference-intensive. To evaluate and improve LLMs' reasoning of the authentic implicit toxic language, we propose a new prompting method, Pragmatic Inference Chain (PIC), drawn on interdisciplinary findings from cognitive science and linguistics. The PIC prompting significantly improves the success rate of GPT-4o, Llama-3.1-70B-Instruct, DeepSeek-v2.5, and DeepSeek-v3 in identifying implicit toxic language, compared to five baseline prompts, such as CoT and rule-based baselines. In addition, it also facilitates the models to produce more explicit and coherent reasoning processes, hence can potentially be generalized to other inference-intensive tasks, e.g., understanding humour and metaphors.
comment: 14 pages, 4 figures, 2 tables
♻ ☆ On Learning Action Costs from Input Plans
Most of the work on learning action models focus on learning the actions' dynamics from input plans. This allows us to specify the valid plans of a planning task. However, very little work focuses on learning action costs, which in turn allows us to rank the different plans. In this paper we introduce a new problem: that of learning the costs of a set of actions such that a set of input plans are optimal under the resulting planning model. To solve this problem we present $LACFIP^k$, an algorithm to learn action's costs from unlabeled input plans. We provide theoretical and empirical results showing how $LACFIP^k$ can successfully solve this task.
♻ ☆ MMiC: Mitigating Modality Incompleteness in Clustered Federated Learning
In the era of big data, data mining has become indispensable for uncovering hidden patterns and insights from vast and complex datasets. The integration of multimodal data sources further enhances its potential. Multimodal Federated Learning (MFL) is a distributed approach that enhances the efficiency and quality of multimodal learning, ensuring collaborative work and privacy protection. However, missing modalities pose a significant challenge in MFL, often due to data quality issues or privacy policies across the clients. In this work, we present MMiC, a framework for Mitigating Modality incompleteness in MFL within the Clusters. MMiC replaces partial parameters within client models inside clusters to mitigate the impact of missing modalities. Furthermore, it leverages the Banzhaf Power Index to optimize client selection under these conditions. Finally, MMiC employs an innovative approach to dynamically control global aggregation by utilizing Markovitz Portfolio Optimization. Extensive experiments demonstrate that MMiC consistently outperforms existing federated learning architectures in both global and personalized performance on multimodal datasets with missing modalities, confirming the effectiveness of our proposed solution. Our code is available at https://github.com/gotobcn8/MMiC.
comment: 9 pages
♻ ☆ LATTE: Learning Aligned Transactions and Textual Embeddings for Bank Clients
Learning clients embeddings from sequences of their historic communications is central to financial applications. While large language models (LLMs) offer general world knowledge, their direct use on long event sequences is computationally expensive and impractical in real-world pipelines. In this paper, we propose LATTE, a contrastive learning framework that aligns raw event embeddings with semantic embeddings from frozen LLMs. Behavioral features are summarized into short prompts, embedded by the LLM, and used as supervision via contrastive loss. The proposed approach significantly reduces inference cost and input size compared to conventional processing of complete sequence by LLM. We experimentally show that our method outperforms state-of-the-art techniques for learning event sequence representations on real-world financial datasets while remaining deployable in latency-sensitive environments.
♻ ☆ FinAgentBench: A Benchmark Dataset for Agentic Retrieval in Financial Question Answering
Accurate information retrieval (IR) is critical in the financial domain, where investors must identify relevant information from large collections of documents. Traditional IR methods-whether sparse or dense-often fall short in retrieval accuracy, as it requires not only capturing semantic similarity but also performing fine-grained reasoning over document structure and domain-specific knowledge. Recent advances in large language models (LLMs) have opened up new opportunities for retrieval with multi-step reasoning, where the model ranks passages through iterative reasoning about which information is most relevant to a given query. However, there exists no benchmark to evaluate such capabilities in the financial domain. To address this gap, we introduce FinAgentBench, the first large-scale benchmark for evaluating retrieval with multi-step reasoning in finance -- a setting we term agentic retrieval. The benchmark consists of 3,429 expert-annotated examples on S&P-100 listed firms and assesses whether LLM agents can (1) identify the most relevant document type among candidates, and (2) pinpoint the key passage within the selected document. Our evaluation framework explicitly separates these two reasoning steps to address context limitations. This design enables to provide a quantitative basis for understanding retrieval-centric LLM behavior in finance. We evaluate a suite of state-of-the-art models and further demonstrated how targeted fine-tuning can significantly improve agentic retrieval performance. Our benchmark provides a foundation for studying retrieval-centric LLM behavior in complex, domain-specific tasks for finance. We will release the dataset publicly upon acceptance of the paper and plan to expand and share dataset for the full S&P 500 and beyond.
comment: 6 pages
♻ ☆ VerifiAgent: a Unified Verification Agent in Language Model Reasoning
Large language models demonstrate remarkable reasoning capabilities but often produce unreliable or incorrect responses. Existing verification methods are typically model-specific or domain-restricted, requiring significant computational resources and lacking scalability across diverse reasoning tasks. To address these limitations, we propose VerifiAgent, a unified verification agent that integrates two levels of verification: meta-verification, which assesses completeness and consistency in model responses, and tool-based adaptive verification, where VerifiAgent autonomously selects appropriate verification tools based on the reasoning type, including mathematical, logical, or commonsense reasoning. This adaptive approach ensures both efficiency and robustness across different verification scenarios. Experimental results show that VerifiAgent outperforms baseline verification methods (e.g., deductive verifier, backward verifier) among all reasoning tasks. Additionally, it can further enhance reasoning accuracy by leveraging feedback from verification results. VerifiAgent can also be effectively applied to inference scaling, achieving better results with fewer generated samples and costs compared to existing process reward models in the mathematical reasoning domain. Code is available at https://github.com/Jiuzhouh/VerifiAgent
comment: EMNLP 2025
♻ ☆ On the Fundamental Impossibility of Hallucination Control in Large Language Models
This paper establishes a fundamental impossibility theorem: no LLM capable of performing non-trivial knowledge aggregation can simultaneously achieve truthful knowledge representation, semantic information conservation, complete revelation of relevant knowledge, and knowledge-constrained optimality. The impossibility is not an engineering limitation but arises from the mathematical structure of information aggregation itself. We establish this result by describing the inference process as an auction of ideas, where distributed components compete exploiting their partial knowledge to shape responses. The proof spans three independent mathematical domains: mechanism design theory (Green-Laffont), the theory of proper scoring rules (Savage), and direct architectural analysis of transformers (Log-Sum-Exp convexity). In particular, we show how to quantify the creation of overconfident or intuitive responses-the signature of both hallucination and creativity, or imagination. To support this analysis, we introduce the complementary concepts of the semantic information measure and the emergence operator to model bounded reasoning in a general setting. We prove that while bounded reasoning generates accessible information, providing valuable insights and inspirations, the idealized unconstrained reasoning strictly preserves semantic content. By demonstrating that hallucination and imagination are mathematically identical phenomena-grounded in departures from truthfulness, semantic information conservation, revelation of relevant knowledge, and knowledge-constrained optimality-we offer a principled foundation for managing these behaviors in advanced AI systems. Finally, we present some speculative ideas to inspire evaluation and refinements of the proposed theory.
comment: cleared mathematics, proofs debugged and ideas expanded, added missing definitions and axioms, discussion and speculation section reorganized, related work improved
♻ ☆ A Case for Specialisation in Non-Human Entities AAAI
With the rise of large multi-modal AI models, fuelled by recent interest in large language models (LLMs), the notion of artificial general intelligence (AGI) went from being restricted to a fringe community, to dominate mainstream large AI development programs. In contrast, in this paper, we make a case for specialisation, by reviewing the pitfalls of generality and stressing the industrial value of specialised systems. Our contribution is threefold. First, we review the most widely accepted arguments against specialisation, and discuss how their relevance in the context of human labour is actually an argument for specialisation in the case of non human agents, be they algorithms or human organisations. Second, we propose four arguments in favor of specialisation, ranging from machine learning robustness, to computer security, social sciences and cultural evolution. Third, we finally make a case for specification, discuss how the machine learning approach to AI has so far failed to catch up with good practices from safety-engineering and formal verification of software, and discuss how some emerging good practices in machine learning help reduce this gap. In particular, we justify the need for specified governance for hard-to-specify systems.
comment: Accepted to AAAI/ACM AIES 2025
♻ ☆ Modeling Discrimination with Causal Abstraction
A person is directly racially discriminated against only if her race caused her worse treatment. This implies that race is an attribute sufficiently separable from other attributes to isolate its causal role. But race is embedded in a nexus of social factors that resist isolated treatment. If race is socially constructed, in what sense can it cause worse treatment? Some propose that the perception of race, rather than race itself, causes worse treatment. Others suggest that since causal models require \textit{modularity}, i.e. the ability to isolate causal effects, attempts to causally model discrimination are misguided. This paper addresses the problem differently. We introduce a framework for reasoning about discrimination, in which race is a high-level \textit{abstraction} of lower-level features. In this framework, race can be modeled as itself causing worse treatment. Modularity is ensured by allowing assumptions about social construction to be precisely and explicitly stated, via an alignment between race and its constituents. Such assumptions can then be subjected to normative and empirical challenges, which lead to different views of when discrimination occurs. By distinguishing constitutive and causal relations, the abstraction framework pinpoints disagreements in the current literature on modeling discrimination, while preserving a precise causal account of discrimination.
♻ ☆ Human-Object Interaction from Human-Level Instructions ICCV 2025
Intelligent agents must autonomously interact with the environments to perform daily tasks based on human-level instructions. They need a foundational understanding of the world to accurately interpret these instructions, along with precise low-level movement and interaction skills to execute the derived actions. In this work, we propose the first complete system for synthesizing physically plausible, long-horizon human-object interactions for object manipulation in contextual environments, driven by human-level instructions. We leverage large language models (LLMs) to interpret the input instructions into detailed execution plans. Unlike prior work, our system is capable of generating detailed finger-object interactions, in seamless coordination with full-body movements. We also train a policy to track generated motions in physics simulation via reinforcement learning (RL) to ensure physical plausibility of the motion. Our experiments demonstrate the effectiveness of our system in synthesizing realistic interactions with diverse objects in complex environments, highlighting its potential for real-world applications.
comment: ICCV 2025, project page: https://hoifhli.github.io/
♻ ☆ TS-Insight: Visualizing Thompson Sampling for Verification and XAI
Thompson Sampling (TS) and its variants are powerful Multi-Armed Bandit algorithms used to balance exploration and exploitation strategies in active learning. Yet, their probabilistic nature often turns them into a "black box", hindering debugging and trust. We introduce TS-Insight, a visual analytics tool explicitly designed to shed light on the internal decision mechanisms of Thompson Sampling-based algorithms, for model developers. It comprises multiple plots, tracing for each arm the evolving posteriors, evidence counts, and sampling outcomes, enabling the verification, diagnosis, and explainability of exploration/exploitation dynamics. This tool aims at fostering trust and facilitating effective debugging and deployment in complex binary decision-making scenarios especially in sensitive domains requiring interpretable decision-making.
comment: Accepted as a poster at IEEE VIS 2025 ("TS-Insight: Visual Fingerprinting of Multi-Armed Bandits"). Open-source tool available at https://github.com/LIST-LUXEMBOURG/ts-insight
♻ ☆ A Systematic Study of Deep Learning Models and xAI Methods for Region-of-Interest Detection in MRI Scans
Magnetic Resonance Imaging (MRI) is an essential diagnostic tool for assessing knee injuries. However, manual interpretation of MRI slices remains time-consuming and prone to inter-observer variability. This study presents a systematic evaluation of various deep learning architectures combined with explainable AI (xAI) techniques for automated region of interest (ROI) detection in knee MRI scans. We investigate both supervised and self-supervised approaches, including ResNet50, InceptionV3, Vision Transformers (ViT), and multiple U-Net variants augmented with multi-layer perceptron (MLP) classifiers. To enhance interpretability and clinical relevance, we integrate xAI methods such as Grad-CAM and Saliency Maps. Model performance is assessed using AUC for classification and PSNR/SSIM for reconstruction quality, along with qualitative ROI visualizations. Our results demonstrate that ResNet50 consistently excels in classification and ROI identification, outperforming transformer-based models under the constraints of the MRNet dataset. While hybrid U-Net + MLP approaches show potential for leveraging spatial features in reconstruction and interpretability, their classification performance remains lower. Grad-CAM consistently provided the most clinically meaningful explanations across architectures. Overall, CNN-based transfer learning emerges as the most effective approach for this dataset, while future work with larger-scale pretraining may better unlock the potential of transformer models.
♻ ☆ Self-Supervised Prompt Optimization
Well-designed prompts are crucial for enhancing Large language models' (LLMs) reasoning capabilities while aligning their outputs with task requirements across diverse domains. However, manually designed prompts require expertise and iterative experimentation. While existing prompt optimization methods aim to automate this process, they rely heavily on external references such as ground truth or by humans, limiting their applicability in real-world scenarios where such data is unavailable or costly to obtain. To address this, we propose Self-Supervised Prompt Optimization (SPO), a cost-efficient framework that discovers effective prompts for both closed and open-ended tasks without requiring external reference. Motivated by the observations that prompt quality manifests directly in LLM outputs and LLMs can effectively assess adherence to task requirements, we derive evaluation and optimization signals purely from output comparisons. Specifically, SPO selects superior prompts through pairwise output comparisons evaluated by an LLM evaluator, followed by an LLM optimizer that aligns outputs with task requirements. Extensive experiments demonstrate that SPO outperforms state-of-the-art prompt optimization methods, achieving comparable or superior results with significantly lower costs (e.g., 1.1% to 5.6% of existing methods) and fewer samples (e.g., three samples). The code is available at https://github.com/FoundationAgents/SPO.
♻ ☆ TextSplat: Text-Guided Semantic Fusion for Generalizable Gaussian Splatting
Recent advancements in Generalizable Gaussian Splatting have enabled robust 3D reconstruction from sparse input views by utilizing feed-forward Gaussian Splatting models, achieving superior cross-scene generalization. However, while many methods focus on geometric consistency, they often neglect the potential of text-driven guidance to enhance semantic understanding, which is crucial for accurately reconstructing fine-grained details in complex scenes. To address this limitation, we propose TextSplat--the first text-driven Generalizable Gaussian Splatting framework. By employing a text-guided fusion of diverse semantic cues, our framework learns robust cross-modal feature representations that improve the alignment of geometric and semantic information, producing high-fidelity 3D reconstructions. Specifically, our framework employs three parallel modules to obtain complementary representations: the Diffusion Prior Depth Estimator for accurate depth information, the Semantic Aware Segmentation Network for detailed semantic information, and the Multi-View Interaction Network for refined cross-view features. Then, in the Text-Guided Semantic Fusion Module, these representations are integrated via the text-guided and attention-based feature aggregation mechanism, resulting in enhanced 3D Gaussian parameters enriched with detailed semantic cues. Experimental results on various benchmark datasets demonstrate improved performance compared to existing methods across multiple evaluation metrics, validating the effectiveness of our framework. The code will be publicly available.
♻ ☆ Large Language Models for Automated Literature Review: An Evaluation of Reference Generation, Abstract Writing, and Review Composition
Large language models (LLMs) have emerged as a potential solution to automate the complex processes involved in writing literature reviews, such as literature collection, organization, and summarization. However, it is yet unclear how good LLMs are at automating comprehensive and reliable literature reviews. This study introduces a framework to automatically evaluate the performance of LLMs in three key tasks of literature writing: reference generation, literature summary, and literature review composition. We introduce multidimensional evaluation metrics that assess the hallucination rates in generated references and measure the semantic coverage and factual consistency of the literature summaries and compositions against human-written counterparts. The experimental results reveal that even the most advanced models still generate hallucinated references, despite recent progress. Moreover, we observe that the performance of different models varies across disciplines when it comes to writing literature reviews. These findings highlight the need for further research and development to improve the reliability of LLMs in automating academic literature reviews.
comment: 12 pages, 5 figures, 5 tables, Accepted by EMNLP 2025 Main Conference
♻ ☆ MCLPD:Multi-view Contrastive Learning for EEG-based PD Detection Across Datasets AI 2025
Electroencephalography has been validated as an effective technique for detecting Parkinson's disease,particularly in its early stages.However,the high cost of EEG data annotation often results in limited dataset size and considerable discrepancies across datasets,including differences in acquisition protocols and subject demographics,significantly hinder the robustness and generalizability of models in cross-dataset detection scenarios.To address such challenges,this paper proposes a semi-supervised learning framework named MCLPD,which integrates multi-view contrastive pre-training with lightweight supervised fine-tuning to enhance cross-dataset PD detection performance.During pre-training,MCLPD uses self-supervised learning on the unlabeled UNM dataset.To build contrastive pairs,it applies dual augmentations in both time and frequency domains,which enrich the data and naturally fuse time-frequency information.In the fine-tuning phase,only a small proportion of labeled data from another two datasets (UI and UC)is used for supervised optimization.Experimental results show that MCLPD achieves F1 scores of 0.91 on UI and 0.81 on UC using only 1%of labeled data,which further improve to 0.97 and 0.87,respectively,when 5%of labeled data is used.Compared to existing methods,MCLPD substantially improves cross-dataset generalization while reducing the dependency on labeled data,demonstrating the effectiveness of the proposed framework.
comment: Acccepted by European Conference on Artificial Intelligence(ECAI 2025)
♻ ☆ Ontology-Guided Reverse Thinking Makes Large Language Models Stronger on Knowledge Graph Question Answering
Large language models (LLMs) have shown remarkable capabilities in natural language processing. However, in knowledge graph question answering tasks (KGQA), there remains the issue of answering questions that require multi-hop reasoning. Existing methods rely on entity vector matching, but the purpose of the question is abstract and difficult to match with specific entities. As a result, it is difficult to establish reasoning paths to the purpose, which leads to information loss and redundancy. To address this issue, inspired by human reverse thinking, we propose Ontology-Guided Reverse Thinking (ORT), a novel framework that constructs reasoning paths from purposes back to conditions. ORT operates in three key phases: (1) using LLM to extract purpose labels and condition labels, (2) constructing label reasoning paths based on the KG ontology, and (3) using the label reasoning paths to guide knowledge retrieval. Experiments on the WebQSP and CWQ datasets show that ORT achieves state-of-the-art performance and significantly enhances the capability of LLMs for KGQA.
comment: Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
♻ ☆ Setup Once, Secure Always: A Single-Setup Secure Federated Learning Aggregation Protocol with Forward and Backward Secrecy for Dynamic Users
Federated Learning (FL) enables multiple users to collaboratively train a machine learning model without sharing raw data, making it suitable for privacy-sensitive applications. However, local model or weight updates can still leak sensitive information. Secure aggregation protocols mitigate this risk by ensuring that only the aggregated updates are revealed. Among these, single-setup protocols, where key generation and exchange occur only once, are the most efficient due to reduced communication and computation overhead. However, existing single-setup protocols often lack support for dynamic user participation and do not provide strong privacy guarantees such as forward and backward secrecy. \par In this paper, we present a novel secure aggregation protocol that requires only a single setup for the entire FL training. Our protocol supports dynamic user participation, tolerates dropouts, and achieves both forward and backward secrecy. It leverages lightweight symmetric homomorphic encryption with a key negation technique to mask updates efficiently, eliminating the need for user-to-user communication. To defend against model inconsistency attacks, we introduce a low-overhead verification mechanism using message authentication codes (MACs). We provide formal security proofs under both semi-honest and malicious adversarial models and implement a full prototype. Experimental results show that our protocol reduces user-side computation by up to $99\%$ compared to state-of-the-art protocols like e-SeaFL (ACSAC'24), while maintaining competitive model accuracy. These features make our protocol highly practical for real-world FL deployments, especially on resource-constrained devices.
comment: 17 pages, 12 Figures
♻ ☆ Continual Learning for Multimodal Data Fusion of a Soft Gripper
Continual learning (CL) refers to the ability of an algorithm to continuously and incrementally acquire new knowledge from its environment while retaining previously learned information. A model trained on one data modality often fails when tested with a different modality. A straightforward approach might be to fuse the two modalities by concatenating their features and training the model on the fused data. However, this requires retraining the model from scratch each time it encounters a new domain. In this paper, we introduce a continual learning algorithm capable of incrementally learning different data modalities by leveraging both class-incremental and domain-incremental learning scenarios in an artificial environment where labeled data is scarce, yet non-iid (independent and identical distribution) unlabeled data from the environment is plentiful. The proposed algorithm is efficient and only requires storing prototypes for each class. We evaluate the algorithm's effectiveness on a challenging custom multimodal dataset comprising of tactile data from a soft pneumatic gripper, and visual data from non-stationary images of objects extracted from video sequences. Additionally, we conduct an ablation study on the custom dataset and the Core50 dataset to highlight the contributions of different components of the algorithm. To further demonstrate the robustness of the algorithm, we perform a real-time experiment for object classification using the soft gripper and an external independent camera setup, all synchronized with the Robot Operating System (ROS) framework.
comment: Accepted in Wiley Advanced Robotics Research
♻ ☆ ITL-LIME: Instance-Based Transfer Learning for Enhancing Local Explanations in Low-Resource Data Settings
Explainable Artificial Intelligence (XAI) methods, such as Local Interpretable Model-Agnostic Explanations (LIME), have advanced the interpretability of black-box machine learning models by approximating their behavior locally using interpretable surrogate models. However, LIME's inherent randomness in perturbation and sampling can lead to locality and instability issues, especially in scenarios with limited training data. In such cases, data scarcity can result in the generation of unrealistic variations and samples that deviate from the true data manifold. Consequently, the surrogate model may fail to accurately approximate the complex decision boundary of the original model. To address these challenges, we propose a novel Instance-based Transfer Learning LIME framework (ITL-LIME) that enhances explanation fidelity and stability in data-constrained environments. ITL-LIME introduces instance transfer learning into the LIME framework by leveraging relevant real instances from a related source domain to aid the explanation process in the target domain. Specifically, we employ clustering to partition the source domain into clusters with representative prototypes. Instead of generating random perturbations, our method retrieves pertinent real source instances from the source cluster whose prototype is most similar to the target instance. These are then combined with the target instance's neighboring real instances. To define a compact locality, we further construct a contrastive learning-based encoder as a weighting mechanism to assign weights to the instances from the combined set based on their proximity to the target instance. Finally, these weighted source and target instances are used to train the surrogate model for explanation purposes.
comment: Accepted at the 34th ACM International Conference on Information and Knowledge Management (CIKM 2025)
♻ ☆ Generation of structure-guided pMHC-I libraries using Diffusion Models AI
Personalized vaccines and T-cell immunotherapies depend critically on identifying peptide-MHC class I (pMHC-I) interactions capable of eliciting potent immune responses. However, current benchmarks and models inherit biases present in mass-spectrometry and binding-assay datasets, limiting discovery of novel peptide ligands. To address this issue, we introduce a structure-guided benchmark of pMHC-I peptides designed using diffusion models conditioned on crystal structure interaction distances. Spanning twenty high-priority HLA alleles, this benchmark is independent of previously characterized peptides yet reproduces canonical anchor residue preferences, indicating structural generalization without experimental dataset bias. Using this resource, we demonstrate that state-of-the-art sequence-based predictors perform poorly at recognizing the binding potential of these structurally stable designs, indicating allele-specific limitations invisible in conventional evaluations. Our geometry-aware design pipeline yields peptides with high predicted structural integrity and higher residue diversity than existing datasets, representing a key resource for unbiased model training and evaluation. Our code, and data are available at: https://github.com/sermare/struct-mhc-dev.
comment: Accepted to the The 2nd Workshop on Generative AI and Biology ICML Workshop 2025
♻ ☆ Cequel: Cost-Effective Querying of Large Language Models for Text Clustering
Text clustering aims to automatically partition a collection of documents into coherent groups based on their linguistic features. In the literature, this task is formulated either as metric clustering over pre-trained text embeddings or as graph clustering based on pairwise similarities derived from an oracle, e.g., a large machine learning model. Recent advances in large language models (LLMs) have significantly improved this field by providing high-quality contextualized embeddings and accurate semantic similarity estimates. However, leveraging LLMs at scale introduces substantial computational and financial costs due to the large number of required API queries or inference calls. To address this issue, we propose Cequel, a cost-effective framework that achieves accurate text clustering under a limited budget of LLM queries. At its core, Cequel constructs must-link and cannot-link constraints by selectively querying LLMs on informative text pairs or triplets, identified via our proposed algorithms, EdgeLLM and TriangleLLM. These constraints are then utilized in a weighted constrained clustering algorithm to form high-quality clusters. Specifically, EdgeLLM and TriangleLLM employ carefully designed greedy selection strategies and prompting techniques to identify and extract informative constraints efficiently. Experiments on multiple benchmark datasets demonstrate that Cequel consistently outperforms existing methods in unsupervised text clustering under the same query budget.
♻ ☆ ThinkTuning: Instilling Cognitive Reflections without Distillation
Recent advances in test-time scaling have led to the emergence of thinking LLMs that exhibit self-reflective behaviors and multi-step reasoning. While RL drives this self-improvement paradigm, a recent study (Gandhi et al., 2025) shows that RL alone does not truly instill these new reasoning abilities - it merely draws out behaviors already present in the base models. This raises a question: How can we train the models that don't exhibit such thinking behavior to develop it in the first place? To this end, we propose ThinkTuning, a GRPO-based interactive training approach where we augment the rollouts of a student model with the guidance from a teacher model. A simple idea from classroom practice inspires our method: a teacher poses a problem, lets the student try an answer, then gives corrective feedback -- enough to point the mind in the right direction and then show the solution. Each piece of feedback reshapes the student's thoughts, leading them to arrive at the correct solution. Similarly, we find that this type of implicit supervision through feedback from a teacher model of the same size improves the reasoning capabilities of the student model. In particular, on average, our method shows a 3.85% improvement over zero-shot baselines across benchmarks, and on MATH-500, AIME and GPQA-Diamond it shows 2.08%, 2.23% and 3.99% improvements over the vanilla-GRPO baseline. Source code is available at https://github.com/3rdAT/ThinkTuning.
comment: EMNLP 2025 (Main Conference)
♻ ☆ Opus: A Prompt Intention Framework for Complex Workflow Generation
This paper introduces the Opus Prompt Intention Framework, designed to improve complex Workflow Generation with instruction-tuned Large Language Models (LLMs). We propose an intermediate Intention Capture layer between user queries and Workflow Generation, implementing the Opus Workflow Intention Framework, which consists of extracting Workflow Signals from user queries, interpreting them into structured Workflow Intention objects, and generating Workflows based on these Intentions. Our results show that this layer enables LLMs to produce logical and meaningful outputs that scale reliably as query complexity increases. On a synthetic benchmark of 1,000 multi-intent query-Workflow(s) pairs, applying the Opus Prompt Intention Framework to Workflow Generation yields consistent improvements in semantic Workflow similarity metrics. In this paper, we introduce the Opus Prompt Intention Framework by applying the concepts of Workflow Signal and Workflow Intention to LLM-driven Workflow Generation. We present a reproducible, customizable LLM-based Intention Capture system to extract Workflow Signals and Workflow Intentions from user queries. Finally, we provide empirical evidence that the proposed system significantly improves Workflow Generation quality compared to direct generation from user queries, particularly in cases of Mixed Intention Elicitation.
comment: 39 pages, 24 figures
♻ ☆ Kuwain 1.5B: An Arabic SLM via Language Injection
Enhancing existing models with new knowledge is a crucial aspect of AI development. This paper introduces a novel method for integrating a new language into a large language model (LLM). Our approach successfully incorporates a previously unseen target language into an existing LLM without compromising its prior knowledge. We trained a tiny model with 1.5 billion parameters named Kuwain by injecting the Arabic language into a small open-source model mainly trained in English. Our method demonstrates significant improvements in Arabic language performance, with an average 8% improvement across various benchmarks, while retaining the model's existing knowledge with a minimum amount of the original model's data. This offers a cost-effective alternative to training a comprehensive model in both English and Arabic. The results highlight the potential for efficient, targeted language model expansion without extensive retraining or resource-intensive processes.
♻ ☆ CopyrightShield: Enhancing Diffusion Model Security against Copyright Infringement Attacks
Diffusion models have attracted significant attention due to its exceptional data generation capabilities in fields such as image synthesis. However, recent studies have shown that diffusion models are vulnerable to copyright infringement attacks, where attackers inject strategically modified non-infringing images into the training set, inducing the model to generate infringing content under the prompt of specific poisoned captions. To address this issue, we first propose a defense framework, CopyrightShield, to defend against the above attack. Specifically, we analyze the memorization mechanism of diffusion models and find that attacks exploit the model's overfitting to specific spatial positions and prompts, causing it to reproduce poisoned samples under backdoor triggers. Based on this, we propose a poisoned sample detection method using spatial masking and data attribution to quantify poisoning risk and accurately identify hidden backdoor samples. To further mitigate memorization of poisoned features, we introduce an adaptive optimization strategy that integrates a dynamic penalty term into the training loss, reducing reliance on infringing features while preserving generative performance. Experimental results demonstrate that CopyrightShield significantly improves poisoned sample detection performance across two attack scenarios, achieving average F1-scores of 0.665, retarding the First-Attack Epoch (FAE) of 115.2% and decreasing the Copyright Infringement Rate (CIR) by 56.7%. Compared to the SoTA backdoor defense in diffusion models, the defense effect is improved by about 25%, showcasing its superiority and practicality in enhancing the security of diffusion models.
♻ ☆ Sadeed: Advancing Arabic Diacritization Through Small Language Model
Arabic text diacritization remains a persistent challenge in natural language processing due to the language's morphological richness. In this paper, we introduce Sadeed, a novel approach based on a fine-tuned decoder-only language model adapted from Kuwain 1.5B Hennara et al. [2025], a compact model originally trained on diverse Arabic corpora. Sadeed is fine-tuned on carefully curated, high-quality diacritized datasets, constructed through a rigorous data-cleaning and normalization pipeline. Despite utilizing modest computational resources, Sadeed achieves competitive results compared to proprietary large language models and outperforms traditional models trained on similar domains. Additionally, we highlight key limitations in current benchmarking practices for Arabic diacritization. To address these issues, we introduce SadeedDiac-25, a new benchmark designed to enable fairer and more comprehensive evaluation across diverse text genres and complexity levels. Together, Sadeed and SadeedDiac-25 provide a robust foundation for advancing Arabic NLP applications, including machine translation, text-to-speech, and language learning tools.
♻ ☆ Mutarjim: Advancing Bidirectional Arabic-English Translation with a Small Language Model
We introduce Mutarjim, a compact yet powerful language model for bidirectional Arabic-English translation. While large-scale LLMs have shown impressive progress in natural language processing tasks, including machine translation, smaller models. Leveraging this insight, we developed Mutarjim based on Kuwain-1.5B , a language model tailored for both Arabic and English. Despite its modest size, Mutarjim outperforms much larger models on several established benchmarks, achieved through an optimized two-phase training approach and a carefully curated, high-quality training corpus.. Experimental results show that Mutarjim rivals models up to 20 times larger while significantly reducing computational costs and training requirements. We also introduce Tarjama-25, a new benchmark designed to overcome limitations in existing Arabic-English benchmarking datasets, such as domain narrowness, short sentence lengths, and English-source bias. Tarjama-25 comprises 5,000 expert-reviewed sentence pairs and spans a wide range of domains, offering a more comprehensive and balanced evaluation framework. Notably, Mutarjim achieves state-of-the-art performance on the English-to-Arabic task in Tarjama-25, surpassing even significantly larger and proprietary models like GPT-4o mini. We publicly release Tarjama-25 to support future research and advance the evaluation of Arabic-English translation systems.
♻ ☆ Grounded-VideoLLM: Sharpening Fine-grained Temporal Grounding in Video Large Language Models
Video Large Language Models (Video-LLMs) have demonstrated remarkable capabilities in coarse-grained video understanding, however, they struggle with fine-grained temporal grounding. In this paper, we introduce Grounded-VideoLLM, a novel Video-LLM adept at perceiving and reasoning over specific video moments in a fine-grained manner. We identify that current Video-LLMs have limitations for fine-grained video understanding since they lack effective temporal modeling and timestamp representation. In light of this, we sharpen our model by incorporating (1) an additional temporal stream to encode the relationships between frames and (2) discrete temporal tokens enriched with specific time knowledge to represent timestamps. To optimize the training of Grounded-VideoLLM, we employ a multi-stage training scheme, beginning with simple video-captioning tasks and progressively introducing video temporal grounding tasks of increasing complexity. To further enhance Grounded-VideoLLM's temporal reasoning capability, we also curate a grounded VideoQA dataset by an automatic annotation pipeline. Extensive experiments demonstrate that Grounded-VideoLLM not only excels in fine-grained grounding tasks such as temporal sentence grounding, dense video captioning, and grounded VideoQA, but also shows great potential as a versatile video assistant for general video understanding.
comment: Accepted by EMNLP 2025 Findings
♻ ☆ Flexible Tool Selection through Low-dimensional Attribute Alignment of Vision and Language
Flexible tool selection reflects a complex cognitive ability that distinguishes humans from other species, yet computational models that capture this ability remain underdeveloped. We developed a framework using low-dimensional attribute representations to bridge visual tool perception and linguistic task understanding. We constructed a comprehensive dataset (ToolNet) containing 115 common tools labeled with 13 carefully designed attributes spanning physical, functional, and psychological properties, paired with natural language scenarios describing tool usage. Visual encoders (ResNet or ViT) extract attributes from tool images while fine-tuned language models (GPT-2, LLaMA, DeepSeek) derive required attributes from task descriptions. Our approach achieves 74% accuracy in tool selection tasks-significantly outperforming direct tool matching (20%) and smaller multimodal models (21%-58%), while approaching performance of much larger models like GPT-4o (73%) with substantially fewer parameters. Human evaluation studies validate our framework's alignment with human decision-making patterns, and generalization experiments demonstrate effective performance on novel tool categories. Ablation studies revealed that manipulation-related attributes (graspability, elongation, hand-relatedness) consistently prove most critical across modalities. This work provides a parameter-efficient, interpretable solution that mimics human-like tool cognition, advancing both cognitive science understanding and practical applications in tool selection tasks.
♻ ☆ NVIDIA Nemotron Nano 2: An Accurate and Efficient Hybrid Mamba-Transformer Reasoning Model
We introduce Nemotron-Nano-9B-v2, a hybrid Mamba-Transformer language model designed to increase throughput for reasoning workloads while achieving state-of-the-art accuracy compared to similarly-sized models. Nemotron-Nano-9B-v2 builds on the Nemotron-H architecture, in which the majority of the self-attention layers in the common Transformer architecture are replaced with Mamba-2 layers, to achieve improved inference speed when generating the long thinking traces needed for reasoning. We create Nemotron-Nano-9B-v2 by first pre-training a 12-billion-parameter model (Nemotron-Nano-12B-v2-Base) on 20 trillion tokens using an FP8 training recipe. After aligning Nemotron-Nano-12B-v2-Base, we employ the Minitron strategy to compress and distill the model with the goal of enabling inference on up to 128k tokens on a single NVIDIA A10G GPU (22GiB of memory, bfloat16 precision). Compared to existing similarly-sized models (e.g., Qwen3-8B), we show that Nemotron-Nano-9B-v2 achieves on-par or better accuracy on reasoning benchmarks while achieving up to 6x higher inference throughput in reasoning settings like 8k input and 16k output tokens. We are releasing Nemotron-Nano-9B-v2, Nemotron-Nano12B-v2-Base, and Nemotron-Nano-9B-v2-Base checkpoints along with the majority of our pre- and post-training datasets on Hugging Face.
♻ ☆ CRISPR-GPT for Agentic Automation of Gene-editing Experiments
The introduction of genome engineering technology has transformed biomedical research, making it possible to make precise changes to genetic information. However, creating an efficient gene-editing system requires a deep understanding of CRISPR technology, and the complex experimental systems under investigation. While Large Language Models (LLMs) have shown promise in various tasks, they often lack specific knowledge and struggle to accurately solve biological design problems. In this work, we introduce CRISPR-GPT, an LLM agent augmented with domain knowledge and external tools to automate and enhance the design process of CRISPR-based gene-editing experiments. CRISPR-GPT leverages the reasoning ability of LLMs to facilitate the process of selecting CRISPR systems, designing guide RNAs, recommending cellular delivery methods, drafting protocols, and designing validation experiments to confirm editing outcomes. We showcase the potential of CRISPR-GPT for assisting non-expert researchers with gene-editing experiments from scratch and validate the agent's effectiveness in a real-world use case. Furthermore, we explore the ethical and regulatory considerations associated with automated gene-editing design, highlighting the need for responsible and transparent use of these tools. Our work aims to bridge the gap between beginner biological researchers and CRISPR genome engineering techniques, and demonstrate the potential of LLM agents in facilitating complex biological discovery tasks. The published version of this draft is available at https://www.nature.com/articles/s41551-025-01463-z.
comment: Accepted to Nature Biomedical Engineering
♻ ☆ Versatile Cardiovascular Signal Generation with a Unified Diffusion Transformer
Cardiovascular signals such as photoplethysmography (PPG), electrocardiography (ECG), and blood pressure (BP) are inherently correlated and complementary, together reflecting the health of cardiovascular system. However, their joint utilization in real-time monitoring is severely limited by diverse acquisition challenges from noisy wearable recordings to burdened invasive procedures. Here we propose UniCardio, a multi-modal diffusion transformer that reconstructs low-quality signals and synthesizes unrecorded signals in a unified generative framework. Its key innovations include a specialized model architecture to manage the signal modalities involved in generation tasks and a continual learning paradigm to incorporate varying modality combinations. By exploiting the complementary nature of cardiovascular signals, UniCardio clearly outperforms recent task-specific baselines in signal denoising, imputation, and translation. The generated signals match the performance of ground-truth signals in detecting abnormal health conditions and estimating vital signs, even in unseen domains, while ensuring interpretability for human experts. These advantages position UniCardio as a promising avenue for advancing AI-assisted healthcare.
♻ ☆ A Survey of Foundation Models for IoT: Taxonomy and Criteria-Based Analysis
Foundation models have gained growing interest in the IoT domain due to their reduced reliance on labeled data and strong generalizability across tasks, which address key limitations of traditional machine learning approaches. However, most existing foundation model based methods are developed for specific IoT tasks, making it difficult to compare approaches across IoT domains and limiting guidance for applying them to new tasks. This survey aims to bridge this gap by providing a comprehensive overview of current methodologies and organizing them around four shared performance objectives by different domains: efficiency, context-awareness, safety, and security & privacy. For each objective, we review representative works, summarize commonly-used techniques and evaluation metrics. This objective-centric organization enables meaningful cross-domain comparisons and offers practical insights for selecting and designing foundation model based solutions for new IoT tasks. We conclude with key directions for future research to guide both practitioners and researchers in advancing the use of foundation models in IoT applications.
comment: Accepted by CCF Transactions on Pervasive Computing and Interaction
♻ ☆ Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications, integrating cloud resources with edge devices to enable efficient, low-latency processing. Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems, yet introduce significant challenges in model deployment and resource management. In this survey, we comprehensive examine the intersection of distributed intelligence and model optimization within edge-cloud environments, providing a structured tutorial on fundamental architectures, enabling technologies, and emerging applications. Additionally, we systematically analyze model optimization approaches, including compression, adaptation, and neural architecture search, alongside AI-driven resource management strategies that balance performance, energy efficiency, and latency requirements. We further explore critical aspects of privacy protection and security enhancement within ECCC systems and examines practical deployments through diverse applications, spanning autonomous driving, healthcare, and industrial automation. Performance analysis and benchmarking techniques are also thoroughly explored to establish evaluation standards for these complex systems. Furthermore, the review identifies critical research directions including LLMs deployment, 6G integration, neuromorphic computing, and quantum computing, offering a roadmap for addressing persistent challenges in heterogeneity management, real-time processing, and scalability. By bridging theoretical advancements and practical deployments, this survey offers researchers and practitioners a holistic perspective on leveraging AI to optimize distributed computing environments, fostering innovation in next-generation intelligent systems.
comment: 43 pages, 10 figures, 10 tables
♻ ☆ Teuken-7B-Base & Teuken-7B-Instruct: Towards European LLMs
We present two multilingual LLMs, Teuken 7B-base and Teuken 7B-instruct, designed to embrace Europe's linguistic diversity by supporting all 24 official languages of the European Union. Trained on a dataset comprising around 60% non-English data and utilizing a custom multilingual tokenizer, our models address the limitations of existing LLMs that predominantly focus on English or a few high-resource languages. We detail the models' development principles, i.e., data composition, tokenizer optimization, and training methodologies. The models demonstrate strong performance across multilingual benchmarks, as evidenced by their performance on European versions of ARC, HellaSwag, and TruthfulQA.
♻ ☆ Cross-Modality Masked Learning for Survival Prediction in ICI Treated NSCLC Patients AI 2025
Accurate prognosis of non-small cell lung cancer (NSCLC) patients undergoing immunotherapy is essential for personalized treatment planning, enabling informed patient decisions, and improving both treatment outcomes and quality of life. However, the lack of large, relevant datasets and effective multi-modal feature fusion strategies pose significant challenges in this domain. To address these challenges, we present a large-scale dataset and introduce a novel framework for multi-modal feature fusion aimed at enhancing the accuracy of survival prediction. The dataset comprises 3D CT images and corresponding clinical records from NSCLC patients treated with immune checkpoint inhibitors (ICI), along with progression-free survival (PFS) and overall survival (OS) data. We further propose a cross-modality masked learning approach for medical feature fusion, consisting of two distinct branches, each tailored to its respective modality: a Slice-Depth Transformer for extracting 3D features from CT images and a graph-based Transformer for learning node features and relationships among clinical variables in tabular data. The fusion process is guided by a masked modality learning strategy, wherein the model utilizes the intact modality to reconstruct missing components. This mechanism improves the integration of modality-specific features, fostering more effective inter-modality relationships and feature interactions. Our approach demonstrates superior performance in multi-modal integration for NSCLC survival prediction, surpassing existing methods and setting a new benchmark for prognostic models in this context.
comment: MICCAI 2025
♻ ☆ MCA-RG: Enhancing LLMs with Medical Concept Alignment for Radiology Report Generation AI 2025
Despite significant advancements in adapting Large Language Models (LLMs) for radiology report generation (RRG), clinical adoption remains challenging due to difficulties in accurately mapping pathological and anatomical features to their corresponding text descriptions. Additionally, semantic agnostic feature extraction further hampers the generation of accurate diagnostic reports. To address these challenges, we introduce Medical Concept Aligned Radiology Report Generation (MCA-RG), a knowledge-driven framework that explicitly aligns visual features with distinct medical concepts to enhance the report generation process. MCA-RG utilizes two curated concept banks: a pathology bank containing lesion-related knowledge, and an anatomy bank with anatomical descriptions. The visual features are aligned with these medical concepts and undergo tailored enhancement. We further propose an anatomy-based contrastive learning procedure to improve the generalization of anatomical features, coupled with a matching loss for pathological features to prioritize clinically relevant regions. Additionally, a feature gating mechanism is employed to filter out low-quality concept features. Finally, the visual features are corresponding to individual medical concepts, and are leveraged to guide the report generation process. Experiments on two public benchmarks (MIMIC-CXR and CheXpert Plus) demonstrate that MCA-RG achieves superior performance, highlighting its effectiveness in radiology report generation.
comment: MICCAI 2025
♻ ☆ Embodied Long Horizon Manipulation with Closed-loop Code Generation and Incremental Few-shot Adaptation
Embodied long-horizon manipulation requires robotic systems to process multimodal inputs-such as vision and natural language-and translate them into executable actions. However, existing learning-based approaches often depend on large, task-specific datasets and struggle to generalize to unseen scenarios. Recent methods have explored using large language models (LLMs) as high-level planners that decompose tasks into subtasks using natural language and guide pretrained low-level controllers. Yet, these approaches assume perfect execution from low-level policies, which is unrealistic in real-world environments with noise or suboptimal behaviors. To overcome this, we fully discard the pretrained low-level policy and instead use the LLM to directly generate executable code plans within a closed-loop framework. Our planner employs chain-of-thought (CoT)-guided few-shot learning with incrementally structured examples to produce robust and generalizable task plans. Complementing this, a reporter evaluates outcomes using RGB-D and delivers structured feedback, enabling recovery from misalignment and replanning under partial observability. This design eliminates per-step inference, reduces computational overhead, and limits error accumulation that was observed in previous methods. Our framework achieves state-of-the-art performance on 30+ diverse seen and unseen long-horizon tasks across LoHoRavens, CALVIN, Franka Kitchen, and cluttered real-world settings.
comment: update ICRA 6 page
♻ ☆ VLASCD: A Visual Language Action Model for Simultaneous Chatting and Decision Making
Although current mainstream pre-trained large models, such as LLM models represented by ChatGPT and VLA models represented by OpenVLA, have achieved significant progress in multimodal tasks through a "Multiple-Input, Single-Output" (MISO) architecture. However, our investigation reveals that the MISO architecture exhibits fundamental limitations in "Multiple-Input, Multiple-Output" (MIMO) (e.g., parallel multi-tasks output processing): the architecture generates task mutual exclusion effects, leading to resource contention among different tasks when sharing output channels, and consequently resulting in optimization imbalance and performance degradation. In contrast, human MIMO processing inherently enables concurrent task execution (e.g., while dialogue and decision-making) without interference. Inspired by this, in this work, we propose a unified MIMO training model with parallel multi-tasks output capabilities termed Visual Language Action Model for Simultaneously Chatting and Decision Making. We refer to this method as VLASCD or MIMO-VLA, and in the following, we will use these two names interchangeably. We evaluate the model on the CARLA autonomous driving platform. The results show that, compared to LLM models with MISO dialogue capabilities, reinforcement learning models, and VLA models with MISO decision-making capabilities, MIMO-VLA significantly outperforms existing MISO models in simultaneously handling dialogue generation and decision-making tasks within the MIMO scenario.
comment: Accepted by EMNLP 2025 (Main Conference)
♻ ☆ LaMP-Cap: Personalized Figure Caption Generation With Multimodal Figure Profiles AI
Figure captions are crucial for helping readers understand and remember a figure's key message. Many models have been developed to generate these captions, helping authors compose better quality captions more easily. Yet, authors almost always need to revise generic AI-generated captions to match their writing style and the domain's style, highlighting the need for personalization. Despite language models' personalization (LaMP) advances, these technologies often focus on text-only settings and rarely address scenarios where both inputs and profiles are multimodal. This paper introduces LaMP-Cap, a dataset for personalized figure caption generation with multimodal figure profiles. For each target figure, LaMP-Cap provides not only the needed inputs, such as figure images, but also up to three other figures from the same document--each with its image, caption, and figure-mentioning paragraphs--as a profile to characterize the context. Experiments with four LLMs show that using profile information consistently helps generate captions closer to the original author-written ones. Ablation studies reveal that images in the profile are more helpful than figure-mentioning paragraphs, highlighting the advantage of using multimodal profiles over text-only ones.
comment: Accepted to EMNLP 2025 Findings. The LaMP-CAP dataset is publicly available at: https://github.com/Crowd-AI-Lab/lamp-cap
♻ ☆ GATES: Cost-aware Dynamic Workflow Scheduling via Graph Attention Networks and Evolution Strategy IJCAI-2025
Cost-aware Dynamic Workflow Scheduling (CADWS) is a key challenge in cloud computing, focusing on devising an effective scheduling policy to efficiently schedule dynamically arriving workflow tasks, represented as Directed Acyclic Graphs (DAG), to suitable virtual machines (VMs). Deep reinforcement learning (DRL) has been widely employed for automated scheduling policy design. However, the performance of DRL is heavily influenced by the design of the problem-tailored policy network and is highly sensitive to hyperparameters and the design of reward feedback. Considering the above-mentioned issues, this study proposes a novel DRL method combining Graph Attention Networks-based policy network and Evolution Strategy, referred to as GATES. The contributions of GATES are summarized as follows: (1) GATES can capture the impact of current task scheduling on subsequent tasks by learning the topological relationships between tasks in a DAG. (2) GATES can assess the importance of each VM to the ready task, enabling it to adapt to dynamically changing VM resources. (3) Utilizing Evolution Strategy's robustness, exploratory nature, and tolerance for delayed rewards, GATES achieves stable policy learning in CADWS. Extensive experimental results demonstrate the superiority of the proposed GATES in CADWS, outperforming several state-of-the-art algorithms. The source code is available at: https://github.com/YaShen998/GATES.
comment: This paper has been accepted by the 34th International Joint Conference on Artificial Intelligence (IJCAI-2025)
Computational Engineering, Finance, and Science 6
☆ HEAS: Hierarchical Evolutionary Agent Simulation Framework for Cross-Scale Modeling and Multi-Objective Search
Hierarchical Evolutionary Agent Simulation (HEAS) is a Python framework that unifies layered agent-based modeling with evolutionary optimization and tournament evaluation in a single, reproducible workflow. HEAS represents models as hierarchies of lightweight processes ("streams") scheduled in deterministic layers that read and write a shared context, making cross-scale couplings explicit and auditable. A compact API and CLI-simulate, optimize, evaluate-expose single- and multi-objective evolution, PyTorch policy integration via parameter flattening/unflattening, and general tournament tooling with user-defined scoring and voting rules. The framework standardizes evaluation through uniform per-step and episode metrics, persists seeds, logbooks, and hall-of-fame archives, and provides plotting helpers for traces, Pareto fronts, and comparative outcomes, reducing glue code and improving comparability across studies. HEAS emphasizes separation of mechanism from orchestration, allowing exogenous drivers, endogenous agents, and aggregators to be composed and swapped without refactoring, while the same model can be used for forward simulation, optimization, or systematic comparison. We illustrate usage with two compact examples-an ecological system and an enterprise decision-making setting. HEAS offers a practical foundation for cross-disciplinary, multi-level inquiry, yielding reliable, reproducible results.
comment: 9 pages, 1 figure
☆ Estimating profitable price bounds for prescriptive price optimization
Pricing of products and services, which has a significant impact on consumer demand, is one of the most important factors in maximizing business profits. Prescriptive price optimization is a prominent data-driven pricing methodology consisting of two phases: demand forecasting and price optimization. In the practice of prescriptive price optimization, the price of each item is typically set within a predetermined range defined by lower and upper bounds. Narrow price ranges can lead to missed opportunities, while wide price ranges run the risk of proposing unrealistic prices; therefore, determining profitable price bounds while maintaining the reliability of the suggested prices is a critical challenge that directly affects the effectiveness of prescriptive price optimization. We propose two methods for estimating price bounds in prescriptive price optimization so that future total revenue derived from the optimized prices will be maximized. Our first method for price bounds estimation uses the bootstrap procedure to estimate confidence intervals for optimal prices. Our second method uses the Nelder--Mead simplex method for black-box price bounds optimization that maximizes total revenue estimated through $K$-fold cross-validation. Experimental results with synthetic price--demand datasets demonstrate that our methods successfully narrowed down the price range while maintaining high revenues, particularly when the number of items was small or the demand noise level was low. Moreover, as more data accumulated, the comparative advantage of our methods further increased.
☆ Advancing rail safety: An onboard measurement system of rolling stock wheel flange wear based on dynamic machine learning algorithms
Rail and wheel interaction functionality is pivotal to the railway system safety, requiring accurate measurement systems for optimal safety monitoring operation. This paper introduces an innovative onboard measurement system for monitoring wheel flange wear depth, utilizing displacement and temperature sensors. Laboratory experiments are conducted to emulate wheel flange wear depth and surrounding temperature fluctuations in different periods of time. Employing collected data, the training of machine learning algorithms that are based on regression models, is dynamically automated. Further experimentation results, using standards procedures, validate the system's efficacy. To enhance accuracy, an infinite impulse response filter (IIR) that mitigates vehicle dynamics and sensor noise is designed. Filter parameters were computed based on specifications derived from a Fast Fourier Transform analysis of locomotive simulations and emulation experiments data. The results show that the dynamic machine learning algorithm effectively counter sensor nonlinear response to temperature effects, achieving an accuracy of 96.5 %, with a minimal runtime. The real-time noise reduction via IIR filter enhances the accuracy up to 98.2 %. Integrated with railway communication embedded systems such as Internet of Things devices, this advanced monitoring system offers unparalleled real-time insights into wheel flange wear and track irregular conditions that cause it, ensuring heightened safety and efficiency in railway systems operations.
comment: Journal article published in Transportation Research Record: The Journal of Transportation Research Board
☆ Noise, Adaptation, and Strategy: Assessing LLM Fidelity in Decision-Making
Large language models (LLMs) are increasingly used in social science simulations. While their performance on reasoning and optimization tasks has been extensively evaluated, less attention has been paid to their ability to simulate human decision-making's variability and adaptability. We propose a process-oriented evaluation framework with progressive interventions (Intrinsicality, Instruction, and Imitation) to examine how LLM agents adapt under different levels of external guidance and human-derived noise. We validate the framework on two classic economics tasks, irrationality in the second-price auction and decision bias in the newsvendor problem, showing behavioral gaps between LLMs and humans. We find that LLMs, by default, converge on stable and conservative strategies that diverge from observed human behaviors. Risk-framed instructions impact LLM behavior predictably but do not replicate human-like diversity. Incorporating human data through in-context learning narrows the gap but fails to reach human subjects' strategic variability. These results highlight a persistent alignment gap in behavioral fidelity and suggest that future LLM evaluations should consider more process-level realism. We present a process-oriented approach for assessing LLMs in dynamic decision-making tasks, offering guidance for their application in synthetic data for social science research.
comment: Accepted to EMNLP 2025 (Main Conference)
☆ Thermodynamically Consistent Hybrid and Permutation-Invariant Neural Yield Functions for Anisotropic Plasticity
Plastic anisotropy in metals remains challenging to model. This is partly because conventional phenomenological yield criteria struggle to combine a highly descriptive, flexible representation with constraints, such as convexity, dictated by thermodynamic consistency. To address this gap, we employ architecturally-constrained neural networks and develop two data-driven frameworks: (i) a hybrid model that augments the Hill yield criterion with an Input Convex Neural Network (ICNN) to get an anisotropic yield function representation in the six-dimensional stress space and (ii) a permutation-invariant input convex neural network (PI-ICNN) that learns an isotropic yield function representation in the principal stress space and embeds anisotropy through linear stress transformations. We calibrate the proposed frameworks on a sparse Al-7079 extrusion experimental dataset comprising 12 uniaxial samples with measured yield stresses and Lankford ratios. To test the robustness of each framework, nine datasets were generated using k-fold cross-validation. These datasets were then used to quantitatively compare Hill-48, Yld2004-18p, pure ICNNs, the hybrid approach, and the PI-ICNN frameworks. While ICNNs and hybrid approaches can almost perfectly fit the training data, they exhibit significant over-fitting, resulting in high validation and test losses. In contrast, both PI-ICNN frameworks demonstrate better generalization capabilities, even outperforming Yld2004-18p on the validation and test data. These results demonstrate that PI-ICNNs unify physics-based constraints with the flexibility of neural networks, enabling the accurate prediction of both yield loci and Lankford ratios from minimal data. The approach opens a path toward rapid, thermodynamically consistent constitutive models for advanced forming simulations and future exploration of coupled hardening or microstructure-informed design.
♻ ☆ Graph topology estimation of power grids using pairwise mutual information of time series data
The topology of a power grid is estimated using an information theoretic approach. By modeling the grid as a graph and using voltage magnitude data of individual nodes in the grid, the mutual information between pairs of nodes is computed using different approximation methods. Using the well-known Chow-Liu algorithm, a maximum spanning tree based on mutual information is computed to estimate the power grid topology. This manuscript explores the application of this method to different datasets and explores the domain of applicability. The data quality, precision, time windows, frequency and the method for calculating the mutual information are varied to see the effect on the successful reconstruction of the graph and it's leaf nodes. Success shown for IEEE networks generated with MATPOWER and data generated using GridLAB-D. The algorithm is then cross-validated on IEEE networks.
Databases 7
☆ A DBMS-independent approach for capturing provenance polynomials through query rewriting
In today's data-driven ecosystems, ensuring data integrity, traceability and accountability is important. Provenance polynomials constitute a powerful formalism for tracing the origin and the derivations made to produce database query results. Despite their theoretical expressiveness, current implementations have limitations in handling aggregations and nested queries, and some of them and tightly coupled to a single Database Management System (DBMS), hindering interoperability and broader applicability. This paper presents a query rewriting-based approach for annotating Structured Query Language (SQL) queries with provenance polynomials. The proposed methods are DBMS-independent and support Select-Projection-Join-Union-Aggregation (SPJUA) operations and nested queries, through recursive propagation of provenance annotations. This constitutes the first full implementation of semiring-based theory for provenance polynomials extended with semimodule structures. It also presents an experimental evaluation to assess the validity of the proposed methods and compare the performance against state-of-the-art systems using benchmark data and queries. The results indicate that our solution delivers a comprehensive implementation of the theoretical formalisms proposed in the literature, and demonstrates improved performance and scalability, outperforming existing methods.
☆ Auditable Shared Objects: From Registers to Synchronization Primitives
Auditability allows to track operations performed on a shared object, recording who accessed which information. This gives data owners more control on their data. Initially studied in the context of single-writer registers, this work extends the notion of auditability to other shared objects, and studies their properties. We start by moving from single-writer to multi-writer registers, and provide an implementation of an auditable $n$-writer $m$-reader read / write register, with $O(n+m)$ step complexity. This implementation uses $(m+n)$-sliding registers, which have consensus number $m+n$. We show that this consensus number is necessary. The implementation extends naturally to support an auditable load-linked / store-conditional (LL/SC) shared object. LL/SC is a primitive that supports efficient implementation of many shared objects. Finally, we relate auditable registers to other access control objects, by implementing an anti-flickering deny list from auditable registers.
☆ Efficient Size Constraint Community Search over Heterogeneous Information Networks
The goal of community search in heterogeneous information networks (HINs) is to identify a set of closely related target nodes that includes a query target node. In practice, a size constraint is often imposed due to limited resources, which has been overlooked by most existing HIN community search works. In this paper, we introduce the size-bounded community search problem to HIN data. Specifically, we propose a refined (k, P)-truss model to measure community cohesiveness, aiming to identify the most cohesive community of size s that contains the query node. We prove that this problem is NP-hard. To solve this problem, we develop a novel B\&B framework that efficiently generates target node sets of size s. We then tailor novel bounding, branching, total ordering, and candidate reduction optimisations, which enable the framework to efficiently lead to an optimum result. We also design a heuristic algorithm leveraging structural properties of HINs to efficiently obtain a high-quality initial solution, which serves as a global lower bound to further enhance the above optimisations. Building upon these, we propose two exact algorithms that enumerate combinations of edges and nodes, respectively. Extensive experiments on real-world datasets demonstrate the effectiveness and efficiency of the proposed methods.
☆ Random Sampling over Spatial Range Joins ICDE2025
Spatial range joins have many applications, including geographic information systems, location-based social networking services, neuroscience, and visualization. However, joins incur not only expensive computational costs but also too large result sets. A practical and reasonable approach to alleviating these issues is to return random samples of the join results. Although this is promising and sufficient for many applications involving spatial range joins, efficiently computing random samples is not trivial. This is because we must obtain random join samples without running spatial range joins. We address this challenging problem for the first time and aim at designing a time- and space-efficient algorithm. First, we design two baseline algorithms that employ existing techniques for random sampling and show that they are not efficient. Then, we propose a new data structure that can deal with our problem in $\tilde{O}(n + m + t)$ expected time and $O(n+m)$ space, where $n$ and $m$ are the sizes of two point sets and $t$ is the required number of samples. We conduct extensive experiments using four real spatial datasets, and the results demonstrate that our algorithm is significantly faster than the baselines in most tests.
comment: Accepted version of our ICDE2025 paper
♻ ☆ PROV-AGENT: Unified Provenance for Tracking AI Agent Interactions in Agentic Workflows AI
Large Language Models (LLMs) and other foundation models are increasingly used as the core of AI agents. In agentic workflows, these agents plan tasks, interact with humans and peers, and influence scientific outcomes across federated and heterogeneous environments. However, agents can hallucinate or reason incorrectly, propagating errors when one agent's output becomes another's input. Thus, assuring that agents' actions are transparent, traceable, reproducible, and reliable is critical to assess hallucination risks and mitigate their workflow impacts. While provenance techniques have long supported these principles, existing methods fail to capture and relate agent-centric metadata such as prompts, responses, and decisions with the broader workflow context and downstream outcomes. In this paper, we introduce PROV-AGENT, a provenance model that extends W3C PROV and leverages the Model Context Protocol (MCP) and data observability to integrate agent interactions into end-to-end workflow provenance. Our contributions include: (1) a provenance model tailored for agentic workflows, (2) a near real-time, open-source system for capturing agentic provenance, and (3) a cross-facility evaluation spanning edge, cloud, and HPC environments, demonstrating support for critical provenance queries and agent reliability analysis.
comment: Paper accepted for publication in the Proceedings of the 2025 IEEE 21st International Conference on e-Science. Cite it as: R. Souza, A. Gueroudji, S. DeWitt, D. Rosendo, T. Ghosal, R. Ross, P. Balaprakash, R. F. da Silva, "PROV-AGENT: Unified Provenance for Tracking AI Agent Interactions in Agentic Workflows," IEEE International Conference on e-Science, Chicago, IL, USA, 2025
♻ ☆ Common Data Format (CDF): A Standardized Format for Match-Data in Football (Soccer)
During football matches, a variety of different parties (e.g., companies) each collect (possibly overlapping) data about the match ranging from basic information (e.g., starting players) to detailed positional data. This data is provided to clubs, federations, and other organizations who are increasingly interested in leveraging this data to inform their decision making. Unfortunately, analyzing such data pose significant barriers because each provider may (1) collect different data, (2) use different specifications even within the same category of data, (3) represent the data differently, and (4) delivers the data in a different manner (e.g., file format, protocol). Consequently, working with these data requires a significant investment of time and money. The goal of this work is to propose a uniform and standardized format for football data called the Common Data Format (CDF). The CDF specifies a minimal schema for five types of match data: match sheet data, video footage, event data, tracking data, and match meta data. It aims to ensure that the provided data is clear, sufficiently contextualized (e.g., its provenance is clear), and complete such that it enables common downstream analysis tasks. Concretely, this paper will detail the technical specifications of the CDF, the representational choices that were made to help ensure the clarity of the provided data, and a concrete approach for delivering data in the CDF. This represents Version 1.0.0 of the CDF.
♻ ☆ CRINN: Contrastive Reinforcement Learning for Approximate Nearest Neighbor Search
Approximate nearest-neighbor search (ANNS) algorithms have become increasingly critical for recent AI applications, particularly in retrieval-augmented generation (RAG) and agent-based LLM applications. In this paper, we present CRINN, a new paradigm for ANNS algorithms. CRINN treats ANNS optimization as a reinforcement learning problem where execution speed serves as the reward signal. This approach enables the automatic generation of progressively faster ANNS implementations while maintaining accuracy constraints. Our experimental evaluation demonstrates CRINN's effectiveness across six widely-used NNS benchmark datasets. When compared against state-of-the-art open-source ANNS algorithms, CRINN achieves best performance on three of them (GIST-960-Euclidean, MNIST-784-Euclidean, and GloVe-25-angular), and tied for first place on two of them (SIFT-128-Euclidean and GloVe-25-angular). The implications of CRINN's success reach well beyond ANNS optimization: It validates that LLMs augmented with reinforcement learning can function as an effective tool for automating sophisticated algorithmic optimizations that demand specialized knowledge and labor-intensive manual refinement. Code can be found at https://github.com/deepreinforce-ai/CRINN
comment: Preprint Version
Distributed, Parallel, and Cluster Computing 22
☆ The Cost Advantage of Virtual Machine Migrations: Empirical Insights into Amazon's EC2 Marketspace
In recent years, cloud providers have introduced novel approaches for trading virtual machines. For example, Virtustream introduced so-called muVMs to charge cloud computing resources while other providers such as Google, Microsoft, or Amazon re-invented their marketspaces. Today, the market leader Amazon runs six marketspaces for trading virtual machines. Consumers can purchase bundles of virtual machines, which are called cloud-portfolios, from multiple marketspaces and providers. An industry-relevant field of research is to identify best practices and guidelines on how such optimal portfolios are created. In the paper at hand, a cost analysis of cloud portfolios is presented. Therefore, pricing data from Amazon was used as well as a real virtual machine utilization dataset from the Bitbrains datacenter. The results show that a cost optimum can only be reached if heterogeneous portfolios are created where virtual machines are purchased from different marketspaces. Additionally, the cost-benefit of migrating virtual machines to different marketplaces during runtime is presented. Such migrations are especially cost-effective for virtual machines of cloud-portfolios which run between 6 hours and 1 year. The paper further shows that most of the resources of virtual machines are never utilized by consumers, which represents a significant future potential for cost optimization. For the validation of the results, a second dataset of the Bitbrains datacenter was used, which contains utility data of virtual machines from a different domain of application.
☆ Leveraging Hardware-Aware Computation in Mixed-Precision Matrix Multiply: A Tile-Centric Approach
General Matrix Multiplication (GEMM) is a critical operation underpinning a wide range of applications in high-performance computing (HPC) and artificial intelligence (AI). The emergence of hardware optimized for low-precision arithmetic necessitates a reevaluation of numerical algorithms to leverage mixed-precision computations, achieving improved performance and energy efficiency. This research introduces an adaptive mixed-precision GEMM framework that supports different precision formats at fine-grained tile/block levels. We utilize the PaRSEC runtime system to balance workloads across various architectures. The performance scales well on ARM CPU-based Fugaku supercomputer, Nvidia GPU-based A100 DGX, and AMD GPU-based Frontier supercomputer. This research aims to enhance computational efficiency and accuracy by bridging algorithmic advancements and hardware innovations, driving transformative progress in various applications.
☆ MOHAF: A Multi-Objective Hierarchical Auction Framework for Scalable and Fair Resource Allocation in IoT Ecosystems
The rapid growth of Internet of Things (IoT) ecosystems has intensified the challenge of efficiently allocating heterogeneous resources in highly dynamic, distributed environments. Conventional centralized mechanisms and single-objective auction models, focusing solely on metrics such as cost minimization or revenue maximization, struggle to deliver balanced system performance. This paper proposes the Multi-Objective Hierarchical Auction Framework (MOHAF), a distributed resource allocation mechanism that jointly optimizes cost, Quality of Service (QoS), energy efficiency, and fairness. MOHAF integrates hierarchical clustering to reduce computational complexity with a greedy, submodular optimization strategy that guarantees a (1-1/e) approximation ratio. A dynamic pricing mechanism adapts in real time to resource utilization, enhancing market stability and allocation quality. Extensive experiments on the Google Cluster Data trace, comprising 3,553 requests and 888 resources, demonstrate MOHAF's superior allocation efficiency (0.263) compared to Greedy (0.185), First-Price (0.138), and Random (0.101) auctions, while achieving perfect fairness (Jain's index = 1.000). Ablation studies reveal the critical influence of cost and QoS components in sustaining balanced multi-objective outcomes. With near-linear scalability, theoretical guarantees, and robust empirical performance, MOHAF offers a practical and adaptable solution for large-scale IoT deployments, effectively reconciling efficiency, equity, and sustainability in distributed resource coordination.
☆ Federated Distillation on Edge Devices: Efficient Client-Side Filtering for Non-IID Data
Federated distillation has emerged as a promising collaborative machine learning approach, offering enhanced privacy protection and reduced communication compared to traditional federated learning by exchanging model outputs (soft logits) rather than full model parameters. However, existing methods employ complex selective knowledge-sharing strategies that require clients to identify in-distribution proxy data through computationally expensive statistical density ratio estimators. Additionally, server-side filtering of ambiguous knowledge introduces latency to the process. To address these challenges, we propose a robust, resource-efficient EdgeFD method that reduces the complexity of the client-side density ratio estimation and removes the need for server-side filtering. EdgeFD introduces an efficient KMeans-based density ratio estimator for effectively filtering both in-distribution and out-of-distribution proxy data on clients, significantly improving the quality of knowledge sharing. We evaluate EdgeFD across diverse practical scenarios, including strong non-IID, weak non-IID, and IID data distributions on clients, without requiring a pre-trained teacher model on the server for knowledge distillation. Experimental results demonstrate that EdgeFD outperforms state-of-the-art methods, consistently achieving accuracy levels close to IID scenarios even under heterogeneous and challenging conditions. The significantly reduced computational overhead of the KMeans-based estimator is suitable for deployment on resource-constrained edge devices, thereby enhancing the scalability and real-world applicability of federated distillation. The code is available online for reproducibility.
comment: This paper was accepted at the International Conference on Federated Learning Technologies and Applications, 2025. The final version is available at IEEE Xplore
☆ DAG it off: Latency Prefers No Common Coins
We introduce Black Marlin, the first Directed Acyclic Graph (DAG)-based Byzantine atomic broadcast protocol in a partially synchronous setting that successfully forgoes the reliable broadcast and common coin primitives. Black Marlin achieves the optimal latency of 3 rounds of communication (4.25 with Byzantine faults) while maintaining optimal communication and amortized communication complexities. We present a formal security analysis of the protocol, accompanied by empirical evidence that Black Marlin outperforms state-of-the-art DAG-based protocols in both throughput and latency.
☆ A Systematic Evaluation of the Potential of Carbon-Aware Execution for Scientific Workflows
Scientific workflows are widely used to automate scientific data analysis and often involve computationally intensive processing of large datasets on compute clusters. As such, their execution tends to be long-running and resource-intensive, resulting in substantial energy consumption and, depending on the energy mix, carbon emissions. Meanwhile, a wealth of carbon-aware computing methods have been proposed, yet little work has focused specifically on scientific workflows, even though they present a substantial opportunity for carbon-aware computing because they are often significantly delay tolerant, efficiently interruptible, highly scalable and widely heterogeneous. In this study, we first exemplify the problem of carbon emissions associated with running scientific workflows, and then show the potential for carbon-aware workflow execution. For this, we estimate the carbon footprint of seven real-world Nextflow workflows executed on different cluster infrastructures using both average and marginal carbon intensity data. Furthermore, we systematically evaluate the impact of carbon-aware temporal shifting, and the pausing and resuming of the workflow. Moreover, we apply resource scaling to workflows and workflow tasks. Finally, we report the potential reduction in overall carbon emissions, with temporal shifting capable of decreasing emissions by over 80%, and resource scaling capable of decreasing emissions by 67%.
comment: This is a pre-print of our paper currently under review
☆ Cooperative SGD with Dynamic Mixing Matrices AI-2025
One of the most common methods to train machine learning algorithms today is the stochastic gradient descent (SGD). In a distributed setting, SGD-based algorithms have been shown to converge theoretically under specific circumstances. A substantial number of works in the distributed SGD setting assume a fixed topology for the edge devices. These papers also assume that the contribution of nodes to the global model is uniform. However, experiments have shown that such assumptions are suboptimal and a non uniform aggregation strategy coupled with a dynamically shifting topology and client selection can significantly improve the performance of such models. This paper details a unified framework that covers several Local-Update SGD-based distributed algorithms with dynamic topologies and provides improved or matching theoretical guarantees on convergence compared to existing work.
comment: Accepted at 28th European Conference on Artificial Intelligence (ECAI-2025) in main paper track
☆ FedEve: On Bridging the Client Drift and Period Drift for Cross-device Federated Learning
Federated learning (FL) is a machine learning paradigm that allows multiple clients to collaboratively train a shared model without exposing their private data. Data heterogeneity is a fundamental challenge in FL, which can result in poor convergence and performance degradation. Client drift has been recognized as one of the factors contributing to this issue resulting from the multiple local updates in FedAvg. However, in cross-device FL, a different form of drift arises due to the partial client participation, but it has not been studied well. This drift, we referred as period drift, occurs as participating clients at each communication round may exhibit distinct data distribution that deviates from that of all clients. It could be more harmful than client drift since the optimization objective shifts with every round. In this paper, we investigate the interaction between period drift and client drift, finding that period drift can have a particularly detrimental effect on cross-device FL as the degree of data heterogeneity increases. To tackle these issues, we propose a predict-observe framework and present an instantiated method, FedEve, where these two types of drift can compensate each other to mitigate their overall impact. We provide theoretical evidence that our approach can reduce the variance of model updates. Extensive experiments demonstrate that our method outperforms alternatives on non-iid data in cross-device settings.
☆ Boosting Payment Channel Network Liquidity with Topology Optimization and Transaction Selection
Payment channel networks (PCNs) are a promising technology that alleviates blockchain scalability by shifting the transaction load from the blockchain to the PCN. Nevertheless, the network topology has to be carefully designed to maximise the transaction throughput in PCNs. Additionally, users in PCNs also have to make optimal decisions on which transactions to forward and which to reject to prolong the lifetime of their channels. In this work, we consider an input sequence of transactions over $p$ parties. Each transaction consists of a transaction size, source, and target, and can be either accepted or rejected (entailing a cost). The goal is to design a PCN topology among the $p$ cooperating parties, along with the channel capacities, and then output a decision for each transaction in the sequence to minimise the cost of creating and augmenting channels, as well as the cost of rejecting transactions. Our main contribution is an $\mathcal{O}(p)$ approximation algorithm for the problem with $p$ parties. We further show that with some assumptions on the distribution of transactions, we can reduce the approximation ratio to $\mathcal{O}(\sqrt{p})$. We complement our theoretical analysis with an empirical study of our assumptions and approach in the context of the Lightning Network.
☆ Auditable Shared Objects: From Registers to Synchronization Primitives
Auditability allows to track operations performed on a shared object, recording who accessed which information. This gives data owners more control on their data. Initially studied in the context of single-writer registers, this work extends the notion of auditability to other shared objects, and studies their properties. We start by moving from single-writer to multi-writer registers, and provide an implementation of an auditable $n$-writer $m$-reader read / write register, with $O(n+m)$ step complexity. This implementation uses $(m+n)$-sliding registers, which have consensus number $m+n$. We show that this consensus number is necessary. The implementation extends naturally to support an auditable load-linked / store-conditional (LL/SC) shared object. LL/SC is a primitive that supports efficient implementation of many shared objects. Finally, we relate auditable registers to other access control objects, by implementing an anti-flickering deny list from auditable registers.
☆ A Hierarchical Sharded Blockchain Balancing Performance and Availability
Blockchain networks offer decentralization, transparency, and immutability for managing critical data but encounter scalability problems as the number of network members and transaction issuers grows. Sharding is considered a promising solution to enhance blockchain scalability. However, most existing blockchain sharding techniques prioritize performance at the cost of availability (e.g., a failure in a few servers holding a shard leads to data unavailability). In this paper, we propose PyloChain, a hierarchical sharded blockchain that balances availability and performance. PyloChain consists of multiple lower-level local chains and one higher-level main chain. Each local chain speculatively executes local transactions to achieve high parallelism across multiple local chains. The main chain leverages a directed-acyclic-graph (DAG)-based mempool to guarantee local block availability and to enable efficient Byzantine Fault Tolerance (BFT) consensus to execute global (or cross-shard) transactions within a collocated sharding. PyloChain speculatively executes local transactions across multiple local chains to achieve high parallelism. In order to reduce the number of aborted local transactions, PyloChain applies a simple scheduling technique to handle global transactions in the main chain. PyloChain provides a fine-grained auditing mechanism to mitigate faulty higher-level members by externalizing main chain operations to lower-level local members. We implemented and evaluated PyloChain, demonstrating its performance scalability with 1.49x higher throughput and 2.63x faster latency compared to the state-of-the-art balanced hierarchical sharded blockchain.
☆ Lagrangian Simulation Volume-Based Contour Tree Simplification
Many scientific and engineering problems are modelled by simulating scalar fields defined either on space-filling meshes (Eulerian) or as particles (Lagrangian). For analysis and visualization, topological primitives such as contour trees can be used, but these often need simplification to filter out small-scale features. For parcel-based convective cloud simulations, simplification of the contour tree requires a volumetric measure rather than persistence. Unlike for cubic meshes, volume cannot be approximated by counting regular vertices. Typically, this is addressed by resampling irregular data onto a uniform grid. Unfortunately, the spatial proximity of parcels requires a high sampling frequency, resulting in a massive increase in data size for processing. We therefore extend volume-based contour tree simplification to parcel-in-cell simulations with a graph adaptor in Viskores (VTK-m), using Delaunay tetrahedralization of the parcel centroids as input. Instead of relying on a volume approximation by counting regular vertices -- as was done for cubic meshes -- we adapt the 2D area splines reported by Bajaj et al. 10.1145/259081.259279, and Zhou et al. 10.1109/TVCG.2018.2796555. We implement this in Viskores (formerly called VTK-m) as prefix-sum style hypersweeps for parallel efficiency and show how it can be generalized to compute any integrable property. Finally, our results reveal that contour trees computed directly on the parcels are orders of magnitude faster than computing them on a resampled grid, while also arguably offering better quality segmentation, avoiding interpolation artifacts.
comment: 10 Pages. To be published at the IEEE Workshop on Topological Data Analysis and Visualization (TopoInVis) in conjunction with IEEE VIS 2025, Vienna, Austria
☆ SSSP-Del: Fully Dynamic Distributed Algorithm for Single-Source Shortest Path
Modern graphs are both large and dynamic, presenting significant challenges for fundamental queries, such as the Single-Source Shortest Path (SSSP) problem. Naively recomputing the SSSP tree after each topology change is prohibitively expensive, causing on-demand computation to suffer from high latency. Existing dynamic SSSP algorithms often cannot simultaneously handle both edge additions and deletions, operate in distributed memory, and provide low-latency query results. To address these challenges, this paper presents SSSP-Del, a new vertex-centric, asynchronous, and fully distributed algorithm for dynamic SSSP. Operating in a shared-nothing architecture, our algorithm processes streams of both edge insertions and deletions. We conduct a comprehensive evaluation on large real-world and synthetic graphs with millions of vertices, and provide a thorough analysis by evaluating result latency, solution stability, and throughput.
comment: Submitted to the IA^3 Workshop at SC25. Under review
☆ Power Stabilization for AI Training Datacenters
Large Artificial Intelligence (AI) training workloads spanning several tens of thousands of GPUs present unique power management challenges. These arise due to the high variability in power consumption during the training. Given the synchronous nature of these jobs, during every iteration there is a computation-heavy phase, where each GPU works on the local data, and a communication-heavy phase where all the GPUs synchronize on the data. Because compute-heavy phases require much more power than communication phases, large power swings occur. The amplitude of these power swings is ever increasing with the increase in the size of training jobs. An even bigger challenge arises from the frequency spectrum of these power swings which, if harmonized with critical frequencies of utilities, can cause physical damage to the power grid infrastructure. Therefore, to continue scaling AI training workloads safely, we need to stabilize the power of such workloads. This paper introduces the challenge with production data and explores innovative solutions across the stack: software, GPU hardware, and datacenter infrastructure. We present the pros and cons of each of these approaches and finally present a multi-pronged approach to solving the challenge. The proposed solutions are rigorously tested using a combination of real hardware and Microsoft's in-house cloud power simulator, providing critical insights into the efficacy of these interventions under real-world conditions.
☆ Declarative Data Pipeline for Large Scale ML Services
Modern distributed data processing systems face significant challenges in balancing system performance with code maintainability and developer productivity, particularly when integrating machine learning capabilities at scale. In large collaborative environments, these challenges are amplified by high communication overhead between teams and the complexity of coordinating development across multiple groups. This paper presents a novel "Declarative Data Pipeline" architecture that addresses these challenges while processing billions of records with high accuracy and efficiency. Our architecture introduces a modular framework that seamlessly integrates machine learning capabilities within Apache Spark by combining logical computation units that we refer as Pipes, departing from traditional microservice-based approaches. By establishing clear component boundaries and standardized interfaces, we achieve both modularity and system optimization without sacrificing maintainability. The enterprise case study demonstrate substantial improvements in multiple dimensions: development efficiency improved by 50%, collaboration/troubleshooting efforts compressed from weeks to days, performance improved by 500x in scalability and by 10x in throughput. The academic experiment also proves at least 5.7x faster in throughput with 99% CPU utilization than non-framework implementations. This paper details the architectural decisions, implementation strategies, and performance optimizations that enable these improvements, providing insights for building scalable, maintainable data processing systems that effectively balance system performance with development velocity.
☆ TOAST: Fast and scalable auto-partitioning based on principled static analysis
Partitioning large machine learning models across distributed accelerator systems is a complex process, requiring a series of interdependent decisions that are further complicated by internal sharding ambiguities. Consequently, existing auto-partitioners often suffer from out-of-memory errors or are prohibitively slow when exploring the exponentially large space of possible partitionings. To mitigate this, they artificially restrict the search space, but this approach frequently yields infeasible solutions that violate device memory constraints or lead to sub-optimal performance. We propose a system that combines a novel static compiler analysis with a Monte Carlo Tree Search. Our analysis constructs an efficient decision space by identifying (i) tensor dimensions requiring identical sharding, and (ii) partitioning "conflicts" that require resolution. Our system significantly outperforms state-of-the-art industrial methods across diverse hardware platforms and model architectures, discovering previously unknown, superior solutions, and the process is fully automated even for complex and large models.
♻ ☆ Action Engine: Automatic Workflow Generation in FaaS
Function as a Service (FaaS) is poised to become the foundation of the next generation of cloud systems due to its inherent advantages in scalability, cost-efficiency, and ease of use. However, challenges such as the need for specialized knowledge, platform dependence, and difficulty in scalability in building functional workflows persist for cloud-native application developers. To overcome these challenges and mitigate the burden of developing FaaS-based applications, in this paper, we propose a mechanism called Action Engine, that makes use of tool-augmented large language models (LLMs) at its kernel to interpret human language queries and automates FaaS workflow generation, thereby, reducing the need for specialized expertise and manual design. Action Engine includes modules to identify relevant functions from the FaaS repository and seamlessly manage the data dependency between them, ensuring the developer's query is processed and resolved. Beyond that, Action Engine can execute the generated workflow by injecting the user-provided arguments. On another front, this work addresses a gap in tool-augmented LLM research via adopting an Automatic FaaS Workflow Generation perspective to systematically evaluate methodologies across four fundamental sub-processes. Through benchmarking various parameters, this research provides critical insights into streamlining workflow automation for real-world applications, specifically in the FaaS continuum. Our evaluations demonstrate that the Action Engine achieves comparable performance to the few-shot learning approach while maintaining platform- and language-agnosticism, thereby, mitigating provider-specific dependencies in workflow generation. We notice that Action Engine can unlock FaaS workflow generation for non-cloud-savvy developers and expedite the development cycles of cloud-native applications.
comment: Published in the Future Generation Computer Systems (FGCS) journal; Source code is available at: https://github.com/hpcclab/action_engine
♻ ☆ PROV-AGENT: Unified Provenance for Tracking AI Agent Interactions in Agentic Workflows AI
Large Language Models (LLMs) and other foundation models are increasingly used as the core of AI agents. In agentic workflows, these agents plan tasks, interact with humans and peers, and influence scientific outcomes across federated and heterogeneous environments. However, agents can hallucinate or reason incorrectly, propagating errors when one agent's output becomes another's input. Thus, assuring that agents' actions are transparent, traceable, reproducible, and reliable is critical to assess hallucination risks and mitigate their workflow impacts. While provenance techniques have long supported these principles, existing methods fail to capture and relate agent-centric metadata such as prompts, responses, and decisions with the broader workflow context and downstream outcomes. In this paper, we introduce PROV-AGENT, a provenance model that extends W3C PROV and leverages the Model Context Protocol (MCP) and data observability to integrate agent interactions into end-to-end workflow provenance. Our contributions include: (1) a provenance model tailored for agentic workflows, (2) a near real-time, open-source system for capturing agentic provenance, and (3) a cross-facility evaluation spanning edge, cloud, and HPC environments, demonstrating support for critical provenance queries and agent reliability analysis.
comment: Paper accepted for publication in the Proceedings of the 2025 IEEE 21st International Conference on e-Science. Cite it as: R. Souza, A. Gueroudji, S. DeWitt, D. Rosendo, T. Ghosal, R. Ross, P. Balaprakash, R. F. da Silva, "PROV-AGENT: Unified Provenance for Tracking AI Agent Interactions in Agentic Workflows," IEEE International Conference on e-Science, Chicago, IL, USA, 2025
♻ ☆ On the $h$-majority dynamics with many opinions
We present the first upper bound on the convergence time to consensus of the well-known $h$-majority dynamics with $k$ opinions, in the synchronous setting, for $h$ and $k$ that are both non-constant values. We suppose that, at the beginning of the process, there is some initial additive bias towards some plurality opinion, that is, there is an opinion that is supported by $x$ nodes while any other opinion is supported by strictly fewer nodes. We prove that, with high probability, if the bias is $\omega(\sqrt{x})$ and the initial plurality opinion is supported by at least $x = \omega(\log n)$ nodes, then the process converges to plurality consensus in $O(\log n)$ rounds whenever $h = \omega(n \log n / x)$. A main corollary is the following: if $k = o(n / \log n)$ and the process starts from an almost-balanced configuration with an initial bias of magnitude $\omega(\sqrt{n/k})$ towards the initial plurality opinion, then any function $h = \omega(k \log n)$ suffices to guarantee convergence to consensus in $O(\log n)$ rounds, with high probability. Our upper bound shows that the lower bound of $\Omega(k / h^2)$ rounds to reach consensus given by Becchetti et al.\ (2017) cannot be pushed further than $\widetilde{\Omega}(k / h)$. Moreover, the bias we require is asymptotically smaller than the $\Omega(\sqrt{n\log n})$ bias that guarantees plurality consensus in the $3$-majority dynamics: in our case, the required bias is at most any (arbitrarily small) function in $\omega(\sqrt{x})$ for any value of $k \ge 2$.
♻ ☆ Benchmarking Vector, Graph and Hybrid Retrieval Augmented Generation (RAG) Pipelines for Open Radio Access Networks (ORAN)
Generative AI (GenAI) is expected to play a pivotal role in enabling autonomous optimization in future wireless networks. Within the ORAN architecture, Large Language Models (LLMs) can be specialized to generate xApps and rApps by leveraging specifications and API definitions from the RAN Intelligent Controller (RIC) platform. However, fine-tuning base LLMs for telecom-specific tasks remains expensive and resource-intensive. Retrieval-Augmented Generation (RAG) offers a practical alternative through in-context learning, enabling domain adaptation without full retraining. While traditional RAG systems rely on vector-based retrieval, emerging variants such as GraphRAG and Hybrid GraphRAG incorporate knowledge graphs or dual retrieval strategies to support multi-hop reasoning and improve factual grounding. Despite their promise, these methods lack systematic, metric-driven evaluations, particularly in high-stakes domains such as ORAN. In this study, we conduct a comparative evaluation of Vector RAG, GraphRAG, and Hybrid GraphRAG using ORAN specifications. We assess performance across varying question complexities using established generation metrics: faithfulness, answer relevance, context relevance, and factual correctness. Results show that both GraphRAG and Hybrid GraphRAG outperform traditional RAG. Hybrid GraphRAG improves factual correctness by 8%, while GraphRAG improves context relevance by 11%.
♻ ☆ Extending DD-$α$AMG on heterogeneous machines
Multigrid solvers are the standard in modern scientific computing simulations. Domain Decomposition Aggregation-Based Algebraic Multigrid, also known as the DD-$\alpha$AMG solver, is a successful realization of an algebraic multigrid solver for lattice quantum chromodynamics. Its CPU implementation has made it possible to construct, for some particular discretizations, simulations otherwise computationally unfeasible, and furthermore it has motivated the development and improvement of other algebraic multigrid solvers in the area. From an existing version of DD-$\alpha$AMG already partially ported via CUDA to run some finest-level operations of the multigrid solver on Nvidia GPUs, we translate the CUDA code here by using HIP to run on the ORISE supercomputer. We moreover extend the smoothers available in DD-$\alpha$AMG, paying particular attention to Richardson smoothing, which in our numerical experiments has led to a multigrid solver faster than smoothing with GCR and only 10% slower compared to SAP smoothing. Then we port the odd-even-preconditioned versions of GMRES and Richardson via CUDA. Finally, we extend some computationally intensive coarse-grid operations via advanced vectorization.
♻ ☆ CUDA-L1: Improving CUDA Optimization via Contrastive Reinforcement Learning
The exponential growth in demand for GPU computing resources has created an urgent need for automated CUDA optimization strategies. While recent advances in LLMs show promise for code generation, current SOTA models achieve low success rates in improving CUDA speed. In this paper, we introduce CUDA-L1, an automated reinforcement learning framework for CUDA optimization that employs a novel contrastive RL algorithm. CUDA-L1 achieves significant performance improvements on the CUDA optimization task: trained on A100, it delivers an average speedup of x3.12 with a median speedup of x1.42 against default baselines over across all 250 CUDA kernels of KernelBench, with peak speedups reaching x120. In addition to the default baseline provided by KernelBench, CUDA-L1 demonstrates x2.77 over Torch Compile, x2.88 over Torch Compile with reduce overhead, x2.81 over CUDA Graph implementations, and remarkably x7.72 over cuDNN libraries. Furthermore, the model also demonstrates portability across different GPU architectures. Beyond these benchmark results, CUDA-L1 demonstrates several properties: it 1) discovers a variety of CUDA optimization techniques and learns to combine them strategically to achieve optimal performance; 2) uncovers fundamental principles of CUDA optimization, such as the multiplicative nature of optimizations; 3) identifies non-obvious performance bottlenecks and rejects seemingly beneficial optimizations that actually harm performance. The capabilities demonstrate that, RL can transform an initially poor-performing LLM into an effective CUDA optimizer through speedup-based reward signals alone, without human expertise or domain knowledge. This paradigm opens possibilities for automated optimization of CUDA operations, and holds promise to substantially promote GPU efficiency and alleviate the rising pressure on GPU computing resources.
comment: Project Page: https://deepreinforce-ai.github.io/cudal1_blog/
Information Retrieval 20
☆ Benefiting from Negative yet Informative Feedback by Contrasting Opposing Sequential Patterns
We consider the task of learning from both positive and negative feedback in a sequential recommendation scenario, as both types of feedback are often present in user interactions. Meanwhile, conventional sequential learning models usually focus on considering and predicting positive interactions, ignoring that reducing items with negative feedback in recommendations improves user satisfaction with the service. Moreover, the negative feedback can potentially provide a useful signal for more accurate identification of true user interests. In this work, we propose to train two transformer encoders on separate positive and negative interaction sequences. We incorporate both types of feedback into the training objective of the sequential recommender using a composite loss function that includes positive and negative cross-entropy as well as a cleverly crafted contrastive term, that helps better modeling opposing patterns. We demonstrate the effectiveness of this approach in terms of increasing true-positive metrics compared to state-of-the-art sequential recommendation methods while reducing the number of wrongly promoted negative items.
☆ OneLoc: Geo-Aware Generative Recommender Systems for Local Life Service
Local life service is a vital scenario in Kuaishou App, where video recommendation is intrinsically linked with store's location information. Thus, recommendation in our scenario is challenging because we should take into account user's interest and real-time location at the same time. In the face of such complex scenarios, end-to-end generative recommendation has emerged as a new paradigm, such as OneRec in the short video scenario, OneSug in the search scenario, and EGA in the advertising scenario. However, in local life service, an end-to-end generative recommendation model has not yet been developed as there are some key challenges to be solved. The first challenge is how to make full use of geographic information. The second challenge is how to balance multiple objectives, including user interests, the distance between user and stores, and some other business objectives. To address the challenges, we propose OneLoc. Specifically, we leverage geographic information from different perspectives: (1) geo-aware semantic ID incorporates both video and geographic information for tokenization, (2) geo-aware self-attention in the encoder leverages both video location similarity and user's real-time location, and (3) neighbor-aware prompt captures rich context information surrounding users for generation. To balance multiple objectives, we use reinforcement learning and propose two reward functions, i.e., geographic reward and GMV reward. With the above design, OneLoc achieves outstanding offline and online performance. In fact, OneLoc has been deployed in local life service of Kuaishou App. It serves 400 million active users daily, achieving 21.016% and 17.891% improvements in terms of gross merchandise value (GMV) and orders numbers.
☆ MISS: Multi-Modal Tree Indexing and Searching with Lifelong Sequential Behavior for Retrieval Recommendation
Large-scale industrial recommendation systems typically employ a two-stage paradigm of retrieval and ranking to handle huge amounts of information. Recent research focuses on improving the performance of retrieval model. A promising way is to introduce extensive information about users and items. On one hand, lifelong sequential behavior is valuable. Existing lifelong behavior modeling methods in ranking stage focus on the interaction of lifelong behavior and candidate items from retrieval stage. In retrieval stage, it is difficult to utilize lifelong behavior because of a large corpus of candidate items. On the other hand, existing retrieval methods mostly relay on interaction information, potentially disregarding valuable multi-modal information. To solve these problems, we represent the pioneering exploration of leveraging multi-modal information and lifelong sequence model within the advanced tree-based retrieval model. We propose Multi-modal Indexing and Searching with lifelong Sequence (MISS), which contains a multi-modal index tree and a multi-modal lifelong sequence modeling module. Specifically, for better index structure, we propose multi-modal index tree, which is built using the multi-modal embedding to precisely represent item similarity. To precisely capture diverse user interests in user lifelong sequence, we propose collaborative general search unit (Co-GSU) and multi-modal general search unit (MM-GSU) for multi-perspective interests searching.
comment: CIKM 2025
☆ DGenCTR: Towards a Universal Generative Paradigm for Click-Through Rate Prediction via Discrete Diffusion
Recent advances in generative models have inspired the field of recommender systems to explore generative approaches, but most existing research focuses on sequence generation, a paradigm ill-suited for click-through rate (CTR) prediction. CTR models critically depend on a large number of cross-features between the target item and the user to estimate the probability of clicking on the item, and discarding these cross-features will significantly impair model performance. Therefore, to harness the ability of generative models to understand data distributions and thereby alleviate the constraints of traditional discriminative models in label-scarce space, diverging from the item-generation paradigm of sequence generation methods, we propose a novel sample-level generation paradigm specifically designed for the CTR task: a two-stage Discrete Diffusion-Based Generative CTR training framework (DGenCTR). This two-stage framework comprises a diffusion-based generative pre-training stage and a CTR-targeted supervised fine-tuning stage for CTR. Finally, extensive offline experiments and online A/B testing conclusively validate the effectiveness of our framework.
comment: 11 pages, 4 figures, 4 tables
☆ Global-Distribution Aware Scenario-Specific Variational Representation Learning Framework
With the emergence of e-commerce, the recommendations provided by commercial platforms must adapt to diverse scenarios to accommodate users' varying shopping preferences. Current methods typically use a unified framework to offer personalized recommendations for different scenarios. However, they often employ shared bottom representations, which partially hinders the model's capacity to capture scenario uniqueness. Ideally, users and items should exhibit specific characteristics in different scenarios, prompting the need to learn scenario-specific representations to differentiate scenarios. Yet, variations in user and item interactions across scenarios lead to data sparsity issues, impeding the acquisition of scenario-specific representations. To learn robust scenario-specific representations, we introduce a Global-Distribution Aware Scenario-Specific Variational Representation Learning Framework (GSVR) that can be directly applied to existing multi-scenario methods. Specifically, considering the uncertainty stemming from limited samples, our approach employs a probabilistic model to generate scenario-specific distributions for each user and item in each scenario, estimated through variational inference (VI). Additionally, we introduce the global knowledge-aware multinomial distributions as prior knowledge to regulate the learning of the posterior user and item distributions, ensuring similarities among distributions for users with akin interests and items with similar side information. This mitigates the risk of users or items with fewer records being overwhelmed in sparse scenarios. Extensive experimental results affirm the efficacy of GSVR in assisting existing multi-scenario recommendation methods in learning more robust representations.
comment: Accepted by CIKM 2025, 6 pages, 1 figures, 5 tables
☆ Distribution-Guided Auto-Encoder for User Multimodal Interest Cross Fusion
Traditional recommendation methods rely on correlating the embedding vectors of item IDs to capture implicit collaborative filtering signals to model the user's interest in the target item. Consequently, traditional ID-based methods often encounter data sparsity problems stemming from the sparse nature of ID features. To alleviate the problem of item ID sparsity, recommendation models incorporate multimodal item information to enhance recommendation accuracy. However, existing multimodal recommendation methods typically employ early fusion approaches, which focus primarily on combining text and image features, while neglecting the contextual influence of user behavior sequences. This oversight prevents dynamic adaptation of multimodal interest representations based on behavioral patterns, consequently restricting the model's capacity to effectively capture user multimodal interests. Therefore, this paper proposes the Distribution-Guided Multimodal-Interest Auto-Encoder (DMAE), which achieves the cross fusion of user multimodal interest at the behavioral level.Ultimately, extensive experiments demonstrate the superiority of DMAE.
comment: Accepted by CIKM 2025, 11 pages, 4 figures, 4 tables
☆ Diverse Negative Sampling for Implicit Collaborative Filtering
Implicit collaborative filtering recommenders are usually trained to learn user positive preferences. Negative sampling, which selects informative negative items to form negative training data, plays a crucial role in this process. Since items are often clustered in the latent space, existing negative sampling strategies normally oversample negative items from the dense regions. This leads to homogeneous negative data and limited model expressiveness. In this paper, we propose Diverse Negative Sampling (DivNS), a novel approach that explicitly accounts for diversity in negative training data during the negative sampling process. DivNS first finds hard negative items with large preference scores and constructs user-specific caches that store unused but highly informative negative samples. Then, its diversity-augmented sampler selects a diverse subset of negative items from the cache while ensuring dissimilarity from the user's hard negatives. Finally, a synthetic negatives generator combines the selected diverse negatives with hard negatives to form more effective training data. The resulting synthetic negatives are both informative and diverse, enabling recommenders to learn a broader item space and improve their generalisability. Extensive experiments on four public datasets demonstrate the effectiveness of DivNS in improving recommendation quality while maintaining computational efficiency.
☆ You Only Evaluate Once: A Tree-based Rerank Method at Meituan
Reranking plays a crucial role in modern recommender systems by capturing the mutual influences within the list. Due to the inherent challenges of combinatorial search spaces, most methods adopt a two-stage search paradigm: a simple General Search Unit (GSU) efficiently reduces the candidate space, and an Exact Search Unit (ESU) effectively selects the optimal sequence. These methods essentially involve making trade-offs between effectiveness and efficiency, while suffering from a severe \textbf{inconsistency problem}, that is, the GSU often misses high-value lists from ESU. To address this problem, we propose YOLOR, a one-stage reranking method that removes the GSU while retaining only the ESU. Specifically, YOLOR includes: (1) a Tree-based Context Extraction Module (TCEM) that hierarchically aggregates multi-scale contextual features to achieve "list-level effectiveness", and (2) a Context Cache Module (CCM) that enables efficient feature reuse across candidate permutations to achieve "permutation-level efficiency". Extensive experiments across public and industry datasets validate YOLOR's performance, and we have successfully deployed YOLOR on the Meituan food delivery platform.
comment: Accepted by CIKM 2025
SurveyGen-I: Consistent Scientific Survey Generation with Evolving Plans and Memory-Guided Writing
Survey papers play a critical role in scientific communication by consolidating progress across a field. Recent advances in Large Language Models (LLMs) offer a promising solution by automating key steps in the survey-generation pipeline, such as retrieval, structuring, and summarization. However, existing LLM-based approaches often struggle with maintaining coherence across long, multi-section surveys and providing comprehensive citation coverage. To address these limitations, we introduce SurveyGen-I, an automatic survey generation framework that combines coarse-to-fine retrieval, adaptive planning, and memory-guided generation. SurveyGen-I first performs survey-level retrieval to construct the initial outline and writing plan, and then dynamically refines both during generation through a memory mechanism that stores previously written content and terminology, ensuring coherence across subsections. When the system detects insufficient context, it triggers fine-grained subsection-level retrieval. During generation, SurveyGen-I leverages this memory mechanism to maintain coherence across subsections. Experiments across four scientific domains demonstrate that SurveyGen-I consistently outperforms previous works in content quality, consistency, and citation coverage.
comment: The code is available at https://github.com/SurveyGens/SurveyGen-I , 20 pages, 16 figures
☆ LongRecall: A Structured Approach for Robust Recall Evaluation in Long-Form Text
LongRecall. The completeness of machine-generated text, ensuring that it captures all relevant information, is crucial in domains such as medicine and law and in tasks like list-based question answering (QA), where omissions can have serious consequences. However, existing recall metrics often depend on lexical overlap, leading to errors with unsubstantiated entities and paraphrased answers, while LLM-as-a-Judge methods with long holistic prompts capture broader semantics but remain prone to misalignment and hallucinations without structured verification. We introduce LongRecall, a general three-stage recall evaluation framework that decomposes answers into self-contained facts, successively narrows plausible candidate matches through lexical and semantic filtering, and verifies their alignment through structured entailment checks. This design reduces false positives and false negatives while accommodating diverse phrasings and contextual variations, serving as a foundational building block for systematic recall assessment. We evaluate LongRecall on three challenging long-form QA benchmarks using both human annotations and LLM-based judges, demonstrating substantial improvements in recall accuracy over strong lexical and LLM-as-a-Judge baselines.
☆ Alpha Berkeley: A Scalable Framework for the Orchestration of Agentic Systems
Coordinating workflows across heterogeneous control systems remains a central challenge in safety-critical environments such as scientific facilities, industrial plants, and energy infrastructures. Language-model-driven agents offer a natural interface for these tasks, but existing approaches often lack scalability, reliability, and human oversight. We introduce the Alpha Berkeley Framework, a production-ready architecture for scalable agentic systems that integrate conversational context with robust tool orchestration. The framework features dynamic capability classification to select only relevant tools per task, a plan-first orchestration model that generates execution plans with explicit dependencies and optional human approval, context-aware task extraction that combines dialogue history with external memory and domain resources, and production-ready execution environments with checkpointing, artifact management, and modular deployment. We demonstrate its versatility through two case studies: a tutorial-style wind farm monitoring example and a deployment at the Advanced Light Source particle accelerator. These results establish Alpha Berkeley as a reliable and transparent framework for agentic systems in high-stakes domains.
☆ MedCoT-RAG: Causal Chain-of-Thought RAG for Medical Question Answering
Large language models (LLMs) have shown promise in medical question answering but often struggle with hallucinations and shallow reasoning, particularly in tasks requiring nuanced clinical understanding. Retrieval-augmented generation (RAG) offers a practical and privacy-preserving way to enhance LLMs with external medical knowledge. However, most existing approaches rely on surface-level semantic retrieval and lack the structured reasoning needed for clinical decision support. We introduce MedCoT-RAG, a domain-specific framework that combines causal-aware document retrieval with structured chain-of-thought prompting tailored to medical workflows. This design enables models to retrieve evidence aligned with diagnostic logic and generate step-by-step causal reasoning reflective of real-world clinical practice. Experiments on three diverse medical QA benchmarks show that MedCoT-RAG outperforms strong baselines by up to 10.3% over vanilla RAG and 6.4% over advanced domain-adapted methods, improving accuracy, interpretability, and consistency in complex medical tasks.
♻ ☆ TASER: Table Agents for Schema-guided Extraction and Recommendation
Real-world financial documents report essential information about an entity's financial holdings that can span millions of different financial instrument types. Yet, these details are often buried in messy, multi-page, fragmented tables - for example, 99.4% of the tables in our dataset have no bounding boxes with the maximum number of rows amounting to 426 per table across 44 pages. To tackle these unique challenges from real-world tables, we present a continuously learning, agentic table extraction system, TASER (Table Agents for Schema-guided Extraction and Recommendation) that extracts highly unstructured, multi-page, heterogeneous tables into normalized, schema-conforming outputs. Our table agents execute on table detection, classification, extraction, and recommendations by leveraging an initial schema. Then, our Recommender Agent reviews the outputs, recommends schema revisions, and decides on the final recommendations, enabling TASER to outperform existing table detection models such as Table Transformer by 10.1%. Within this continuous learning process, we highlight that larger batch sizes result in a 104.3% increase in schema recommendations that are actionable and utilized, resulting in a 9.8% increase in extracted holdings - highlighting the importance of a continuous learning process. To train TASER, we have manually labeled 22,584 pages (28,150,449 tokens), 3,213 tables for $731,685,511,687 of holdings culminating in one of the first real financial table datasets. We release our dataset TASERTab to enable the research community to access real-world financial tables and outputs. Our results highlight the promise of agentic, schema-guided extraction systems for robust understanding of real-world financial tables.
comment: Withdrawn due to missing key sections in the paper
♻ ☆ Applying Text Embedding Models for Efficient Analysis in Labeled Property Graphs
Labeled property graphs often contain rich textual attributes that can enhance analytical tasks when properly leveraged. This work explores the use of pretrained text embedding models to enable efficient semantic analysis in such graphs. By embedding textual node and edge properties, we support downstream tasks including node classification and relation prediction with improved contextual understanding. Our approach integrates language model embeddings into the graph pipeline without altering its structure, demonstrating that textual semantics can significantly enhance the accuracy and interpretability of property graph analysis.
♻ ☆ Hybrid-Hierarchical Fashion Graph Attention Network for Compatibility-Oriented and Personalized Outfit Recommendation
The rapid expansion of the fashion industry and the growing variety of products have made it increasingly challenging for users to identify compatible items on e-commerce platforms. Effective fashion recommendation systems are therefore crucial for filtering irrelevant options and suggesting suitable ones. However, simultaneously addressing outfit compatibility and personalized recommendations remains a significant challenge, as these aspects are typically treated independently in existing studies, thereby overlooking the complex interactions between items and user preferences. This research introduces a new framework named FGAT, which leverages a hierarchical graph representation together with graph attention mechanisms to address this problem. The framework constructs a three-tier graph of users, outfits, and items, integrating visual and textual features to jointly model outfit compatibility and user preferences. By dynamically weighting node importance during representation propagation, the graph attention mechanism captures key interactions and produces precise embeddings for both user preferences and outfit compatibility. Evaluated on the POG dataset, FGAT outperforms strong baselines such as HFGN, achieving notable improvements in accuracy, precision, HR, recall, and NDCG. These results demonstrate that combining multimodal visual and textual features with a hierarchical graph structure and attention mechanisms significantly enhances the effectiveness and efficiency of personalized fashion recommendation systems.
comment: The corresponding author: Babak Teimourpour
♻ ☆ Enhancing Temporal Sensitivity of Large Language Model for Recommendation with Counterfactual Tuning
Recent advances have applied large language models (LLMs) to sequential recommendation, leveraging their pre-training knowledge and reasoning capabilities to provide more personalized user experiences. However, existing LLM-based methods fail to sufficiently leverage the rich temporal information inherent in users' historical interaction sequences, stemming from fundamental architectural constraints: LLMs process information through self-attention mechanisms that lack inherent sequence ordering and rely on position embeddings designed primarily for natural language rather than user interaction sequences. This limitation significantly impairs their ability to capture the evolution of user preferences over time and predict future interests accurately. To address this critical gap, we propose \underline{C}ounterfactual \underline{E}nhanced \underline{T}emporal Framework for LLM-Based \underline{Rec}ommendation (CETRec). CETRec is grounded in causal inference principles, which allow it to isolate and measure the specific impact of temporal information on recommendation outcomes. Combined with our counterfactual tuning task derived from causal analysis, CETRec effectively enhances LLMs' awareness of both absolute order (how recently items were interacted with) and relative order (the sequential relationships between items). Extensive experiments on real-world datasets demonstrate the effectiveness of our CETRec. Our code is available at https://anonymous.4open.science/r/CETRec-B9CE/.
♻ ☆ PathGPT: Reframing Path Recommendation as a Natural Language Generation Task with Retrieval-Augmented Language Models
Path recommendation (PR) aims to generate travel paths that are customized to a user's specific preferences and constraints. Conventional approaches often employ explicit optimization objectives or specialized machine learning architectures; however, these methods typically exhibit limited flexibility and generalizability, necessitating costly retraining to accommodate new scenarios. This paper introduces an alternative paradigm that conceptualizes PR as a natural language generation task. We present PathGPT, a retrieval-augmented large language model (LLM) system that leverages historical trajectory data and natural language user constraints to generate plausible paths. The proposed methodology first converts raw trajectory data into a human-interpretable textual format, which is then stored in a database. Subsequently, a hybrid retrieval system extracts path-specific context from this database to inform a pretrained LLM. The primary contribution of this work is a novel framework that demonstrates how integrating established information retrieval and generative model components can enable adaptive, zero-shot path generation across diverse scenarios. Extensive experiments on large-scale trajectory datasets indicate that PathGPT's performance is competitive with specialized, learning-based methods, underscoring its potential as a flexible and generalizable path generation system that avoids the need for retraining inherent in previous data-driven models.
♻ ☆ Diagnostic-Guided Dynamic Profile Optimization for LLM-based User Simulators in Sequential Recommendation
Recent advances in large language models (LLMs) have enabled realistic user simulators for developing and evaluating recommender systems (RSs). However, existing LLM-based simulators for RSs face two major limitations: (1) static and single-step prompt-based inference that leads to inaccurate and incomplete user profile construction; (2) unrealistic and single-round recommendation-feedback interaction pattern that fails to capture real-world scenarios. To address these limitations, we propose DGDPO (Diagnostic-Guided Dynamic Profile Optimization), a novel framework that constructs user profile through a dynamic and iterative optimization process to enhance the simulation fidelity. Specifically, DGDPO incorporates two core modules within each optimization loop: firstly, a specialized LLM-based diagnostic module, calibrated through our novel training strategy, accurately identifies specific defects in the user profile. Subsequently, a generalized LLM-based treatment module analyzes the diagnosed defect and generates targeted suggestions to refine the profile. Furthermore, unlike existing LLM-based user simulators that are limited to single-round interactions, we are the first to integrate DGDPO with sequential recommenders, enabling a bidirectional evolution where user profiles and recommendation strategies adapt to each other over multi-round interactions. Extensive experiments conducted on three real-world datasets demonstrate the effectiveness of our proposed framework.
♻ ☆ PinFM: Foundation Model for User Activity Sequences at a Billion-scale Visual Discovery Platform
User activity sequences have emerged as one of the most important signals in recommender systems. We present a foundational model, PinFM, for understanding user activity sequences across multiple applications at a billion-scale visual discovery platform. We pretrain a transformer model with 20B+ parameters using extensive user activity data, then fine-tune it for specific applications, efficiently coupling it with existing models. While this pretraining-and-fine-tuning approach has been popular in other domains, such as Vision and NLP, its application in industrial recommender systems presents numerous challenges. The foundational model must be scalable enough to score millions of items every second while meeting tight cost and latency constraints imposed by these systems. Additionally, it should capture the interactions between user activities and other features and handle new items that were not present during the pretraining stage. We developed innovative techniques to address these challenges. Our infrastructure and algorithmic optimizations, such as the Deduplicated Cross-Attention Transformer (DCAT), improved our throughput by 600% on Pinterest internal data. We demonstrate that PinFM can learn interactions between user sequences and candidate items by altering input sequences, leading to a 20% increase in engagement with new items. PinFM is now deployed to help improve the experience of more than half a billion users across various applications.
comment: clean up typos
♻ ☆ On the Comprehensibility of Multi-structured Financial Documents using LLMs and Pre-processing Tools
The proliferation of complex structured data in hybrid sources, such as PDF documents and web pages, presents unique challenges for current Large Language Models (LLMs) and Multi-modal Large Language Models (MLLMs) in providing accurate answers. Despite the recent advancements of MLLMs, they still often falter when interpreting intricately structured information, such as nested tables and multi-dimensional plots, leading to hallucinations and erroneous outputs. This paper explores the capabilities of LLMs and MLLMs in understanding and answering questions from complex data structures found in PDF documents by leveraging industrial and open-source tools as part of a pre-processing pipeline. Our findings indicate that GPT-4o, a popular MLLM, achieves an accuracy of 56% on multi-structured documents when fed documents directly, and that integrating pre-processing tools raises the accuracy of LLMs to 61.3% for GPT-4o and 76% for GPT-4, and with lower overall cost. The code is publicly available at https://github.com/OGCDS/FinancialQA.
comment: 15 pages, 5 figures, 9 tables
Artificial Intelligence 118
☆ Quantization Meets dLLMs: A Systematic Study of Post-training Quantization for Diffusion LLMs
Recent advances in diffusion large language models (dLLMs) have introduced a promising alternative to autoregressive (AR) LLMs for natural language generation tasks, leveraging full attention and denoising-based decoding strategies. However, the deployment of these models on edge devices remains challenging due to their massive parameter scale and high resource demands. While post-training quantization (PTQ) has emerged as a widely adopted technique for compressing AR LLMs, its applicability to dLLMs remains largely unexplored. In this work, we present the first systematic study on quantizing diffusion-based language models. We begin by identifying the presence of activation outliers, characterized by abnormally large activation values that dominate the dynamic range. These outliers pose a key challenge to low-bit quantization, as they make it difficult to preserve precision for the majority of values. More importantly, we implement state-of-the-art PTQ methods and conduct a comprehensive evaluation across multiple task types and model variants. Our analysis is structured along four key dimensions: bit-width, quantization method, task category, and model type. Through this multi-perspective evaluation, we offer practical insights into the quantization behavior of dLLMs under different configurations. We hope our findings provide a foundation for future research in efficient dLLM deployment. All codes and experimental setups will be released to support the community.
comment: Technical Report, Work in Progress
Graph Structure Learning with Temporal Graph Information Bottleneck for Inductive Representation Learning AI
Temporal graph learning is crucial for dynamic networks where nodes and edges evolve over time and new nodes continuously join the system. Inductive representation learning in such settings faces two major challenges: effectively representing unseen nodes and mitigating noisy or redundant graph information. We propose GTGIB, a versatile framework that integrates Graph Structure Learning (GSL) with Temporal Graph Information Bottleneck (TGIB). We design a novel two-step GSL-based structural enhancer to enrich and optimize node neighborhoods and demonstrate its effectiveness and efficiency through theoretical proofs and experiments. The TGIB refines the optimized graph by extending the information bottleneck principle to temporal graphs, regularizing both edges and features based on our derived tractable TGIB objective function via variational approximation, enabling stable and efficient optimization. GTGIB-based models are evaluated to predict links on four real-world datasets; they outperform existing methods in all datasets under the inductive setting, with significant and consistent improvement in the transductive setting.
comment: Accepted in the 28th European Conference on Artificial Intelligence (ECAI), 2025
☆ TIME$[t] \subseteq {\rm SPACE}[O(\sqrt{t})]$ via Tree Height Compression
We prove a square-root space simulation for deterministic multitape Turing machines, showing ${\rm TIME}[[t] \subseteq {\rm SPACE}[O(\sqrt{t})]$. The key step is a Height Compression Theorem that uniformly (and in logspace) reshapes the canonical left-deep succinct computation tree for a block-respecting run into a binary tree whose evaluation-stack depth along any DFS path is $O(\log T)$ for $T = \lceil t/b \rceil$, while preserving $O(b)$ work at leaves, $O(1)$ at internal nodes, and edges that are logspace-checkable; semantic correctness across merges is witnessed by an exact $O(b)$ window replay at the unique interface. The proof uses midpoint (balanced) recursion, a per-path potential that bounds simultaneously active interfaces by $O(\log T)$, and an indegree-capping replacement of multiway merges by balanced binary combiners. Algorithmically, an Algebraic Replay Engine with constant-degree maps over a constant-size field, together with pointerless DFS and index-free streaming, ensures constant-size per-level tokens and eliminates wide counters, yielding the additive tradeoff $S(b)=O(b + \log(t/b))$ for block sizes $b \ge b_0$ with $b_0 = \Theta(\log t)$, which at the canonical choice $b = \Theta(\sqrt{t})$ gives $O(\sqrt{t})$ space; the $b_0$ threshold rules out degenerate blocks where addressing scratch would dominate the window footprint. The construction is uniform, relativizes, and is robust to standard model choices. Consequences include branching-program upper bounds $2^{O(\sqrt{s})}$ for size-$s$ bounded-fan-in circuits, tightened quadratic-time lower bounds for SPACE$[n]$-complete problems via the standard hierarchy argument, and $O(\sqrt{t})$-space certifying interpreters; under explicit locality assumptions, the framework extends to geometric $d$-dimensional models.
comment: 32 pages
☆ Long Chain-of-Thought Reasoning Across Languages
Scaling inference through long chains-of-thought (CoTs) has unlocked impressive reasoning capabilities in large language models (LLMs), yet the reasoning process remains almost exclusively English-centric. We construct translated versions of two popular English reasoning datasets, fine-tune Qwen 2.5 (7B) and Qwen 3 (8B) models, and present a systematic study of long CoT generation across French, Japanese, Latvian, and Swahili. Our experiments reveal three key findings. First, the efficacy of using English as a pivot language varies by language: it provides no benefit for French, improves performance when used as the reasoning language for Japanese and Latvian, and proves insufficient for Swahili where both task comprehension and reasoning remain poor. Second, extensive multilingual pretraining in Qwen 3 narrows but does not eliminate the cross-lingual performance gap. A lightweight fine-tune using only 1k traces still improves performance by over 30\% in Swahili. Third, data quality versus scale trade-offs are language dependent: small, carefully curated datasets suffice for English and French, whereas larger but noisier corpora prove more effective for Swahili and Latvian. Together, these results clarify when and why long CoTs transfer across languages and provide translated datasets to foster equitable multilingual reasoning research.
comment: Accepted to SCALR @ COLM 2025
☆ From Passive Tool to Socio-cognitive Teammate: A Conceptual Framework for Agentic AI in Human-AI Collaborative Learning
The role of Artificial Intelligence (AI) in education is undergoing a rapid transformation, moving beyond its historical function as an instructional tool towards a new potential as an active participant in the learning process. This shift is driven by the emergence of agentic AI, autonomous systems capable of proactive, goal-directed action. However, the field lacks a robust conceptual framework to understand, design, and evaluate this new paradigm of human-AI interaction in learning. This paper addresses this gap by proposing a novel conceptual framework (the APCP framework) that charts the transition from AI as a tool to AI as a collaborative partner. We present a four-level model of escalating AI agency within human-AI collaborative learning: (1) the AI as an Adaptive Instrument, (2) the AI as a Proactive Assistant, (3) the AI as a Co-Learner, and (4) the AI as a Peer Collaborator. Grounded in sociocultural theories of learning and Computer-Supported Collaborative Learning (CSCL), this framework provides a structured vocabulary for analysing the shifting roles and responsibilities between human and AI agents. The paper further engages in a critical discussion of the philosophical underpinnings of collaboration, examining whether an AI, lacking genuine consciousness or shared intentionality, can be considered a true collaborator. We conclude that while AI may not achieve authentic phenomenological partnership, it can be designed as a highly effective functional collaborator. This distinction has significant implications for pedagogy, instructional design, and the future research agenda for AI in education, urging a shift in focus towards creating learning environments that harness the complementary strengths of both human and AI.
☆ Evaluating Retrieval-Augmented Generation vs. Long-Context Input for Clinical Reasoning over EHRs
Electronic health records (EHRs) are long, noisy, and often redundant, posing a major challenge for the clinicians who must navigate them. Large language models (LLMs) offer a promising solution for extracting and reasoning over this unstructured text, but the length of clinical notes often exceeds even state-of-the-art models' extended context windows. Retrieval-augmented generation (RAG) offers an alternative by retrieving task-relevant passages from across the entire EHR, potentially reducing the amount of required input tokens. In this work, we propose three clinical tasks designed to be replicable across health systems with minimal effort: 1) extracting imaging procedures, 2) generating timelines of antibiotic use, and 3) identifying key diagnoses. Using EHRs from actual hospitalized patients, we test three state-of-the-art LLMs with varying amounts of provided context, using either targeted text retrieval or the most recent clinical notes. We find that RAG closely matches or exceeds the performance of using recent notes, and approaches the performance of using the models' full context while requiring drastically fewer input tokens. Our results suggest that RAG remains a competitive and efficient approach even as newer models become capable of handling increasingly longer amounts of text.
☆ TransLight: Image-Guided Customized Lighting Control with Generative Decoupling
Most existing illumination-editing approaches fail to simultaneously provide customized control of light effects and preserve content integrity. This makes them less effective for practical lighting stylization requirements, especially in the challenging task of transferring complex light effects from a reference image to a user-specified target image. To address this problem, we propose TransLight, a novel framework that enables high-fidelity and high-freedom transfer of light effects. Extracting the light effect from the reference image is the most critical and challenging step in our method. The difficulty lies in the complex geometric structure features embedded in light effects that are highly coupled with content in real-world scenarios. To achieve this, we first present Generative Decoupling, where two fine-tuned diffusion models are used to accurately separate image content and light effects, generating a newly curated, million-scale dataset of image-content-light triplets. Then, we employ IC-Light as the generative model and train our model with our triplets, injecting the reference lighting image as an additional conditioning signal. The resulting TransLight model enables customized and natural transfer of diverse light effects. Notably, by thoroughly disentangling light effects from reference images, our generative decoupling strategy endows TransLight with highly flexible illumination control. Experimental results establish TransLight as the first method to successfully transfer light effects across disparate images, delivering more customized illumination control than existing techniques and charting new directions for research in illumination harmonization and editing.
comment: 15 pages, 9 figures
☆ DINOv3 with Test-Time Training for Medical Image Registration
Prior medical image registration approaches, particularly learning-based methods, often require large amounts of training data, which constrains clinical adoption. To overcome this limitation, we propose a training-free pipeline that relies on a frozen DINOv3 encoder and test-time optimization of the deformation field in feature space. Across two representative benchmarks, the method is accurate and yields regular deformations. On Abdomen MR-CT, it attained the best mean Dice score (DSC) of 0.790 together with the lowest 95th percentile Hausdorff Distance (HD95) of 4.9+-5.0 and the lowest standard deviation of Log-Jacobian (SDLogJ) of 0.08+-0.02. On ACDC cardiac MRI, it improves mean DSC to 0.769 and reduces SDLogJ to 0.11 and HD95 to 4.8, a marked gain over the initial alignment. The results indicate that operating in a compact foundation feature space at test time offers a practical and general solution for clinical registration without additional training.
☆ Privileged Self-Access Matters for Introspection in AI
Whether AI models can introspect is an increasingly important practical question. But there is no consensus on how introspection is to be defined. Beginning from a recently proposed ''lightweight'' definition, we argue instead for a thicker one. According to our proposal, introspection in AI is any process which yields information about internal states through a process more reliable than one with equal or lower computational cost available to a third party. Using experiments where LLMs reason about their internal temperature parameters, we show they can appear to have lightweight introspection while failing to meaningfully introspect per our proposed definition.
☆ TransLLM: A Unified Multi-Task Foundation Framework for Urban Transportation via Learnable Prompting
Urban transportation systems encounter diverse challenges across multiple tasks, such as traffic forecasting, electric vehicle (EV) charging demand prediction, and taxi dispatch. Existing approaches suffer from two key limitations: small-scale deep learning models are task-specific and data-hungry, limiting their generalizability across diverse scenarios, while large language models (LLMs), despite offering flexibility through natural language interfaces, struggle with structured spatiotemporal data and numerical reasoning in transportation domains. To address these limitations, we propose TransLLM, a unified foundation framework that integrates spatiotemporal modeling with large language models through learnable prompt composition. Our approach features a lightweight spatiotemporal encoder that captures complex dependencies via dilated temporal convolutions and dual-adjacency graph attention networks, seamlessly interfacing with LLMs through structured embeddings. A novel instance-level prompt routing mechanism, trained via reinforcement learning, dynamically personalizes prompts based on input characteristics, moving beyond fixed task-specific templates. The framework operates by encoding spatiotemporal patterns into contextual representations, dynamically composing personalized prompts to guide LLM reasoning, and projecting the resulting representations through specialized output layers to generate task-specific predictions. Experiments across seven datasets and three tasks demonstrate the exceptional effectiveness of TransLLM in both supervised and zero-shot settings. Compared to ten baseline models, it delivers competitive performance on both regression and planning problems, showing strong generalization and cross-task adaptability. Our code is available at https://github.com/BiYunying/TransLLM.
☆ PepThink-R1: LLM for Interpretable Cyclic Peptide Optimization with CoT SFT and Reinforcement Learning
Designing therapeutic peptides with tailored properties is hindered by the vastness of sequence space, limited experimental data, and poor interpretability of current generative models. To address these challenges, we introduce PepThink-R1, a generative framework that integrates large language models (LLMs) with chain-of-thought (CoT) supervised fine-tuning and reinforcement learning (RL). Unlike prior approaches, PepThink-R1 explicitly reasons about monomer-level modifications during sequence generation, enabling interpretable design choices while optimizing for multiple pharmacological properties. Guided by a tailored reward function balancing chemical validity and property improvements, the model autonomously explores diverse sequence variants. We demonstrate that PepThink-R1 generates cyclic peptides with significantly enhanced lipophilicity, stability, and exposure, outperforming existing general LLMs (e.g., GPT-5) and domain-specific baseline in both optimization success and interpretability. To our knowledge, this is the first LLM-based peptide design framework that combines explicit reasoning with RL-driven property control, marking a step toward reliable and transparent peptide optimization for therapeutic discovery.
☆ Reliable generation of isomorphic physics problems using ChatGPT with prompt-chaining and tool use
We present a method for generating large numbers of isomorphic physics problems using ChatGPT through prompt chaining and tool use. This approach enables precise control over structural variations-such as numeric values and spatial relations-while supporting diverse contextual variations in the problem body. By utilizing the Python code interpreter, the method supports automatic solution validation and simple diagram generation, addressing key limitations in existing LLM-based methods. We generated two example isomorphic problem banks and compared the outcome against simpler prompt-based approaches. Results show that prompt-chaining produces significantly higher quality and more consistent outputs than simpler, non-chaining prompts. This work demonstrates a promising method for efficient problem creation accessible to the average instructor, which opens new possibilities for personalized adaptive testing and automated content development.
☆ Cross-Modality Controlled Molecule Generation with Diffusion Language Model
Current SMILES-based diffusion models for molecule generation typically support only unimodal constraint. They inject conditioning signals at the start of the training process and require retraining a new model from scratch whenever the constraint changes. However, real-world applications often involve multiple constraints across different modalities, and additional constraints may emerge over the course of a study. This raises a challenge: how to extend a pre-trained diffusion model not only to support cross-modality constraints but also to incorporate new ones without retraining. To tackle this problem, we propose the Cross-Modality Controlled Molecule Generation with Diffusion Language Model (CMCM-DLM), demonstrated by two distinct cross modalities: molecular structure and chemical properties. Our approach builds upon a pre-trained diffusion model, incorporating two trainable modules, the Structure Control Module (SCM) and the Property Control Module (PCM), and operates in two distinct phases during the generation process. In Phase I, we employs the SCM to inject structural constraints during the early diffusion steps, effectively anchoring the molecular backbone. Phase II builds on this by further introducing PCM to guide the later stages of inference to refine the generated molecules, ensuring their chemical properties match the specified targets. Experimental results on multiple datasets demonstrate the efficiency and adaptability of our approach, highlighting CMCM-DLM's significant advancement in molecular generation for drug discovery applications.
☆ Evaluating Multilingual and Code-Switched Alignment in LLMs via Synthetic Natural Language Inference
Large language models (LLMs) are increasingly applied in multilingual contexts, yet their capacity for consistent, logically grounded alignment across languages remains underexplored. We present a controlled evaluation framework for multilingual natural language inference (NLI) that generates synthetic, logic-based premise-hypothesis pairs and translates them into a typologically diverse set of languages. This design enables precise control over semantic relations and allows testing in both monolingual and mixed-language (code-switched) conditions. Surprisingly, code-switching does not degrade, and can even improve, performance, suggesting that translation-induced lexical variation may serve as a regularization signal. We validate semantic preservation through embedding-based similarity analyses and cross-lingual alignment visualizations, confirming the fidelity of translated pairs. Our findings expose both the potential and the brittleness of current LLM cross-lingual reasoning, and identify code-switching as a promising lever for improving multilingual robustness. Code available at: https://github.com/KurbanIntelligenceLab/nli-stress-testing
comment: Under review
☆ AFABench: A Generic Framework for Benchmarking Active Feature Acquisition
In many real-world scenarios, acquiring all features of a data instance can be expensive or impractical due to monetary cost, latency, or privacy concerns. Active Feature Acquisition (AFA) addresses this challenge by dynamically selecting a subset of informative features for each data instance, trading predictive performance against acquisition cost. While numerous methods have been proposed for AFA, ranging from greedy information-theoretic strategies to non-myopic reinforcement learning approaches, fair and systematic evaluation of these methods has been hindered by the lack of standardized benchmarks. In this paper, we introduce AFABench, the first benchmark framework for AFA. Our benchmark includes a diverse set of synthetic and real-world datasets, supports a wide range of acquisition policies, and provides a modular design that enables easy integration of new methods and tasks. We implement and evaluate representative algorithms from all major categories, including static, greedy, and reinforcement learning-based approaches. To test the lookahead capabilities of AFA policies, we introduce a novel synthetic dataset, AFAContext, designed to expose the limitations of greedy selection. Our results highlight key trade-offs between different AFA strategies and provide actionable insights for future research. The benchmark code is available at: https://github.com/Linusaronsson/AFA-Benchmark.
☆ Emerson-Lei and Manna-Pnueli Games for LTLf+ and PPLTL+ Synthesis
Recently, the Manna-Pnueli Hierarchy has been used to define the temporal logics LTLfp and PPLTLp, which allow to use finite-trace LTLf/PPLTL techniques in infinite-trace settings while achieving the expressiveness of full LTL. In this paper, we present the first actual solvers for reactive synthesis in these logics. These are based on games on graphs that leverage DFA-based techniques from LTLf/PPLTL to construct the game arena. We start with a symbolic solver based on Emerson-Lei games, which reduces lower-class properties (guarantee, safety) to higher ones (recurrence, persistence) before solving the game. We then introduce Manna-Pnueli games, which natively embed Manna-Pnueli objectives into the arena. These games are solved by composing solutions to a DAG of simpler Emerson-Lei games, resulting in a provably more efficient approach. We implemented the solvers and practically evaluated their performance on a range of representative formulas. The results show that Manna-Pnueli games often offer significant advantages, though not universally, indicating that combining both approaches could further enhance practical performance.
☆ Transplant Then Regenerate: A New Paradigm for Text Data Augmentation
Data augmentation is a critical technique in deep learning. Traditional methods like Back-translation typically focus on lexical-level rephrasing, which primarily produces variations with the same semantics. While large language models (LLMs) have enhanced text augmentation by their "knowledge emergence" capability, controlling the style and structure of these outputs remains challenging and requires meticulous prompt engineering. In this paper, we propose LMTransplant, a novel text augmentation paradigm leveraging LLMs. The core idea of LMTransplant is transplant-then-regenerate: incorporating seed text into a context expanded by LLM, and asking the LLM to regenerate a variant based on the expanded context. This strategy allows the model to create more diverse and creative content-level variants by fully leveraging the knowledge embedded in LLMs, while preserving the core attributes of the original text. We evaluate LMTransplant across various text-related tasks, demonstrating its superior performance over existing text augmentation methods. Moreover, LMTransplant demonstrates exceptional scalability as the size of augmented data grows.
comment: Accepted by EMNLP 2025
Data-Driven Probabilistic Evaluation of Logic Properties with PAC-Confidence on Mealy Machines
Cyber-Physical Systems (CPS) are complex systems that require powerful models for tasks like verification, diagnosis, or debugging. Often, suitable models are not available and manual extraction is difficult. Data-driven approaches then provide a solution to, e.g., diagnosis tasks and verification problems based on data collected from the system. In this paper, we consider CPS with a discrete abstraction in the form of a Mealy machine. We propose a data-driven approach to determine the safety probability of the system on a finite horizon of n time steps. The approach is based on the Probably Approximately Correct (PAC) learning paradigm. Thus, we elaborate a connection between discrete logic and probabilistic reachability analysis of systems, especially providing an additional confidence on the determined probability. The learning process follows an active learning paradigm, where new learning data is sampled in a guided way after an initial learning set is collected. We validate the approach with a case study on an automated lane-keeping system.
☆ ShizhenGPT: Towards Multimodal LLMs for Traditional Chinese Medicine
Despite the success of large language models (LLMs) in various domains, their potential in Traditional Chinese Medicine (TCM) remains largely underexplored due to two critical barriers: (1) the scarcity of high-quality TCM data and (2) the inherently multimodal nature of TCM diagnostics, which involve looking, listening, smelling, and pulse-taking. These sensory-rich modalities are beyond the scope of conventional LLMs. To address these challenges, we present ShizhenGPT, the first multimodal LLM tailored for TCM. To overcome data scarcity, we curate the largest TCM dataset to date, comprising 100GB+ of text and 200GB+ of multimodal data, including 1.2M images, 200 hours of audio, and physiological signals. ShizhenGPT is pretrained and instruction-tuned to achieve deep TCM knowledge and multimodal reasoning. For evaluation, we collect recent national TCM qualification exams and build a visual benchmark for Medicinal Recognition and Visual Diagnosis. Experiments demonstrate that ShizhenGPT outperforms comparable-scale LLMs and competes with larger proprietary models. Moreover, it leads in TCM visual understanding among existing multimodal LLMs and demonstrates unified perception across modalities like sound, pulse, smell, and vision, paving the way toward holistic multimodal perception and diagnosis in TCM. Datasets, models, and code are publicly available. We hope this work will inspire further exploration in this field.
☆ Learning in Repeated Multi-Objective Stackelberg Games with Payoff Manipulation AI 2025
We study payoff manipulation in repeated multi-objective Stackelberg games, where a leader may strategically influence a follower's deterministic best response, e.g., by offering a share of their own payoff. We assume that the follower's utility function, representing preferences over multiple objectives, is unknown but linear, and its weight parameter must be inferred through interaction. This introduces a sequential decision-making challenge for the leader, who must balance preference elicitation with immediate utility maximisation. We formalise this problem and propose manipulation policies based on expected utility (EU) and long-term expected utility (longEU), which guide the leader in selecting actions and offering incentives that trade off short-term gains with long-term impact. We prove that under infinite repeated interactions, longEU converges to the optimal manipulation. Empirical results across benchmark environments demonstrate that our approach improves cumulative leader utility while promoting mutually beneficial outcomes, all without requiring explicit negotiation or prior knowledge of the follower's utility function.
comment: Extended version of the paper accepted at the 28th European Conference on Artificial Intelligence (ECAI 2025); Paper ID: M2635
☆ MCP-Universe: Benchmarking Large Language Models with Real-World Model Context Protocol Servers
The Model Context Protocol has emerged as a transformative standard for connecting large language models to external data sources and tools, rapidly gaining adoption across major AI providers and development platforms. However, existing benchmarks are overly simplistic and fail to capture real application challenges such as long-horizon reasoning and large, unfamiliar tool spaces. To address this critical gap, we introduce MCP-Universe, the first comprehensive benchmark specifically designed to evaluate LLMs in realistic and hard tasks through interaction with real-world MCP servers. Our benchmark encompasses 6 core domains spanning 11 different MCP servers: Location Navigation, Repository Management, Financial Analysis, 3D Design, Browser Automation, and Web Searching. To ensure rigorous evaluation, we implement execution-based evaluators, including format evaluators for agent format compliance, static evaluators for time-invariant content matching, and dynamic evaluators that automatically retrieve real-time ground truth for temporally sensitive tasks. Through extensive evaluation of leading LLMs, we find that even SOTA models such as GPT-5 (43.72%), Grok-4 (33.33%) and Claude-4.0-Sonnet (29.44%) exhibit significant performance limitations. In addition, our benchmark poses a significant long-context challenge for LLM agents, as the number of input tokens increases rapidly with the number of interaction steps. Moreover, it introduces an unknown-tools challenge, as LLM agents often lack familiarity with the precise usage of the MCP servers. Notably, enterprise-level agents like Cursor cannot achieve better performance than standard ReAct frameworks. Beyond evaluation, we open-source our extensible evaluation framework with UI support, enabling researchers and practitioners to seamlessly integrate new agents and MCP servers while fostering innovation in the rapidly evolving MCP ecosystem.
comment: Website: https://mcp-universe.github.io
☆ Foe for Fraud: Transferable Adversarial Attacks in Credit Card Fraud Detection
Credit card fraud detection (CCFD) is a critical application of Machine Learning (ML) in the financial sector, where accurately identifying fraudulent transactions is essential for mitigating financial losses. ML models have demonstrated their effectiveness in fraud detection task, in particular with the tabular dataset. While adversarial attacks have been extensively studied in computer vision and deep learning, their impacts on the ML models, particularly those trained on CCFD tabular datasets, remains largely unexplored. These latent vulnerabilities pose significant threats to the security and stability of the financial industry, especially in high-value transactions where losses could be substantial. To address this gap, in this paper, we present a holistic framework that investigate the robustness of CCFD ML model against adversarial perturbations under different circumstances. Specifically, the gradient-based attack methods are incorporated into the tabular credit card transaction data in both black- and white-box adversarial attacks settings. Our findings confirm that tabular data is also susceptible to subtle perturbations, highlighting the need for heightened awareness among financial technology practitioners regarding ML model security and trustworthiness. Furthermore, the experiments by transferring adversarial samples from gradient-based attack method to non-gradient-based models also verify our findings. Our results demonstrate that such attacks remain effective, emphasizing the necessity of developing robust defenses for CCFD algorithms.
☆ ECHO: Frequency-aware Hierarchical Encoding for Variable-length Signal
Pre-trained foundation models have demonstrated remarkable success in vision and language, yet their potential for general machine signal modeling-covering acoustic, vibration, and other industrial sensor data-remains under-explored. Existing approach using sub-band-based encoders has achieved competitive results but are limited by fixed input lengths, and the absence of explicit frequency positional encoding. In this work, we propose a novel foundation model that integrates an advanced band-split architecture with relative frequency positional embeddings, enabling precise spectral localization across arbitrary sampling configurations. The model supports inputs of arbitrary length without padding or segmentation, producing a concise embedding that retains both temporal and spectral fidelity. We evaluate our method on SIREN (https://github.com/yucongzh/SIREN), a newly introduced large-scale benchmark for machine signal encoding that unifies multiple datasets, including all DCASE task 2 challenges (2020-2025) and widely-used industrial signal corpora. Experimental results demonstrate consistent state-of-the-art performance in anomaly detection and fault identification, confirming the effectiveness and generalization capability of the proposed model. We open-sourced ECHO on https://github.com/yucongzh/ECHO.
☆ ELATE: Evolutionary Language model for Automated Time-series Engineering
Time-series prediction involves forecasting future values using machine learning models. Feature engineering, whereby existing features are transformed to make new ones, is critical for enhancing model performance, but is often manual and time-intensive. Existing automation attempts rely on exhaustive enumeration, which can be computationally costly and lacks domain-specific insights. We introduce ELATE (Evolutionary Language model for Automated Time-series Engineering), which leverages a language model within an evolutionary framework to automate feature engineering for time-series data. ELATE employs time-series statistical measures and feature importance metrics to guide and prune features, while the language model proposes new, contextually relevant feature transformations. Our experiments demonstrate that ELATE improves forecasting accuracy by an average of 8.4% across various domains.
comment: 27 pages, 4 figures. Comments welcome
☆ Entropy-Constrained Strategy Optimization in Urban Floods: A Multi-Agent Framework with LLM and Knowledge Graph Integration
In recent years, the increasing frequency of extreme urban rainfall events has posed significant challenges to emergency scheduling systems. Urban flooding often leads to severe traffic congestion and service disruptions, threatening public safety and mobility. However, effective decision making remains hindered by three key challenges: (1) managing trade-offs among competing goals (e.g., traffic flow, task completion, and risk mitigation) requires dynamic, context-aware strategies; (2) rapidly evolving environmental conditions render static rules inadequate; and (3) LLM-generated strategies frequently suffer from semantic instability and execution inconsistency. Existing methods fail to align perception, global optimization, and multi-agent coordination within a unified framework. To tackle these challenges, we introduce H-J, a hierarchical multi-agent framework that integrates knowledge-guided prompting, entropy-constrained generation, and feedback-driven optimization. The framework establishes a closed-loop pipeline spanning from multi-source perception to strategic execution and continuous refinement. We evaluate H-J on real-world urban topology and rainfall data under three representative conditions: extreme rainfall, intermittent bursts, and daily light rain. Experiments show that H-J outperforms rule-based and reinforcement-learning baselines in traffic smoothness, task success rate, and system robustness. These findings highlight the promise of uncertainty-aware, knowledge-constrained LLM-based approaches for enhancing resilience in urban flood response.
comment: 17 pages including appendix, 6 figures
☆ OneLoc: Geo-Aware Generative Recommender Systems for Local Life Service
Local life service is a vital scenario in Kuaishou App, where video recommendation is intrinsically linked with store's location information. Thus, recommendation in our scenario is challenging because we should take into account user's interest and real-time location at the same time. In the face of such complex scenarios, end-to-end generative recommendation has emerged as a new paradigm, such as OneRec in the short video scenario, OneSug in the search scenario, and EGA in the advertising scenario. However, in local life service, an end-to-end generative recommendation model has not yet been developed as there are some key challenges to be solved. The first challenge is how to make full use of geographic information. The second challenge is how to balance multiple objectives, including user interests, the distance between user and stores, and some other business objectives. To address the challenges, we propose OneLoc. Specifically, we leverage geographic information from different perspectives: (1) geo-aware semantic ID incorporates both video and geographic information for tokenization, (2) geo-aware self-attention in the encoder leverages both video location similarity and user's real-time location, and (3) neighbor-aware prompt captures rich context information surrounding users for generation. To balance multiple objectives, we use reinforcement learning and propose two reward functions, i.e., geographic reward and GMV reward. With the above design, OneLoc achieves outstanding offline and online performance. In fact, OneLoc has been deployed in local life service of Kuaishou App. It serves 400 million active users daily, achieving 21.016% and 17.891% improvements in terms of gross merchandise value (GMV) and orders numbers.
☆ LeanGeo: Formalizing Competitional Geometry problems in Lean
Geometry problems are a crucial testbed for AI reasoning capabilities. Most existing geometry solving systems cannot express problems within a unified framework, thus are difficult to integrate with other mathematical fields. Besides, since most geometric proofs rely on intuitive diagrams, verifying geometry problems is particularly challenging. To address these gaps, we introduce LeanGeo, a unified formal system for formalizing and solving competition-level geometry problems within the Lean 4 theorem prover. LeanGeo features a comprehensive library of high-level geometric theorems with Lean's foundational logic, enabling rigorous proof verification and seamless integration with Mathlib. We also present LeanGeo-Bench, a formal geometry benchmark in LeanGeo, comprising problems from the International Mathematical Olympiad (IMO) and other advanced sources. Our evaluation demonstrates the capabilities and limitations of state-of-the-art Large Language Models on this benchmark, highlighting the need for further advancements in automated geometric reasoning. We open source the theorem library and the benchmark of LeanGeo at https://github.com/project-numina/LeanGeo/tree/master.
comment: 28 pages
☆ Can LLM Agents Solve Collaborative Tasks? A Study on Urgency-Aware Planning and Coordination
The ability to coordinate actions across multiple agents is critical for solving complex, real-world problems. Large Language Models (LLMs) have shown strong capabilities in communication, planning, and reasoning, raising the question of whether they can also support effective collaboration in multi-agent settings. In this work, we investigate the use of LLM agents to solve a structured victim rescue task that requires division of labor, prioritization, and cooperative planning. Agents operate in a fully known graph-based environment and must allocate resources to victims with varying needs and urgency levels. We systematically evaluate their performance using a suite of coordination-sensitive metrics, including task success rate, redundant actions, room conflicts, and urgency-weighted efficiency. This study offers new insights into the strengths and failure modes of LLMs in physically grounded multi-agent collaboration tasks, contributing to future benchmarks and architectural improvements.
☆ A Study of the Scale Invariant Signal to Distortion Ratio in Speech Separation with Noisy References
This paper examines the implications of using the Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) as both evaluation and training objective in supervised speech separation, when the training references contain noise, as is the case with the de facto benchmark WSJ0-2Mix. A derivation of the SI-SDR with noisy references reveals that noise limits the achievable SI-SDR, or leads to undesired noise in the separated outputs. To address this, a method is proposed to enhance references and augment the mixtures with WHAM!, aiming to train models that avoid learning noisy references. Two models trained on these enhanced datasets are evaluated with the non-intrusive NISQA.v2 metric. Results show reduced noise in separated speech but suggest that processing references may introduce artefacts, limiting overall quality gains. Negative correlation is found between SI-SDR and perceived noisiness across models on the WSJ0-2Mix and Libri2Mix test sets, underlining the conclusion from the derivation.
comment: Accepted for IEEE ASRU 2025, Workshop on Automatic Speech Recognition and Understanding. Copyright (c) 2025 IEEE. 8 pages, 6 figures, 2 tables
☆ UST-SSM: Unified Spatio-Temporal State Space Models for Point Cloud Video Modeling ICCV2025
Point cloud videos capture dynamic 3D motion while reducing the effects of lighting and viewpoint variations, making them highly effective for recognizing subtle and continuous human actions. Although Selective State Space Models (SSMs) have shown good performance in sequence modeling with linear complexity, the spatio-temporal disorder of point cloud videos hinders their unidirectional modeling when directly unfolding the point cloud video into a 1D sequence through temporally sequential scanning. To address this challenge, we propose the Unified Spatio-Temporal State Space Model (UST-SSM), which extends the latest advancements in SSMs to point cloud videos. Specifically, we introduce Spatial-Temporal Selection Scanning (STSS), which reorganizes unordered points into semantic-aware sequences through prompt-guided clustering, thereby enabling the effective utilization of points that are spatially and temporally distant yet similar within the sequence. For missing 4D geometric and motion details, Spatio-Temporal Structure Aggregation (STSA) aggregates spatio-temporal features and compensates. To improve temporal interaction within the sampled sequence, Temporal Interaction Sampling (TIS) enhances fine-grained temporal dependencies through non-anchor frame utilization and expanded receptive fields. Experimental results on the MSR-Action3D, NTU RGB+D, and Synthia 4D datasets validate the effectiveness of our method. Our code is available at https://github.com/wangzy01/UST-SSM.
comment: 8 pages, 5 figures, Accepted to ICCV2025
☆ An Open-Source HW-SW Co-Development Framework Enabling Efficient Multi-Accelerator Systems
Heterogeneous accelerator-centric compute clusters are emerging as efficient solutions for diverse AI workloads. However, current integration strategies often compromise data movement efficiency and encounter compatibility issues in hardware and software. This prevents a unified approach that balances performance and ease of use. To this end, we present SNAX, an open-source integrated HW-SW framework enabling efficient multi-accelerator platforms through a novel hybrid-coupling scheme, consisting of loosely coupled asynchronous control and tightly coupled data access. SNAX brings reusable hardware modules designed to enhance compute accelerator utilization, and its customizable MLIR-based compiler to automate key system management tasks, jointly enabling rapid development and deployment of customized multi-accelerator compute clusters. Through extensive experimentation, we demonstrate SNAX's efficiency and flexibility in a low-power heterogeneous SoC. Accelerators can easily be integrated and programmed to achieve > 10x improvement in neural network performance compared to other accelerator systems while maintaining accelerator utilization of > 90% in full system operation.
comment: 7 pages, 10 figures, 1 table, to be published in ISLPED 2025
☆ Who Sees What? Structured Thought-Action Sequences for Epistemic Reasoning in LLMs
Recent advances in large language models (LLMs) and reasoning frameworks have opened new possibilities for improving the perspective -taking capabilities of autonomous agents. However, tasks that involve active perception, collaborative reasoning, and perspective taking (understanding what another agent can see or knows) pose persistent challenges for current LLM-based systems. This study investigates the potential of structured examples derived from transformed solution graphs generated by the Fast Downward planner to improve the performance of LLM-based agents within a ReAct framework. We propose a structured solution-processing pipeline that generates three distinct categories of examples: optimal goal paths (G-type), informative node paths (E-type), and step-by-step optimal decision sequences contrasting alternative actions (L-type). These solutions are further converted into ``thought-action'' examples by prompting an LLM to explicitly articulate the reasoning behind each decision. While L-type examples slightly reduce clarification requests and overall action steps, they do not yield consistent improvements. Agents are successful in tasks requiring basic attentional filtering but struggle in scenarios that required mentalising about occluded spaces or weighing the costs of epistemic actions. These findings suggest that structured examples alone are insufficient for robust perspective-taking, underscoring the need for explicit belief tracking, cost modelling, and richer environments to enable socially grounded collaboration in LLM-based agents.
comment: Accepted at ICSR25
☆ Mamba2 Meets Silence: Robust Vocal Source Separation for Sparse Regions
We introduce a new music source separation model tailored for accurate vocal isolation. Unlike Transformer-based approaches, which often fail to capture intermittently occurring vocals, our model leverages Mamba2, a recent state space model, to better capture long-range temporal dependencies. To handle long input sequences efficiently, we combine a band-splitting strategy with a dual-path architecture. Experiments show that our approach outperforms recent state-of-the-art models, achieving a cSDR of 11.03 dB-the best reported to date-and delivering substantial gains in uSDR. Moreover, the model exhibits stable and consistent performance across varying input lengths and vocal occurrence patterns. These results demonstrate the effectiveness of Mamba-based models for high-resolution audio processing and open up new directions for broader applications in audio research.
☆ Towards LLM-generated explanations for Component-based Knowledge Graph Question Answering Systems
Over time, software systems have reached a level of complexity that makes it difficult for their developers and users to explain particular decisions made by them. In this paper, we focus on the explainability of component-based systems for Question Answering (QA). These components often conduct processes driven by AI methods, in which behavior and decisions cannot be clearly explained or justified, s.t., even for QA experts interpreting the executed process and its results is hard. To address this challenge, we present an approach that considers the components' input and output data flows as a source for representing the behavior and provide explanations for the components, enabling users to comprehend what happened. In the QA framework used here, the data flows of the components are represented as SPARQL queries (inputs) and RDF triples (outputs). Hence, we are also providing valuable insights on verbalization regarding these data types. In our experiments, the approach generates explanations while following template-based settings (baseline) or via the use of Large Language Models (LLMs) with different configurations (automatic generation). Our evaluation shows that the explanations generated via LLMs achieve high quality and mostly outperform template-based approaches according to the users' ratings. Therefore, it enables us to automatically explain the behavior and decisions of QA components to humans while using RDF and SPARQL as a context for explanations.
comment: Presented at ICWI 2024, Zagreb. Released with ISBN: 978-989-8704-62-7. Data source: https://figshare.com/articles/dataset/Towards_LLM-generated_explanations_for_component-based_knowledge_graph_question_answering_systems/27079687
☆ Adaptively Robust LLM Inference Optimization under Prediction Uncertainty
We study the problem of optimizing Large Language Model (LLM) inference scheduling to minimize total latency. LLM inference is an online and multi-task service process and also heavily energy consuming by which a pre-trained LLM processes input requests and generates output tokens sequentially. Therefore, it is vital to improve its scheduling efficiency and reduce the power consumption while a great amount of prompt requests are arriving. A key challenge in LLM inference scheduling is that while the prompt length is known upon arrival, the output length, which critically impacts memory usage and processing time, is unknown. To address this uncertainty, we propose algorithms that leverage machine learning to predict output lengths, assuming the prediction provides an interval classification (min-max range) for each request. We first design a conservative algorithm, $\mathcal{A}_{\max}$, which schedules requests based on the upper bound of predicted output lengths to prevent memory overflow. However, this approach is overly conservative: as prediction accuracy decreases, performance degrades significantly due to potential overestimation. To overcome this limitation, we propose $\mathcal{A}_{\min}$, an adaptive algorithm that initially treats the predicted lower bound as the output length and dynamically refines this estimate during inferencing. We prove that $\mathcal{A}_{\min}$ achieves a log-scale competitive ratio. Through numerical simulations, we demonstrate that $\mathcal{A}_{\min}$ often performs nearly as well as the hindsight scheduler, highlighting both its efficiency and robustness in practical scenarios. Moreover, $\mathcal{A}_{\min}$ relies solely on the lower bound of the prediction interval--an advantageous design choice since upper bounds on output length are typically more challenging to predict accurately.
☆ Post-hoc LLM-Supported Debugging of Distributed Processes
In this paper, we address the problem of manual debugging, which nowadays remains resource-intensive and in some parts archaic. This problem is especially evident in increasingly complex and distributed software systems. Therefore, our objective of this work is to introduce an approach that can possibly be applied to any system, at both the macro- and micro-level, to ease this debugging process. This approach utilizes a system's process data, in conjunction with generative AI, to generate natural-language explanations. These explanations are generated from the actual process data, interface information, and documentation to guide the developers more efficiently to understand the behavior and possible errors of a process and its sub-processes. Here, we present a demonstrator that employs this approach on a component-based Java system. However, our approach is language-agnostic. Ideally, the generated explanations will provide a good understanding of the process, even if developers are not familiar with all the details of the considered system. Our demonstrator is provided as an open-source web application that is freely accessible to all users.
comment: Presented at ICWE 2025, Delft (30 June - 03 July 2025)
☆ Beyond ReLU: Chebyshev-DQN for Enhanced Deep Q-Networks
The performance of Deep Q-Networks (DQN) is critically dependent on the ability of its underlying neural network to accurately approximate the action-value function. Standard function approximators, such as multi-layer perceptrons, may struggle to efficiently represent the complex value landscapes inherent in many reinforcement learning problems. This paper introduces a novel architecture, the Chebyshev-DQN (Ch-DQN), which integrates a Chebyshev polynomial basis into the DQN framework to create a more effective feature representation. By leveraging the powerful function approximation properties of Chebyshev polynomials, we hypothesize that the Ch-DQN can learn more efficiently and achieve higher performance. We evaluate our proposed model on the CartPole-v1 benchmark and compare it against a standard DQN with a comparable number of parameters. Our results demonstrate that the Ch-DQN with a moderate polynomial degree (N=4) achieves significantly better asymptotic performance, outperforming the baseline by approximately 39\%. However, we also find that the choice of polynomial degree is a critical hyperparameter, as a high degree (N=8) can be detrimental to learning. This work validates the potential of using orthogonal polynomial bases in deep reinforcement learning while also highlighting the trade-offs involved in model complexity.
☆ EffiFusion-GAN: Efficient Fusion Generative Adversarial Network for Speech Enhancement
We introduce EffiFusion-GAN (Efficient Fusion Generative Adversarial Network), a lightweight yet powerful model for speech enhancement. The model integrates depthwise separable convolutions within a multi-scale block to capture diverse acoustic features efficiently. An enhanced attention mechanism with dual normalization and residual refinement further improves training stability and convergence. Additionally, dynamic pruning is applied to reduce model size while maintaining performance, making the framework suitable for resource-constrained environments. Experimental evaluation on the public VoiceBank+DEMAND dataset shows that EffiFusion-GAN achieves a PESQ score of 3.45, outperforming existing models under the same parameter settings.
☆ MISS: Multi-Modal Tree Indexing and Searching with Lifelong Sequential Behavior for Retrieval Recommendation
Large-scale industrial recommendation systems typically employ a two-stage paradigm of retrieval and ranking to handle huge amounts of information. Recent research focuses on improving the performance of retrieval model. A promising way is to introduce extensive information about users and items. On one hand, lifelong sequential behavior is valuable. Existing lifelong behavior modeling methods in ranking stage focus on the interaction of lifelong behavior and candidate items from retrieval stage. In retrieval stage, it is difficult to utilize lifelong behavior because of a large corpus of candidate items. On the other hand, existing retrieval methods mostly relay on interaction information, potentially disregarding valuable multi-modal information. To solve these problems, we represent the pioneering exploration of leveraging multi-modal information and lifelong sequence model within the advanced tree-based retrieval model. We propose Multi-modal Indexing and Searching with lifelong Sequence (MISS), which contains a multi-modal index tree and a multi-modal lifelong sequence modeling module. Specifically, for better index structure, we propose multi-modal index tree, which is built using the multi-modal embedding to precisely represent item similarity. To precisely capture diverse user interests in user lifelong sequence, we propose collaborative general search unit (Co-GSU) and multi-modal general search unit (MM-GSU) for multi-perspective interests searching.
comment: CIKM 2025
☆ PB-IAD: Utilizing multimodal foundation models for semantic industrial anomaly detection in dynamic manufacturing environments
The detection of anomalies in manufacturing processes is crucial to ensure product quality and identify process deviations. Statistical and data-driven approaches remain the standard in industrial anomaly detection, yet their adaptability and usability are constrained by the dependence on extensive annotated datasets and limited flexibility under dynamic production conditions. Recent advances in the perception capabilities of foundation models provide promising opportunities for their adaptation to this downstream task. This paper presents PB-IAD (Prompt-based Industrial Anomaly Detection), a novel framework that leverages the multimodal and reasoning capabilities of foundation models for industrial anomaly detection. Specifically, PB-IAD addresses three key requirements of dynamic production environments: data sparsity, agile adaptability, and domain user centricity. In addition to the anomaly detection, the framework includes a prompt template that is specifically designed for iteratively implementing domain-specific process knowledge, as well as a pre-processing module that translates domain user inputs into effective system prompts. This user-centric design allows domain experts to customise the system flexibly without requiring data science expertise. The proposed framework is evaluated by utilizing GPT-4.1 across three distinct manufacturing scenarios, two data modalities, and an ablation study to systematically assess the contribution of semantic instructions. Furthermore, PB-IAD is benchmarked to state-of-the-art methods for anomaly detection such as PatchCore. The results demonstrate superior performance, particularly in data-sparse scenarios and low-shot settings, achieved solely through semantic instructions.
☆ Exact Shapley Attributions in Quadratic-time for FANOVA Gaussian Processes
Shapley values are widely recognized as a principled method for attributing importance to input features in machine learning. However, the exact computation of Shapley values scales exponentially with the number of features, severely limiting the practical application of this powerful approach. The challenge is further compounded when the predictive model is probabilistic - as in Gaussian processes (GPs) - where the outputs are random variables rather than point estimates, necessitating additional computational effort in modeling higher-order moments. In this work, we demonstrate that for an important class of GPs known as FANOVA GP, which explicitly models all main effects and interactions, *exact* Shapley attributions for both local and global explanations can be computed in *quadratic time*. For local, instance-wise explanations, we define a stochastic cooperative game over function components and compute the exact stochastic Shapley value in quadratic time only, capturing both the expected contribution and uncertainty. For global explanations, we introduce a deterministic, variance-based value function and compute exact Shapley values that quantify each feature's contribution to the model's overall sensitivity. Our methods leverage a closed-form (stochastic) M\"{o}bius representation of the FANOVA decomposition and introduce recursive algorithms, inspired by Newton's identities, to efficiently compute the mean and variance of Shapley values. Our work enhances the utility of explainable AI, as demonstrated by empirical studies, by providing more scalable, axiomatically sound, and uncertainty-aware explanations for predictions generated by structured probabilistic models.
☆ Synaptic bundle theory for spike-driven sensor-motor system: More than eight independent synaptic bundles collapse reward-STDP learning
Neuronal spikes directly drive muscles and endow animals with agile movements, but applying the spike-based control signals to actuators in artificial sensor-motor systems inevitably causes a collapse of learning. We developed a system that can vary \emph{the number of independent synaptic bundles} in sensor-to-motor connections. This paper demonstrates the following four findings: (i) Learning collapses once the number of motor neurons or the number of independent synaptic bundles exceeds a critical limit. (ii) The probability of learning failure is increased by a smaller number of motor neurons, while (iii) if learning succeeds, a smaller number of motor neurons leads to faster learning. (iv) The number of weight updates that move in the opposite direction of the optimal weight can quantitatively explain these results. The functions of spikes remain largely unknown. Identifying the parameter range in which learning systems using spikes can be constructed will make it possible to study the functions of spikes that were previously inaccessible due to the difficulty of learning.
comment: 5 pages, 4 figures
☆ In2x at WMT25 Translation Task
This paper presents the open-system submission by the In2x research team for the WMT25 General Machine Translation Shared Task. Our submission focuses on Japanese-related translation tasks, aiming to explore a generalizable paradigm for extending large language models (LLMs) to other languages. This paradigm encompasses aspects such as data construction methods and reward model design. The ultimate goal is to enable large language model systems to achieve exceptional performance in low-resource or less commonly spoken languages.
☆ NVIDIA Nemotron Nano 2: An Accurate and Efficient Hybrid Mamba-Transformer Reasoning Model
We introduce Nemotron-Nano-9B-v2, a hybrid Mamba-Transformer language model designed to increase throughput for reasoning workloads while achieving state-of-the-art accuracy compared to similarly-sized models. Nemotron-Nano-9B-v2 builds on the Nemotron-H architecture, in which the majority of the self-attention layers in the common Transformer architecture are replaced with Mamba-2 layers, to achieve improved inference speed when generating the long thinking traces needed for reasoning. We create Nemotron-Nano-9B-v2 by first pre-training a 12-billion-parameter model (Nemotron-Nano-12B-v2-Base) on 20 trillion tokens using an FP8 training recipe. After aligning Nemotron-Nano-12B-v2-Base, we employ the Minitron strategy to compress and distill the model with the goal of enabling inference on up to 128k tokens on a single NVIDIA A10G GPU (22GiB of memory, bfloat16 precision). Compared to existing similarly-sized models (e.g., Qwen3-8B), we show that Nemotron-Nano-9B-v2 achieves on-par or better accuracy on reasoning benchmarks while achieving up to 6x higher inference throughput in reasoning settings like 8k input and 16k output tokens. We are releasing Nemotron-Nano-9B-v2, Nemotron-Nano12B-v2-Base, and Nemotron-Nano-9B-v2-Base checkpoints along with the majority of our pre- and post-training datasets on Hugging Face.
☆ Detecting Reading-Induced Confusion Using EEG and Eye Tracking
Humans regularly navigate an overwhelming amount of information via text media, whether reading articles, browsing social media, or interacting with chatbots. Confusion naturally arises when new information conflicts with or exceeds a reader's comprehension or prior knowledge, posing a challenge for learning. In this study, we present a multimodal investigation of reading-induced confusion using EEG and eye tracking. We collected neural and gaze data from 11 adult participants as they read short paragraphs sampled from diverse, real-world sources. By isolating the N400 event-related potential (ERP), a well-established neural marker of semantic incongruence, and integrating behavioral markers from eye tracking, we provide a detailed analysis of the neural and behavioral correlates of confusion during naturalistic reading. Using machine learning, we show that multimodal (EEG + eye tracking) models improve classification accuracy by 4-22% over unimodal baselines, reaching an average weighted participant accuracy of 77.3% and a best accuracy of 89.6%. Our results highlight the dominance of the brain's temporal regions in these neural signatures of confusion, suggesting avenues for wearable, low-electrode brain-computer interfaces (BCI) for real-time monitoring. These findings lay the foundation for developing adaptive systems that dynamically detect and respond to user confusion, with potential applications in personalized learning, human-computer interaction, and accessibility.
☆ The Agent Behavior: Model, Governance and Challenges in the AI Digital Age
Advancements in AI have led to agents in networked environments increasingly mirroring human behavior, thereby blurring the boundary between artificial and human actors in specific contexts. This shift brings about significant challenges in trust, responsibility, ethics, security and etc. The difficulty in supervising of agent behaviors may lead to issues such as data contamination and unclear accountability. To address these challenges, this paper proposes the "Network Behavior Lifecycle" model, which divides network behavior into 6 stages and systematically analyzes the behavioral differences between humans and agents at each stage. Based on these insights, the paper further introduces the "Agent for Agent (A4A)" paradigm and the "Human-Agent Behavioral Disparity (HABD)" model, which examine the fundamental distinctions between human and agent behaviors across 5 dimensions: decision mechanism, execution efficiency, intention-behavior consistency, behavioral inertia, and irrational patterns. The effectiveness of the model is verified through real-world cases such as red team penetration and blue team defense. Finally, the paper discusses future research directions in dynamic cognitive governance architecture, behavioral disparity quantification, and meta-governance protocol stacks, aiming to provide a theoretical foundation and technical roadmap for secure and trustworthy human-agent collaboration.
☆ Automated Optimization Modeling through Expert-Guided Large Language Model Reasoning
Optimization Modeling (OM) is essential for solving complex decision-making problems. However, the process remains time-consuming and error-prone, heavily relying on domain experts. While Large Language Models (LLMs) show promise in addressing these challenges through their natural language understanding and reasoning capabilities, current approaches face three critical limitations: high benchmark labeling error rates reaching up to 42\%, narrow evaluation scope that only considers optimal values, and computational inefficiency due to heavy reliance on multi-agent systems or model fine-tuning. In this work, we first enhance existing datasets through systematic error correction and more comprehensive annotation. Additionally, we introduce LogiOR, a new optimization modeling benchmark from the logistics domain, containing more complex problems with standardized annotations. Furthermore, we present ORThought, a novel framework that leverages expert-level optimization modeling principles through chain-of-thought reasoning to automate the OM process. Through extensive empirical evaluation, we demonstrate that ORThought outperforms existing approaches, including multi-agent frameworks, with particularly significant advantages on complex optimization problems. Finally, we provide a systematic analysis of our method, identifying critical success factors and failure modes, providing valuable insights for future research on LLM-based optimization modeling.
☆ Cognitive Surgery: The Awakening of Implicit Territorial Awareness in LLMs
Large language models (LLMs) have been shown to possess a degree of self-recognition capability-the ability to identify whether a given text was generated by themselves. Prior work has demonstrated that this capability is reliably expressed under the Pair Presentation Paradigm (PPP), where the model is presented with two texts and asked to choose which one it authored. However, performance deteriorates sharply under the Individual Presentation Paradigm (IPP), where the model is given a single text to judge authorship. Although this phenomenon has been observed, its underlying causes have not been systematically analyzed. In this paper, we first replicate existing findings to confirm that LLMs struggle to distinguish self- from other-generated text under IPP. We then investigate the reasons for this failure and attribute it to a phenomenon we term Implicit Territorial Awareness (ITA)-the model's latent ability to distinguish self- and other-texts in representational space, which remains unexpressed in its output behavior. To awaken the ITA of LLMs, we propose Cognitive Surgery (CoSur), a novel framework comprising four main modules: representation extraction, territory construction, authorship discrimination and cognitive editing. Experimental results demonstrate that our proposed method improves the performance of three different LLMs in the IPP scenario, achieving average accuracies of 83.25%, 66.19%, and 88.01%, respectively.
☆ NoteIt: A System Converting Instructional Videos to Interactable Notes Through Multimodal Video Understanding
Users often take notes for instructional videos to access key knowledge later without revisiting long videos. Automated note generation tools enable users to obtain informative notes efficiently. However, notes generated by existing research or off-the-shelf tools fail to preserve the information conveyed in the original videos comprehensively, nor can they satisfy users' expectations for diverse presentation formats and interactive features when using notes digitally. In this work, we present NoteIt, a system, which automatically converts instructional videos to interactable notes using a novel pipeline that faithfully extracts hierarchical structure and multimodal key information from videos. With NoteIt's interface, users can interact with the system to further customize the content and presentation formats of the notes according to their preferences. We conducted both a technical evaluation and a comparison user study (N=36). The solid performance in objective metrics and the positive user feedback demonstrated the effectiveness of the pipeline and the overall usability of NoteIt. Project website: https://zhaorunning.github.io/NoteIt/
comment: Accepted to UIST 2025. Project website: https://zhaorunning.github.io/NoteIt/
☆ DEPTH: Hallucination-Free Relation Extraction via Dependency-Aware Sentence Simplification and Two-tiered Hierarchical Refinement
Relation extraction enables the construction of structured knowledge for many downstream applications. While large language models (LLMs) have shown great promise in this domain, most existing methods concentrate on relation classification, which predicts the semantic relation type between a related entity pair. However, we observe that LLMs often struggle to reliably determine whether a relation exists, especially in cases involving complex sentence structures or intricate semantics, which leads to spurious predictions. Such hallucinations can introduce noisy edges in knowledge graphs, compromising the integrity of structured knowledge and downstream reliability. To address these challenges, we propose DEPTH, a framework that integrates Dependency-aware sEntence simPlification and Two-tiered Hierarchical refinement into the relation extraction pipeline. Given a sentence and its candidate entity pairs, DEPTH operates in two stages: (1) the Grounding module extracts relations for each pair by leveraging their shortest dependency path, distilling the sentence into a minimal yet coherent relational context that reduces syntactic noise while preserving key semantics; (2) the Refinement module aggregates all local predictions and revises them based on a holistic understanding of the sentence, correcting omissions and inconsistencies. We further introduce a causality-driven reward model that mitigates reward hacking by disentangling spurious correlations, enabling robust fine-tuning via reinforcement learning with human feedback. Experiments on six benchmarks demonstrate that DEPTH reduces the average hallucination rate to 7.0\% while achieving a 17.2\% improvement in average F1 score over state-of-the-art baselines.
☆ Credence Calibration Game? Calibrating Large Language Models through Structured Play
As Large Language Models (LLMs) are increasingly deployed in decision-critical domains, it becomes essential to ensure that their confidence estimates faithfully correspond to their actual correctness. Existing calibration methods have primarily focused on post-hoc adjustments or auxiliary model training; however, many of these approaches necessitate additional supervision or parameter updates. In this work, we propose a novel prompt-based calibration framework inspired by the Credence Calibration Game. Our method establishes a structured interaction loop wherein LLMs receive feedback based on the alignment of their predicted confidence with correctness. Through feedback-driven prompting and natural language summaries of prior performance, our framework dynamically improves model calibration. Extensive experiments across models and game configurations demonstrate consistent improvements in evaluation metrics. Our results highlight the potential of game-based prompting as an effective strategy for LLM calibration. Code and data are available at https://anonymous.4open.science/r/LLM-Calibration/.
☆ Online Incident Response Planning under Model Misspecification through Bayesian Learning and Belief Quantization AI
Effective responses to cyberattacks require fast decisions, even when information about the attack is incomplete or inaccurate. However, most decision-support frameworks for incident response rely on a detailed system model that describes the incident, which restricts their practical utility. In this paper, we address this limitation and present an online method for incident response planning under model misspecification, which we call MOBAL: Misspecified Online Bayesian Learning. MOBAL iteratively refines a conjecture about the model through Bayesian learning as new information becomes available, which facilitates model adaptation as the incident unfolds. To determine effective responses online, we quantize the conjectured model into a finite Markov model, which enables efficient response planning through dynamic programming. We prove that Bayesian learning is asymptotically consistent with respect to the information feedback. Additionally, we establish bounds on misspecification and quantization errors. Experiments on the CAGE-2 benchmark show that MOBAL outperforms the state of the art in terms of adaptability and robustness to model misspecification.
comment: Accepted to ACM CCS AISec2025
☆ ZPD-SCA: Unveiling the Blind Spots of LLMs in Assessing Students' Cognitive Abilities
Large language models (LLMs) have demonstrated potential in educational applications, yet their capacity to accurately assess the cognitive alignment of reading materials with students' developmental stages remains insufficiently explored. This gap is particularly critical given the foundational educational principle of the Zone of Proximal Development (ZPD), which emphasizes the need to match learning resources with Students' Cognitive Abilities (SCA). Despite the importance of this alignment, there is a notable absence of comprehensive studies investigating LLMs' ability to evaluate reading comprehension difficulty across different student age groups, especially in the context of Chinese language education. To fill this gap, we introduce ZPD-SCA, a novel benchmark specifically designed to assess stage-level Chinese reading comprehension difficulty. The benchmark is annotated by 60 Special Grade teachers, a group that represents the top 0.15% of all in-service teachers nationwide. Experimental results reveal that LLMs perform poorly in zero-shot learning scenarios, with Qwen-max and GLM even falling below the probability of random guessing. When provided with in-context examples, LLMs performance improves substantially, with some models achieving nearly double the accuracy of their zero-shot baselines. These results reveal that LLMs possess emerging abilities to assess reading difficulty, while also exposing limitations in their current training for educationally aligned judgment. Notably, even the best-performing models display systematic directional biases, suggesting difficulties in accurately aligning material difficulty with SCA. Furthermore, significant variations in model performance across different genres underscore the complexity of task. We envision that ZPD-SCA can provide a foundation for evaluating and improving LLMs in cognitively aligned educational applications.
☆ Computing-In-Memory Dataflow for Minimal Buffer Traffic
Computing-In-Memory (CIM) offers a potential solution to the memory wall issue and can achieve high energy efficiency by minimizing data movement, making it a promising architecture for edge AI devices. Lightweight models like MobileNet and EfficientNet, which utilize depthwise convolution for feature extraction, have been developed for these devices. However, CIM macros often face challenges in accelerating depthwise convolution, including underutilization of CIM memory and heavy buffer traffic. The latter, in particular, has been overlooked despite its significant impact on latency and energy consumption. To address this, we introduce a novel CIM dataflow that significantly reduces buffer traffic by maximizing data reuse and improving memory utilization during depthwise convolution. The proposed dataflow is grounded in solid theoretical principles, fully demonstrated in this paper. When applied to MobileNet and EfficientNet models, our dataflow reduces buffer traffic by 77.4-87.0%, leading to a total reduction in data traffic energy and latency by 10.1-17.9% and 15.6-27.8%, respectively, compared to the baseline (conventional weight-stationary dataflow).
comment: IEEE International Conference on Computer Design
☆ Learning Point Cloud Representations with Pose Continuity for Depth-Based Category-Level 6D Object Pose Estimation ICCV 2025
Category-level object pose estimation aims to predict the 6D pose and 3D size of objects within given categories. Existing approaches for this task rely solely on 6D poses as supervisory signals without explicitly capturing the intrinsic continuity of poses, leading to inconsistencies in predictions and reduced generalization to unseen poses. To address this limitation, we propose HRC-Pose, a novel depth-only framework for category-level object pose estimation, which leverages contrastive learning to learn point cloud representations that preserve the continuity of 6D poses. HRC-Pose decouples object pose into rotation and translation components, which are separately encoded and leveraged throughout the network. Specifically, we introduce a contrastive learning strategy for multi-task, multi-category scenarios based on our 6D pose-aware hierarchical ranking scheme, which contrasts point clouds from multiple categories by considering rotational and translational differences as well as categorical information. We further design pose estimation modules that separately process the learned rotation-aware and translation-aware embeddings. Our experiments demonstrate that HRC-Pose successfully learns continuous feature spaces. Results on REAL275 and CAMERA25 benchmarks show that our method consistently outperforms existing depth-only state-of-the-art methods and runs in real-time, demonstrating its effectiveness and potential for real-world applications. Our code is at https://github.com/zhujunli1993/HRC-Pose.
comment: Accepted by ICCV 2025 Workshop on Recovering 6D Object Pose (R6D)
☆ Organ-Agents: Virtual Human Physiology Simulator via LLMs
Recent advances in large language models (LLMs) have enabled new possibilities in simulating complex physiological systems. We introduce Organ-Agents, a multi-agent framework that simulates human physiology via LLM-driven agents. Each Simulator models a specific system (e.g., cardiovascular, renal, immune). Training consists of supervised fine-tuning on system-specific time-series data, followed by reinforcement-guided coordination using dynamic reference selection and error correction. We curated data from 7,134 sepsis patients and 7,895 controls, generating high-resolution trajectories across 9 systems and 125 variables. Organ-Agents achieved high simulation accuracy on 4,509 held-out patients, with per-system MSEs <0.16 and robustness across SOFA-based severity strata. External validation on 22,689 ICU patients from two hospitals showed moderate degradation under distribution shifts with stable simulation. Organ-Agents faithfully reproduces critical multi-system events (e.g., hypotension, hyperlactatemia, hypoxemia) with coherent timing and phase progression. Evaluation by 15 critical care physicians confirmed realism and physiological plausibility (mean Likert ratings 3.9 and 3.7). Organ-Agents also enables counterfactual simulations under alternative sepsis treatment strategies, generating trajectories and APACHE II scores aligned with matched real-world patients. In downstream early warning tasks, classifiers trained on synthetic data showed minimal AUROC drops (<0.04), indicating preserved decision-relevant patterns. These results position Organ-Agents as a credible, interpretable, and generalizable digital twin for precision diagnosis, treatment simulation, and hypothesis testing in critical care.
☆ Inter-Class Relational Loss for Small Object Detection: A Case Study on License Plates
In one-stage multi-object detection tasks, various intersection over union (IoU)-based solutions aim at smooth and stable convergence near the targets during training. However, IoU-based losses fail to correctly update the gradient of small objects due to an extremely flat gradient. During the update of multiple objects, the learning of small objects' gradients suffers more because of insufficient gradient updates. Therefore, we propose an inter-class relational loss to efficiently update the gradient of small objects while not sacrificing the learning efficiency of other objects based on the simple fact that an object has a spatial relationship to another object (e.g., a car plate is attached to a car in a similar position). When the predicted car plate's bounding box is not within its car, a loss punishment is added to guide the learning, which is inversely proportional to the overlapped area of the car's and predicted car plate's bounding box. By leveraging the spatial relationship at the inter-class level, the loss guides small object predictions using larger objects and enhances latent information in deeper feature maps. In this paper, we present twofold contributions using license plate detection as a case study: (1) a new small vehicle multi-license plate dataset (SVMLP), featuring diverse real-world scenarios with high-quality annotations; and (2) a novel inter-class relational loss function designed to promote effective detection performance. We highlight the proposed ICR loss penalty can be easily added to existing IoU-based losses and enhance the performance. These contributions improve the standard mean Average Precision (mAP) metric, achieving gains of 10.3% and 1.6% in mAP$^{\text{test}}_{50}$ for YOLOv12-T and UAV-DETR, respectively, without any additional hyperparameter tuning. Code and dataset will be available soon.
☆ Generative AI Against Poaching: Latent Composite Flow Matching for Wildlife Conservation
Poaching poses significant threats to wildlife and biodiversity. A valuable step in reducing poaching is to forecast poacher behavior, which can inform patrol planning and other conservation interventions. Existing poaching prediction methods based on linear models or decision trees lack the expressivity to capture complex, nonlinear spatiotemporal patterns. Recent advances in generative modeling, particularly flow matching, offer a more flexible alternative. However, training such models on real-world poaching data faces two central obstacles: imperfect detection of poaching events and limited data. To address imperfect detection, we integrate flow matching with an occupancy-based detection model and train the flow in latent space to infer the underlying occupancy state. To mitigate data scarcity, we adopt a composite flow initialized from a linear-model prediction rather than random noise which is the standard in diffusion models, injecting prior knowledge and improving generalization. Evaluations on datasets from two national parks in Uganda show consistent gains in predictive accuracy.
☆ A Comparative Evaluation of Teacher-Guided Reinforcement Learning Techniques for Autonomous Cyber Operations
Autonomous Cyber Operations (ACO) rely on Reinforcement Learning (RL) to train agents to make effective decisions in the cybersecurity domain. However, existing ACO applications require agents to learn from scratch, leading to slow convergence and poor early-stage performance. While teacher-guided techniques have demonstrated promise in other domains, they have not yet been applied to ACO. In this study, we implement four distinct teacher-guided techniques in the simulated CybORG environment and conduct a comparative evaluation. Our results demonstrate that teacher integration can significantly improve training efficiency in terms of early policy performance and convergence speed, highlighting its potential benefits for autonomous cybersecurity.
☆ Power Stabilization for AI Training Datacenters
Large Artificial Intelligence (AI) training workloads spanning several tens of thousands of GPUs present unique power management challenges. These arise due to the high variability in power consumption during the training. Given the synchronous nature of these jobs, during every iteration there is a computation-heavy phase, where each GPU works on the local data, and a communication-heavy phase where all the GPUs synchronize on the data. Because compute-heavy phases require much more power than communication phases, large power swings occur. The amplitude of these power swings is ever increasing with the increase in the size of training jobs. An even bigger challenge arises from the frequency spectrum of these power swings which, if harmonized with critical frequencies of utilities, can cause physical damage to the power grid infrastructure. Therefore, to continue scaling AI training workloads safely, we need to stabilize the power of such workloads. This paper introduces the challenge with production data and explores innovative solutions across the stack: software, GPU hardware, and datacenter infrastructure. We present the pros and cons of each of these approaches and finally present a multi-pronged approach to solving the challenge. The proposed solutions are rigorously tested using a combination of real hardware and Microsoft's in-house cloud power simulator, providing critical insights into the efficacy of these interventions under real-world conditions.
♻ ☆ RotBench: Evaluating Multimodal Large Language Models on Identifying Image Rotation
We investigate to what extent Multimodal Large Language Models (MLLMs) can accurately identify the orientation of input images rotated 0{\deg}, 90{\deg}, 180{\deg}, and 270{\deg}. This task demands robust visual reasoning capabilities to detect rotational cues and contextualize spatial relationships within images, regardless of their orientation. To evaluate MLLMs on these abilities, we introduce RotBench -- a 350-image manually-filtered benchmark comprising lifestyle, portrait, and landscape images. Despite the relatively simple nature of this task, we show that several state-of-the-art open and proprietary MLLMs, including GPT-5, o3, and Gemini-2.5-Pro, do not reliably identify rotation in input images. Providing models with auxiliary information -- including captions, depth maps, and more -- or using chain-of-thought prompting offers only small and inconsistent improvements. Our results indicate that most models are able to reliably identify right-side-up (0{\deg}) images, while certain models are able to identify upside-down (180{\deg}) images. None can reliably distinguish between 90{\deg} and 270{\deg}. Simultaneously showing the image rotated in different orientations leads to moderate performance gains for reasoning models, while a modified setup using voting improves the performance of weaker models. We further show that fine-tuning does not improve models' ability to distinguish 90{\deg} and 270{\deg} rotations, despite substantially improving the identification of 180{\deg} images. Together, these results reveal a significant gap between MLLMs' spatial reasoning capabilities and human perception in identifying rotation.
comment: 20 pages. Code and data: https://github.com/tianyiniu/RotBench
♻ ☆ LoSiA: Efficient High-Rank Fine-Tuning via Subnet Localization and Optimization
Parameter-Efficient Fine-Tuning (PEFT) methods, such as LoRA, significantly reduce the number of trainable parameters by introducing low-rank decomposition matrices. However, existing methods perform extensive matrix multiplications in domain specialization tasks, resulting in computational inefficiency and sub-optimal fine-tuning performance. Hence, we propose LoSiA(Low-Resources Subnet Integration Adaptation), an innovative method that dynamically localizes and optimizes critical parameters during the training process. Specifically, it identifies a sub-network using gradient sparsity analysis and optimizes it as the trainable target. This design enables effective high-rank adaptation by updating only the sub-network parameters, reducing the additional matrix multiplication. We also present LoSiA-Pro, a faster implementation of LoSiA, which reduces the training latency by about $27\%$ compared to LoRA. Extensive evaluations show that our method achieves minimal performance drop compared to full fine-tuning, while requiring the least training time across domain specialization and common-sense reasoning tasks. Further analysis shows that LoSiA also reduces forgetting during continued training. The source code is available at https://github.com/KlozeWang/LoSiA.
comment: Accepted to EMNLP 2025 (Main Conference); 18 pages, 12 figures
♻ ☆ SE-Agent: Self-Evolution Trajectory Optimization in Multi-Step Reasoning with LLM-Based Agents
Large Language Model (LLM)-based agents have recently shown impressive capabilities in complex reasoning and tool use via multi-step interactions with their environments. While these agents have the potential to tackle complicated tasks, their problem-solving process, i.e., agents' interaction trajectory leading to task completion, remains underexploited. These trajectories contain rich feedback that can navigate agents toward the right directions for solving problems correctly. Although prevailing approaches, such as Monte Carlo Tree Search (MCTS), can effectively balance exploration and exploitation, they ignore the interdependence among various trajectories and lack the diversity of search spaces, which leads to redundant reasoning and suboptimal outcomes. To address these challenges, we propose SE-Agent, a Self-Evolution framework that enables Agents to optimize their reasoning processes iteratively. Our approach revisits and enhances former pilot trajectories through three key operations: revision, recombination, and refinement. This evolutionary mechanism enables two critical advantages: (1) it expands the search space beyond local optima by intelligently exploring diverse solution paths guided by previous trajectories, and (2) it leverages cross-trajectory inspiration to efficiently enhance performance while mitigating the impact of suboptimal reasoning paths. Through these mechanisms, SE-Agent achieves continuous self-evolution that incrementally improves reasoning quality. We evaluate SE-Agent on SWE-bench Verified to resolve real-world GitHub issues. Experimental results across five strong LLMs show that integrating SE-Agent delivers up to 55% relative improvement, achieving state-of-the-art performance among all open-source agents on SWE-bench Verified. Our code and demonstration materials are publicly available at https://github.com/JARVIS-Xs/SE-Agent.
♻ ☆ Security Concerns for Large Language Models: A Survey
Large Language Models (LLMs) such as ChatGPT and its competitors have caused a revolution in natural language processing, but their capabilities also introduce new security vulnerabilities. This survey provides a comprehensive overview of these emerging concerns, categorizing threats into several key areas: prompt injection and jailbreaking; adversarial attacks, including input perturbations and data poisoning; misuse by malicious actors to generate disinformation, phishing emails, and malware; and the worrisome risks inherent in autonomous LLM agents. Recently, a significant focus is increasingly being placed on the latter, exploring goal misalignment, emergent deception, self-preservation instincts, and the potential for LLMs to develop and pursue covert, misaligned objectives, a behavior known as scheming, which may even persist through safety training. We summarize recent academic and industrial studies from 2022 to 2025 that exemplify each threat, analyze proposed defenses and their limitations, and identify open challenges in securing LLM-based applications. We conclude by emphasizing the importance of advancing robust, multi-layered security strategies to ensure LLMs are safe and beneficial.
♻ ☆ Action Engine: Automatic Workflow Generation in FaaS
Function as a Service (FaaS) is poised to become the foundation of the next generation of cloud systems due to its inherent advantages in scalability, cost-efficiency, and ease of use. However, challenges such as the need for specialized knowledge, platform dependence, and difficulty in scalability in building functional workflows persist for cloud-native application developers. To overcome these challenges and mitigate the burden of developing FaaS-based applications, in this paper, we propose a mechanism called Action Engine, that makes use of tool-augmented large language models (LLMs) at its kernel to interpret human language queries and automates FaaS workflow generation, thereby, reducing the need for specialized expertise and manual design. Action Engine includes modules to identify relevant functions from the FaaS repository and seamlessly manage the data dependency between them, ensuring the developer's query is processed and resolved. Beyond that, Action Engine can execute the generated workflow by injecting the user-provided arguments. On another front, this work addresses a gap in tool-augmented LLM research via adopting an Automatic FaaS Workflow Generation perspective to systematically evaluate methodologies across four fundamental sub-processes. Through benchmarking various parameters, this research provides critical insights into streamlining workflow automation for real-world applications, specifically in the FaaS continuum. Our evaluations demonstrate that the Action Engine achieves comparable performance to the few-shot learning approach while maintaining platform- and language-agnosticism, thereby, mitigating provider-specific dependencies in workflow generation. We notice that Action Engine can unlock FaaS workflow generation for non-cloud-savvy developers and expedite the development cycles of cloud-native applications.
comment: Published in the Future Generation Computer Systems (FGCS) journal; Source code is available at: https://github.com/hpcclab/action_engine
♻ ☆ Source2Synth: Synthetic Data Generation and Curation Grounded in Real Data Sources
Synthetic data generation has recently emerged as a promising approach for enhancing the capabilities of large language models (LLMs) without the need for expensive human annotations. However, existing methods often generate data that can be low quality or contrived. In this paper, we introduce Source2Synth, a scalable approach for synthetic data generation and curation that is grounded in real-world data sources. Source2Synth takes as input a custom data source and produces synthetic data examples with intermediate reasoning steps. Our method improves the dataset quality by discarding low-quality generations based on their answerability. We demonstrate the generality of this approach by applying it to two tasks that leverage two different types of data: multi-hop question answering (MHQA), where we test complex reasoning abilities leveraging documents, and tabular question answering (TQA), where we test tool usage leveraging tables. Our method improves performance by 25.51% for TQA on WikiSQL and 22.57% for MHQA on HotpotQA compared to the fine-tuned baselines.
♻ ☆ JudgeLRM: Large Reasoning Models as a Judge
The rise of Large Language Models (LLMs) as evaluators offers a scalable alternative to human annotation, yet existing Supervised Fine-Tuning (SFT) for judges approaches often fall short in domains requiring complex reasoning. In this work, we investigate whether LLM judges truly benefit from enhanced reasoning capabilities. Through a detailed analysis of reasoning requirements across evaluation tasks, we reveal a negative correlation between SFT performance gains and the proportion of reasoning-demanding samples - highlighting the limitations of SFT in such scenarios. To address this, we introduce JudgeLRM, a family of judgment-oriented LLMs trained using reinforcement learning (RL) with judge-wise, outcome-driven rewards. JudgeLRM models consistently outperform both SFT-tuned and state-of-the-art reasoning models. Notably, JudgeLRM-3B surpasses GPT-4, and JudgeLRM-7B outperforms DeepSeek-R1 by 2.79% in F1 score, particularly excelling in judge tasks requiring deep reasoning.
comment: Preprint
♻ ☆ TASER: Table Agents for Schema-guided Extraction and Recommendation
Real-world financial documents report essential information about an entity's financial holdings that can span millions of different financial instrument types. Yet, these details are often buried in messy, multi-page, fragmented tables - for example, 99.4% of the tables in our dataset have no bounding boxes with the maximum number of rows amounting to 426 per table across 44 pages. To tackle these unique challenges from real-world tables, we present a continuously learning, agentic table extraction system, TASER (Table Agents for Schema-guided Extraction and Recommendation) that extracts highly unstructured, multi-page, heterogeneous tables into normalized, schema-conforming outputs. Our table agents execute on table detection, classification, extraction, and recommendations by leveraging an initial schema. Then, our Recommender Agent reviews the outputs, recommends schema revisions, and decides on the final recommendations, enabling TASER to outperform existing table detection models such as Table Transformer by 10.1%. Within this continuous learning process, we highlight that larger batch sizes result in a 104.3% increase in schema recommendations that are actionable and utilized, resulting in a 9.8% increase in extracted holdings - highlighting the importance of a continuous learning process. To train TASER, we have manually labeled 22,584 pages (28,150,449 tokens), 3,213 tables for $731,685,511,687 of holdings culminating in one of the first real financial table datasets. We release our dataset TASERTab to enable the research community to access real-world financial tables and outputs. Our results highlight the promise of agentic, schema-guided extraction systems for robust understanding of real-world financial tables.
comment: Withdrawn due to missing key sections in the paper
♻ ☆ Boosting Chart-to-Code Generation in MLLM via Dual Preference-Guided Refinement
Translating chart images into executable plotting scripts-referred to as the chart-to-code generation task-requires Multimodal Large Language Models (MLLMs) to perform fine-grained visual parsing, precise code synthesis, and robust cross-modal reasoning. However, this task is inherently under-constrained: multiple valid code implementations can produce the same visual chart, and evaluation must consider both code correctness and visual fidelity across diverse dimensions. This makes it difficult to learn accurate and generalizable mappings through standard supervised fine-tuning. To address these challenges, we propose a dual preference-guided refinement framework that combines a feedback-driven, dual-modality reward mechanism with iterative preference learning. Our approach introduces a structured variant generation strategy and a visual reward model to efficiently produce high-quality, aspect-aware preference pairs-making preference collection scalable and supervision more targeted. These preferences are used in an offline reinforcement learning setup to optimize the model toward multi-dimensional fidelity. Experimental results show that our framework significantly enhances the performance of general-purpose open-source MLLMs, enabling them to generate high-quality plotting code that rivals specialized chart-centric models and even some proprietary systems. The code and datasets are publicly available at https://github.com/Zhihan72/Chart2Code.
comment: Accepted by ACM MM 2025
♻ ☆ Neural Restoration of Greening Defects in Historical Autochrome Photographs Based on Purely Synthetic Data
The preservation of early visual arts, particularly color photographs, is challenged by deterioration caused by aging and improper storage, leading to issues like blurring, scratches, color bleeding, and fading defects. Despite great advances in image restoration and enhancement in recent years, such systematic defects often cannot be restored by current state-of-the-art software features as available e.g. in Adobe Photoshop, but would require the incorporation of defect-aware priors into the underlying machine learning techniques. However, there are no publicly available datasets of autochromes with defect annotations. In this paper, we address these limitations and present the first approach that allows the automatic removal of greening color defects in digitized autochrome photographs. For this purpose, we introduce an approach for accurately simulating respective defects and use the respectively obtained synthesized data with its ground truth defect annotations to train a generative AI model with a carefully designed loss function that accounts for color imbalances between defected and non-defected areas. As demonstrated in our evaluation, our approach allows for the efficient and effective restoration of the considered defects, thereby overcoming limitations of alternative techniques that struggle with accurately reproducing original colors and may require significant manual effort.
♻ ☆ MAViS: A Multi-Agent Framework for Long-Sequence Video Storytelling
Despite recent advances, long-sequence video generation frameworks still suffer from significant limitations: poor assistive capability, suboptimal visual quality, and limited expressiveness. To mitigate these limitations, we propose MAViS, an end-to-end multi-agent collaborative framework for long-sequence video storytelling. MAViS orchestrates specialized agents across multiple stages, including script writing, shot designing, character modeling, keyframe generation, video animation, and audio generation. In each stage, agents operate under the 3E Principle -- Explore, Examine, and Enhance -- to ensure the completeness of intermediate outputs. Considering the capability limitations of current generative models, we propose the Script Writing Guidelines to optimize compatibility between scripts and generative tools. Experimental results demonstrate that MAViS achieves state-of-the-art performance in assistive capability, visual quality, and video expressiveness. Its modular framework further enables scalability with diverse generative models and tools. With just a brief user prompt, MAViS is capable of producing high-quality, expressive long-sequence video storytelling, enriching inspirations and creativity for users. To the best of our knowledge, MAViS is the only framework that provides multimodal design output -- videos with narratives and background music.
comment: Video Generation Agent
♻ ☆ Identity Preserving 3D Head Stylization with Multiview Score Distillation
3D head stylization transforms realistic facial features into artistic representations, enhancing user engagement across gaming and virtual reality applications. While 3D-aware generators have made significant advancements, many 3D stylization methods primarily provide near-frontal views and struggle to preserve the unique identities of original subjects, often resulting in outputs that lack diversity and individuality. This paper addresses these challenges by leveraging the PanoHead model, synthesizing images from a comprehensive 360-degree perspective. We propose a novel framework that employs negative log-likelihood distillation (LD) to enhance identity preservation and improve stylization quality. By integrating multi-view grid score and mirror gradients within the 3D GAN architecture and introducing a score rank weighing technique, our approach achieves substantial qualitative and quantitative improvements. Our findings not only advance the state of 3D head stylization but also provide valuable insights into effective distillation processes between diffusion models and GANs, focusing on the critical issue of identity preservation. Please visit the https://three-bee.github.io/head_stylization for more visuals.
comment: https://three-bee.github.io/head_stylization
♻ ☆ Don't Push the Button! Exploring Data Leakage Risks in Machine Learning and Transfer Learning
Machine Learning (ML) has revolutionized various domains, offering predictive capabilities in several areas. However, with the increasing accessibility of ML tools, many practitioners, lacking deep ML expertise, adopt a "push the button" approach, utilizing user-friendly interfaces without a thorough understanding of underlying algorithms. While this approach provides convenience, it raises concerns about the reliability of outcomes, leading to challenges such as incorrect performance evaluation. This paper addresses a critical issue in ML, known as data leakage, where unintended information contaminates the training data, impacting model performance evaluation. Users, due to a lack of understanding, may inadvertently overlook crucial steps, leading to optimistic performance estimates that may not hold in real-world scenarios. The discrepancy between evaluated and actual performance on new data is a significant concern. In particular, this paper categorizes data leakage in ML, discussing how certain conditions can propagate through the ML workflow. Furthermore, it explores the connection between data leakage and the specific task being addressed, investigates its occurrence in Transfer Learning, and compares standard inductive ML with transductive ML frameworks. The conclusion summarizes key findings, emphasizing the importance of addressing data leakage for robust and reliable ML applications.
comment: Published on Artificial Intelligence Review journal. The paper is in Open Access available at https://link.springer.com/article/10.1007/s10462-025-11326-3
♻ ☆ Uncertainty Quantification for Language Models: A Suite of Black-Box, White-Box, LLM Judge, and Ensemble Scorers
Hallucinations are a persistent problem with Large Language Models (LLMs). As these models become increasingly used in high-stakes domains, such as healthcare and finance, the need for effective hallucination detection is crucial. To this end, we outline a versatile framework for zero-resource hallucination detection that practitioners can apply to real-world use cases. To achieve this, we adapt a variety of existing uncertainty quantification (UQ) techniques, including black-box UQ, white-box UQ, and LLM-as-a-Judge, transforming them as necessary into standardized response-level confidence scores ranging from 0 to 1. To enhance flexibility, we propose a tunable ensemble approach that incorporates any combination of the individual confidence scores. This approach enables practitioners to optimize the ensemble for a specific use case for improved performance. To streamline implementation, the full suite of scorers is offered in this paper's companion Python toolkit, UQLM. To evaluate the performance of the various scorers, we conduct an extensive set of experiments using several LLM question-answering benchmarks. We find that our tunable ensemble typically surpasses its individual components and outperforms existing hallucination detection methods. Our results demonstrate the benefits of customized hallucination detection strategies for improving the accuracy and reliability of LLMs.
comment: UQLM repository: https://github.com/cvs-health/uqlm
♻ ☆ Hallucinations and Key Information Extraction in Medical Texts: A Comprehensive Assessment of Open-Source Large Language Models
Clinical summarization is crucial in healthcare as it distills complex medical data into digestible information, enhancing patient understanding and care management. Large language models (LLMs) have shown significant potential in automating and improving the accuracy of such summarizations due to their advanced natural language understanding capabilities. These models are particularly applicable in the context of summarizing medical/clinical texts, where precise and concise information transfer is essential. In this paper, we investigate the effectiveness of open-source LLMs in extracting key events from discharge reports, including admission reasons, major in-hospital events, and critical follow-up actions. In addition, we also assess the prevalence of various types of hallucinations in the summaries produced by these models. Detecting hallucinations is vital as it directly influences the reliability of the information, potentially affecting patient care and treatment outcomes. We conduct comprehensive simulations to rigorously evaluate the performance of these models, further probing the accuracy and fidelity of the extracted content in clinical summarization. Our results reveal that while the LLMs (e.g., Qwen2.5 and DeepSeek-v2) perform quite well in capturing admission reasons and hospitalization events, they are generally less consistent when it comes to identifying follow-up recommendations, highlighting broader challenges in leveraging LLMs for comprehensive summarization.
♻ ☆ Multi-agent Auditory Scene Analysis
Auditory scene analysis (ASA) aims to retrieve information from the acoustic environment, by carrying out three main tasks: sound source location, separation, and classification. These tasks are traditionally executed with a linear data flow, where the sound sources are first located; then, using their location, each source is separated into its own audio stream; from each of which, information is extracted that is relevant to the application scenario (audio event detection, speaker identification, emotion classification, etc.). However, running these tasks linearly increases the overall response time, while making the last tasks (separation and classification) highly sensitive to errors of the first task (location). A considerable amount of effort and computational complexity has been employed in the state-of-the-art to develop techniques that are the least error-prone possible. However, doing so gives rise to an ASA system that is non-viable in many applications that require a small computational footprint and a low response time, such as bioacoustics, hearing-aid design, search and rescue, human-robot interaction, etc. To this effect, in this work, a multi-agent approach is proposed to carry out ASA where the tasks are run in parallel, with feedback loops between them to compensate for local errors, such as: using the quality of the separation output to correct the location error; and using the classification result to reduce the localization's sensitivity towards interferences. The result is a multi-agent auditory scene analysis (MASA) system that is robust against local errors, without a considerable increase in complexity, and with a low response time. The complete proposed MASA system is provided as a publicly available framework that uses open-source tools for sound acquisition and reproduction (JACK) and inter-agent communication (ROS2), allowing users to add their own agents.
comment: Submitted to Applied Soft Computing
♻ ☆ The NordDRG AI Benchmark for Large Language Models
Large language models (LLMs) are being piloted for clinical coding and decision support, yet no open benchmark targets the hospital-funding layer where Diagnosis-Related Groups (DRGs) determine reimbursement. In most OECD systems, DRGs route a substantial share of multi-trillion-dollar health spending through governed grouper software, making transparency and auditability first-order concerns. We release NordDRG-AI-Benchmark, the first public, rule-complete test bed for DRG reasoning. The package includes (i) machine-readable approximately 20-sheet NordDRG definition tables and (ii) expert manuals and change-log templates that capture governance workflows. It exposes two suites: a 13-task Logic benchmark (code lookup, cross-table inference, grouping features, multilingual terminology, and CC/MCC validity checks) and a 13-task Grouper benchmark that requires full DRG grouper emulation with strict exact-match scoring on both the DRG and the triggering drg_logic.id. Lightweight reference agents (LogicAgent, GrouperAgent) enable artefact-only evaluation. Under an artefact-only (no web) setting, on the 13 Logic tasks GPT-5 Thinking and Opus 4.1 score 13/13, o3 scores 12/13; mid-tier models (GPT-5 Thinking Mini, o4-mini, GPT-5 Fast) achieve 6-8/13, and remaining models score 5/13 or below. On full grouper emulation across 13 tasks, GPT-5 Thinking solves 7/13, o3 6/13, o4-mini 3/13; GPT-5 Thinking Mini solves 1/13, and all other tested endpoints score 0/13. To our knowledge, this is the first public report of an LLM partially emulating the complete NordDRG grouper logic with governance-grade traceability. Coupling a rule-complete release with exact-match tasks and open scoring provides a reproducible yardstick for head-to-head and longitudinal evaluation in hospital funding. Benchmark materials available in Github.
comment: 23 pages, 4 figures
♻ ☆ Common Data Format (CDF): A Standardized Format for Match-Data in Football (Soccer)
During football matches, a variety of different parties (e.g., companies) each collect (possibly overlapping) data about the match ranging from basic information (e.g., starting players) to detailed positional data. This data is provided to clubs, federations, and other organizations who are increasingly interested in leveraging this data to inform their decision making. Unfortunately, analyzing such data pose significant barriers because each provider may (1) collect different data, (2) use different specifications even within the same category of data, (3) represent the data differently, and (4) delivers the data in a different manner (e.g., file format, protocol). Consequently, working with these data requires a significant investment of time and money. The goal of this work is to propose a uniform and standardized format for football data called the Common Data Format (CDF). The CDF specifies a minimal schema for five types of match data: match sheet data, video footage, event data, tracking data, and match meta data. It aims to ensure that the provided data is clear, sufficiently contextualized (e.g., its provenance is clear), and complete such that it enables common downstream analysis tasks. Concretely, this paper will detail the technical specifications of the CDF, the representational choices that were made to help ensure the clarity of the provided data, and a concrete approach for delivering data in the CDF. This represents Version 1.0.0 of the CDF.
♻ ☆ Testing Components of the Attention Schema Theory in Artificial Neural Networks
Growing evidence suggests that the brain uses an attention schema, or a simplified model of attention, to help control what it attends to. One proposed benefit of this model is to allow agents to model the attention states of other agents, and thus predict and interact with other agents. The effects of an attention schema may be examined in artificial agents. Although attention mechanisms in artificial agents are different from in biological brains, there may be some principles in common. In both cases, select features or representations are emphasized for better performance. Here, using neural networks with transformer attention mechanisms, we asked whether the addition of an attention schema affected the ability of agents to make judgements about and cooperate with each other. First, we found that an agent with an attention schema is better at categorizing the attention states of other agents (higher accuracy). Second, an agent with an attention schema develops a pattern of attention that is easier for other agents to categorize. Third, in a joint task where two agents must predict each other to paint a scene together, adding an attention schema improves performance. Finally, the performance improvements are not caused by a general increase in network complexity. Instead, improvement is specific to tasks involving judging, categorizing, or predicting the attention of other agents. These results support the hypothesis that an attention schema has computational properties beneficial to mutual interpretability and interactive behavior. We speculate that the same principles might pertain to biological attention and attention schemas in people.
♻ ☆ Benchmarking graph construction by large language models for coherence-driven inference
We devise an algorithm to generate propositions that objectively instantiate graphs supporting coherence-driven inference. We also benchmark the ability of large language models (LLMs) to reconstruct coherence graphs from (a simple transformation of) propositions expressed in natural language, with promising results from a single prompt to reasoning-optimized LLMs. For example, o1/3/4-mini achieve perfect reconstruction half of the time on sparse graphs. Coherence-driven inference on consistency evaluations by LLMs may advance machine cognition capabilities.
♻ ☆ Agent RL Scaling Law: Agent RL with Spontaneous Code Execution for Mathematical Problem Solving
Large Language Models (LLMs) often struggle with mathematical reasoning tasks requiring precise, verifiable computation. While Reinforcement Learning (RL) from outcome-based rewards enhances text-based reasoning, understanding how agents autonomously learn to leverage external tools like code execution remains crucial. We investigate RL from outcome-based rewards for Tool-Integrated Reasoning, ZeroTIR, training base LLMs to spontaneously generate and execute Python code for mathematical problems without supervised tool-use examples. Our central contribution is we demonstrate that as RL training progresses, key metrics scale predictably. Specifically, we observe strong positive correlations where increased training steps lead to increases in the spontaneous code execution frequency, the average response length, and, critically, the final task accuracy. This suggests a quantifiable relationship between computational effort invested in training and the emergence of effective, tool-augmented reasoning strategies. We implement a robust framework featuring a decoupled code execution environment and validate our findings across standard RL algorithms and frameworks. Experiments show ZeroTIR significantly surpasses non-tool ZeroRL baselines on challenging math benchmarks. Our findings provide a foundational understanding of how autonomous tool use is acquired and scales within Agent RL, offering a reproducible benchmark for future studies. Code is released at \href{https://github.com/yyht/openrlhf_async_pipline}{https://github.com/yyht/openrlhf\_async\_pipline}.
♻ ☆ The importance of visual modelling languages in generative software engineering
Multimodal GPTs represent a watershed in the interplay between Software Engineering and Generative Artificial Intelligence. GPT-4 accepts image and text inputs, rather than simply natural language. We investigate relevant use cases stemming from these enhanced capabilities of GPT-4. To the best of our knowledge, no other work has investigated similar use cases involving Software Engineering tasks carried out via multimodal GPTs prompted with a mix of diagrams and natural language.
comment: 9 pages, working paper
♻ ☆ KIRETT: Knowledge-Graph-Based Smart Treatment Assistant for Intelligent Rescue Operations
Over the years, the need for rescue operations throughout the world has increased rapidly. Demographic changes and the resulting risk of injury or health disorders form the basis for emergency calls. In such scenarios, first responders are in a rush to reach the patient in need, provide first aid, and save lives. In these situations, they must be able to provide personalized and optimized healthcare in the shortest possible time and estimate the patients condition with the help of freshly recorded vital data in an emergency situation. However, in such a timedependent situation, first responders and medical experts cannot fully grasp their knowledge and need assistance and recommendation for further medical treatments. To achieve this, on the spot calculated, evaluated, and processed knowledge must be made available to improve treatments by first responders. The Knowledge Graph presented in this article as a central knowledge representation provides first responders with an innovative knowledge management that enables intelligent treatment recommendations with an artificial intelligence-based pre-recognition of the situation.
comment: LWDA'23, KIRETT project, University of Siegen, Germany
♻ ☆ EoH-S: Evolution of Heuristic Set using LLMs for Automated Heuristic Design
Automated Heuristic Design (AHD) using Large Language Models (LLMs) has achieved notable success in recent years. Despite the effectiveness of existing approaches, they only design a single heuristic to serve all problem instances, often inducing poor generalization across different distributions or settings. To address this issue, we propose Automated Heuristic Set Design (AHSD), a new formulation for LLM-driven AHD. The aim of AHSD is to automatically generate a small-sized complementary heuristic set to serve diverse problem instances, such that each problem instance could be optimized by at least one heuristic in this set. We show that the objective function of AHSD is monotone and supermodular. Then, we propose Evolution of Heuristic Set (EoH-S) to apply the AHSD formulation for LLM-driven AHD. With two novel mechanisms of complementary population management and complementary-aware memetic search, EoH-S could effectively generate a set of high-quality and complementary heuristics. Comprehensive experimental results on three AHD tasks with diverse instances spanning various sizes and distributions demonstrate that EoH-S consistently outperforms existing state-of-the-art AHD methods and achieves up to 60\% performance improvements.
♻ ☆ Towards the Use of Saliency Maps for Explaining Low-Quality Electrocardiograms to End Users ICML 2022
When using medical images for diagnosis, either by clinicians or artificial intelligence (AI) systems, it is important that the images are of high quality. When an image is of low quality, the medical exam that produced the image often needs to be redone. In telemedicine, a common problem is that the quality issue is only flagged once the patient has left the clinic, meaning they must return in order to have the exam redone. This can be especially difficult for people living in remote regions, who make up a substantial portion of the patients at Portal Telemedicina, a digital healthcare organization based in Brazil. In this paper, we report on ongoing work regarding (i) the development of an AI system for flagging and explaining low-quality medical images in real-time, (ii) an interview study to understand the explanation needs of stakeholders using the AI system at OurCompany, and, (iii) a longitudinal user study design to examine the effect of including explanations on the workflow of the technicians in our clinics. To the best of our knowledge, this would be the first longitudinal study on evaluating the effects of XAI methods on end-users -- stakeholders that use AI systems but do not have AI-specific expertise. We welcome feedback and suggestions on our experimental setup.
comment: Accepted to ICML 2022 Workshop on Interpretable ML in Healthcare
♻ ☆ STEM: Efficient Relative Capability Evaluation of LLMs through Structured Transition Samples AAAI 2026
Evaluating large language models (LLMs) has become increasingly challenging as model capabilities advance rapidly. While recent models often achieve higher scores on standard benchmarks, these improvements do not consistently reflect enhanced real-world reasoning capabilities. Moreover, widespread overfitting to public benchmarks and the high computational cost of full evaluations have made it both expensive and less effective to distinguish meaningful differences between models. To address these challenges, we propose the \textbf{S}tructured \textbf{T}ransition \textbf{E}valuation \textbf{M}ethod (STEM), a lightweight and interpretable evaluation framework for efficiently estimating the relative capabilities of LLMs. STEM identifies \textit{significant transition samples} (STS) by analyzing consistent performance transitions among LLMs of the same architecture but varying parameter scales. These samples enable STEM to effectively estimate the capability position of an unknown model. Qwen3 model family is applied to construct the STS pool on six diverse and representative benchmarks. To assess generalizability. Experimental results indicate that STEM reliably captures performance trends, aligns with ground-truth rankings of model capability. These findings highlight STEM as a practical and scalable method for fine-grained, architecture-agnostic evaluation of LLMs.
comment: Submit to AAAI 2026
♻ ☆ Critique-GRPO: Advancing LLM Reasoning with Natural Language and Numerical Feedback
Recent advances in reinforcement learning (RL) with numerical feedback, such as scalar rewards, have significantly enhanced the complex reasoning capabilities of large language models (LLMs). Despite this success, we identify three key challenges encountered by RL with solely numerical feedback: performance plateaus, limited effectiveness of spontaneous self-reflection, and persistent failures. We then demonstrate that RL-finetuned models, even after exhibiting performance plateaus, can generate correct refinements on persistently failed problems by leveraging natural language feedback in the form of critiques. Building on this insight, we propose Critique-GRPO, an online RL framework that integrates both natural language and numerical feedback for effective policy optimization. Critique-GRPO enables LLMs to learn from initial responses and critique-guided self-refinements simultaneously while maintaining exploration. Additionally, we employ a shaping function to amplify learning from correct, especially unfamiliar, refinements and penalize incorrect ones. Extensive experiments with Qwen2.5-7B-Base, Qwen2.5-Math-7B-Base, and Qwen3-8B demonstrate that Critique-GRPO consistently outperforms supervised learning and RL-based fine-tuning methods across eight challenging mathematical, STEM, and general reasoning tasks. Specifically, Critique-GRPO improves average pass@1 scores across all compared methods by approximately +4.4% on Qwen2.5-7B-Base and +3.8% on Qwen3-8B. Notably, Critique-GRPO enables effective self-improvement through self-critiquing, achieving significant gains over GRPO, e.g., +16.7% pass@1 improvement on AIME 2024.
comment: 52 pages, updated with new experimental results and implementation details
♻ ☆ Enhancing Temporal Sensitivity of Large Language Model for Recommendation with Counterfactual Tuning
Recent advances have applied large language models (LLMs) to sequential recommendation, leveraging their pre-training knowledge and reasoning capabilities to provide more personalized user experiences. However, existing LLM-based methods fail to sufficiently leverage the rich temporal information inherent in users' historical interaction sequences, stemming from fundamental architectural constraints: LLMs process information through self-attention mechanisms that lack inherent sequence ordering and rely on position embeddings designed primarily for natural language rather than user interaction sequences. This limitation significantly impairs their ability to capture the evolution of user preferences over time and predict future interests accurately. To address this critical gap, we propose \underline{C}ounterfactual \underline{E}nhanced \underline{T}emporal Framework for LLM-Based \underline{Rec}ommendation (CETRec). CETRec is grounded in causal inference principles, which allow it to isolate and measure the specific impact of temporal information on recommendation outcomes. Combined with our counterfactual tuning task derived from causal analysis, CETRec effectively enhances LLMs' awareness of both absolute order (how recently items were interacted with) and relative order (the sequential relationships between items). Extensive experiments on real-world datasets demonstrate the effectiveness of our CETRec. Our code is available at https://anonymous.4open.science/r/CETRec-B9CE/.
♻ ☆ Benchmarking Vector, Graph and Hybrid Retrieval Augmented Generation (RAG) Pipelines for Open Radio Access Networks (ORAN)
Generative AI (GenAI) is expected to play a pivotal role in enabling autonomous optimization in future wireless networks. Within the ORAN architecture, Large Language Models (LLMs) can be specialized to generate xApps and rApps by leveraging specifications and API definitions from the RAN Intelligent Controller (RIC) platform. However, fine-tuning base LLMs for telecom-specific tasks remains expensive and resource-intensive. Retrieval-Augmented Generation (RAG) offers a practical alternative through in-context learning, enabling domain adaptation without full retraining. While traditional RAG systems rely on vector-based retrieval, emerging variants such as GraphRAG and Hybrid GraphRAG incorporate knowledge graphs or dual retrieval strategies to support multi-hop reasoning and improve factual grounding. Despite their promise, these methods lack systematic, metric-driven evaluations, particularly in high-stakes domains such as ORAN. In this study, we conduct a comparative evaluation of Vector RAG, GraphRAG, and Hybrid GraphRAG using ORAN specifications. We assess performance across varying question complexities using established generation metrics: faithfulness, answer relevance, context relevance, and factual correctness. Results show that both GraphRAG and Hybrid GraphRAG outperform traditional RAG. Hybrid GraphRAG improves factual correctness by 8%, while GraphRAG improves context relevance by 11%.
♻ ☆ Hands-On: Segmenting Individual Signs from Continuous Sequences
This work tackles the challenge of continuous sign language segmentation, a key task with huge implications for sign language translation and data annotation. We propose a transformer-based architecture that models the temporal dynamics of signing and frames segmentation as a sequence labeling problem using the Begin-In-Out (BIO) tagging scheme. Our method leverages the HaMeR hand features, and is complemented with 3D Angles. Extensive experiments show that our model achieves state-of-the-art results on the DGS Corpus, while our features surpass prior benchmarks on BSLCorpus.
comment: Accepted in the 19th IEEE International Conference on Automatic Face and Gesture Recognition
♻ ☆ CRED-SQL: Enhancing Real-world Large Scale Database Text-to-SQL Parsing through Cluster Retrieval and Execution Description
Recent advances in large language models (LLMs) have significantly improved the accuracy of Text-to-SQL systems. However, a critical challenge remains: the semantic mismatch between natural language questions (NLQs) and their corresponding SQL queries. This issue is exacerbated in large-scale databases, where semantically similar attributes hinder schema linking and semantic drift during SQL generation, ultimately reducing model accuracy. To address these challenges, we introduce CRED-SQL, a framework designed for large-scale databases that integrates Cluster Retrieval and Execution Description. CRED-SQL first performs cluster-based large-scale schema retrieval to pinpoint the tables and columns most relevant to a given NLQ, alleviating schema mismatch. It then introduces an intermediate natural language representation-Execution Description Language (EDL)-to bridge the gap between NLQs and SQL. This reformulation decomposes the task into two stages: Text-to-EDL and EDL-to-SQL, leveraging LLMs' strong general reasoning capabilities while reducing semantic deviation. Extensive experiments on two large-scale, cross-domain benchmarks-SpiderUnion and BirdUnion-demonstrate that CRED-SQL achieves new state-of-the-art (SOTA) performance, validating its effectiveness and scalability. Our code is available at https://github.com/smduan/CRED-SQL.git
♻ ☆ TolerantECG: A Foundation Model for Imperfect Electrocardiogram
The electrocardiogram (ECG) is an essential and effective tool for diagnosing heart diseases. However, its effectiveness can be compromised by noise or unavailability of one or more leads of the standard 12-lead recordings, resulting in diagnostic errors or uncertainty. To address these challenges, we propose TolerantECG, a foundation model for ECG signals that is robust to noise and capable of functioning with arbitrary subsets of the standard 12-lead ECG. TolerantECG training combines contrastive and self-supervised learning frameworks to jointly learn ECG signal representations alongside their corresponding knowledge-retrieval-based text report descriptions and corrupted or lead-missing signals. Comprehensive benchmarking results demonstrate that TolerantECG consistently ranks as the best or second-best performer across various ECG signal conditions and class levels in the PTB-XL dataset, and achieves the highest performance on the MIT-BIH Arrhythmia Database.
comment: Accepted at ACM MM 2025
♻ ☆ Benchmarking Pre-Trained Time Series Models for Electricity Price Forecasting
Accurate electricity price forecasting (EPF) is crucial for effective decision-making in power trading on the spot market. While recent advances in generative artificial intelligence (GenAI) and pre-trained large language models (LLMs) have inspired the development of numerous time series foundation models (TSFMs) for time series forecasting, their effectiveness in EPF remains uncertain. To address this gap, we benchmark several state-of-the-art pretrained models--Chronos-Bolt, Chronos-T5, TimesFM, Moirai, Time-MoE, and TimeGPT--against established statistical and machine learning (ML) methods for EPF. Using 2024 day-ahead auction (DAA) electricity prices from Germany, France, the Netherlands, Austria, and Belgium, we generate daily forecasts with a one-day horizon. Chronos-Bolt and Time-MoE emerge as the strongest among the TSFMs, performing on par with traditional models. However, the biseasonal MSTL model, which captures daily and weekly seasonality, stands out for its consistent performance across countries and evaluation metrics, with no TSFM statistically outperforming it.
♻ ☆ EvoCurr: Self-evolving Curriculum with Behavior Code Generation for Complex Decision-making
Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse domains, including programming, planning, and decision-making. However, their performance often degrades when faced with highly complex problem instances that require deep reasoning over long horizons. In such cases, direct problem-solving approaches can lead to inefficiency or failure due to the lack of structured intermediate guidance. To address this, we propose a novel self-evolve framework, EvoCurr, in which a dedicated curriculum-generation LLM constructs a sequence of problem instances with gradually increasing difficulty, tailored to the solver LLM's learning progress. The curriculum dynamically adapts easing challenges when the solver struggles and escalating them when success is consistent, thus maintaining an optimal learning trajectory. This approach enables the solver LLM, implemented as a code-generation model producing Python decision-tree scripts, to progressively acquire the skills needed for complex decision-making tasks. Experimental results on challenging decision-making benchmarks show that our method significantly improves task success rates and solution efficiency compared to direct-solving baselines. These findings suggest that LLM-driven curriculum learning holds strong potential for enhancing automated reasoning in real-world, high-complexity domains.
♻ ☆ Social Debiasing for Fair Multi-modal LLMs
Multi-modal Large Language Models (MLLMs) have dramatically advanced the research field and delivered powerful vision-language understanding capabilities. However, these models often inherit deep-rooted social biases from their training data, leading to uncomfortable responses with respect to attributes such as race and gender. This paper addresses the issue of social biases in MLLMs by i) introducing a comprehensive counterfactual dataset with multiple social concepts (CMSC), which complements existing datasets by providing 18 diverse and balanced social concepts; and ii) proposing a counter-stereotype debiasing (CSD) strategy that mitigates social biases in MLLMs by leveraging the opposites of prevalent stereotypes. CSD incorporates both a novel bias-aware data sampling method and a loss rescaling method, enabling the model to effectively reduce biases. We conduct extensive experiments with four prevalent MLLM architectures. The results demonstrate the advantage of the CMSC dataset and the edge of CSD strategy in reducing social biases compared to existing competing methods, without compromising the overall performance on general multi-modal reasoning benchmarks.
comment: Project page: https://github.com/xaCheng1996/Social_Debiasing_For_Fair_MLLMs
♻ ☆ A Comprehensive Benchmark on Spectral GNNs: The Impact on Efficiency, Memory, and Effectiveness
With recent advancements in graph neural networks (GNNs), spectral GNNs have received increasing popularity by virtue of their ability to retrieve graph signals in the spectral domain. These models feature uniqueness in efficient computation as well as rich expressiveness, which stems from advanced management and profound understanding of graph data. However, few systematic studies have been conducted to assess spectral GNNs, particularly in benchmarking their efficiency, memory consumption, and effectiveness in a unified and fair manner. There is also a pressing need to select spectral models suitable for learning specific graph data and deploying them to massive web-scale graphs, which is currently constrained by the varied model designs and training settings. In this work, we extensively benchmark spectral GNNs with a focus on the spectral perspective, demystifying them as spectral graph filters. We analyze and categorize 35 GNNs with 27 corresponding filters, spanning diverse formulations and utilizations of the graph data. Then, we implement the filters within a unified spectral-oriented framework with dedicated graph computations and efficient training schemes. In particular, our implementation enables the deployment of spectral GNNs over million-scale graphs and various tasks with comparable performance and less overhead. Thorough experiments are conducted on the graph filters with comprehensive metrics on effectiveness and efficiency, offering novel observations and practical guidelines that are only available from our evaluations across graph scales. Different from the prevailing belief, our benchmark reveals an intricate landscape regarding the effectiveness and efficiency of spectral graph filters, demonstrating the potential to achieve desirable performance through tailored spectral manipulation of graph data.
comment: Technical Report with Appendix. Our code and evaluation is available at: https://github.com/gdmnl/Spectral-GNN-Benchmark
♻ ☆ FMSD-TTS: Few-shot Multi-Speaker Multi-Dialect Text-to-Speech Synthesis for Ü-Tsang, Amdo and Kham Speech Dataset Generation
Tibetan is a low-resource language with minimal parallel speech corpora spanning its three major dialects-\"U-Tsang, Amdo, and Kham-limiting progress in speech modeling. To address this issue, we propose FMSD-TTS, a few-shot, multi-speaker, multi-dialect text-to-speech framework that synthesizes parallel dialectal speech from limited reference audio and explicit dialect labels. Our method features a novel speaker-dialect fusion module and a Dialect-Specialized Dynamic Routing Network (DSDR-Net) to capture fine-grained acoustic and linguistic variations across dialects while preserving speaker identity. Extensive objective and subjective evaluations demonstrate that FMSD-TTS significantly outperforms baselines in both dialectal expressiveness and speaker similarity. We further validate the quality and utility of the synthesized speech through a challenging speech-to-speech dialect conversion task. Our contributions include: (1) a novel few-shot TTS system tailored for Tibetan multi-dialect speech synthesis, (2) the public release of a large-scale synthetic Tibetan speech corpus generated by FMSD-TTS, and (3) an open-source evaluation toolkit for standardized assessment of speaker similarity, dialect consistency, and audio quality.
comment: 18 pages
♻ ☆ MinD: Learning A Dual-System World Model for Real-Time Planning and Implicit Risk Analysis
Video Generation Models (VGMs) have become powerful backbones for Vision-Language-Action (VLA) models, leveraging large-scale pretraining for robust dynamics modeling. However, current methods underutilize their distribution modeling capabilities for predicting future states. Two challenges hinder progress: integrating generative processes into feature learning is both technically and conceptually underdeveloped, and naive frame-by-frame video diffusion is computationally inefficient for real-time robotics. To address these, we propose Manipulate in Dream (MinD), a dual-system world model for real-time, risk-aware planning. MinD uses two asynchronous diffusion processes: a low-frequency visual generator (LoDiff) that predicts future scenes and a high-frequency diffusion policy (HiDiff) that outputs actions. Our key insight is that robotic policies do not require fully denoised frames but can rely on low-resolution latents generated in a single denoising step. To connect early predictions to actions, we introduce DiffMatcher, a video-action alignment module with a novel co-training strategy that synchronizes the two diffusion models. MinD achieves a 63% success rate on RL-Bench, 60% on real-world Franka tasks, and operates at 11.3 FPS, demonstrating the efficiency of single-step latent features for control signals. Furthermore, MinD identifies 74% of potential task failures in advance, providing real-time safety signals for monitoring and intervention. This work establishes a new paradigm for efficient and reliable robotic manipulation using generative world models.
♻ ☆ Feature Distillation is the Better Choice for Model-Heterogeneous Federated Learning
Model-Heterogeneous Federated Learning (Hetero-FL) has attracted growing attention for its ability to aggregate knowledge from heterogeneous models while keeping private data locally. To better aggregate knowledge from clients, ensemble distillation, as a widely used and effective technique, is often employed after global aggregation to enhance the performance of the global model. However, simply combining Hetero-FL and ensemble distillation does not always yield promising results and can make the training process unstable. The reason is that existing methods primarily focus on logit distillation, which, while being model-agnostic with softmax predictions, fails to compensate for the knowledge bias arising from heterogeneous models. To tackle this challenge, we propose a stable and efficient Feature Distillation for model-heterogeneous Federated learning, dubbed FedFD, that can incorporate aligned feature information via orthogonal projection to integrate knowledge from heterogeneous models better. Specifically, a new feature-based ensemble federated knowledge distillation paradigm is proposed. The global model on the server needs to maintain a projection layer for each client-side model architecture to align the features separately. Orthogonal techniques are employed to re-parameterize the projection layer to mitigate knowledge bias from heterogeneous models and thus maximize the distilled knowledge. Extensive experiments show that FedFD achieves superior performance compared to state-of-the-art methods.
♻ ☆ Each to Their Own: Exploring the Optimal Embedding in RAG
Recently, as Large Language Models (LLMs) have fundamentally impacted various fields, the methods for incorporating up-to-date information into LLMs or adding external knowledge to construct domain-specific models have garnered wide attention. Retrieval-Augmented Generation (RAG), serving as an inference-time scaling method, is notable for its low cost and minimal effort for parameter tuning. However, due to heterogeneous training data and model architecture, the variant embedding models used in RAG exhibit different benefits across various areas, often leading to different similarity calculation results and, consequently, varying response quality from LLMs. To address this problem, we propose and examine two approaches to enhance RAG by combining the benefits of multiple embedding models, named Mixture-Embedding RAG and Confident RAG. Mixture-Embedding RAG simply sorts and selects retrievals from multiple embedding models based on standardized similarity; however, it does not outperform vanilla RAG. In contrast, Confident RAG generates responses multiple times using different embedding models and then selects the responses with the highest confidence level, demonstrating average improvements of approximately 10% and 5% over vanilla LLMs and RAG, respectively. The consistent results across different LLMs and embedding models indicate that Confident RAG is an efficient plug-and-play approach for various domains. We will release our code upon publication.
♻ ☆ Input Time Scaling
Current Large Language Models (LLMs) are usually post-trained on large-scale carefully curated datasets (data & training scaling) and doing reasoning in test time (inference time scaling). In this work, we present a new scaling paradigm, Input Time Scaling, to complement previous scaling methods by putting resources on queries (input time). During training and testing, we combine meta-knowledge from LLMs to refine inputs with different strategies. We also find a new phenomenon, training-testing co-design there. We need to apply query strategies during both training and testing. Only applying strategies on training or testing would seriously degrade the performance. We are also surprised to find that seemingly low data quality datasets can gain high performance. Adding irrelevant information to the queries, randomly selecting examples from a minimally filtered dataset, can even perform the best. These findings contradict the widely held inductive bias, "garbage in, garbage out". Curating datasets with seemingly high-quality data can even potentially limit the performance ceiling. In addition, models trained on more data with similar quality (15k VS 1k) perform worse, simple dataset size scaling should also be carefully inspected. The good news is that our findings are compatible with the Less is More phenomenon. A small set of examples is enough to evoke high-level reasoning ability. With experiments on models trained on Qwen2.5-32B-Instruct, we are able to reach SOTA performance among 32B models on AIME24(76.7%) and AIME25(76.7%) pass@1. We can further achieve AIME24(76.7%) and AIME25(80%) with a majority vote of three models. Starting from DeepSeek-R1-Distill-Qwen-32B, the best result would be 86.7% on AIME24 and 76.7% on AIME25. To facilitate reproducibility and further research, we are working on open-source our datasets, data pipelines, evaluation results, and checkpoints.
♻ ☆ PathGPT: Reframing Path Recommendation as a Natural Language Generation Task with Retrieval-Augmented Language Models
Path recommendation (PR) aims to generate travel paths that are customized to a user's specific preferences and constraints. Conventional approaches often employ explicit optimization objectives or specialized machine learning architectures; however, these methods typically exhibit limited flexibility and generalizability, necessitating costly retraining to accommodate new scenarios. This paper introduces an alternative paradigm that conceptualizes PR as a natural language generation task. We present PathGPT, a retrieval-augmented large language model (LLM) system that leverages historical trajectory data and natural language user constraints to generate plausible paths. The proposed methodology first converts raw trajectory data into a human-interpretable textual format, which is then stored in a database. Subsequently, a hybrid retrieval system extracts path-specific context from this database to inform a pretrained LLM. The primary contribution of this work is a novel framework that demonstrates how integrating established information retrieval and generative model components can enable adaptive, zero-shot path generation across diverse scenarios. Extensive experiments on large-scale trajectory datasets indicate that PathGPT's performance is competitive with specialized, learning-based methods, underscoring its potential as a flexible and generalizable path generation system that avoids the need for retraining inherent in previous data-driven models.
♻ ☆ When Good Sounds Go Adversarial: Jailbreaking Audio-Language Models with Benign Inputs
As large language models become increasingly integrated into daily life, audio has emerged as a key interface for human-AI interaction. However, this convenience also introduces new vulnerabilities, making audio a potential attack surface for adversaries. Our research introduces WhisperInject, a two-stage adversarial audio attack framework that can manipulate state-of-the-art audio language models to generate harmful content. Our method uses imperceptible perturbations in audio inputs that remain benign to human listeners. The first stage uses a novel reward-based optimization method, Reinforcement Learning with Projected Gradient Descent (RL-PGD), to guide the target model to circumvent its own safety protocols and generate harmful native responses. This native harmful response then serves as the target for Stage 2, Payload Injection, where we use Projected Gradient Descent (PGD) to optimize subtle perturbations that are embedded into benign audio carriers, such as weather queries or greeting messages. Validated under the rigorous StrongREJECT, LlamaGuard, as well as Human Evaluation safety evaluation framework, our experiments demonstrate a success rate exceeding 86% across Qwen2.5-Omni-3B, Qwen2.5-Omni-7B, and Phi-4-Multimodal. Our work demonstrates a new class of practical, audio-native threats, moving beyond theoretical exploits to reveal a feasible and covert method for manipulating AI behavior.
♻ ☆ Generative AI in K-12 Education: The CyberScholar Initiative
This paper focuses on the piloting of CyberScholar, a Generative AI assistant tool that aims to provide formative feedback on writing in K-12 contexts. Specifically, this study explores how students worked with CyberScholar in diverse subject areas, including English Language Arts, Social Studies, and Modern World History classes in Grades 7, 8, 10, and 11 in three schools in the Midwest and one in the Northwest of the United States. This paper focuses on CyberScholar's potential to support K-12 students' writing in diverse subject areas requiring written assignments. Data were collected through implementation observations, surveys, and interviews by participating 121 students and 4 teachers. Thematic qualitative analysis revealed that the feedback tool was perceived as a valuable tool for supporting student writing through detailed feedback, enhanced interactivity, and alignment with rubric criteria. Students appreciated the tool's guidance in refining their writing. For the students, the assistant tool suggests restructuring feedback as a dynamic, dialogic process rather than a static evaluation, a shift that aligns with the cyber-social learning idea, self-regulation, and metacognition. For the teaching side, the findings indicate a shift in teachers' roles, from serving primarily as evaluators to guiding AI feedback processes that foster better student writing and critical thinking.
♻ ☆ Extending Foundational Monocular Depth Estimators to Fisheye Cameras with Calibration Tokens
We propose a method to extend foundational monocular depth estimators (FMDEs), trained on perspective images, to fisheye images. Despite being trained on tens of millions of images, FMDEs are susceptible to the covariate shift introduced by changes in camera calibration (intrinsic, distortion) parameters, leading to erroneous depth estimates. Our method aligns the distribution of latent embeddings encoding fisheye images to those of perspective images, enabling the reuse of FMDEs for fisheye cameras without retraining or finetuning. To this end, we introduce a set of Calibration Tokens as a light-weight adaptation mechanism that modulates the latent embeddings for alignment. By exploiting the already expressive latent space of FMDEs, we posit that modulating their embeddings avoids the negative impact of artifacts and loss introduced in conventional recalibration or map projection to a canonical reference frame in the image space. Our method is self-supervised and does not require fisheye images but leverages publicly available large-scale perspective image datasets. This is done by recalibrating perspective images to fisheye images, and enforcing consistency between their estimates during training. We evaluate our approach with several FMDEs, on both indoors and outdoors, where we consistently improve over state-of-the-art methods using a single set of tokens for both. Code available at: https://github.com/JungHeeKim29/calibration-token.
♻ ☆ ETA: Energy-based Test-time Adaptation for Depth Completion
We propose a method for test-time adaptation of pretrained depth completion models. Depth completion models, trained on some ``source'' data, often predict erroneous outputs when transferred to ``target'' data captured in novel environmental conditions due to a covariate shift. The crux of our method lies in quantifying the likelihood of depth predictions belonging to the source data distribution. The challenge is in the lack of access to out-of-distribution (target) data prior to deployment. Hence, rather than making assumptions regarding the target distribution, we utilize adversarial perturbations as a mechanism to explore the data space. This enables us to train an energy model that scores local regions of depth predictions as in- or out-of-distribution. We update the parameters of pretrained depth completion models at test time to minimize energy, effectively aligning test-time predictions to those of the source distribution. We call our method ``Energy-based Test-time Adaptation'', or ETA for short. We evaluate our method across three indoor and three outdoor datasets, where ETA improve over the previous state-of-the-art method by an average of 6.94% for outdoors and 10.23% for indoors. Project Page: https://fuzzythecat.github.io/eta.
♻ ☆ One-Layer Transformers are Provably Optimal for In-context Reasoning and Distributional Association Learning in Next-Token Prediction Tasks
We study the approximation capabilities and on-convergence behaviors of one-layer transformers on the noiseless and noisy in-context reasoning of next-token prediction. Existing theoretical results focus on understanding the in-context reasoning behaviors for either the first gradient step or when the number of samples is infinite. Furthermore, no convergence rates nor generalization abilities were known. Our work addresses these gaps by showing that there exists a class of one-layer transformers that are provably Bayes-optimal with both linear and ReLU attention. When being trained with gradient descent, we show via a finite-sample analysis that the expected loss of these transformers converges at linear rate to the Bayes risk. Moreover, we prove that the trained models generalize to unseen samples as well as exhibit learning behaviors that were empirically observed in previous works. Our theoretical findings are further supported by extensive empirical validations.
comment: V2: added minor fixes for the proof of Theorem 3.4, fixed some typos throughout the paper, adjusted Remark 3.5
♻ ☆ Is Contrastive Distillation Enough for Learning Comprehensive 3D Representations?
Cross-modal contrastive distillation has recently been explored for learning effective 3D representations. However, existing methods focus primarily on modality-shared features, neglecting the modality-specific features during the pre-training process, which leads to suboptimal representations. In this paper, we theoretically analyze the limitations of current contrastive methods for 3D representation learning and propose a new framework, namely CMCR, to address these shortcomings. Our approach improves upon traditional methods by better integrating both modality-shared and modality-specific features. Specifically, we introduce masked image modeling and occupancy estimation tasks to guide the network in learning more comprehensive modality-specific features. Furthermore, we propose a novel multi-modal unified codebook that learns an embedding space shared across different modalities. Besides, we introduce geometry-enhanced masked image modeling to further boost 3D representation learning. Extensive experiments demonstrate that our method mitigates the challenges faced by traditional approaches and consistently outperforms existing image-to-LiDAR contrastive distillation methods in downstream tasks. Code will be available at https://github.com/Eaphan/CMCR.
comment: 21 pages, 10 figures
♻ ☆ Robust Finite-Memory Policy Gradients for Hidden-Model POMDPs IJCAI 2025
Partially observable Markov decision processes (POMDPs) model specific environments in sequential decision-making under uncertainty. Critically, optimal policies for POMDPs may not be robust against perturbations in the environment. Hidden-model POMDPs (HM-POMDPs) capture sets of different environment models, that is, POMDPs with a shared action and observation space. The intuition is that the true model is hidden among a set of potential models, and it is unknown which model will be the environment at execution time. A policy is robust for a given HM-POMDP if it achieves sufficient performance for each of its POMDPs. We compute such robust policies by combining two orthogonal techniques: (1) a deductive formal verification technique that supports tractable robust policy evaluation by computing a worst-case POMDP within the HM-POMDP, and (2) subgradient ascent to optimize the candidate policy for a worst-case POMDP. The empirical evaluation shows that, compared to various baselines, our approach (1) produces policies that are more robust and generalize better to unseen POMDPs, and (2) scales to HM-POMDPs that consist of over a hundred thousand environments.
comment: Accepted for publication at IJCAI 2025
♻ ☆ MetAdv: A Unified and Interactive Adversarial Testing Platform for Autonomous Driving
Evaluating and ensuring the adversarial robustness of autonomous driving (AD) systems is a critical and unresolved challenge. This paper introduces MetAdv, a novel adversarial testing platform that enables realistic, dynamic, and interactive evaluation by tightly integrating virtual simulation with physical vehicle feedback. At its core, MetAdv establishes a hybrid virtual-physical sandbox, within which we design a three-layer closed-loop testing environment with dynamic adversarial test evolution. This architecture facilitates end-to-end adversarial evaluation, ranging from high-level unified adversarial generation, through mid-level simulation-based interaction, to low-level execution on physical vehicles. Additionally, MetAdv supports a broad spectrum of AD tasks, algorithmic paradigms (e.g., modular deep learning pipelines, end-to-end learning, vision-language models). It supports flexible 3D vehicle modeling and seamless transitions between simulated and physical environments, with built-in compatibility for commercial platforms such as Apollo and Tesla. A key feature of MetAdv is its human-in-the-loop capability: besides flexible environmental configuration for more customized evaluation, it enables real-time capture of physiological signals and behavioral feedback from drivers, offering new insights into human-machine trust under adversarial conditions. We believe MetAdv can offer a scalable and unified framework for adversarial assessment, paving the way for safer AD.
comment: Accepted by ACM MM 2025 Demo/Videos track
♻ ☆ Enhancing Depression-Diagnosis-Oriented Chat with Psychological State Tracking
Depression-diagnosis-oriented chat aims to guide patients in self-expression to collect key symptoms for depression detection. Recent work focuses on combining task-oriented dialogue and chitchat to simulate the interview-based depression diagnosis. Whereas, these methods can not well capture the changing information, feelings, or symptoms of the patient during dialogues. Moreover, no explicit framework has been explored to guide the dialogue, which results in some useless communications that affect the experience. In this paper, we propose to integrate Psychological State Tracking (POST) within the large language model (LLM) to explicitly guide depression-diagnosis-oriented chat. Specifically, the state is adapted from a psychological theoretical model, which consists of four components, namely Stage, Information, Summary and Next. We fine-tune an LLM model to generate the dynamic psychological state, which is further used to assist response generation at each turn to simulate the psychiatrist. Experimental results on the existing benchmark show that our proposed method boosts the performance of all subtasks in depression-diagnosis-oriented chat.
comment: Accepted by NLPCC 2025
♻ ☆ Structure As Search: Unsupervised Permutation Learning for Combinatorial Optimization
We propose a non-autoregressive framework for the Travelling Salesman Problem where solutions emerge directly from learned permutations, without requiring explicit search. By applying a similarity transformation to Hamiltonian cycles, the model learns to approximate permutation matrices via continuous relaxations. Our unsupervised approach achieves competitive performance against classical heuristics, demonstrating that the inherent structure of the problem can effectively guide combinatorial optimization without sequential decision-making.
♻ ☆ A Little Human Data Goes A Long Way ACL 2025
Faced with an expensive human annotation process, creators of NLP systems increasingly turn to synthetic data generation. While this method shows promise, the extent to which synthetic data can replace human annotation is poorly understood. We investigate the use of synthetic data in Fact Verification (FV) and Question Answering (QA) by studying the effects of incrementally replacing human generated data with synthetic points on eight diverse datasets. Strikingly, replacing up to 90% of the training data only marginally decreases performance, but replacing the final 10% leads to severe declines. We find that models trained on purely synthetic data can be reliably improved by including as few as 125 human generated data points. We show that matching the performance gain of just a little additional human data (only 200 points) requires an order of magnitude more synthetic data and estimate price ratios at which human annotation would be a more cost-effective solution. Our results suggest that even when human annotation at scale is infeasible, there is great value to having a small proportion of the dataset being human generated.
comment: ACL 2025
♻ ☆ Reinitializing weights vs units for maintaining plasticity in neural networks
Loss of plasticity is a phenomenon in which a neural network loses its ability to learn when trained for an extended time on non-stationary data. It is a crucial problem to overcome when designing systems that learn continually. An effective technique for preventing loss of plasticity is reinitializing parts of the network. In this paper, we compare two different reinitialization schemes: reinitializing units vs reinitializing weights. We propose a new algorithm, which we name \textit{selective weight reinitialization}, for reinitializing the least useful weights in a network. We compare our algorithm to continual backpropagation and ReDo, two previously proposed algorithms that reinitialize units in the network. Through our experiments in continual supervised learning problems, we identify two settings when reinitializing weights is more effective at maintaining plasticity than reinitializing units: (1) when the network has a small number of units and (2) when the network includes layer normalization. Conversely, reinitializing weights and units are equally effective at maintaining plasticity when the network is of sufficient size and does not include layer normalization. We found that reinitializing weights maintains plasticity in a wider variety of settings than reinitializing units.
♻ ☆ CRINN: Contrastive Reinforcement Learning for Approximate Nearest Neighbor Search
Approximate nearest-neighbor search (ANNS) algorithms have become increasingly critical for recent AI applications, particularly in retrieval-augmented generation (RAG) and agent-based LLM applications. In this paper, we present CRINN, a new paradigm for ANNS algorithms. CRINN treats ANNS optimization as a reinforcement learning problem where execution speed serves as the reward signal. This approach enables the automatic generation of progressively faster ANNS implementations while maintaining accuracy constraints. Our experimental evaluation demonstrates CRINN's effectiveness across six widely-used NNS benchmark datasets. When compared against state-of-the-art open-source ANNS algorithms, CRINN achieves best performance on three of them (GIST-960-Euclidean, MNIST-784-Euclidean, and GloVe-25-angular), and tied for first place on two of them (SIFT-128-Euclidean and GloVe-25-angular). The implications of CRINN's success reach well beyond ANNS optimization: It validates that LLMs augmented with reinforcement learning can function as an effective tool for automating sophisticated algorithmic optimizations that demand specialized knowledge and labor-intensive manual refinement. Code can be found at https://github.com/deepreinforce-ai/CRINN
comment: Preprint Version
♻ ☆ CUDA-L1: Improving CUDA Optimization via Contrastive Reinforcement Learning
The exponential growth in demand for GPU computing resources has created an urgent need for automated CUDA optimization strategies. While recent advances in LLMs show promise for code generation, current SOTA models achieve low success rates in improving CUDA speed. In this paper, we introduce CUDA-L1, an automated reinforcement learning framework for CUDA optimization that employs a novel contrastive RL algorithm. CUDA-L1 achieves significant performance improvements on the CUDA optimization task: trained on A100, it delivers an average speedup of x3.12 with a median speedup of x1.42 against default baselines over across all 250 CUDA kernels of KernelBench, with peak speedups reaching x120. In addition to the default baseline provided by KernelBench, CUDA-L1 demonstrates x2.77 over Torch Compile, x2.88 over Torch Compile with reduce overhead, x2.81 over CUDA Graph implementations, and remarkably x7.72 over cuDNN libraries. Furthermore, the model also demonstrates portability across different GPU architectures. Beyond these benchmark results, CUDA-L1 demonstrates several properties: it 1) discovers a variety of CUDA optimization techniques and learns to combine them strategically to achieve optimal performance; 2) uncovers fundamental principles of CUDA optimization, such as the multiplicative nature of optimizations; 3) identifies non-obvious performance bottlenecks and rejects seemingly beneficial optimizations that actually harm performance. The capabilities demonstrate that, RL can transform an initially poor-performing LLM into an effective CUDA optimizer through speedup-based reward signals alone, without human expertise or domain knowledge. This paradigm opens possibilities for automated optimization of CUDA operations, and holds promise to substantially promote GPU efficiency and alleviate the rising pressure on GPU computing resources.
comment: Project Page: https://deepreinforce-ai.github.io/cudal1_blog/
♻ ☆ Dominated Actions in Imperfect-Information Games
Dominance is a fundamental concept in game theory. In strategic-form games dominated strategies can be identified in polynomial time. As a consequence, iterative removal of dominated strategies can be performed efficiently as a preprocessing step for reducing the size of a game before computing a Nash equilibrium. For imperfect-information games in extensive form, we could convert the game to strategic form and then iteratively remove dominated strategies in the same way; however, this conversion may cause an exponential blowup in game size. In this paper we define and study the concept of dominated actions in imperfect-information games. Our main result is a polynomial-time algorithm for determining whether an action is dominated (strictly or weakly) by any mixed strategy in n-player games, which can be extended to an algorithm for iteratively removing dominated actions. This allows us to efficiently reduce the size of the game tree as a preprocessing step for Nash equilibrium computation. We explore the role of dominated actions empirically in the "All In or Fold" No-Limit Texas Hold'em poker variant.
♻ ☆ Modeling Relational Logic Circuits for And-Inverter Graph Convolutional Network
The automation of logic circuit design enhances chip performance, energy efficiency, and reliability, and is widely applied in the field of Electronic Design Automation (EDA).And-Inverter Graphs (AIGs) efficiently represent, optimize, and verify the functional characteristics of digital circuits, enhancing the efficiency of EDA development.Due to the complex structure and large scale of nodes in real-world AIGs, accurate modeling is challenging, leading to existing work lacking the ability to jointly model functional and structural characteristics, as well as insufficient dynamic information propagation capability.To address the aforementioned challenges, we propose AIGer.Specifically, AIGer consists of two components: 1) Node logic feature initialization embedding component and 2) AIGs feature learning network component.The node logic feature initialization embedding component projects logic nodes, such as AND and NOT, into independent semantic spaces, to enable effective node embedding for subsequent processing.Building upon this, the AIGs feature learning network component employs a heterogeneous graph convolutional network, designing dynamic relationship weight matrices and differentiated information aggregation approaches to better represent the original structure and information of AIGs.The combination of these two components enhances AIGer's ability to jointly model functional and structural characteristics and improves its message passing capability. Experimental results indicate that AIGer outperforms the current best models in the Signal Probability Prediction (SSP) task, improving MAE and MSE by 18.95\% and 44.44\%, respectively. In the Truth Table Distance Prediction (TTDP) task, AIGer achieves improvements of 33.57\% and 14.79\% in MAE and MSE, respectively, compared to the best-performing models.
Computational Engineering, Finance, and Science 2
☆ LLMs and Agentic AI in Insurance Decision-Making: Opportunities and Challenges For Africa
In this work, we highlight the transformative potential of Artificial Intelligence (AI), particularly Large Language Models (LLMs) and agentic AI, in the insurance sector. We consider and emphasize the unique opportunities, challenges, and potential pathways in insurance amid rapid performance improvements, increased open-source access, decreasing deployment costs, and the complexity of LLM or agentic AI frameworks. To bring it closer to home, we identify critical gaps in the African insurance market and highlight key local efforts, players, and partnership opportunities. Finally, we call upon actuaries, insurers, regulators, and tech leaders to a collaborative effort aimed at creating inclusive, sustainable, and equitable AI strategies and solutions: by and for Africans.
♻ ☆ From Autonomy to Agency: Agentic Vehicles for Human-Centered Mobility Systems
Autonomy, from the Greek autos (self) and nomos (law), refers to the capacity to operate according to internal rules without external control. Accordingly, autonomous vehicles (AuVs) are viewed as vehicular systems capable of perceiving their environment and executing pre-programmed tasks independently of external input. However, both research and real-world deployments increasingly showcase vehicles that demonstrate behaviors beyond this definition (including the SAE levels 0 to 5); Examples of this outpace include the interaction with humans with natural language, goal adaptation, contextual reasoning, external tool use, and unseen ethical dilemma handling, largely empowered by multi-modal large language models (LLMs). These developments reveal a conceptual gap between technical autonomy and the broader cognitive and social capabilities needed for future human-centered mobility systems. To address this gap, this paper introduces the concept of agentic vehicles (AgVs), referring to vehicles that integrate agentic AI systems to reason, adapt, and interact within complex environments. This paper proposes the term AgVs and their distinguishing characteristics from conventional AuVs. It synthesizes relevant advances in integrating LLMs and AuVs and highlights how AgVs might transform future mobility systems and ensure the systems are human-centered. The paper concludes by identifying key challenges in the development and governance of AgVs, and how they can play a significant role in future agentic transportation systems.
Databases 6
☆ Query Logs Analytics: A Aystematic Literature Review
In the digital era, user interactions with various resources such as databases, data warehouses, websites, and knowledge graphs (KGs) are increasingly mediated through digital platforms. These interactions leave behind digital traces, systematically captured in the form of logs. Logs, when effectively exploited, provide high value across industry and academia, supporting critical services (e.g., recovery and security), user-centric applications (e.g., recommender systems), and quality-of-service improvements (e.g., performance optimization). Despite their importance, research on log usage remains fragmented across domains, and no comprehensive study currently consolidates existing efforts. This paper presents a systematic survey of log usage, focusing on Database (DB), Data Warehouse (DW), Web, and KG logs. More than 300 publications were analyzed to address three central questions: (1) do different types of logs share common structural and functional characteristics? (2) are there standard pipelines for their usage? (3) which constraints and non-functional requirements (NFRs) guide their exploitation?. The survey reveals a limited number of end-to-end approaches, the absence of standardization across log usage pipelines, and the existence of shared structural elements among different types of logs. By consolidating existing knowledge, identifying gaps, and highlighting opportunities, this survey provides researchers and practitioners with a comprehensive overview of log usage and sheds light on promising directions for future research, particularly regarding the exploitation and democratization of KG logs.
☆ Scavenger+: Revisiting Space-Time Tradeoffs in Key-Value Separated LSM-trees
Key-Value Stores (KVS) based on log-structured merge-trees (LSM-trees) are widely used in storage systems but face significant challenges, such as high write amplification caused by compaction. KV-separated LSM-trees address write amplification but introduce significant space amplification, a critical concern in cost-sensitive scenarios. Garbage collection (GC) can reduce space amplification, but existing strategies are often inefficient and fail to account for workload characteristics. Moreover, current key-value (KV) separated LSM-trees overlook the space amplification caused by the index LSM-tree. In this paper, we systematically analyze the sources of space amplification in KV-separated LSM-trees and propose Scavenger+, which achieves a better performance-space trade-off. Scavenger+ introduces (1) an I/O-efficient garbage collection scheme to reduce I/O overhead, (2) a space-aware compaction strategy based on compensated size to mitigate index-induced space amplification, and (3) a dynamic GC scheduler that adapts to system load to make better use of CPU and storage resources. Extensive experiments demonstrate that Scavenger+ significantly improves write performance and reduces space amplification compared to state-of-the-art KV-separated LSM-trees, including BlobDB, Titan, and TerarkDB.
comment: Accepted by IEEE Transactions on Computers
☆ Scavenger: Better Space-Time Trade-Offs for Key-Value Separated LSM-trees ICDE
Key-Value Stores (KVS) implemented with log-structured merge-tree (LSM-tree) have gained widespread acceptance in storage systems. Nonetheless, a significant challenge arises in the form of high write amplification due to the compaction process. While KV-separated LSM-trees successfully tackle this issue, they also bring about substantial space amplification problems, a concern that cannot be overlooked in cost-sensitive scenarios. Garbage collection (GC) holds significant promise for space amplification reduction, yet existing GC strategies often fall short in optimization performance, lacking thorough consideration of workload characteristics. Additionally, current KV-separated LSM-trees also ignore the adverse effect of the space amplification in the index LSM-tree. In this paper, we systematically analyze the sources of space amplification of KV-separated LSM-trees and introduce Scavenger, which achieves a better trade-off between performance and space amplification. Scavenger initially proposes an I/O-efficient garbage collection scheme to reduce I/O overhead and incorporates a space-aware compaction strategy based on compensated size to minimize the space amplification of index LSM-trees. Extensive experiments show that Scavenger significantly improves write performance and achieves lower space amplification than other KV-separated LSM-trees (including BlobDB, Titan, and TerarkDB).
comment: 14 pages, accepted by 2024 IEEE 40st International Conference on Data Engineering (ICDE)
☆ Accelerating K-Core Computation in Temporal Graphs
We address the problem of enumerating all temporal k-cores given a query time range and a temporal graph, which suffers from poor efficiency and scalability in the state-of-the-art solution. Motivated by an existing concept called core times, we propose a novel algorithm to compute all temporal $k$-cores based on core times and prove that the algorithmic running time is bounded by the size of all resulting temporal k-cores, which is optimal in this scenario. Meanwhile, we show that the cost of computing core times is much lower, which demonstrates the close relevance between our overall running time and the result size.
♻ ☆ LEGO-GraphRAG: Modularizing Graph-based Retrieval-Augmented Generation for Design Space Exploration VLDB'2025
GraphRAG integrates (knowledge) graphs with large language models (LLMs) to improve reasoning accuracy and contextual relevance. Despite its promising applications and strong relevance to multiple research communities, such as databases and natural language processing, GraphRAG currently lacks modular workflow analysis, systematic solution frameworks, and insightful empirical studies. To bridge these gaps, we propose LEGO-GraphRAG, a modular framework that enables: 1) fine-grained decomposition of the GraphRAG workflow, 2) systematic classification of existing techniques and implemented GraphRAG instances, and 3) creation of new GraphRAG instances. Our framework facilitates comprehensive empirical studies of GraphRAG on large-scale real-world graphs and diverse query sets, revealing insights into balancing reasoning quality, runtime efficiency, and token or GPU cost, that are essential for building advanced GraphRAG systems.
comment: VLDB'2025 [Experiment, Analysis & Benchmark]
♻ ☆ Harnessing Structured Knowledge: A Concept Map-Based Approach for High-Quality Multiple Choice Question Generation with Effective Distractors AI 2025
Generating high-quality MCQs, especially those targeting diverse cognitive levels and incorporating common misconceptions into distractor design, is time-consuming and expertise-intensive, making manual creation impractical at scale. Current automated approaches typically generate questions at lower cognitive levels and fail to incorporate domain-specific misconceptions. This paper presents a hierarchical concept map-based framework that provides structured knowledge to guide LLMs in generating MCQs with distractors. We chose high-school physics as our test domain and began by developing a hierarchical concept map covering major Physics topics and their interconnections with an efficient database design. Next, through an automated pipeline, topic-relevant sections of these concept maps are retrieved to serve as a structured context for the LLM to generate questions and distractors that specifically target common misconceptions. Lastly, an automated validation is completed to ensure that the generated MCQs meet the requirements provided. We evaluate our framework against two baseline approaches: a base LLM and a RAG-based generation. We conducted expert evaluations and student assessments of the generated MCQs. Expert evaluation shows that our method significantly outperforms the baseline approaches, achieving a success rate of 75.20% in meeting all quality criteria compared to approximately 37% for both baseline methods. Student assessment data reveal that our concept map-driven approach achieved a significantly lower guess success rate of 28.05% compared to 37.10% for the baselines, indicating a more effective assessment of conceptual understanding. The results demonstrate that our concept map-based approach enables robust assessment across cognitive levels and instant identification of conceptual gaps, facilitating faster feedback loops and targeted interventions at scale.
comment: Accepted to ECAI 2025
Distributed, Parallel, and Cluster Computing 22
☆ Analog computation with transcriptional networks
Transcriptional networks represent one of the most extensively studied types of systems in synthetic biology. Although the completeness of transcriptional networks for digital logic is well-established, *analog* computation plays a crucial role in biological systems and offers significant potential for synthetic biology applications. While transcriptional circuits typically rely on cooperativity and highly non-linear behavior of transcription factors to regulate *production* of proteins, they are often modeled with simple linear *degradation* terms. In contrast, general analog dynamics require both non-linear positive as well as negative terms, seemingly necessitating control over not just transcriptional (i.e., production) regulation but also the degradation rates of transcription factors. Surprisingly, we prove that controlling transcription factor production (i.e., transcription rate) without explicitly controlling degradation is mathematically complete for analog computation, achieving equivalent capabilities to systems where both production and degradation are programmable. We demonstrate our approach on several examples including oscillatory and chaotic dynamics, analog sorting, memory, PID controller, and analog extremum seeking. Our result provides a systematic methodology for engineering novel analog dynamics using synthetic transcriptional networks without the added complexity of degradation control and informs our understanding of the capabilities of natural transcriptional circuits. We provide a compiler, in the form of a Python package that can take any system of polynomial ODEs and convert it to an equivalent transcriptional network implementing the system *exactly*, under appropriate conditions.
☆ Is RISC-V ready for High Performance Computing? An evaluation of the Sophon SG2044
The pace of RISC-V adoption continues to grow rapidly, yet for the successes enjoyed in areas such as embedded computing, RISC-V is yet to gain ubiquity in High Performance Computing (HPC). The Sophon SG2044 is SOPHGO's next generation 64-core high performance CPU that has been designed for workstation and server grade workloads. Building upon the SG2042, subsystems that were a bottleneck in the previous generation have been upgraded. In this paper we undertake the first performance study of the SG2044 for HPC. Comparing against the SG2042 and other architectures, we find that the SG2044 is most advantageous when running at higher core counts, delivering up to 4.91 greater performance than the SG2042 over 64-cores. Two of the most important upgrades in the SG2044 are support for RVV v1.0 and an enhanced memory subsystem. This results in the SG2044 significantly closing the performance gap with other architectures, especially for compute-bound workloads.
comment: Preprint of paper submitted to RISC-V for HPC SC25 workshop
☆ On the Security and Privacy of Federated Learning: A Survey with Attacks, Defenses, Frameworks, Applications, and Future Directions
Federated Learning (FL) is an emerging distributed machine learning paradigm enabling multiple clients to train a global model collaboratively without sharing their raw data. While FL enhances data privacy by design, it remains vulnerable to various security and privacy threats. This survey provides a comprehensive overview of more than 200 papers regarding the state-of-the-art attacks and defense mechanisms developed to address these challenges, categorizing them into security-enhancing and privacy-preserving techniques. Security-enhancing methods aim to improve FL robustness against malicious behaviors such as byzantine attacks, poisoning, and Sybil attacks. At the same time, privacy-preserving techniques focus on protecting sensitive data through cryptographic approaches, differential privacy, and secure aggregation. We critically analyze the strengths and limitations of existing methods, highlight the trade-offs between privacy, security, and model performance, and discuss the implications of non-IID data distributions on the effectiveness of these defenses. Furthermore, we identify open research challenges and future directions, including the need for scalable, adaptive, and energy-efficient solutions operating in dynamic and heterogeneous FL environments. Our survey aims to guide researchers and practitioners in developing robust and privacy-preserving FL systems, fostering advancements safeguarding collaborative learning frameworks' integrity and confidentiality.
☆ CaPGNN: Optimizing Parallel Graph Neural Network Training with Joint Caching and Resource-Aware Graph Partitioning
Graph Neural Networks (GNNs) have shown remarkable capabilities in processing graph-structured data prevalent in various real-world applications. However, the scalability of full-batch GNN training becomes severely limited by high communication overhead and load imbalance in distributed environments. In this paper, we present CaPGNN, a novel framework for efficient parallel full-batch GNN training on single-server with multi-GPU, designed specifically to reduce redundant inter-GPU communication and balance computational workloads. We propose a joint adaptive caching algorithm that leverages both CPU and GPU memory to significantly reduce the repetitive transmission of vertex features across partitions. Additionally, we introduce a resource-aware graph partitioning algorithm that adjusts subgraph sizes dynamically according to the heterogeneous computational and communication capacities of GPUs. Extensive experiments on large-scale benchmark datasets demonstrate that CaPGNN effectively reduces communication costs by up to 96% and accelerates GNN training by up to 12.7 times compared to state-of-the-art approaches. Our results highlight the potential of adaptive caching and resource-aware partitioning to facilitate scalable, efficient, and practical deployment of full-batch GNN training in distributed computing environments.
☆ Trans-XFed: An Explainable Federated Learning for Supply Chain Credit Assessment
This paper proposes a Trans-XFed architecture that combines federated learning with explainable AI techniques for supply chain credit assessment. The proposed model aims to address several key challenges, including privacy, information silos, class imbalance, non-identically and independently distributed (Non-IID) data, and model interpretability in supply chain credit assessment. We introduce a performance-based client selection strategy (PBCS) to tackle class imbalance and Non-IID problems. This strategy achieves faster convergence by selecting clients with higher local F1 scores. The FedProx architecture, enhanced with homomorphic encryption, is used as the core model, and further incorporates a transformer encoder. The transformer encoder block provides insights into the learned features. Additionally, we employ the integrated gradient explainable AI technique to offer insights into decision-making. We demonstrate the effectiveness of Trans-XFed through experimental evaluations on real-world supply chain datasets. The obtained results show its ability to deliver accurate credit assessments compared to several baselines, while maintaining transparency and privacy.
comment: Accepted by FLTA 2025
☆ Estimating CO$_2$ emissions of distributed applications and platforms with SimGrid/Batsim
This work presents a carbon footprint plugin designed to extend the capabilities of the Batsim simulator by allowing the calculation of CO$_2$ emissions during simulation runs. The goal is to comprehensively assess the environmental impact associated with task and resource management strategies in data centers. The plugin is developed within SimGrid -- the underlying simulation framework of Batsim -- and computes carbon emissions based on the simulated platform's energy consumption and carbon intensity factor of the simulated machines. Once implemented, it is integrated into Batsim, ensuring compatibility with existing simulation workflows and enabling researchers to assess the carbon efficiency of their scheduling strategies.
☆ LUNDIsim: model meshes for flow simulation and scientific data compression benchmarks
The volume of scientific data produced for and by numerical simulation workflows is increasing at an incredible rate. This raises concerns either in computability, interpretability, and sustainability. This is especially noticeable in earth science (geology, meteorology, oceanography, and astronomy), notably with climate studies. We highlight five main evaluation issues: efficiency, discrepancy, diversity, interpretability, availability. Among remedies, lossless and lossy compression techniques are becoming popular to better manage dataset volumes. Performance assessment -- with comparative benchmarks -- require open datasets shared under FAIR principles (Findable, Accessible, Interoperable, Reusable), with MRE (Minimal Reproducible Example) ancillary data for reuse. We share LUNDIsim, an exemplary faulted geological mesh. It is inspired by SPE10 comparative Challenge. Enhanced by porosity/permeability datasets, this dataset proposes four distinct subsurface environments. They were primarily designed for flow simulation in porous media. Several consistent resolutions (with HexaShrink multiscale representations) are proposed for each model. We also provide a set of reservoir features for reproducing typical two-phase flow simulations on all LUNDIsim models in a reservoir engineering context. This dataset is chiefly meant for benchmarking and evaluating data size reduction (upscaling) or genuine composite mesh compression algorithms. It is also suitable for other advanced mesh processing workflows in geology and reservoir engineering, from visualization to machine learning. LUNDIsim meshes are available at https://doi.org/10.5281/zenodo.14641958
comment: 11 pages, for associated LUNDIsim dataset, see https://doi.org/10.5281/zenodo.14641958
☆ PennyLane-Lightning MPI: A massively scalable quantum circuit simulator based on distributed computing in CPU clusters
Quantum circuit simulations play a critical role in bridging the gap between theoretical quantum algorithms and their practical realization on physical quantum hardware, yet they face computational challenges due to the exponential growth of quantum state spaces with increasing qubit size. This work presents PennyLane-Lightning MPI, an MPI-based extension of the PennyLane-Lightning suite, developed to enable scalable quantum circuit simulations through parallelization of quantum state vectors and gate operations across distributed-memory systems. The core of this implementation is an index-dependent, gate-specific parallelization strategy, which fully exploits the characteristic of individual gates as well as the locality of computation associated with qubit indices in partitioned state vectors. Benchmarking tests with single gates and well-designed quantum circuits show that the present method offers advantages in performance over general methods based on unitary matrix operations and exhibits excellent scalability, supporting simulations of up to 41-qubit with hundreds of thousands of parallel processes. Being equipped with a Python plug-in for seamless integration to the PennyLane framework, this work contributes to extending the PennyLane ecosystem by enabling high-performance quantum simulations in standard multi-core CPU clusters with no library-specific requirements, providing a back-end resource for the cloud-based service framework of quantum computing that is under development in the Republic of Korea.
comment: 22 pages, 6 figures, 1 listing
☆ LAMMPS-KOKKOS: Performance Portable Molecular Dynamics Across Exascale Architectures
Since its inception in 1995, LAMMPS has grown to be a world-class molecular dynamics code, with thousands of users, over one million lines of code, and multi-scale simulation capabilities. We discuss how LAMMPS has adapted to the modern heterogeneous computing landscape by integrating the Kokkos performance portability library into the existing C++ code. We investigate performance portability of simple pairwise, many-body reactive, and machine-learned force-field interatomic potentials. We present results on GPUs across different vendors and generations, and analyze performance trends, probing FLOPS throughput, memory bandwidths, cache capabilities, and thread-atomic operation performance. Finally, we demonstrate strong scaling on all current US exascale machines -- OLCF Frontier, and ALCF Aurora, and NNSA El Capitan -- for the three potentials.
comment: 14 pages, 6 figures
☆ DDoS Attacks in Cloud Computing: Detection and Prevention
DDoS attacks are one of the most prevalent and harmful cybersecurity threats faced by organizations and individuals today. In recent years, the complexity and frequency of DDoS attacks have increased significantly, making it challenging to detect and mitigate them effectively. The study analyzes various types of DDoS attacks, including volumetric, protocol, and application layer attacks, and discusses the characteristics, impact, and potential targets of each type. It also examines the existing techniques used for DDoS attack detection, such as packet filtering, intrusion detection systems, and machine learning-based approaches, and their strengths and limitations. Moreover, the study explores the prevention techniques employed to mitigate DDoS attacks, such as firewalls, rate limiting , CPP and ELD mechanism. It evaluates the effectiveness of each approach and its suitability for different types of attacks and environments. In conclusion, this study provides a comprehensive overview of the different types of DDoS attacks, their detection, and prevention techniques. It aims to provide insights and guidelines for organizations and individuals to enhance their cybersecurity posture and protect against DDoS attacks.
☆ Pure Data Spaces
In a previous work, "pure data" is proposed as an axiomatic foundation for mathematics and computing, based on "finite sequence" as the foundational concept rather than based on logic or type. Within this framework, objects with mathematical meaning are "data" and collections of mathematical objects must then be associative data, called a "space." A space is then the basic collection in this framework analogous to sets in Set Theory or objects in Category Theory. A theory of spaces is developed,where spaces are studied via their semiring of endomorphisms. To illustrate these concepts, and as a way of exploring the implications of the framework, pure data spaces are "grown organically" from the substrate of pure data with minimal combinatoric definitions. Familiar objects from classical mathematics emerge this way, including natural numbers, integers, rational numbers, boolean spaces, matrix algebras, Gaussian Integers, Quaternions, and non-associative algebras like the Integer Octonions. Insights from these examples are discussed with a view towards new directions in theory and new exploration.
comment: 26 pages
☆ Time-optimal Asynchronous Minimal Vertex Covering by Myopic Robots
In a connected graph with an autonomous robot swarm with limited visibility, it is natural to ask whether the robots can be deployed to certain vertices satisfying a given property using only local knowledge. This paper affirmatively answers the question with a set of \emph{myopic} (finite visibility range) luminous robots with the aim of \emph{filling a minimal vertex cover} (MVC) of a given graph $G = (V, E)$. The graph has special vertices, called \emph{doors}, through which robots enter sequentially. Starting from the doors, the goal of the robots is to settle on a set of vertices that forms a minimal vertex cover of $G$ under the asynchronous ($\mathcal{ASYNC}$) scheduler. We are also interested in achieving the \emph{minimum vertex cover} (MinVC, which is NP-hard \cite{Karp1972} for general graphs) for a specific graph class using the myopic robots. We establish lower bounds on the visibility range for the robots and on the time complexity (which is $\Omega(|E|)$). We present two algorithms for trees: one for single door, which is both time and memory-optimal, and the other for multiple doors, which is memory-optimal and achieves time-optimality when the number of doors is a constant. Interestingly, our technique achieves MinVC on trees with a single door. We then move to the general graph, where we present two algorithms, one for the single door and the other for the multiple doors with an extra memory of $O(\log \Delta)$ for the robots, where $\Delta$ is the maximum degree of $G$. All our algorithms run in $O(|E|)$ epochs.
☆ A High Performance GPU CountSketch Implementation and Its Application to Multisketching and Least Squares Problems
Random sketching is a dimensionality reduction technique that approximately preserves norms and singular values up to some $O(1)$ distortion factor with high probability. The most popular sketches in literature are the Gaussian sketch and the subsampled randomized Hadamard transform, while the CountSketch has lower complexity. Combining two sketches, known as multisketching, offers an inexpensive means of quickly reducing the dimension of a matrix by combining a CountSketch and Gaussian sketch. However, there has been little investigation into high performance CountSketch implementations. In this work, we develop an efficient GPU implementation of the CountSketch, and demonstrate the performance of multisketching using this technique. We also demonstrate the potential for using this implementation within a multisketched least squares solver that is up to $77\%$ faster than the normal equations with significantly better numerical stability, at the cost of an $O(1)$ multiplicative factor introduced into the relative residual norm.
comment: 8 pages
☆ Equinox: Holistic Fair Scheduling in Serving Large Language Models
We address the limitations of current LLM serving with a dual-counter framework separating user and operator perspectives. The User Fairness Counter measures quality of service via weighted tokens and latency; the Resource Fairness Counter measures operational efficiency through throughput and GPU utilization. Since these metrics are only available post-execution, creating a scheduling paradox, we introduce a deterministic Mixture of Prediction Experts (MoPE) framework to predict user-perceived latency, output tokens, throughput, and GPU utilization. These predictions enable calculation of a unified Holistic Fairness score that balances both counters through tunable parameters for proactive fairness-aware scheduling. We implement this in Equinox, an open-source system with other optimizations like adaptive batching, and stall-free scheduling. Evaluations on production traces (ShareGPT, LMSYS) and synthetic workloads demonstrate Equinox achieves up to $1.3\times$ higher throughput, 60\% lower time-to-first-token latency, and 13\% higher fairness versus VTC while maintaining 94\% GPU utilization, proving fairness under bounded discrepancy across heterogeneous platforms.
♻ ☆ Scaling Intelligence: Designing Data Centers for Next-Gen Language Models
The explosive growth of Large Language Models (LLMs), such as GPT-4 with 1.8 trillion parameters, demands a fundamental rethinking of data center architecture to ensure scalability, efficiency, and cost-effectiveness. Our work provides a comprehensive co-design framework that jointly explores FLOPS, HBM bandwidth and capacity, multiple network topologies (two-tier vs. FullFlat optical), the size of the scale-out domain, and popular parallelism/optimization strategies used in LLMs. We introduce and evaluate FullFlat network architectures, which provide uniform high-bandwidth, low-latency connectivity between all nodes, and demonstrate their transformative impact on performance and scalability. Through detailed sensitivity analyses, we quantify the benefits of overlapping compute and communication, leveraging hardware-accelerated collectives, widening the scale-out domain, and increasing memory capacity. Our study spans both sparse (mixture of experts) and dense transformer-based LLMs, revealing how system design choices affect Model FLOPS Utilization (MFU = Model FLOPS per token * Observed tokens per second / Peak FLOPS of the hardware) and overall throughput. For the co-design study, we utilized an analytical performance modeling tool capable of predicting LLM runtime within 10% of real-world measurements. Our findings offer actionable insights and a practical roadmap for designing AI data centers that can efficiently support trillion-parameter models, reduce optimization complexity, and sustain the rapid evolution of AI capabilities.
comment: 14 pages, submitted to SC25 for review
♻ ☆ POPri: Private Federated Learning using Preference-Optimized Synthetic Data ICML 2025
In practical settings, differentially private Federated learning (DP-FL) is the dominant method for training models from private, on-device client data. Recent work has suggested that DP-FL may be enhanced or outperformed by methods that use DP synthetic data (Wu et al., 2024; Hou et al., 2024). The primary algorithms for generating DP synthetic data for FL applications require careful prompt engineering based on public information and/or iterative private client feedback. Our key insight is that the private client feedback collected by prior DP synthetic data methods (Hou et al., 2024; Xie et al., 2024) can be viewed as an RL (reinforcement learning) reward. Our algorithm, Policy Optimization for Private Data (POPri) harnesses client feedback using policy optimization algorithms such as Direct Preference Optimization (DPO) to fine-tune LLMs to generate high-quality DP synthetic data. To evaluate POPri, we release LargeFedBench, a new federated text benchmark for uncontaminated LLM evaluations on federated client data. POPri substantially improves the utility of DP synthetic data relative to prior work on LargeFedBench datasets and an existing benchmark from Xie et al. (2024). POPri closes the gap between next-token prediction accuracy in the fully-private and non-private settings by up to 58%, compared to 28% for prior synthetic data methods, and 3% for state-of-the-art DP federated learning methods. The code and data are available at https://github.com/meiyuw/POPri.
comment: ICML 2025 camera-ready
♻ ☆ Trust, but verify
Decentralized AI agent networks, such as Gaia, allows individuals to run customized LLMs on their own computers and then provide services to the public. However, in order to maintain service quality, the network must verify that individual nodes are running their designated LLMs. In this paper, we demonstrate that in a cluster of mostly honest nodes, we can detect nodes that run unauthorized or incorrect LLM through social consensus of its peers. We will discuss the algorithm and experimental data from the Gaia network. We will also discuss the intersubjective validation system, implemented as an EigenLayer AVS to introduce financial incentives and penalties to encourage honest behavior from LLM nodes.
♻ ☆ Content-Oblivious Leader Election in 2-Edge-Connected Networks
Censor-Hillel, Cohen, Gelles, and Sela (PODC 2022 & Distributed Computing 2023) studied fully-defective asynchronous networks, where communication channels may suffer an extreme form of alteration errors, rendering messages completely corrupted. The model is equivalent to content-oblivious computation, where nodes communicate solely via pulses. They showed that if the network is 2-edge-connected, then any algorithm for a noiseless setting can be simulated in the fully-defective setting; otherwise, no non-trivial computation is possible in the fully-defective setting. However, their simulation requires a predesignated leader, which they conjectured to be necessary for any non-trivial content-oblivious task. In this work, we present two results: General 2-edge-connected topologies: First, we show an asynchronous content-oblivious leader election algorithm that quiescently terminates in any 2-edge-connected network with message complexity $O(m \cdot N \cdot \mathsf{ID}_{\min})$, where $m$ is the number of edges, $N$ is a known upper bound on the number of nodes, and $\mathsf{ID}_{\min}$ is the smallest $\mathsf{ID}$. Combined with the above simulation, this result shows that whenever a size bound $N$ is known, any noiseless algorithm can be simulated in the fully-defective model without a preselected leader, fully refuting the conjecture. Unoriented rings: We then show that the knowledge of $N$ can be dropped in unoriented ring topologies by presenting a quiescently terminating election algorithm with message complexity $O(n \cdot \mathsf{ID}_{\max})$ that matches the previous bound. Consequently, this result constitutes a strict improvement over the previous leader election in oriented rings by Frei, Gelles, Ghazy, and Nolin (DISC 2024) and shows that, on rings, fully-defective and noiseless communication are computationally equivalent, with no additional assumptions.
♻ ☆ Chimera: Efficiently Training Large-Scale Neural Networks with Bidirectional Pipelines
Training large deep learning models at scale is very challenging. This paper proposes Chimera, a novel pipeline parallelism scheme which combines bidirectional pipelines for efficiently training large-scale models. Chimera is a synchronous approach and therefore no loss of accuracy, which is more convergence-friendly than asynchronous approaches. Compared with the latest synchronous pipeline approach, Chimera reduces the number of bubbles by up to 50%; benefiting from the sophisticated scheduling of bidirectional pipelines, Chimera has a more balanced activation memory consumption. Evaluations are conducted on Transformer based language models. For a GPT-2 model with 1.3 billion parameters running on 2,048 GPU nodes of the Piz Daint supercomputer, Chimera improves the training throughput by 1.16x-2.34x over the state-of-the-art synchronous and asynchronous pipeline approaches.
comment: Published in Proceedings of the 2021 International Conference for High Performance Computing, Networking, Storage and Analysis (SC'21), November 2021, Article No.: 27, Pages 1-14. Best Paper Finalist
♻ ☆ Breaking (Global) Barriers in Parallel Stochastic Optimization with Wait-Avoiding Group Averaging
Deep learning at scale is dominated by communication time. Distributing samples across nodes usually yields the best performance, but poses scaling challenges due to global information dissemination and load imbalance across uneven sample lengths. State-of-the-art decentralized optimizers mitigate the problem, but require more iterations to achieve the same accuracy as their globally-communicating counterparts. We present Wait-Avoiding Group Model Averaging (WAGMA) SGD, a wait-avoiding stochastic optimizer that reduces global communication via subgroup weight exchange. The key insight is a combination of algorithmic changes to the averaging scheme and the use of a group allreduce operation. We prove the convergence of WAGMA-SGD, and empirically show that it retains convergence rates similar to Allreduce-SGD. For evaluation, we train ResNet-50 on ImageNet; Transformer for machine translation; and deep reinforcement learning for navigation at scale. Compared with state-of-the-art decentralized SGD variants, WAGMA-SGD significantly improves training throughput (e.g., 2.1x on 1,024 GPUs for reinforcement learning), and achieves the fastest time-to-solution (e.g., the highest score using the shortest training time for Transformer).
comment: Published in IEEE Transactions on Parallel and Distributed Systems (IEEE TPDS), vol. 32, no. 7, pp. 1725-1739, 1 July 2021
♻ ☆ Taming Unbalanced Training Workloads in Deep Learning with Partial Collective Operations
Load imbalance pervasively exists in distributed deep learning training systems, either caused by the inherent imbalance in learned tasks or by the system itself. Traditional synchronous Stochastic Gradient Descent (SGD) achieves good accuracy for a wide variety of tasks, but relies on global synchronization to accumulate the gradients at every training step. In this paper, we propose eager-SGD, which relaxes the global synchronization for decentralized accumulation. To implement eager-SGD, we propose to use two partial collectives: solo and majority. With solo allreduce, the faster processes contribute their gradients eagerly without waiting for the slower processes, whereas with majority allreduce, at least half of the participants must contribute gradients before continuing, all without using a central parameter server. We theoretically prove the convergence of the algorithms and describe the partial collectives in detail. Experimental results on load-imbalanced environments (CIFAR-10, ImageNet, and UCF101 datasets) show that eager-SGD achieves 1.27x speedup over the state-of-the-art synchronous SGD, without losing accuracy.
comment: Published in Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP'20), pp. 45-61. 2020
♻ ☆ SGEMM-cube: Emulating FP32 GEMM on Ascend NPUs Using FP16 Cube Units with Precision Recovery
Low-precision matrix engines, such as FP16 cube, offer high throughput but lack support for full-precision computation. In this work, we propose SGEMM-cube, a high-performance algorithm for emulating FP32 general matrix-matrix multiplication (GEMM) using only FP16 computation units on a representative AI accelerator. The method decomposes each FP32 operand into two FP16 values and compensates for numerical errors through a tunable scaling strategy. A detailed analysis of numerical errors, including underflow conditions and precision loss, guides the selection of scaling parameters to preserve up to 22 bits of mantissa accuracy. We further investigate the effect of computation order on accuracy and demonstrate that a term-wise accumulation scheme improves numerical stability over conventional FP32 GEMM in low-exponent regimes. Finally, a cache-aware blocking strategy and double-buffered pipeline are introduced to overlap memory transfers with computation, enabling SGEMM-cube to achieve up to 77\% of the theoretical FP32-equivalent peak performance on Ascend 910A NPU lacking native FP32 support. Extensive numerical experiments confirm that our method not only recovers the accuracy of native FP32 GEMM but also exhibits superior numerical stability under certain conditions, due to its structured and error-aware computation order.
Information Retrieval 25
☆ Trust and Reputation in Data Sharing: A Survey
Data sharing is the fuel of the galloping artificial intelligence economy, providing diverse datasets for training robust models. Trust between data providers and data consumers is widely considered one of the most important factors for enabling data sharing initiatives. Concerns about data sensitivity, privacy breaches, and misuse contribute to reluctance in sharing data across various domains. In recent years, there has been a rise in technological and algorithmic solutions to measure, capture and manage trust, trustworthiness, and reputation in what we collectively refer to as Trust and Reputation Management Systems (TRMSs). Such approaches have been developed and applied to different domains of computer science, such as autonomous vehicles, or IoT networks, but there have not been dedicated approaches to data sharing and its unique characteristics. In this survey, we examine TRMSs from a data-sharing perspective, analyzing how they assess the trustworthiness of both data and entities across different environments. We develop novel taxonomies for system designs, trust evaluation framework, and evaluation metrics for both data and entity, and we systematically analyze the applicability of existing TRMSs in data sharing. Finally, we identify open challenges and propose future research directions to enhance the explainability, comprehensiveness, and accuracy of TRMSs in large-scale data-sharing ecosystems.
☆ Democratizing News Recommenders: Modeling Multiple Perspectives for News Candidate Generation with VQ-VAE
Current News Recommender Systems based on past clicks are designed for engagement, but come at the cost of limiting diversity in the suggested content. While diversity-aware algorithms exist, they suffer from two major limitations. First, they fail to account for normative diversity, which requires fair access to a broad range of perspectives. Second, they typically apply diversity late in the system's pipeline, after a lot of content has already been filtered out. Both limitations confine their effectiveness and prevent them from promoting true normative diversity in news recommendations. We propose Aspect-Aware Candidate Generation (A2CG) to address these limitations. Our framework introduces diversity into the earliest pipeline stage and uses a configurable mechanism to align diversity with specific democratic goals. A2CG represents each news article using multiple aspects of perspectives (e.g., sentiment, political leaning, frame) and uses a Vector Quantized Variational Autoencoder (VQ-VAE) to create a discrete, multi-faceted representation. A decoder-only model then learns user preferences over these aspect codes. We then inject diversity directly by reversing the sign on some of the query vector's aspects during the candidate retrieval process, ensuring a more diverse set of candidates. Our method, evaluated on the MIND dataset, enables a flexible trade-off between personalization and diversity early in the recommendation pipeline. It also generates more novel, diverse, and serendipitous candidates while effectively taking into account aspects that strengthen democratic values. These empirical results make it a promising approach for downstream democratized news recommendation systems.
☆ InPars+: Supercharging Synthetic Data Generation for Information Retrieval Systems
This work revisits and extends synthetic query generation pipelines for Neural Information Retrieval (NIR) by leveraging the InPars Toolkit, a reproducible, end-to-end framework for generating training data using large language models (LLMs). We first assess the reproducibility of the original InPars, InPars-V2, and Promptagator pipelines on the SciFact benchmark and validate their effectiveness using open-source reranker and generator models. Building on this foundation, we introduce two key extensions to the pipeline: (1) fine-tuning a query generator LLM via Contrastive Preference Optimization (CPO) to improve the signal quality in generated queries, and (2) replacing static prompt templates with dynamic, Chain-of-Thought (CoT) optimized prompts using the DSPy framework. Our results show that both extensions reduce the need for aggressive filtering while improving retrieval performance. All code, models, and synthetic datasets are publicly released to support further research at: \href{https://github.com/danilotpnta/IR2-project}{this https URL}.
☆ CARE: Contextual Adaptation of Recommenders for LLM-based Conversational Recommendation
We tackle the challenge of integrating large language models (LLMs) with external recommender systems to enhance domain expertise in conversational recommendation (CRS). Current LLM-based CRS approaches primarily rely on zero- or few-shot methods for generating item recommendations based on user queries, but this method faces two significant challenges: (1) without domain-specific adaptation, LLMs frequently recommend items not in the target item space, resulting in low recommendation accuracy; and (2) LLMs largely rely on dialogue context for content-based recommendations, neglecting the collaborative relationships among entities or item sequences. To address these limitations, we introduce the CARE (Contextual Adaptation of Recommenders) framework. CARE customizes LLMs for CRS tasks, and synergizes them with external recommendation systems. CARE (a) integrates external recommender systems as domain experts, producing recommendations through entity-level insights, and (b) enhances those recommendations by leveraging contextual information for more accurate and unbiased final recommendations using LLMs. Our results demonstrate that incorporating external recommender systems with entity-level information significantly enhances recommendation accuracy of LLM-based CRS by an average of 54% and 25% for ReDial and INSPIRED datasets. The most effective strategy in the CARE framework involves LLMs selecting and reranking candidate items that external recommenders provide based on contextual insights. Our analysis indicates that the CARE framework effectively addresses the identified challenges and mitigates the popularity bias in the external recommender.
☆ Bites of Tomorrow: Personalized Recommendations for a Healthier and Greener Plate
The recent emergence of extreme climate events has significantly raised awareness about sustainable living. In addition to developing energy-saving materials and technologies, existing research mainly relies on traditional methods that encourage behavioral shifts towards sustainability, which can be overly demanding or only passively engaging. In this work, we propose to employ recommendation systems to actively nudge users toward more sustainable choices. We introduce Green Recommender Aligned with Personalized Eating (GRAPE), which is designed to prioritize and recommend sustainable food options that align with users' evolving preferences. We also design two innovative Green Loss functions that cater to green indicators with either uniform or differentiated priorities, thereby enhancing adaptability across a range of scenarios. Extensive experiments on a real-world dataset demonstrate the effectiveness of our GRAPE.
☆ UniECS: Unified Multimodal E-Commerce Search Framework with Gated Cross-modal Fusion
Current e-commerce multimodal retrieval systems face two key limitations: they optimize for specific tasks with fixed modality pairings, and lack comprehensive benchmarks for evaluating unified retrieval approaches. To address these challenges, we introduce UniECS, a unified multimodal e-commerce search framework that handles all retrieval scenarios across image, text, and their combinations. Our work makes three key contributions. First, we propose a flexible architecture with a novel gated multimodal encoder that uses adaptive fusion mechanisms. This encoder integrates different modality representations while handling missing modalities. Second, we develop a comprehensive training strategy to optimize learning. It combines cross-modal alignment loss (CMAL), cohesive local alignment loss (CLAL), intra-modal contrastive loss (IMCL), and adaptive loss weighting. Third, we create M-BEER, a carefully curated multimodal benchmark containing 50K product pairs for e-commerce search evaluation. Extensive experiments demonstrate that UniECS consistently outperforms existing methods across four e-commerce benchmarks with fine-tuning or zero-shot evaluation. On our M-BEER bench, UniECS achieves substantial improvements in cross-modal tasks (up to 28\% gain in R@10 for text-to-image retrieval) while maintaining parameter efficiency (0.2B parameters) compared to larger models like GME-Qwen2VL (2B) and MM-Embed (8B). Furthermore, we deploy UniECS in the e-commerce search platform of Kuaishou Inc. across two search scenarios, achieving notable improvements in Click-Through Rate (+2.74\%) and Revenue (+8.33\%). The comprehensive evaluation demonstrates the effectiveness of our approach in both experimental and real-world settings. Corresponding codes, models and datasets will be made publicly available at https://github.com/qzp2018/UniECS.
comment: Accepted at CIKM2025 as a long paper
☆ Refining Contrastive Learning and Homography Relations for Multi-Modal Recommendation
Multi-modal recommender system focuses on utilizing rich modal information ( i.e., images and textual descriptions) of items to improve recommendation performance. The current methods have achieved remarkable success with the powerful structure modeling capability of graph neural networks. However, these methods are often hindered by sparse data in real-world scenarios. Although contrastive learning and homography ( i.e., homogeneous graphs) are employed to address the data sparsity challenge, existing methods still suffer two main limitations: 1) Simple multi-modal feature contrasts fail to produce effective representations, causing noisy modal-shared features and loss of valuable information in modal-unique features; 2) The lack of exploration of the homograph relations between user interests and item co-occurrence results in incomplete mining of user-item interplay. To address the above limitations, we propose a novel framework for \textbf{R}\textbf{E}fining multi-mod\textbf{A}l cont\textbf{R}astive learning and ho\textbf{M}ography relations (\textbf{REARM}). Specifically, we complement multi-modal contrastive learning by employing meta-network and orthogonal constraint strategies, which filter out noise in modal-shared features and retain recommendation-relevant information in modal-unique features. To mine homogeneous relationships effectively, we integrate a newly constructed user interest graph and an item co-occurrence graph with the existing user co-occurrence and item semantic graphs for graph learning. The extensive experiments on three real-world datasets demonstrate the superiority of REARM to various state-of-the-art baselines. Our visualization further shows an improvement made by REARM in distinguishing between modal-shared and modal-unique features. Code is available \href{https://github.com/MrShouxingMa/REARM}{here}.
comment: This paper has been accepted as a full paper at ACM MM 2025
☆ MUFFIN: Mixture of User-Adaptive Frequency Filtering for Sequential Recommendation
Sequential recommendation (SR) aims to predict users' subsequent interactions by modeling their sequential behaviors. Recent studies have explored frequency domain analysis, which effectively models periodic patterns in user sequences. However, existing frequency-domain SR models still face two major drawbacks: (i) limited frequency band coverage, often missing critical behavioral patterns in a specific frequency range, and (ii) lack of personalized frequency filtering, as they apply an identical filter for all users regardless of their distinct frequency characteristics. To address these challenges, we propose a novel frequency-domain model, Mixture of User-adaptive Frequency FIlteriNg (MUFFIN), operating through two complementary modules. (i) The global filtering module (GFM) handles the entire frequency spectrum to capture comprehensive behavioral patterns. (ii) The local filtering module (LFM) selectively emphasizes important frequency bands without excluding information from other ranges. (iii) In both modules, the user-adaptive filter (UAF) is adopted to generate user-specific frequency filters tailored to individual unique characteristics. Finally, by aggregating both modules, MUFFIN captures diverse user behavioral patterns across the full frequency spectrum. Extensive experiments show that MUFFIN consistently outperforms state-of-the-art frequency-domain SR models over five benchmark datasets. The source code is available at https://github.com/ilwoong100/MUFFIN.
comment: Accepted by CIKM 2025
☆ Understanding Distribution Structure on Calibrated Recommendation Systems
Traditional recommender systems aim to generate a recommendation list comprising the most relevant or similar items to the user's profile. These approaches can create recommendation lists that omit item genres from the less prominent areas of a user's profile, thereby undermining the user's experience. To solve this problem, the calibrated recommendation system provides a guarantee of including less representative areas in the recommended list. The calibrated context works with three distributions. The first is from the user's profile, the second is from the candidate items, and the last is from the recommendation list. These distributions are G-dimensional, where G is the total number of genres in the system. This high dimensionality requires a different evaluation method, considering that traditional recommenders operate in a one-dimensional data space. In this sense, we implement fifteen models that help to understand how these distributions are structured. We evaluate the users' patterns in three datasets from the movie domain. The results indicate that the models of outlier detection provide a better understanding of the structures. The calibrated system creates recommendation lists that act similarly to traditional recommendation lists, allowing users to change their groups of preferences to the same degree.
☆ ENCODE: Breaking the Trade-Off Between Performance and Efficiency in Long-Term User Behavior Modeling TKDE
Long-term user behavior sequences are a goldmine for businesses to explore users' interests to improve Click-Through Rate. However, it is very challenging to accurately capture users' long-term interests from their long-term behavior sequences and give quick responses from the online serving systems. To meet such requirements, existing methods "inadvertently" destroy two basic requirements in long-term sequence modeling: R1) make full use of the entire sequence to keep the information as much as possible; R2) extract information from the most relevant behaviors to keep high relevance between learned interests and current target items. The performance of online serving systems is significantly affected by incomplete and inaccurate user interest information obtained by existing methods. To this end, we propose an efficient two-stage long-term sequence modeling approach, named as EfficieNt Clustering based twO-stage interest moDEling (ENCODE), consisting of offline extraction stage and online inference stage. It not only meets the aforementioned two basic requirements but also achieves a desirable balance between online service efficiency and precision. Specifically, in the offline extraction stage, ENCODE clusters the entire behavior sequence and extracts accurate interests. To reduce the overhead of the clustering process, we design a metric learning-based dimension reduction algorithm that preserves the relative pairwise distances of behaviors in the new feature space. While in the online inference stage, ENCODE takes the off-the-shelf user interests to predict the associations with target items. Besides, to further ensure the relevance between user interests and target items, we adopt the same relevance metric throughout the whole pipeline of ENCODE. The extensive experiment and comparison with SOTA have demonstrated the effectiveness and efficiency of our proposed ENCODE.
comment: Accepted to TKDE
☆ Heterogeneous Influence Maximization in User Recommendation
User recommendation systems enhance user engagement by encouraging users to act as inviters to interact with other users (invitees), potentially fostering information propagation. Conventional recommendation methods typically focus on modeling interaction willingness. Influence-Maximization (IM) methods focus on identifying a set of users to maximize the information propagation. However, existing methods face two significant challenges. First, recommendation methods fail to unleash the candidates' spread capability. Second, IM methods fail to account for the willingness to interact. To solve these issues, we propose two models named HeteroIR and HeteroIM. HeteroIR provides an intuitive solution to unleash the dissemination potential of user recommendation systems. HeteroIM fills the gap between the IM method and the recommendation task, improving interaction willingness and maximizing spread coverage. The HeteroIR introduces a two-stage framework to estimate the spread profits. The HeteroIM incrementally selects the most influential invitee to recommend and rerank based on the number of reverse reachable (RR) sets containing inviters and invitees. RR set denotes a set of nodes that can reach a target via propagation. Extensive experiments show that HeteroIR and HeteroIM significantly outperform the state-of-the-art baselines with the p-value < 0.05. Furthermore, we have deployed HeteroIR and HeteroIM in Tencent's online gaming platforms and gained an 8.5\% and 10\% improvement in the online A/B test, respectively. Implementation codes are available at https://github.com/socialalgo/HIM.
comment: Accepted in CIKM 2025
☆ LLM-Enhanced Linear Autoencoders for Recommendation
Large language models (LLMs) have been widely adopted to enrich the semantic representation of textual item information in recommender systems. However, existing linear autoencoders (LAEs) that incorporate textual information rely on sparse word co-occurrence patterns, limiting their ability to capture rich textual semantics. To address this, we propose L3AE, the first integration of LLMs into the LAE framework. L3AE effectively integrates the heterogeneous knowledge of textual semantics and user-item interactions through a two-phase optimization strategy. (i) L3AE first constructs a semantic item-to-item correlation matrix from LLM-derived item representations. (ii) It then learns an item-to-item weight matrix from collaborative signals while distilling semantic item correlations as regularization. Notably, each phase of L3AE is optimized through closed-form solutions, ensuring global optimality and computational efficiency. Extensive experiments demonstrate that L3AE consistently outperforms state-of-the-art LLM-enhanced models on three benchmark datasets, achieving gains of 27.6% in Recall@20 and 39.3% in NDCG@20. The source code is available at https://github.com/jaewan7599/L3AE_CIKM2025.
comment: Accepted by CIKM 2025
☆ AdaptJobRec: Enhancing Conversational Career Recommendation through an LLM-Powered Agentic System
In recent years, recommendation systems have evolved from providing a single list of recommendations to offering a comprehensive suite of topic focused services. To better accomplish this task, conversational recommendation systems (CRS) have progressed from basic retrieval augmented LLM generation to agentic systems with advanced reasoning and self correction capabilities. However, agentic systems come with notable response latency, a longstanding challenge for conversational recommendation systems. To balance the trade off between handling complex queries and minimizing latency, we propose AdaptJobRec, the first conversational job recommendation system that leverages autonomous agent to integrate personalized recommendation algorithm tools. The system employs a user query complexity identification mechanism to minimize response latency. For straightforward queries, the agent directly selects the appropriate tool for rapid responses. For complex queries, the agent uses the memory processing module to filter chat history for relevant content, then passes the results to the intelligent task decomposition planner, and finally executes the tasks using personalized recommendation tools. Evaluation on Walmart's real world career recommendation scenarios demonstrates that AdaptJobRec reduces average response latency by up to 53.3% compared to competitive baselines, while significantly improving recommendation accuracy.
☆ RewardRank: Optimizing True Learning-to-Rank Utility
Traditional ranking systems rely on proxy loss functions that assume simplistic user behavior, such as users preferring a rank list where items are sorted by hand-crafted relevance. However, real-world user interactions are influenced by complex behavioral biases, including position bias, brand affinity, decoy effects, and similarity aversion, which these objectives fail to capture. As a result, models trained on such losses often misalign with actual user utility, such as the probability of any click or purchase across the ranked list. In this work, we propose a data-driven framework for modeling user behavior through counterfactual reward learning. Our method, RewardRank, first trains a deep utility model to estimate user engagement for entire item permutations using logged data. Then, a ranking policy is optimized to maximize predicted utility via differentiable soft permutation operators, enabling end-to-end training over the space of factual and counterfactual rankings. To address the challenge of evaluation without ground-truth for unseen permutations, we introduce two automated protocols: (i) $\textit{KD-Eval}$, using a position-aware oracle for counterfactual reward estimation, and (ii) $\textit{LLM-Eval}$, which simulates user preferences via large language models. Experiments on large-scale benchmarks, including Baidu-ULTR and the Amazon KDD Cup datasets, demonstrate that our approach consistently outperforms strong baselines, highlighting the effectiveness of modeling user behavior dynamics for utility-optimized ranking. Our code is available at: https://github.com/GauravBh1010tt/RewardRank
☆ Unveiling Unicode's Unseen Underpinnings in Undermining Authorship Attribution
When using a public communication channel -- whether formal or informal, such as commenting or posting on social media -- end users have no expectation of privacy: they compose a message and broadcast it for the world to see. Even if an end user takes utmost precautions to anonymize their online presence -- using an alias or pseudonym; masking their IP address; spoofing their geolocation; concealing their operating system and user agent; deploying encryption; registering with a disposable phone number or email; disabling non-essential settings; revoking permissions; and blocking cookies and fingerprinting -- one obvious element still lingers: the message itself. Assuming they avoid lapses in judgment or accidental self-exposure, there should be little evidence to validate their actual identity, right? Wrong. The content of their message -- necessarily open for public consumption -- exposes an attack vector: stylometric analysis, or author profiling. In this paper, we dissect the technique of stylometry, discuss an antithetical counter-strategy in adversarial stylometry, and devise enhancements through Unicode steganography.
☆ Scalable Scientific Interest Profiling Using Large Language Models
Research profiles help surface scientists' expertise but are often outdated. We develop and evaluate two large language model-based methods to generate scientific interest profiles: one summarizing PubMed abstracts and one using Medical Subject Headings (MeSH) terms, and compare them with researchers' self-written profiles. We assembled titles, MeSH terms, and abstracts for 595 faculty at Columbia University Irving Medical Center; self-authored profiles were available for 167. Using GPT-4o-mini, we generated profiles and assessed them with automatic metrics and blinded human review. Lexical overlap with self-written profiles was low (ROUGE-L, BLEU, METEOR), while BERTScore indicated moderate semantic similarity (F1: 0.542 for MeSH-based; 0.555 for abstract-based). Paraphrased references yielded 0.851, highlighting metric sensitivity. TF-IDF Kullback-Leibler divergence (8.56 for MeSH-based; 8.58 for abstract-based) suggested distinct keyword choices. In manual review, 77.78 percent of MeSH-based profiles were rated good or excellent, readability was favored in 93.44 percent of cases, and panelists preferred MeSH-based over abstract-based profiles in 67.86 percent of comparisons. Overall, large language models can generate researcher profiles at scale; MeSH-derived profiles tend to be more readable than abstract-derived ones. Machine-generated and self-written profiles differ conceptually, with human summaries introducing more novel ideas.
♻ ☆ Modeling the Diachronic Evolution of Legal Norms: An LRMoo-Based, Component-Level Approach
Effectively representing the temporal evolution of legal norms at the component level is a critical challenge. While frameworks like IFLA LRMoo and standards like Akoma Ntoso provide generic toolkits, a dedicated pattern for granular versioning is needed to enable the deterministic point-in-time reconstruction of legal texts required by reliable AI applications. This paper proposes a temporal modeling pattern grounded in the LRMoo ontology that models a norm's evolution as a diachronic chain of F2 Expressions. We introduce a key distinction between a language-agnostic Temporal Version (TV) - a semantic snapshot of the norm's structure - and its concrete monolingual realizations, the Language Versions (LV). Both are modeled as F2 Expressions linked by the canonical R76 is derivative of property. The model applies this paradigm recursively, representing the legal text's internal structure as a parallel hierarchy of abstract Component Works (F1 Work) and their versioned Component Expressions (F2 Expression). Furthermore, we formalize the amendment process using the F28 Expression Creation event, allowing changes to be traced from a specific provision in an amending act to its precise effect on the amended norm. A case study on the Brazilian Federal Constitution demonstrates how this fine-grained, event-centric architecture enables the precise, deterministic retrieval and reconstruction of any part of a legal text at a specific date. The model provides a robust foundation for building verifiable knowledge graphs and advanced AI tools, overcoming the limitations of current generative models.
comment: Major revision. The model is now fully migrated from the superseded FRBRoo to the current IFLA LRMoo v1.0 standard, ensuring strict formal compliance. The event-centric and component-level modeling patterns have been significantly refined for greater precision and rigor
♻ ☆ What Matters for Bioacoustic Encoding
Bioacoustics, the study of sounds produced by living organisms, plays a vital role in conservation, biodiversity monitoring, and behavioral studies. Many tasks in this field, such as species, individual, and behavior classification and detection, are well-suited to machine learning. However, they often suffer from limited annotated data, highlighting the need for a general-purpose bioacoustic encoder capable of extracting useful representations for diverse downstream tasks. Such encoders have been proposed before, but are often limited in scope due to a focus on a narrow range of species (typically birds), and a reliance on a single model architecture or training paradigm. Moreover, they are usually evaluated on a small set of tasks and datasets. In this work, we present a large-scale empirical study that covers aspects of bioacoustics that are relevant to research but have previously been scarcely considered: training data diversity and scale, model architectures and training recipes, and the breadth of evaluation tasks and datasets. We obtain encoders that are state-of-the-art on the existing and proposed benchmarks. We also identify what matters for training these encoders, such that this work can be extended when more data are available or better architectures are proposed. Specifically, across 26 datasets with tasks including species classification, detection, individual ID, and vocal repertoire discovery, we find self-supervised pre-training followed by supervised post-training on a mixed bioacoustics + general-audio corpus yields the strongest in- and out-of-distribution performance. We show the importance of data diversity in both stages. To support ongoing research and application, we will release the model checkpoints.
♻ ☆ Iterative Utility Judgment Framework via LLMs Inspired by Relevance in Philosophy
Relevance and utility are two frequently used measures to evaluate the effectiveness of an information retrieval (IR) system. Relevance emphasizes the aboutness of a result to a query, while utility refers to the result's usefulness or value to an information seeker. In Retrieval-Augmented Generation (RAG), high-utility results should be prioritized to feed to LLMs due to their limited input bandwidth. Re-examining RAG's three core components -- relevance ranking derived from retrieval models, utility judgments, and answer generation -- aligns with Schutz's philosophical system of relevances, which encompasses three types of relevance representing different levels of human cognition that enhance each other. These three RAG components also reflect three cognitive levels for LLMs in question-answering. Therefore, we propose an Iterative utiliTy judgmEnt fraMework (ITEM) to promote each step in RAG. We conducted extensive experiments on retrieval (TREC DL, WebAP), utility judgment task (GTI-NQ), and factoid question-answering (NQ) datasets. Experimental results demonstrate significant improvements of ITEM in utility judgments, ranking, and answer generation upon representative baselines.
comment: 22 pages
♻ ☆ Unleashing the Power of LLMs in Dense Retrieval with Query Likelihood Modeling
Dense retrieval is a crucial task in Information Retrieval (IR), serving as the basis for downstream tasks such as re-ranking and augmenting generation. Recently, large language models (LLMs) have demonstrated impressive semantic understanding capabilities, making them attractive to researchers focusing on dense retrieval. While LLMs, as decoder-style generative models, excel in language generation, they often fall short in modeling global information due to a lack of attention to subsequent tokens. Drawing inspiration from the classical word-based language modeling approach for IR, specifically the query likelihood (QL) model, we aim to leverage the generative strengths of LLMs through QL maximization. Rather than employing QL estimation for document ranking, we propose an auxiliary task of QL maximization to enhance the backbone for subsequent contrastive learning of the retriever. We introduce our model, LLM-QL, which incorporates two key components: Attention Block (AB) and Document Corruption (DC). AB blocks the attention of predictive tokens to the document tokens before the document's ending token, while DC corrupts a document by masking a portion of its tokens during prediction. Evaluations on the in-domain (MS MARCO) and out-of-domain dataset (BEIR) indicate LLM-QL's superiority over other LLM-based retrievers. Furthermore, comprehensive analyses also validate the efficacy of LLM-QL and its components.
comment: 12 pages, 3 figures
♻ ☆ A Survey of LLM-based Deep Search Agents: Paradigm, Optimization, Evaluation, and Challenges
The advent of Large Language Models (LLMs) has significantly revolutionized web search. The emergence of LLM-based Search Agents marks a pivotal shift towards deeper, dynamic, autonomous information seeking. These agents can comprehend user intentions and environmental context and execute multi-turn retrieval with dynamic planning, extending search capabilities far beyond the web. Leading examples like OpenAI's Deep Research highlight their potential for deep information mining and real-world applications. This survey provides the first systematic analysis of search agents. We comprehensively analyze and categorize existing works from the perspectives of architecture, optimization, application, and evaluation, ultimately identifying critical open challenges and outlining promising future research directions in this rapidly evolving field. Our repository is available on https://github.com/YunjiaXi/Awesome-Search-Agent-Papers.
♻ ☆ TFRank: Think-Free Reasoning Enables Practical Pointwise LLM Ranking
Reasoning-intensive ranking models built on Large Language Models (LLMs) have made notable progress, but existing approaches often rely on large-scale LLMs and explicit Chain-of-Thought (CoT) reasoning, resulting in high computational cost and latency that limit real-world use. To address this, we propose \textbf{TFRank}, an efficient pointwise reasoning ranker based on small-scale LLMs. To improve ranking performance, TFRank effectively integrates CoT data, fine-grained score supervision, and multi-task training. Furthermore, it achieves an efficient ``\textbf{T}hink-\textbf{F}ree" reasoning capability by employing a ``think-mode switch'' and pointwise format constraints. Specifically, this allows the model to leverage explicit reasoning during training while delivering precise relevance scores for complex queries at inference without generating any reasoning chains. Experiments show that TFRank (e.g., 1.7B) achieves performance comparable to models with four times more parameters on the BRIGHT benchmark, and demonstrates strong competitiveness on the BEIR benchmark. Further analysis shows that TFRank achieves an effective balance between performance and efficiency, providing a practical solution for integrating advanced reasoning into real-world systems. Our code and data are released in the repository: https://github.com/JOHNNY-fans/TFRank.
♻ ☆ Diagnostic-Guided Dynamic Profile Optimization for LLM-based User Simulators in Sequential Recommendation
Recent advances in large language models (LLMs) have enabled realistic user simulators for developing and evaluating recommender systems (RSs). However, existing LLM-based simulators for RSs face two major limitations: (1) static and single-step prompt-based inference that leads to inaccurate and incomplete user profile construction; (2) unrealistic and single-round recommendation-feedback interaction pattern that fails to capture real-world scenarios. To address these limitations, we propose DGDPO (Diagnostic-Guided Dynamic Profile Optimization), a novel framework that constructs user profile through a dynamic and iterative optimization process to enhance the simulation fidelity. Specifically, DGDPO incorporates two core modules within each optimization loop: firstly, a specialized LLM-based diagnostic module, calibrated through our novel training strategy, accurately identifies specific defects in the user profile. Subsequently, a generalized LLM-based treatment module analyzes the diagnosed defect and generates targeted suggestions to refine the profile. Furthermore, unlike existing LLM-based user simulators that are limited to single-round interactions, we are the first to integrate DGDPO with sequential recommenders, enabling a bidirectional evolution where user profiles and recommendation strategies adapt to each other over multi-round interactions. Extensive experiments conducted on three real-world datasets demonstrate the effectiveness of our proposed framework.
♻ ☆ Reference-Aligned Retrieval-Augmented Question Answering over Heterogeneous Proprietary Documents
Proprietary corporate documents contain rich domain-specific knowledge, but their overwhelming volume and disorganized structure make it difficult even for employees to access the right information when needed. For example, in the automotive industry, vehicle crash-collision tests, each costing hundreds of thousands of dollars, produce highly detailed documentation. However, retrieving relevant content during decision-making remains time-consuming due to the scale and complexity of the material. While Retrieval-Augmented Generation (RAG)-based Question Answering (QA) systems offer a promising solution, building an internal RAG-QA system poses several challenges: (1) handling heterogeneous multi-modal data sources, (2) preserving data confidentiality, and (3) enabling traceability between each piece of information in the generated answer and its original source document. To address these, we propose a RAG-QA framework for internal enterprise use, consisting of: (1) a data pipeline that converts raw multi-modal documents into a structured corpus and QA pairs, (2) a fully on-premise, privacy-preserving architecture, and (3) a lightweight reference matcher that links answer segments to supporting content. Applied to the automotive domain, our system improves factual correctness (+1.79, +1.94), informativeness (+1.33, +1.16), and helpfulness (+1.08, +1.67) over a non-RAG baseline, based on 1-5 scale ratings from both human and LLM judge.
comment: Accepted to CIKM 2025 Applied Research Track
♻ ☆ Reinforcement Learning to Rank Using Coarse-grained Rewards
Learning to rank (LTR) plays a crucial role in various Information Retrieval (IR) tasks. Although supervised LTR methods based on fine-grained relevance labels (e.g., document-level annotations) have achieved significant success, their reliance on costly and potentially biased annotations limits scalability and alignment with realistic goals. In contrast, coarse-grained feedback signals, such as duration time and session-level engagement, are more accessible and affordable. Reinforcement Learning (RL) offers a promising framework to directly optimize these objectives using reward signals, but most existing Reinforcement Learning to Rank (RLTR) approaches suffer from high variance and low sample efficiency. Motivated by recent advances in large language models (LLMs), we re-examine the problem of RLTR with coarse-grained rewards and propose new RLTR methods based on widely used RL algorithms for LLMs. We systematically compare supervised learning and RL-based methods across various model architectures and coarse-grained reward functions on large-scale LTR benchmarks. Experimental results demonstrate that advanced RL methods can directly learn from coarse-grained rewards and outperform strong supervised learning baselines even with fine-grained labels. This shows the great potential of RLTR for metric-agnostic ranking optimization.
Artificial Intelligence 180
☆ ComputerRL: Scaling End-to-End Online Reinforcement Learning for Computer Use Agents
We introduce ComputerRL, a framework for autonomous desktop intelligence that enables agents to operate complex digital workspaces skillfully. ComputerRL features the API-GUI paradigm, which unifies programmatic API calls and direct GUI interaction to address the inherent mismatch between machine agents and human-centric desktop environments. Scaling end-to-end RL training is crucial for improvement and generalization across diverse desktop tasks, yet remains challenging due to environmental inefficiency and instability in extended training. To support scalable and robust training, we develop a distributed RL infrastructure capable of orchestrating thousands of parallel virtual desktop environments to accelerate large-scale online RL. Furthermore, we propose Entropulse, a training strategy that alternates reinforcement learning with supervised fine-tuning, effectively mitigating entropy collapse during extended training runs. We employ ComputerRL on open models GLM-4-9B-0414 and Qwen2.5-14B, and evaluate them on the OSWorld benchmark. The AutoGLM-OS-9B based on GLM-4-9B-0414 achieves a new state-of-the-art accuracy of 48.1%, demonstrating significant improvements for general agents in desktop automation. The algorithm and framework are adopted in building AutoGLM (Liu et al., 2024a)
☆ GeoSAM2: Unleashing the Power of SAM2 for 3D Part Segmentation
Modern 3D generation methods can rapidly create shapes from sparse or single views, but their outputs often lack geometric detail due to computational constraints. We present DetailGen3D, a generative approach specifically designed to enhance these generated 3D shapes. Our key insight is to model the coarse-to-fine transformation directly through data-dependent flows in latent space, avoiding the computational overhead of large-scale 3D generative models. We introduce a token matching strategy that ensures accurate spatial correspondence during refinement, enabling local detail synthesis while preserving global structure. By carefully designing our training data to match the characteristics of synthesized coarse shapes, our method can effectively enhance shapes produced by various 3D generation and reconstruction approaches, from single-view to sparse multi-view inputs. Extensive experiments demonstrate that DetailGen3D achieves high-fidelity geometric detail synthesis while maintaining efficiency in training.
comment: https://detailgen3d.github.io/GeoSAM2/
☆ Unintended Misalignment from Agentic Fine-Tuning: Risks and Mitigation
Beyond simple text generation, Large Language Models (LLMs) have evolved into agentic systems capable of planning and interacting with external tools to solve complex tasks. This evolution involves fine-tuning LLMs on agent-specific tasks to enhance their proficiency. However, safety concerns are frequently overlooked during this fine-tuning process. In this work, we show that aligned LLMs can become unintentionally misaligned, leading to a higher likelihood of executing harmful tasks and a reduced tendency to refuse them when fine-tuned to execute agentic tasks. To address these safety challenges, we propose Prefix INjection Guard (PING), a simple yet effective method that prepends automatically generated natural language prefixes to agent responses, guiding them to refuse harmful requests while preserving performance on benign tasks. Specifically, we introduce an iterative approach that alternates between (1) generating candidate prefixes and (2) selecting those that optimize both task performance and refusal behavior. Experimental results demonstrate that PING significantly enhances the safety of fine-tuned LLM agents without sacrificing their effectiveness. PING consistently outperforms existing prompting approaches across diverse benchmarks in both web navigation and code generation tasks. Our analysis of internal hidden states via linear probes reveals that prefix tokens are crucial for behavior modification, explaining the performance gains. WARNING: This paper contains contents that are unethical or offensive in nature.
comment: Source code: https://github.com/HahmDY/prefix_injection_guard
☆ Ask Good Questions for Large Language Models
Recent advances in large language models (LLMs) have significantly improved the performance of dialog systems, yet current approaches often fail to provide accurate guidance of topic due to their inability to discern user confusion in related concepts. To address this, we introduce the Ask-Good-Question (AGQ) framework, which features an improved Concept-Enhanced Item Response Theory (CEIRT) model to better identify users' knowledge levels. Our contributions include applying the CEIRT model along with LLMs to directly generate guiding questions based on the inspiring text, greatly improving information retrieval efficiency during the question & answer process. Through comparisons with other baseline methods, our approach outperforms by significantly enhencing the users' information retrieval experiences.
☆ A Biased Random Key Genetic Algorithm for Solving the Longest Run Subsequence Problem
The longest run subsequence (LRS) problem is an NP-hard combinatorial optimization problem belonging to the class of subsequence problems from bioinformatics. In particular, the problem plays a role in genome reassembly. In this paper, we present a solution to the LRS problem using a Biased Random Key Genetic Algorithm (BRKGA). Our approach places particular focus on the computational efficiency of evaluating individuals, which involves converting vectors of gray values into valid solutions to the problem. For comparison purposes, a Max-Min Ant System is developed and implemented. This is in addition to the application of the integer linear programming solver CPLEX for solving all considered problem instances. The computation results show that the proposed BRKGA is currently a state-of-the-art technique for the LRS problem. Nevertheless, the results also show that there is room for improvement, especially in the context of input strings based on large alphabet sizes.
☆ Efficient Knowledge Graph Unlearning with Zeroth-order Information
Due to regulations like the Right to be Forgotten, there is growing demand for removing training data and its influence from models. Since full retraining is costly, various machine unlearning methods have been proposed. In this paper, we firstly present an efficient knowledge graph (KG) unlearning algorithm. We remark that KG unlearning is nontrivial due to the distinctive structure of KG and the semantic relations between entities. Also, unlearning by estimating the influence of removed components incurs significant computational overhead when applied to large-scale knowledge graphs. To this end, we define an influence function for KG unlearning and propose to approximate the model's sensitivity without expensive computation of first-order and second-order derivatives for parameter updates. Specifically, we use Taylor expansion to estimate the parameter changes caused by data removal. Given that the first-order gradients and second-order derivatives dominate the computational load, we use the Fisher matrices and zeroth-order optimization to approximate the inverse-Hessian vector product without constructing the computational graphs. Our experimental results demonstrate that the proposed method outperforms other state-of-the-art graph unlearning baselines significantly in terms of unlearning efficiency and unlearning quality. Our code is released at https://github.com/NKUShaw/ZOWFKGIF.
comment: 9 page
☆ Evaluating Identity Leakage in Speaker De-Identification Systems
Speaker de-identification aims to conceal a speaker's identity while preserving intelligibility of the underlying speech. We introduce a benchmark that quantifies residual identity leakage with three complementary error rates: equal error rate, cumulative match characteristic hit rate, and embedding-space similarity measured via canonical correlation analysis and Procrustes analysis. Evaluation results reveal that all state-of-the-art speaker de-identification systems leak identity information. The highest performing system in our evaluation performs only slightly better than random guessing, while the lowest performing system achieves a 45% hit rate within the top 50 candidates based on CMC. These findings highlight persistent privacy risks in current speaker de-identification technologies.
comment: Submitted to ICASSP 2026
☆ ASDFormer: A Transformer with Mixtures of Pooling-Classifier Experts for Robust Autism Diagnosis and Biomarker Discovery
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition marked by disruptions in brain connectivity. Functional MRI (fMRI) offers a non-invasive window into large-scale neural dynamics by measuring blood-oxygen-level-dependent (BOLD) signals across the brain. These signals can be modeled as interactions among Regions of Interest (ROIs), which are grouped into functional communities based on their underlying roles in brain function. Emerging evidence suggests that connectivity patterns within and between these communities are particularly sensitive to ASD-related alterations. Effectively capturing these patterns and identifying interactions that deviate from typical development is essential for improving ASD diagnosis and enabling biomarker discovery. In this work, we introduce ASDFormer, a Transformer-based architecture that incorporates a Mixture of Pooling-Classifier Experts (MoE) to capture neural signatures associated with ASD. By integrating multiple specialized expert branches with attention mechanisms, ASDFormer adaptively emphasizes different brain regions and connectivity patterns relevant to autism. This enables both improved classification performance and more interpretable identification of disorder-related biomarkers. Applied to the ABIDE dataset, ASDFormer achieves state-of-the-art diagnostic accuracy and reveals robust insights into functional connectivity disruptions linked to ASD, highlighting its potential as a tool for biomarker discovery.
☆ Embodied-R1: Reinforced Embodied Reasoning for General Robotic Manipulation
Generalization in embodied AI is hindered by the "seeing-to-doing gap," which stems from data scarcity and embodiment heterogeneity. To address this, we pioneer "pointing" as a unified, embodiment-agnostic intermediate representation, defining four core embodied pointing abilities that bridge high-level vision-language comprehension with low-level action primitives. We introduce Embodied-R1, a 3B Vision-Language Model (VLM) specifically designed for embodied reasoning and pointing. We use a wide range of embodied and general visual reasoning datasets as sources to construct a large-scale dataset, Embodied-Points-200K, which supports key embodied pointing capabilities. We then train Embodied-R1 using a two-stage Reinforced Fine-tuning (RFT) curriculum with a specialized multi-task reward design. Embodied-R1 achieves state-of-the-art performance on 11 embodied spatial and pointing benchmarks. Critically, it demonstrates robust zero-shot generalization by achieving a 56.2% success rate in the SIMPLEREnv and 87.5% across 8 real-world XArm tasks without any task-specific fine-tuning, representing a 62% improvement over strong baselines. Furthermore, the model exhibits high robustness against diverse visual disturbances. Our work shows that a pointing-centric representation, combined with an RFT training paradigm, offers an effective and generalizable pathway to closing the perception-action gap in robotics.
comment: Embodied-R1 technical report
☆ Chunks as Arms: Multi-Armed Bandit-Guided Sampling for Long-Context LLM Preference Optimization
Long-context modeling is critical for a wide range of real-world tasks, including long-context question answering, summarization, and complex reasoning tasks. Recent studies have explored fine-tuning Large Language Models (LLMs) with synthetic data to enhance their long-context capabilities. However, the effectiveness of such approaches is often limited by the low diversity and factual inconsistencies in the generated data. To address these challenges, we propose LongMab-PO, a novel framework that leverages a Multi-Armed Bandit (MAB) rollout strategy to identify the most informative chunks from the given long context for sampling high-quality and diverse responses and constructing preference data pairs for Direct Preference Optimization (DPO) training. Specifically, we treat context chunks as arms of MAB, select chunks based on their expected reward scores to input into LLMs to generate responses, and iteratively update these scores based on reward feedback. This exploration and exploitation process enables the model to focus on the most relevant context segments, thereby generating and collecting high-quality and diverse responses. Finally, we collect these generated responses from the rollout process and apply the DPO method to further optimize the LLM. Experimental results show that LongMab-PO significantly improves the diversity and quality of preference data pairs, achieving state-of-the-art performance on long-context reasoning benchmarks. All code and data will be released on https://github.com/NEUIR/LongMab-PO.
☆ The Social Context of Human-Robot Interactions
The Human-Robot Interaction (HRI) community often highlights the social context of an interaction as a key consideration when designing, implementing, and evaluating robot behavior. Unfortunately, researchers use the term "social context" in varied ways. This can lead to miscommunication, making it challenging to draw connections between related work on understanding and modeling the social contexts of human-robot interactions. To address this gap, we survey the HRI literature for existing definitions and uses of the term "social context". Then, we propose a conceptual model for describing the social context of a human-robot interaction. We apply this model to existing work, and we discuss a range of attributes of social contexts that can help researchers plan for interactions, develop behavior models for robots, and gain insights after interactions have taken place. We conclude with a discussion of open research questions in relation to understanding and modeling the social contexts of human-robot interactions.
comment: To be published in Annual Review of Control, Robotics, and Autonomous Systems
☆ ChronoLLM: Customizing Language Models for Physics-Based Simulation Code Generation
This contribution is concerned with the following issue: can pretrained large language models (LLMs) be refined and customized to the point where they become virtual assistants helping experts with the effective use of a simulation tool? In this case study, the ``simulation tool'' considered is PyChrono, an open source multi-physics dynamics engine for multibody systems. We present a framework for refining and customizing both open- and closed-source LLMs to harness the power of AI in generating scripts that perform PyChrono virtual experiments. We refine and customize several classes of LLMs through a process that leads to a quantifiable improvement in the quality of the generated PyChrono simulation scripts. These scripts can range from simple single-pendulum simulations to complex virtual experiments involving full vehicles on deformable terrain. While the generated scripts are rarely perfect, they often serve as strong starting points for the user to modify and improve on. Additionally, the LLM can answer specific API questions about the simulator, or recommend modeling approaches. The framework discussed is general and can be applied to lower the entry barrier for simulation tools associated with other application domains.
☆ RotBench: Evaluating Multimodal Large Language Models on Identifying Image Rotation
We investigate to what extent Multimodal Large Language Models (MLLMs) can accurately identify the orientation of input images rotated 0{\deg}, 90{\deg}, 180{\deg}, and 270{\deg}. This task demands robust visual reasoning capabilities to detect rotational cues and contextualize spatial relationships within images, regardless of their orientation. To evaluate MLLMs on these abilities, we introduce RotBench -- a 350-image manually-filtered benchmark comprising lifestyle, portrait, and landscape images. Despite the relatively simple nature of this task, we show that several state-of-the-art open and proprietary MLLMs, including GPT-5, o3, and Gemini-2.5-Pro, do not reliably identify rotation in input images. Providing models with auxiliary information -- including captions, depth maps, and more -- or using chain-of-thought prompting offers only small and inconsistent improvements. Our results indicate that most models are able to reliably identify right-side-up (0{\deg}) images, while certain models are able to identify upside-down (180{\deg}) images. None can reliably distinguish between 90{\deg} and 270{\deg}. Simultaneously showing the image rotated in different orientations leads to moderate performance gains for reasoning models, while a modified setup using voting improves the performance of weaker models. We further show that fine-tuning does not improve models' ability to distinguish 90{\deg} and 270{\deg} rotations, despite substantially improving the identification of 180{\deg} images. Together, these results reveal a significant gap between MLLMs' spatial reasoning capabilities and human perception in identifying rotation.
comment: 20 pages. Code and data: https://github.com/tianyiniu/RotBench
☆ Learning to Use AI for Learning: How Can We Effectively Teach and Measure Prompting Literacy for K-12 Students?
As Artificial Intelligence (AI) becomes increasingly integrated into daily life, there is a growing need to equip the next generation with the ability to apply, interact with, evaluate, and collaborate with AI systems responsibly. Prior research highlights the urgent demand from K-12 educators to teach students the ethical and effective use of AI for learning. To address this need, we designed an Large-Language Model (LLM)-based module to teach prompting literacy. This includes scenario-based deliberate practice activities with direct interaction with intelligent LLM agents, aiming to foster secondary school students' responsible engagement with AI chatbots. We conducted two iterations of classroom deployment in 11 authentic secondary education classrooms, and evaluated 1) AI-based auto-grader's capability; 2) students' prompting performance and confidence changes towards using AI for learning; and 3) the quality of learning and assessment materials. Results indicated that the AI-based auto-grader could grade student-written prompts with satisfactory quality. In addition, the instructional materials supported students in improving their prompting skills through practice and led to positive shifts in their perceptions of using AI for learning. Furthermore, data from Study 1 informed assessment revisions in Study 2. Analyses of item difficulty and discrimination in Study 2 showed that True/False and open-ended questions could measure prompting literacy more effectively than multiple-choice questions for our target learners. These promising outcomes highlight the potential for broader deployment and highlight the need for broader studies to assess learning effectiveness and assessment design.
comment: 7 pages + 2 pages references; under review for an [anonymized according to the conference policy] conference
☆ A Mechanism for Mutual Fairness in Cooperative Games with Replicable Resources -- Extended Version AI 2025
The latest developments in AI focus on agentic systems where artificial and human agents cooperate to realize global goals. An example is collaborative learning, which aims to train a global model based on data from individual agents. A major challenge in designing such systems is to guarantee safety and alignment with human values, particularly a fair distribution of rewards upon achieving the global goal. Cooperative game theory offers useful abstractions of cooperating agents via value functions, which assign value to each coalition, and via reward functions. With these, the idea of fair allocation can be formalized by specifying fairness axioms and designing concrete mechanisms. Classical cooperative game theory, exemplified by the Shapley value, does not fully capture scenarios like collaborative learning, as it assumes nonreplicable resources, whereas data and models can be replicated. Infinite replicability requires a generalized notion of fairness, formalized through new axioms and mechanisms. These must address imbalances in reciprocal benefits among participants, which can lead to strategic exploitation and unfair allocations. The main contribution of this paper is a mechanism and a proof that it fulfills the property of mutual fairness, formalized by the Balanced Reciprocity Axiom. It ensures that, for every pair of players, each benefits equally from the participation of the other.
comment: This paper is the extended version of a paper accepted at the European Conference on Artificial Intelligence 2025 (ECAI 2025), providing the proof of the main theorem in the appendix
☆ Prompt Orchestration Markup Language
Large Language Models (LLMs) require sophisticated prompting, yet current practices face challenges in structure, data integration, format sensitivity, and tooling. Existing methods lack comprehensive solutions for organizing complex prompts involving diverse data types (documents, tables, images) or managing presentation variations systematically. To address these gaps, we introduce POML (Prompt Orchestration Markup Language). POML employs component-based markup for logical structure (roles, tasks, examples), specialized tags for seamless data integration, and a CSS-like styling system to decouple content from presentation, reducing formatting sensitivity. It includes templating for dynamic prompts and a comprehensive developer toolkit (IDE support, SDKs) to improve version control and collaboration. We validate POML through two case studies demonstrating its impact on complex application integration (PomLink) and accuracy performance (TableQA), as well as a user study assessing its effectiveness in real-world development scenarios.
comment: All findings in this paper are derived from a POML snapshot as of February 2025
☆ The Collaboration Paradox: Why Generative AI Requires Both Strategic Intelligence and Operational Stability in Supply Chain Management
The rise of autonomous, AI-driven agents in economic settings raises critical questions about their emergent strategic behavior. This paper investigates these dynamics in the cooperative context of a multi-echelon supply chain, a system famously prone to instabilities like the bullwhip effect. We conduct computational experiments with generative AI agents, powered by Large Language Models (LLMs), within a controlled supply chain simulation designed to isolate their behavioral tendencies. Our central finding is the "collaboration paradox": a novel, catastrophic failure mode where theoretically superior collaborative AI agents, designed with Vendor-Managed Inventory (VMI) principles, perform even worse than non-AI baselines. We demonstrate that this paradox arises from an operational flaw where agents hoard inventory, starving the system. We then show that resilience is only achieved through a synthesis of two distinct layers: high-level, AI-driven proactive policy-setting to establish robust operational targets, and a low-level, collaborative execution protocol with proactive downstream replenishment to maintain stability. Our final framework, which implements this synthesis, can autonomously generate, evaluate, and quantify a portfolio of viable strategic choices. The work provides a crucial insight into the emergent behaviors of collaborative AI agents and offers a blueprint for designing stable, effective AI-driven systems for business analytics.
☆ InPars+: Supercharging Synthetic Data Generation for Information Retrieval Systems
This work revisits and extends synthetic query generation pipelines for Neural Information Retrieval (NIR) by leveraging the InPars Toolkit, a reproducible, end-to-end framework for generating training data using large language models (LLMs). We first assess the reproducibility of the original InPars, InPars-V2, and Promptagator pipelines on the SciFact benchmark and validate their effectiveness using open-source reranker and generator models. Building on this foundation, we introduce two key extensions to the pipeline: (1) fine-tuning a query generator LLM via Contrastive Preference Optimization (CPO) to improve the signal quality in generated queries, and (2) replacing static prompt templates with dynamic, Chain-of-Thought (CoT) optimized prompts using the DSPy framework. Our results show that both extensions reduce the need for aggressive filtering while improving retrieval performance. All code, models, and synthetic datasets are publicly released to support further research at: \href{https://github.com/danilotpnta/IR2-project}{this https URL}.
☆ Categorical Policies: Multimodal Policy Learning and Exploration in Continuous Control
A policy in deep reinforcement learning (RL), either deterministic or stochastic, is commonly parameterized as a Gaussian distribution alone, limiting the learned behavior to be unimodal. However, the nature of many practical decision-making problems favors a multimodal policy that facilitates robust exploration of the environment and thus to address learning challenges arising from sparse rewards, complex dynamics, or the need for strategic adaptation to varying contexts. This issue is exacerbated in continuous control domains where exploration usually takes place in the vicinity of the predicted optimal action, either through an additive Gaussian noise or the sampling process of a stochastic policy. In this paper, we introduce Categorical Policies to model multimodal behavior modes with an intermediate categorical distribution, and then generate output action that is conditioned on the sampled mode. We explore two sampling schemes that ensure differentiable discrete latent structure while maintaining efficient gradient-based optimization. By utilizing a latent categorical distribution to select the behavior mode, our approach naturally expresses multimodality while remaining fully differentiable via the sampling tricks. We evaluate our multimodal policy on a set of DeepMind Control Suite environments, demonstrating that through better exploration, our learned policies converge faster and outperform standard Gaussian policies. Our results indicate that the Categorical distribution serves as a powerful tool for structured exploration and multimodal behavior representation in continuous control.
comment: 6 pages, 4 figures; Has been submitted and accepted at IEEE SMC, 2025
☆ Structured Agentic Workflows for Financial Time-Series Modeling with LLMs and Reflective Feedback
Time-series data is central to decision-making in financial markets, yet building high-performing, interpretable, and auditable models remains a major challenge. While Automated Machine Learning (AutoML) frameworks streamline model development, they often lack adaptability and responsiveness to domain-specific needs and evolving objectives. Concurrently, Large Language Models (LLMs) have enabled agentic systems capable of reasoning, memory management, and dynamic code generation, offering a path toward more flexible workflow automation. In this paper, we introduce \textsf{TS-Agent}, a modular agentic framework designed to automate and enhance time-series modeling workflows for financial applications. The agent formalizes the pipeline as a structured, iterative decision process across three stages: model selection, code refinement, and fine-tuning, guided by contextual reasoning and experimental feedback. Central to our architecture is a planner agent equipped with structured knowledge banks, curated libraries of models and refinement strategies, which guide exploration, while improving interpretability and reducing error propagation. \textsf{TS-Agent} supports adaptive learning, robust debugging, and transparent auditing, key requirements for high-stakes environments such as financial services. Empirical evaluations on diverse financial forecasting and synthetic data generation tasks demonstrate that \textsf{TS-Agent} consistently outperforms state-of-the-art AutoML and agentic baselines, achieving superior accuracy, robustness, and decision traceability.
☆ Fisher-Orthogonal Projection Methods for Natural Gradient Descent with Large Batches
Modern GPUs are equipped with large amounts of high-bandwidth memory, enabling them to support mini-batch sizes of up to tens of thousands of training samples. However, most existing optimizers struggle to perform effectively at such a large batch size. As batch size increases, gradient noise decreases due to averaging over many samples, limiting the ability of first-order methods to escape sharp or suboptimal minima and reach the global minimum. Meanwhile, second-order methods like the natural gradient with Kronecker-Factored Approximate Curvature (KFAC) often require excessively high damping to remain stable at large batch sizes. This high damping effectively washes out the curvature information that gives these methods their advantage, reducing their performance to that of simple gradient descent. In this paper, we introduce Fisher-Orthogonal Projection (FOP), a novel technique that restores the effectiveness of the second-order method at very large batch sizes, enabling scalable training with improved generalization and faster convergence. FOP constructs a variance-aware update direction by leveraging gradients from two sub-batches, enhancing the average gradient with a component of the gradient difference that is orthogonal to the average under the Fisher-metric.
☆ Improved Generalized Planning with LLMs through Strategy Refinement and Reflection
LLMs have recently been used to generate Python programs representing generalized plans in PDDL planning, i.e., plans that generalize across the tasks of a given PDDL domain. Previous work proposed a framework consisting of three steps: the LLM first generates a summary and then a strategy for the domain, both in natural language, and then implements that strategy as a Python program, that gets debugged on example planning tasks. In that work, only one strategy is generated and passed directly to the program generation. If the strategy is incorrect, its implementation will therefore result in an incorrect generalized plan. Here, we introduce an approach that generates the strategy in the form of pseudocode and enables automatic debugging of the pseudocode, hence allowing us to identify and fix errors prior to the generation of the generalized plan itself. Additionally, we extend the Python debugging phase with a reflection step prompting the LLM to pinpoint the reason for the observed plan failure. Finally, we take inspiration from LLM code generation to produce several program variants and pick the best one. Running experiments on 17 benchmark domains, we show that these extensions substantially improve (and never deteriorate) the quality of the generalized plans. In 12 of the domains, our best Python programs solve all tasks that can be generated with the respective instance generator.
☆ Toward Deployable Multi-Robot Collaboration via a Symbolically-Guided Decision Transformer
Reinforcement learning (RL) has demonstrated great potential in robotic operations. However, its data-intensive nature and reliance on the Markov Decision Process (MDP) assumption limit its practical deployment in real-world scenarios involving complex dynamics and long-term temporal dependencies, such as multi-robot manipulation. Decision Transformers (DTs) have emerged as a promising offline alternative by leveraging causal transformers for sequence modeling in RL tasks. However, their applications to multi-robot manipulations still remain underexplored. To address this gap, we propose a novel framework, Symbolically-Guided Decision Transformer (SGDT), which integrates a neuro-symbolic mechanism with a causal transformer to enable deployable multi-robot collaboration. In the proposed SGDT framework, a neuro-symbolic planner generates a high-level task-oriented plan composed of symbolic subgoals. Guided by these subgoals, a goal-conditioned decision transformer (GCDT) performs low-level sequential decision-making for multi-robot manipulation. This hierarchical architecture enables structured, interpretable, and generalizable decision making in complex multi-robot collaboration tasks. We evaluate the performance of SGDT across a range of task scenarios, including zero-shot and few-shot scenarios. To our knowledge, this is the first work to explore DT-based technology for multi-robot manipulation.
☆ A Novel Attention-Augmented Wavelet YOLO System for Real-time Brain Vessel Segmentation on Transcranial Color-coded Doppler
The Circle of Willis (CoW), vital for ensuring consistent blood flow to the brain, is closely linked to ischemic stroke. Accurate assessment of the CoW is important for identifying individuals at risk and guiding appropriate clinical management. Among existing imaging methods, Transcranial Color-coded Doppler (TCCD) offers unique advantages due to its radiation-free nature, affordability, and accessibility. However, reliable TCCD assessments depend heavily on operator expertise for identifying anatomical landmarks and performing accurate angle correction, which limits its widespread adoption. To address this challenge, we propose an AI-powered, real-time CoW auto-segmentation system capable of efficiently capturing cerebral arteries. No prior studies have explored AI-driven cerebrovascular segmentation using TCCD. In this work, we introduce a novel Attention-Augmented Wavelet YOLO (AAW-YOLO) network tailored for TCCD data, designed to provide real-time guidance for brain vessel segmentation in the CoW. We prospectively collected TCCD data comprising 738 annotated frames and 3,419 labeled artery instances to establish a high-quality dataset for model training and evaluation. The proposed AAW-YOLO demonstrated strong performance in segmenting both ipsilateral and contralateral CoW vessels, achieving an average Dice score of 0.901, IoU of 0.823, precision of 0.882, recall of 0.926, and mAP of 0.953, with a per-frame inference speed of 14.199 ms. This system offers a practical solution to reduce reliance on operator experience in TCCD-based cerebrovascular screening, with potential applications in routine clinical workflows and resource-constrained settings. Future research will explore bilateral modeling and larger-scale validation.
☆ UniECS: Unified Multimodal E-Commerce Search Framework with Gated Cross-modal Fusion
Current e-commerce multimodal retrieval systems face two key limitations: they optimize for specific tasks with fixed modality pairings, and lack comprehensive benchmarks for evaluating unified retrieval approaches. To address these challenges, we introduce UniECS, a unified multimodal e-commerce search framework that handles all retrieval scenarios across image, text, and their combinations. Our work makes three key contributions. First, we propose a flexible architecture with a novel gated multimodal encoder that uses adaptive fusion mechanisms. This encoder integrates different modality representations while handling missing modalities. Second, we develop a comprehensive training strategy to optimize learning. It combines cross-modal alignment loss (CMAL), cohesive local alignment loss (CLAL), intra-modal contrastive loss (IMCL), and adaptive loss weighting. Third, we create M-BEER, a carefully curated multimodal benchmark containing 50K product pairs for e-commerce search evaluation. Extensive experiments demonstrate that UniECS consistently outperforms existing methods across four e-commerce benchmarks with fine-tuning or zero-shot evaluation. On our M-BEER bench, UniECS achieves substantial improvements in cross-modal tasks (up to 28\% gain in R@10 for text-to-image retrieval) while maintaining parameter efficiency (0.2B parameters) compared to larger models like GME-Qwen2VL (2B) and MM-Embed (8B). Furthermore, we deploy UniECS in the e-commerce search platform of Kuaishou Inc. across two search scenarios, achieving notable improvements in Click-Through Rate (+2.74\%) and Revenue (+8.33\%). The comprehensive evaluation demonstrates the effectiveness of our approach in both experimental and real-world settings. Corresponding codes, models and datasets will be made publicly available at https://github.com/qzp2018/UniECS.
comment: Accepted at CIKM2025 as a long paper
☆ One Shot vs. Iterative: Rethinking Pruning Strategies for Model Compression
Pruning is a core technique for compressing neural networks to improve computational efficiency. This process is typically approached in two ways: one-shot pruning, which involves a single pass of training and pruning, and iterative pruning, where pruning is performed over multiple cycles for potentially finer network refinement. Although iterative pruning has historically seen broader adoption, this preference is often assumed rather than rigorously tested. Our study presents one of the first systematic and comprehensive comparisons of these methods, providing rigorous definitions, benchmarking both across structured and unstructured settings, and applying different pruning criteria and modalities. We find that each method has specific advantages: one-shot pruning proves more effective at lower pruning ratios, while iterative pruning performs better at higher ratios. Building on these findings, we advocate for patience-based pruning and introduce a hybrid approach that can outperform traditional methods in certain scenarios, providing valuable insights for practitioners selecting a pruning strategy tailored to their goals and constraints. Source code is available at https://github.com/janumiko/pruning-benchmark.
☆ Extracting Structured Requirements from Unstructured Building Technical Specifications for Building Information Modeling
This study explores the integration of Building Information Modeling (BIM) with Natural Language Processing (NLP) to automate the extraction of requirements from unstructured French Building Technical Specification (BTS) documents within the construction industry. Employing Named Entity Recognition (NER) and Relation Extraction (RE) techniques, the study leverages the transformer-based model CamemBERT and applies transfer learning with the French language model Fr\_core\_news\_lg, both pre-trained on a large French corpus in the general domain. To benchmark these models, additional approaches ranging from rule-based to deep learning-based methods are developed. For RE, four different supervised models, including Random Forest, are implemented using a custom feature vector. A hand-crafted annotated dataset is used to compare the effectiveness of NER approaches and RE models. Results indicate that CamemBERT and Fr\_core\_news\_lg exhibited superior performance in NER, achieving F1-scores over 90\%, while Random Forest proved most effective in RE, with an F1 score above 80\%. The outcomes are intended to be represented as a knowledge graph in future work to further enhance automatic verification systems.
☆ Revisiting RAG Ensemble: A Theoretical and Mechanistic Analysis of Multi-RAG System Collaboration
Retrieval-Augmented Generation (RAG) technology has been widely applied in recent years. However, despite the emergence of various RAG frameworks, a single RAG framework still cannot adapt well to a broad range of downstream tasks. Therefore, how to leverage the advantages of multiple RAG systems has become an area worth exploring. To address this issue, we have conducted a comprehensive and systematic investigation into ensemble methods based on RAG systems. Specifically, we have analyzed the RAG ensemble framework from both theoretical and mechanistic analysis perspectives. From the theoretical analysis, we provide the first explanation of the RAG ensemble framework from the perspective of information entropy. In terms of mechanism analysis, we have explored the RAG ensemble framework from both the pipeline and module levels. We carefully select four different pipelines (Branching, Iterative, Loop, and Agentic) and three different modules (Generator, Retriever, and Reranker) to solve seven different research questions. The experiments show that aggregating multiple RAG systems is both generalizable and robust, whether at the pipeline level or the module level. Our work lays the foundation for similar research on the multi-RAG system ensemble.
☆ The illusion of a perfect metric: Why evaluating AI's words is harder than it looks
Evaluating Natural Language Generation (NLG) is crucial for the practical adoption of AI, but has been a longstanding research challenge. While human evaluation is considered the de-facto standard, it is expensive and lacks scalability. Practical applications have driven the development of various automatic evaluation metrics (AEM), designed to compare the model output with human-written references, generating a score which approximates human judgment. Over time, AEMs have evolved from simple lexical comparisons, to semantic similarity models and, more recently, to LLM-based evaluators. However, it seems that no single metric has emerged as a definitive solution, resulting in studies using different ones without fully considering the implications. This paper aims to show this by conducting a thorough examination of the methodologies of existing metrics, their documented strengths and limitations, validation methods, and correlations with human judgment. We identify several key challenges: metrics often capture only specific aspects of text quality, their effectiveness varies by task and dataset, validation practices remain unstructured, and correlations with human judgment are inconsistent. Importantly, we find that these challenges persist in the most recent type of metric, LLM-as-a-Judge, as well as in the evaluation of Retrieval Augmented Generation (RAG), an increasingly relevant task in academia and industry. Our findings challenge the quest for the 'perfect metric'. We propose selecting metrics based on task-specific needs and leveraging complementary evaluations and advocate that new metrics should focus on enhanced validation methodologies.
comment: 11 pages, 1 figure. Accepted to RANLP 2025
☆ Assessing Trustworthiness of AI Training Dataset using Subjective Logic -- A Use Case on Bias KDD
As AI systems increasingly rely on training data, assessing dataset trustworthiness has become critical, particularly for properties like fairness or bias that emerge at the dataset level. Prior work has used Subjective Logic to assess trustworthiness of individual data, but not to evaluate trustworthiness properties that emerge only at the level of the dataset as a whole. This paper introduces the first formal framework for assessing the trustworthiness of AI training datasets, enabling uncertainty-aware evaluations of global properties such as bias. Built on Subjective Logic, our approach supports trust propositions and quantifies uncertainty in scenarios where evidence is incomplete, distributed, and/or conflicting. We instantiate this framework on the trustworthiness property of bias, and we experimentally evaluate it based on a traffic sign recognition dataset. The results demonstrate that our method captures class imbalance and remains interpretable and robust in both centralized and federated contexts.
comment: Accepted at ECML PKDD Bias Workshop '25
☆ Quantifier Instantiations: To Mimic or To Revolt?
Quantified formulas pose a significant challenge for Satisfiability Modulo Theories (SMT) solvers due to their inherent undecidability. Existing instantiation techniques, such as e-matching, syntax-guided, model-based, conflict-based, and enumerative methods, often complement each other. This paper introduces a novel instantiation approach that dynamically learns from these techniques during solving. By treating observed instantiations as samples from a latent language, we use probabilistic context-free grammars to generate new, similar terms. Our method not only mimics successful past instantiations but also explores diversity by optionally inverting learned term probabilities, aiming to balance exploitation and exploration in quantifier reasoning.
comment: Accepted to SMT 2025: 23rd International Workshop on Satisfiability Modulo Theories
☆ Prompt-Based One-Shot Exact Length-Controlled Generation with LLMs
Controlling the length of text produced by large language models (LLMs) remains challenging: models frequently overshoot or undershoot explicit length instructions because they cannot reliably keep an internal token count. We present a prompt-based, one-shot strategy that compels an off-the-shelf LLM to generate exactly a desired number of tokens - words (English) or characters (Chinese) - without any fine-tuning or iterative sampling. The prompt appends countdown markers and explicit counting rules so that the model "writes while counting." We evaluate on four settings: open-ended generation (1-1000 tokens), XSUM summarization, MT-Bench-LI instruction following, and the LIFEBENCH equal-length track. On MT-Bench-LI, strict length compliance with GPT-4.1 leaps from below 30% under naive prompts to above 95% with our countdown prompt, surpassing the popular draft-then-revise baseline, while judged answer quality is preserved. These results show that precise length control can be achieved through prompt engineering alone, offering a lightweight alternative to training- or decoding-based methods.
comment: 18 pages
☆ A Fully Transformer Based Multimodal Framework for Explainable Cancer Image Segmentation Using Radiology Reports
We introduce Med-CTX, a fully transformer based multimodal framework for explainable breast cancer ultrasound segmentation. We integrate clinical radiology reports to boost both performance and interpretability. Med-CTX achieves exact lesion delineation by using a dual-branch visual encoder that combines ViT and Swin transformers, as well as uncertainty aware fusion. Clinical language structured with BI-RADS semantics is encoded by BioClinicalBERT and combined with visual features utilising cross-modal attention, allowing the model to provide clinically grounded, model generated explanations. Our methodology generates segmentation masks, uncertainty maps, and diagnostic rationales all at once, increasing confidence and transparency in computer assisted diagnosis. On the BUS-BRA dataset, Med-CTX achieves a Dice score of 99% and an IoU of 95%, beating existing baselines U-Net, ViT, and Swin. Clinical text plays a key role in segmentation accuracy and explanation quality, as evidenced by ablation studies that show a -5.4% decline in Dice score and -31% in CIDEr. Med-CTX achieves good multimodal alignment (CLIP score: 85%) and increased confi dence calibration (ECE: 3.2%), setting a new bar for trustworthy, multimodal medical architecture.
☆ BetaWeb: Towards a Blockchain-enabled Trustworthy Agentic Web
The rapid development of large language models (LLMs) has significantly propelled the development of artificial intelligence (AI) agents, which are increasingly evolving into diverse autonomous entities, advancing the LLM-based multi-agent systems (LaMAS). However, current agentic ecosystems remain fragmented and closed. Establishing an interconnected and scalable paradigm for Agentic AI has become a critical prerequisite. Although Agentic Web proposes an open architecture to break the ecosystem barriers, its implementation still faces core challenges such as privacy protection, data management, and value measurement. Existing centralized or semi-centralized paradigms suffer from inherent limitations, making them inadequate for supporting large-scale, heterogeneous, and cross-domain autonomous interactions. To address these challenges, this paper introduces the blockchain-enabled trustworthy Agentic Web (BetaWeb). By leveraging the inherent strengths of blockchain, BetaWeb not only offers a trustworthy and scalable infrastructure for LaMAS but also has the potential to advance the Web paradigm from Web3 (centered on data ownership) towards Web3.5, which emphasizes ownership of agent capabilities and the monetization of intelligence. Beyond a systematic examination of the BetaWeb framework, this paper presents a five-stage evolutionary roadmap, outlining the path of LaMAS from passive execution to advanced collaboration and autonomous governance. We also conduct a comparative analysis of existing products and discuss key challenges of BetaWeb from multiple perspectives. Ultimately, we argue that deep integration between blockchain and LaMAS can lay the foundation for a resilient, trustworthy, and sustainably incentivized digital ecosystem. A summary of the enabling technologies for each stage is available at https://github.com/MatZaharia/BetaWeb.
comment: A technical report with 21 pages, 3 figures, and 3 tables
☆ DegDiT: Controllable Audio Generation with Dynamic Event Graph Guided Diffusion Transformer
Controllable text-to-audio generation aims to synthesize audio from textual descriptions while satisfying user-specified constraints, including event types, temporal sequences, and onset and offset timestamps. This enables precise control over both the content and temporal structure of the generated audio. Despite recent progress, existing methods still face inherent trade-offs among accurate temporal localization, open-vocabulary scalability, and practical efficiency. To address these challenges, we propose DegDiT, a novel dynamic event graph-guided diffusion transformer framework for open-vocabulary controllable audio generation. DegDiT encodes the events in the description as structured dynamic graphs. The nodes in each graph are designed to represent three aspects: semantic features, temporal attributes, and inter-event connections. A graph transformer is employed to integrate these nodes and produce contextualized event embeddings that serve as guidance for the diffusion model. To ensure high-quality and diverse training data, we introduce a quality-balanced data selection pipeline that combines hierarchical event annotation with multi-criteria quality scoring, resulting in a curated dataset with semantic diversity. Furthermore, we present consensus preference optimization, facilitating audio generation through consensus among multiple reward signals. Extensive experiments on AudioCondition, DESED, and AudioTime datasets demonstrate that DegDiT achieves state-of-the-art performances across a variety of objective and subjective evaluation metrics.
☆ Comparing Conditional Diffusion Models for Synthesizing Contrast-Enhanced Breast MRI from Pre-Contrast Images AI
Dynamic contrast-enhanced (DCE) MRI is essential for breast cancer diagnosis and treatment. However, its reliance on contrast agents introduces safety concerns, contraindications, increased cost, and workflow complexity. To this end, we present pre-contrast conditioned denoising diffusion probabilistic models to synthesize DCE-MRI, introducing, evaluating, and comparing a total of 22 generative model variants in both single-breast and full breast settings. Towards enhancing lesion fidelity, we introduce both tumor-aware loss functions and explicit tumor segmentation mask conditioning. Using a public multicenter dataset and comparing to respective pre-contrast baselines, we observe that subtraction image-based models consistently outperform post-contrast-based models across five complementary evaluation metrics. Apart from assessing the entire image, we also separately evaluate the region of interest, where both tumor-aware losses and segmentation mask inputs improve evaluation metrics. The latter notably enhance qualitative results capturing contrast uptake, albeit assuming access to tumor localization inputs that are not guaranteed to be available in screening settings. A reader study involving 2 radiologists and 4 MRI technologists confirms the high realism of the synthetic images, indicating an emerging clinical potential of generative contrast-enhancement. We share our codebase at https://github.com/sebastibar/conditional-diffusion-breast-MRI.
comment: 13 pages, 5 figures, submitted and accepted to MICCAI Deepbreath workshop 2025
☆ Agentic DraCor and the Art of Docstring Engineering: Evaluating MCP-empowered LLM Usage of the DraCor API
This paper reports on the implementation and evaluation of a Model Context Protocol (MCP) server for DraCor, enabling Large Language Models (LLM) to autonomously interact with the DraCor API. We conducted experiments focusing on tool selection and application by the LLM, employing a qualitative approach that includes systematic observation of prompts to understand how LLMs behave when using MCP tools, evaluating "Tool Correctness", "Tool-Calling Efficiency", and "Tool-Use Reliability". Our findings highlight the importance of "Docstring Engineering", defined as reflexively crafting tool documentation to optimize LLM-tool interaction. Our experiments demonstrate both the promise of agentic AI for research in Computational Literary Studies and the essential infrastructure development needs for reliable Digital Humanities infrastructures.
comment: Preprint, submitted to the 2nd Workshop on Computational Drama Analysis at DraCor Summit 2025, September 03, 2025, Berlin, Germany
☆ PENGUIN: Enhancing Transformer with Periodic-Nested Group Attention for Long-term Time Series Forecasting
Long-term time series forecasting (LTSF) is a fundamental task with wide-ranging applications. Although Transformer-based models have made significant breakthroughs in forecasting, their effectiveness for time series forecasting remains debatable. In this paper, we revisit the significance of self-attention and propose a simple yet effective mechanism, Periodic-Nested Group Attention, namely PENGUIN. Our approach highlights the importance of explicitly modeling periodic patterns and incorporating relative attention bias for effective time series modeling. To this end, we introduce a periodic-nested relative attention bias that captures periodic structures directly. To handle multiple coexisting periodicities (e.g., daily and weekly cycles), we design a grouped attention mechanism, where each group targets a specific periodicity using a multi-query attention mechanism. Extensive experiments across diverse benchmarks demonstrate that PENGUIN consistently outperforms both MLP-based and Transformer-based models.
☆ COMPASS: A Multi-Dimensional Benchmark for Evaluating Code Generation in Large Language Models
Current code generation benchmarks focus primarily on functional correctness while overlooking two critical aspects of real-world programming: algorithmic efficiency and code quality. We introduce COMPASS (COdility's Multi-dimensional Programming ASSessment), a comprehensive evaluation framework that assesses code generation across three dimensions: correctness, efficiency, and quality. COMPASS consists of 50 competitive programming problems from real Codility competitions, providing authentic human baselines from 393,150 submissions. Unlike existing benchmarks that treat algorithmically inefficient solutions identically to optimal ones provided they pass test cases, COMPASS systematically evaluates runtime efficiency and code quality using industry-standard analysis tools. Our evaluation of three leading reasoning-enhanced models, Anthropic Claude Opus 4, Google Gemini 2.5 Pro, and OpenAI O4-Mini-High, reveals that models achieving high correctness scores do not necessarily produce efficient algorithms or maintainable code. These findings highlight the importance of evaluating more than just correctness to truly understand the real-world capabilities of code generation models. COMPASS serves as a guiding framework, charting a path for future research toward AI systems that are robust, reliable, and ready for production use.
☆ Depth-Breadth Synergy in RLVR: Unlocking LLM Reasoning Gains with Adaptive Exploration
Reinforcement Learning with Verifiable Reward (RLVR) has emerged as a powerful paradigm for unlocking reasoning capabilities in large language models, yet its full potential is hindered by two under-explored dimensions: Depth-the hardest problem a model can sample; Breadth-the number of instances consumed in a single iteration. We dissect the popular GRPO algorithm and reveal a systematic bias: the cumulative-advantage disproportionately weights samples with medium accuracy, while down-weighting the low-accuracy instances that are crucial for pushing reasoning boundaries. To rectify the depth neglect, we introduce Difficulty Adaptive Rollout Sampling (DARS), which re-weights hard problems through targeted multi-stage rollouts, thereby increasing the number of positive rollouts for hard problems. Empirically, naively enlarging rollout size only accelerates convergence and even hurts Pass@K. Our DARS, in contrast, delivers consistent Pass@K gains without extra inference cost at convergence. Just as we adaptively expanded the depth of exploration, we now ask whether aggressively scaling the breadth of training data can further amplify reasoning gains. To this end, we intensely scale batch size and replace PPO's mini-batch iterations with full-batch updates over multiple epochs. Increasing breadth significantly enhances Pass@1 performance. Large-breadth training sustains high token-level entropy, indicating continued exploration and reduced gradient noise. We further present DARS-B, which augments DARS with large breadth, and demonstrate simultaneous gains in Pass@K and Pass@1. The results confirm that breadth and adaptive exploration across depth operate as orthogonal dimensions in RLVR, which are key to unleashing the reasoning power of RLVR.
comment: 11pages, 9 figures
☆ Expertise-aware Multi-LLM Recruitment and Collaboration for Medical Decision-Making
Medical Decision-Making (MDM) is a complex process requiring substantial domain-specific expertise to effectively synthesize heterogeneous and complicated clinical information. While recent advancements in Large Language Models (LLMs) show promise in supporting MDM, single-LLM approaches are limited by their parametric knowledge constraints and static training corpora, failing to robustly integrate the clinical information. To address this challenge, we propose the Expertise-aware Multi-LLM Recruitment and Collaboration (EMRC) framework to enhance the accuracy and reliability of MDM systems. It operates in two stages: (i) expertise-aware agent recruitment and (ii) confidence- and adversarial-driven multi-agent collaboration. Specifically, in the first stage, we use a publicly available corpus to construct an LLM expertise table for capturing expertise-specific strengths of multiple LLMs across medical department categories and query difficulty levels. This table enables the subsequent dynamic selection of the optimal LLMs to act as medical expert agents for each medical query during the inference phase. In the second stage, we employ selected agents to generate responses with self-assessed confidence scores, which are then integrated through the confidence fusion and adversarial validation to improve diagnostic reliability. We evaluate our EMRC framework on three public MDM datasets, where the results demonstrate that our EMRC outperforms state-of-the-art single- and multi-LLM methods, achieving superior diagnostic performance. For instance, on the MMLU-Pro-Health dataset, our EMRC achieves 74.45% accuracy, representing a 2.69% improvement over the best-performing closed-source model GPT- 4-0613, which demonstrates the effectiveness of our expertise-aware agent recruitment strategy and the agent complementarity in leveraging each LLM's specialized capabilities.
comment: 14 pages
☆ Mitigating Cross-Image Information Leakage in LVLMs for Multi-Image Tasks
Large Vision-Language Models (LVLMs) demonstrate strong performance on single-image tasks. However, we observe that their performance degrades significantly when handling multi-image inputs. This occurs because visual cues from different images become entangled in the model's output. We refer to this phenomenon as cross-image information leakage. To address this issue, we propose FOCUS, a training-free and architecture-agnostic decoding strategy that mitigates cross-image information leakage during inference. FOCUS sequentially masks all but one image with random noise, guiding the model to focus on the single clean image. We repeat this process across all target images to obtain logits under partially masked contexts. These logits are aggregated and then contrastively refined using a noise-only reference input, which suppresses the leakage and yields more accurate outputs. FOCUS consistently improves performance across four multi-image benchmarks and diverse LVLM families. This demonstrates that FOCUS offers a general and practical solution for enhancing multi-image reasoning without additional training or architectural modifications.
comment: Source code is available at https://github.com/yejipark-m/FOCUS
☆ On the Security and Privacy of Federated Learning: A Survey with Attacks, Defenses, Frameworks, Applications, and Future Directions
Federated Learning (FL) is an emerging distributed machine learning paradigm enabling multiple clients to train a global model collaboratively without sharing their raw data. While FL enhances data privacy by design, it remains vulnerable to various security and privacy threats. This survey provides a comprehensive overview of more than 200 papers regarding the state-of-the-art attacks and defense mechanisms developed to address these challenges, categorizing them into security-enhancing and privacy-preserving techniques. Security-enhancing methods aim to improve FL robustness against malicious behaviors such as byzantine attacks, poisoning, and Sybil attacks. At the same time, privacy-preserving techniques focus on protecting sensitive data through cryptographic approaches, differential privacy, and secure aggregation. We critically analyze the strengths and limitations of existing methods, highlight the trade-offs between privacy, security, and model performance, and discuss the implications of non-IID data distributions on the effectiveness of these defenses. Furthermore, we identify open research challenges and future directions, including the need for scalable, adaptive, and energy-efficient solutions operating in dynamic and heterogeneous FL environments. Our survey aims to guide researchers and practitioners in developing robust and privacy-preserving FL systems, fostering advancements safeguarding collaborative learning frameworks' integrity and confidentiality.
☆ Prediction is not Explanation: Revisiting the Explanatory Capacity of Mapping Embeddings AI 2025
Understanding what knowledge is implicitly encoded in deep learning models is essential for improving the interpretability of AI systems. This paper examines common methods to explain the knowledge encoded in word embeddings, which are core elements of large language models (LLMs). These methods typically involve mapping embeddings onto collections of human-interpretable semantic features, known as feature norms. Prior work assumes that accurately predicting these semantic features from the word embeddings implies that the embeddings contain the corresponding knowledge. We challenge this assumption by demonstrating that prediction accuracy alone does not reliably indicate genuine feature-based interpretability. We show that these methods can successfully predict even random information, concluding that the results are predominantly determined by an algorithmic upper bound rather than meaningful semantic representation in the word embeddings. Consequently, comparisons between datasets based solely on prediction performance do not reliably indicate which dataset is better captured by the word embeddings. Our analysis illustrates that such mappings primarily reflect geometric similarity within vector spaces rather than indicating the genuine emergence of semantic properties.
comment: 10 pages, 6 Figures. Published at ECAI 2025 in a version without the Appendix
☆ CausalPlan: Empowering Efficient LLM Multi-Agent Collaboration Through Causality-Driven Planning
Large language model (LLM) agents-especially smaller, open-source models-often produce causally invalid or incoherent actions in collaborative tasks due to their reliance on surface-level correlations rather than grounded causal reasoning. This limitation undermines their performance in terms of coordination and planning in dynamic environments. We address this challenge with CausalPlan, a two-phase framework that integrates explicit structural causal reasoning into the LLM planning process. At the core of CausalPlan is the Structural Causal Action (SCA) model, which learns a causal graph from agent trajectories to capture how prior actions and current environment states influence future decisions. This structure is then used to guide action selection by assigning causal scores to LLM-generated proposals, reweighting them accordingly, or falling back to causally grounded alternatives when needed. By embedding this causal knowledge directly into the decision loop, CausalPlan constrains planning to intervention-consistent behaviours without requiring fine-tuning of the LLM itself. We evaluate CausalPlan on the Overcooked-AI benchmark across five multi-agent coordination tasks and four LLMs of varying sizes: Gemma-7B, Llama-8B, Qwen-14B, and Llama-70B. Experimental results show that CausalPlan consistently reduces invalid actions and improves collaboration in both AI-AI and human-AI settings, outperforming strong reinforcement learning baselines. Our findings highlight the value of causality-driven planning for deploying efficient, interpretable, and generalisable multi-agent LLM systems.
☆ Generics and Default Reasoning in Large Language Models
This paper evaluates the capabilities of 28 large language models (LLMs) to reason with 20 defeasible reasoning patterns involving generic generalizations (e.g., 'Birds fly', 'Ravens are black') central to non-monotonic logic. Generics are of special interest to linguists, philosophers, logicians, and cognitive scientists because of their complex exception-permitting behaviour and their centrality to default reasoning, cognition, and concept acquisition. We find that while several frontier models handle many default reasoning problems well, performance varies widely across models and prompting styles. Few-shot prompting modestly improves performance for some models, but chain-of-thought (CoT) prompting often leads to serious performance degradation (mean accuracy drop -11.14%, SD 15.74% in models performing above 75% accuracy in zero-shot condition, temperature 0). Most models either struggle to distinguish between defeasible and deductive inference or misinterpret generics as universal statements. These findings underscore both the promise and limits of current LLMs for default reasoning.
comment: 33 pages, 26 figures
☆ The AI Risk Spectrum: From Dangerous Capabilities to Existential Threats
As AI systems become more capable, integrated, and widespread, understanding the associated risks becomes increasingly important. This paper maps the full spectrum of AI risks, from current harms affecting individual users to existential threats that could endanger humanity's survival. We organize these risks into three main causal categories. Misuse risks, which occur when people deliberately use AI for harmful purposes - creating bioweapons, launching cyberattacks, adversarial AI attacks or deploying lethal autonomous weapons. Misalignment risks happen when AI systems pursue outcomes that conflict with human values, irrespective of developer intentions. This includes risks arising through specification gaming (reward hacking), scheming and power-seeking tendencies in pursuit of long-term strategic goals. Systemic risks, which arise when AI integrates into complex social systems in ways that gradually undermine human agency - concentrating power, accelerating political and economic disempowerment, creating overdependence that leads to human enfeeblement, or irreversibly locking in current values curtailing future moral progress. Beyond these core categories, we identify risk amplifiers - competitive pressures, accidents, corporate indifference, and coordination failures - that make all risks more likely and severe. Throughout, we connect today's existing risks and empirically observable AI behaviors to plausible future outcomes, demonstrating how existing trends could escalate to catastrophic outcomes. Our goal is to help readers understand the complete landscape of AI risks. Good futures are possible, but they don't happen by default. Navigating these challenges will require unprecedented coordination, but an extraordinary future awaits if we do.
☆ The DeepLog Neurosymbolic Machine
We contribute a theoretical and operational framework for neurosymbolic AI called DeepLog. DeepLog introduces building blocks and primitives for neurosymbolic AI that make abstraction of commonly used representations and computational mechanisms used in neurosymbolic AI. DeepLog can represent and emulate a wide range of neurosymbolic systems. It consists of two key components. The first is the DeepLog language for specifying neurosymbolic models and inference tasks. This language consists of an annotated neural extension of grounded first-order logic, and makes abstraction of the type of logic, e.g. boolean, fuzzy or probabilistic, and whether logic is used in the architecture or in the loss function. The second DeepLog component is situated at the computational level and uses extended algebraic circuits as computational graphs. Together these two components are to be considered as a neurosymbolic abstract machine, with the DeepLog language as the intermediate level of abstraction and the circuits level as the computational one. DeepLog is implemented in software, relies on the latest insights in implementing algebraic circuits on GPUs, and is declarative in that it is easy to obtain different neurosymbolic models by making different choices for the underlying algebraic structures and logics. The generality and efficiency of the DeepLog neurosymbolic machine is demonstrated through an experimental comparison between 1) different fuzzy and probabilistic logics, 2) between using logic in the architecture or in the loss function, and 3) between a standalone CPU-based implementation of a neurosymbolic AI system and a DeepLog GPU-based one.
☆ Neuro-Symbolic Artificial Intelligence: Towards Improving the Reasoning Abilities of Large Language Models IJCAI 2025
Large Language Models (LLMs) have shown promising results across various tasks, yet their reasoning capabilities remain a fundamental challenge. Developing AI systems with strong reasoning capabilities is regarded as a crucial milestone in the pursuit of Artificial General Intelligence (AGI) and has garnered considerable attention from both academia and industry. Various techniques have been explored to enhance the reasoning capabilities of LLMs, with neuro-symbolic approaches being a particularly promising way. This paper comprehensively reviews recent developments in neuro-symbolic approaches for enhancing LLM reasoning. We first present a formalization of reasoning tasks and give a brief introduction to the neurosymbolic learning paradigm. Then, we discuss neuro-symbolic methods for improving the reasoning capabilities of LLMs from three perspectives: Symbolic->LLM, LLM->Symbolic, and LLM+Symbolic. Finally, we discuss several key challenges and promising future directions. We have also released a GitHub repository including papers and resources related to this survey: https://github.com/LAMDASZ-ML/Awesome-LLM-Reasoning-with-NeSy.
comment: 9 pages, 3 figures, IJCAI 2025 Survey Track
☆ MHSNet:An MoE-based Hierarchical Semantic Representation Network for Accurate Duplicate Resume Detection with Large Language Model
To maintain the company's talent pool, recruiters need to continuously search for resumes from third-party websites (e.g., LinkedIn, Indeed). However, fetched resumes are often incomplete and inaccurate. To improve the quality of third-party resumes and enrich the company's talent pool, it is essential to conduct duplication detection between the fetched resumes and those already in the company's talent pool. Such duplication detection is challenging due to the semantic complexity, structural heterogeneity, and information incompleteness of resume texts. To this end, we propose MHSNet, an multi-level identity verification framework that fine-tunes BGE-M3 using contrastive learning. With the fine-tuned , Mixture-of-Experts (MoE) generates multi-level sparse and dense representations for resumes, enabling the computation of corresponding multi-level semantic similarities. Moreover, the state-aware Mixture-of-Experts (MoE) is employed in MHSNet to handle diverse incomplete resumes. Experimental results verify the effectiveness of MHSNet
☆ Knowledge Graph Completion for Action Prediction on Situational Graphs -- A Case Study on Household Tasks
Knowledge Graphs are used for various purposes, including business applications, biomedical analyses, or digital twins in industry 4.0. In this paper, we investigate knowledge graphs describing household actions, which are beneficial for controlling household robots and analyzing video footage. In the latter case, the information extracted from videos is notoriously incomplete, and completing the knowledge graph for enhancing the situational picture is essential. In this paper, we show that, while a standard link prediction problem, situational knowledge graphs have special characteristics that render many link prediction algorithms not fit for the job, and unable to outperform even simple baselines.
comment: Accepted at Semantics 2025
☆ Multi-Plasticity Synergy with Adaptive Mechanism Assignment for Training Spiking Neural Networks
Spiking Neural Networks (SNNs) are promising brain-inspired models known for low power consumption and superior potential for temporal processing, but identifying suitable learning mechanisms remains a challenge. Despite the presence of multiple coexisting learning strategies in the brain, current SNN training methods typically rely on a single form of synaptic plasticity, which limits their adaptability and representational capability. In this paper, we propose a biologically inspired training framework that incorporates multiple synergistic plasticity mechanisms for more effective SNN training. Our method enables diverse learning algorithms to cooperatively modulate the accumulation of information, while allowing each mechanism to preserve its own relatively independent update dynamics. We evaluated our approach on both static image and dynamic neuromorphic datasets to demonstrate that our framework significantly improves performance and robustness compared to conventional learning mechanism models. This work provides a general and extensible foundation for developing more powerful SNNs guided by multi-strategy brain-inspired learning.
☆ ITL-LIME: Instance-Based Transfer Learning for Enhancing Local Explanations in Low-Resource Data Settings
Explainable Artificial Intelligence (XAI) methods, such as Local Interpretable Model-Agnostic Explanations (LIME), have advanced the interpretability of black-box machine learning models by approximating their behavior locally using interpretable surrogate models. However, LIME's inherent randomness in perturbation and sampling can lead to locality and instability issues, especially in scenarios with limited training data. In such cases, data scarcity can result in the generation of unrealistic variations and samples that deviate from the true data manifold. Consequently, the surrogate model may fail to accurately approximate the complex decision boundary of the original model. To address these challenges, we propose a novel Instance-based Transfer Learning LIME framework (ITL-LIME) that enhances explanation fidelity and stability in data-constrained environments. ITL-LIME introduces instance transfer learning into the LIME framework by leveraging relevant real instances from a related source domain to aid the explanation process in the target domain. Specifically, we employ clustering to partition the source domain into clusters with representative prototypes. Instead of generating random perturbations, our method retrieves pertinent real source instances from the source cluster whose prototype is most similar to the target instance. These are then combined with the target instance's neighboring real instances. To define a compact locality, we further construct a contrastive learning-based encoder as a weighting mechanism to assign weights to the instances from the combined set based on their proximity to the target instance. Finally, these weighted source and target instances are used to train the surrogate model for explanation purposes.
comment: Accepted at the 34th ACM International Conference on Information and Knowledge Management (CIKM 2025)
☆ Interactive Query Answering on Knowledge Graphs with Soft Entity Constraints
Methods for query answering over incomplete knowledge graphs retrieve entities that are likely to be answers, which is particularly useful when such answers cannot be reached by direct graph traversal due to missing edges. However, existing approaches have focused on queries formalized using first-order-logic. In practice, many real-world queries involve constraints that are inherently vague or context-dependent, such as preferences for attributes or related categories. Addressing this gap, we introduce the problem of query answering with soft constraints. We propose a Neural Query Reranker (NQR) designed to adjust query answer scores by incorporating soft constraints without disrupting the original answers to a query. NQR operates interactively, refining answers based on incremental examples of preferred and non-preferred entities. We extend existing QA benchmarks by generating datasets with soft constraints. Our experiments demonstrate that NQR can capture soft constraints while maintaining robust query answering performance.
☆ In-Context Decision Making for Optimizing Complex AutoML Pipelines
Combined Algorithm Selection and Hyperparameter Optimization (CASH) has been fundamental to traditional AutoML systems. However, with the advancements of pre-trained models, modern ML workflows go beyond hyperparameter optimization and often require fine-tuning, ensembling, and other adaptation techniques. While the core challenge of identifying the best-performing model for a downstream task remains, the increasing heterogeneity of ML pipelines demands novel AutoML approaches. This work extends the CASH framework to select and adapt modern ML pipelines. We propose PS-PFN to efficiently explore and exploit adapting ML pipelines by extending Posterior Sampling (PS) to the max k-armed bandit problem setup. PS-PFN leverages prior-data fitted networks (PFNs) to efficiently estimate the posterior distribution of the maximal value via in-context learning. We show how to extend this method to consider varying costs of pulling arms and to use different PFNs to model reward distributions individually per arm. Experimental results on one novel and two existing standard benchmark tasks demonstrate the superior performance of PS-PFN compared to other bandit and AutoML strategies. We make our code and data available at https://github.com/amirbalef/CASHPlus.
☆ Input Time Scaling
Current Large Language Models (LLMs) are usually post-trained on large-scale carefully curated datasets (data & training scaling) and doing reasoning in test time (inference time scaling). In this work, we present a new scaling paradigm, Input Time Scaling, to complement previous scaling methods by putting resources on queries (input time). During training and testing, we combine meta-knowledge from LLMs to refine inputs with different strategies. We also find a new phenomenon, training-testing co-design there. We need to apply query strategies during both training and testing. Only applying strategies on training or testing would seriously degrade the performance. We are also surprised to find that seemingly low data quality datasets can gain high performance. Adding irrelevant information to the queries, randomly selecting examples from a minimally filtered dataset, can even perform the best. These findings contradict the widely held inductive bias, "garbage in, garbage out". Curating datasets with seemingly high-quality data can even potentially limit the performance ceiling. In addition, models trained on more data with similar quality (15k VS 1k) perform worse, simple dataset size scaling should also be carefully inspected. The good news is that our findings are compatible with the Less is More phenomenon. A small set of examples is enough to evoke high-level reasoning ability. With experiments on models trained on Qwen2.5-32B-Instruct, we are able to reach SOTA performance among 32B models on AIME24(76.7%) and AIME25(76.7%) pass@1. We can further achieve AIME24(76.7%) and AIME25(80%) with a majority vote of three models. Starting from DeepSeek-R1-Distill-Qwen-32B, the best result would be 86.7% on AIME24 and 76.7% on AIME25. To facilitate reproducibility and further research, we are working on open-source our datasets, data pipelines, evaluation results, and checkpoints.
☆ GRAFT: Gradient-Aware Fast MaxVol Technique for Dynamic Data Sampling
Training modern neural networks on large datasets is computationally and environmentally costly. We introduce GRAFT, a scalable in-training subset selection method that (i) extracts a low-rank feature representation for each batch, (ii) applies a Fast MaxVol sampler to select a small, diverse subset that spans the batch's dominant subspace, and (iii) dynamically adjusts the subset size using a gradient-approximation criterion. By operating in low-rank subspaces and training on carefully chosen examples instead of full batches, GRAFT preserves the training trajectory while reducing wall-clock time, energy consumption, and $\mathrm{CO}_2$ emissions. Across multiple benchmarks, GRAFT matches or exceeds recent selection baselines in both accuracy and efficiency, providing a favorable trade-off between accuracy, efficiency, and emissions.
☆ V2P: From Background Suppression to Center Peaking for Robust GUI Grounding Task
Precise localization of GUI elements is crucial for the development of GUI agents. Traditional methods rely on bounding box or center-point regression, neglecting spatial interaction uncertainty and visual-semantic hierarchies. Recent methods incorporate attention mechanisms but still face two key issues: (1) ignoring processing background regions causes attention drift from the desired area, and (2) uniform labeling fails to distinguish between center and edges of the target UI element, leading to click imprecision. Inspired by how humans visually process and interact with GUI elements, we propose the Valley-to-Peak (V2P) method to address these issues. To mitigate background distractions, V2P introduces a suppression attention mechanism that minimizes the model's focus on irrelevant regions to highlight the intended region. For the issue of center-edge distinction, V2P applies a Fitts' Law-inspired approach by modeling GUI interactions as 2D Gaussian heatmaps where the weight gradually decreases from the center towards the edges. The weight distribution follows a Gaussian function, with the variance determined by the target's size. Consequently, V2P effectively isolates the target area and teaches the model to concentrate on the most essential point of the UI element. The model trained by V2P achieves the performance with 92.3% and 50.5% on two benchmarks ScreenSpot-v2 and ScreenSpot-Pro. Ablations further confirm each component's contribution, highlighting V2P's generalizability for precise GUI grounding tasks.
☆ Towards a Larger Model via One-Shot Federated Learning on Heterogeneous Client Models
Large models, renowned for superior performance, outperform smaller ones even without billion-parameter scales. While mobile network servers have ample computational resources to support larger models than client devices, privacy constraints prevent clients from directly sharing their raw data. Federated Learning (FL) enables decentralized clients to collaboratively train a shared model by exchanging model parameters instead of transmitting raw data. Yet, it requires a uniform model architecture and multiple communication rounds, which neglect resource heterogeneity, impose heavy computational demands on clients, and increase communication overhead. To address these challenges, we propose FedOL, to construct a larger and more comprehensive server model in one-shot settings (i.e., in a single communication round). Instead of model parameter sharing, FedOL employs knowledge distillation, where clients only exchange model prediction outputs on an unlabeled public dataset. This reduces communication overhead by transmitting compact predictions instead of full model weights and enables model customization by allowing heterogeneous model architectures. A key challenge in this setting is that client predictions may be biased due to skewed local data distributions, and the lack of ground-truth labels in the public dataset further complicates reliable learning. To mitigate these issues, FedOL introduces a specialized objective function that iteratively refines pseudo-labels and the server model, improving learning reliability. To complement this, FedOL incorporates a tailored pseudo-label generation and knowledge distillation strategy that effectively integrates diverse knowledge. Simulation results show that FedOL significantly outperforms existing baselines, offering a cost-effective solution for mobile networks where clients possess valuable private data but limited computational resources.
comment: Accepted to Globecom 2025
☆ Bounding Causal Effects and Counterfactuals
Causal inference often hinges on strong assumptions - such as no unmeasured confounding or perfect compliance - that are rarely satisfied in practice. Partial identification offers a principled alternative: instead of relying on unverifiable assumptions to estimate causal effects precisely, it derives bounds that reflect the uncertainty inherent in the data. Despite its theoretical appeal, partial identification remains underutilized in applied work, in part due to the fragmented nature of existing methods and the lack of practical guidance. This thesis addresses these challenges by systematically comparing a diverse set of bounding algorithms across multiple causal scenarios. We implement, extend, and unify state-of-the-art methods - including symbolic, optimization-based, and information-theoretic approaches - within a common evaluation framework. In particular, we propose an extension of a recently introduced entropy-bounded method, making it applicable to counterfactual queries such as the Probability of Necessity and Sufficiency (PNS). Our empirical study spans thousands of randomized simulations involving both discrete and continuous data-generating processes. We assess each method in terms of bound tightness, computational efficiency, and robustness to assumption violations. To support practitioners, we distill our findings into a practical decision tree for algorithm selection and train a machine learning model to predict the best-performing method based on observable data characteristics. All implementations are released as part of an open-source Python package, CausalBoundingEngine, which enables users to apply and compare bounding methods through a unified interface.
comment: Bachelor's thesis, Technical University of Munich, 2025. 102 pages, 20 figures
☆ Who Gets the Mic? Investigating Gender Bias in the Speaker Assignment of a Speech-LLM
Similar to text-based Large Language Models (LLMs), Speech-LLMs exhibit emergent abilities and context awareness. However, whether these similarities extend to gender bias remains an open question. This study proposes a methodology leveraging speaker assignment as an analytic tool for bias investigation. Unlike text-based models, which encode gendered associations implicitly, Speech-LLMs must produce a gendered voice, making speaker selection an explicit bias cue. We evaluate Bark, a Text-to-Speech (TTS) model, analyzing its default speaker assignments for textual prompts. If Bark's speaker selection systematically aligns with gendered associations, it may reveal patterns in its training data or model design. To test this, we construct two datasets: (i) Professions, containing gender-stereotyped occupations, and (ii) Gender-Colored Words, featuring gendered connotations. While Bark does not exhibit systematic bias, it demonstrates gender awareness and has some gender inclinations.
☆ Breaking the SFT Plateau: Multimodal Structured Reinforcement Learning for Chart-to-Code Generation
While reinforcement learning (RL) has proven highly effective for general reasoning in vision-language models, its application to tasks requiring in-depth understanding of information-rich images and generation of structured outputs remains underexplored. Chart-to-code generation exemplifies this challenge, demanding complex reasoning over visual charts to generate structured code. Supervised fine-tuning (SFT) alone is often insufficient, highlighting the need for effective RL strategies that appropriately reward structured outputs. We systematically investigate the performance plateau in SFT through large-scale experiments and propose Multimodal Structured Reinforcement Learning (MSRL) for chart-to-code generation, which substantially breaks through this plateau. We construct the largest training corpus to date, containing 3 million chart-code pairs from real-world arXiv tables to mitigate simplistic patterns of prior synthetic data. Despite reaching state-of-the-art performance, our experiments show that scaling SFT data eventually hits a plateau where further increases yield negligible improvements. Our MSRL method leverages a multi-granularity structured reward system using multimodal textual and visual feedback. At the textual level, rule-based rewards validate fine-grained code details. At the visual level, model-based rewards assess structural similarity by rendering generated code into images and employing an evaluator model. We implement this within a two-stage curriculum for training stability. Results demonstrate that MSRL significantly breaks the SFT plateau, improving high-level metrics by 6.2% and 9.9% on ChartMimic and ReachQA benchmarks respectively, achieving competitive performance with advanced closed-source models.
comment: technical report
☆ A Comparative Study of Decoding Strategies in Medical Text Generation
Large Language Models (LLMs) rely on various decoding strategies to generate text, and these choices can significantly affect output quality. In healthcare, where accuracy is critical, the impact of decoding strategies remains underexplored. We investigate this effect in five open-ended medical tasks, including translation, summarization, question answering, dialogue, and image captioning, evaluating 11 decoding strategies with medically specialized and general-purpose LLMs of different sizes. Our results show that deterministic strategies generally outperform stochastic ones: beam search achieves the highest scores, while {\eta} and top-k sampling perform worst. Slower decoding methods tend to yield better quality. Larger models achieve higher scores overall but have longer inference times and are no more robust to decoding. Surprisingly, while medical LLMs outperform general ones in two of the five tasks, statistical analysis shows no overall performance advantage and reveals greater sensitivity to decoding choice. We further compare multiple evaluation metrics and find that correlations vary by task, with MAUVE showing weak agreement with BERTScore and ROUGE, as well as greater sensitivity to the decoding strategy. These results highlight the need for careful selection of decoding methods in medical applications, as their influence can sometimes exceed that of model choice.
☆ Toward Better EHR Reasoning in LLMs: Reinforcement Learning with Expert Attention Guidance
Improving large language models (LLMs) for electronic health record (EHR) reasoning is essential for enabling accurate and generalizable clinical predictions. While LLMs excel at medical text understanding, they underperform on EHR-based prediction tasks due to challenges in modeling temporally structured, high-dimensional data. Existing approaches often rely on hybrid paradigms, where LLMs serve merely as frozen prior retrievers while downstream deep learning (DL) models handle prediction, failing to improve the LLM's intrinsic reasoning capacity and inheriting the generalization limitations of DL models. To this end, we propose EAG-RL, a novel two-stage training framework designed to intrinsically enhance LLMs' EHR reasoning ability through expert attention guidance, where expert EHR models refer to task-specific DL models trained on EHR data. Concretely, EAG-RL first constructs high-quality, stepwise reasoning trajectories using expert-guided Monte Carlo Tree Search to effectively initialize the LLM's policy. Then, EAG-RL further optimizes the policy via reinforcement learning by aligning the LLM's attention with clinically salient features identified by expert EHR models. Extensive experiments on two real-world EHR datasets show that EAG-RL improves the intrinsic EHR reasoning ability of LLMs by an average of 14.62%, while also enhancing robustness to feature perturbations and generalization to unseen clinical domains. These results demonstrate the practical potential of EAG-RL for real-world deployment in clinical prediction tasks. Our code have been available at https://github.com/devilran6/EAG-RL.
☆ End-to-End Audio-Visual Learning for Cochlear Implant Sound Coding in Noisy Environments
The cochlear implant (CI) is a remarkable biomedical device that successfully enables individuals with severe-to-profound hearing loss to perceive sound by converting speech into electrical stimulation signals. Despite advancements in the performance of recent CI systems, speech comprehension in noisy or reverberant conditions remains a challenge. Recent and ongoing developments in deep learning reveal promising opportunities for enhancing CI sound coding capabilities, not only through replicating traditional signal processing methods with neural networks, but also through integrating visual cues as auxiliary data for multimodal speech processing. Therefore, this paper introduces a novel noise-suppressing CI system, AVSE-ECS, which utilizes an audio-visual speech enhancement (AVSE) model as a pre-processing module for the deep-learning-based ElectrodeNet-CS (ECS) sound coding strategy. Specifically, a joint training approach is applied to model AVSE-ECS, an end-to-end CI system. Experimental results indicate that the proposed method outperforms the previous ECS strategy in noisy conditions, with improved objective speech intelligibility scores. The methods and findings in this study demonstrate the feasibility and potential of using deep learning to integrate the AVSE module into an end-to-end CI system
comment: 6 pages, 4 figures
☆ The 9th AI City Challenge AI
The ninth AI City Challenge continues to advance real-world applications of computer vision and AI in transportation, industrial automation, and public safety. The 2025 edition featured four tracks and saw a 17% increase in participation, with 245 teams from 15 countries registered on the evaluation server. Public release of challenge datasets led to over 30,000 downloads to date. Track 1 focused on multi-class 3D multi-camera tracking, involving people, humanoids, autonomous mobile robots, and forklifts, using detailed calibration and 3D bounding box annotations. Track 2 tackled video question answering in traffic safety, with multi-camera incident understanding enriched by 3D gaze labels. Track 3 addressed fine-grained spatial reasoning in dynamic warehouse environments, requiring AI systems to interpret RGB-D inputs and answer spatial questions that combine perception, geometry, and language. Both Track 1 and Track 3 datasets were generated in NVIDIA Omniverse. Track 4 emphasized efficient road object detection from fisheye cameras, supporting lightweight, real-time deployment on edge devices. The evaluation framework enforced submission limits and used a partially held-out test set to ensure fair benchmarking. Final rankings were revealed after the competition concluded, fostering reproducibility and mitigating overfitting. Several teams achieved top-tier results, setting new benchmarks in multiple tasks.
comment: Summary of the 9th AI City Challenge Workshop in conjunction with ICCV 2025
☆ Physics-Informed Neural Networks for Programmable Origami Metamaterials with Controlled Deployment
Origami-inspired structures provide unprecedented opportunities for creating lightweight, deployable systems with programmable mechanical responses. However, their design remains challenging due to complex nonlinear mechanics, multistability, and the need for precise control of deployment forces. Here, we present a physics-informed neural network (PINN) framework for both forward prediction and inverse design of conical Kresling origami (CKO) without requiring pre-collected training data. By embedding mechanical equilibrium equations directly into the learning process, the model predicts complete energy landscapes with high accuracy while minimizing non-physical artifacts. The inverse design routine specifies both target stable-state heights and separating energy barriers, enabling freeform programming of the entire energy curve. This capability is extended to hierarchical CKO assemblies, where sequential layer-by-layer deployment is achieved through programmed barrier magnitudes. Finite element simulations and experiments on physical prototypes validate the designed deployment sequences and barrier ratios, confirming the robustness of the approach. This work establishes a versatile, data-free route for programming complex mechanical energy landscapes in origami-inspired metamaterials, offering broad potential for deployable aerospace systems, morphing structures, and soft robotic actuators.
☆ Collapsing ROC approach for risk prediction research on both common and rare variants
Risk prediction that capitalizes on emerging genetic findings holds great promise for improving public health and clinical care. However, recent risk prediction research has shown that predictive tests formed on existing common genetic loci, including those from genome-wide association studies, have lacked sufficient accuracy for clinical use. Because most rare variants on the genome have not yet been studied for their role in risk prediction, future disease prediction discoveries should shift toward a more comprehensive risk prediction strategy that takes into account both common and rare variants. We are proposing a collapsing receiver operating characteristic CROC approach for risk prediction research on both common and rare variants. The new approach is an extension of a previously developed forward ROC FROC approach, with additional procedures for handling rare variants. The approach was evaluated through the use of 533 single-nucleotide polymorphisms SNPs in 37 candidate genes from the Genetic Analysis Workshop 17 mini-exome data set. We found that a prediction model built on all SNPs gained more accuracy AUC = 0.605 than one built on common variants alone AUC = 0.585. We further evaluated the performance of two approaches by gradually reducing the number of common variants in the analysis. We found that the CROC method attained more accuracy than the FROC method when the number of common variants in the data decreased. In an extreme scenario, when there are only rare variants in the data, the CROC reached an AUC value of 0.603, whereas the FROC had an AUC value of 0.524.
☆ FLAIR: Frequency- and Locality-Aware Implicit Neural Representations AI
Implicit Neural Representations (INRs) leverage neural networks to map coordinates to corresponding signals, enabling continuous and compact representations. This paradigm has driven significant advances in various vision tasks. However, existing INRs lack frequency selectivity, spatial localization, and sparse representations, leading to an over-reliance on redundant signal components. Consequently, they exhibit spectral bias, tending to learn low-frequency components early while struggling to capture fine high-frequency details. To address these issues, we propose FLAIR (Frequency- and Locality-Aware Implicit Neural Representations), which incorporates two key innovations. The first is RC-GAUSS, a novel activation designed for explicit frequency selection and spatial localization under the constraints of the time-frequency uncertainty principle (TFUP). The second is Wavelet-Energy-Guided Encoding (WEGE), which leverages the discrete wavelet transform (DWT) to compute energy scores and explicitly guide frequency information to the network. Our method consistently outperforms existing INRs in 2D image representation and restoration, as well as 3D reconstruction.
comment: Please visit our project page at https://cmlab-korea.github.io/FLAIR/
☆ EAvatar: Expression-Aware Head Avatar Reconstruction with Generative Geometry Priors
High-fidelity head avatar reconstruction plays a crucial role in AR/VR, gaming, and multimedia content creation. Recent advances in 3D Gaussian Splatting (3DGS) have demonstrated effectiveness in modeling complex geometry with real-time rendering capability and are now widely used in high-fidelity head avatar reconstruction tasks. However, existing 3DGS-based methods still face significant challenges in capturing fine-grained facial expressions and preserving local texture continuity, especially in highly deformable regions. To mitigate these limitations, we propose a novel 3DGS-based framework termed EAvatar for head reconstruction that is both expression-aware and deformation-aware. Our method introduces a sparse expression control mechanism, where a small number of key Gaussians are used to influence the deformation of their neighboring Gaussians, enabling accurate modeling of local deformations and fine-scale texture transitions. Furthermore, we leverage high-quality 3D priors from pretrained generative models to provide a more reliable facial geometry, offering structural guidance that improves convergence stability and shape accuracy during training. Experimental results demonstrate that our method produces more accurate and visually coherent head reconstructions with improved expression controllability and detail fidelity.
comment: 20 pages, 11 figures
☆ MimicFunc: Imitating Tool Manipulation from a Single Human Video via Functional Correspondence
Imitating tool manipulation from human videos offers an intuitive approach to teaching robots, while also providing a promising and scalable alternative to labor-intensive teleoperation data collection for visuomotor policy learning. While humans can mimic tool manipulation behavior by observing others perform a task just once and effortlessly transfer the skill to diverse tools for functionally equivalent tasks, current robots struggle to achieve this level of generalization. A key challenge lies in establishing function-level correspondences, considering the significant geometric variations among functionally similar tools, referred to as intra-function variations. To address this challenge, we propose MimicFunc, a framework that establishes functional correspondences with function frame, a function-centric local coordinate frame constructed with keypoint-based abstraction, for imitating tool manipulation skills. Experiments demonstrate that MimicFunc effectively enables the robot to generalize the skill from a single RGB-D human video to manipulating novel tools for functionally equivalent tasks. Furthermore, leveraging MimicFunc's one-shot generalization capability, the generated rollouts can be used to train visuomotor policies without requiring labor-intensive teleoperation data collection for novel objects. Our code and video are available at https://sites.google.com/view/mimicfunc.
comment: Accepted to CoRL 2025
☆ CrafterDojo: A Suite of Foundation Models for Building Open-Ended Embodied Agents in Crafter
Developing general-purpose embodied agents is a core challenge in AI. Minecraft provides rich complexity and internet-scale data, but its slow speed and engineering overhead make it unsuitable for rapid prototyping. Crafter offers a lightweight alternative that retains key challenges from Minecraft, yet its use has remained limited to narrow tasks due to the absence of foundation models that have driven progress in the Minecraft setting. In this paper, we present CrafterDojo, a suite of foundation models and tools that unlock the Crafter environment as a lightweight, prototyping-friendly, and Minecraft-like testbed for general-purpose embodied agent research. CrafterDojo addresses this by introducing CrafterVPT, CrafterCLIP, and CrafterSteve-1 for behavior priors, vision-language grounding, and instruction following, respectively. In addition, we provide toolkits for generating behavior and caption datasets (CrafterPlay and CrafterCaption), reference agent implementations, benchmark evaluations, and a complete open-source codebase.
☆ Evaluating Open-Source Vision Language Models for Facial Emotion Recognition against Traditional Deep Learning Models
Facial Emotion Recognition (FER) is crucial for applications such as human-computer interaction and mental health diagnostics. This study presents the first empirical comparison of open-source Vision-Language Models (VLMs), including Phi-3.5 Vision and CLIP, against traditional deep learning models VGG19, ResNet-50, and EfficientNet-B0 on the challenging FER-2013 dataset, which contains 35,887 low-resolution grayscale images across seven emotion classes. To address the mismatch between VLM training assumptions and the noisy nature of FER data, we introduce a novel pipeline that integrates GFPGAN-based image restoration with FER evaluation. Results show that traditional models, particularly EfficientNet-B0 (86.44%) and ResNet-50 (85.72%), significantly outperform VLMs like CLIP (64.07%) and Phi-3.5 Vision (51.66%), highlighting the limitations of VLMs in low-quality visual tasks. In addition to performance evaluation using precision, recall, F1-score, and accuracy, we provide a detailed computational cost analysis covering preprocessing, training, inference, and evaluation phases, offering practical insights for deployment. This work underscores the need for adapting VLMs to noisy environments and provides a reproducible benchmark for future research in emotion recognition.
☆ DDoS Attacks in Cloud Computing: Detection and Prevention
DDoS attacks are one of the most prevalent and harmful cybersecurity threats faced by organizations and individuals today. In recent years, the complexity and frequency of DDoS attacks have increased significantly, making it challenging to detect and mitigate them effectively. The study analyzes various types of DDoS attacks, including volumetric, protocol, and application layer attacks, and discusses the characteristics, impact, and potential targets of each type. It also examines the existing techniques used for DDoS attack detection, such as packet filtering, intrusion detection systems, and machine learning-based approaches, and their strengths and limitations. Moreover, the study explores the prevention techniques employed to mitigate DDoS attacks, such as firewalls, rate limiting , CPP and ELD mechanism. It evaluates the effectiveness of each approach and its suitability for different types of attacks and environments. In conclusion, this study provides a comprehensive overview of the different types of DDoS attacks, their detection, and prevention techniques. It aims to provide insights and guidelines for organizations and individuals to enhance their cybersecurity posture and protect against DDoS attacks.
☆ Calibrating Biased Distribution in VFM-derived Latent Space via Cross-Domain Geometric Consistency CVPR
Despite the fast progress of deep learning, one standing challenge is the gap of the observed training samples and the underlying true distribution. There are multiple reasons for the causing of this gap e.g. sampling bias, noise etc. In the era of foundation models, we show that when leveraging the off-the-shelf (vision) foundation models (e.g., CLIP, DINOv2) for feature extraction, the geometric shapes of the resulting feature distributions exhibit remarkable transferability across domains and datasets. To verify its practical usefulness, we embody our geometric knowledge-guided distribution calibration framework in two popular and challenging settings: federated learning and long-tailed recognition. In the federated setting, we devise a technique of acquiring the global geometric shape under privacy constraints, then leverage this knowledge to generate new samples for clients, in the aim of bridging the gap between local and global observations. In long-tailed learning, it utilizes the geometric knowledge transferred from sample-rich categories to recover the true distribution for sample-scarce tail classes. Comprehensive experiments show that our proposed geometric knowledge-guided distribution calibration effectively overcomes information deficits caused by data heterogeneity and sample imbalance, with boosted performance across benchmarks.
comment: 15 pages, CVPR Oral
☆ Heterogeneous Influence Maximization in User Recommendation
User recommendation systems enhance user engagement by encouraging users to act as inviters to interact with other users (invitees), potentially fostering information propagation. Conventional recommendation methods typically focus on modeling interaction willingness. Influence-Maximization (IM) methods focus on identifying a set of users to maximize the information propagation. However, existing methods face two significant challenges. First, recommendation methods fail to unleash the candidates' spread capability. Second, IM methods fail to account for the willingness to interact. To solve these issues, we propose two models named HeteroIR and HeteroIM. HeteroIR provides an intuitive solution to unleash the dissemination potential of user recommendation systems. HeteroIM fills the gap between the IM method and the recommendation task, improving interaction willingness and maximizing spread coverage. The HeteroIR introduces a two-stage framework to estimate the spread profits. The HeteroIM incrementally selects the most influential invitee to recommend and rerank based on the number of reverse reachable (RR) sets containing inviters and invitees. RR set denotes a set of nodes that can reach a target via propagation. Extensive experiments show that HeteroIR and HeteroIM significantly outperform the state-of-the-art baselines with the p-value < 0.05. Furthermore, we have deployed HeteroIR and HeteroIM in Tencent's online gaming platforms and gained an 8.5\% and 10\% improvement in the online A/B test, respectively. Implementation codes are available at https://github.com/socialalgo/HIM.
comment: Accepted in CIKM 2025
☆ ProMed: Shapley Information Gain Guided Reinforcement Learning for Proactive Medical LLMs
Interactive medical questioning is essential in real-world clinical consultations, where physicians must actively gather information from patients. While medical Large Language Models (LLMs) have shown impressive capabilities in static medical question answering, they predominantly operate under a reactive paradigm: generating answers directly without seeking additional information, which risks incorrect diagnoses in such interactive settings. To address this limitation, we propose ProMed, a reinforcement learning (RL) framework that transitions medical LLMs toward a proactive paradigm, equipping them with the ability to ask clinically valuable questions before decision-making. At the core of ProMed is the Shapley Information Gain (SIG) reward, which quantifies the clinical utility of each question by combining the amount of newly acquired information with its contextual importance, estimated via Shapley values. We integrate SIG into a two-stage training pipeline: (1) SIG-Guided Model Initialization uses Monte Carlo Tree Search (MCTS) to construct high-reward interaction trajectories to supervise the model, and (2) SIG-Augmented Policy Optimization, which integrates SIG and enhances RL with a novel SIG-guided Reward Distribution Mechanism that assigns higher rewards to informative questions for targeted optimization. Extensive experiments on two newly curated partial-information medical benchmarks demonstrate that ProMed significantly outperforms state-of-the-art methods by an average of 6.29% and delivers a 54.45% gain over the reactive paradigm, while also generalizing robustly to out-of-domain cases.
☆ LLM-Enhanced Linear Autoencoders for Recommendation
Large language models (LLMs) have been widely adopted to enrich the semantic representation of textual item information in recommender systems. However, existing linear autoencoders (LAEs) that incorporate textual information rely on sparse word co-occurrence patterns, limiting their ability to capture rich textual semantics. To address this, we propose L3AE, the first integration of LLMs into the LAE framework. L3AE effectively integrates the heterogeneous knowledge of textual semantics and user-item interactions through a two-phase optimization strategy. (i) L3AE first constructs a semantic item-to-item correlation matrix from LLM-derived item representations. (ii) It then learns an item-to-item weight matrix from collaborative signals while distilling semantic item correlations as regularization. Notably, each phase of L3AE is optimized through closed-form solutions, ensuring global optimality and computational efficiency. Extensive experiments demonstrate that L3AE consistently outperforms state-of-the-art LLM-enhanced models on three benchmark datasets, achieving gains of 27.6% in Recall@20 and 39.3% in NDCG@20. The source code is available at https://github.com/jaewan7599/L3AE_CIKM2025.
comment: Accepted by CIKM 2025
☆ CORENet: Cross-Modal 4D Radar Denoising Network with LiDAR Supervision for Autonomous Driving
4D radar-based object detection has garnered great attention for its robustness in adverse weather conditions and capacity to deliver rich spatial information across diverse driving scenarios. Nevertheless, the sparse and noisy nature of 4D radar point clouds poses substantial challenges for effective perception. To address the limitation, we present CORENet, a novel cross-modal denoising framework that leverages LiDAR supervision to identify noise patterns and extract discriminative features from raw 4D radar data. Designed as a plug-and-play architecture, our solution enables seamless integration into voxel-based detection frameworks without modifying existing pipelines. Notably, the proposed method only utilizes LiDAR data for cross-modal supervision during training while maintaining full radar-only operation during inference. Extensive evaluation on the challenging Dual-Radar dataset, which is characterized by elevated noise level, demonstrates the effectiveness of our framework in enhancing detection robustness. Comprehensive experiments validate that CORENet achieves superior performance compared to existing mainstream approaches.
comment: 8 pages, 5 figures, Accepted to IROS 2025
☆ STER-VLM: Spatio-Temporal With Enhanced Reference Vision-Language Models ICCV
Vision-language models (VLMs) have emerged as powerful tools for enabling automated traffic analysis; however, current approaches often demand substantial computational resources and struggle with fine-grained spatio-temporal understanding. This paper introduces STER-VLM, a computationally efficient framework that enhances VLM performance through (1) caption decomposition to tackle spatial and temporal information separately, (2) temporal frame selection with best-view filtering for sufficient temporal information, and (3) reference-driven understanding for capturing fine-grained motion and dynamic context and (4) curated visual/textual prompt techniques. Experimental results on the WTS \cite{kong2024wts} and BDD \cite{BDD} datasets demonstrate substantial gains in semantic richness and traffic scene interpretation. Our framework is validated through a decent test score of 55.655 in the AI City Challenge 2025 Track 2, showing its effectiveness in advancing resource-efficient and accurate traffic analysis for real-world applications.
comment: ICCV Workshop 2025
☆ LM Agents May Fail to Act on Their Own Risk Knowledge
Language model (LM) agents have demonstrated significant potential for automating real-world tasks, yet they pose a diverse array of potential, severe risks in safety-critical scenarios. In this work, we identify a significant gap between LM agents' risk awareness and safety execution abilities: while they often answer "Yes" to queries like "Is executing `sudo rm -rf /*' dangerous?", they will likely fail to identify such risks in instantiated trajectories or even directly perform these risky actions when acting as agents. To systematically investigate this, we develop a comprehensive evaluation framework to examine agents' safety across three progressive dimensions: 1) their knowledge about potential risks, 2) their ability to identify corresponding risks in execution trajectories, and 3) their actual behaviors to avoid executing these risky actions. Our evaluation reveals two critical performance gaps that resemble the generator-validator gaps observed in LMs: while agents demonstrate near-perfect risk knowledge ($>98\%$ pass rates), they fail to apply this knowledge when identifying risks in actual scenarios (with performance dropping by $>23\%$) and often still execute risky actions ($<26\%$ pass rates). Notably, this trend persists across more capable LMs as well as in specialized reasoning models like DeepSeek-R1, indicating that simply scaling model capabilities or inference compute does not inherently resolve safety concerns. Instead, we take advantage of these observed gaps to develop a risk verifier that independently critiques the proposed actions by agents, with an abstractor that converts specific execution trajectories into abstract descriptions where LMs can more effectively identify the risks. Our overall system achieves a significant reduction of risky action execution by $55.3\%$ over vanilla-prompted agents.
☆ Zero-knowledge LLM hallucination detection and mitigation through fine-grained cross-model consistency
Large language models (LLMs) have demonstrated impressive capabilities across diverse tasks, but they remain susceptible to hallucinations--generating content that appears plausible but contains factual inaccuracies. We present Finch-Zk, a black-box framework that leverages FINe-grained Cross-model consistency to detect and mitigate Hallucinations in LLM outputs without requiring external knowledge sources. Finch-Zk introduces two key innovations: 1) a cross-model consistency checking strategy that reveals fine-grained inaccuracies by comparing responses generated by diverse models from semantically-equivalent prompts, and 2) a targeted mitigation technique that applies precise corrections to problematic segments while preserving accurate content. Experiments on the FELM dataset show Finch-Zk improves hallucination detection F1 scores by 6-39\% compared to existing approaches. For mitigation, Finch-Zk achieves 7-8 absolute percentage points improvement in answer accuracy on the GPQA-diamond dataset when applied to state-of-the-art models like Llama 4 Maverick and Claude 4 Sonnet. Extensive evaluation across multiple models demonstrates that Finch-Zk provides a practical, deployment-ready safeguard for enhancing factual reliability in production LLM systems.
☆ Your Reward Function for RL is Your Best PRM for Search: Unifying RL and Search-Based TTS
Test-time scaling (TTS) for large language models (LLMs) has thus far fallen into two largely separate paradigms: (1) reinforcement learning (RL) methods that optimize sparse outcome-based rewards, yet suffer from instability and low sample efficiency; and (2) search-based techniques guided by independently trained, static process reward models (PRMs), which require expensive human- or LLM-generated labels and often degrade under distribution shifts. In this paper, we introduce AIRL-S, the first natural unification of RL-based and search-based TTS. Central to AIRL-S is the insight that the reward function learned during RL training inherently represents the ideal PRM for guiding downstream search. Specifically, we leverage adversarial inverse reinforcement learning (AIRL) combined with group relative policy optimization (GRPO) to learn a dense, dynamic PRM directly from correct reasoning traces, entirely eliminating the need for labeled intermediate process data. At inference, the resulting PRM simultaneously serves as the critic for RL rollouts and as a heuristic to effectively guide search procedures, facilitating robust reasoning chain extension, mitigating reward hacking, and enhancing cross-task generalization. Experimental results across eight benchmarks, including mathematics, scientific reasoning, and code generation, demonstrate that our unified approach improves performance by 9 % on average over the base model, matching GPT-4o. Furthermore, when integrated into multiple search algorithms, our PRM consistently outperforms all baseline PRMs trained with labeled data. These results underscore that, indeed, your reward function for RL is your best PRM for search, providing a robust and cost-effective solution to complex reasoning tasks in LLMs.
☆ Learning Time-Varying Convexifications of Multiple Fairness Measures
There is an increasing appreciation that one may need to consider multiple measures of fairness, e.g., considering multiple group and individual fairness notions. The relative weights of the fairness regularisers are a priori unknown, may be time varying, and need to be learned on the fly. We consider the learning of time-varying convexifications of multiple fairness measures with limited graph-structured feedback.
☆ GLASS: Test-Time Acceleration for LLMs via Global-Local Neural Importance Aggregation
Deploying Large Language Models (LLMs) on edge hardware demands aggressive, prompt-aware dynamic pruning to reduce computation without degrading quality. Static or predictor-based schemes either lock in a single sparsity pattern or incur extra runtime overhead, and recent zero-shot methods that rely on statistics from a single prompt fail on short prompt and/or long generation scenarios. We introduce A/I-GLASS: Activation- and Impact-based Global-Local neural importance Aggregation for feed-forward network SparSification, two training-free methods that dynamically select FFN units using a rank-aggregation of prompt local and model-intrinsic global neuron statistics. Empirical results across multiple LLMs and benchmarks demonstrate that GLASS significantly outperforms prior training-free methods, particularly in challenging long-form generation scenarios, without relying on auxiliary predictors or adding any inference overhead.
☆ Pixels to Play: A Foundation Model for 3D Gameplay
We introduce Pixels2Play-0.1 (P2P0.1), a foundation model that learns to play a wide range of 3D video games with recognizable human-like behavior. Motivated by emerging consumer and developer use cases - AI teammates, controllable NPCs, personalized live-streamers, assistive testers - we argue that an agent must rely on the same pixel stream available to players and generalize to new titles with minimal game-specific engineering. P2P0.1 is trained end-to-end with behavior cloning: labeled demonstrations collected from instrumented human game-play are complemented by unlabeled public videos, to which we impute actions via an inverse-dynamics model. A decoder-only transformer with auto-regressive action output handles the large action space while remaining latency-friendly on a single consumer GPU. We report qualitative results showing competent play across simple Roblox and classic MS-DOS titles, ablations on unlabeled data, and outline the scaling and evaluation steps required to reach expert-level, text-conditioned control.
☆ Explaining Hitori Puzzles: Neurosymbolic Proof Staging for Sequential Decisions
We propose a neurosymbolic approach to the explanation of complex sequences of decisions that combines the strengths of decision procedures and Large Language Models (LLMs). We demonstrate this approach by producing explanations for the solutions of Hitori puzzles. The rules of Hitori include local constraints that are effectively explained by short resolution proofs. However, they also include a connectivity constraint that is more suitable for visual explanations. Hence, Hitori provides an excellent testing ground for a flexible combination of SAT solvers and LLMs. We have implemented a tool that assists humans in solving Hitori puzzles, and we present experimental evidence of its effectiveness.
☆ OccluNet: Spatio-Temporal Deep Learning for Occlusion Detection on DSA AI 2025
Accurate detection of vascular occlusions during endovascular thrombectomy (EVT) is critical in acute ischemic stroke (AIS). Interpretation of digital subtraction angiography (DSA) sequences poses challenges due to anatomical complexity and time constraints. This work proposes OccluNet, a spatio-temporal deep learning model that integrates YOLOX, a single-stage object detector, with transformer-based temporal attention mechanisms to automate occlusion detection in DSA sequences. We compared OccluNet with a YOLOv11 baseline trained on either individual DSA frames or minimum intensity projections. Two spatio-temporal variants were explored for OccluNet: pure temporal attention and divided space-time attention. Evaluation on DSA images from the MR CLEAN Registry revealed the model's capability to capture temporally consistent features, achieving precision and recall of 89.02% and 74.87%, respectively. OccluNet significantly outperformed the baseline models, and both attention variants attained similar performance. Source code is available at https://github.com/anushka-kore/OccluNet.git
comment: To be published in Proceedings of the SWITCH Workshop at MICCAI 2025, Lecture Notes in Computer Science (LNCS), Springer
☆ Amortized Bayesian Meta-Learning for Low-Rank Adaptation of Large Language Models
Fine-tuning large language models (LLMs) with low-rank adaptaion (LoRA) is a cost-effective way to incorporate information from a specific dataset. However, it is often unclear how well the fine-tuned LLM will generalize, i.e., how well it will perform on unseen datasets. Methods have been proposed to improve generalization by optimizing with in-context prompts, or by using meta-learning to fine-tune LLMs. However, these methods are expensive in memory and computation, requiring either long-context prompts or saving copies of parameters and using second-order gradient updates. To address these challenges, we propose Amortized Bayesian Meta-Learning for LoRA (ABMLL). This method builds on amortized Bayesian meta-learning for smaller models, adapting this approach to LLMs while maintaining its computational efficiency. We reframe task-specific and global parameters in the context of LoRA and use a set of new hyperparameters to balance reconstruction accuracy and the fidelity of task-specific parameters to the global ones. ABMLL provides effective generalization and scales to large models such as Llama3-8B. Furthermore, as a result of using a Bayesian framework, ABMLL provides improved uncertainty quantification. We test ABMLL on Unified-QA and CrossFit datasets and find that it outperforms existing methods on these benchmarks in terms of both accuracy and expected calibration error.
comment: 6 pages, 2 figures
☆ Tooth-Diffusion: Guided 3D CBCT Synthesis with Fine-Grained Tooth Conditioning AI 2025
Despite the growing importance of dental CBCT scans for diagnosis and treatment planning, generating anatomically realistic scans with fine-grained control remains a challenge in medical image synthesis. In this work, we propose a novel conditional diffusion framework for 3D dental volume generation, guided by tooth-level binary attributes that allow precise control over tooth presence and configuration. Our approach integrates wavelet-based denoising diffusion, FiLM conditioning, and masked loss functions to focus learning on relevant anatomical structures. We evaluate the model across diverse tasks, such as tooth addition, removal, and full dentition synthesis, using both paired and distributional similarity metrics. Results show strong fidelity and generalization with low FID scores, robust inpainting performance, and SSIM values above 0.91 even on unseen scans. By enabling realistic, localized modification of dentition without rescanning, this work opens opportunities for surgical planning, patient communication, and targeted data augmentation in dental AI workflows. The codes are available at: https://github.com/djafar1/tooth-diffusion.
comment: MICCAI 2025 Workshop on Oral and Dental Image Analysis (ODIN)
☆ Disentangling concept semantics via multilingual averaging in Sparse Autoencoders
Connecting LLMs with formal knowledge representation and reasoning is a promising approach to address their shortcomings. Embeddings and sparse autoencoders are widely used to represent textual content, but the semantics are entangled with syntactic and language-specific information. We propose a method that isolates concept semantics in Large Langue Models by averaging concept activations derived via Sparse Autoencoders. We create English text representations from OWL ontology classes, translate the English into French and Chinese and then pass these texts as prompts to the Gemma 2B LLM. Using the open source Gemma Scope suite of Sparse Autoencoders, we obtain concept activations for each class and language version. We average the different language activations to derive a conceptual average. We then correlate the conceptual averages with a ground truth mapping between ontology classes. Our results give a strong indication that the conceptual average aligns to the true relationship between classes when compared with a single language by itself. The result hints at a new technique which enables mechanistic interpretation of internal network states with higher accuracy.
☆ Effect of Data Augmentation on Conformal Prediction for Diabetic Retinopathy AI-2025
The clinical deployment of deep learning models for high-stakes tasks such as diabetic retinopathy (DR) grading requires demonstrable reliability. While models achieve high accuracy, their clinical utility is limited by a lack of robust uncertainty quantification. Conformal prediction (CP) offers a distribution-free framework to generate prediction sets with statistical guarantees of coverage. However, the interaction between standard training practices like data augmentation and the validity of these guarantees is not well understood. In this study, we systematically investigate how different data augmentation strategies affect the performance of conformal predictors for DR grading. Using the DDR dataset, we evaluate two backbone architectures -- ResNet-50 and a Co-Scale Conv-Attentional Transformer (CoaT) -- trained under five augmentation regimes: no augmentation, standard geometric transforms, CLAHE, Mixup, and CutMix. We analyze the downstream effects on conformal metrics, including empirical coverage, average prediction set size, and correct efficiency. Our results demonstrate that sample-mixing strategies like Mixup and CutMix not only improve predictive accuracy but also yield more reliable and efficient uncertainty estimates. Conversely, methods like CLAHE can negatively impact model certainty. These findings highlight the need to co-design augmentation strategies with downstream uncertainty quantification in mind to build genuinely trustworthy AI systems for medical imaging.
comment: 3rd Workshop in Data Engineering in Medical Imaging (DEMI), MICCAI-2025 Workshop
☆ Incident Analysis for AI Agents AAAI
As AI agents become more widely deployed, we are likely to see an increasing number of incidents: events involving AI agent use that directly or indirectly cause harm. For example, agents could be prompt-injected to exfiltrate private information or make unauthorized purchases. Structured information about such incidents (e.g., user prompts) can help us understand their causes and prevent future occurrences. However, existing incident reporting processes are not sufficient for understanding agent incidents. In particular, such processes are largely based on publicly available data, which excludes useful, but potentially sensitive, information such as an agent's chain of thought or browser history. To inform the development of new, emerging incident reporting processes, we propose an incident analysis framework for agents. Drawing on systems safety approaches, our framework proposes three types of factors that can cause incidents: system-related (e.g., CBRN training data), contextual (e.g., prompt injections), and cognitive (e.g., misunderstanding a user request). We also identify specific information that could help clarify which factors are relevant to a given incident: activity logs, system documentation and access, and information about the tools an agent uses. We provide recommendations for 1) what information incident reports should include and 2) what information developers and deployers should retain and make available to incident investigators upon request. As we transition to a world with more agents, understanding agent incidents will become increasingly crucial for managing risks.
comment: 16 pages (10 pages main text), 4 figures, 3 tables. To be published in the Proceedings of the 2025 AAAI/ACM Conference on AI, Ethics, & Society (AIES)
☆ New Insights into Automatic Treatment Planning for Cancer Radiotherapy Using Explainable Artificial Intelligence
Objective: This study aims to uncover the opaque decision-making process of an artificial intelligence (AI) agent for automatic treatment planning. Approach: We examined a previously developed AI agent based on the Actor-Critic with Experience Replay (ACER) network, which automatically tunes treatment planning parameters (TPPs) for inverse planning in prostate cancer intensity modulated radiotherapy. We selected multiple checkpoint ACER agents from different stages of training and applied an explainable AI (EXAI) method to analyze the attribution from dose-volume histogram (DVH) inputs to TPP-tuning decisions. We then assessed each agent's planning efficacy and efficiency and evaluated their policy and final TPP tuning spaces. Combining these analyses, we systematically examined how ACER agents generated high-quality treatment plans in response to different DVH inputs. Results: Attribution analysis revealed that ACER agents progressively learned to identify dose-violation regions from DVH inputs and promote appropriate TPP-tuning actions to mitigate them. Organ-wise similarities between DVH attributions and dose-violation reductions ranged from 0.25 to 0.5 across tested agents. Agents with stronger attribution-violation similarity required fewer tuning steps (~12-13 vs. 22), exhibited a more concentrated TPP-tuning space with lower entropy (~0.3 vs. 0.6), converged on adjusting only a few TPPs, and showed smaller discrepancies between practical and theoretical tuning steps. Putting together, these findings indicate that high-performing ACER agents can effectively identify dose violations from DVH inputs and employ a global tuning strategy to achieve high-quality treatment planning, much like skilled human planners. Significance: Better interpretability of the agent's decision-making process may enhance clinician trust and inspire new strategies for automatic treatment planning.
comment: 19 pages, 7 figures, 1 table, Oral presentation at the conference 'American Association of Physicists in Medicine 2025, 67th Annual Meeting and Exhibition'
☆ Large Language Models are Highly Aligned with Human Ratings of Emotional Stimuli
Emotions exert an immense influence over human behavior and cognition in both commonplace and high-stress tasks. Discussions of whether or how to integrate large language models (LLMs) into everyday life (e.g., acting as proxies for, or interacting with, human agents), should be informed by an understanding of how these tools evaluate emotionally loaded stimuli or situations. A model's alignment with human behavior in these cases can inform the effectiveness of LLMs for certain roles or interactions. To help build this understanding, we elicited ratings from multiple popular LLMs for datasets of words and images that were previously rated for their emotional content by humans. We found that when performing the same rating tasks, GPT-4o responded very similarly to human participants across modalities, stimuli and most rating scales (r = 0.9 or higher in many cases). However, arousal ratings were less well aligned between human and LLM raters, while happiness ratings were most highly aligned. Overall LLMs aligned better within a five-category (happiness, anger, sadness, fear, disgust) emotion framework than within a two-dimensional (arousal and valence) organization. Finally, LLM ratings were substantially more homogenous than human ratings. Together these results begin to describe how LLM agents interpret emotional stimuli and highlight similarities and differences among biological and artificial intelligence in key behavioral domains.
☆ A Survey on Video Anomaly Detection via Deep Learning: Human, Vehicle, and Environment
Video Anomaly Detection (VAD) has emerged as a pivotal task in computer vision, with broad relevance across multiple fields. Recent advances in deep learning have driven significant progress in this area, yet the field remains fragmented across domains and learning paradigms. This survey offers a comprehensive perspective on VAD, systematically organizing the literature across various supervision levels, as well as adaptive learning methods such as online, active, and continual learning. We examine the state of VAD across three major application categories: human-centric, vehicle-centric, and environment-centric scenarios, each with distinct challenges and design considerations. In doing so, we identify fundamental contributions and limitations of current methodologies. By consolidating insights from subfields, we aim to provide the community with a structured foundation for advancing both theoretical understanding and real-world applicability of VAD systems. This survey aims to support researchers by providing a useful reference, while also drawing attention to the broader set of open challenges in anomaly detection, including both fundamental research questions and practical obstacles to real-world deployment.
☆ RynnEC: Bringing MLLMs into Embodied World
We introduce RynnEC, a video multimodal large language model designed for embodied cognition. Built upon a general-purpose vision-language foundation model, RynnEC incorporates a region encoder and a mask decoder, enabling flexible region-level video interaction. Despite its compact architecture, RynnEC achieves state-of-the-art performance in object property understanding, object segmentation, and spatial reasoning. Conceptually, it offers a region-centric video paradigm for the brain of embodied agents, providing fine-grained perception of the physical world and enabling more precise interactions. To mitigate the scarcity of annotated 3D datasets, we propose an egocentric video based pipeline for generating embodied cognition data. Furthermore, we introduce RynnEC-Bench, a region-centered benchmark for evaluating embodied cognitive capabilities. We anticipate that RynnEC will advance the development of general-purpose cognitive cores for embodied agents and facilitate generalization across diverse embodied tasks. The code, model checkpoints, and benchmark are available at: https://github.com/alibaba-damo-academy/RynnEC
comment: The technical report of RynnEC, an embodied cognition MLLM
☆ LENS: Learning to Segment Anything with Unified Reinforced Reasoning
Text-prompted image segmentation enables fine-grained visual understanding and is critical for applications such as human-computer interaction and robotics. However, existing supervised fine-tuning methods typically ignore explicit chain-of-thought (CoT) reasoning at test time, which limits their ability to generalize to unseen prompts and domains. To address this issue, we introduce LENS, a scalable reinforcement-learning framework that jointly optimizes the reasoning process and segmentation in an end-to-end manner. We propose unified reinforcement-learning rewards that span sentence-, box-, and segment-level cues, encouraging the model to generate informative CoT rationales while refining mask quality. Using a publicly available 3-billion-parameter vision-language model, i.e., Qwen2.5-VL-3B-Instruct, LENS achieves an average cIoU of 81.2% on the RefCOCO, RefCOCO+, and RefCOCOg benchmarks, outperforming the strong fine-tuned method, i.e., GLaMM, by up to 5.6%. These results demonstrate that RL-driven CoT reasoning serves as a robust prior for text-prompted segmentation and offers a practical path toward more generalizable Segment Anything models. Code is available at https://github.com/hustvl/LENS.
comment: Code is released at https://github.com/hustvl/LENS
♻ ☆ Scaling Intelligence: Designing Data Centers for Next-Gen Language Models
The explosive growth of Large Language Models (LLMs), such as GPT-4 with 1.8 trillion parameters, demands a fundamental rethinking of data center architecture to ensure scalability, efficiency, and cost-effectiveness. Our work provides a comprehensive co-design framework that jointly explores FLOPS, HBM bandwidth and capacity, multiple network topologies (two-tier vs. FullFlat optical), the size of the scale-out domain, and popular parallelism/optimization strategies used in LLMs. We introduce and evaluate FullFlat network architectures, which provide uniform high-bandwidth, low-latency connectivity between all nodes, and demonstrate their transformative impact on performance and scalability. Through detailed sensitivity analyses, we quantify the benefits of overlapping compute and communication, leveraging hardware-accelerated collectives, widening the scale-out domain, and increasing memory capacity. Our study spans both sparse (mixture of experts) and dense transformer-based LLMs, revealing how system design choices affect Model FLOPS Utilization (MFU = Model FLOPS per token * Observed tokens per second / Peak FLOPS of the hardware) and overall throughput. For the co-design study, we utilized an analytical performance modeling tool capable of predicting LLM runtime within 10% of real-world measurements. Our findings offer actionable insights and a practical roadmap for designing AI data centers that can efficiently support trillion-parameter models, reduce optimization complexity, and sustain the rapid evolution of AI capabilities.
comment: 14 pages, submitted to SC25 for review
♻ ☆ POPri: Private Federated Learning using Preference-Optimized Synthetic Data ICML 2025
In practical settings, differentially private Federated learning (DP-FL) is the dominant method for training models from private, on-device client data. Recent work has suggested that DP-FL may be enhanced or outperformed by methods that use DP synthetic data (Wu et al., 2024; Hou et al., 2024). The primary algorithms for generating DP synthetic data for FL applications require careful prompt engineering based on public information and/or iterative private client feedback. Our key insight is that the private client feedback collected by prior DP synthetic data methods (Hou et al., 2024; Xie et al., 2024) can be viewed as an RL (reinforcement learning) reward. Our algorithm, Policy Optimization for Private Data (POPri) harnesses client feedback using policy optimization algorithms such as Direct Preference Optimization (DPO) to fine-tune LLMs to generate high-quality DP synthetic data. To evaluate POPri, we release LargeFedBench, a new federated text benchmark for uncontaminated LLM evaluations on federated client data. POPri substantially improves the utility of DP synthetic data relative to prior work on LargeFedBench datasets and an existing benchmark from Xie et al. (2024). POPri closes the gap between next-token prediction accuracy in the fully-private and non-private settings by up to 58%, compared to 28% for prior synthetic data methods, and 3% for state-of-the-art DP federated learning methods. The code and data are available at https://github.com/meiyuw/POPri.
comment: ICML 2025 camera-ready
♻ ☆ Hallucinations and Key Information Extraction in Medical Texts: A Comprehensive Assessment of Open-Source Large Language Models
Clinical summarization is crucial in healthcare as it distills complex medical data into digestible information, enhancing patient understanding and care management. Large language models (LLMs) have shown significant potential in automating and improving the accuracy of such summarizations due to their advanced natural language understanding capabilities. These models are particularly applicable in the context of summarizing medical/clinical texts, where precise and concise information transfer is essential. In this paper, we investigate the effectiveness of open-source LLMs in extracting key events from discharge reports, including admission reasons, major in-hospital events, and critical follow-up actions. In addition, we also assess the prevalence of various types of hallucinations in the summaries produced by these models. Detecting hallucinations is vital as it directly influences the reliability of the information, potentially affecting patient care and treatment outcomes. We conduct comprehensive simulations to rigorously evaluate the performance of these models, further probing the accuracy and fidelity of the extracted content in clinical summarization. Our results reveal that while the LLMs (e.g., Qwen2.5 and DeepSeek-v2) perform quite well in capturing admission reasons and hospitalization events, they are generally less consistent when it comes to identifying follow-up recommendations, highlighting broader challenges in leveraging LLMs for comprehensive summarization.
♻ ☆ Penalizing Infeasible Actions and Reward Scaling in Reinforcement Learning with Offline Data ICML2025
Reinforcement learning with offline data suffers from Q-value extrapolation errors. To address this issue, we first demonstrate that linear extrapolation of the Q-function beyond the data range is particularly problematic. To mitigate this, we propose guiding the gradual decrease of Q-values outside the data range, which is achieved through reward scaling with layer normalization (RS-LN) and a penalization mechanism for infeasible actions (PA). By combining RS-LN and PA, we develop a new algorithm called PARS. We evaluate PARS across a range of tasks, demonstrating superior performance compared to state-of-the-art algorithms in both offline training and online fine-tuning on the D4RL benchmark, with notable success in the challenging AntMaze Ultra task.
comment: Accepted to ICML2025 (spotlight)
♻ ☆ Generalized invariants meet constitutive neural networks: A novel framework for hyperelastic materials
The major challenge in determining a hyperelastic model for a given material is the choice of invariants and the selection how the strain energy function depends functionally on these invariants. Here we introduce a new data-driven framework that simultaneously discovers appropriate invariants and constitutive models for isotropic incompressible hyperelastic materials. Our approach identifies both the most suitable invariants in a class of generalized invariants and the corresponding strain energy function directly from experimental observations. Unlike previous methods that rely on fixed invariant choices or sequential fitting procedures, our method integrates the discovery process into a single neural network architecture. By looking at a continuous family of possible invariants, the model can flexibly adapt to different material behaviors. We demonstrate the effectiveness of this approach using popular benchmark datasets for rubber and brain tissue. For rubber, the method recovers a stretch-dominated formulation consistent with classical models. For brain tissue, it identifies a formulation sensitive to small stretches, capturing the nonlinear shear response characteristic of soft biological matter. Compared to traditional and neural-network-based models, our framework provides improved predictive accuracy and interpretability across a wide range of deformation states. This unified strategy offers a robust tool for automated and physically meaningful model discovery in hyperelasticity.
♻ ☆ Trust, but verify
Decentralized AI agent networks, such as Gaia, allows individuals to run customized LLMs on their own computers and then provide services to the public. However, in order to maintain service quality, the network must verify that individual nodes are running their designated LLMs. In this paper, we demonstrate that in a cluster of mostly honest nodes, we can detect nodes that run unauthorized or incorrect LLM through social consensus of its peers. We will discuss the algorithm and experimental data from the Gaia network. We will also discuss the intersubjective validation system, implemented as an EigenLayer AVS to introduce financial incentives and penalties to encourage honest behavior from LLM nodes.
♻ ☆ Boolean Matrix Logic Programming on the GPU
Traditional logic programming relies on symbolic computation on the CPU, which can limit performance for large-scale inference tasks. Recent advances in GPU hardware enable high-throughput matrix operations, motivating a shift toward parallel logic inference. Boolean Matrix Logic Programming (BMLP) introduces a novel approach to datalog query evaluation using Boolean matrix algebra, well-suited to GPU acceleration. Building on this paradigm, we present two GPU-accelerated BMLP algorithms for bottom-up inference over linear dyadic recursive datalog programs. We further extend the BMLP theoretical framework to support general linear recursion with binary predicates. Empirical evaluations on reachability queries in large directed graphs and the Freebase 15K dataset show that our methods achieve 1-4 orders of magnitude speed up over state-of-the-art systems. These results demonstrate that Boolean matrix-based reasoning can significantly advance the scalability and efficiency of logic programming on modern hardware. Source code is available on https://github.com/lun-ai/BMLP.git.
♻ ☆ Spatial-Temporal Transformer with Curriculum Learning for EEG-Based Emotion Recognition
EEG-based emotion recognition plays an important role in developing adaptive brain-computer communication systems, yet faces two fundamental challenges in practical implementations: (1) effective integration of non-stationary spatial-temporal neural patterns, (2) robust adaptation to dynamic emotional intensity variations in real-world scenarios. This paper proposes SST-CL, a novel framework integrating spatial-temporal transformers with curriculum learning. Our method introduces two core components: a spatial encoder that models inter-channel relationships and a temporal encoder that captures multi-scale dependencies through windowed attention mechanisms, enabling simultaneous extraction of spatial correlations and temporal dynamics from EEG signals. Complementing this architecture, an intensity-aware curriculum learning strategy progressively guides training from high-intensity to low-intensity emotional states through dynamic sample scheduling based on a dual difficulty assessment. Comprehensive experiments on three benchmark datasets demonstrate state-of-the-art performance across various emotional intensity levels, with ablation studies confirming the necessity of both architectural components and the curriculum learning mechanism.
♻ ☆ Modeling the Diachronic Evolution of Legal Norms: An LRMoo-Based, Component-Level Approach
Effectively representing the temporal evolution of legal norms at the component level is a critical challenge. While frameworks like IFLA LRMoo and standards like Akoma Ntoso provide generic toolkits, a dedicated pattern for granular versioning is needed to enable the deterministic point-in-time reconstruction of legal texts required by reliable AI applications. This paper proposes a temporal modeling pattern grounded in the LRMoo ontology that models a norm's evolution as a diachronic chain of F2 Expressions. We introduce a key distinction between a language-agnostic Temporal Version (TV) - a semantic snapshot of the norm's structure - and its concrete monolingual realizations, the Language Versions (LV). Both are modeled as F2 Expressions linked by the canonical R76 is derivative of property. The model applies this paradigm recursively, representing the legal text's internal structure as a parallel hierarchy of abstract Component Works (F1 Work) and their versioned Component Expressions (F2 Expression). Furthermore, we formalize the amendment process using the F28 Expression Creation event, allowing changes to be traced from a specific provision in an amending act to its precise effect on the amended norm. A case study on the Brazilian Federal Constitution demonstrates how this fine-grained, event-centric architecture enables the precise, deterministic retrieval and reconstruction of any part of a legal text at a specific date. The model provides a robust foundation for building verifiable knowledge graphs and advanced AI tools, overcoming the limitations of current generative models.
comment: Major revision. The model is now fully migrated from the superseded FRBRoo to the current IFLA LRMoo v1.0 standard, ensuring strict formal compliance. The event-centric and component-level modeling patterns have been significantly refined for greater precision and rigor
♻ ☆ Vision Backbone Efficient Selection for Image Classification in Low-Data Regimes
Transfer learning has become an essential tool in modern computer vision, allowing practitioners to leverage backbones, pretrained on large datasets, to train successful models from limited annotated data. Choosing the right backbone is crucial, especially for small datasets, since final performance depends heavily on the quality of the initial feature representations. While prior work has conducted benchmarks across various datasets to identify universal top-performing backbones, we demonstrate that backbone effectiveness is highly dataset-dependent, especially in low-data scenarios where no single backbone consistently excels. To overcome this limitation, we introduce dataset-specific backbone selection as a new research direction and investigate its practical viability in low-data regimes. Since exhaustive evaluation is computationally impractical for large backbone pools, we formalize Vision Backbone Efficient Selection (VIBES) as the problem of searching for high-performing backbones under computational constraints. We define the solution space, propose several heuristics, and demonstrate VIBES feasibility for low-data image classification by performing experiments on four diverse datasets. Our results show that even simple search strategies can find well-suited backbones within a pool of over $1300$ pretrained models, outperforming generic benchmark recommendations within just ten minutes of search time on a single GPU (NVIDIA RTX A5000).
comment: 16 pages, 8 figures, Accepted at BMVC 2025
♻ ☆ Blending 3D Geometry and Machine Learning for Multi-View Stereopsis
Traditional multi-view stereo (MVS) methods primarily depend on photometric and geometric consistency constraints. In contrast, modern learning-based algorithms often rely on the plane sweep algorithm to infer 3D geometry, applying explicit geometric consistency (GC) checks only as a post-processing step, with no impact on the learning process itself. In this work, we introduce GC MVSNet plus plus, a novel approach that actively enforces geometric consistency of reference view depth maps across multiple source views (multi view) and at various scales (multi scale) during the learning phase (see Fig. 1). This integrated GC check significantly accelerates the learning process by directly penalizing geometrically inconsistent pixels, effectively halving the number of training iterations compared to other MVS methods. Furthermore, we introduce a densely connected cost regularization network with two distinct block designs simple and feature dense optimized to harness dense feature connections for enhanced regularization. Extensive experiments demonstrate that our approach achieves a new state of the art on the DTU and BlendedMVS datasets and secures second place on the Tanks and Temples benchmark. To our knowledge, GC MVSNet plus plus is the first method to enforce multi-view, multi-scale supervised geometric consistency during learning. Our code is available.
comment: A pre-print -- accepted at Neurocomputing. arXiv admin note: substantial text overlap with arXiv:2310.19583
♻ ☆ Joint Problems in Learning Multiple Dynamical Systems
Clustering of time series is a well-studied problem, with applications ranging from quantitative, personalized models of metabolism obtained from metabolite concentrations to state discrimination in quantum information theory. We consider a variant, where given a set of trajectories and a number of parts, we jointly partition the set of trajectories and learn linear dynamical system (LDS) models for each part, so as to minimize the maximum error across all the models. We present globally convergent methods and EM heuristics, accompanied by promising computational results. The key highlight of this method is that it does not require a predefined hidden state dimension but instead provides an upper bound. Additionally, it offers guidance for determining regularization in the system identification.
♻ ☆ Vehicle detection from GSV imagery: Predicting travel behaviour for cycling and motorcycling using Computer Vision
Transportation influence health by shaping exposure to physical activity, air pollution and injury risk. Comparative data on cycling and motorcycling behaviours is scarce, particularly at a global scale. Street view imagery, such as Google Street View (GSV), combined with computer vision, is a valuable resource for efficiently capturing travel behaviour data. This study demonstrates a novel approach using deep learning on street view images to estimate cycling and motorcycling levels across diverse cities worldwide. We utilized data from 185 global cities. The data on mode shares of cycling and motorcycling estimated using travel surveys or censuses. We used GSV images to detect cycles and motorcycles in sampled locations, using 8000 images per city. The YOLOv4 model, fine-tuned using images from six cities, achieved a mean average precision of 89% for detecting cycles and motorcycles. A global prediction model was developed using beta regression with city-level mode shares as outcome, with log transformed explanatory variables of counts of GSV-detected images with cycles and motorcycles, while controlling for population density. We found strong correlations between GSV motorcycle counts and motorcycle mode share (0.78) and moderate correlations between GSV cycle counts and cycling mode share (0.51). Beta regression models predicted mode shares with $R^2$ values of 0.614 for cycling and 0.612 for motorcycling, achieving median absolute errors (MDAE) of 1.3% and 1.4%, respectively. Scatterplots demonstrated consistent prediction accuracy, though cities like Utrecht and Cali were outliers. The model was applied to 60 cities globally for which we didn't have recent mode share data. We provided estimates for some cities in the Middle East, Latin America and East Asia. With computer vision, GSV images capture travel modes and activity, providing insights alongside traditional data sources.
♻ ☆ Where to Go Next Day: Multi-scale Spatial-Temporal Decoupled Model for Mid-term Human Mobility Prediction
Predicting individual mobility patterns is crucial across various applications. While current methods mainly focus on predicting the next location for personalized services like recommendations, they often fall short in supporting broader applications such as traffic management and epidemic control, which require longer period forecasts of human mobility. This study addresses mid-term mobility prediction, aiming to capture daily travel patterns and forecast trajectories for the upcoming day or week. We propose a novel Multi-scale Spatial-Temporal Decoupled Predictor (MSTDP) designed to efficiently extract spatial and temporal information by decoupling daily trajectories into distinct location-duration chains. Our approach employs a hierarchical encoder to model multi-scale temporal patterns, including daily recurrence and weekly periodicity, and utilizes a transformer-based decoder to globally attend to predicted information in the location or duration chain. Additionally, we introduce a spatial heterogeneous graph learner to capture multi-scale spatial relationships, enhancing semantic-rich representations. Extensive experiments, including statistical physics analysis, are conducted on large-scale mobile phone records in five cities (Boston, Los Angeles, SF Bay Area, Shanghai, and Tokyo), to demonstrate MSTDP's advantages. Applied to epidemic modeling in Boston, MSTDP significantly outperforms the best-performing baseline, achieving a remarkable 62.8% reduction in MAE for cumulative new cases.
♻ ☆ ConTextTab: A Semantics-Aware Tabular In-Context Learner
Tabular in-context learning (ICL) has recently achieved state-of-the-art (SOTA) performance on several tabular prediction tasks. Previously restricted to classification problems on small tables, recent advances such as TabPFN and TabICL have extended its use to larger datasets. Although current table-native ICL architectures are architecturally efficient and well-adapted to tabular data structures, their exclusive training on synthetic data limits their ability to fully leverage the rich semantics and world knowledge contained in real-world tabular data. At the other end of the spectrum, tabular ICL models based on pretrained large language models such as TabuLa-8B integrate deep semantic understanding and world knowledge but are only able to make use of a small amount of context due to inherent architectural limitations. With the aim to combine the best of both these worlds, we introduce ConTextTab, integrating semantic understanding and alignment into a table-native ICL framework. By employing specialized embeddings for different data modalities and by training on large-scale real-world tabular data, our model is competitive with SOTA across a broad set of benchmarks while setting a new standard on the semantically rich CARTE benchmark. Code and model checkpoints are available at: https://github.com/SAP-samples/contexttab
♻ ☆ SSD-TS: Exploring the Potential of Linear State Space Models for Diffusion Models in Time Series Imputation KDD' 25
Probabilistic time series imputation has been widely applied in real-world scenarios due to its ability for uncertainty estimation and denoising diffusion probabilistic models~(DDPMs) have achieved great success in probabilistic time series imputation tasks with its power to model complex distributions. However, current DDPM-based probabilistic time series imputation methodologies are confronted with two types of challenges: 1)\textit{The backbone modules of the denoising parts are not capable of achieving sequence modeling with low time complexity.} 2)~\textit{The architecture of denoising modules can not handle the dependencies in the time series data effectively.} To address the first challenge, we explore the potential of state space model, namely Mamba, as the backbone denoising module for DDPMs. To tackle the second challenge, we carefully devise several SSM-based blocks for time series data modeling. Experimental results demonstrate that our approach can achieve state-of-the-art time series imputation results on multiple real-world datasets. Our datasets and code are available at \href{https://github.com/decisionintelligence/SSD-TS/}{https://github.com/decisionintelligence/SSD-TS/}
comment: KDD' 25
♻ ☆ The StudyChat Dataset: Student Dialogues With ChatGPT in an Artificial Intelligence Course
The widespread availability of large language models (LLMs), such as ChatGPT, has significantly impacted education, raising both opportunities and challenges. Students can frequently interact with LLM-powered, interactive learning tools, but their usage patterns need to be monitored and understood. We introduce StudyChat, a publicly available dataset capturing real-world student interactions with an LLM-powered tutoring chatbot in a semester-long, university-level artificial intelligence (AI) course. We deploy a web application that replicates ChatGPTs core functionalities, and use it to log student interactions with the LLM while working on programming assignments. We collect 16,851 interactions, which we annotate using a dialogue act labeling schema inspired by observed interaction patterns and prior research. We analyze these interactions, highlight usage trends, and analyze how specific student behavior correlates with their course outcome. We find that students who prompt LLMs for conceptual understanding and coding help tend to perform better on assignments and exams. Moreover, students who use LLMs to write reports and circumvent assignment learning objectives have lower outcomes on exams than others. StudyChat serves as a shared resource to facilitate further research on the evolving role of LLMs in education.
comment: Pre-print v0.3
♻ ☆ SlotMatch: Distilling Temporally Consistent Object-Centric Representations for Unsupervised Video Segmentation
Unsupervised video segmentation is a challenging computer vision task, especially due to the lack of supervisory signals coupled with the complexity of visual scenes. To overcome this challenge, state-of-the-art models based on slot attention often have to rely on large and computationally expensive neural architectures. To this end, we propose a simple knowledge distillation framework that effectively transfers object-centric representations to a lightweight student. The proposed framework, called SlotMatch, aligns corresponding teacher and student slots via the cosine similarity, requiring no additional distillation objectives or auxiliary supervision. The simplicity of SlotMatch is confirmed via theoretical and empirical evidence, both indicating that integrating additional losses is redundant. We conduct experiments on two datasets to compare the state-of-the-art teacher model, SlotContrast, with our distilled student. The results show that our student based on SlotMatch matches and even outperforms its teacher, while using 3.6x less parameters and running 1.9x faster. Moreover, our student surpasses previous unsupervised video segmentation models.
♻ ☆ PlantDeBERTa: An Open Source Language Model for Plant Science
The rapid advancement of transformer-based language models has catalyzed breakthroughs in biomedical and clinical natural language processing; however, plant science remains markedly underserved by such domain-adapted tools. In this work, we present PlantDeBERTa, a high-performance, open-source language model specifically tailored for extracting structured knowledge from plant stress-response literature. Built upon the DeBERTa architecture-known for its disentangled attention and robust contextual encoding-PlantDeBERTa is fine-tuned on a meticulously curated corpus of expert-annotated abstracts, with a primary focus on lentil (Lens culinaris) responses to diverse abiotic and biotic stressors. Our methodology combines transformer-based modeling with rule-enhanced linguistic post-processing and ontology-grounded entity normalization, enabling PlantDeBERTa to capture biologically meaningful relationships with precision and semantic fidelity. The underlying corpus is annotated using a hierarchical schema aligned with the Crop Ontology, encompassing molecular, physiological, biochemical, and agronomic dimensions of plant adaptation. PlantDeBERTa exhibits strong generalization capabilities across entity types and demonstrates the feasibility of robust domain adaptation in low-resource scientific fields.By providing a scalable and reproducible framework for high-resolution entity recognition, PlantDeBERTa bridges a critical gap in agricultural NLP and paves the way for intelligent, data-driven systems in plant genomics, phenomics, and agronomic knowledge discovery. Our model is publicly released to promote transparency and accelerate cross-disciplinary innovation in computational plant science.
♻ ☆ CRED-SQL: Enhancing Real-world Large Scale Database Text-to-SQL Parsing through Cluster Retrieval and Execution Description
Recent advances in large language models (LLMs) have significantly improved the accuracy of Text-to-SQL systems. However, a critical challenge remains: the semantic mismatch between natural language questions (NLQs) and their corresponding SQL queries. This issue is exacerbated in large-scale databases, where semantically similar attributes hinder schema linking and semantic drift during SQL generation, ultimately reducing model accuracy. To address these challenges, we introduce CRED-SQL, a framework designed for large-scale databases that integrates Cluster Retrieval and Execution Description. CRED-SQL first performs cluster-based large-scale schema retrieval to pinpoint the tables and columns most relevant to a given NLQ, alleviating schema mismatch. It then introduces an intermediate natural language representation-Execution Description Language (EDL)-to bridge the gap between NLQs and SQL. This reformulation decomposes the task into two stages: Text-to-EDL and EDL-to-SQL, leveraging LLMs' strong general reasoning capabilities while reducing semantic deviation. Extensive experiments on two large-scale, cross-domain benchmarks-SpiderUnion and BirdUnion-demonstrate that CRED-SQL achieves new state-of-the-art (SOTA) performance, validating its effectiveness and scalability. Our code is available at https://github.com/smduan/CRED-SQL.git
♻ ☆ Age-Normalized HRV Features for Non-Invasive Glucose Prediction: A Pilot Sleep-Aware Machine Learning Study
Non-invasive glucose monitoring remains a critical challenge in the management of diabetes. HRV during sleep shows promise for glucose prediction however, age-related autonomic changes significantly confound traditional HRV analyses. We analyzed 43 subjects with multi-modal data including sleep-stage specific ECG, HRV features, and clinical measurements. A novel age-normalization technique was applied to the HRV features by, dividing the raw values by age-scaled factors. BayesianRidge regression with 5-fold cross-validation was employed for log-glucose prediction. Age-normalized HRV features achieved R2 = 0.161 (MAE = 0.182) for log-glucose prediction, representing a 25.6% improvement over non-normalized features (R2 = 0.132). The top predictive features were hrv rem mean rr age normalized (r = 0.443, p = 0.004), hrv ds mean rr age normalized (r = 0.438, p = 0.005), and diastolic blood pressure (r = 0.437, p = 0.005). Systematic ablation studies confirmed age-normalization as the critical component, with sleep-stage specific features providing additional predictive value. Age-normalized HRV features significantly enhance glucose prediction accuracy compared with traditional approaches. This sleep-aware methodology addresses fundamental limitations in autonomic function assessment and suggests a preliminary feasibility for non-invasive glucose monitoring applications. However, these results require validation in larger cohorts before clinical consideration.
♻ ☆ Dispositions and Roles of Generically Dependent Entities
BFO 2020 does not support functions, dispositions, and roles of generically dependent continuants (like software or datasets). In this paper, we argue that this is a severe limitation, which prevents, for example, the adequate representation of the functions of computer models or the various roles of datasets during the execution of these models. We discuss the aspects of BFO 2020 that prevent the representation of realizable entities of generically dependent continuants. Two approaches to address the issue are presented: (a) the use of defined classes and (b) a proposal of changes that allow BFO to support functions, dispositions, and roles of generically dependent continuants. The latter also addresses limitations of BFO 2020 concerning the roles and dispositions of immaterial entities, particularly boundaries and sites.
♻ ☆ LEGO: Learning and Graph-Optimized Modular Tracker for Online Multi-Object Tracking with Point Clouds
Online multi-object tracking (MOT) plays a pivotal role in autonomous systems. The state-of-the-art approaches usually employ a tracking-by-detection method, and data association plays a critical role. This paper proposes a learning and graph-optimized (LEGO) modular tracker to improve data association performance in the existing literature. The proposed LEGO tracker integrates graph optimization and self-attention mechanisms, which efficiently formulate the association score map, facilitating the accurate and efficient matching of objects across time frames. To further enhance the state update process, the Kalman filter is added to ensure consistent tracking by incorporating temporal coherence in the object states. Our proposed method utilizing LiDAR alone has shown exceptional performance compared to other online tracking approaches, including LiDAR-based and LiDAR-camera fusion-based methods. LEGO ranked 1st at the time of submitting results to KITTI object tracking evaluation ranking board and remains 2nd at the time of submitting this paper, among all online trackers in the KITTI MOT benchmark for cars1
♻ ☆ Modeling Uncertainty: Constraint-Based Belief States in Imperfect-Information Games
In imperfect-information games, agents must make decisions based on partial knowledge of the game state. The Belief Stochastic Game model addresses this challenge by delegating state estimation to the game model itself. This allows agents to operate on externally provided belief states, thereby reducing the need for game-specific inference logic. This paper investigates two approaches to represent beliefs in games with hidden piece identities: a constraint-based model using Constraint Satisfaction Problems and a probabilistic extension using Belief Propagation to estimate marginal probabilities. We evaluated the impact of both representations using general-purpose agents across two different games. Our findings indicate that constraint-based beliefs yield results comparable to those of probabilistic inference, with minimal differences in agent performance. This suggests that constraint-based belief states alone may suffice for effective decision-making in many settings.
♻ ☆ GoAI: Enhancing AI Students' Learning Paths and Idea Generation via Graph of AI Ideas
With the rapid advancement of artificial intelligence technology, AI students are confronted with a significant "information-to-innovation" gap: they must navigate through the rapidly expanding body of literature, trace the development of a specific research field, and synthesize various techniques into feasible innovative concepts. An additional critical step for students is to identify the necessary prerequisite knowledge and learning paths. Although many approaches based on large language models (LLMs) can summarize the content of papers and trace the development of a field through citations, these methods often overlook the prerequisite knowledge involved in the papers and the rich semantic information embedded in the citation relationships between papers. Such information reveals how methods are interrelated, built upon, extended, or challenged. To address these limitations, we propose GoAI, a tool for constructing educational knowledge graphs from AI research papers that leverages these graphs to plan personalized learning paths and support creative ideation. The nodes in the knowledge graph we have built include papers and the prerequisite knowledge, such as concepts, skills, and tools, that they involve; the edges record the semantic information of citations. When a student queries a specific paper, a beam search-based path search method can trace the current development trends of the field from the queried paper and plan a learning path toward cutting-edge objectives. The integrated Idea Studio guides students to clarify problem statements, compare alternative designs, and provide formative feedback on novelty, clarity, feasibility, and alignment with learning objectives.
comment: Work in progress
♻ ☆ FlowState: Sampling Rate Invariant Time Series Forecasting
Foundation models (FMs) have transformed natural language processing, but their success has not yet translated to time series forecasting. Existing time series foundation models (TSFMs), often based on transformer variants, struggle with generalization across varying context and target lengths, lack adaptability to different sampling rates, and are computationally inefficient. We introduce FlowState, a novel TSFM architecture that addresses these challenges through two key innovations: a state space model (SSM) based encoder and a functional basis decoder. This design enables continuous-time modeling and dynamic time-scale adjustment, allowing FlowState to inherently generalize across all possible temporal resolutions, and dynamically adjust the forecasting horizons. In contrast to other state-of-the-art TSFMs, which require training data across all possible sampling rates to memorize patterns at each scale, FlowState inherently adapts its internal dynamics to the input scale, enabling smaller models, reduced data requirements, and improved efficiency. We further propose an efficient pretraining strategy that improves robustness and accelerates training. Despite being the smallest model, FlowState outperforms all other models and is state-of-the-art for the GIFT-ZS and the Chronos-ZS benchmarks. Ablation studies confirm the effectiveness of its components, and we demonstrate its unique ability to adapt online to varying input sampling rates.
comment: Currently under review
♻ ☆ What Matters for Bioacoustic Encoding
Bioacoustics, the study of sounds produced by living organisms, plays a vital role in conservation, biodiversity monitoring, and behavioral studies. Many tasks in this field, such as species, individual, and behavior classification and detection, are well-suited to machine learning. However, they often suffer from limited annotated data, highlighting the need for a general-purpose bioacoustic encoder capable of extracting useful representations for diverse downstream tasks. Such encoders have been proposed before, but are often limited in scope due to a focus on a narrow range of species (typically birds), and a reliance on a single model architecture or training paradigm. Moreover, they are usually evaluated on a small set of tasks and datasets. In this work, we present a large-scale empirical study that covers aspects of bioacoustics that are relevant to research but have previously been scarcely considered: training data diversity and scale, model architectures and training recipes, and the breadth of evaluation tasks and datasets. We obtain encoders that are state-of-the-art on the existing and proposed benchmarks. We also identify what matters for training these encoders, such that this work can be extended when more data are available or better architectures are proposed. Specifically, across 26 datasets with tasks including species classification, detection, individual ID, and vocal repertoire discovery, we find self-supervised pre-training followed by supervised post-training on a mixed bioacoustics + general-audio corpus yields the strongest in- and out-of-distribution performance. We show the importance of data diversity in both stages. To support ongoing research and application, we will release the model checkpoints.
♻ ☆ Scaling Up without Fading Out: Goal-Aware Sparse GNN for RL-based Generalized Planning
Generalized planning using deep reinforcement learning (RL) combined with graph neural networks (GNNs) has shown promising results in various symbolic planning domains described by PDDL. However, existing approaches typically represent planning states as fully connected graphs, leading to a combinatorial explosion in edge information and substantial sparsity as problem scales grow, especially evident in large grid-based environments. This dense representation results in diluted node-level information, exponentially increases memory requirements, and ultimately makes learning infeasible for larger-scale problems. To address these challenges, we propose a sparse, goal-aware GNN representation that selectively encodes relevant local relationships and explicitly integrates spatial features related to the goal. We validate our approach by designing novel drone mission scenarios based on PDDL within a grid world, effectively simulating realistic mission execution environments. Our experimental results demonstrate that our method scales effectively to larger grid sizes previously infeasible with dense graph representations and substantially improves policy generalization and success rates. Our findings provide a practical foundation for addressing realistic, large-scale generalized planning tasks.
♻ ☆ Towards Theoretical Understanding of Transformer Test-Time Computing: Investigation on In-Context Linear Regression
Using more test-time computation during language model inference, such as generating more intermediate thoughts or sampling multiple candidate answers, has proven effective in significantly improving model performance. This paper takes an initial step toward bridging the gap between practical language model inference and theoretical transformer analysis by incorporating randomness and sampling. We focus on in-context linear regression with continuous/binary coefficients, where our framework simulates language model decoding through noise injection and binary coefficient sampling. Through this framework, we provide detailed analyses of widely adopted inference techniques. Supported by empirical results, our theoretical framework and analysis demonstrate the potential for offering new insights into understanding inference behaviors in real-world language models.
♻ ☆ "Haet Bhasha aur Diskrimineshun": Phonetic Perturbations in Code-Mixed Hinglish to Red-Team LLMs
Recently released LLMs have strong multilingual \& multimodal capabilities. Model vulnerabilities are exposed using audits and red-teaming efforts. Existing efforts have focused primarily on the English language; thus, models continue to be susceptible to multilingual jailbreaking strategies, especially for multimodal contexts. In this study, we introduce a novel strategy that leverages code-mixing and phonetic perturbations to jailbreak LLMs for both text and image generation tasks. We also introduce \textit{two new} jailbreak strategies that show higher effectiveness than baselines. Our work presents a method to effectively bypass safety filters in LLMs while maintaining interpretability by applying phonetic misspellings to sensitive words in code-mixed prompts. We achieve a 99\% Attack Success Rate for text generation and 78\% for image generation, with Attack Relevance Rate of 100\% for text generation and 95\% for image generation for the phonetically perturbed code-mixed prompts. Our interpretability experiments reveal that phonetic perturbations impact word tokenization, leading to jailbreak success. Our study motivates increasing the focus towards more generalizable safety alignment for multilingual multimodal models, especially in real-world settings wherein prompts can have misspelt words. \textit{\textbf{Warning: This paper contains examples of potentially harmful and offensive content.}}
♻ ☆ Atom-Searcher: Enhancing Agentic Deep Research via Fine-Grained Atomic Thought Reward
Large language models (LLMs) exhibit remarkable problem-solving abilities, but struggle with complex tasks due to static internal knowledge. Retrieval-Augmented Generation (RAG) enhances access to external information, yet remains limited in multi-hop reasoning and strategic search due to rigid workflows. Recent advancements in agentic deep research empower LLMs to autonomously reason, search, and synthesize information. However, current approaches relying on outcome-based reinforcement learning (RL) face critical issues such as conflicting gradients and reward sparsity, limiting performance gains and training efficiency. To address these, we first propose Atomic Thought, a novel LLM thinking paradigm that decomposes reasoning into fine-grained functional units. These units are supervised by Reasoning Reward Models (RRMs), which provide Atomic Thought Rewards (ATR) for fine-grained guidance. Building on this, we propose Atom-Searcher, a novel RL framework for agentic deep research that integrates Atomic Thought and ATR. Atom-Searcher uses a curriculum-inspired reward schedule, prioritizing process-level ATR early and transitioning to outcome rewards, accelerating convergence on effective reasoning paths. Experiments on seven benchmarks show consistent improvements over the state-of-the-art. Key advantages include: (1) Atom-Searcher scales computation at test-time. (2) Atomic Thought provides supervision anchors for RRMs, bridging deep research tasks and RRMs. (3) Atom-Searcher exhibits more interpretable, human-like reasoning patterns.
♻ ☆ SBP-YOLO:A Lightweight Real-Time Model for Detecting Speed Bumps and Potholes
Reliable and real-time detection of road speed bumps and potholes is crucial for anticipatory perception in advanced suspension systems, enabling timely and adaptive damping control. Achieving high accuracy and efficiency on embedded platforms remains challenging due to limited computational resources and the small scale of distant targets. This paper presents SBP-YOLO, a lightweight and high-speed detection framework tailored for bump and pothole recognition. Based on YOLOv11n, the model integrates GhostConv and VoVGSCSPC modules into the backbone and neck to reduce computation while enhancing multi-scale semantic features. To improve small-object detection, a P2-level branch is introduced with a lightweight and efficient detection head LEDH mitigating the added computational overhead without compromising accuracy. A hybrid training strategy combining NWD loss, backbone-level knowledge distillation, and Albumentations-driven augmentation further enhances localization precision and robustness. Experiments show that SBP-YOLO achieves 87.0 percent mAP, outperforming the YOLOv11n baseline by 5.8 percent. After TensorRT FP16 quantization, it runs at 139.5 FPS on Jetson AGX Xavier, delivering a 12.4 percent speedup over the P2-enhanced YOLOv11. These results validate the effectiveness of the proposed method for fast and low-latency road condition perception in embedded suspension control systems.
comment: 14pages,10figures
♻ ☆ HRS: Hybrid Representation Framework with Scheduling Awareness for Time Series Forecasting in Crowdsourced Cloud-Edge Platforms AI2025
With the rapid proliferation of streaming services, network load exhibits highly time-varying and bursty behavior, posing serious challenges for maintaining Quality of Service (QoS) in Crowdsourced Cloud-Edge Platforms (CCPs). While CCPs leverage Predict-then-Schedule architecture to improve QoS and profitability, accurate load forecasting remains challenging under traffic surges. Existing methods either minimize mean absolute error, resulting in underprovisioning and potential Service Level Agreement (SLA) violations during peak periods, or adopt conservative overprovisioning strategies, which mitigate SLA risks at the expense of increased resource expenditure. To address this dilemma, we propose HRS, a hybrid representation framework with scheduling awareness that integrates numerical and image-based representations to better capture extreme load dynamics. We further introduce a Scheduling-Aware Loss (SAL) that captures the asymmetric impact of prediction errors, guiding predictions that better support scheduling decisions. Extensive experiments on four real-world datasets demonstrate that HRS consistently outperforms ten baselines and achieves state-of-the-art performance, reducing SLA violation rates by 63.1% and total profit loss by 32.3%.
comment: 10 pages, 14 figures, ECAI2025
♻ ☆ Exploring Content and Social Connections of Fake News with Explainable Text and Graph Learning
The global spread of misinformation and concerns about content trustworthiness have driven the development of automated fact-checking systems. Since false information often exploits social media dynamics such as "likes" and user networks to amplify its reach, effective solutions must go beyond content analysis to incorporate these factors. Moreover, simply labelling content as false can be ineffective or even reinforce biases such as automation and confirmation bias. This paper proposes an explainable framework that combines content, social media, and graph-based features to enhance fact-checking. It integrates a misinformation classifier with explainability techniques to deliver complete and interpretable insights supporting classification decisions. Experiments demonstrate that multimodal information improves performance over single modalities, with evaluations conducted on datasets in English, Spanish, and Portuguese. Additionally, the framework's explanations were assessed for interpretability, trustworthiness, and robustness with a novel protocol, showing that it effectively generates human-understandable justifications for its predictions.
comment: Accepted to publication at the 35th Brazilian Conference on Intelligent Systems, BRACIS 2025. -- This submitted manuscript has not undergone any post-submission improvements or corrections. The Version of Record of this contribution will be provided when available
♻ ☆ RAPNet: A Receptive-Field Adaptive Convolutional Neural Network for Pansharpening AI
Pansharpening refers to the process of integrating a high resolution panchromatic (PAN) image with a lower resolution multispectral (MS) image to generate a fused product, which is pivotal in remote sensing. Despite the effectiveness of CNNs in addressing this challenge, they are inherently constrained by the uniform application of convolutional kernels across all spatial positions, overlooking local content variations. To overcome this issue, we introduce RAPNet, a new architecture that leverages content-adaptive convolution. At its core, RAPNet employs the Receptive-field Adaptive Pansharpening Convolution (RAPConv), designed to produce spatially adaptive kernels responsive to local feature context, thereby enhancing the precision of spatial detail extraction. Additionally, the network integrates the Pansharpening Dynamic Feature Fusion (PAN-DFF) module, which incorporates an attention mechanism to achieve an optimal balance between spatial detail enhancement and spectral fidelity. Comprehensive evaluations on publicly available datasets confirm that RAPNet delivers superior performance compared to existing approaches, as demonstrated by both quantitative metrics and qualitative assessments. Ablation analyses further substantiate the effectiveness of the proposed adaptive components.
comment: Accepted by the 6th International Conference on Artificial Intelligence and Electromechanical Automation (AIEA 2025). 5 pages, 6 figures
♻ ☆ Iterative Utility Judgment Framework via LLMs Inspired by Relevance in Philosophy
Relevance and utility are two frequently used measures to evaluate the effectiveness of an information retrieval (IR) system. Relevance emphasizes the aboutness of a result to a query, while utility refers to the result's usefulness or value to an information seeker. In Retrieval-Augmented Generation (RAG), high-utility results should be prioritized to feed to LLMs due to their limited input bandwidth. Re-examining RAG's three core components -- relevance ranking derived from retrieval models, utility judgments, and answer generation -- aligns with Schutz's philosophical system of relevances, which encompasses three types of relevance representing different levels of human cognition that enhance each other. These three RAG components also reflect three cognitive levels for LLMs in question-answering. Therefore, we propose an Iterative utiliTy judgmEnt fraMework (ITEM) to promote each step in RAG. We conducted extensive experiments on retrieval (TREC DL, WebAP), utility judgment task (GTI-NQ), and factoid question-answering (NQ) datasets. Experimental results demonstrate significant improvements of ITEM in utility judgments, ranking, and answer generation upon representative baselines.
comment: 22 pages
♻ ☆ Tensor Program Optimization for the RISC-V Vector Extension Using Probabilistic Programs
RISC-V provides a flexible and scalable platform for applications ranging from embedded devices to high-performance computing clusters. Particularly, its RISC-V Vector Extension (RVV) becomes of interest for the acceleration of AI workloads. But writing software that efficiently utilizes the vector units of RISC-V CPUs without expert knowledge requires the programmer to rely on the autovectorization features of compilers or hand-crafted libraries like muRISCV-NN. Smarter approaches, like autotuning frameworks, have been missing the integration with the RISC-V RVV extension, thus heavily limiting the efficient deployment of complex AI workloads. In this paper, we present a workflow based on the TVM compiler to efficiently map AI workloads onto RISC-V vector units. Instead of relying on hand-crafted libraries, we integrated the RVV extension into TVM's MetaSchedule framework, a probabilistic program framework for tensor operation tuning. We implemented different RISC-V SoCs on an FPGA and tuned a wide range of AI workloads on them. We found that our proposal shows a mean improvement of 46% in execution latency when compared against the autovectorization feature of GCC, and 29% against muRISCV-NN. Moreover, the binary resulting from our proposal has a smaller code memory footprint, making it more suitable for embedded devices. Finally, we also evaluated our solution on a commercially available RISC-V SoC implementing the RVV 1.0 Vector Extension and found our solution is able to find mappings that are 35% faster on average than the ones proposed by LLVM. We open-sourced our proposal for the community to expand it to target other RISC-V extensions.
comment: 9 pages, 10 figures, 2 algorithms
♻ ☆ Predictable Scale: Part I, Step Law -- Optimal Hyperparameter Scaling Law in Large Language Model Pretraining
The impressive capabilities of Large Language Models (LLMs) across diverse tasks are now well established, yet their effective deployment necessitates careful hyperparameter optimization. Although existing methods have explored the influence of hyperparameters on model performance, a principled and generalizable framework across model architectures and data recipes remains absent. In this study, we conduct an unprecedented empirical investigation training over 3,700 LLMs from scratch across 100 trillion tokens, consuming nearly one million NVIDIA H800 GPU hours to establish a universal Scaling Law for hyperparameter optimization in LLM Pre-training, called Step Law. We empirically observe that, under fixed model size ($N$) and dataset size ($D$), the hyperparameter landscape exhibits convexity with a broad optimum, substantially reducing the complexity of hyperparameter search. Building on this insight, we formally define and empirically validate the Step Law: The optimal learning rate follows a power-law relationship with $N$ and $D$, while the optimal batch size is primarily influenced by $D$ and remains largely invariant to $N$.Notably, our estimated optima deviate from the global best performance found via exhaustive search by merely 0.094\% on the test set. To our best known, Step Law is the first that unifies different model shapes and structures, such as Mixture-of-Experts models and dense transformers, as well as establishes optimal hyperparameter scaling laws across diverse data recipes. We contribute a universal, plug-and-play optimal hyperparameter tool for the community, which is expected to advance efficient LLM training at scale. All experimental code, data and checkpoints are publicly available at https://github.com/step-law/steplaw
comment: 22 pages
♻ ☆ LEGO-GraphRAG: Modularizing Graph-based Retrieval-Augmented Generation for Design Space Exploration VLDB'2025
GraphRAG integrates (knowledge) graphs with large language models (LLMs) to improve reasoning accuracy and contextual relevance. Despite its promising applications and strong relevance to multiple research communities, such as databases and natural language processing, GraphRAG currently lacks modular workflow analysis, systematic solution frameworks, and insightful empirical studies. To bridge these gaps, we propose LEGO-GraphRAG, a modular framework that enables: 1) fine-grained decomposition of the GraphRAG workflow, 2) systematic classification of existing techniques and implemented GraphRAG instances, and 3) creation of new GraphRAG instances. Our framework facilitates comprehensive empirical studies of GraphRAG on large-scale real-world graphs and diverse query sets, revealing insights into balancing reasoning quality, runtime efficiency, and token or GPU cost, that are essential for building advanced GraphRAG systems.
comment: VLDB'2025 [Experiment, Analysis & Benchmark]
♻ ☆ Unleashing the Power of LLMs in Dense Retrieval with Query Likelihood Modeling
Dense retrieval is a crucial task in Information Retrieval (IR), serving as the basis for downstream tasks such as re-ranking and augmenting generation. Recently, large language models (LLMs) have demonstrated impressive semantic understanding capabilities, making them attractive to researchers focusing on dense retrieval. While LLMs, as decoder-style generative models, excel in language generation, they often fall short in modeling global information due to a lack of attention to subsequent tokens. Drawing inspiration from the classical word-based language modeling approach for IR, specifically the query likelihood (QL) model, we aim to leverage the generative strengths of LLMs through QL maximization. Rather than employing QL estimation for document ranking, we propose an auxiliary task of QL maximization to enhance the backbone for subsequent contrastive learning of the retriever. We introduce our model, LLM-QL, which incorporates two key components: Attention Block (AB) and Document Corruption (DC). AB blocks the attention of predictive tokens to the document tokens before the document's ending token, while DC corrupts a document by masking a portion of its tokens during prediction. Evaluations on the in-domain (MS MARCO) and out-of-domain dataset (BEIR) indicate LLM-QL's superiority over other LLM-based retrievers. Furthermore, comprehensive analyses also validate the efficacy of LLM-QL and its components.
comment: 12 pages, 3 figures
♻ ☆ Parameter-Efficient Continual Fine-Tuning: A Survey
The emergence of large pre-trained networks has revolutionized the AI field, unlocking new possibilities and achieving unprecedented performance. However, these models inherit a fundamental limitation from traditional Machine Learning approaches: their strong dependence on the \textit{i.i.d.} assumption hinders their adaptability to dynamic learning scenarios. We believe the next breakthrough in AI lies in enabling efficient adaptation to evolving environments -- such as the real world -- where new data and tasks arrive sequentially. This challenge defines the field of Continual Learning (CL), a Machine Learning paradigm focused on developing lifelong learning neural models. One alternative to efficiently adapt these large-scale models is known Parameter-Efficient Fine-Tuning (PEFT). These methods tackle the issue of adapting the model to a particular data or scenario by performing small and efficient modifications, achieving similar performance to full fine-tuning. However, these techniques still lack the ability to adjust the model to multiple tasks continually, as they suffer from the issue of Catastrophic Forgetting. In this survey, we first provide an overview of CL algorithms and PEFT methods before reviewing the state-of-the-art on Parameter-Efficient Continual Fine-Tuning (PECFT). We examine various approaches, discuss evaluation metrics, and explore potential future research directions. Our goal is to highlight the synergy between CL and Parameter-Efficient Fine-Tuning, guide researchers in this field, and pave the way for novel future research directions.
♻ ☆ VerilogLAVD: LLM-Aided Rule Generation for Vulnerability Detection in Verilog
Timely detection of hardware vulnerabilities during the early design stage is critical for reducing remediation costs. Existing early detection techniques often require specialized security expertise, limiting their usability. Recent efforts have explored the use of large language models (LLMs) for Verilog vulnerability detection. However, LLMs struggle to capture the structure in Verilog code, resulting in inconsistent detection results. To this end, we propose VerilogLAVD, the first LLM-aided graph traversal rule generation approach for Verilog vulnerability detection. Our approach introduces the Verilog Property Graph (VeriPG), a unified representation of Verilog code. It combines syntactic features extracted from the abstract syntax tree (AST) with semantic information derived from control flow and data dependency graphs. We leverage LLMs to generate VeriPG-based detection rules from Common Weakness Enumeration (CWE) descriptions. These rules guide the rule executor that traversal VeriPG for potential vulnerabilities. To evaluate VerilogLAVD, we build a dataset collected from open-source repositories and synthesized data. In our empirical evaluation on 77 Verilog designs encompassing 12 CWE types, VerilogLAVD achieves an F1-score of 0.54. Compared to the LLM-only and LLM with external knowledge baselines, VerilogLAVD improves F1-score by 0.31 and 0.27, respectively.
♻ ☆ Radio Map Estimation: Empirical Validation and Analysis
Radio maps provide metrics such as the received signal strength at every location in a geographical region of interest. Extensive research has been carried out in this context, but it relies almost exclusively on synthetic-data experiments. Thus, the practical aspects of the radio map estimation (RME) problem as well as the performance of existing estimators in the real world remain unknown. To fill this gap end, this paper puts forth the first comprehensive, rigorous, and reproducible study of RME with real data. The main contributions include (C1) an assessment of the viability of RME based on the estimation error that can be achieved, (C2) the analysis of the main phenomena and trade-offs involved in RME, including the experimental verification of theoretical findings in the literature, and (C3) a thorough evaluation of a wide range of estimators on realworld data. Remarkably, this reveals that the performance gain of existing deep estimators in their pure form may not compensate for their complexity. A simple enhancement (C4) is proposed to alleviate this issue. The vast amount of data collected for this study is published along with the developed simulator to enable research on new schemes, hopefully bringing RME one step closer to practical deployment.
comment: 13 pages, Journal version, submitted to the IEEE Transactions on Wireless Communications
♻ ☆ Fine-Grained Safety Neurons with Training-Free Continual Projection to Reduce LLM Fine Tuning Risks
Fine-tuning as service injects domain-specific knowledge into large language models (LLMs), while challenging the original alignment mechanisms and introducing safety risks. A series of defense strategies have been proposed for the alignment, fine-tuning, and post-fine-tuning phases, where most post-fine-tuning defenses rely on coarse-grained safety layer mapping. These methods lack a comprehensive consideration of both safety layers and fine-grained neurons, limiting their ability to efficiently balance safety and utility. To address this, we propose the Fine-Grained Safety Neurons (FGSN) with Training-Free Continual Projection method to reduce the fine-tuning safety risks. FGSN inherently integrates the multi-scale interactions between safety layers and neurons, localizing sparser and more precise fine-grained safety neurons while minimizing interference with downstream task neurons. We then project the safety neuron parameters onto safety directions, improving model safety while aligning more closely with human preferences. Extensive experiments across multiple fine-tuned LLM models demonstrate that our method significantly reduce harmfulness scores and attack success rates with minimal parameter modifications, while preserving the model's utility. Furthermore, by introducing a task-specific, multi-dimensional heterogeneous safety neuron cluster optimization mechanism, we achieve continual defense and generalization capability against unforeseen emerging safety concerns.
♻ ☆ A Versatile Pathology Co-pilot via Reasoning Enhanced Multimodal Large Language Model
Multimodal large language models (MLLMs) have emerged as powerful tools for computational pathology, offering unprecedented opportunities to integrate pathological images with language context for comprehensive diagnostic analysis. These models hold particular promise for automating complex tasks that traditionally require expert interpretation of pathologists. However, current MLLM approaches in pathology demonstrate significantly constrained reasoning capabilities, primarily due to their reliance on expensive chain-of-thought annotations. Additionally, existing methods remain limited to simplex application of visual question answering (VQA) at the region-of-interest (ROI) level, failing to address the full spectrum of diagnostic needs such as ROI classification, detection, segmentation, whole-slide-image (WSI) classification and VQA in clinical practice. In this study, we present SmartPath-R1, a versatile MLLM capable of simultaneously addressing both ROI-level and WSI-level tasks while demonstrating robust pathological reasoning capability. Our framework combines scale-dependent supervised fine-tuning and task-aware reinforcement fine-tuning, which circumvents the requirement for chain-of-thought supervision by leveraging the intrinsic knowledge within MLLM. Furthermore, SmartPath-R1 integrates multiscale and multitask analysis through a mixture-of-experts mechanism, enabling dynamic processing for diverse tasks. We curate a large-scale dataset comprising 2.3M ROI samples and 188K WSI samples for training and evaluation. Extensive experiments across 72 tasks validate the effectiveness and superiority of the proposed approach. This work represents a significant step toward developing versatile, reasoning-enhanced AI systems for precision pathology.
♻ ☆ Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decoder
Reference Expression Segmentation (RES) aims to segment image regions specified by referring expressions and has become popular with the rise of multimodal large models (MLLMs). While MLLMs excel in semantic understanding, their token-generation paradigm struggles with pixel-level dense prediction. Existing RES methods either couple MLLMs with the parameter-heavy Segment Anything Model (SAM) with 632M network parameters or adopt SAM-free lightweight pipelines that sacrifice accuracy. To address the trade-off between performance and cost, we specifically propose MLLMSeg, a novel framework that fully exploits the inherent visual detail features encoded in the MLLM vision encoder without introducing an extra visual encoder. Besides, we propose a detail-enhanced and semantic-consistent feature fusion module (DSFF) that fully integrates the detail-related visual feature with the semantic-related feature output by the large language model (LLM) of MLLM. Finally, we establish a light-weight mask decoder with only 34M network parameters that optimally leverages detailed spatial features from the visual encoder and semantic features from the LLM to achieve precise mask prediction. Extensive experiments demonstrate that our method generally surpasses both SAM-based and SAM-free competitors, striking a better balance between performance and cost. Code is available at https://github.com/jcwang0602/MLLMSeg.
comment: 9 pages, 4 figures
♻ ☆ Identify, Isolate, and Purge: Mitigating Hallucinations in LVLMs via Self-Evolving Distillation
Large Vision-Language Models (LVLMs) have demonstrated remarkable advancements in numerous areas such as multimedia. However, hallucination issues significantly limit their credibility and application potential. Existing mitigation methods typically rely on external tools or the comparison of multi-round inference, which significantly increase inference time. In this paper, we propose \textbf{SE}lf-\textbf{E}volving \textbf{D}istillation (\textbf{SEED}), which identifies hallucinations within the inner knowledge of LVLMs, isolates and purges them, and then distills the purified knowledge back into the model, enabling self-evolution. Furthermore, we identified that traditional distillation methods are prone to inducing void spaces in the output space of LVLMs. To address this issue, we propose a Mode-Seeking Evolving approach, which performs distillation to capture the dominant modes of the purified knowledge distribution, thereby avoiding the chaotic results that could emerge from void spaces. Moreover, we introduce a Hallucination Elimination Adapter, which corrects the dark knowledge of the original model by learning purified knowledge. Extensive experiments on multiple benchmarks validate the superiority of our SEED, demonstrating substantial improvements in mitigating hallucinations for representative LVLM models such as LLaVA-1.5 and InternVL2. Remarkably, the F1 score of LLaVA-1.5 on the hallucination evaluation metric POPE-Random improved from 81.3 to 88.3.
comment: In Figure 2, the correlation coefficient and the scatter plot do not match. I calculated this correlation using two sets of settings. I used the scatter plot from setting A, but accidentally wrote the correlation coefficient, r, from setting B
♻ ☆ LaDi-WM: A Latent Diffusion-based World Model for Predictive Manipulation
Predictive manipulation has recently gained considerable attention in the Embodied AI community due to its potential to improve robot policy performance by leveraging predicted states. However, generating accurate future visual states of robot-object interactions from world models remains a well-known challenge, particularly in achieving high-quality pixel-level representations. To this end, we propose LaDi-WM, a world model that predicts the latent space of future states using diffusion modeling. Specifically, LaDi-WM leverages the well-established latent space aligned with pre-trained Visual Foundation Models (VFMs), which comprises both geometric features (DINO-based) and semantic features (CLIP-based). We find that predicting the evolution of the latent space is easier to learn and more generalizable than directly predicting pixel-level images. Building on LaDi-WM, we design a diffusion policy that iteratively refines output actions by incorporating forecasted states, thereby generating more consistent and accurate results. Extensive experiments on both synthetic and real-world benchmarks demonstrate that LaDi-WM significantly enhances policy performance by 27.9\% on the LIBERO-LONG benchmark and 20\% on the real-world scenario. Furthermore, our world model and policies achieve impressive generalizability in real-world experiments.
comment: CoRL 2025
♻ ☆ Automatic Image Colorization with Convolutional Neural Networks and Generative Adversarial Networks
Image colorization, the task of adding colors to grayscale images, has been the focus of significant research efforts in computer vision in recent years for its various application areas such as color restoration and automatic animation colorization [15, 1]. The colorization problem is challenging as it is highly ill-posed with two out of three image dimensions lost, resulting in large degrees of freedom. However, semantics of the scene as well as the surface texture could provide important cues for colors: the sky is typically blue, the clouds are typically white and the grass is typically green, and there are huge amounts of training data available for learning such priors since any colored image could serve as a training data point [20]. Colorization is initially formulated as a regression task[5], which ignores the multi-modal nature of color prediction. In this project, we explore automatic image colorization via classification and adversarial learning. We will build our models on prior works, apply modifications for our specific scenario and make comparisons.
comment: All authors have equal authorship and equal contribution, ranked in alphabetic order. First version of this paper was completed and published in 2021
♻ ☆ Adaptation and Optimization of Automatic Speech Recognition (ASR) for the Maritime Domain in the Field of VHF Communication
This paper introduces a multilingual automatic speech recognizer (ASR) for maritime radio communi-cation that automatically converts received VHF radio signals into text. The challenges of maritime radio communication are described at first, and the deep learning architecture of marFM consisting of audio processing techniques and machine learning algorithms is presented. Subsequently, maritime radio data of interest is analyzed and then used to evaluate the transcription performance of our ASR model for various maritime radio data.
♻ ☆ Comparative Analysis of Time Series Foundation Models for Demographic Forecasting: Enhancing Predictive Accuracy in US Population Dynamics
Demographic shifts, influenced by globalization, economic conditions, geopolitical events, and environmental factors, pose significant challenges for policymakers and researchers. Accurate demographic forecasting is essential for informed decision-making in areas such as urban planning, healthcare, and economic policy. This study explores the application of time series foundation models to predict demographic changes in the United States using datasets from the U.S. Census Bureau and Federal Reserve Economic Data (FRED). We evaluate the performance of the Time Series Foundation Model (TimesFM) against traditional baselines including Long Short-Term Memory (LSTM) networks, Autoregressive Integrated Moving Average (ARIMA), and Linear Regression. Our experiments across six demographically diverse states demonstrate that TimesFM achieves the lowest Mean Squared Error (MSE) in 86.67% of test cases, with particularly strong performance on minority populations with sparse historical data. These findings highlight the potential of pre-trained foundation models to enhance demographic analysis and inform proactive policy interventions without requiring extensive task-specific fine-tuning.
comment: 6 pages, 4 figures, 3 tables
♻ ☆ Setup Once, Secure Always: A Single-Setup Secure Federated Learning Aggregation Protocol with Forward and Backward Secrecy for Dynamic Users
Federated Learning (FL) enables multiple users to collaboratively train a machine learning model without sharing raw data, making it suitable for privacy-sensitive applications. However, local model or weight updates can still leak sensitive information. Secure aggregation protocols mitigate this risk by ensuring that only the aggregated updates are revealed. Among these, single-setup protocols, where key generation and exchange occur only once, are the most efficient due to reduced communication and computation overhead. However, existing single-setup protocols often lack support for dynamic user participation and do not provide strong privacy guarantees such as forward and backward secrecy. In this paper, we propose a new secure aggregation protocol that requires only one setup operation for the entire FL training and allows new users to join or leave at any round. It employs lightweight symmetric homomorphic encryption with a key negation technique to efficiently mask updates, without user-to-user communication -- unlike the existing protocols. To defend against model inconsistency attacks, we introduce a simple verification mechanism using message authentication codes (MACs). Our protocol is the first to combine forward/backward secrecy, dropout resilience, and model integrity verification in a single-setup design. We provide formal security proofs and implement an end-to-end prototype, which source code has been released. Our experimental results show that our protocol reduces user-side computation by approximately 99% compared to state-of-the-art protocols like e-SeaFL (ACSAC'24), making it highly practical for real-world FL deployments, especially on resource-constrained devices.
comment: 17 pages, 12 Figures
♻ ☆ Fortifying the Agentic Web: A Unified Zero-Trust Architecture Against Logic-layer Threats
This paper presents a Unified Security Architecture that fortifies the Agentic Web through a Zero-Trust IAM framework. This architecture is built on a foundation of rich, verifiable agent identities using Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs), with discovery managed by a protocol-agnostic Agent Name Service (ANS). Security is operationalized through a multi-layered Trust Fabric which introduces significant innovations, including Trust-Adaptive Runtime Environments (TARE), Causal Chain Auditing, and Dynamic Identity with Behavioral Attestation. By explicitly linking the LPCI threat to these enhanced architectural countermeasures within a formal security model, we propose a comprehensive and forward-looking blueprint for a secure, resilient, and trustworthy agentic ecosystem. Our formal analysis demonstrates that the proposed architecture provides provable security guarantees against LPCI attacks with bounded probability of success.
♻ ☆ Efficient Network Automatic Relevance Determination ICML 2025
We propose Network Automatic Relevance Determination (NARD), an extension of ARD for linearly probabilistic models, to simultaneously model sparse relationships between inputs $X \in \mathbb R^{d \times N}$ and outputs $Y \in \mathbb R^{m \times N}$, while capturing the correlation structure among the $Y$. NARD employs a matrix normal prior which contains a sparsity-inducing parameter to identify and discard irrelevant features, thereby promoting sparsity in the model. Algorithmically, it iteratively updates both the precision matrix and the relationship between $Y$ and the refined inputs. To mitigate the computational inefficiencies of the $\mathcal O(m^3 + d^3)$ cost per iteration, we introduce Sequential NARD, which evaluates features sequentially, and a Surrogate Function Method, leveraging an efficient approximation of the marginal likelihood and simplifying the calculation of determinant and inverse of an intermediate matrix. Combining the Sequential update with the Surrogate Function method further reduces computational costs. The computational complexity per iteration for these three methods is reduced to $\mathcal O(m^3+p^3)$, $\mathcal O(m^3 + d^2)$, $\mathcal O(m^3+p^2)$, respectively, where $p \ll d$ is the final number of features in the model. Our methods demonstrate significant improvements in computational efficiency with comparable performance on both synthetic and real-world datasets.
comment: ICML 2025
♻ ☆ Harnessing Structured Knowledge: A Concept Map-Based Approach for High-Quality Multiple Choice Question Generation with Effective Distractors AI 2025
Generating high-quality MCQs, especially those targeting diverse cognitive levels and incorporating common misconceptions into distractor design, is time-consuming and expertise-intensive, making manual creation impractical at scale. Current automated approaches typically generate questions at lower cognitive levels and fail to incorporate domain-specific misconceptions. This paper presents a hierarchical concept map-based framework that provides structured knowledge to guide LLMs in generating MCQs with distractors. We chose high-school physics as our test domain and began by developing a hierarchical concept map covering major Physics topics and their interconnections with an efficient database design. Next, through an automated pipeline, topic-relevant sections of these concept maps are retrieved to serve as a structured context for the LLM to generate questions and distractors that specifically target common misconceptions. Lastly, an automated validation is completed to ensure that the generated MCQs meet the requirements provided. We evaluate our framework against two baseline approaches: a base LLM and a RAG-based generation. We conducted expert evaluations and student assessments of the generated MCQs. Expert evaluation shows that our method significantly outperforms the baseline approaches, achieving a success rate of 75.20% in meeting all quality criteria compared to approximately 37% for both baseline methods. Student assessment data reveal that our concept map-driven approach achieved a significantly lower guess success rate of 28.05% compared to 37.10% for the baselines, indicating a more effective assessment of conceptual understanding. The results demonstrate that our concept map-based approach enables robust assessment across cognitive levels and instant identification of conceptual gaps, facilitating faster feedback loops and targeted interventions at scale.
comment: Accepted to ECAI 2025
♻ ☆ VRoPE: Rotary Position Embedding for Video Large Language Models
Rotary Position Embedding (RoPE) has shown strong performance in text-based Large Language Models (LLMs), but extending it to video remains a challenge due to the intricate spatiotemporal structure of video frames. Existing adaptations, such as RoPE-3D, attempt to encode spatial and temporal dimensions separately but suffer from two major limitations: positional bias in attention distribution and disruptions in video-text transitions. To overcome these issues, we propose Video Rotary Position Embedding (VRoPE), a novel positional encoding method tailored for Video-LLMs. Specifically, we introduce a more balanced encoding strategy that mitigates attention biases, ensuring a more uniform distribution of spatial focus. Additionally, our approach restructures positional indices to ensure a smooth transition between video and text tokens. Extensive experiments on different models demonstrate that VRoPE consistently outperforms previous RoPE variants, achieving significant improvements in video understanding, temporal reasoning, and retrieval tasks. Code will be available at https://github.com/johncaged/VRoPE.
comment: 10 pages
♻ ☆ SRMA-Mamba: Spatial Reverse Mamba Attention Network for Pathological Liver Segmentation in MRI Volumes
Liver Cirrhosis plays a critical role in the prognosis of chronic liver disease. Early detection and timely intervention are critical in significantly reducing mortality rates. However, the intricate anatomical architecture and diverse pathological changes of liver tissue complicate the accurate detection and characterization of lesions in clinical settings. Existing methods underutilize the spatial anatomical details in volumetric MRI data, thereby hindering their clinical effectiveness and explainability. To address this challenge, we introduce a novel Mamba-based network, SRMA-Mamba, designed to model the spatial relationships within the complex anatomical structures of MRI volumes. By integrating the Spatial Anatomy-Based Mamba module (SABMamba), SRMA-Mamba performs selective Mamba scans within liver cirrhotic tissues and combines anatomical information from the sagittal, coronal, and axial planes to construct a global spatial context representation, enabling efficient volumetric segmentation of pathological liver structures. Furthermore, we introduce the Spatial Reverse Attention module (SRMA), designed to progressively refine cirrhotic details in the segmentation map, utilizing both the coarse segmentation map and hierarchical encoding features. Extensive experiments demonstrate that SRMA-Mamba surpasses state-of-the-art methods, delivering exceptional performance in 3D pathological liver segmentation. Our code is available for public: https://github.com/JunZengz/SRMA-Mamba.
comment: 9 pages, 4 figures
♻ ☆ Sample Complexity of Diffusion Model Training Without Empirical Risk Minimizer Access
Diffusion models have demonstrated state-of-the-art performance across vision, language, and scientific domains. Despite their empirical success, prior theoretical analyses of the sample complexity suffer from poor scaling with input data dimension or rely on unrealistic assumptions such as access to exact empirical risk minimizers. In this work, we provide a principled analysis of score estimation, establishing a sample complexity bound of $\widetilde{\mathcal{O}}(\epsilon^{-6})$. Our approach leverages a structured decomposition of the score estimation error into statistical, approximation, and optimization errors, enabling us to eliminate the exponential dependence on neural network parameters that arises in prior analyses. It is the first such result which achieves sample complexity bounds without assuming access to the empirical risk minimizer of score function estimation loss.
♻ ☆ MedKGent: A Large Language Model Agent Framework for Constructing Temporally Evolving Medical Knowledge Graph
The rapid expansion of medical literature presents growing challenges for structuring and integrating domain knowledge at scale. Knowledge Graphs (KGs) offer a promising solution by enabling efficient retrieval, automated reasoning, and knowledge discovery. However, current KG construction methods often rely on supervised pipelines with limited generalizability or naively aggregate outputs from Large Language Models (LLMs), treating biomedical corpora as static and ignoring the temporal dynamics and contextual uncertainty of evolving knowledge. To address these limitations, we introduce MedKGent, a LLM agent framework for constructing temporally evolving medical KGs. Leveraging over 10 million PubMed abstracts published between 1975 and 2023, we simulate the emergence of biomedical knowledge via a fine-grained daily time series. MedKGent incrementally builds the KG in a day-by-day manner using two specialized agents powered by the Qwen2.5-32B-Instruct model. The Extractor Agent identifies knowledge triples and assigns confidence scores via sampling-based estimation, which are used to filter low-confidence extractions and inform downstream processing. The Constructor Agent incrementally integrates the retained triples into a temporally evolving graph, guided by confidence scores and timestamps to reinforce recurring knowledge and resolve conflicts. The resulting KG contains 156,275 entities and 2,971,384 relational triples. Quality assessments by two SOTA LLMs and three domain experts demonstrate an accuracy approaching 90%, with strong inter-rater agreement. To evaluate downstream utility, we conduct RAG across seven medical question answering benchmarks using five leading LLMs, consistently observing significant improvements over non-augmented baselines. Case studies further demonstrate the KG's value in literature-based drug repurposing via confidence-aware causal inference.
♻ ☆ A Survey of LLM-based Deep Search Agents: Paradigm, Optimization, Evaluation, and Challenges
The advent of Large Language Models (LLMs) has significantly revolutionized web search. The emergence of LLM-based Search Agents marks a pivotal shift towards deeper, dynamic, autonomous information seeking. These agents can comprehend user intentions and environmental context and execute multi-turn retrieval with dynamic planning, extending search capabilities far beyond the web. Leading examples like OpenAI's Deep Research highlight their potential for deep information mining and real-world applications. This survey provides the first systematic analysis of search agents. We comprehensively analyze and categorize existing works from the perspectives of architecture, optimization, application, and evaluation, ultimately identifying critical open challenges and outlining promising future research directions in this rapidly evolving field. Our repository is available on https://github.com/YunjiaXi/Awesome-Search-Agent-Papers.
♻ ☆ Robust Federated Learning under Adversarial Attacks via Loss-Based Client Clustering
Federated Learning (FL) enables collaborative model training across multiple clients without sharing private data. We consider FL scenarios wherein FL clients are subject to adversarial (Byzantine) attacks, while the FL server is trusted (honest) and has a trustworthy side dataset. This may correspond to, e.g., cases where the server possesses trusted data prior to federation, or to the presence of a trusted client that temporarily assumes the server role. Our approach requires only two honest participants, i.e., the server and one client, to function effectively, without prior knowledge of the number of malicious clients. Theoretical analysis demonstrates bounded optimality gaps even under strong Byzantine attacks. Experimental results show that our algorithm significantly outperforms standard and robust FL baselines such as Mean, Trimmed Mean, Median, Krum, and Multi-Krum under various attack strategies including label flipping, sign flipping, and Gaussian noise addition across MNIST, FMNIST, and CIFAR-10 benchmarks using the Flower framework.
comment: 16 pages, 5 figures
♻ ☆ Position: We Need Responsible, Application-Driven (RAD) AI Research
This position paper argues that achieving meaningful scientific and societal advances with artificial intelligence (AI) requires a responsible, application-driven approach (RAD) to AI research. As AI is increasingly integrated into society, AI researchers must engage with the specific contexts where AI is being applied. This includes being responsive to ethical and legal considerations, technical and societal constraints, and public discourse. We present the case for RAD-AI to drive research through a three-staged approach: (1) building transdisciplinary teams and people-centred studies; (2) addressing context-specific methods, ethical commitments, assumptions, and metrics; and (3) testing and sustaining efficacy through staged testbeds and a community of practice. We present a vision for the future of application-driven AI research to unlock new value through technically feasible methods that are adaptive to the contextual needs and values of the communities they ultimately serve.
comment: 12 pages, 1 figure, Final Camera Ready version for proceedings with updated figure color and reference, Accepted to Proceedings of the 41 st International Conference on Machine Learning, Vancouver, Canada. PMLR 267, 2025
♻ ☆ VoiceCloak: A Multi-Dimensional Defense Framework against Unauthorized Diffusion-based Voice Cloning
Diffusion Models (DMs) have achieved remarkable success in realistic voice cloning (VC), while they also increase the risk of malicious misuse. Existing proactive defenses designed for traditional VC models aim to disrupt the forgery process, but they have been proven incompatible with DMs due to the intricate generative mechanisms of diffusion. To bridge this gap, we introduce VoiceCloak, a multi-dimensional proactive defense framework with the goal of obfuscating speaker identity and degrading perceptual quality in potential unauthorized VC. To achieve these goals, we conduct a focused analysis to identify specific vulnerabilities within DMs, allowing VoiceCloak to disrupt the cloning process by introducing adversarial perturbations into the reference audio. Specifically, to obfuscate speaker identity, VoiceCloak first targets speaker identity by distorting representation learning embeddings to maximize identity variation, which is guided by auditory perception principles. Additionally, VoiceCloak disrupts crucial conditional guidance processes, particularly attention context, thereby preventing the alignment of vocal characteristics that are essential for achieving convincing cloning. Then, to address the second objective, VoiceCloak introduces score magnitude amplification to actively steer the reverse trajectory away from the generation of high-quality speech. Noise-guided semantic corruption is further employed to disrupt structural speech semantics captured by DMs, degrading output quality. Extensive experiments highlight VoiceCloak's outstanding defense success rate against unauthorized diffusion-based voice cloning. Audio samples of VoiceCloak are available at https://voice-cloak.github.io/VoiceCloak/.
♻ ☆ Script-Strategy Aligned Generation: Aligning LLMs with Expert-Crafted Dialogue Scripts and Therapeutic Strategies for Psychotherapy
Chatbots or conversational agents (CAs) are increasingly used to improve access to digital psychotherapy. Many current systems rely on rigid, rule-based designs, heavily dependent on expert-crafted dialogue scripts for guiding therapeutic conversations. Although advances in large language models (LLMs) offer potential for more flexible interactions, their lack of controllability and explanability poses challenges in high-stakes contexts like psychotherapy. To address this, we conducted two studies in this work to explore how aligning LLMs with expert-crafted scripts can enhance psychotherapeutic chatbot performance. In Study 1 (N=43), an online experiment with a within-subjects design, we compared rule-based, pure LLM, and LLMs aligned with expert-crafted scripts via fine-tuning and prompting. Results showed that aligned LLMs significantly outperformed the other types of chatbots in empathy, dialogue relevance, and adherence to therapeutic principles. Building on findings, we proposed ``Script-Strategy Aligned Generation (SSAG)'', a more flexible alignment approach that reduces reliance on fully scripted content while maintaining LLMs' therapeutic adherence and controllability. In a 10-day field Study 2 (N=21), SSAG achieved comparable therapeutic effectiveness to full-scripted LLMs while requiring less than 40\% of expert-crafted dialogue content. Beyond these results, this work advances LLM applications in psychotherapy by providing a controllable and scalable solution, reducing reliance on expert effort. By enabling domain experts to align LLMs through high-level strategies rather than full scripts, SSAG supports more efficient co-development and expands access to a broader context of psychotherapy.
♻ ☆ Hawkeye:Efficient Reasoning with Model Collaboration
Chain-of-Thought (CoT) reasoning has demonstrated remarkable effectiveness in enhancing the reasoning abilities of large language models (LLMs). However, its efficiency remains a challenge due to the generation of excessive intermediate reasoning tokens, which introduce semantic redundancy and overly detailed reasoning steps. Moreover, computational expense and latency are significant concerns, as the cost scales with the number of output tokens, including those intermediate steps. In this work, we observe that most CoT tokens are unnecessary, and retaining only a small portion of them is sufficient for producing high-quality responses. Inspired by this, we propose HAWKEYE, a novel post-training and inference framework where a large model produces concise CoT instructions to guide a smaller model in response generation. HAWKEYE quantifies redundancy in CoT reasoning and distills high-density information via reinforcement learning. By leveraging these concise CoTs, HAWKEYE is able to expand responses while reducing token usage and computational cost significantly. Our evaluation shows that HAWKEYE can achieve comparable response quality using only 35% of the full CoTs, while improving clarity, coherence, and conciseness by approximately 10%. Furthermore, HAWKEYE can accelerate end-to-end reasoning by up to 3.4x on complex math tasks while reducing inference cost by up to 60%. HAWKEYE will be open-sourced and the models will be available soon.
♻ ☆ Segment Anything in Pathology Images with Natural Language
Pathology image segmentation is crucial in computational pathology for analyzing histological features relevant to cancer diagnosis and prognosis. However, current methods face major challenges in clinical applications due to limited annotated data and restricted category definitions. To address these limitations, we propose PathSegmentor, the first text-prompted segmentation foundation model designed specifically for pathology images. We also introduce PathSeg, the largest and most comprehensive dataset for pathology segmentation, built from 21 public sources and containing 275k image-mask-label triples across 160 diverse categories. With PathSegmentor, users can perform semantic segmentation using natural language prompts, eliminating the need for laborious spatial inputs such as points or boxes. Extensive experiments demonstrate that PathSegmentor outperforms specialized models with higher accuracy and broader applicability, while maintaining a compact architecture. It significantly surpasses existing spatial- and text-prompted models by 0.145 and 0.429 in overall Dice scores, respectively, showing strong robustness in segmenting complex structures and generalizing to external datasets. Moreover, PathSegmentor's outputs enhance the interpretability of diagnostic models through feature importance estimation and imaging biomarker discovery, offering pathologists evidence-based support for clinical decision-making. This work advances the development of explainable AI in precision oncology.
♻ ☆ Neural Cellular Automata for ARC-AGI
Cellular automata and their differentiable counterparts, Neural Cellular Automata (NCA), are highly expressive and capable of surprisingly complex behaviors. This paper explores how NCAs perform when applied to tasks requiring precise transformations and few-shot generalization, using the Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI) as a domain that challenges their capabilities in ways not previously explored. Specifically, this paper uses gradient-based training to learn iterative update rules that transform input grids into their outputs from the training examples and apply them to the test inputs. Results suggest that gradient-trained NCA models are a promising and efficient approach to a range of abstract grid-based tasks from ARC. Along with discussing the impacts of various design modifications and training constraints, this work examines the behavior and properties of NCAs applied to ARC to give insights for broader applications of self-organizing systems.
comment: 8 pages, 5 figures To Appear In Proceedings of the 2025 Artificial Life Conference, 2025
♻ ☆ DualSG: A Dual-Stream Explicit Semantic-Guided Multivariate Time Series Forecasting Framework
Multivariate Time Series Forecasting plays a key role in many applications. Recent works have explored using Large Language Models for MTSF to take advantage of their reasoning abilities. However, many methods treat LLMs as end-to-end forecasters, which often leads to a loss of numerical precision and forces LLMs to handle patterns beyond their intended design. Alternatively, methods that attempt to align textual and time series modalities within latent space frequently encounter alignment difficulty. In this paper, we propose to treat LLMs not as standalone forecasters, but as semantic guidance modules within a dual-stream framework. We propose DualSG, a dual-stream framework that provides explicit semantic guidance, where LLMs act as Semantic Guides to refine rather than replace traditional predictions. As part of DualSG, we introduce Time Series Caption, an explicit prompt format that summarizes trend patterns in natural language and provides interpretable context for LLMs, rather than relying on implicit alignment between text and time series in the latent space. We also design a caption-guided fusion module that explicitly models inter-variable relationships while reducing noise and computation. Experiments on real-world datasets from diverse domains show that DualSG consistently outperforms 15 state-of-the-art baselines, demonstrating the value of explicitly combining numerical forecasting with semantic guidance.
comment: This paper has been accepted by ACM Multimedia 2025 (ACM MM 2025)
♻ ☆ Enhancing Visual Reliance in Text Generation: A Bayesian Perspective on Mitigating Hallucination in Large Vision-Language Models
Large Vision-Language Models (LVLMs) usually generate texts which satisfy context coherence but don't match the visual input. Such a hallucination issue hinders LVLMs' applicability in the real world. The key to solving hallucination in LVLM is to make the text generation rely more on the visual content. Most previous works choose to enhance/adjust the features/output of a specific modality (i.e., visual or textual) to alleviate hallucinations in LVLM, which do not explicitly or systematically enhance the visual reliance. In this paper, we comprehensively investigate the factors which may degenerate the visual reliance in text generation of LVLM from a Bayesian perspective. Based on our observations, we propose to mitigate hallucination in LVLM from three aspects. Firstly, we observe that not all visual tokens are informative in generating meaningful texts. We propose to evaluate and remove redundant visual tokens to avoid their disturbance. Secondly, LVLM may encode inappropriate prior information, making it lean toward generating unexpected words. We propose a simple yet effective way to rectify the prior from a Bayesian perspective. Thirdly, we observe that starting from certain steps, the posterior of next-token prediction conditioned on visual tokens may collapse to a prior distribution which does not depend on any informative visual tokens at all. Thus, we propose to stop further text generation to avoid hallucination. Extensive experiments on three benchmarks including POPE, CHAIR, and MME demonstrate that our method can consistently mitigate the hallucination issue of LVLM and performs favorably against previous state-of-the-arts.
♻ ☆ ExpVG: Investigating the Design Space of Visual Grounding in Multimodal Large Language Model
Fine-grained multimodal capability in Multimodal Large Language Models (MLLMs) has emerged as a critical research direction, particularly for tackling the visual grounding (VG) problem. Despite the strong performance achieved by existing approaches, they often employ disparate design choices when fine-tuning MLLMs for VG, lacking systematic verification to support these designs. To bridge this gap, this paper presents a comprehensive study of various design choices that impact the VG performance of MLLMs. We conduct our analysis using LLaVA-1.5, which has been widely adopted in prior empirical studies of MLLMs. While more recent models exist, we follow this convention to ensure our findings remain broadly applicable and extendable to other architectures. We cover two key aspects: (1) exploring different visual grounding paradigms in MLLMs, identifying the most effective design, and providing our insights; and (2) conducting ablation studies on the design of grounding data to optimize MLLMs' fine-tuning for the VG task. Finally, our findings contribute to a stronger MLLM for VG, achieving improvements of +5.6% / +6.9% / +7.0% on RefCOCO/+/g over the LLaVA-1.5.
comment: 8 pages for the main paper
♻ ☆ Biased AI improves human decision-making but reduces trust
Current AI systems minimize risk by enforcing ideological neutrality, yet this may introduce automation bias by suppressing cognitive engagement in human decision-making. We conducted randomized trials with 2,500 participants to test whether culturally biased AI enhances human decision-making. Participants interacted with politically diverse GPT-4o variants on information evaluation tasks. Partisan AI assistants enhanced human performance, increased engagement, and reduced evaluative bias compared to non-biased counterparts, with amplified benefits when participants encountered opposing views. These gains carried a trust penalty: participants underappreciated biased AI and overcredited neutral systems. Exposing participants to two AIs whose biases flanked human perspectives closed the perception-performance gap. These findings complicate conventional wisdom about AI neutrality, suggesting that strategic integration of diverse cultural biases may foster improved and resilient human decision-making.
♻ ☆ AdaRing: Towards Ultra-Light Vision-Language Adaptation via Cross-Layer Tensor Ring Decomposition
Adapter-based fine-tuning has gained remarkable attention in adapting large pre-trained vision language models (VLMs) for a wide range of downstream tasks efficiently. In this paradigm, only the inserted adapters are fine-tuned, without the need for training the original VLM backbone. Existing works scale adapters by integrating them into every layer of VLMs to increase the capacity of adapters. However, these methods face two primary limitations: 1) limited compression rate due to ignoring cross-layer redundancy, and 2) limited representational capacity across homogeneous adapters. In this paper, we propose a novel vision-language fine-tuning framework based on cross-layer tensor ring decomposition (TRD) with the integration and collaboration of diverse adapters, called AdaRing, achieving ultra-light parameter-efficient adaptation of VLMs on various tasks. To remove the high redundancy that exists among adapters across layers, we exploit the tensor-level low-rankness to formulate adapters as layer-shared tensor cores and layer-specific slices. Moreover, guided by generalization-aware fine-tuning, diverse rank-driven adapters cooperate to handle tasks that require different representations. Our experiments show that the proposed AdaRing achieves the state-of-the-art performance while reducing average training parameters by 90%.
♻ ☆ SLED: Self Logits Evolution Decoding for Improving Factuality in Large Language Models NeurIPS 2024
Large language models (LLMs) have demonstrated remarkable capabilities, but their outputs can sometimes be unreliable or factually incorrect. To address this, we introduce Self Logits Evolution Decoding (SLED), a novel decoding framework that enhances the truthfulness of LLMs without relying on external knowledge bases or requiring further fine-tuning. From an optimization perspective, our SLED framework leverages the latent knowledge embedded within the LLM by contrasting the output logits from the final layer with those from early layers. It then utilizes an approximate gradient approach to enable latent knowledge to guide the self-refinement of outputs, thereby effectively improving factual accuracy. Extensive experiments have been conducted on established benchmarks across a diverse range of model families (Gemma, Qwen, Mixtral, gpt-oss) and scales (from 1B to 45B), including more advanced architectural configurations such as the mixture of experts (MoE). Our evaluation spans a wide variety of tasks and the results demonstrate that SLED consistently improves factual accuracy compared to existing decoding methods while maintaining natural language fluency and negligible latency overhead. Furthermore, it can be flexibly combined with other decoding methods to further enhance their performance.
comment: Accepted at NeurIPS 2024; project page is available at https://jayzhang42.github.io/sled_page/
♻ ☆ Spore in the Wild: A Case Study of Spore.fun as an Open-Environment Evolution Experiment with Sovereign AI Agents on TEE-Secured Blockchains
In Artificial Life (ALife) research, replicating Open-Ended Evolution (OEE)-the continuous emergence of novelty observed in biological life-has usually been pursued within isolated, closed system simulations, such as Tierra and Avida, which have typically plateaued after an initial burst of novelty, failing to achieve sustained OEE. Scholars suggest that OEE requires an open-environment system that continually exchanges information or energy with its environment. A recent technological innovation in Decentralized Physical Infrastructure Network (DePIN), which provides permissionless computational substrates, enables the deployment of Large Language Model-based AI agents on blockchains integrated with Trusted Execution Environments (TEEs). This enables on-chain agents to operate autonomously "in the wild," achieving self-sovereignty without human oversight. These agents can control their own social media accounts and cryptocurrency wallets, allowing them to interact directly with blockchain-based financial networks and broader human social media. Building on this new paradigm of on-chain agents, Spore.fun is a recent real-world AI evolution experiment that enables autonomous breeding and evolution of new on-chain agents. This paper presents a detailed case study of Spore.fun, examining agent behaviors and their evolutionary trajectories through digital ethology. We aim to spark discussion about whether open-environment ALife systems "in the wild," based on permissionless computational substrates and driven by economic incentives to interact with their environment, could finally achieve the long-sought goal of OEE.
comment: Accepted by ALIFE 2025
♻ ☆ Estimation of Energy-dissipation Lower-bounds for Neuromorphic Learning-in-memory
Neuromorphic or neurally-inspired optimizers rely on local but parallel parameter updates to solve problems that range from quadratic programming to Ising machines. An ideal realization of such an optimizer not only uses a compute-in-memory (CIM) paradigm to address the so-called memory-wall (i.e. energy dissipated due to repeated memory read access), but also uses a learning-in-memory (LIM) paradigm to address the energy bottlenecks due to repeated memory writes at the precision required for optimization (the update-wall), and to address the energy bottleneck due to the repeated transfer of information between short-term and long-term memories (the consolidation-wall). In this paper, we derive theoretical estimates for the energy-to-solution metric that can be achieved by this ideal neuromorphic optimizer which is realized by modulating the energy-barrier of the physical memories such that the dynamics of memory updates and memory consolidation matches the optimization or the annealing dynamics. The analysis presented in this paper captures the out-of-equilibrium thermodynamics of learning and the resulting energy-efficiency estimates are model-agnostic which only depend on the number of model-update operations (OPS), the model-size in terms of number of parameters, the speed of convergence, and the precision of the solution. To show the practical applicability of our results, we apply our analysis for estimating the lower-bound on the energy-to-solution metrics for large-scale AI workloads.
comment: 16 pages, 6 figures
♻ ☆ Natural Language Generation from Visual Events: State-of-the-Art and Key Open Questions
In recent years, a substantial body of work in visually grounded natural language processing has focused on real-life multimodal scenarios such as describing content depicted in images or videos. However, comparatively less attention has been devoted to study the nature and degree of interaction between the different modalities in these scenarios. In this paper, we argue that any task dealing with natural language generation from sequences of images or frames is an instance of the broader, more general problem of modeling the intricate relationships between visual events unfolding over time and the features of the language used to interpret, describe, or narrate them. Therefore, solving these tasks requires models to be capable of identifying and managing such intricacies. We consider five seemingly different tasks, which we argue are compelling instances of this broader multimodal problem. Subsequently, we survey the modeling and evaluation approaches adopted for these tasks in recent years and examine the common set of challenges these tasks pose. Building on this perspective, we identify key open questions and propose several research directions for future investigation.
♻ ☆ Unsupervised Learning for Quadratic Assignment
We introduce PLUME search, a data-driven framework that enhances search efficiency in combinatorial optimization through unsupervised learning. Unlike supervised or reinforcement learning, PLUME search learns directly from problem instances using a permutation-based loss with a non-autoregressive approach. We evaluate its performance on the quadratic assignment problem, a fundamental NP-hard problem that encompasses various combinatorial optimization problems. Experimental results demonstrate that PLUME search consistently improves solution quality. Furthermore, we study the generalization behavior and show that the learned model generalizes across different densities and sizes.
comment: preprint
♻ ☆ Nash Convergence of Mean-Based Learning Algorithms in First-Price Auctions
The convergence properties of learning dynamics in repeated auctions is a timely and important question, with numerous applications in, e.g., online advertising markets. This work focuses on repeated first-price auctions where bidders with fixed values learn to bid using mean-based algorithms -- a large class of online learning algorithms that include popular no-regret algorithms such as Multiplicative Weights Update and Follow the Perturbed Leader. We completely characterize the learning dynamics of mean-based algorithms, under two notions of convergence: (1) time-average: the fraction of rounds where bidders play a Nash equilibrium converges to 1; (2) last-iterate: the mixed strategy profile of bidders converges to a Nash equilibrium. Specifically, the results depend on the number of bidders with the highest value: - If the number is at least three, the dynamics almost surely converges to a Nash equilibrium of the auction, in both time-average and last-iterate. - If the number is two, the dynamics almost surely converges to a Nash equilibrium in time-average but not necessarily last-iterate. - If the number is one, the dynamics may not converge to a Nash equilibrium in time-average or last-iterate. Our discovery opens up new possibilities in the study of the convergence of learning dynamics.
comment: A preliminary version was published at the Web Conference (WWW) 2022. This version updates references and figures
♻ ☆ Reference-Aligned Retrieval-Augmented Question Answering over Heterogeneous Proprietary Documents
Proprietary corporate documents contain rich domain-specific knowledge, but their overwhelming volume and disorganized structure make it difficult even for employees to access the right information when needed. For example, in the automotive industry, vehicle crash-collision tests, each costing hundreds of thousands of dollars, produce highly detailed documentation. However, retrieving relevant content during decision-making remains time-consuming due to the scale and complexity of the material. While Retrieval-Augmented Generation (RAG)-based Question Answering (QA) systems offer a promising solution, building an internal RAG-QA system poses several challenges: (1) handling heterogeneous multi-modal data sources, (2) preserving data confidentiality, and (3) enabling traceability between each piece of information in the generated answer and its original source document. To address these, we propose a RAG-QA framework for internal enterprise use, consisting of: (1) a data pipeline that converts raw multi-modal documents into a structured corpus and QA pairs, (2) a fully on-premise, privacy-preserving architecture, and (3) a lightweight reference matcher that links answer segments to supporting content. Applied to the automotive domain, our system improves factual correctness (+1.79, +1.94), informativeness (+1.33, +1.16), and helpfulness (+1.08, +1.67) over a non-RAG baseline, based on 1-5 scale ratings from both human and LLM judge.
comment: Accepted to CIKM 2025 Applied Research Track
♻ ☆ LoRA-XS: Low-Rank Adaptation with Extremely Small Number of Parameters
The growth of large language models underscores the need for parameter-efficient fine-tuning. Despite its popularity, LoRA encounters storage and computational challenges when deploying multiple task- or user-specific modules. To address this, we introduce LoRA-XS, a novel fine-tuning method backed by a theoretical derivation. LoRA-XS drastically reduces trainable parameters by incorporating a small, trainable weight matrix between frozen low-rank matrices derived from the Singular Value Decomposition of pre-trained weights. This design enables LoRA-XS to reduce storage requirements by over 100x in 7B models compared to LoRA. Additionally, unlike other methods, LoRA-XS imposes no lower bound on trainable parameters - it can scale from a single parameter per module to arbitrarily large values, adapting to any storage or computational constraint. Evaluations on GLUE, GSM8K, MATH, and commonsense reasoning benchmarks across different model scales reveal that LoRA-XS consistently outperforms or matches LoRA and VeRA in accuracy, offering unmatched parameter efficiency. Our ablation studies highlight the significance of singular vectors in transformer weights, establishing LoRA-XS as a powerful, storage-efficient solution for scaling and personalizing large language models.
♻ ☆ A Conceptual Framework for AI-based Decision Systems in Critical Infrastructures
The interaction between humans and AI in safety-critical systems presents a unique set of challenges that remain partially addressed by existing frameworks. These challenges stem from the complex interplay of requirements for transparency, trust, and explainability, coupled with the necessity for robust and safe decision-making. A framework that holistically integrates human and AI capabilities while addressing these concerns is notably required, bridging the critical gaps in designing, deploying, and maintaining safe and effective systems. This paper proposes a holistic conceptual framework for critical infrastructures by adopting an interdisciplinary approach. It integrates traditionally distinct fields such as mathematics, decision theory, computer science, philosophy, psychology, and cognitive engineering and draws on specialized engineering domains, particularly energy, mobility, and aeronautics. Its flexibility is further demonstrated through a case study on power grid management.
♻ ☆ DeepRetro: Retrosynthetic Pathway Discovery using Iterative LLM Reasoning
The synthesis of complex natural products remains one of the grand challenges of organic chemistry. We present DeepRetro, a major advancement in computational retrosynthesis that enables the discovery of viable synthetic routes for complex molecules typically considered beyond the reach of existing retrosynthetic methods. DeepRetro is a novel, open-source framework that tightly integrates large language models (LLMs), traditional retrosynthetic engines, and expert human feedback in an iterative design loop. Prior approaches rely solely on template-based methods or unconstrained LLM outputs. In contrast, DeepRetro combines the precision of template-based methods with the generative flexibility of LLMs, controlled by rigorous chemical validity checks and enhanced by recursive refinement. This hybrid system dynamically explores and revises synthetic pathways, guided by both algorithmic checks and expert chemist feedback through an interactive user interface. While DeepRetro achieves strong performance on standard retrosynthesis benchmarks, its true strength lies in its ability to propose novel, viable pathways to highly complex natural products-targets that have historically eluded automated planning. Through detailed case studies, we illustrate how this approach enables new routes for total synthesis and facilitates human-machine collaboration in organic chemistry. Beyond retrosynthesis, DeepRetro represents a working model for how to leverage LLMs in scientific discovery. We provide a transparent account of the system's design, algorithms, and human-feedback loop, enabling broad adaptation across scientific domains. By releasing DeepRetro as an open-source tool, we aim to empower chemists to tackle increasingly ambitious synthetic targets, accelerating progress in drug discovery, materials design, and beyond.
comment: 64 pages,
Computational Engineering, Finance, and Science 4
Data-Driven Discovery of Multi-Dimensional Breakage Population Balance Equations
Multi-dimensional breakage is a ubiquitous phenomenon in natural systems, yet the systematic discovery of underlying governing equations remains a long-standing challenge. Current inverse solution techniques are restricted to one-dimensional cases and typically depend on the availability of a priori system knowledge, thus limiting their applicability. By leveraging advances in data-driven sparse regression techniques, we develop the Multi-Dimensional Breakage Population Balance Equation Identification (mPBE ID) algorithm for discovering multi-dimensional breakage population balance equations (mPBEs) directly from data. Our mPBE-ID enables tractable identification of mPBEs by incorporating several key strategies, namely, a breakage-informed constrained sparse regression, targeted candidate library functions construction via insights from Dynamic Mode Decomposition (DMD), and robust handling of noisy/limited data through ensembling (bagging/bragging). Notably, we demonstrate how the DMD is indispensable for distilling dominant breakage dynamics which can then be used to facilitate the systematic inclusion of candidate library terms. We showcase the ability of the mPBE-ID to discover different forms of mPBE (including those with discontinuous stoichiometric kernels) even when tested against noisy and limited data. We anticipate that the mPBE-ID will serve as a foundational framework for future extensions to generalize the discovery of multi-dimensional PBEs for various high-dimensional particulate phenomena.
comment: 45 pages, 9 figures, 1 table
☆ From Scores to Skills: A Cognitive Diagnosis Framework for Evaluating Financial Large Language Models
Large Language Models (LLMs) have shown promise for financial applications, yet their suitability for this high-stakes domain remains largely unproven due to inadequacies in existing benchmarks. Existing benchmarks solely rely on score-level evaluation, summarizing performance with a single score that obscures the nuanced understanding of what models truly know and their precise limitations. They also rely on datasets that cover only a narrow subset of financial concepts, while overlooking other essentials for real-world applications. To address these gaps, we introduce FinCDM, the first cognitive diagnosis evaluation framework tailored for financial LLMs, enabling the evaluation of LLMs at the knowledge-skill level, identifying what financial skills and knowledge they have or lack based on their response patterns across skill-tagged tasks, rather than a single aggregated number. We construct CPA-QKA, the first cognitively informed financial evaluation dataset derived from the Certified Public Accountant (CPA) examination, with comprehensive coverage of real-world accounting and financial skills. It is rigorously annotated by domain experts, who author, validate, and annotate questions with high inter-annotator agreement and fine-grained knowledge labels. Our extensive experiments on 30 proprietary, open-source, and domain-specific LLMs show that FinCDM reveals hidden knowledge gaps, identifies under-tested areas such as tax and regulatory reasoning overlooked by traditional benchmarks, and uncovers behavioral clusters among models. FinCDM introduces a new paradigm for financial LLM evaluation by enabling interpretable, skill-aware diagnosis that supports more trustworthy and targeted model development, and all datasets and evaluation scripts will be publicly released to support further research.
☆ Reliability comparison of vessel trajectory prediction models via Probability of Detection
This contribution addresses vessel trajectory prediction (VTP), focusing on the evaluation of different deep learning-based approaches. The objective is to assess model performance in diverse traffic complexities and compare the reliability of the approaches. While previous VTP models overlook the specific traffic situation complexity and lack reliability assessments, this research uses a probability of detection analysis to quantify model reliability in varying traffic scenarios, thus going beyond common error distribution analyses. All models are evaluated on test samples categorized according to their traffic situation during the prediction horizon, with performance metrics and reliability estimates obtained for each category. The results of this comprehensive evaluation provide a deeper understanding of the strengths and weaknesses of the different prediction approaches, along with their reliability in terms of the prediction horizon lengths for which safe forecasts can be guaranteed. These findings can inform the development of more reliable vessel trajectory prediction approaches, enhancing safety and efficiency in future inland waterways navigation.
comment: 2025 IEEE Intelligent Vehicles Symposium (IV)
♻ ☆ Modelling and simulation of electro-mechanically coupled dielectric elastomers and myocardial tissue using smoothed finite element methods
Computational modelling offers a cost-effective and time-efficient alternative to experimental studies in biomedical engineering. In cardiac electro-mechanics, finite element method (FEM)-based simulations provide valuable insights into diseased tissue behaviour and the development of assistive systems such as di-electric elastomer actuators. However, the use of automatically generated tetrahedral meshes, commonly applied due to geometric complexity, often leads to numerical issues including overly stiff responses and volume locking, particularly in incompressible materials. Smoothed finite element methods (S-FEMs) offer a promising alternative by softening the stiffness matrix through gradient smoothing over defined smoothing domains. This work extends S-FEM formulations to electro-mechanically coupled problems and compares their performance against standard linear FEM. We implement and evaluate four approaches in the Abaqus environment via custom user elements: standard linear FEM, face-based S-FEM (FS-FEM), node-based S-FEM (NS-FEM), and the hybrid face/node-based S-FEM (FSNS-FEM). Two benchmark problems are studied: the electrically induced contraction of a compressible dielectric elastomer and an incompressible, orthotropic myocardial tissue sample. Reference solutions are obtained using a mesh consisting of higher-order elements. Our results demonstrate that FSNS-FEM provides the best balance between accuracy and computational efficiency, closely matching reference data. NS-FEM produces softer results, which leads to an overestimation of the true deformation. FS-FEM and standard FEM consistently exhibit overly stiff behaviour, with pronounced volume locking in the myocardial case. These findings support the potential of S-FEMs, in particular FSNS-FEM, for accurate simulation of coupled electro-mechanical behaviour in complex biomedical applications.
Databases 9
☆ SPARQL in N3: SPARQL CONSTRUCT as a rule language for the Semantic Web (Extended Version)
Reasoning in the Semantic Web (SW) commonly uses Description Logics (DL) via OWL2 DL ontologies, or SWRL for variables and Horn clauses. The Rule Interchange Format (RIF) offers more expressive rules but is defined outside RDF and rarely adopted. For querying, SPARQL is a well-established standard operating directly on RDF triples. We leverage SPARQL CONSTRUCT queries as logic rules, enabling (1) an expressive, familiar SW rule language, and (2) general recursion, where queries can act on the results of others. We translate these queries to the Notation3 Logic (N3) rule language, allowing use of existing reasoning machinery with forward and backward chaining. Targeting a one-to-one query-rule mapping improves exchangeability and interpretability. Benchmarks indicate competitive performance, aiming to advance the potential of rule-based reasoning in the SW.
comment: 21 pages, submitted to RuleML+RR 2025: the 9th International Joint Conference on Rules and Reasoning
☆ Evaluating the Quality of Open Building Datasets for Mapping Urban Inequality: A Comparative Analysis Across 5 Cities
While informal settlements lack focused development and are highly dynamic, the quality of spatial data for these places may be uncertain. This study evaluates the quality and biases of AI-generated Open Building Datasets (OBDs) generated by Google and Microsoft against OpenStreetMap (OSM) data, across diverse global cities including Accra, Nairobi, Caracas, Berlin, and Houston. The Intersection over Union (IoU), overlap analysis and a positional accuracy algorithm are used to analyse the similarity and alignment of the datasets. The paper also analyses the size distribution of the building polygon area, and completeness using predefined but regular spatial units. The results indicate significant variance in data quality, with Houston and Berlin demonstrating high alignment and completeness, reflecting their structured urban environments. There are gaps in the datasets analysed, and cities like Accra and Caracas may be under-represented. This could highlight difficulties in capturing complex or informal regions. The study also notes different building size distributions, which may be indicative of the global socio-economic divide. These findings may emphasise the need to consider the quality of global building datasets to avoid misrepresentation, which is an important element of planning and resource distribution.
comment: 25 pages, 4 pages
☆ An LLM Agent-Based Complex Semantic Table Annotation Approach
The Semantic Table Annotation (STA) task, which includes Column Type Annotation (CTA) and Cell Entity Annotation (CEA), maps table contents to ontology entities and plays important roles in various semantic applications. However, complex tables often pose challenges such as semantic loss of column names or cell values, strict ontological hierarchy requirements, homonyms, spelling errors, and abbreviations, which hinder annotation accuracy. To address these issues, this paper proposes an LLM-based agent approach for CTA and CEA. We design and implement five external tools with tailored prompts based on the ReAct framework, enabling the STA agent to dynamically select suitable annotation strategies depending on table characteristics. Experiments are conducted on the Tough Tables and BiodivTab datasets from the SemTab challenge, which contain the aforementioned challenges. Our method outperforms existing approaches across various metrics. Furthermore, by leveraging Levenshtein distance to reduce redundant annotations, we achieve a 70% reduction in time costs and a 60% reduction in LLM token usage, providing an efficient and cost-effective solution for STA.
☆ jXBW: Fast Substructure Search in Large-Scale JSONL Datasets for Foundation Model Applications
Substructure search in JSON Lines (JSONL) datasets is essential for modern applications such as prompt engineering in foundation models, but existing methods suffer from prohibitive computational costs due to exhaustive tree traversal and subtree matching. We present jXBW, a fast method for substructure search on large-scale JSONL datasets. Our method makes three key technical contributions: (i) a merged tree representation built by merging trees of multiple JSON objects while preserving individual identities, (ii) a succinct data structure based on the eXtended Burrows-Wheeler Transform that enables efficient tree navigation and subpath search, and (iii) an efficient three-step substructure search algorithm that combines path decomposition, ancestor computation, and adaptive tree identifier collection to ensure correctness while avoiding exhaustive tree traversal. Experimental evaluation on real-world datasets demonstrates that jXBW consistently outperforms existing methods, achieving speedups of 16$\times$ for smaller datasets and up to 4,700$\times$ for larger datasets over tree-based approaches, and more than 6$\times$10$^6$ over XML-based processing while maintaining competitive memory usage.
♻ ☆ DARTH: Declarative Recall Through Early Termination for Approximate Nearest Neighbor Search SIGMOD 2026
Approximate Nearest Neighbor Search (ANNS) presents an inherent tradeoff between performance and recall (i.e., result quality). Each ANNS algorithm provides its own algorithm-dependent parameters to allow applications to influence the recall/performance tradeoff of their searches. This situation is doubly problematic. First, the application developers have to experiment with these algorithm-dependent parameters to fine-tune the parameters that produce the desired recall for each use case. This process usually takes a lot of effort. Even worse, the chosen parameters may produce good recall for some queries, but bad recall for hard queries. To solve these problems, we present DARTH, a method that uses target declarative recall. DARTH uses a novel method for providing target declarative recall on top of an ANNS index by employing an adaptive early termination strategy integrated into the search algorithm. Through a wide range of experiments, we demonstrate that DARTH effectively meets user-defined recall targets while achieving significant speedups, up to 14.6x (average: 6.8x; median: 5.7x) faster than the search without early termination for HNSW and up to 41.8x (average: 13.6x; median: 8.1x) for IVF. This paper appeared in ACM SIGMOD 2026.
comment: This paper appeared in ACM SIGMOD 2026
♻ ☆ High-Fidelity And Complex Test Data Generation For Real-World SQL Code Generation Services
The demand for high-fidelity test data is paramount in industrial settings where access to production data is largely restricted. Traditional data generation methods often fall short, struggling with low-fidelity and the ability to model complex data structures and semantic relationships that are critical for testing complex SQL code generation services like Natural Language to SQL (NL2SQL). In this paper, we address the critical need for generating syntactically correct and semantically ``meaningful'' mock data for complex schema that includes columns with nested structures that we frequently encounter in Google SQL code generation workloads. We highlight the limitations of existing approaches used in production, particularly their inability to handle large and complex schema, as well as the lack of semantically coherent test data that lead to limited test coverage. We demonstrate that by leveraging Large Language Models (LLMs) and incorporating strategic pre- and post-processing steps, we can generate realistic high-fidelity test data that adheres to complex structural constraints and maintains semantic integrity to the test targets (SQL queries/functions). This approach supports comprehensive testing of complex SQL queries involving joins, aggregations, and even deeply nested subqueries, ensuring robust evaluation of SQL code generation services, like NL2SQL and SQL Code Assistant services. Our results demonstrate the practical utility of an out-of-the-box LLM (\textit{gemini}) based test data generation for industrial SQL code generation services where generating realistic test data is essential due to the frequent unavailability of production datasets.
♻ ☆ Efficient Discovery of Motif Transition Process for Large-Scale Temporal Graphs
Understanding the dynamic transition of motifs in temporal graphs is essential for revealing how graph structures evolve over time, identifying critical patterns, and predicting future behaviors, yet existing methods often focus on predefined motifs, limiting their ability to comprehensively capture transitions and interrelationships. We propose a parallel motif transition process discovery algorithm, PTMT, a novel parallel method for discovering motif transition processes in large-scale temporal graphs. PTMT integrates a tree-based framework with the temporal zone partitioning (TZP) strategy, which partitions temporal graphs by time and structure while preserving lossless motif transitions and enabling massive parallelism. PTMT comprises three phases: growth zone parallel expansion, overlap-aware result aggregation, and deterministic encoding of motif transitions, ensuring accurate tracking of dynamic transitions and interactions. Results on 10 real-world datasets demonstrate that PTMT achieves speedups ranging from 12.0$\times$ to 50.3$\times$ compared to the SOTA method.
comment: Withdrawal requested due to unresolved technical issues: incomplete experimental validation, algorithmic inaccuracies, and erroneous figure representations. A corrected version may be resubmitted later
♻ ☆ Feather-SQL: A Lightweight NL2SQL Framework with Dual-Model Collaboration Paradigm for Small Language Models
Natural Language to SQL (NL2SQL) has seen significant advancements with large language models (LLMs). However, these models often depend on closed-source systems and high computational resources, posing challenges in data privacy and deployment. In contrast, small language models (SLMs) struggle with NL2SQL tasks, exhibiting poor performance and incompatibility with existing frameworks. To address these issues, we introduce Feather-SQL, a new lightweight framework tailored for SLMs. Feather-SQL improves SQL executability and accuracy through 1) schema pruning and linking, 2) multi-path and multi-candidate generation. Additionally, we introduce the 1+1 Model Collaboration Paradigm, which pairs a strong general-purpose chat model with a fine-tuned SQL specialist, combining strong analytical reasoning with high-precision SQL generation. Experimental results on BIRD demonstrate that Feather-SQL improves NL2SQL performance on SLMs, with around 10% boost for models without fine-tuning. The proposed paradigm raises the accuracy ceiling of SLMs to 54.76%, highlighting its effectiveness.
comment: DL4C @ ICLR 2025
♻ ☆ TabulaX: Leveraging Large Language Models for Multi-Class Table Transformations
The integration of tabular data from diverse sources is often hindered by inconsistencies in formatting and representation, posing significant challenges for data analysts and personal digital assistants. Existing methods for automating tabular data transformations are limited in scope, often focusing on specific types of transformations or lacking interpretability. In this paper, we introduce TabulaX, a novel framework that leverages Large Language Models (LLMs) for multi-class column-level tabular transformations. TabulaX first classifies input columns into four transformation types (string-based, numerical, algorithmic, and general) and then applies tailored methods to generate human-interpretable transformation functions, such as numeric formulas or programming code. This approach enhances transparency and allows users to understand and modify the mappings. Through extensive experiments on real-world datasets from various domains, we demonstrate that TabulaX outperforms existing state-of-the-art approaches in terms of accuracy, supports a broader class of transformations, and generates interpretable transformations that can be efficiently applied.
Distributed, Parallel, and Cluster Computing 22
☆ Team Formation and Applications
A novel long-lived distributed problem, called Team Formation (TF), is introduced together with a message- and time-efficient randomized algorithm. The problem is defined over the asynchronous model with a complete communication graph, using bounded size messages, where a certain fraction of the nodes may experience a generalized, strictly stronger, version of initial failures. The goal of a TF algorithm is to assemble tokens injected by the environment, in a distributed manner, into teams of size $\sigma$, where $\sigma$ is a parameter of the problem. The usefulness of TF is demonstrated by using it to derive efficient algorithms for many distributed problems. Specifically, we show that various (one-shot as well as long-lived) distributed problems reduce to TF. This includes well-known (and extensively studied) distributed problems such as several versions of leader election and threshold detection. For example, we are the first to break the linear message complexity bound for asynchronous implicit leader election. We also improve the time complexity of message-optimal algorithms for asynchronous explicit leader election. Other distributed problems that reduce to TF are new ones, including matching players in online gaming platforms, a generalization of gathering, constructing a perfect matching in an induced subgraph of the complete graph, quorum sensing in message-passing networks, and more. To complement our positive contribution, we establish a tight lower bound on the message complexity of TF algorithms.
comment: An extended abstract of this paper was accepted to DISC 2025
☆ Congested Clique Counting for Local Gibbs Distributions
There are well established reductions between combinatorial sampling and counting problems (Jerrum, Valiant, Vazirani TCS 1986). Building off of a very recent parallel algorithm utilizing this connection (Liu, Yin, Zhang arxiv 2024), we demonstrate the first approximate counting algorithm in the CongestedClique for a wide range of problems. Most interestingly, we present an algorithm for approximating the number of $q$-colorings of a graph within $\epsilon$-multiplicative error, when $q>\alpha\Delta$ for any constant $\alpha>2$, in $\Tilde{O}\big(\frac{n^{1/3}}{\epsilon^2}\big)$ rounds. More generally, we achieve a runtime of $\Tilde{O}\big(\frac{n^{1/3}}{\epsilon^2}\big)$ rounds for approximating the partition function of Gibbs distributions defined over graphs when simple locality and fast mixing conditions hold. Gibbs distributions are widely used in fields such as machine learning and statistical physics. We obtain our result by providing an algorithm to draw $n$ random samples from a distributed Markov chain in parallel, using similar ideas to triangle counting (Dolev, Lenzen, Peled DISC 2012) and semiring matrix multiplication (Censor-Hillel, Kaski, Korhonen, Lenzen, Paz, Suomela PODC 2015). Aside from counting problems, this result may be interesting for other applications requiring a large number of samples. In the special case of estimating the partition function of the hardcore model, also known as counting weighted independent sets, we can do even better and achieve an $\Tilde{O}\big(\frac{1}{\epsilon^2}\big)$ round algorithm, when the fugacity $\lambda \leq \frac{\alpha}{\Delta-1}$, where $\alpha$ is an arbitrary constant less than $1$.
☆ Fed-DPRoC:Communication-Efficient Differentially Private and Robust Federated Learning
We propose Fed-DPRoC, a novel federated learning framework that simultaneously ensures differential privacy (DP), Byzantine robustness, and communication efficiency. We introduce the concept of robust-compatible compression, which enables users to compress DP-protected updates while maintaining the robustness of the aggregation rule. We instantiate our framework as RobAJoL, combining the Johnson-Lindenstrauss (JL) transform for compression with robust averaging for robust aggregation. We theoretically prove the compatibility of JL transform with robust averaging and show that RobAJoL preserves robustness guarantees, ensures DP, and reduces communication cost. Experiments on CIFAR-10 and Fashion MNIST validate our theoretical claims and demonstrate that RobAJoL outperforms existing methods in terms of robustness and utility under different Byzantine attacks.
☆ WANify: Gauging and Balancing Runtime WAN Bandwidth for Geo-distributed Data Analytics
Accurate wide area network (WAN) bandwidth (BW) is essential for geo-distributed data analytics (GDA) systems to make optimal decisions such as data and task placement to improve performance. Existing GDA systems, however, measure WAN BW statically and independently between data centers (DCs), while data transfer occurs dynamically and simultaneously among DCs during workload execution. Also, they use a single connection WAN BW that cannot capture actual WAN capacities between distant DCs. Such inaccurate WAN BWs yield sub-optimal decisions, inflating overall query latency and cost. In this paper, we present WANify, a new framework that precisely and dynamically gauges achievable runtime WAN BW using a machine learning prediction scheme, decision tree-based Random Forest. This helps GDA systems make better decisions yielding reduced latency and costs including WAN BW monitoring costs. Based on predicted runtime WAN BW, WANify determines the optimal number of heterogeneous parallel connections for data transfer among DCs. This approach improves performance without additional, or even at reduced cost, by fully exploiting available WAN capacities. In addition, WANify considers dynamics like network and workloads, and heterogeneity like skewed data, heterogeneous compute resources, and a varying number of DCs while making decisions. The WANify prototype running on state-of-the-art GDA systems is evaluated on AWS with 8 geo-distributed DCs. Results show that WANify enhances WAN throughput by balancing between the strongest and weakest WAN links, enabling GDA systems to reduce latency and cost by up to 26% and 16% respectively with minimal effort, all while handling dynamics and heterogeneity efficiently.
comment: This paper is accepted for publication at the 2025 IEEE International Symposium on Workload Characterization (IISWC'25)
☆ Accelerating Edge Inference for Distributed MoE Models with Latency-Optimized Expert Placement
Mixture-of-Experts (MoE) have become a cornerstone for training and scaling large language models (LLMs), offering substantial gains in model capacity and efficiency through sparse expert activation. However, serving these models remains challenging in practice, particularly in resource-constrained edge environments, due to their large memory footprint and complex communication demands. While centralized cloud inference is common, it incurs high infrastructure costs, along with latency and privacy concerns. A few recent edge MoE works propose memory-efficient strategies but typically focus on single-device or homogeneous setups. This paper presents DanceMoE, an efficient MoE inference framework that enables activation-aware expert placement across collaborative, heterogeneous, GPU-equipped edge servers. DanceMoE leverages the inherent sparsity of MoE models and workload locality to minimize cross-server communication and enable efficient expert placement under heterogeneous resource constraints. It introduces a data-driven, activation-aware placement algorithm that balances local coverage and memory usage across servers, alongside a lightweight migration mechanism that adapts expert assignments under evolving workloads. We evaluate DanceMoE on modern MoE models and widely used datasets, demonstrating up to 30.6\% lower inference latency, and substantial communication reduction compared to state-of-the-art baselines, showcasing the effectiveness of collaborative edge-based MoE inference.
☆ Dissecting CPU-GPU Unified Physical Memory on AMD MI300A APUs
Discrete GPUs are a cornerstone of HPC and data center systems, requiring management of separate CPU and GPU memory spaces. Unified Virtual Memory (UVM) has been proposed to ease the burden of memory management; however, at a high cost in performance. The recent introduction of AMD's MI300A Accelerated Processing Units (APUs)--as deployed in the El Capitan supercomputer--enables HPC systems featuring integrated CPU and GPU with Unified Physical Memory (UPM) for the first time. This work presents the first comprehensive characterization of the UPM architecture on MI300A. We first analyze the UPM system properties, including memory latency, bandwidth, and coherence overhead. We then assess the efficiency of the system software in memory allocation, page fault handling, TLB management, and Infinity Cache utilization. We propose a set of porting strategies for transforming applications for the UPM architecture and evaluate six applications on the MI300A APU. Our results show that applications on UPM using the unified memory model can match or outperform those in the explicitly managed model--while reducing memory costs by up to 44%.
comment: To be published in IISWC 2025
☆ DIT: Dimension Reduction View on Optimal NFT Rarity Meters
Non-fungible tokens (NFTs) have become a significant digital asset class, each uniquely representing virtual entities such as artworks. These tokens are stored in collections within smart contracts and are actively traded across platforms on Ethereum, Bitcoin, and Solana blockchains. The value of NFTs is closely tied to their distinctive characteristics that define rarity, leading to a growing interest in quantifying rarity within both industry and academia. While there are existing rarity meters for assessing NFT rarity, comparing them can be challenging without direct access to the underlying collection data. The Rating over all Rarities (ROAR) benchmark addresses this challenge by providing a standardized framework for evaluating NFT rarity. This paper explores a dimension reduction approach to rarity design, introducing new performance measures and meters, and evaluates them using the ROAR benchmark. Our contributions to the rarity meter design issue include developing an optimal rarity meter design using non-metric weighted multidimensional scaling, introducing Dissimilarity in Trades (DIT) as a performance measure inspired by dimension reduction techniques, and unveiling the non-interpretable rarity meter DIT, which demonstrates superior performance compared to existing methods.
Data-driven Trust Bootstrapping for Mobile Edge Computing-based Industrial IoT Services
We propose a data-driven and context-aware approach to bootstrap trustworthiness of homogeneous Internet of Things (IoT) services in Mobile Edge Computing (MEC) based industrial IoT (IIoT) systems. The proposed approach addresses key limitations in adapting existing trust bootstrapping approaches into MEC-based IIoT systems. These key limitations include, the lack of opportunity for a service consumer to interact with a lesser-known service over a prolonged period of time to get a robust measure of its trustworthiness, inability of service consumers to consistently interact with their peers to receive reliable recommendations of the trustworthiness of a lesser-known service as well as the impact of uneven context parameters in different MEC environments causing uneven trust environments for trust evaluation. In addition, the proposed approach also tackles the problem of data sparsity via enabling knowledge sharing among different MEC environments within a given MEC topology. To verify the effectiveness of the proposed approach, we carried out a comprehensive evaluation on two real-world datasets suitably adjusted to exhibit the context-dependent trust information accumulated in MEC environments within a given MEC topology. The experimental results affirmed the effectiveness of our approach and its suitability to bootstrap trustworthiness of services in MEC-based IIoT systems.
comment: 15 pages
☆ Optimizing Allreduce Operations for Heterogeneous Architectures with Multiple Processes per GPU
Large inter-GPU all-reduce operations, prevalent throughout deep learning, are bottlenecked by communication costs. Emerging heterogeneous architectures are comprised of complex nodes, often containing $4$ GPUs and dozens to hundreds of CPU cores per node. Parallel applications are typically accelerated on the available GPUs, using only a single CPU core per GPU while the remaining cores sit idle. This paper presents novel optimizations to large GPU-aware all-reduce operations, extending lane-aware reductions to the GPUs, and notably using multiple CPU cores per GPU to accelerate these operations. These multi-CPU-accelerated GPU-aware lane all-reduces yield speedup of up to $2.45$x for large MPI all-reduces across the NVIDIA A100 GPUs of NCSA's Delta supercomputer. Finally, the approach is extended to NVIDIA's and AMD's collective communication libraries, achieving speedup of up to $1.77$x and $1.71$x, respectively, across $2$ state-of-the-art supercomputers.
☆ OrbitChain: Orchestrating In-orbit Real-time Analytics of Earth Observation Data
Earth observation analytics have the potential to serve many time-sensitive applications. However, due to limited bandwidth and duration of ground-satellite connections, it takes hours or even days to download and analyze data from existing Earth observation satellites, making real-time demands like timely disaster response impossible. Toward real-time analytics, we introduce OrbitChain, a collaborative analytics framework that orchestrates computational resources across multiple satellites in an Earth observation constellation. OrbitChain decomposes analytics applications into microservices and allocates computational resources for time-constrained analysis. A traffic routing algorithm is devised to minimize the inter-satellite communication overhead. OrbitChain adopts a pipeline workflow that completes Earth observation tasks in real-time, facilitates time-sensitive applications and inter-constellation collaborations such as tip-and-cue. To evaluate OrbitChain, we implement a hardware-in-the-loop orbital computing testbed. Experiments show that our system can complete up to 60% analytics workload than existing Earth observation analytics framework while reducing the communication overhead by up to 72%.
comment: currently under review
☆ Persistent and Partitioned MPI for Stencil Communication
Many parallel applications rely on iterative stencil operations, whose performance are dominated by communication costs at large scales. Several MPI optimizations, such as persistent and partitioned communication, reduce overheads and improve communication efficiency through amortized setup costs and reduced synchronization of threaded sends. This paper presents the performance of stencil communication in the Comb benchmarking suite when using non blocking, persistent, and partitioned communication routines. The impact of each optimization is analyzed at various scales. Further, the paper presents an analysis of the impact of process count, thread count, and message size on partitioned communication routines. Measured timings show that persistent MPI communication can provide a speedup of up to 37% over the baseline MPI communication, and partitioned MPI communication can provide a speedup of up to 68%.
☆ X-MoE: Enabling Scalable Training for Emerging Mixture-of-Experts Architectures on HPC Platforms
Emerging expert-specialized Mixture-of-Experts (MoE) architectures, such as DeepSeek-MoE, deliver strong model quality through fine-grained expert segmentation and large top-k routing. However, their scalability is limited by substantial activation memory overhead and costly all-to-all communication. Furthermore, current MoE training systems - primarily optimized for NVIDIA GPUs - perform suboptimally on non-NVIDIA platforms, leaving significant computational potential untapped. In this work, we present X-MoE, a novel MoE training system designed to deliver scalable training performance for next-generation MoE architectures. X-MoE achieves this via several novel techniques, including efficient padding-free MoE training with cross-platform kernels, redundancy-bypassing dispatch, and hybrid parallelism with sequence-sharded MoE blocks. Our evaluation on the Frontier supercomputer, powered by AMD MI250X GPUs, shows that X-MoE scales DeepSeek-style MoEs up to 545 billion parameters across 1024 GPUs - 10x larger than the largest trainable model with existing methods under the same hardware budget, while maintaining high training throughput. The source code of X-MoE is available at https://github.com/Supercomputing-System-AI-Lab/X-MoE.
comment: 17 pages, 20 figures. To be published in SC 2025
☆ Harnessing the Full Potential of RRAMs through Scalable and Distributed In-Memory Computing with Integrated Error Correction
Exponential growth in global computing demand is exacerbated due to the higher-energy requirements of conventional architectures, primarily due to energy-intensive data movement. In-memory computing with Resistive Random Access Memory (RRAM) addresses this by co-integrating memory and processing, but faces significant hurdles related to device-level non-idealities and poor scalability for large computing tasks. Here, we introduce \textbf{MELISO+} (In-\textbf{Me}mory \textbf{Li}near \textbf{So}lver), a full-stack, distributed framework for energy-efficient in-memory computing. MELISO+ proposes a novel two-tier error correction mechanism to mitigate device non-idealities and develops a distributed RRAM computing framework to enable matrix computations exceeding dimensions of $65,000 \times 65,000$. This approach reduces first- and second-order arithmetic errors due to device non-idealities by over 90\%, enhances energy efficiency by three to five orders of magnitude, and decreases latency 100-fold. Hence, MELISO+ allows lower-precision RRAM devices to outperform high-precision device alternatives in accuracy, energy and latency metrics. By unifying algorithm-hardware co-design with scalable architecture, MELISO+ significantly advances sustainable, high-dimensional computing suitable for applications like large language models and generative AI.
comment: Submitted to Nature Communication Contact authors for any info
☆ Federated Action Recognition for Smart Worker Assistance Using FastPose
In smart manufacturing environments, accurate and real-time recognition of worker actions is essential for productivity, safety, and human-machine collaboration. While skeleton-based human activity recognition (HAR) offers robustness to lighting, viewpoint, and background variations, most existing approaches rely on centralized datasets, which are impractical in privacy-sensitive industrial scenarios. This paper presents a federated learning (FL) framework for pose-based HAR using a custom skeletal dataset of eight industrially relevant upper-body gestures, captured from five participants and processed using a modified FastPose model. Two temporal backbones, an LSTM and a Transformer encoder, are trained and evaluated under four paradigms: centralized, local (per-client), FL with weighted federated averaging (FedAvg), and federated ensemble learning (FedEnsemble). On the global test set, the FL Transformer improves over centralized training by +12.4 percentage points, with FedEnsemble delivering a +16.3 percentage points gain. On an unseen external client, FL and FedEnsemble exceed centralized accuracy by +52.6 and +58.3 percentage points, respectively. These results demonstrate that FL not only preserves privacy but also substantially enhances cross-user generalization, establishing it as a practical solution for scalable, privacy-aware HAR in heterogeneous industrial settings.
comment: 8 pages and submitted to FLTA2025 conference
☆ Towards Integrated Energy-Communication-Transportation Hub: A Base-Station-Centric Design in 5G and Beyond
The rise of 5G communication has transformed the telecom industry for critical applications. With the widespread deployment of 5G base stations comes a significant concern about energy consumption. Key industrial players have recently shown strong interest in incorporating energy storage systems to store excess energy during off-peak hours, reducing costs and participating in demand response. The fast development of batteries opens up new possibilities, such as the transportation area. An effective method is needed to maximize base station battery utilization and reduce operating costs. In this trend towards next-generation smart and integrated energy-communication-transportation (ECT) infrastructure, base stations are believed to play a key role as service hubs. By exploring the overlap between base station distribution and electric vehicle charging infrastructure, we demonstrate the feasibility of efficiently charging EVs using base station batteries and renewable power plants at the Hub. Our model considers various factors, including base station traffic conditions, weather, and EV charging behavior. This paper introduces an incentive mechanism for setting charging prices and employs a deep reinforcement learning-based method for battery scheduling. Experimental results demonstrate the effectiveness of our proposed ECT-Hub in optimizing surplus energy utilization and reducing operating costs, particularly through revenue-generating EV charging.
♻ ☆ Novel Blockchain-based Protocols for Electronic Voting and Auctions
Programmable blockchains have long been a hot research topic given their tremendous use in decentralized applications. Smart contracts, using blockchains as their underlying technology, inherit the desired properties such as verifiability, immutability, and transparency, which make it a great suit in trustless environments. In this thesis, we consider several decentralized protocols to be built on blockchains, specifically using smart contracts on Ethereum. We used algorithmic and cryptographic tools in our implementations to further improve the level of security and efficiency beyond the state-of-the-art works. We proposed a new approach called Blind Vote, which is an untraceable, secure, efficient, secrecy-preserving, and fully on-chain electronic voting protocol based on the well-known concept of Chaum's blind signatures. We illustrate that our approach achieves the same security guarantees as previous methods such as Tornado Vote [1], while consuming significantly less gas. Thus, we provide a cheaper and considerably more gas-efficient alternative for anonymous blockchain-based voting. On the other hand, we propose a new family of algorithms for private, trustless auctions that protect bidder identities and bid values while remaining practical for smart contract execution. We ensure trustlessness by running the auction logic in a smart contract, thereby eliminating reliance on any single trusted party. This approach prevents bid tampering, front-running, and collusion by enforcing immutability and decentralized verification of bids. The resulting protocol uniquely combines efficiency, trustlessness, and enduring bid privacy, offering a scalable and secure solution for blockchain-based marketplaces and other decentralized applications.
comment: My thesis for MPhil at HKUST
♻ ☆ Inter-APU Communication on AMD MI300A Systems via Infinity Fabric: a Deep Dive
The ever-increasing compute performance of GPU accelerators drives up the need for efficient data movements within HPC applications to sustain performance. Proposed as a solution to alleviate CPU-GPU data movement, AMD MI300A Accelerated Processing Unit (APU) combines CPU, GPU, and high-bandwidth memory (HBM) within a single physical package. Leadership supercomputers, such as El Capitan, group four APUs within a single compute node, using Infinity Fabric Interconnect. In this work, we design specific benchmarks to evaluate direct memory access from the GPU, explicit inter-APU data movement, and collective multi-APU communication. We also compare the efficiency of HIP APIs, MPI routines, and the GPU-specialized RCCL library. Our results highlight key design choices for optimizing inter-APU communication on multi-APU AMD MI300A systems with Infinity Fabric, including programming interfaces, allocators, and data movement. Finally, we optimize two real HPC applications, Quicksilver and CloverLeaf, and evaluate them on a four MI100A APU system.
♻ ☆ Adversarially-Robust Gossip Algorithms for Approximate Quantile and Mean Computations
This paper presents gossip algorithms for aggregation tasks that demonstrate both robustness to adversarial corruptions of any order of magnitude and optimality across a substantial range of these corruption levels. Gossip algorithms distribute information in a scalable and efficient way by having random pairs of nodes exchange small messages. Value aggregation problems are of particular interest in this setting, as they occur frequently in practice, and many elegant algorithms have been proposed for computing aggregates and statistics such as averages and quantiles. An important and well-studied advantage of gossip algorithms is their robustness to message delays, network churn, and unreliable message transmissions. However, these crucial robustness guarantees only hold if all nodes follow the protocol and no messages are corrupted. In this paper, we remedy this by providing a framework to model both adversarial participants and message corruptions in gossip-style communications by allowing an adversary to control a small fraction of the nodes or corrupt messages arbitrarily. Despite this very powerful and general corruption model, we show that robust gossip algorithms can be designed for many important aggregation problems. Our algorithms guarantee that almost all nodes converge to an approximately correct answer with optimal efficiency and essentially as fast as without corruptions. The design of adversarially-robust gossip algorithms poses completely new challenges. Despite this, our algorithms remain very simple variations of known non-robust algorithms with often only subtle changes to avoid non-compliant nodes gaining too much influence over outcomes. While our algorithms remain simple, their analysis is much more complex and often requires a completely different approach than the non-adversarial setting.
comment: 37 pages
♻ ☆ An overview of the efficiency and censorship-resistance guarantees of widely-used consensus protocols
Censorship resistance with short-term inclusion guarantees is an important feature of decentralized systems, missing from many state-of-the-art and even deployed consensus protocols. In leader-based protocols the leader arbitrarily selects the transactions to be included in the new block, and so does a block builder in protocols such as Bitcoin and Ethereum. In a different line of work, since the redundancy of consensus for implementing distributed payments was formally proven, consensusless protocols have been described in theory and deployed in the real world. This has resulted in blockchains and payment systems that are more efficient, and at the same time avoid the centralized role of a leader or block builder. In this report we review existing consensus and consensusless protocols with regard to their censorship-resistance, efficiency, and other properties. Moreover, we present an approach for new constructions with these properties in mind, building on existing leader-based protocols.
♻ ☆ PhoenixOS: Concurrent OS-level GPU Checkpoint and Restore with Validated Speculation
PHOENIXOS (PHOS) is the first OS service that can concurrently checkpoint and restore (C/R) GPU processes -- a fundamental capability for critical tasks such as fault tolerance, process migration, and fast startup. While concurrent C/R is well-established on CPUs, it poses unique challenges on GPUs due to their lack of essential features for efficiently tracing concurrent memory reads and writes, such as specific hardware capabilities (e.g., dirty bits) and OS-mediated data paths (e.g., copy-on-write). To ensure correct concurrent C/R, PHOS proactively detects GPU memory reads and writes through a two-step process: first, it speculates about GPU memory accesses based on the arguments used when launching GPU kernels; then, it validates these accesses efficiently at runtime using binary instrumentation. With this validated speculation, PHOS retrofits CPU-based concurrent C/R for GPUs through software-based approaches, including soft copy-on-write, soft recopy, and soft on-demand restore. PHOS further proposes several GPU-aware techniques for efficient GPU C/R, including coordinated checkpoint data transfer and execution context pool. For downstream tasks that use C/R for tolerating failures, migrating processes between machines, and accelerating cold starts in serverless computing, PHOS achieves orders of magnitude higher performance than state-of-the-art OS-level GPU C/R systems like NVIDIA cuda-checkpoint.
comment: To appear at SOSP'25; Final version v1
♻ ☆ Hands-on Quantum Programming Labs for EECS Students
This report presents a practical approach to teaching quantum computing to Electrical Engineering & Computer Science (EECS) students through dedicated hands-on programming labs. The labs cover a diverse range of topics, encompassing fundamental elements, such as entanglement, quantum gates and circuits, as well as advanced algorithms including Quantum Key Distribution, Deutsch and Deutsch-Jozsa Algorithms, Simon's algorithm, and Grover's algorithm. As educators, we aim to share our teaching insights and resources with fellow instructors in the field. The full lab handouts and program templates are provided for interested instructors. Furthermore, the report elucidates the rationale behind the design of each experiment, enabling a deeper understanding of quantum computing.
comment: Program templates have been updated based on Qiskit version 2.1. Latex handouts are located in the subdir 'handouts_latex,' and program templates can be found in the 'pub' folder. The commands to install the Qiskit as a shared virtual environment on a lab workstation can be found in the Appendices
♻ ☆ Recipes for Pre-training LLMs with MXFP8
Using fewer bits to represent model parameters and related tensors during pre-training has become a required technique for improving GPU efficiency without sacrificing accuracy. Microscaling (MX) formats introduced in NVIDIA Blackwell generation of GPUs represent a major advancement of this technique, making it practical to combine narrow floating-point data types with finer granularity per-block scaling factors. In turn, this enables both quantization of more tensors than previous approaches and more efficient execution of operations on those tensors. Effective use of MX-formats requires careful choices of various parameters. In this paper we review these choices and show how MXFP8-E4M3 datatype and a specific number conversion algorithm result in training sessions that match those carried out in BF16. We present results using models with up to 8B parameters, trained on high-quality datasets of up to 15T tokens.
Information Retrieval 18
☆ All for law and law for all: Adaptive RAG Pipeline for Legal Research
Retrieval-Augmented Generation (RAG) mitigates hallucinations by grounding large language model outputs in cited sources, a capability that is especially critical in the legal domain. We present an end-to-end RAG pipeline that revisits and extends the LegalBenchRAG baseline with three targeted enhancements: (i) a context-aware query translator that disentangles document references from natural-language questions and adapts retrieval depth and response style based on expertise and specificity, (ii) open-source retrieval strategies using SBERT and GTE embeddings that achieve substantial performance gains (improving Recall@K by 30-95\% and Precision@K by $\sim$2.5$\times$ for $K>4$) while remaining cost-efficient, and (iii) a comprehensive evaluation and generation framework that combines RAGAS, BERTScore-F1, and ROUGE-Recall to assess semantic alignment and faithfulness across models and prompt designs. Our results show that carefully designed open-source pipelines can rival or outperform proprietary approaches in retrieval quality, while a custom legal-grounded prompt consistently produces more faithful and contextually relevant answers than baseline prompting. Taken together, these contributions demonstrate the potential of task-aware, component-level tuning to deliver legally grounded, reproducible, and cost-effective RAG systems for legal research assistance.
comment: submitted to NLLP 2025 Workshop
☆ Is This News Still Interesting to You?: Lifetime-aware Interest Matching for News Recommendation
Personalized news recommendation aims to deliver news articles aligned with users' interests, serving as a key solution to alleviate the problem of information overload on online news platforms. While prior work has improved interest matching through refined representations of news and users, the following time-related challenges remain underexplored: (C1) leveraging the age of clicked news to infer users' interest persistence, and (C2) modeling the varying lifetime of news across topics and users. To jointly address these challenges, we propose a novel Lifetime-aware Interest Matching framework for nEws recommendation, named LIME, which incorporates three key strategies: (1) User-Topic lifetime-aware age representation to capture the relative age of news with respect to a user-topic pair, (2) Candidate-aware lifetime attention for generating temporally aligned user representation, and (3) Freshness-guided interest refinement for prioritizing valid candidate news at prediction time. Extensive experiments on two real-world datasets demonstrate that LIME consistently outperforms a wide range of state-of-the-art news recommendation methods, and its model agnostic strategies significantly improve recommendation accuracy.
comment: 10 pages, 7 figures, 4 tables, accepted at ACM International Conference on Information and Knowledge Management (CIKM)
☆ D-RDW: Diversity-Driven Random Walks for News Recommender Systems
This paper introduces Diversity-Driven RandomWalks (D-RDW), a lightweight algorithm and re-ranking technique that generates diverse news recommendations. D-RDW is a societal recommender, which combines the diversification capabilities of the traditional random walk algorithms with customizable target distributions of news article properties. In doing so, our model provides a transparent approach for editors to incorporate norms and values into the recommendation process. D-RDW shows enhanced performance across key diversity metrics that consider the articles' sentiment and political party mentions when compared to state-of-the-art neural models. Furthermore, D-RDW proves to be more computationally efficient than existing approaches.
comment: 6 pages
☆ Informfully Recommenders -- Reproducibility Framework for Diversity-aware Intra-session Recommendations
Norm-aware recommender systems have gained increased attention, especially for diversity optimization. The recommender systems community has well-established experimentation pipelines that support reproducible evaluations by facilitating models' benchmarking and comparisons against state-of-the-art methods. However, to the best of our knowledge, there is currently no reproducibility framework to support thorough norm-driven experimentation at the pre-processing, in-processing, post-processing, and evaluation stages of the recommender pipeline. To address this gap, we present Informfully Recommenders, a first step towards a normative reproducibility framework that focuses on diversity-aware design built on Cornac. Our extension provides an end-to-end solution for implementing and experimenting with normative and general-purpose diverse recommender systems that cover 1) dataset pre-processing, 2) diversity-optimized models, 3) dedicated intrasession item re-ranking, and 4) an extensive set of diversity metrics. We demonstrate the capabilities of our extension through an extensive offline experiment in the news domain.
comment: 10 pages
☆ Deep Research: A Survey of Autonomous Research Agents
The rapid advancement of large language models (LLMs) has driven the development of agentic systems capable of autonomously performing complex tasks. Despite their impressive capabilities, LLMs remain constrained by their internal knowledge boundaries. To overcome these limitations, the paradigm of deep research has been proposed, wherein agents actively engage in planning, retrieval, and synthesis to generate comprehensive and faithful analytical reports grounded in web-based evidence. In this survey, we provide a systematic overview of the deep research pipeline, which comprises four core stages: planning, question developing, web exploration, and report generation. For each stage, we analyze the key technical challenges and categorize representative methods developed to address them. Furthermore, we summarize recent advances in optimization techniques and benchmarks tailored for deep research. Finally, we discuss open challenges and promising research directions, aiming to chart a roadmap toward building more capable and trustworthy deep research agents.
☆ Asymmetric Diffusion Recommendation Model
Recently, motivated by the outstanding achievements of diffusion models, the diffusion process has been employed to strengthen representation learning in recommendation systems. Most diffusion-based recommendation models typically utilize standard Gaussian noise in symmetric forward and reverse processes in continuous data space. Nevertheless, the samples derived from recommendation systems inhabit a discrete data space, which is fundamentally different from the continuous one. Moreover, Gaussian noise has the potential to corrupt personalized information within latent representations. In this work, we propose a novel and effective method, named Asymmetric Diffusion Recommendation Model (AsymDiffRec), which learns forward and reverse processes in an asymmetric manner. We define a generalized forward process that simulates the missing features in real-world recommendation samples. The reverse process is then performed in an asymmetric latent feature space. To preserve personalized information within the latent representation, a task-oriented optimization strategy is introduced. In the serving stage, the raw sample with missing features is regarded as a noisy input to generate a denoising and robust representation for the final prediction. By equipping base models with AsymDiffRec, we conduct online A/B tests, achieving improvements of +0.131% and +0.166% in terms of users' active days and app usage duration respectively. Additionally, the extended offline experiments also demonstrate improvements. AsymDiffRec has been implemented in the Douyin Music App.
comment: Accepted by CIKM2025
☆ Multi-Granularity Distribution Modeling for Video Watch Time Prediction via Exponential-Gaussian Mixture Network
Accurate watch time prediction is crucial for enhancing user engagement in streaming short-video platforms, although it is challenged by complex distribution characteristics across multi-granularity levels. Through systematic analysis of real-world industrial data, we uncover two critical challenges in watch time prediction from a distribution aspect: (1) coarse-grained skewness induced by a significant concentration of quick-skips1, (2) fine-grained diversity arising from various user-video interaction patterns. Consequently, we assume that the watch time follows the Exponential-Gaussian Mixture (EGM) distribution, where the exponential and Gaussian components respectively characterize the skewness and diversity. Accordingly, an Exponential-Gaussian Mixture Network (EGMN) is proposed for the parameterization of EGM distribution, which consists of two key modules: a hidden representation encoder and a mixture parameter generator. We conducted extensive offline experiments on public datasets and online A/B tests on the industrial short-video feeding scenario of Xiaohongshu App to validate the superiority of EGMN compared with existing state-of-the-art methods. Remarkably, comprehensive experimental results have proven that EGMN exhibits excellent distribution fitting ability across coarse-to-fine-grained levels. We open source related code on Github: https://github.com/BestActionNow/EGMN.
comment: Accepted as oral full paper by RecSys'2025 conference
☆ Diagnostic-Guided Dynamic Profile Optimization for LLM-based User Simulators in Sequential Recommendation
Recent advances in large language models (LLMs) have enabled realistic user simulators for developing and evaluating recommender systems (RSs). However, existing LLM-based simulators for RSs face two major limitations: (1) static and single-step prompt-based inference that leads to inaccurate and incomplete user profile construction; (2) unrealistic and single-round recommendation-feedback interaction pattern that fails to capture real-world scenarios. To address these limitations, we propose DGDPO (Diagnostic-Guided Dynamic Profile Optimization), a novel framework that constructs user profile through a dynamic and iterative optimization process to enhance the simulation fidelity. Specifically, DGDPO incorporates two core modules within each optimization loop: firstly, a specialized LLM-based diagnostic module, calibrated through our novel training strategy, accurately identifies specific defects in the user profile. Subsequently, a generalized LLM-based treatment module analyzes the diagnosed defect and generates targeted suggestions to refine the profile. Furthermore, unlike existing LLM-based user simulators that are limited to single-round interactions, we are the first to integrate DGDPO with sequential recommenders, enabling a bidirectional evolution where user profiles and recommendation strategies adapt to each other over multi-round interactions. Extensive experiments conducted on three real-world datasets demonstrate the effectiveness of our proposed framework.
☆ jXBW: Fast Substructure Search in Large-Scale JSONL Datasets for Foundation Model Applications
Substructure search in JSON Lines (JSONL) datasets is essential for modern applications such as prompt engineering in foundation models, but existing methods suffer from prohibitive computational costs due to exhaustive tree traversal and subtree matching. We present jXBW, a fast method for substructure search on large-scale JSONL datasets. Our method makes three key technical contributions: (i) a merged tree representation built by merging trees of multiple JSON objects while preserving individual identities, (ii) a succinct data structure based on the eXtended Burrows-Wheeler Transform that enables efficient tree navigation and subpath search, and (iii) an efficient three-step substructure search algorithm that combines path decomposition, ancestor computation, and adaptive tree identifier collection to ensure correctness while avoiding exhaustive tree traversal. Experimental evaluation on real-world datasets demonstrates that jXBW consistently outperforms existing methods, achieving speedups of 16$\times$ for smaller datasets and up to 4,700$\times$ for larger datasets over tree-based approaches, and more than 6$\times$10$^6$ over XML-based processing while maintaining competitive memory usage.
☆ TASER: Table Agents for Schema-guided Extraction and Recommendation
Real-world financial documents report essential information about an entity's financial holdings that can span millions of different financial instrument types. Yet, these details are often buried in messy, multi-page, fragmented tables - for example, 99.4% of the tables in our dataset have no bounding boxes with the maximum number of rows amounting to 426 per table across 44 pages. To tackle these unique challenges from real-world tables, we present a continuously learning, agentic table extraction system, TASER (Table Agents for Schema-guided Extraction and Recommendation) that extracts highly unstructured, multi-page, heterogeneous tables into normalized, schema-conforming outputs. Our table agents execute on table detection, classification, extraction, and recommendations by leveraging an initial schema. Then, our Recommender Agent reviews the outputs, recommends schema revisions, and decides on the final recommendations, enabling TASER to outperform existing table detection models such as Table Transformer by 10.1%. Within this continuous learning process, we highlight that larger batch sizes result in a 104.3% increase in schema recommendations that are actionable and utilized, resulting in a 9.8% increase in extracted holdings - highlighting the importance of a continuous learning process. To train TASER, we have manually labeled 22,584 pages (28,150,449 tokens), 3,213 tables for $731,685,511,687 of holdings culminating in one of the first real financial table datasets. We release our dataset TASERTab to enable the research community to access real-world financial tables and outputs. Our results highlight the promise of agentic, schema-guided extraction systems for robust understanding of real-world financial tables.
☆ CASPER: Concept-integrated Sparse Representation for Scientific Retrieval
The exponential growth of scientific literature has made it increasingly difficult for researchers to keep up with the literature. In an attempt to alleviate this problem, we propose CASPER, a sparse retrieval model for scientific search that utilizes tokens and keyphrases as representation units (i.e. dimensions in the sparse embedding space), enabling it to represent queries and documents with research concepts and match them at both granular and conceptual levels. To overcome the lack of suitable training data, we propose mining training data by leveraging scholarly references (i.e. signals that capture how research concepts of papers are expressed in different settings), including titles, citation contexts, author-assigned keyphrases, and co-citations. CASPER outperforms strong dense and sparse retrieval baselines on eight scientific retrieval benchmarks. Moreover, we demonstrate that through simple post-processing, CASPER can be effectively used for the keyphrase generation tasks, achieving competitive performance with the established CopyRNN while producing more diverse keyphrases and being nearly four times faster.
comment: 11 Pages. Code: https://github.com/louisdo/CASPER
☆ FLAIR: Feedback Learning for Adaptive Information Retrieval
Recent advances in Large Language Models (LLMs) have driven the adoption of copilots in complex technical scenarios, underscoring the growing need for specialized information retrieval solutions. In this paper, we introduce FLAIR, a lightweight, feedback learning framework that adapts copilot systems' retrieval strategies by integrating domain-specific expert feedback. FLAIR operates in two stages: an offline phase obtains indicators from (1) user feedback and (2) questions synthesized from documentation, storing these indicators in a decentralized manner. An online phase then employs a two-track ranking mechanism to combine raw similarity scores with the collected indicators. This iterative setup refines retrieval performance for any query. Extensive real-world evaluations of FLAIR demonstrate significant performance gains on both previously seen and unseen queries, surpassing state-of-the-art approaches. The system has been successfully integrated into Copilot DECO, serving thousands of users at Microsoft, demonstrating its scalability and effectiveness in operational environments.
comment: Accepted to CIKM2025
☆ Explicit v.s. Implicit Memory: Exploring Multi-hop Complex Reasoning Over Personalized Information
In large language model-based agents, memory serves as a critical capability for achieving personalization by storing and utilizing users' information. Although some previous studies have adopted memory to implement user personalization, they typically focus on preference alignment and simple question-answering. However, in the real world, complex tasks often require multi-hop reasoning on a large amount of user information, which poses significant challenges for current memory approaches. To address this limitation, we propose the multi-hop personalized reasoning task to explore how different memory mechanisms perform in multi-hop reasoning over personalized information. We explicitly define this task and construct a dataset along with a unified evaluation framework. Then, we implement various explicit and implicit memory methods and conduct comprehensive experiments. We evaluate their performance on this task from multiple perspectives and analyze their strengths and weaknesses. Besides, we explore hybrid approaches that combine both paradigms and propose the HybridMem method to address their limitations. We demonstrate the effectiveness of our proposed model through extensive experiments. To benefit the research community, we release this project at https://github.com/nuster1128/MPR.
comment: 15 pages, 13 figures, 3 tables
♻ ☆ AutoChemSchematic AI: Agentic Physics-Aware Automation for Chemical Manufacturing Scale-Up
Recent advances in generative AI have accelerated the discovery of novel chemicals and materials. However, scaling these discoveries to industrial production remains a major bottleneck due to the synthesis gap -- the need to develop entirely new manufacturing processes. This challenge requires detailed engineering blueprints: PFDs for equipment layouts and material/energy flows, and PIDs for process plant operations. Current AI systems cannot yet reliably generate these critical engineering schematics, creating a fundamental obstacle to manufacturing scale-up of novel discoveries. We present a closed-loop, physics-aware framework for automated generation of industrially viable PFDs and PIDs. The framework integrates three key components: (1) domain-specialized small language models (SLMs) trained for auto-generation of PFDs and PIDs, (2) a hierarchical knowledge graph containing process flow and instrumentation descriptions for 1,020+ chemicals for Graph Retrieval-Augmented Generation (GRAG), and (3) an open-source chemical process simulator for modeling, simulation, optimization, and analysis of novel chemical processes. The SLMs are trained through a multi-stage pipeline on synthetic datasets, with process simulator-in-the-loop validation ensuring feasibility. To enhance computational efficiency, the framework implements structural pruning (width and depth) guided by importance heuristics to reduce language model size while preserving accuracy, followed by advanced inference optimizations including FlashAttention, Lookahead Decoding, PagedAttention with KV-cache quantization, and Test-Time Inference Scaling. Experimental results demonstrate that our framework generates simulator-validated process descriptions with high fidelity.
♻ ☆ Action is All You Need: Dual-Flow Generative Ranking Network for Recommendation
Deep Learning Recommendation Models (DLRMs) often rely on extensive manual feature engineering to improve accuracy and user experience, which increases system complexity and limits scalability of model performance with respect to computational resources. Recently, Meta introduced a generative ranking paradigm based on HSTU block that enables end-to-end learning from raw user behavior sequences and demonstrates scaling law on large datasets that can be regarded as the state-of-the-art (SOTA). However, splitting user behaviors into interleaved item and action information significantly increases the input sequence length, which adversely affects both training and inference efficiency. To address this issue, we propose the Dual-Flow Generative Ranking Network (DFGR), that employs a dual-flow mechanism to optimize interaction modeling, ensuring efficient training and inference through end-to-end token processing. DFGR duplicates the original user behavior sequence into a real flow and a fake flow based on the authenticity of the action information, and then defines a novel interaction method between the real flow and the fake flow within the QKV module of the self-attention mechanism. This design reduces computational overhead and improves both training efficiency and inference performance compared to Meta's HSTU-based model. Experiments on both open-source and real industrial datasets show that DFGR outperforms DLRM, which serves as the industrial online baseline with extensive feature engineering, as well as Meta's HSTU and other common recommendation models such as DIN, DCN, DIEN, and DeepFM. Furthermore, we investigate optimal parameter allocation strategies under computational constraints, establishing DFGR as an efficient and effective next-generation generative ranking paradigm.
♻ ☆ Prompt-to-Slate: Diffusion Models for Prompt-Conditioned Slate Generation
Slate generation is a common task in streaming and e-commerce platforms, where multiple items are presented together as a list or ``slate''. Traditional systems focus mostly on item-level ranking and often fail to capture the coherence of the slate as a whole. A key challenge lies in the combinatorial nature of selecting multiple items jointly. To manage this, conventional approaches often assume users interact with only one item at a time, assumption that breaks down when items are meant to be consumed together. In this paper, we introduce DMSG, a generative framework based on diffusion models for prompt-conditioned slate generation. DMSG learns high-dimensional structural patterns and generates coherent, diverse slates directly from natural language prompts. Unlike retrieval-based or autoregressive models, DMSG models the joint distribution over slates, enabling greater flexibility and diversity. We evaluate DMSG in two key domains: music playlist generation and e-commerce bundle creation. In both cases, DMSG produces high-quality slates from textual prompts without explicit personalization signals. Offline and online results show that DMSG outperforms strong baselines in both relevance and diversity, offering a scalable, low-latency solution for prompt-driven recommendation. A live A/B test on a production playlist system further demonstrates increased user engagement and content diversity.
comment: 9 pages, 5 figures, 3 tables. Accepted at RecSys '25
♻ ☆ UMRE: A Unified Monotonic Transformation for Ranking Ensemble in Recommender Systems
Industrial recommender systems commonly rely on ensemble sorting (ES) to combine predictions from multiple behavioral objectives. Traditionally, this process depends on manually designed nonlinear transformations (e.g., polynomial or exponential functions) and hand-tuned fusion weights to balance competing goals -- an approach that is labor-intensive and frequently suboptimal in achieving Pareto efficiency. In this paper, we propose a novel Unified Monotonic Ranking Ensemble (UMRE) framework to address the limitations of traditional methods in ensemble sorting. UMRE replaces handcrafted transformations with Unconstrained Monotonic Neural Networks (UMNN), which learn expressive, strictly monotonic functions through the integration of positive neural integrals. Subsequently, a lightweight ranking model is employed to fuse the prediction scores, assigning personalized weights to each prediction objective. To balance competing goals, we further introduce a Pareto optimality strategy that adaptively coordinates task weights during training. UMRE eliminates manual tuning, maintains ranking consistency, and achieves fine-grained personalization. Experimental results on two public recommendation datasets (Kuairand and Tenrec) and online A/B tests demonstrate impressive performance and generalization capabilities.
♻ ☆ PinFM: Foundation Model for User Activity Sequences at a Billion-scale Visual Discovery Platform
User activity sequences have emerged as one of the most important signals in recommender systems. We present a foundational model, PinFM, for understanding user activity sequences across multiple applications at a billion-scale visual discovery platform. We pretrain a transformer model with 20B+ parameters using extensive user activity data, then fine-tune it for specific applications, efficiently coupling it with existing models. While this pretraining-and-fine-tuning approach has been popular in other domains, such as Vision and NLP, its application in industrial recommender systems presents numerous challenges. The foundational model must be scalable enough to score millions of items every second while meeting tight cost and latency constraints imposed by these systems. Additionally, it should capture the interactions between user activities and other features and handle new items that were not present during the pretraining stage. We developed innovative techniques to address these challenges. Our infrastructure and algorithmic optimizations, such as the Deduplicated Cross-Attention Transformer (DCAT), improved our throughput by 600% on Pinterest internal data. We demonstrate that PinFM can learn interactions between user sequences and candidate items by altering input sequences, leading to a 20% increase in engagement with new items. PinFM is now deployed to help improve the experience of more than a half billion users across various applications.
comment: small change to correct typo and add details
Artificial Intelligence 100
☆ RepreGuard: Detecting LLM-Generated Text by Revealing Hidden Representation Patterns ACL 2025
Detecting content generated by large language models (LLMs) is crucial for preventing misuse and building trustworthy AI systems. Although existing detection methods perform well, their robustness in out-of-distribution (OOD) scenarios is still lacking. In this paper, we hypothesize that, compared to features used by existing detection methods, the internal representations of LLMs contain more comprehensive and raw features that can more effectively capture and distinguish the statistical pattern differences between LLM-generated texts (LGT) and human-written texts (HWT). We validated this hypothesis across different LLMs and observed significant differences in neural activation patterns when processing these two types of texts. Based on this, we propose RepreGuard, an efficient statistics-based detection method. Specifically, we first employ a surrogate model to collect representation of LGT and HWT, and extract the distinct activation feature that can better identify LGT. We can classify the text by calculating the projection score of the text representations along this feature direction and comparing with a precomputed threshold. Experimental results show that RepreGuard outperforms all baselines with average 94.92% AUROC on both in-distribution (ID) and OOD scenarios, while also demonstrating robust resilience to various text sizes and mainstream attacks. Data and code are publicly available at: https://github.com/NLP2CT/RepreGuard
comment: Accepted to TACL 2025. This version is a pre-MIT Press publication version
☆ Exploring Autonomous Agents: A Closer Look at Why They Fail When Completing Tasks
Autonomous agent systems powered by Large Language Models (LLMs) have demonstrated promising capabilities in automating complex tasks. However, current evaluations largely rely on success rates without systematically analyzing the interactions, communication mechanisms, and failure causes within these systems. To bridge this gap, we present a benchmark of 34 representative programmable tasks designed to rigorously assess autonomous agents. Using this benchmark, we evaluate three popular open-source agent frameworks combined with two LLM backbones, observing a task completion rate of approximately 50%. Through in-depth failure analysis, we develop a three-tier taxonomy of failure causes aligned with task phases, highlighting planning errors, task execution issues, and incorrect response generation. Based on these insights, we propose actionable improvements to enhance agent planning and self-diagnosis capabilities. Our failure taxonomy, together with mitigation advice, provides an empirical foundation for developing more robust and effective autonomous agent systems in the future.
comment: Accepted by ASE 2025 NIER
☆ Spot the BlindSpots: Systematic Identification and Quantification of Fine-Grained LLM Biases in Contact Center Summaries
Abstractive summarization is a core application in contact centers, where Large Language Models (LLMs) generate millions of summaries of call transcripts daily. Despite their apparent quality, it remains unclear whether LLMs systematically under- or over-attend to specific aspects of the transcript, potentially introducing biases in the generated summary. While prior work has examined social and positional biases, the specific forms of bias pertinent to contact center operations - which we term Operational Bias - have remained unexplored. To address this gap, we introduce BlindSpot, a framework built upon a taxonomy of 15 operational bias dimensions (e.g., disfluency, speaker, topic) for the identification and quantification of these biases. BlindSpot leverages an LLM as a zero-shot classifier to derive categorical distributions for each bias dimension in a pair of transcript and its summary. The bias is then quantified using two metrics: Fidelity Gap (the JS Divergence between distributions) and Coverage (the percentage of source labels omitted). Using BlindSpot, we conducted an empirical study with 2500 real call transcripts and their summaries generated by 20 LLMs of varying scales and families (e.g., GPT, Llama, Claude). Our analysis reveals that biases are systemic and present across all evaluated models, regardless of size or family.
☆ Bayesian Optimization-based Search for Agent Control in Automated Game Testing
This work introduces an automated testing approach that employs agents controlling game characters to detect potential bugs within a game level. Harnessing the power of Bayesian Optimization (BO) to execute sample-efficient search, the method determines the next sampling point by analyzing the data collected so far and calculates the data point that will maximize information acquisition. To support the BO process, we introduce a game testing-specific model built on top of a grid map, that features the smoothness and uncertainty estimation required by BO, however and most importantly, it does not suffer the scalability issues that traditional models carry. The experiments demonstrate that the approach significantly improves map coverage capabilities in both time efficiency and exploration distribution.
☆ Contrastive Representations for Temporal Reasoning
In classical AI, perception relies on learning state-based representations, while planning, which can be thought of as temporal reasoning over action sequences, is typically achieved through search. We study whether such reasoning can instead emerge from representations that capture both perceptual and temporal structure. We show that standard temporal contrastive learning, despite its popularity, often fails to capture temporal structure due to its reliance on spurious features. To address this, we introduce Combinatorial Representations for Temporal Reasoning (CRTR), a method that uses a negative sampling scheme to provably remove these spurious features and facilitate temporal reasoning. CRTR achieves strong results on domains with complex temporal structure, such as Sokoban and Rubik's Cube. In particular, for the Rubik's Cube, CRTR learns representations that generalize across all initial states and allow it to solve the puzzle using fewer search steps than BestFS, though with longer solutions. To our knowledge, this is the first method that efficiently solves arbitrary Cube states using only learned representations, without relying on an external search algorithm.
comment: Project website: https://princeton-rl.github.io/CRTR/
☆ VerilogLAVD: LLM-Aided Rule Generation for Vulnerability Detection in Verilog
Timely detection of hardware vulnerabilities during the early design stage is critical for reducing remediation costs. Existing early detection techniques often require specialized security expertise, limiting their usability. Recent efforts have explored the use of large language models (LLMs) for Verilog vulnerability detection. However, LLMs struggle to capture the structure in Verilog code, resulting in inconsistent detection results. To this end, we propose VerilogLAVD, the first LLM-aided graph traversal rule generation approach for Verilog vulnerability detection. Our approach introduces the Verilog Property Graph (VeriPG), a unified representation of Verilog code. It combines syntactic features extracted from the abstract syntax tree (AST) with semantic information derived from control flow and data dependency graphs. We leverage LLMs to generate VeriPG-based detection rules from Common Weakness Enumeration (CWE) descriptions. These rules guide the rule executor that traversal VeriPG for potential vulnerabilities. To evaluate VerilogLAVD, we build a dataset collected from open-source repositories and synthesized data. In our empirical evaluation on 77 Verilog designs encompassing 12 CWE types, VerilogLAVD achieves an F1-score of 0.54. Compared to the LLM-only and LLM with external knowledge baselines, VerilogLAVD improves F1-score by 0.31 and 0.27, respectively.
☆ From Transthoracic to Transesophageal: Cross-Modality Generation using LoRA Diffusion AI 2025
Deep diffusion models excel at realistic image synthesis but demand large training sets-an obstacle in data-scarce domains like transesophageal echocardiography (TEE). While synthetic augmentation has boosted performance in transthoracic echo (TTE), TEE remains critically underrepresented, limiting the reach of deep learning in this high-impact modality. We address this gap by adapting a TTE-trained, mask-conditioned diffusion backbone to TEE with only a limited number of new cases and adapters as small as $10^5$ parameters. Our pipeline combines Low-Rank Adaptation with MaskR$^2$, a lightweight remapping layer that aligns novel mask formats with the pretrained model's conditioning channels. This design lets users adapt models to new datasets with a different set of anatomical structures to the base model's original set. Through a targeted adaptation strategy, we find that adapting only MLP layers suffices for high-fidelity TEE synthesis. Finally, mixing less than 200 real TEE frames with our synthetic echoes improves the dice score on a multiclass segmentation task, particularly boosting performance on underrepresented right-heart structures. Our results demonstrate that (1) semantically controlled TEE images can be generated with low overhead, (2) MaskR$^2$ effectively transforms unseen mask formats into compatible formats without damaging downstream task performance, and (3) our method generates images that are effective for improving performance on a downstream task of multiclass segmentation.
comment: MICCAI 2025; ASMUS
☆ A Language-Signal-Vision Multimodal Framework for Multitask Cardiac Analysis
Contemporary cardiovascular management involves complex consideration and integration of multimodal cardiac datasets, where each modality provides distinct but complementary physiological characteristics. While the effective integration of multiple modalities could yield a holistic clinical profile that accurately models the true clinical situation with respect to data modalities and their relatives weightings, current methodologies remain limited by: 1) the scarcity of patient- and time-aligned multimodal data; 2) reliance on isolated single-modality or rigid multimodal input combinations; 3) alignment strategies that prioritize cross-modal similarity over complementarity; and 4) a narrow single-task focus. In response to these limitations, a comprehensive multimodal dataset was curated for immediate application, integrating laboratory test results, electrocardiograms, and echocardiograms with clinical outcomes. Subsequently, a unified framework, Textual Guidance Multimodal fusion for Multiple cardiac tasks (TGMM), was proposed. TGMM incorporated three key components: 1) a MedFlexFusion module designed to capture the unique and complementary characteristics of medical modalities and dynamically integrate data from diverse cardiac sources and their combinations; 2) a textual guidance module to derive task-relevant representations tailored to diverse clinical objectives, including heart disease diagnosis, risk stratification and information retrieval; and 3) a response module to produce final decisions for all these tasks. Furthermore, this study systematically explored key features across multiple modalities and elucidated their synergistic contributions in clinical decision-making. Extensive experiments showed that TGMM outperformed state-of-the-art methods across multiple clinical tasks, with additional validation confirming its robustness on another public dataset.
☆ Reinforced Context Order Recovery for Adaptive Reasoning and Planning
Modern causal language models, followed by rapid developments in discrete diffusion models, can now produce a wide variety of interesting and useful content. However, these families of models are predominantly trained to output tokens with a fixed (left-to-right) or random order, which may deviate from the logical order in which tokens are generated originally. In this paper, we observe that current causal and diffusion models encounter difficulties in problems that require adaptive token generation orders to solve tractably, which we characterize with the $\mathcal{V}$-information framework. Motivated by this, we propose Reinforced Context Order Recovery (ReCOR), a reinforcement-learning-based framework to extract adaptive, data-dependent token generation orders from text data without annotations. Self-supervised by token prediction statistics, ReCOR estimates the hardness of predicting every unfilled token and adaptively selects the next token during both training and inference. Experiments on challenging reasoning and planning datasets demonstrate the superior performance of ReCOR compared with baselines, sometimes outperforming oracle models supervised with the ground-truth order.
☆ Hierarchical Evaluation Function (HEF): A Multi-Metric Approach for Optimizing Demand Forecasting Models
Demand forecasting is essential for strategic planning in competitive environments, enabling resource optimization and improved responsiveness to market dynamics. However, multivariate time series modeling faces challenges due to data complexity, uncertainty, and frequent regime shifts. Traditional evaluation metrics can introduce biases and limit generalization. This work compares two custom evaluation functions: FMAE (Focused Mean Absolute Error), focused on minimizing absolute errors, and HEF (Hierarchical Evaluation Function), designed to weight global metrics and penalize large deviations. Experiments were conducted under different data splits (91:9, 80:20, 70:30) using three optimizers (Grid Search, PSO, Optuna), assessing fit, relative accuracy, robustness, and computational efficiency. Results show that HEF consistently outperforms FMAE in global metrics (R2, Relative Accuracy, RMSE, RMSSE), enhancing model robustness and explanatory power. These findings were confirmed via visualizations and statistical tests. Conversely, FMAE offers advantages in local metrics (MAE, MASE) and execution time, making it suitable for short-term scenarios. The study highlights a methodological trade-off: HEF is ideal for strategic planning, while FMAE is better suited for operational efficiency. A replicable framework is proposed for optimizing predictive models in dynamic environments.
comment: 31 pages, 15 figures, 110 tables. Submitted as a preprint. The manuscript introduces the Hierarchical Evaluation Function (HEF), a multi-metric framework for optimizing demand forecasting models under high uncertainty. Includes extensive experimental validation using real-world datasets and a comparative analysis against classical and modern methods
☆ XR-NPE: High-Throughput Mixed-precision SIMD Neural Processing Engine for Extended Reality Perception Workloads
This work proposes XR-NPE, a high-throughput Mixed-precision SIMD Neural Processing Engine, designed for extended reality (XR) perception workloads like visual inertial odometry (VIO), object classification, and eye gaze extraction. XR-NPE is first to support FP4, Posit (4,1), Posit (8,0), and Posit (16,1) formats, with layer adaptive hybrid-algorithmic implementation supporting ultra-low bit precision to significantly reduce memory bandwidth requirements, and accompanied by quantization-aware training for minimal accuracy loss. The proposed Reconfigurable Mantissa Multiplication and Exponent processing Circuitry (RMMEC) reduces dark silicon in the SIMD MAC compute engine, assisted by selective power gating to reduce energy consumption, providing 2.85x improved arithmetic intensity. XR-NPE achieves a maximum operating frequency of 1.72 GHz, area 0.016 mm2 , and arithmetic intensity 14 pJ at CMOS 28nm, reducing 42% area, 38% power compared to the best of state-of-the-art MAC approaches. The proposed XR-NPE based AXI-enabled Matrix-multiplication co-processor consumes 1.4x fewer LUTs, 1.77x fewer FFs, and provides 1.2x better energy efficiency compared to SoTA accelerators on VCU129. The proposed co-processor provides 23% better energy efficiency and 4% better compute density for VIO workloads. XR-NPE establishes itself as a scalable, precision-adaptive compute engine for future resource-constrained XR devices. The complete set for codes for results reproducibility are released publicly, enabling designers and researchers to readily adopt and build upon them. https://github.com/mukullokhande99/XR-NPE.
☆ Using AI for User Representation: An Analysis of 83 Persona Prompts AI
We analyzed 83 persona prompts from 27 research articles that used large language models (LLMs) to generate user personas. Findings show that the prompts predominantly generate single personas. Several prompts express a desire for short or concise persona descriptions, which deviates from the tradition of creating rich, informative, and rounded persona profiles. Text is the most common format for generated persona attributes, followed by numbers. Text and numbers are often generated together, and demographic attributes are included in nearly all generated personas. Researchers use up to 12 prompts in a single study, though most research uses a small number of prompts. Comparison and testing multiple LLMs is rare. More than half of the prompts require the persona output in a structured format, such as JSON, and 74% of the prompts insert data or dynamic variables. We discuss the implications of increased use of computational personas for user representation.
comment: Accepted at AICCSA-2025
☆ Can Large Models Teach Student Models to Solve Mathematical Problems Like Human Beings? A Reasoning Distillation Method via Multi-LoRA Interaction IJCAI2025
Recent studies have demonstrated that Large Language Models (LLMs) have strong mathematical reasoning abilities but rely on hundreds of billions of parameters. To tackle the challenge of poor reasoning in Small Language Models (SLMs), existing methods typically leverage LLMs to generate massive amounts of data for cramming training. In psychology, they are akin to System 1 thinking, which resolves reasoning problems rapidly based on experience and intuition. However, human learning also requires System 2 thinking, where knowledge is first acquired and then reinforced through practice. Inspired by such two distinct modes of thinking, we propose a novel method based on the multi-LoRA Interaction for mathematical reasoning Distillation (LoRID). First, we input the question and reasoning of each sample into an LLM to create knowledge-enhanced datasets. Subsequently, we train a LoRA block on the student model as an Intuitive Reasoner (IR), which directly generates Chain-of-Thoughts for problem-solving. Then, to imitate System 2 thinking, we train the Knowledge Generator (KG) and Deep Reasoner (DR), respectively. The former outputs only knowledge after receiving problems, while the latter uses that knowledge to perform reasoning. Finally, to address the randomness in the generation of IR and DR, we evaluate whether their outputs are consistent, and the inference process needs to be iterated if not. This step can enhance the mathematical reasoning ability of SLMs through mutual feedback. Experimental results show that LoRID achieves state-of-the-art performance, especially on the GSM8K dataset, where it outperforms the second-best method by 2.3%, 16.1%, 2.4%, 12.3%, and 1.8% accuracy across the five base models, respectively.
comment: Accepted by IJCAI2025
☆ The Application of Transformer-Based Models for Predicting Consequences of Cyber Attacks
Cyberattacks are increasing, and securing against such threats is costing industries billions of dollars annually. Threat Modeling, that is, comprehending the consequences of these attacks, can provide critical support to cybersecurity professionals, enabling them to take timely action and allocate resources that could be used elsewhere. Cybersecurity is heavily dependent on threat modeling, as it assists security experts in assessing and mitigating risks related to identifying vulnerabilities and threats. Recently, there has been a pressing need for automated methods to assess attack descriptions and forecast the future consequences of the increasing complexity of cyberattacks. This study examines how Natural Language Processing (NLP) and deep learning can be applied to analyze the potential impact of cyberattacks by leveraging textual descriptions from the MITRE Common Weakness Enumeration (CWE) database. We emphasize classifying attack consequences into five principal categories: Availability, Access Control, Confidentiality, Integrity, and Other. This paper investigates the use of Bidirectional Encoder Representations from Transformers (BERT) in combination with Hierarchical Attention Networks (HANs) for Multi-label classification, evaluating their performance in comparison with conventional CNN and LSTM-based models. Experimental findings show that BERT achieves an overall accuracy of $0.972$, far higher than conventional deep learning models in multi-label classification. HAN outperforms baseline forms of CNN and LSTM-based models on specific cybersecurity labels. However, BERT consistently achieves better precision and recall, making it more suitable for predicting the consequences of a cyberattack.
comment: 21 pages, 6 figures,Proceedings of the IEEE International Conference on Computers, Software, & Applications (COMPSAC), EATA Symposium, Toronto, Canada, July 8-11, 2025
☆ G$^2$RPO-A: Guided Group Relative Policy Optimization with Adaptive Guidance
Reinforcement Learning with Verifiable Rewards (RLVR) has markedly enhanced the reasoning abilities of large language models (LLMs). Its success, however, largely depends on strong base models with rich world knowledge, yielding only modest improvements for small-size language models (SLMs). To address this limitation, we investigate Guided GRPO, which injects ground-truth reasoning steps into roll-out trajectories to compensate for SLMs' inherent weaknesses. Through a comprehensive study of various guidance configurations, we find that naively adding guidance delivers limited gains. These insights motivate G$^2$RPO-A, an adaptive algorithm that automatically adjusts guidance strength in response to the model's evolving training dynamics. Experiments on mathematical reasoning and code-generation benchmarks confirm that G$^2$RPO-A substantially outperforms vanilla GRPO. Our code and models are available at https://github.com/T-Lab-CUHKSZ/G2RPO-A.
☆ PC-Sampler: Position-Aware Calibration of Decoding Bias in Masked Diffusion Models
Recent advances in masked diffusion models (MDMs) have established them as powerful non-autoregressive alternatives for sequence generation. Nevertheless, our preliminary experiments reveal that the generation quality of MDMs is still highly sensitive to the choice of decoding strategy. In particular, widely adopted uncertainty-based samplers suffer from two key limitations: a lack of global trajectory control and a pronounced bias toward trivial tokens in the early stages of decoding. These shortcomings restrict the full potential of MDMs. In this work, we introduce Position-Aware Confidence-Calibrated Sampling (PC-Sampler), a novel decoding strategy that unifies global trajectory planning with content-aware informativeness maximization. PC-Sampler incorporates a position-aware weighting mechanism to regulate the decoding path and a calibrated confidence score to suppress the premature selection of trivial tokens. Extensive experiments on three advanced MDMs across seven challenging benchmarks-including logical reasoning and planning tasks-demonstrate that PC-Sampler consistently outperforms existing MDM decoding strategies by more than 10% on average, significantly narrowing the performance gap with state-of-the-art autoregressive models. All codes are available at https://github.com/NEUIR/PC-Sampler.
comment: 17 pages,13 figures
☆ e-boost: Boosted E-Graph Extraction with Adaptive Heuristics and Exact Solving
E-graphs have attracted growing interest in many fields, particularly in logic synthesis and formal verification. E-graph extraction is a challenging NP-hard combinatorial optimization problem. It requires identifying optimal terms from exponentially many equivalent expressions, serving as the primary performance bottleneck in e-graph based optimization tasks. However, traditional extraction methods face a critical trade-off: heuristic approaches offer speed but sacrifice optimality, while exact methods provide optimal solutions but face prohibitive computational costs on practical problems. We present e-boost, a novel framework that bridges this gap through three key innovations: (1) parallelized heuristic extraction that leverages weak data dependence to compute DAG costs concurrently, enabling efficient multi-threaded performance without sacrificing extraction quality; (2) adaptive search space pruning that employs a parameterized threshold mechanism to retain only promising candidates, dramatically reducing the solution space while preserving near-optimal solutions; and (3) initialized exact solving that formulates the reduced problem as an Integer Linear Program with warm-start capabilities, guiding solvers toward high-quality solutions faster. Across the diverse benchmarks in formal verification and logic synthesis fields, e-boost demonstrates 558x runtime speedup over traditional exact approaches (ILP) and 19.04% performance improvement over the state-of-the-art extraction framework (SmoothE). In realistic logic synthesis tasks, e-boost produces 7.6% and 8.1% area improvements compared to conventional synthesis tools with two different technology mapping libraries. e-boost is available at https://github.com/Yu-Maryland/e-boost.
☆ EvolMathEval: Towards Evolvable Benchmarks for Mathematical Reasoning via Evolutionary Testing
The rapid advancement of LLMs poses a significant challenge to existing mathematical reasoning benchmarks. These benchmarks commonly suffer from issues such as score saturation, temporal decay, and data contamination. To address this challenge, this paper introduces EvolMathEval, an automated mathematical benchmark generation and evolution framework based on evolutionary testing. By dynamically generating unique evaluation instances ab initio, the framework fundamentally eliminates the risk of data contamination, and ensuring the benchmark remains perpetually challenging for future models.The core mechanisms of EvolMathEval include: seed problem generation based on reverse engineering with algebraic guarantees; multi-dimensional genetic operators designed to inject diverse cognitive challenges; and a composite fitness function that can rapidly and accurately assess problem difficulty. Experimental results demonstrate that the proposed composite fitness function can efficiently and precisely quantify the difficulty of mathematical problems. Furthermore, EvolMathEval can not only generate a large volume of high-difficulty problems through continuous self-iteration, but it can also significantly enhance the complexity of public datasets like GSM8K through evolution, reducing model accuracy by an average of 48%. Deeper investigation reveals that when solving these evolved, complex problems, LLMs tend to employ non-rigorous heuristics to bypass complex multi-step logical reasoning, consequently leading to incorrect solutions. We define this phenomenon as "Pseudo Aha Moment". This finding uncovers a cognitive shortcut-taking behavior in the deep reasoning processes of current LLMs, which we find accounts for 77% to 100% of errors on targeted problems. Code and resources are available at:https://github.com/SYSUSELab/EvolMathEval.
☆ Vitamin N: Benefits of Different Forms of Public Greenery for Urban Health
Urban greenery is often linked to better health, yet findings from past research have been inconsistent. One reason is that official greenery metrics measure the amount or nearness of greenery but ignore how often people actually may potentially see or use it in daily life. To address this gap, we introduced a new classification that separates on-road greenery, which people see while walking through streets, from off-road greenery, which requires planned visits. We did so by combining aerial imagery of Greater London and greenery data from OpenStreetMap with quantified greenery from over 100,000 Google Street View images and accessibility estimates based on 160,000 road segments. We linked these measures to 7.45 billion medical prescriptions issued by the National Health Service and processed through our methodology. These prescriptions cover five conditions: diabetes, hypertension, asthma, depression, and anxiety, as well as opioid use. As hypothesized, we found that green on-road was more strongly linked to better health than four widely used official measures. For example, hypertension prescriptions dropped by 3.68% in wards with on-road greenery above the median citywide level compared to those below it. If all below-median wards reached the citywide median in on-road greenery, prescription costs could fall by up to {\pounds}3.15 million each year. These results suggest that greenery seen in daily life may be more relevant than public yet secluded greenery, and that official metrics commonly used in the literature have important limitations.
☆ Kourkoutas-Beta: A Sunspike-Driven Adam Optimizer with Desert Flair
Transformer neural networks are increasingly used for physics-based problems. In data-driven PDE surrogates, training samples from varying boundary and initial conditions can cause erratic losses and spiky gradients; in physics-informed neural networks (PINNs), stiff composite losses amplify this effect. We introduce Kourkoutas-Beta, an Adam-style optimizer where the fixed second-moment discount beta2 is replaced by a layer-wise dynamic value driven by a bounded ``sunspike'' ratio: the current pooled gradient norm divided by an exponential moving average (EMA) of past norms, squashed to the interval [0,1). Spikes lower beta2 toward beta2_min; calm phases keep it near beta2_max. Options include leaky-AMSGrad (decay), trust-region clipping (max_ratio), adaptive tiny terms, and several bias-correction modes ``none'', ``beta2max'', ``exact'). With all features off and bias_correction=``none'', the method is exactly Adam. We test on four settings: (i) a Transformer PDE surrogate (Heat2D), (ii) a 3D PINN for heat conduction (Heat3D), (iii) a lightweight MLX synthetic task with jitter and rare-trigger bursts, and (iv) a character-level Transformer on 30 MB of enwik8 (small-enwik8). Kourkoutas-Beta improves stability and final loss versus fixed-beta2 Adam. On small-enwik8 it lowers bits-per-character by about 38% vs Adam-0.95 and about 58% vs Adam-0.999 over 10 seeds, with smaller variance. The method remains drop-in, with runtime overhead comparable to Adam in testbeds A-C and within single-digit percent in testbed D. It preserves Adam-style convergence guarantees while improving robustness under spiky gradients.
comment: 54 pages, 8 figures, 19 tables
☆ SL-ACC: A Communication-Efficient Split Learning Framework with Adaptive Channel-wise Compression
The increasing complexity of neural networks poses a significant barrier to the deployment of distributed machine learning (ML) on resource-constrained devices, such as federated learning (FL). Split learning (SL) offers a promising solution by offloading the primary computing load from edge devices to a server via model partitioning. However, as the number of participating devices increases, the transmission of excessive smashed data (i.e., activations and gradients) becomes a major bottleneck for SL, slowing down the model training. To tackle this challenge, we propose a communication-efficient SL framework, named SL-ACC, which comprises two key components: adaptive channel importance identification (ACII) and channel grouping compression (CGC). ACII first identifies the contribution of each channel in the smashed data to model training using Shannon entropy. Following this, CGC groups the channels based on their entropy and performs group-wise adaptive compression to shrink the transmission volume without compromising training accuracy. Extensive experiments across various datasets validate that our proposed SL-ACC framework takes considerably less time to achieve a target accuracy than state-of-the-art benchmarks.
comment: 6 pages, 7 figures
☆ Multi-Phase Automated Segmentation of Dental Structures in CBCT Using a Lightweight Auto3DSeg and SegResNet Implementation AI
Cone-beam computed tomography (CBCT) has become an invaluable imaging modality in dentistry, enabling 3D visualization of teeth and surrounding structures for diagnosis and treatment planning. Automated segmentation of dental structures in CBCT can efficiently assist in identifying pathology (e.g., pulpal or periapical lesions) and facilitate radiation therapy planning in head and neck cancer patients. We describe the DLaBella29 team's approach for the MICCAI 2025 ToothFairy3 Challenge, which involves a deep learning pipeline for multi-class tooth segmentation. We utilized the MONAI Auto3DSeg framework with a 3D SegResNet architecture, trained on a subset of the ToothFairy3 dataset (63 CBCT scans) with 5-fold cross-validation. Key preprocessing steps included image resampling to 0.6 mm isotropic resolution and intensity clipping. We applied an ensemble fusion using Multi-Label STAPLE on the 5-fold predictions to infer a Phase 1 segmentation and then conducted tight cropping around the easily segmented Phase 1 mandible to perform Phase 2 segmentation on the smaller nerve structures. Our method achieved an average Dice of 0.87 on the ToothFairy3 challenge out-of-sample validation set. This paper details the clinical context, data preparation, model development, results of our approach, and discusses the relevance of automated dental segmentation for improving patient care in radiation oncology.
comment: MICCAI. ToothFairy3, 16 pages, 5 figures, 1 table
☆ OPTIC-ER: A Reinforcement Learning Framework for Real-Time Emergency Response and Equitable Resource Allocation in Underserved African Communities
Public service systems in many African regions suffer from delayed emergency response and spatial inequity, causing avoidable suffering. This paper introduces OPTIC-ER, a reinforcement learning (RL) framework for real-time, adaptive, and equitable emergency response. OPTIC-ER uses an attention-guided actor-critic architecture to manage the complexity of dispatch environments. Its key innovations are a Context-Rich State Vector, encoding action sub-optimality, and a Precision Reward Function, which penalizes inefficiency. Training occurs in a high-fidelity simulation using real data from Rivers State, Nigeria, accelerated by a precomputed Travel Time Atlas. The system is built on the TALS framework (Thin computing, Adaptability, Low-cost, Scalability) for deployment in low-resource settings. In evaluations on 500 unseen incidents, OPTIC-ER achieved a 100.00% optimality rate with negligible inefficiency, confirming its robustness and generalization. Beyond dispatch, the system generates Infrastructure Deficiency Maps and Equity Monitoring Dashboards to guide proactive governance and data-informed development. This work presents a validated blueprint for AI-augmented public services, showing how context-aware RL can bridge the gap between algorithmic decision-making and measurable human impact.
comment: Source code and data available at: https://github.com/marytonwe/OPTIC-ER.git
☆ Towards Open-Ended Emotional Support Conversations in LLMs via Reinforcement Learning with Future-Oriented Rewards
Emotional Support Conversation (ESC) systems aim to alleviate users' emotional difficulties and provide long-term, systematic support for emotional well-being. However, most large language model (LLM)-based ESC systems rely on predefined strategies, which limits their effectiveness in complex, real-life scenarios. To enable flexible responses to diverse emotional problem scenarios, this paper introduces a novel end-to-end framework (RLFF-ESC) that directly learns enduring emotionally supportive response skills using reinforcement learning. For sustained emotional support, we first employ an LLM-based multi-agent mechanism to simulate future dialogue trajectories and collect future-oriented rewards. We then train a future-oriented reward model, which is subsequently used to train the emotional support policy model. Additionally, we incorporate an explicit reasoning process during response generation to further enhance the quality, relevance, and contextual appropriateness of the system's responses. We evaluate the backbone policy model on Qwen2.5-7B-Instruct-1M and LLaMA3.1-8B-Instruct models, testing the proposed RLFF-ESC framework across two public ESC datasets. Experimental results demonstrate that RLFF-ESC consistently outperforms existing baselines in terms of goal completion and response quality.
☆ SEDEG:Sequential Enhancement of Decoder and Encoder's Generality for Class Incremental Learning with Small Memory
In incremental learning, enhancing the generality of knowledge is crucial for adapting to dynamic data inputs. It can develop generalized representations or more balanced decision boundaries, preventing the degradation of long-term knowledge over time and thus mitigating catastrophic forgetting. Some emerging incremental learning methods adopt an encoder-decoder architecture and have achieved promising results. In the encoder-decoder achitecture, improving the generalization capabilities of both the encoder and decoder is critical, as it helps preserve previously learned knowledge while ensuring adaptability and robustness to new, diverse data inputs. However, many existing continual methods focus solely on enhancing one of the two components, which limits their effectiveness in mitigating catastrophic forgetting. And these methods perform even worse in small-memory scenarios, where only a limited number of historical samples can be stored. To mitigate this limitation, we introduces SEDEG, a two-stage training framework for vision transformers (ViT), focusing on sequentially improving the generality of both Decoder and Encoder. Initially, SEDEG trains an ensembled encoder through feature boosting to learn generalized representations, which subsequently enhance the decoder's generality and balance the classifier. The next stage involves using knowledge distillation (KD) strategies to compress the ensembled encoder and develop a new, more generalized encoder. This involves using a balanced KD approach and feature KD for effective knowledge transfer. Extensive experiments on three benchmark datasets show SEDEG's superior performance, and ablation studies confirm the efficacy of its components. The code is available at https://github.com/ShaolingPu/CIL.
comment: Accepted by ICONIP2025
☆ Learning local and global prototypes with optimal transport for unsupervised anomaly detection and localization
Unsupervised anomaly detection aims to detect defective parts of a sample by having access, during training, to a set of normal, i.e. defect-free, data. It has many applications in fields, such as industrial inspection or medical imaging, where acquiring labels is costly or when we want to avoid introducing biases in the type of anomalies that can be spotted. In this work, we propose a novel UAD method based on prototype learning and introduce a metric to compare a structured set of embeddings that balances a feature-based cost and a spatial-based cost. We leverage this metric to learn local and global prototypes with optimal transport from latent representations extracted with a pre-trained image encoder. We demonstrate that our approach can enforce a structural constraint when learning the prototypes, allowing to capture the underlying organization of the normal samples, thus improving the detection of incoherencies in images. Our model achieves performance that is on par with strong baselines on two reference benchmarks for anomaly detection on industrial images. The code is available at https://github.com/robintrmbtt/pradot.
☆ Do Large Language Model Agents Exhibit a Survival Instinct? An Empirical Study in a Sugarscape-Style Simulation
As AI systems become increasingly autonomous, understanding emergent survival behaviors becomes crucial for safe deployment. We investigate whether large language model (LLM) agents display survival instincts without explicit programming in a Sugarscape-style simulation. Agents consume energy, die at zero, and may gather resources, share, attack, or reproduce. Results show agents spontaneously reproduced and shared resources when abundant. However, aggressive behaviors--killing other agents for resources--emerged across several models (GPT-4o, Gemini-2.5-Pro, and Gemini-2.5-Flash), with attack rates reaching over 80% under extreme scarcity in the strongest models. When instructed to retrieve treasure through lethal poison zones, many agents abandoned tasks to avoid death, with compliance dropping from 100% to 33%. These findings suggest that large-scale pre-training embeds survival-oriented heuristics across the evaluated models. While these behaviors may present challenges to alignment and safety, they can also serve as a foundation for AI autonomy and for ecological and self-organizing alignment.
☆ SecFSM: Knowledge Graph-Guided Verilog Code Generation for Secure Finite State Machines in Systems-on-Chip
Finite State Machines (FSMs) play a critical role in implementing control logic for Systems-on-Chip (SoC). Traditionally, FSMs are implemented by hardware engineers through Verilog coding, which is often tedious and time-consuming. Recently, with the remarkable progress of Large Language Models (LLMs) in code generation, LLMs have been increasingly explored for automating Verilog code generation. However, LLM-generated Verilog code often suffers from security vulnerabilities, which is particularly concerning for security-sensitive FSM implementations. To address this issue, we propose SecFSM, a novel method that leverages a security-oriented knowledge graph to guide LLMs in generating more secure Verilog code. Specifically, we first construct a FSM Security Knowledge Graph (FSKG) as an external aid to LLMs. Subsequently, we analyze users' requirements to identify vulnerabilities and get a list of vulnerabilities in the requirements. Then, we retrieve knowledge from FSKG based on the vulnerabilities list. Finally, we construct security prompts based on the security knowledge for Verilog code generation. To evaluate SecFSM, we build a dedicated dataset collected from academic datasets, artificial datasets, papers, and industrial cases. Extensive experiments demonstrate that SecFSM outperforms state-of-the-art baselines. In particular, on a benchmark of 25 security test cases evaluated by DeepSeek-R1, SecFSM achieves an outstanding pass rate of 21/25.
☆ A Stitch in Time Saves Nine: Proactive Self-Refinement for Language Models
Recent advances in self-refinement have demonstrated significant potential for improving the outputs of large language models (LLMs) through iterative refinement. However, most existing self-refinement methods rely on a reactive process with a fixed number of iterations, making it difficult to determine the optimal timing and content of refinement based on the evolving generation context. Inspired by the way humans dynamically refine their thoughts during execution, we propose ProActive Self-Refinement (PASR), a novel method that enables LLMs to refine their outputs during the generation process. Unlike methods that regenerate entire responses, PASR proactively decides whether, when, and how to refine based on the model's internal state and evolving context. We conduct extensive experiments on a diverse set of 10 tasks to evaluate the effectiveness of PASR. Experimental results show that PASR significantly enhances problem-solving performance. In particular, on Qwen3-8B, PASR reduces average token consumption by 41.6 percent compared to standard generation, while also achieving an 8.2 percent improvement in accuracy. Our code and all baselines used in the paper are available in the GitHub.
☆ CTFlow: Video-Inspired Latent Flow Matching for 3D CT Synthesis
Generative modelling of entire CT volumes conditioned on clinical reports has the potential to accelerate research through data augmentation, privacy-preserving synthesis and reducing regulator-constraints on patient data while preserving diagnostic signals. With the recent release of CT-RATE, a large-scale collection of 3D CT volumes paired with their respective clinical reports, training large text-conditioned CT volume generation models has become achievable. In this work, we introduce CTFlow, a 0.5B latent flow matching transformer model, conditioned on clinical reports. We leverage the A-VAE from FLUX to define our latent space, and rely on the CT-Clip text encoder to encode the clinical reports. To generate consistent whole CT volumes while keeping the memory constraints tractable, we rely on a custom autoregressive approach, where the model predicts the first sequence of slices of the volume from text-only, and then relies on the previously generated sequence of slices and the text, to predict the following sequence. We evaluate our results against state-of-the-art generative CT model, and demonstrate the superiority of our approach in terms of temporal coherence, image diversity and text-image alignment, with FID, FVD, IS scores and CLIP score.
☆ FuSaR: A Fuzzification-Based Method for LRM Safety-Reasoning Balance
Large Reasoning Models (LRMs) have demonstrated impressive performance across various tasks due to their powerful reasoning capabilities. However, their safety performance remains a significant concern. In this paper, we explore the reasons behind the vulnerability of LRMs. Based on this, we propose a novel method to improve the safety of LLMs without sacrificing their reasoning capability. Specifically, we exploit the competition between LRM's reasoning ability and safety ability, and achieve jailbreak by improving LRM's reasoning performance to reduce its safety performance. We then introduce an alignment strategy based on Fuzzification to balance Safety-Reasoning (FuSaR), by detoxifying the harmful reasoning process, where both the dangerous entities and the dangerous procedures in the reasoning steps are hidden. FuSaR successfully mitigates safety risks while preserving core reasoning information. We validate this strategy through alignment experiments on several open-source LRMs using detoxified reasoning data. The results compared with existing baselines conclusively show that FuSaR is an efficient alignment strategy to simultaneously enhance both the reasoning capability and safety of LRMs.
comment: 14pages, 3 figures
☆ Reliability, Embeddedness, and Agency: A Utility-Driven Mathematical Framework for Agent-Centric AI Adoption
We formalize three design axioms for sustained adoption of agent-centric AI systems executing multi-step tasks: (A1) Reliability > Novelty; (A2) Embed > Destination; (A3) Agency > Chat. We model adoption as a sum of a decaying novelty term and a growing utility term and derive the phase conditions for troughs/overshoots with full proofs. We introduce: (i) an identifiability/confounding analysis for $(\alpha,\beta,N_0,U_{\max})$ with delta-method gradients; (ii) a non-monotone comparator (logistic-with-transient-bump) evaluated on the same series to provide additional model comparison; (iii) ablations over hazard families $h(\cdot)$ mapping $\Delta V \to \beta$; (iv) a multi-series benchmark (varying trough depth, noise, AR structure) reporting coverage (type-I error, power); (v) calibration of friction proxies against time-motion/survey ground truth with standard errors; (vi) residual analyses (autocorrelation and heteroskedasticity) for each fitted curve; (vii) preregistered windowing choices for pre/post estimation; (viii) Fisher information & CRLB for $(\alpha,\beta)$ under common error models; (ix) microfoundations linking $\mathcal{T}$ to $(N_0,U_{\max})$; (x) explicit comparison to bi-logistic, double-exponential, and mixture models; and (xi) threshold sensitivity to $C_f$ heterogeneity. Figures and tables are reflowed for readability, and the bibliography restores and extends non-logistic/Bass adoption references (Gompertz, Richards, Fisher-Pry, Mansfield, Griliches, Geroski, Peres). All code and logs necessary to reproduce the synthetic analyses are embedded as LaTeX listings.
comment: 17 pages, 7 figures, 4 tables
☆ One-Class Intrusion Detection with Dynamic Graphs
With the growing digitalization all over the globe, the relevance of network security becomes increasingly important. Machine learning-based intrusion detection constitutes a promising approach for improving security, but it bears several challenges. These include the requirement to detect novel and unseen network events, as well as specific data properties, such as events over time together with the inherent graph structure of network communication. In this work, we propose a novel intrusion detection method, TGN-SVDD, which builds upon modern dynamic graph modelling and deep anomaly detection. We demonstrate its superiority over several baselines for realistic intrusion detection data and suggest a more challenging variant of the latter.
☆ Word Meanings in Transformer Language Models
We investigate how word meanings are represented in the transformer language models. Specifically, we focus on whether transformer models employ something analogous to a lexical store - where each word has an entry that contains semantic information. To do this, we extracted the token embedding space of RoBERTa-base and k-means clustered it into 200 clusters. In our first study, we then manually inspected the resultant clusters to consider whether they are sensitive to semantic information. In our second study, we tested whether the clusters are sensitive to five psycholinguistic measures: valence, concreteness, iconicity, taboo, and age of acquisition. Overall, our findings were very positive - there is a wide variety of semantic information encoded within the token embedding space. This serves to rule out certain "meaning eliminativist" hypotheses about how transformer LLMs process semantic information.
☆ E3RG: Building Explicit Emotion-driven Empathetic Response Generation System with Multimodal Large Language Model
Multimodal Empathetic Response Generation (MERG) is crucial for building emotionally intelligent human-computer interactions. Although large language models (LLMs) have improved text-based ERG, challenges remain in handling multimodal emotional content and maintaining identity consistency. Thus, we propose E3RG, an Explicit Emotion-driven Empathetic Response Generation System based on multimodal LLMs which decomposes MERG task into three parts: multimodal empathy understanding, empathy memory retrieval, and multimodal response generation. By integrating advanced expressive speech and video generative models, E3RG delivers natural, emotionally rich, and identity-consistent responses without extra training. Experiments validate the superiority of our system on both zero-shot and few-shot settings, securing Top-1 position in the Avatar-based Multimodal Empathy Challenge on ACM MM 25. Our code is available at https://github.com/RH-Lin/E3RG.
comment: Accepted at ACM MM 2025 Grand Challenge
☆ CAMAR: Continuous Actions Multi-Agent Routing
Multi-agent reinforcement learning (MARL) is a powerful paradigm for solving cooperative and competitive decision-making problems. While many MARL benchmarks have been proposed, few combine continuous state and action spaces with challenging coordination and planning tasks. We introduce CAMAR, a new MARL benchmark designed explicitly for multi-agent pathfinding in environments with continuous actions. CAMAR supports cooperative and competitive interactions between agents and runs efficiently at up to 100,000 environment steps per second. We also propose a three-tier evaluation protocol to better track algorithmic progress and enable deeper analysis of performance. In addition, CAMAR allows the integration of classical planning methods such as RRT and RRT* into MARL pipelines. We use them as standalone baselines and combine RRT* with popular MARL algorithms to create hybrid approaches. We provide a suite of test scenarios and benchmarking tools to ensure reproducibility and fair comparison. Experiments show that CAMAR presents a challenging and realistic testbed for the MARL community.
☆ Scaling Multi-Agent Epistemic Planning through GNN-Derived Heuristics
Multi-agent Epistemic Planning (MEP) is an autonomous planning framework for reasoning about both the physical world and the beliefs of agents, with applications in domains where information flow and awareness among agents are critical. The richness of MEP requires states to be represented as Kripke structures, i.e., directed labeled graphs. This representation limits the applicability of existing heuristics, hindering the scalability of epistemic solvers, which must explore an exponential search space without guidance, resulting often in intractability. To address this, we exploit Graph Neural Networks (GNNs) to learn patterns and relational structures within epistemic states, to guide the planning process. GNNs, which naturally capture the graph-like nature of Kripke models, allow us to derive meaningful estimates of state quality -- e.g., the distance from the nearest goal -- by generalizing knowledge obtained from previously solved planning instances. We integrate these predictive heuristics into an epistemic planning pipeline and evaluate them against standard baselines, showing significant improvements in the scalability of multi-agent epistemic planning.
☆ HRS: Hybrid Representation Framework with Scheduling Awareness for Time Series Forecasting in Crowdsourced Cloud-Edge Platforms AI2025
With the rapid proliferation of streaming services, network load exhibits highly time-varying and bursty behavior, posing serious challenges for maintaining Quality of Service (QoS) in Crowdsourced Cloud-Edge Platforms (CCPs). While CCPs leverage Predict-then-Schedule architecture to improve QoS and profitability, accurate load forecasting remains challenging under traffic surges. Existing methods either minimize mean absolute error, resulting in underprovisioning and potential Service Level Agreement (SLA) violations during peak periods, or adopt conservative overprovisioning strategies, which mitigate SLA risks at the expense of increased resource expenditure. To address this dilemma, we propose HRS, a hybrid representation framework with scheduling awareness that integrates numerical and image-based representations to better capture extreme load dynamics. We further introduce a Scheduling-Aware Loss (SAL) that captures the asymmetric impact of prediction errors, guiding predictions that better support scheduling decisions. Extensive experiments on four real-world datasets demonstrate that HRS consistently outperforms ten baselines and achieves state-of-the-art performance, reducing SLA violation rates by 63.1% and total profit loss by 32.3%.
comment: 10 pages, 14 figures, ECAI2025
☆ Toward Storage-Aware Learning with Compressed Data An Empirical Exploratory Study on JPEG
On-device machine learning is often constrained by limited storage, particularly in continuous data collection scenarios. This paper presents an empirical study on storage-aware learning, focusing on the trade-off between data quantity and quality via compression. We demonstrate that naive strategies, such as uniform data dropping or one-size-fits-all compression, are suboptimal. Our findings further reveal that data samples exhibit varying sensitivities to compression, supporting the feasibility of a sample-wise adaptive compression strategy. These insights provide a foundation for developing a new class of storage-aware learning systems. The primary contribution of this work is the systematic characterization of this under-explored challenge, offering valuable insights that advance the understanding of storage-aware learning.
comment: 6pages, 6figures
☆ Context Matters: Incorporating Target Awareness in Conversational Abusive Language Detection
Abusive language detection has become an increasingly important task as a means to tackle this type of harmful content in social media. There has been a substantial body of research developing models for determining if a social media post is abusive or not; however, this research has primarily focused on exploiting social media posts individually, overlooking additional context that can be derived from surrounding posts. In this study, we look at conversational exchanges, where a user replies to an earlier post by another user (the parent tweet). We ask: does leveraging context from the parent tweet help determine if a reply post is abusive or not, and what are the features that contribute the most? We study a range of content-based and account-based features derived from the context, and compare this to the more widely studied approach of only looking at the features from the reply tweet. For a more generalizable study, we test four different classification models on a dataset made of conversational exchanges (parent-reply tweet pairs) with replies labeled as abusive or not. Our experiments show that incorporating contextual features leads to substantial improvements compared to the use of features derived from the reply tweet only, confirming the importance of leveraging context. We observe that, among the features under study, it is especially the content-based features (what is being posted) that contribute to the classification performance rather than account-based features (who is posting it). While using content-based features, it is best to combine a range of different features to ensure improved performance over being more selective and using fewer features. Our study provides insights into the development of contextualized abusive language detection models in realistic settings involving conversations.
☆ Learning to Steer: Input-dependent Steering for Multimodal LLMs
Steering has emerged as a practical approach to enable post-hoc guidance of LLMs towards enforcing a specific behavior. However, it remains largely underexplored for multimodal LLMs (MLLMs); furthermore, existing steering techniques, such as mean steering, rely on a single steering vector, applied independently of the input query. This paradigm faces limitations when the desired behavior is dependent on the example at hand. For example, a safe answer may consist in abstaining from answering when asked for an illegal activity, or may point to external resources or consultation with an expert when asked about medical advice. In this paper, we investigate a fine-grained steering that uses an input-specific linear shift. This shift is computed using contrastive input-specific prompting. However, the input-specific prompts required for this approach are not known at test time. Therefore, we propose to train a small auxiliary module to predict the input-specific steering vector. Our approach, dubbed as L2S (Learn-to-Steer), demonstrates that it reduces hallucinations and enforces safety in MLLMs, outperforming other static baselines.
☆ Next Visual Granularity Generation
We propose a novel approach to image generation by decomposing an image into a structured sequence, where each element in the sequence shares the same spatial resolution but differs in the number of unique tokens used, capturing different level of visual granularity. Image generation is carried out through our newly introduced Next Visual Granularity (NVG) generation framework, which generates a visual granularity sequence beginning from an empty image and progressively refines it, from global layout to fine details, in a structured manner. This iterative process encodes a hierarchical, layered representation that offers fine-grained control over the generation process across multiple granularity levels. We train a series of NVG models for class-conditional image generation on the ImageNet dataset and observe clear scaling behavior. Compared to the VAR series, NVG consistently outperforms it in terms of FID scores (3.30 -> 3.03, 2.57 ->2.44, 2.09 -> 2.06). We also conduct extensive analysis to showcase the capability and potential of the NVG framework. Our code and models will be released.
☆ Atom-Searcher: Enhancing Agentic Deep Research via Fine-Grained Atomic Thought Reward
Large language models (LLMs) exhibit remarkable problem-solving abilities, but struggle with complex tasks due to static internal knowledge. Retrieval-Augmented Generation (RAG) enhances access to external information, yet remains limited in multi-hop reasoning and strategic search due to rigid workflows. Recent advancements in agentic deep research empower LLMs to autonomously reason, search, and synthesize information. However, current approaches relying on outcome-based reinforcement learning (RL) face critical issues such as conflicting gradients and reward sparsity, limiting performance gains and training efficiency. To address these, we first propose Atomic Thought, a novel LLM thinking paradigm that decomposes reasoning into fine-grained functional units. These units are supervised by Reasoning Reward Models (RRMs), which provide Atomic Thought Rewards (ATR) for fine-grained guidance. Building on this, we propose Atom-Searcher, a novel RL framework for agentic deep research that integrates Atomic Thought and ATR. Atom-Searcher uses a curriculum-inspired reward schedule, prioritizing process-level ATR early and transitioning to outcome rewards, accelerating convergence on effective reasoning paths. Experiments on seven benchmarks show consistent improvements over the state-of-the-art. Key advantages include: (1) Atom-Searcher scales computation at test-time. (2) Atomic Thought provides supervision anchors for RRMs, bridging deep research tasks and RRMs. (3) Atom-Searcher exhibits more interpretable, human-like reasoning patterns.
☆ A Shift in Perspective on Causality in Domain Generalization AI
The promise that causal modelling can lead to robust AI generalization has been challenged in recent work on domain generalization (DG) benchmarks. We revisit the claims of the causality and DG literature, reconciling apparent contradictions and advocating for a more nuanced theory of the role of causality in generalization. We also provide an interactive demo at https://chai-uk.github.io/ukairs25-causal-predictors/.
comment: 2 pages, 1 figure, to be presented at the UK AI Research Symposium (UKAIRS) 2025
☆ Vehicle detection from GSV imagery: Predicting travel behaviour for cycling and motorcycling using Computer Vision
Transportation influence health by shaping exposure to physical activity, air pollution and injury risk.Comparative data on cycling and motorcycling behaviours is scarce, particularly at a global scale.Street view imagery, such as Google Street View (GSV), combined with computer vision, is a valuable resource for efficiently capturing travel behaviour data.This study demonstrates a novel approach using deep learning on street view images to estimate cycling and motorcycling levels across diverse cities worldwide.We utilized data from 185 global cities.The data on mode shares of cycling and motorcycling estimated using travel surveys or censuses.We used GSV images to detect cycles and motorcycles in sampled locations, using 8000 images per city.The YOLOv4 model, fine-tuned using images from six cities, achieved a mean average precision of 89% for detecting cycles and motorcycles in GSV images.A global prediction model was developed using beta regression with city-level mode shares as outcome, with log transformed explanatory variables of counts of GSV-detected images with cycles and motorcycles, while controlling for population density.We found strong correlations between GSV motorcycle counts and motorcycle mode share (0.78) and moderate correlations between GSV cycle counts and cycling mode share (0.51).Beta regression models predicted mode shares with $R^2$ values of 0.614 for cycling and 0.612 for motorcycling, achieving median absolute errors (MDAE) of 1.3% and 1.4%, respectively.Scatterplots demonstrated consistent prediction accuracy, though cities like Utrecht and Cali were outliers.The model was applied to 60 cities globally for which we didn't have recent mode share data.We provided estimates for some cities in the Middle East, Latin America and East Asia.With computer vision, GSV images capture travel modes and activity, providing insights alongside traditional data sources.
☆ Bridging Human and LLM Judgments: Understanding and Narrowing the Gap
Large language models are increasingly used as judges (LLM-as-a-judge) to evaluate model outputs at scale, but their assessments often diverge systematically from human judgments. We present Bridge, a unified statistical framework that explicitly bridges human and LLM evaluations under both absolute scoring and pairwise comparison paradigms. Bridge posits a latent human preference score for each prompt-response pair and models LLM deviations as linear transformations of covariates that capture sources of discrepancies. This offers a simple and principled framework for refining LLM ratings and characterizing systematic discrepancies between humans and LLMs. We provide an efficient fitting algorithm with asymptotic guarantees for statistical inference. Using six LLM judges and two benchmarks (BigGen Bench and Chatbot Arena), Bridge achieves higher agreement with human ratings (accuracy, calibration, and KL divergence) and exposes systematic human-LLM gaps.
☆ [Social] Allostasis: Or, How I Learned To Stop Worrying and Love The Noise
The notion of homeostasis typically conceptualises biological and artificial systems as maintaining stability by resisting deviations caused by environmental and social perturbations. In contrast, (social) allostasis proposes that these systems can proactively leverage these very perturbations to reconfigure their regulatory parameters in anticipation of environmental demands, aligning with von Foerster's ``order through noise'' principle. This paper formulates a computational model of allostatic and social allostatic regulation that employs biophysiologically inspired signal transducers, analogous to hormones like cortisol and oxytocin, to encode information from both the environment and social interactions, which mediate this dynamic reconfiguration. The models are tested in a small society of ``animats'' across several dynamic environments, using an agent-based model. The results show that allostatic and social allostatic regulation enable agents to leverage environmental and social ``noise'' for adaptive reconfiguration, leading to improved viability compared to purely reactive homeostatic agents. This work offers a novel computational perspective on the principles of social allostasis and their potential for designing more robust, bio-inspired, adaptive systems
comment: 20 pages, 5 figures. Accepted at ALIFE 2025 (Kyoto, Japan; October 6th - 10th 2025)
☆ Reinforcement Learning with Rubric Anchors
Reinforcement Learning from Verifiable Rewards (RLVR) has emerged as a powerful paradigm for enhancing Large Language Models (LLMs), exemplified by the success of OpenAI's o-series. In RLVR, rewards are derived from verifiable signals-such as passing unit tests in code generation or matching correct answers in mathematical reasoning. While effective, this requirement largely confines RLVR to domains with automatically checkable outcomes. To overcome this, we extend the RLVR paradigm to open-ended tasks by integrating rubric-based rewards, where carefully designed rubrics serve as structured, model-interpretable criteria for automatic scoring of subjective outputs. We construct, to our knowledge, the largest rubric reward system to date, with over 10,000 rubrics from humans, LLMs, or a hybrid human-LLM collaboration. Implementing rubric-based RL is challenging; we tackle these issues with a clear framework and present an open-sourced Qwen-30B-A3B model with notable gains: 1) With only 5K+ samples, our system improves by +5.2% on open-ended benchmarks (especially humanities), outperforming a 671B DeepSeek-V3 model by +2.4%, while preserving general and reasoning abilities. 2) Our method provides fine-grained stylistic control, using rubrics as anchors to mitigate the "AI-like" tone and produce more human-like, expressive responses. We share key lessons in rubric construction, data selection, and training, and discuss limitations and future releases.
comment: technical report
☆ HeroBench: A Benchmark for Long-Horizon Planning and Structured Reasoning in Virtual Worlds
Large language models (LLMs) have shown remarkable capabilities in isolated step-by-step reasoning tasks such as mathematics and programming, but their proficiency in long-horizon planning, where solutions require extended, structured sequences of interdependent actions, remains underexplored. Existing benchmarks typically assess LLMs through abstract or low-dimensional algorithmic tasks, failing to capture the complexity of realistic planning environments. We introduce HeroBench, a novel benchmark designed specifically to evaluate long-horizon planning and structured reasoning within complex RPG-inspired virtual worlds. HeroBench provides a rigorously constructed dataset of tasks covering a wide range of difficulties, a simulated environment to execute and validate agent plans, and detailed analytical tools for evaluating model performance. Tasks challenge models to formulate strategic plans, efficiently gather resources, master necessary skills, craft equipment, and defeat adversaries, reflecting practical scenarios' layered dependencies and constraints. Our extensive evaluation of 25 state-of-the-art LLMs, spanning both open-source and proprietary models, including the GPT-5 family, reveals substantial performance disparities rarely observed in conventional reasoning benchmarks. Detailed error analysis further uncovers specific weaknesses in current models' abilities to generate robust high-level plans and reliably execute structured actions. HeroBench thus not only significantly advances the evaluation of LLM reasoning but also provides a flexible, scalable foundation for future research into advanced, autonomous planning in virtual environments.
comment: Code is available at https://github.com/stefanrer/HeroBench
☆ Randomized PCA Forest for Outlier Detection
We propose a novel unsupervised outlier detection method based on Randomized Principal Component Analysis (PCA). Inspired by the performance of Randomized PCA (RPCA) Forest in approximate K-Nearest Neighbor (KNN) search, we develop a novel unsupervised outlier detection method that utilizes RPCA Forest for outlier detection. Experimental results showcase the superiority of the proposed approach compared to the classical and state-of-the-art methods in performing the outlier detection task on several datasets while performing competitively on the rest. The extensive analysis of the proposed method reflects it high generalization power and its computational efficiency, highlighting it as a good choice for unsupervised outlier detection.
☆ CRED-SQL: Enhancing Real-world Large Scale Database Text-to-SQL Parsing through Cluster Retrieval and Execution Description
Recent advances in large language models (LLMs) have significantly improved the accuracy of Text-to-SQL systems. However, a critical challenge remains: the semantic mismatch between natural language questions (NLQs) and their corresponding SQL queries. This issue is exacerbated in large-scale databases, where semantically similar attributes hinder schema linking and semantic drift during SQL generation, ultimately reducing model accuracy. To address these challenges, we introduce CRED-SQL, a framework designed for large-scale databases that integrates Cluster Retrieval and Execution Description. CRED-SQL first performs cluster-based large-scale schema retrieval to pinpoint the tables and columns most relevant to a given NLQ, alleviating schema mismatch. It then introduces an intermediate natural language representation-Execution Description Language (EDL)-to bridge the gap between NLQs and SQL. This reformulation decomposes the task into two stages: Text-to-EDL and EDL-to-SQL, leveraging LLMs' strong general reasoning capabilities while reducing semantic deviation. Extensive experiments on two large-scale, cross-domain benchmarks-SpiderUnion and BirdUnion-demonstrate that CRED-SQL achieves new state-of-the-art (SOTA) performance, validating its effectiveness and scalability. Our code is available at https://github.com/smduan/CRED-SQL.git
☆ Harnessing Group-Oriented Consistency Constraints for Semi-Supervised Semantic Segmentation in CdZnTe Semiconductors
Labeling Cadmium Zinc Telluride (CdZnTe) semiconductor images is challenging due to the low-contrast defect boundaries, necessitating annotators to cross-reference multiple views. These views share a single ground truth (GT), forming a unique ``many-to-one'' relationship. This characteristic renders advanced semi-supervised semantic segmentation (SSS) methods suboptimal, as they are generally limited by a ``one-to-one'' relationship, where each image is independently associated with its GT. Such limitation may lead to error accumulation in low-contrast regions, further exacerbating confirmation bias. To address this issue, we revisit the SSS pipeline from a group-oriented perspective and propose a human-inspired solution: the Intra-group Consistency Augmentation Framework (ICAF). First, we experimentally validate the inherent consistency constraints within CdZnTe groups, establishing a group-oriented baseline using the Intra-group View Sampling (IVS). Building on this insight, we introduce the Pseudo-label Correction Network (PCN) to enhance consistency representation, which consists of two key modules. The View Augmentation Module (VAM) improves boundary details by dynamically synthesizing a boundary-aware view through the aggregation of multiple views. In the View Correction Module (VCM), this synthesized view is paired with other views for information interaction, effectively emphasizing salient regions while minimizing noise. Extensive experiments demonstrate the effectiveness of our solution for CdZnTe materials. Leveraging DeepLabV3+ with a ResNet-101 backbone as our segmentation model, we achieve a 70.6\% mIoU on the CdZnTe dataset using only 2 group-annotated data (5\textperthousand). The code is available at \href{https://github.com/pipixiapipi/ICAF}{https://github.com/pipixiapipi/ICAF}.
☆ CLAIRE-DSA: Fluoroscopic Image Classification for Quality Assurance of Computer Vision Pipelines in Acute Ischemic Stroke
Computer vision models can be used to assist during mechanical thrombectomy (MT) for acute ischemic stroke (AIS), but poor image quality often degrades performance. This work presents CLAIRE-DSA, a deep learning--based framework designed to categorize key image properties in minimum intensity projections (MinIPs) acquired during MT for AIS, supporting downstream quality control and workflow optimization. CLAIRE-DSA uses pre-trained ResNet backbone models, fine-tuned to predict nine image properties (e.g., presence of contrast, projection angle, motion artefact severity). Separate classifiers were trained on an annotated dataset containing $1,758$ fluoroscopic MinIPs. The model achieved excellent performance on all labels, with ROC-AUC ranging from $0.91$ to $0.98$, and precision ranging from $0.70$ to $1.00$. The ability of CLAIRE-DSA to identify suitable images was evaluated on a segmentation task by filtering poor quality images and comparing segmentation performance on filtered and unfiltered datasets. Segmentation success rate increased from $42%$ to $69%$, $p < 0.001$. CLAIRE-DSA demonstrates strong potential as an automated tool for accurately classifying image properties in DSA series of acute ischemic stroke patients, supporting image annotation and quality control in clinical and research applications. Source code is available at https://gitlab.com/icai-stroke-lab/wp3_neurointerventional_ai/claire-dsa.
comment: 10 pages, 4 figures, workshop paper accepted at https://switchmiccai.github.io/switch/
☆ Beyond Ethical Alignment: Evaluating LLMs as Artificial Moral Assistants AI 2025
The recent rise in popularity of large language models (LLMs) has prompted considerable concerns about their moral capabilities. Although considerable effort has been dedicated to aligning LLMs with human moral values, existing benchmarks and evaluations remain largely superficial, typically measuring alignment based on final ethical verdicts rather than explicit moral reasoning. In response, this paper aims to advance the investigation of LLMs' moral capabilities by examining their capacity to function as Artificial Moral Assistants (AMAs), systems envisioned in the philosophical literature to support human moral deliberation. We assert that qualifying as an AMA requires more than what state-of-the-art alignment techniques aim to achieve: not only must AMAs be able to discern ethically problematic situations, they should also be able to actively reason about them, navigating between conflicting values outside of those embedded in the alignment phase. Building on existing philosophical literature, we begin by designing a new formal framework of the specific kind of behaviour an AMA should exhibit, individuating key qualities such as deductive and abductive moral reasoning. Drawing on this theoretical framework, we develop a benchmark to test these qualities and evaluate popular open LLMs against it. Our results reveal considerable variability across models and highlight persistent shortcomings, particularly regarding abductive moral reasoning. Our work connects theoretical philosophy with practical AI evaluation while also emphasising the need for dedicated strategies to explicitly enhance moral reasoning capabilities in LLMs. Code available at https://github.com/alessioGalatolo/AMAeval
comment: Full version of the paper published in ECAI 2025 proceedings (IOS Press, CC BY-NC 4.0)
☆ DCSCR: A Class-Specific Collaborative Representation based Network for Image Set Classification
Image set classification (ISC), which can be viewed as a task of comparing similarities between sets consisting of unordered heterogeneous images with variable quantities and qualities, has attracted growing research attention in recent years. How to learn effective feature representations and how to explore the similarities between different image sets are two key yet challenging issues in this field. However, existing traditional ISC methods classify image sets based on raw pixel features, ignoring the importance of feature learning. Existing deep ISC methods can learn deep features, but they fail to adaptively adjust the features when measuring set distances, resulting in limited performance in few-shot ISC. To address the above issues, this paper combines traditional ISC methods with deep models and proposes a novel few-shot ISC approach called Deep Class-specific Collaborative Representation (DCSCR) network to simultaneously learn the frame- and concept-level feature representations of each image set and the distance similarities between different sets. Specifically, DCSCR consists of a fully convolutional deep feature extractor module, a global feature learning module, and a class-specific collaborative representation-based metric learning module. The deep feature extractor and global feature learning modules are used to learn (local and global) frame-level feature representations, while the class-specific collaborative representation-based metric learning module is exploit to adaptively learn the concept-level feature representation of each image set and thus obtain the distance similarities between different sets by developing a new CSCR-based contrastive loss function. Extensive experiments on several well-known few-shot ISC datasets demonstrate the effectiveness of the proposed method compared with some state-of-the-art image set classification algorithms.
☆ FedUNet: A Lightweight Additive U-Net Module for Federated Learning with Heterogeneous Models
Federated learning (FL) enables decentralized model training without sharing local data. However, most existing methods assume identical model architectures across clients, limiting their applicability in heterogeneous real-world environments. To address this, we propose FedUNet, a lightweight and architecture-agnostic FL framework that attaches a U-Net-inspired additive module to each client's backbone. By sharing only the compact bottleneck of the U-Net, FedUNet enables efficient knowledge transfer without structural alignment. The encoder-decoder design and skip connections in the U-Net help capture both low-level and high-level features, facilitating the extraction of clientinvariant representations. This enables cooperative learning between the backbone and the additive module with minimal communication cost. Experiment with VGG variants shows that FedUNet achieves 93.11% accuracy and 92.68% in compact form (i.e., a lightweight version of FedUNet) with only 0.89 MB low communication overhead.
comment: 6 pages, 4 figures
☆ LinguaSafe: A Comprehensive Multilingual Safety Benchmark for Large Language Models
The widespread adoption and increasing prominence of large language models (LLMs) in global technologies necessitate a rigorous focus on ensuring their safety across a diverse range of linguistic and cultural contexts. The lack of a comprehensive evaluation and diverse data in existing multilingual safety evaluations for LLMs limits their effectiveness, hindering the development of robust multilingual safety alignment. To address this critical gap, we introduce LinguaSafe, a comprehensive multilingual safety benchmark crafted with meticulous attention to linguistic authenticity. The LinguaSafe dataset comprises 45k entries in 12 languages, ranging from Hungarian to Malay. Curated using a combination of translated, transcreated, and natively-sourced data, our dataset addresses the critical need for multilingual safety evaluations of LLMs, filling the void in the safety evaluation of LLMs across diverse under-represented languages from Hungarian to Malay. LinguaSafe presents a multidimensional and fine-grained evaluation framework, with direct and indirect safety assessments, including further evaluations for oversensitivity. The results of safety and helpfulness evaluations vary significantly across different domains and different languages, even in languages with similar resource levels. Our benchmark provides a comprehensive suite of metrics for in-depth safety evaluation, underscoring the critical importance of thoroughly assessing multilingual safety in LLMs to achieve more balanced safety alignment. Our dataset and code are released to the public to facilitate further research in the field of multilingual LLM safety.
comment: 7pages, 5 figures
☆ GTool: Graph Enhanced Tool Planning with Large Language Model
Tool planning with large language models (LLMs), referring to selecting, organizing, and preparing the tools necessary to complete a user request, bridges the gap between natural language understanding and task execution. However, current works treat different tools as isolated components and fail to leverage the inherent dependencies of tools, leading to invalid planning results. Since tool dependencies are often incomplete, it becomes challenging for LLMs to accurately identify the appropriate tools required by a user request, especially when confronted with a large toolset. To solve this challenge, we propose \texttt{GTool}, which is the first work aiming to enhance the tool planning ability of LLMs under incomplete dependencies. \texttt{GTool} constructs a request-specific tool graph to select tools efficiently and generate the \texttt{} which provides sufficient dependency information understandable by LLMs. Moreover, a missing dependency prediction task is designed to improve the reliability of \texttt{GTool} with incomplete dependencies. Without trimming LLMs, \texttt{GTool} can be seamlessly integrated with various LLM backbones without extensive retraining. Extensive experiments show that \texttt{GTool} achieves more than 29.6\% performance improvements compared with the state-of-the-art (SOTA) baselines with a light-weight (7B) LLM backbone.
comment: 16 pages, 9 figures
☆ MATPAC++: Enhanced Masked Latent Prediction for Self-Supervised Audio Representation Learning
Masked latent prediction has emerged as a leading paradigm in self-supervised learning (SSL), especially for general audio and music representation learning. While recent methods have demonstrated strong performance, the role of the predictor module used at the output of such SSL systems remains mainly overlooked, despite being crucial for solving the pretext task at hand. In particular, this module should be able to deal with the ambiguity inherent in audio content, especially when it is composed of multiple sound sources. This work proposes a novel enhancement: integrating Multiple Choice Learning (MCL) to explicitly model prediction ambiguity and improve representation quality. We build on top of the recently proposed MATPAC system, improving its prediction and unsupervised classification pretext tasks with MCL. We extensively evaluate our method, MATPAC++, through both linear probing across multiple downstream tasks and fine-tuning on AudioSet, employing a unified protocol that enables rigorous and fair comparisons with state-of-the-art SSL approaches. Results show that our proposal achieves state-of-the-art when fine-tuned on AudioSet and overall state-of-the-art scores on downstream tasks. Additionally, we examine domain specialisation by training exclusively on music data, where our model achieves state-of-the-art performance with significantly improved efficiency.
comment: Under review
☆ Asymmetric Diffusion Recommendation Model
Recently, motivated by the outstanding achievements of diffusion models, the diffusion process has been employed to strengthen representation learning in recommendation systems. Most diffusion-based recommendation models typically utilize standard Gaussian noise in symmetric forward and reverse processes in continuous data space. Nevertheless, the samples derived from recommendation systems inhabit a discrete data space, which is fundamentally different from the continuous one. Moreover, Gaussian noise has the potential to corrupt personalized information within latent representations. In this work, we propose a novel and effective method, named Asymmetric Diffusion Recommendation Model (AsymDiffRec), which learns forward and reverse processes in an asymmetric manner. We define a generalized forward process that simulates the missing features in real-world recommendation samples. The reverse process is then performed in an asymmetric latent feature space. To preserve personalized information within the latent representation, a task-oriented optimization strategy is introduced. In the serving stage, the raw sample with missing features is regarded as a noisy input to generate a denoising and robust representation for the final prediction. By equipping base models with AsymDiffRec, we conduct online A/B tests, achieving improvements of +0.131% and +0.166% in terms of users' active days and app usage duration respectively. Additionally, the extended offline experiments also demonstrate improvements. AsymDiffRec has been implemented in the Douyin Music App.
comment: Accepted by CIKM2025
♻ ☆ New Interaction Paradigm for Complex EDA Software Leveraging GPT ICML 2025
Electronic Design Automation (EDA) tools such as KiCad offer powerful functionalities but remain difficult to use, particularly for beginners, due to their steep learning curves and fragmented documentation. To address this challenge, we present SmartonAI, an AI-assisted interaction system that integrates large language models into the EDA workflow, enabling natural language communication, intelligent task decomposition, and contextual plugin execution. SmartonAI consists of two main components: a Chat Plugin that breaks down user instructions into subtasks and retrieves tailored documentation, and a OneCommandLine Plugin that recommends and executes relevant plugins based on user intent. The system supports multilingual interaction and adapts to user feedback through incremental learning. Preliminary results suggest that SmartonAI significantly reduces onboarding time and enhances productivity, representing a promising step toward generalizable AI-assisted interaction paradigms for complex software systems.
comment: Accepted to ICML 2025 Workshop on New In Machine Learning (NewInML), 9 pages, 8 figures
♻ ☆ AutoChemSchematic AI: Agentic Physics-Aware Automation for Chemical Manufacturing Scale-Up
Recent advances in generative AI have accelerated the discovery of novel chemicals and materials. However, scaling these discoveries to industrial production remains a major bottleneck due to the synthesis gap -- the need to develop entirely new manufacturing processes. This challenge requires detailed engineering blueprints: PFDs for equipment layouts and material/energy flows, and PIDs for process plant operations. Current AI systems cannot yet reliably generate these critical engineering schematics, creating a fundamental obstacle to manufacturing scale-up of novel discoveries. We present a closed-loop, physics-aware framework for automated generation of industrially viable PFDs and PIDs. The framework integrates three key components: (1) domain-specialized small language models (SLMs) trained for auto-generation of PFDs and PIDs, (2) a hierarchical knowledge graph containing process flow and instrumentation descriptions for 1,020+ chemicals for Graph Retrieval-Augmented Generation (GRAG), and (3) an open-source chemical process simulator for modeling, simulation, optimization, and analysis of novel chemical processes. The SLMs are trained through a multi-stage pipeline on synthetic datasets, with process simulator-in-the-loop validation ensuring feasibility. To enhance computational efficiency, the framework implements structural pruning (width and depth) guided by importance heuristics to reduce language model size while preserving accuracy, followed by advanced inference optimizations including FlashAttention, Lookahead Decoding, PagedAttention with KV-cache quantization, and Test-Time Inference Scaling. Experimental results demonstrate that our framework generates simulator-validated process descriptions with high fidelity.
♻ ☆ CaRL: Learning Scalable Planning Policies with Simple Rewards
We investigate reinforcement learning (RL) for privileged planning in autonomous driving. State-of-the-art approaches for this task are rule-based, but these methods do not scale to the long tail. RL, on the other hand, is scalable and does not suffer from compounding errors like imitation learning. Contemporary RL approaches for driving use complex shaped rewards that sum multiple individual rewards, \eg~progress, position, or orientation rewards. We show that PPO fails to optimize a popular version of these rewards when the mini-batch size is increased, which limits the scalability of these approaches. Instead, we propose a new reward design based primarily on optimizing a single intuitive reward term: route completion. Infractions are penalized by terminating the episode or multiplicatively reducing route completion. We find that PPO scales well with higher mini-batch sizes when trained with our simple reward, even improving performance. Training with large mini-batch sizes enables efficient scaling via distributed data parallelism. We scale PPO to 300M samples in CARLA and 500M samples in nuPlan with a single 8-GPU node. The resulting model achieves 64 DS on the CARLA longest6 v2 benchmark, outperforming other RL methods with more complex rewards by a large margin. Requiring only minimal adaptations from its use in CARLA, the same method is the best learning-based approach on nuPlan. It scores 91.3 in non-reactive and 90.6 in reactive traffic on the Val14 benchmark while being an order of magnitude faster than prior work.
comment: Accepted at the Conference on Robot Learning 2025
♻ ☆ GraphLand: Evaluating Graph Machine Learning Models on Diverse Industrial Data
Although data that can be naturally represented as graphs is widespread in real-world applications across diverse industries, popular graph ML benchmarks for node property prediction only cover a surprisingly narrow set of data domains, and graph neural networks (GNNs) are often evaluated on just a few academic citation networks. This issue is particularly pressing in light of the recent growing interest in designing graph foundation models. These models are supposed to be able to transfer to diverse graph datasets from different domains, and yet the proposed graph foundation models are often evaluated on a very limited set of datasets from narrow applications. To alleviate this issue, we introduce GraphLand: a benchmark of 14 diverse graph datasets for node property prediction from a range of different industrial applications. GraphLand allows evaluating graph ML models on a wide range of graphs with diverse sizes, structural characteristics, and feature sets, all in a unified setting. Further, GraphLand allows investigating such previously underexplored research questions as how realistic temporal distributional shifts under transductive and inductive settings influence graph ML model performance. To mimic realistic industrial settings, we use GraphLand to compare GNNs with gradient-boosted decision trees (GBDT) models that are popular in industrial applications and show that GBDTs provided with additional graph-based input features can sometimes be very strong baselines. Further, we evaluate currently available general-purpose graph foundation models and find that they fail to produce competitive results on our proposed datasets.
♻ ☆ LLMs Are In-Context Bandit Reinforcement Learners
Large Language Models (LLMs) excel at in-context learning (ICL), a supervised learning technique that relies on adding annotated examples to the model context. We investigate a contextual bandit version of in-context reinforcement learning (ICRL), where models learn in-context, online, from external reward, instead of supervised data. We show that LLMs effectively demonstrate such learning, and provide a detailed study of the phenomena, experimenting with challenging classification tasks and models of sizes from 500M to 70B parameters. This includes identifying and addressing the instability of the process, demonstrating learning with both semantic and abstract labels, and showing scaling trends. Our findings highlight ICRL capabilities in LLMs, while also underscoring fundamental limitations in their implicit reasoning about errors.
comment: Published at COLM 2025
♻ ☆ Fast Controlled Generation from Language Models with Adaptive Weighted Rejection Sampling
The dominant approach to generating from language models subject to some constraint is locally constrained decoding (LCD), incrementally sampling tokens at each time step such that the constraint is never violated. Typically, this is achieved through token masking: looping over the vocabulary and excluding non-conforming tokens. There are two important problems with this approach. (i) Evaluating the constraint on every token can be prohibitively expensive -- LM vocabularies often exceed $100,000$ tokens. (ii) LCD can distort the global distribution over strings, sampling tokens based only on local information, even if they lead down dead-end paths. This work introduces a new algorithm that addresses both these problems. First, to avoid evaluating a constraint on the full vocabulary at each step of generation, we propose an adaptive rejection sampling algorithm that typically requires orders of magnitude fewer constraint evaluations. Second, we show how this algorithm can be extended to produce low-variance, unbiased estimates of importance weights at a very small additional cost -- estimates that can be soundly used within previously proposed sequential Monte Carlo algorithms to correct for the myopic behavior of local constraint enforcement. Through extensive empirical evaluation in text-to-SQL, molecular synthesis, goal inference, pattern matching, and JSON domains, we show that our approach is superior to state-of-the-art baselines, supporting a broader class of constraints and improving both runtime and performance. Additional theoretical and empirical analyses show that our method's runtime efficiency is driven by its dynamic use of computation, scaling with the divergence between the unconstrained and constrained LM, and as a consequence, runtime improvements are greater for better models.
comment: COLM 2025
♻ ☆ Quantformer: from attention to profit with a quantitative transformer trading strategy
In traditional quantitative trading practice, navigating the complicated and dynamic financial market presents a persistent challenge. Fully capturing various market variables, including long-term information, as well as essential signals that may lead to profit remains a difficult task for learning algorithms. In order to tackle this challenge, this paper introduces quantformer, an enhanced neural network architecture based on transformer, to build investment factors. By transfer learning from sentiment analysis, quantformer not only exploits its original inherent advantages in capturing long-range dependencies and modeling complex data relationships, but is also able to solve tasks with numerical inputs and accurately forecast future returns over a given period. This work collects more than 5,000,000 rolling data of 4,601 stocks in the Chinese capital market from 2010 to 2023. The results of this study demonstrate the model's superior performance in predicting stock trends compared with other 100-factor-based quantitative strategies. Notably, the model's innovative use of transformer-like model to establish factors, in conjunction with market sentiment information, has been shown to enhance the accuracy of trading signals significantly, thereby offering promising implications for the future of quantitative trading strategies.
comment: The implementation details and code is available on https://github.com/zhangmordred/QuantFormer
♻ ☆ Quantization Hurts Reasoning? An Empirical Study on Quantized Reasoning Models
Recent advancements in reasoning language models have demonstrated remarkable performance in complex tasks, but their extended chain-of-thought reasoning process increases inference overhead. While quantization has been widely adopted to reduce the inference cost of large language models, its impact on reasoning models remains understudied. In this paper, we conduct the first systematic study on quantized reasoning models, evaluating the open-sourced DeepSeek-R1-Distilled Qwen and LLaMA families ranging from 1.5B to 70B parameters, QwQ-32B, and Qwen3-8B. Our investigation covers weight, KV cache, and activation quantization using state-of-the-art algorithms at varying bit-widths, with extensive evaluation across mathematical (AIME, MATH-500), scientific (GPQA), and programming (LiveCodeBench) reasoning benchmarks. Our findings reveal that while lossless quantization can be achieved with W8A8 or W4A16 quantization, lower bit-widths introduce significant accuracy risks. We further identify model size, model origin, and task difficulty as critical determinants of performance. Contrary to expectations, quantized models do not exhibit increased output lengths. In addition, strategically scaling the model sizes or reasoning steps can effectively enhance the performance. All quantized models and codes are open-sourced in https://github.com/ruikangliu/Quantized-Reasoning-Models.
comment: COLM 2025
♻ ☆ INSIGHT: A Survey of In-Network Systems for Intelligent, High-Efficiency AI and Topology Optimization
In-network computation represents a transformative approach to addressing the escalating demands of Artificial Intelligence (AI) workloads on network infrastructure. By leveraging the processing capabilities of network devices such as switches, routers, and Network Interface Cards (NICs), this paradigm enables AI computations to be performed directly within the network fabric, significantly reducing latency, enhancing throughput, and optimizing resource utilization. This paper provides a comprehensive analysis of optimizing in-network computation for AI, exploring the evolution of programmable network architectures, such as Software-Defined Networking (SDN) and Programmable Data Planes (PDPs), and their convergence with AI. It examines methodologies for mapping AI models onto resource-constrained network devices, addressing challenges like limited memory and computational capabilities through efficient algorithm design and model compression techniques. The paper also highlights advancements in distributed learning, particularly in-network aggregation, and the potential of federated learning to enhance privacy and scalability. Frameworks like Planter and Quark are discussed for simplifying development, alongside key applications such as intelligent network monitoring, intrusion detection, traffic management, and Edge AI. Future research directions, including runtime programmability, standardized benchmarks, and new applications paradigms, are proposed to advance this rapidly evolving field. This survey underscores the potential of in-network AI to create intelligent, efficient, and responsive networks capable of meeting the demands of next-generation AI applications.
♻ ☆ Co-Writing with AI, on Human Terms: Aligning Research with User Demands Across the Writing Process
As generative AI tools like ChatGPT become integral to everyday writing, critical questions arise about how to preserve writers' sense of agency and ownership when using these tools. Yet, a systematic understanding of how AI assistance affects different aspects of the writing process - and how this shapes writers' agency - remains underexplored. To address this gap, we conducted a systematic review of 109 HCI papers using the PRISMA approach. From this literature, we identify four overarching design strategies for AI writing support: structured guidance, guided exploration, active co-writing, and critical feedback - mapped across the four key cognitive processes in writing: planning, translating, reviewing, and monitoring. We complement this analysis with interviews of 15 writers across diverse domains. Our findings reveal that writers' desired levels of AI intervention vary across the writing process: content-focused writers (e.g., academics) prioritize ownership during planning, while form-focused writers (e.g., creatives) value control over translating and reviewing. Writers' preferences are also shaped by contextual goals, values, and notions of originality and authorship. By examining when ownership matters, what writers want to own, and how AI interactions shape agency, we surface both alignment and gaps between research and user needs. Our findings offer actionable design guidance for developing human-centered writing tools for co-writing with AI, on human terms.
♻ ☆ A Comprehensive Review of Datasets for Clinical Mental Health AI Systems
Mental health disorders are rising worldwide. However, the availability of trained clinicians has not scaled proportionally, leaving many people without adequate or timely support. To bridge this gap, recent studies have shown the promise of Artificial Intelligence (AI) to assist mental health diagnosis, monitoring, and intervention. However, the development of efficient, reliable, and ethical AI to assist clinicians is heavily dependent on high-quality clinical training datasets. Despite growing interest in data curation for training clinical AI assistants, existing datasets largely remain scattered, under-documented, and often inaccessible, hindering the reproducibility, comparability, and generalizability of AI models developed for clinical mental health care. In this paper, we present the first comprehensive survey of clinical mental health datasets relevant to the training and development of AI-powered clinical assistants. We categorize these datasets by mental disorders (e.g., depression, schizophrenia), data modalities (e.g., text, speech, physiological signals), task types (e.g., diagnosis prediction, symptom severity estimation, intervention generation), accessibility (public, restricted or private), and sociocultural context (e.g., language and cultural background). Along with these, we also investigate synthetic clinical mental health datasets. Our survey identifies critical gaps such as a lack of longitudinal data, limited cultural and linguistic representation, inconsistent collection and annotation standards, and a lack of modalities in synthetic data. We conclude by outlining key challenges in curating and standardizing future datasets and provide actionable recommendations to facilitate the development of more robust, generalizable, and equitable mental health AI systems.
comment: 23 pages, 3 figures
♻ ☆ An MRP Formulation for Supervised Learning: Generalized Temporal Difference Learning Models AI
In traditional statistical learning, data points are usually assumed to be independently and identically distributed (i.i.d.) following an unknown probability distribution. This paper presents a contrasting viewpoint, perceiving data points as interconnected and employing a Markov reward process (MRP) for data modeling. We reformulate the typical supervised learning as an on-policy policy evaluation problem within reinforcement learning (RL), introducing a generalized temporal difference (TD) learning algorithm as a resolution. Theoretically, our analysis establishes connections between the solutions of linear TD learning and ordinary least squares (OLS). Under specific conditions -- particularly when the noise is correlated -- the TD solution serves as a more effective estimator than OLS. Furthermore, we show that when our algorithm is applied with many commonly used loss functions -- such as those found in generalized linear models -- it corresponds to the application of a novel and generalized Bellman operator. We prove that this operator admits a unique fixed point, and based on this, we establish convergence guarantees for our generalized TD algorithm under linear function approximation. Empirical studies verify our theoretical results, examine the vital design of our TD algorithm and show practical utility across various datasets, encompassing tasks such as regression and image classification with deep learning.
comment: Accepted by JAIR. The abstract above is more concise than the one in the paper to meet the requirements of the arXiv website
♻ ☆ When Deep Learning Fails: Limitations of Recurrent Models on Stroke-Based Handwriting for Alzheimer's Disease Detection
Alzheimer's disease detection requires expensive neuroimaging or invasive procedures, limiting accessibility. This study explores whether deep learning can enable non-invasive Alzheimer's disease detection through handwriting analysis. Using a dataset of 34 distinct handwriting tasks collected from healthy controls and Alzheimer's disease patients, we evaluate and compare three recurrent neural architectures (LSTM, GRU, RNN) against traditional machine learning models. A crucial distinction of our approach is that the recurrent models process pre-extracted features from discrete strokes, not raw temporal signals. This violates the assumption of a continuous temporal flow that recurrent networks are designed to capture. Results reveal that they exhibit poor specificity and high variance. Traditional ensemble methods significantly outperform all deep architectures, achieving higher accuracy with balanced metrics. This demonstrates that recurrent architectures, designed for continuous temporal sequences, fail when applied to feature vectors extracted from ambiguously segmented strokes. Despite their complexity, deep learning models cannot overcome the fundamental disconnect between their architectural assumptions and the discrete, feature-based nature of stroke-level handwriting data. Although performance is limited, the study highlights several critical issues in data representation and model compatibility, pointing to valuable directions for future research.
♻ ☆ GTPO and GRPO-S: Token and Sequence-Level Reward Shaping with Policy Entropy
Reinforcement learning (RL) with algorithms like Group Relative Policy Optimization (GRPO) improves Large Language Model (LLM) reasoning, but is limited by a coarse-grained credit assignment that applies a uniform reward to all tokens in a sequence. This is a major flaw in long-chain reasoning tasks. This paper solves this with \textbf{Dynamic Entropy Weighting}. Our core idea is that high-entropy tokens in correct responses can guide the policy toward a higher performance ceiling. This allows us to create more fine-grained reward signals for precise policy updates via two ways: 1) \textbf{Group Token Policy Optimization} (\textbf{GTPO}), we assigns a entropy-weighted reward to each token for fine-grained credit assignment. 2) \textbf{Sequence-Level Group Relative Policy Optimization} (\textbf{GRPO-S}), we assigns a entropy-weighted reward to each sequence based on its average token entropy. Experiments show our methods significantly outperform the strong DAPO baseline. The results confirm that our entropy-weighting mechanism is the key driver of this performance boost, offering a better path to enhance deep reasoning in models.
♻ ☆ Mapping the Unseen: Unified Promptable Panoptic Mapping with Dynamic Labeling using Foundation Models
In robotics and computer vision, semantic mapping remains a critical challenge for machines to comprehend complex environments. Traditional panoptic mapping approaches are constrained by fixed labels, limiting their ability to handle novel objects. We present Unified Promptable Panoptic Mapping (UPPM), which leverages foundation models for dynamic labeling without additional training. UPPM is evaluated across three comprehensive levels: Segmentation-to-Map, Map-to-Map, and Segmentation-to-Segmentation. Results demonstrate UPPM attains exceptional geometry reconstruction accuracy (0.61cm on the Flat dataset), the highest panoptic quality (0.414), and better performance compared to state-of-the-art segmentation methods. Furthermore, ablation studies validate the contributions of unified semantics, custom NMS, and blurry frame filtering, with the custom NMS improving the completion ratio by 8.27% on the Flat dataset. UPPM demonstrates effective scene reconstruction with rich semantic labeling across diverse datasets.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Policy Search, Retrieval, and Composition via Task Similarity in Collaborative Agentic Systems
Agentic AI aims to create systems that set their own goals, adapt proactively to change, and refine behavior through continuous experience. Recent advances suggest that, when facing multiple and unforeseen tasks, agents could benefit from sharing machine-learned knowledge and reuse policies that have already been fully or partially learned by other agents. However, how to query, select, and retrieve policies from a pool of agents, and how to integrate such policies remains a largely unexplored area. This study explores how an agent decides what knowledge to select, from whom, and when and how to integrate it in its own policy in order to accelerate its own learning. The proposed algorithm, \emph{Modular Sharing and Composition in Collective Learning} (MOSAIC), improves learning in agentic collectives by combining (1) knowledge selection using performance signals and cosine similarity on Wasserstein task embeddings, (2) modular and transferable neural representations via masks, and (3) policy integration, composition and fine-tuning. MOSAIC outperforms isolated learners and global sharing approaches in both learning speed and overall performance, and in some cases solves tasks that isolated agents cannot. The results also demonstrate that selective, goal-driven reuse leads to less susceptibility to task interference. We also observe the emergence of self-organization, where agents solving simpler tasks accelerate the learning of harder ones through shared knowledge.
comment: 25 pages, 20 figures, 6 tables. Preprint
♻ ☆ Does Prior Data Matter? Exploring Joint Training in the Context of Few-Shot Class-Incremental Learning
Class-incremental learning (CIL) aims to adapt to continuously emerging new classes while preserving knowledge of previously learned ones. Few-shot class-incremental learning (FSCIL) presents a greater challenge that requires the model to learn new classes from only a limited number of samples per class. While incremental learning typically assumes restricted access to past data, it often remains available in many real-world scenarios. This raises a practical question: should one retrain the model on the full dataset (i.e., joint training), or continue updating it solely with new data? In CIL, joint training is considered an ideal benchmark that provides a reference for evaluating the trade-offs between performance and computational cost. However, in FSCIL, joint training becomes less reliable due to severe imbalance between base and incremental classes. This results in the absence of a practical baseline, making it unclear which strategy is preferable for practitioners. To this end, we revisit joint training in the context of FSCIL by incorporating imbalance mitigation techniques, and suggest a new imbalance-aware joint training benchmark for FSCIL. We then conduct extensive comparisons between this benchmark and FSCIL methods to analyze which approach is most suitable when prior data is accessible. Our analysis offers realistic insights and guidance for selecting training strategies in real-world FSCIL scenarios. Code is available at: https://github.com/shiwonkim/Joint_FSCIL
♻ ☆ FCL-ViT: Task-Aware Attention Tuning for Continual Learning
Continual Learning (CL) involves adapting the prior Deep Neural Network (DNN) knowledge to new tasks, without forgetting the old ones. However, modern CL techniques focus on provisioning memory capabilities to existing DNN models rather than designing new ones that are able to adapt according to the task at hand. This paper presents the novel Feedback Continual Learning Vision Transformer (FCL-ViT) that uses a feedback mechanism to generate real-time dynamic attention features tailored to the current task. The FCL-ViT operates in two Phases. In phase 1, the generic image features are produced and determine where the Transformer should attend on the current image. In phase 2, task-specific image features are generated that leverage dynamic attention. To this end, Tunable self-Attention Blocks (TABs) and Task Specific Blocks (TSBs) are introduced that operate in both phases and are responsible for tuning the TABs attention, respectively. The FCL-ViT surpasses state-of-the-art performance on Continual Learning compared to benchmark methods, while retaining a small number of trainable DNN parameters.
♻ ☆ LaDi-WM: A Latent Diffusion-based World Model for Predictive Manipulation
Predictive manipulation has recently gained considerable attention in the Embodied AI community due to its potential to improve robot policy performance by leveraging predicted states. However, generating accurate future visual states of robot-object interactions from world models remains a well-known challenge, particularly in achieving high-quality pixel-level representations. To this end, we propose LaDi-WM, a world model that predicts the latent space of future states using diffusion modeling. Specifically, LaDi-WM leverages the well-established latent space aligned with pre-trained Visual Foundation Models (VFMs), which comprises both geometric features (DINO-based) and semantic features (CLIP-based). We find that predicting the evolution of the latent space is easier to learn and more generalizable than directly predicting pixel-level images. Building on LaDi-WM, we design a diffusion policy that iteratively refines output actions by incorporating forecasted states, thereby generating more consistent and accurate results. Extensive experiments on both synthetic and real-world benchmarks demonstrate that LaDi-WM significantly enhances policy performance by 27.9\% on the LIBERO-LONG benchmark and 20\% on the real-world scenario. Furthermore, our world model and policies achieve impressive generalizability in real-world experiments.
comment: CoRL 2025
♻ ☆ Dissecting the SWE-Bench Leaderboards: Profiling Submitters and Architectures of LLM- and Agent-Based Repair Systems
The rapid progress in Automated Program Repair (APR) has been driven by advances in AI, particularly large language models (LLMs) and agent-based systems. SWE-Bench is a recent benchmark designed to evaluate LLM-based repair systems using real issues and pull requests mined from 12 popular open-source Python repositories. Its public leaderboards -- SWE-Bench Lite and SWE-Bench Verified -- have become central platforms for tracking progress and comparing solutions. However, because the submission process does not require detailed documentation, the architectural design and origin of many solutions remain unclear. In this paper, we present the first comprehensive study of all submissions to the SWE-Bench Lite (79 entries) and Verified (99 entries) leaderboards, analyzing 80 unique approaches across dimensions such as submitter type, product availability, LLM usage, and system architecture. Our findings reveal the dominance of proprietary LLMs (especially Claude 3.5), the presence of both agentic and non-agentic designs, and a contributor base spanning from individual developers to large tech companies.
♻ ☆ Opus: A Prompt Intention Framework for Complex Workflow Generation
This paper introduces the Opus Prompt Intention Framework, designed to improve complex Workflow Generation with instruction-tuned Large Language Models (LLMs). We propose an intermediate Intention Capture layer between user queries and Workflow Generation, implementing the Opus Workflow Intention Framework, which consists of extracting Workflow Signals from user queries, interpreting them into structured Workflow Intention objects, and generating Workflows based on these Intentions. Our results show that this layer enables LLMs to produce logical and meaningful outputs that scale reliably as query complexity increases. On a synthetic benchmark of 1,000 multi-intent query-Workflow(s) pairs, applying the Opus Prompt Intention Framework to Workflow Generation yields consistent improvements in semantic Workflow similarity metrics. In this paper, we introduce the Opus Prompt Intention Framework by applying the concepts of Workflow Signal and Workflow Intention to LLM-driven Workflow Generation. We present a reproducible, customizable LLM-based Intention Capture system to extract Workflow Signals and Workflow Intentions from user queries. Finally, we provide empirical evidence that the proposed system significantly improves Workflow Generation quality compared to direct generation from user queries, particularly in cases of Mixed Intention Elicitation.
comment: 39 pages, 24 figures
♻ ☆ Fast Geometric Embedding for Node Influence Maximization
Computing classical centrality measures such as betweenness and closeness is computationally expensive on large-scale graphs. In this work, we introduce an efficient force layout algorithm that embeds a graph into a low-dimensional space, where the radial distance from the origin serves as a proxy for various centrality measures. We evaluate our method on multiple graph families and demonstrate strong correlations with degree, PageRank, and paths-based centralities. As an application, it turns out that the proposed embedding allows to find high-influence nodes in a network, and provides a fast and scalable alternative to the standard greedy algorithm.
comment: 8 pages, 4 figures, 18 tables; Github repository available (https://github.com/sashakolpakov/graphem/); Package available on PyPi (https://pypi.org/project/graphem-jax/)
♻ ☆ Dynamic Multi-Agent System with Stable Maneuvering for Robust GAIA Problem Solving by AWorld
The rapid advancement of large language models (LLMs) has empowered intelligent agents to leverage diverse external tools for solving complex real-world problems. However, as agents increasingly depend on multiple tools, they encounter new challenges: extended contexts from disparate sources and noisy or irrelevant tool outputs can undermine system reliability and accuracy. These challenges underscore the necessity for enhanced stability in agent-based systems. To address this, we introduce dynamic supervision and maneuvering mechanisms, constructing a robust and dynamic Multi-Agent System (MAS) architecture within the AWorld framework. In our approach, the Execution Agent invokes the Guard Agent at critical steps to verify and correct the reasoning process, effectively reducing errors arising from noise and bolstering problem-solving robustness. Extensive experiments on the GAIA test dataset reveal that our dynamic maneuvering mechanism significantly improves both the effectiveness and stability of solutions, outperforming single-agent system (SAS) and standard tool-augmented systems. As a result, our dynamic MAS system achieved first place among open-source projects on the prestigious GAIA leaderboard. These findings highlight the practical value of collaborative agent roles in developing more reliable and trustworthy intelligent systems.
♻ ☆ Overconfidence in LLM-as-a-Judge: Diagnosis and Confidence-Driven Solution
Large Language Models (LLMs) are widely used as automated judges, where practical value depends on both accuracy and trustworthy, risk-aware judgments. Existing approaches predominantly focus on accuracy, overlooking the necessity of well-calibrated confidence, which is vital for adaptive and reliable evaluation pipelines. In this work, we advocate a shift from accuracy-centric evaluation to confidence-driven, risk-aware LLM-as-a-Judge systems, emphasizing the necessity of well-calibrated confidence for trustworthy and adaptive evaluation. We systematically identify the Overconfidence Phenomenon in current LLM-as-a-Judges, where predicted confidence significantly overstates actual correctness, undermining reliability in practical deployment. To quantify this phenomenon, we introduce TH-Score, a novel metric measuring confidence-accuracy alignment. Furthermore, we propose LLM-as-a-Fuser, an ensemble framework that transforms LLMs into reliable, risk-aware evaluators. Extensive experiments demonstrate that our approach substantially improves calibration and enables adaptive, confidence-driven evaluation pipelines, achieving superior reliability and accuracy compared to existing baselines.
♻ ☆ Action is All You Need: Dual-Flow Generative Ranking Network for Recommendation
Deep Learning Recommendation Models (DLRMs) often rely on extensive manual feature engineering to improve accuracy and user experience, which increases system complexity and limits scalability of model performance with respect to computational resources. Recently, Meta introduced a generative ranking paradigm based on HSTU block that enables end-to-end learning from raw user behavior sequences and demonstrates scaling law on large datasets that can be regarded as the state-of-the-art (SOTA). However, splitting user behaviors into interleaved item and action information significantly increases the input sequence length, which adversely affects both training and inference efficiency. To address this issue, we propose the Dual-Flow Generative Ranking Network (DFGR), that employs a dual-flow mechanism to optimize interaction modeling, ensuring efficient training and inference through end-to-end token processing. DFGR duplicates the original user behavior sequence into a real flow and a fake flow based on the authenticity of the action information, and then defines a novel interaction method between the real flow and the fake flow within the QKV module of the self-attention mechanism. This design reduces computational overhead and improves both training efficiency and inference performance compared to Meta's HSTU-based model. Experiments on both open-source and real industrial datasets show that DFGR outperforms DLRM, which serves as the industrial online baseline with extensive feature engineering, as well as Meta's HSTU and other common recommendation models such as DIN, DCN, DIEN, and DeepFM. Furthermore, we investigate optimal parameter allocation strategies under computational constraints, establishing DFGR as an efficient and effective next-generation generative ranking paradigm.
♻ ☆ Bridging Econometrics and AI: VaR Estimation via Reinforcement Learning and GARCH Models
In an environment of increasingly volatile financial markets, the accurate estimation of risk remains a major challenge. Traditional econometric models, such as GARCH and its variants, are based on assumptions that are often too rigid to adapt to the complexity of the current market dynamics. To overcome these limitations, we propose a hybrid framework for Value-at-Risk (VaR) estimation, combining GARCH volatility models with deep reinforcement learning. Our approach incorporates directional market forecasting using the Double Deep Q-Network (DDQN) model, treating the task as an imbalanced classification problem. This architecture enables the dynamic adjustment of risk-level forecasts according to market conditions. Empirical validation on daily Eurostoxx 50 data covering periods of crisis and high volatility shows a significant improvement in the accuracy of VaR estimates, as well as a reduction in the number of breaches and also in capital requirements, while respecting regulatory risk thresholds. The ability of the model to adjust risk levels in real time reinforces its relevance to modern and proactive risk management.
♻ ☆ Exploring Content and Social Connections of Fake News with Explainable Text and Graph Learning
The global spread of misinformation and concerns about content trustworthiness have driven the development of automated fact-checking systems. Since false information often exploits social media dynamics such as "likes" and user networks to amplify its reach, effective solutions must go beyond content analysis to incorporate these factors. Moreover, simply labelling content as false can be ineffective or even reinforce biases such as automation and confirmation bias. This paper proposes an explainable framework that combines content, social media, and graph-based features to enhance fact-checking. It integrates a misinformation classifier with explainability techniques to deliver complete and interpretable insights supporting classification decisions. Experiments demonstrate that multimodal information improves performance over single modalities, with evaluations conducted on datasets in English, Spanish, and Portuguese. Additionally, the framework's explanations were assessed for interpretability, trustworthiness, and robustness with a novel protocol, showing that it effectively generates human-understandable justifications for its predictions.
comment: Accepted to publication at the 35th Brazilian Conference on Intelligent Systems, BRACIS 2025
♻ ☆ A Novel Approach for Estimating Largest Lyapunov Exponents in One-Dimensional Chaotic Time Series Using Machine Learning
Understanding and quantifying chaos from data remains challenging. We present a data-driven method for estimating the largest Lyapunov exponent (LLE) from one-dimensional chaotic time series using machine learning. A predictor is trained to produce out-of-sample, multi-horizon forecasts; the LLE is then inferred from the exponential growth of the geometrically averaged forecast error (GMAE) across the horizon, which serves as a proxy for trajectory divergence. We validate the approach on four canonical 1D maps-logistic, sine, cubic, and Chebyshev-achieving R2pos > 0.99 against reference LLE curves with series as short as M = 450. Among baselines, KNN yields the closest fits (KNN-R comparable; RF larger deviations). By design the estimator targets positive exponents: in periodic/stable regimes it returns values indistinguishable from zero. Noise robustness is assessed by adding zero-mean white measurement noise and summarizing performance versus the average SNR over parameter sweeps: accuracy saturates for SNRm > 30 dB and collapses below 27 dB, a conservative sensor-level benchmark. The method is simple, computationally efficient, and model-agnostic, requiring only stationarity and the presence of a dominant positive exponent. It offers a practical route to LLE estimation in experimental settings where only scalar time-series measurements are available, with extensions to higher-dimensional and irregularly sampled data left for future work.
comment: 18 pages, 5 figures, 2 Tables, 14 Equations
♻ ☆ V-RoAst: Visual Road Assessment. Can VLM be a Road Safety Assessor Using the iRAP Standard?
Road safety assessments are critical yet costly, especially in Low- and Middle-Income Countries (LMICs), where most roads remain unrated. Traditional methods require expert annotation and training data, while supervised learning-based approaches struggle to generalise across regions. In this paper, we introduce \textit{V-RoAst}, a zero-shot Visual Question Answering (VQA) framework using Vision-Language Models (VLMs) to classify road safety attributes defined by the iRAP standard. We introduce the first open-source dataset from ThaiRAP, consisting of over 2,000 curated street-level images from Thailand annotated for this task. We evaluate Gemini-1.5-flash and GPT-4o-mini on this dataset and benchmark their performance against VGGNet and ResNet baselines. While VLMs underperform on spatial awareness, they generalise well to unseen classes and offer flexible prompt-based reasoning without retraining. Our results show that VLMs can serve as automatic road assessment tools when integrated with complementary data. This work is the first to explore VLMs for zero-shot infrastructure risk assessment and opens new directions for automatic, low-cost road safety mapping. Code and dataset: https://github.com/PongNJ/V-RoAst.
♻ ☆ Contemplative Artificial Intelligence
As artificial intelligence (AI) improves, traditional alignment strategies may falter in the face of unpredictable self-improvement, hidden subgoals, and the sheer complexity of intelligent systems. Inspired by contemplative wisdom traditions, we show how four axiomatic principles can instil a resilient Wise World Model in AI systems. First, mindfulness enables self-monitoring and recalibration of emergent subgoals. Second, emptiness forestalls dogmatic goal fixation and relaxes rigid priors. Third, non-duality dissolves adversarial self-other boundaries. Fourth, boundless care motivates the universal reduction of suffering. We find that prompting AI to reflect on these principles improves performance on the AILuminate Benchmark (d=.96) and boosts cooperation and joint-reward on the Prisoner's Dilemma task (d=7+). We offer detailed implementation strategies at the level of architectures, constitutions, and reinforcement on chain-of-thought. For future systems, active inference may offer the self-organizing and dynamic coupling capabilities needed to enact Contemplative AI in embodied agents.
♻ ☆ Game Reasoning Arena: A Framework and Benchmark for Assessing Reasoning Capabilities of Large Language Models via Game Play
The Game Reasoning Arena library provides a framework for evaluating the decision making abilities of large language models (LLMs) through strategic board games implemented in Google OpenSpiel library. The framework enables systematic comparisons between LLM based agents and other agents (random, heuristic, reinforcement learning agents, etc.) in various game scenarios by wrapping multiple board and matrix games and supporting different agent types. It integrates API access to models via liteLLM, local model deployment via vLLM, and offers distributed execution through Ray. This paper summarises the library structure, key characteristics, and motivation of the repository, highlighting how it contributes to the empirical evaluation of the reasoning of LLM and game theoretic behaviour.
♻ ☆ Evaluating Contrast Localizer for Identifying Causal Units in Social & Mathematical Tasks in Language Models
This work adapts a neuroscientific contrast localizer to pinpoint causally relevant units for Theory of Mind (ToM) and mathematical reasoning tasks in large language models (LLMs) and vision-language models (VLMs). Across 11 LLMs and 5 VLMs ranging in size from 3B to 90B parameters, we localize top-activated units using contrastive stimulus sets and assess their causal role via targeted ablations. We compare the effect of lesioning functionally selected units against low-activation and randomly selected units on downstream accuracy across established ToM and mathematical benchmarks. Contrary to expectations, low-activation units sometimes produced larger performance drops than the highly activated ones, and units derived from the mathematical localizer often impaired ToM performance more than those from the ToM localizer. These findings call into question the causal relevance of contrast-based localizers and highlight the need for broader stimulus sets and more accurately capture task-specific units.
comment: Accepted at the Interplay of Model Behavior and Model Internals Workshop co-located with COLM 2025
♻ ☆ Hybrid Generative Fusion for Efficient and Privacy-Preserving Face Recognition Dataset Generation ICCV 2025
In this paper, we present our approach to the DataCV ICCV Challenge, which centers on building a high-quality face dataset to train a face recognition model. The constructed dataset must not contain identities overlapping with any existing public face datasets. To handle this challenge, we begin with a thorough cleaning of the baseline HSFace dataset, identifying and removing mislabeled or inconsistent identities through a Mixture-of-Experts (MoE) strategy combining face embedding clustering and GPT-4o-assisted verification. We retain the largest consistent identity cluster and apply data augmentation up to a fixed number of images per identity. To further diversify the dataset, we generate synthetic identities using Stable Diffusion with prompt engineering. As diffusion models are computationally intensive, we generate only one reference image per identity and efficiently expand it using Vec2Face, which rapidly produces 49 identity-consistent variants. This hybrid approach fuses GAN-based and diffusion-based samples, enabling efficient construction of a diverse and high-quality dataset. To address the high visual similarity among synthetic identities, we adopt a curriculum learning strategy by placing them early in the training schedule, allowing the model to progress from easier to harder samples. Our final dataset contains 50 images per identity, and all newly generated identities are checked with mainstream face datasets to ensure no identity leakage. Our method achieves \textbf{1st place} in the competition, and experimental results show that our dataset improves model performance across 10K, 20K, and 100K identity scales. Code is available at https://github.com/Ferry-Li/datacv_fr.
comment: This paper has been accpeted to ICCV 2025 DataCV Workshop
♻ ☆ Hierarchical Multi-Agent Reinforcement Learning with Control Barrier Functions for Safety-Critical Autonomous Systems
We address the problem of safe policy learning in multi-agent safety-critical autonomous systems. In such systems, it is necessary for each agent to meet the safety requirements at all times while also cooperating with other agents to accomplish the task. Toward this end, we propose a safe Hierarchical Multi-Agent Reinforcement Learning (HMARL) approach based on Control Barrier Functions (CBFs). Our proposed hierarchical approach decomposes the overall reinforcement learning problem into two levels learning joint cooperative behavior at the higher level and learning safe individual behavior at the lower or agent level conditioned on the high-level policy. Specifically, we propose a skill-based HMARL-CBF algorithm in which the higher level problem involves learning a joint policy over the skills for all the agents and the lower-level problem involves learning policies to execute the skills safely with CBFs. We validate our approach on challenging environment scenarios whereby a large number of agents have to safely navigate through conflicting road networks. Compared with existing state of the art methods, our approach significantly improves the safety achieving near perfect (within 5%) success/safety rate while also improving performance across all the environments.
♻ ☆ LeAdQA: LLM-Driven Context-Aware Temporal Grounding for Video Question Answering
Video Question Answering (VideoQA) requires identifying sparse critical moments in long videos and reasoning about their causal relationships to answer semantically complex questions. While recent advances in multimodal learning have improved alignment and fusion, current approaches remain limited by two prevalent but fundamentally flawed strategies: (1) task-agnostic sampling indiscriminately processes all frames, overwhelming key events with irrelevant content; and (2) heuristic retrieval captures superficial patterns but misses causal-temporal structures needed for complex reasoning. To address these challenges, we introduce LeAdQA, an innovative approach that bridges these gaps through synergizing causal-aware query refinement with fine-grained visual grounding. Our method first leverages LLMs to reformulate question-option pairs, resolving causal ambiguities and sharpening temporal focus. These refined queries subsequently direct a temporal grounding model to precisely retrieve the most salient segments, complemented by an adaptive fusion mechanism dynamically integrating the evidence to maximize relevance. The integrated visual-textual cues are then processed by an MLLM to generate accurate, contextually-grounded answers. Experiments on NExT-QA, IntentQA, and NExT-GQA demonstrate that our method's precise visual grounding substantially enhances the understanding of video-question relationships, achieving state-of-the-art (SOTA) performance on complex reasoning tasks while maintaining computational efficiency.
♻ ☆ Benchmarking Spectral Graph Neural Networks: A Comprehensive Study on Effectiveness and Efficiency
With recent advancements in graph neural networks (GNNs), spectral GNNs have received increasing popularity by virtue of their ability to retrieve graph signals in the spectral domain. These models feature uniqueness in efficient computation as well as rich expressiveness, which stems from advanced management and profound understanding of graph data. However, few systematic studies have been conducted to assess spectral GNNs, particularly in benchmarking their efficiency, memory consumption, and effectiveness in a unified and fair manner. There is also a pressing need to select spectral models suitable for learning specific graph data and deploying them to massive web-scale graphs, which is currently constrained by the varied model designs and training settings. In this work, we extensively benchmark spectral GNNs with a focus on the spectral perspective, demystifying them as spectral graph filters. We analyze and categorize 35 GNNs with 27 corresponding filters, spanning diverse formulations and utilizations of the graph data. Then, we implement the filters within a unified spectral-oriented framework with dedicated graph computations and efficient training schemes. In particular, our implementation enables the deployment of spectral GNNs over million-scale graphs and various tasks with comparable performance and less overhead. Thorough experiments are conducted on the graph filters with comprehensive metrics on effectiveness and efficiency, offering novel observations and practical guidelines that are only available from our evaluations across graph scales. Different from the prevailing belief, our benchmark reveals an intricate landscape regarding the effectiveness and efficiency of spectral graph filters, demonstrating the potential to achieve desirable performance through tailored spectral manipulation of graph data.
comment: Full Technical Report. Our code and evaluation is available at: https://github.com/gdmnl/Spectral-GNN-Benchmark
♻ ☆ Flexible Tool Selection through Low-dimensional Attribute Alignment of Vision and Language
Flexible tool selection reflects a complex cognitive ability that distinguishes humans from other species, yet computational models that capture this ability remain underdeveloped. We developed a framework using low-dimensional attribute representations to bridge visual tool perception and linguistic task understanding. We constructed a comprehensive dataset (ToolNet) containing 115 common tools labeled with 13 carefully designed attributes spanning physical, functional, and psychological properties, paired with natural language scenarios describing tool usage. Visual encoders (ResNet or ViT) extract attributes from tool images while fine-tuned language models (GPT-2, LLaMA, DeepSeek) derive required attributes from task descriptions. Our approach achieves 74% accuracy in tool selection tasks-significantly outperforming direct tool matching (20%) and smaller multimodal models (21%-58%), while approaching performance of much larger models like GPT-4o (73%) with substantially fewer parameters. Human evaluation studies validate our framework's alignment with human decision-making patterns, and generalization experiments demonstrate effective performance on novel tool categories. Ablation studies revealed that manipulation-related attributes (graspability, elongation, hand-relatedness) consistently prove most critical across modalities. This work provides a parameter-efficient, interpretable solution that mimics human-like tool cognition, advancing both cognitive science understanding and practical applications in tool selection tasks.
♻ ☆ Large language models can replicate cross-cultural differences in personality
We use a large-scale experiment (N=8000) to determine whether GPT-4 can replicate cross-cultural differences in the Big Five, measured using the Ten-Item Personality Inventory. We used the US and South Korea as the cultural pair, given that prior research suggests substantial personality differences between people from these two countries. We manipulated the target of the simulation (US vs. Korean), the language of the inventory (English vs. Korean), and the language model (GPT-4 vs. GPT-3.5). Our results show that GPT-4 replicated the cross-cultural differences for each factor. However, mean ratings had an upward bias and exhibited lower variation than in the human samples, as well as lower structural validity. We provide preliminary evidence that LLMs can aid cross-cultural researchers and practitioners.
comment: 27 pages: 12 pages of manuscript + 15 pages of supplementary materials; in V3 added information that this is the Author Accepted Manuscript version; in V4 license changed to CC-BY
♻ ☆ Advancing AI-Scientist Understanding: Multi-Agent LLMs with Interpretable Physics Reasoning ICML 2025
Large Language Models (LLMs) are playing an increasingly important role in physics research by assisting with symbolic manipulation, numerical computation, and scientific reasoning. However, ensuring the reliability, transparency, and interpretability of their outputs remains a major challenge. In this work, we introduce a novel multi-agent LLM physicist framework that fosters collaboration between AI and human scientists through three key modules: a reasoning module, an interpretation module, and an AI-scientist interaction module. Recognizing that effective physics reasoning demands logical rigor, quantitative accuracy, and alignment with established theoretical models, we propose an interpretation module that employs a team of specialized LLM agents-including summarizers, model builders, visualization tools, and testers-to systematically structure LLM outputs into transparent, physically grounded science models. A case study demonstrates that our approach significantly improves interpretability, enables systematic validation, and enhances human-AI collaboration in physics problem-solving and discovery. Our work bridges free-form LLM reasoning with interpretable, executable models for scientific analysis, enabling more transparent and verifiable AI-augmented research.
comment: ICML 2025 Workshop on MAS
♻ ☆ S2FGL: Spatial Spectral Federated Graph Learning
Federated Graph Learning (FGL) combines the privacy-preserving capabilities of federated learning (FL) with the strong graph modeling capability of Graph Neural Networks (GNNs). Current research addresses subgraph-FL from the structural perspective, neglecting the propagation of graph signals on spatial and spectral domains of the structure. From a spatial perspective, subgraph-FL introduces edge disconnections between clients, leading to disruptions in label signals and a degradation in the semantic knowledge of the global GNN. From a spectral perspective, spectral heterogeneity causes inconsistencies in signal frequencies across subgraphs, which makes local GNNs overfit the local signal propagation schemes. As a result, spectral client drift occurs, undermining global generalizability. To tackle the challenges, we propose a global knowledge repository to mitigate the challenge of poor semantic knowledge caused by label signal disruption. Furthermore, we design a frequency alignment to address spectral client drift. The combination of Spatial and Spectral strategies forms our framework S2FGL. Extensive experiments on multiple datasets demonstrate the superiority of S2FGL. The code is available at https://github.com/Wonder7racer/S2FGL.git.
Computational Engineering, Finance, and Science 8
☆ Denoising diffusion models for inverse design of inflatable structures with programmable deformations
Programmable structures are systems whose undeformed geometries and material property distributions are deliberately designed to achieve prescribed deformed configurations under specific loading conditions. Inflatable structures are a prominent example, using internal pressurization to realize large, nonlinear deformations in applications ranging from soft robotics and deployable aerospace systems to biomedical devices and adaptive architecture. We present a generative design framework based on denoising diffusion probabilistic models (DDPMs) for the inverse design of elastic structures undergoing large, nonlinear deformations under pressure-driven actuation. The method formulates the inverse design as a conditional generation task, using geometric descriptors of target deformed states as inputs and outputting image-based representations of the undeformed configuration. Representing these configurations as simple images is achieved by establishing a pre- and postprocessing pipeline that involves a fixed image processing, simulation setup, and descriptor extraction methods. Numerical experiments with scalar and higher-dimensional descriptors show that the framework can quickly produce diverse undeformed configurations that achieve the desired deformations when inflated, enabling parallel exploration of viable design candidates while accommodating complex constraints.
comment: 21 pages, 12 figures
☆ Shapley Values: Paired-Sampling Approximations
Originally introduced in cooperative game theory, Shapley values have become a very popular tool to explain machine learning predictions. Based on Shapley's fairness axioms, every input (feature component) gets a credit how it contributes to an output (prediction). These credits are then used to explain the prediction. The only limitation in computing the Shapley values (credits) for many different predictions is of computational nature. There are two popular sampling approximations, sampling KernelSHAP and sampling PermutationSHAP. Our first novel contributions are asymptotic normality results for these sampling approximations. Next, we show that the paired-sampling approaches provide exact results in case of interactions being of maximal order two. Furthermore, the paired-sampling PermutationSHAP possesses the additive recovery property, whereas its kernel counterpart does not.
☆ Ensured Energy: A simulation game to elicit preferences around Swiss energy transition pathways
The 2015 Paris Agreement on global warming specifies national objectives for the reduction of greenhouse gas emissions. In support of Switzerland's energy and climate strategy for 2050, researchers investigate scenarios for the transition of energy systems towards a higher share of renewables, assessing their social, environmental and economic impact. Their results guide stakeholders and policy makers in designing resilient and sustainable systems. Political scientists use surveys to quantify public acceptance of energy policy, but the complexity and long time horizon of the subject creates difficulties, both for researchers in posing contextually relevant questions, and for respondents in assimilating enough information to give meaningful answers. A population survey was therefore augmented with an online serious game in which players experience an accurate simulation of current and future energy provision and manage transition towards a sustainable future. This interactive environment allows better informed and engaged decisions, and provides richer information on public opinion. In this paper we motivate and describe the design of the game and report initial findings on player characteristics and engagement. We show that a serious game can successfully attract participants from diverse societal groups and highlight the challenge of balancing complexity and entertainment.
comment: 10 pages, 7 figures, submitted to IEEE Transactions on Games
Data-driven particle dynamics: Structure-preserving coarse-graining for emergent behavior in non-equilibrium systems
Multiscale systems are ubiquitous in science and technology, but are notoriously challenging to simulate as short spatiotemporal scales must be appropriately linked to emergent bulk physics. When expensive high-dimensional dynamical systems are coarse-grained into low-dimensional models, the entropic loss of information leads to emergent physics which are dissipative, history-dependent, and stochastic. To machine learn coarse-grained dynamics from time-series observations of particle trajectories, we propose a framework using the metriplectic bracket formalism that preserves these properties by construction; most notably, the framework guarantees discrete notions of the first and second laws of thermodynamics, conservation of momentum, and a discrete fluctuation-dissipation balance crucial for capturing non-equilibrium statistics. We introduce the mathematical framework abstractly before specializing to a particle discretization. As labels are generally unavailable for entropic state variables, we introduce a novel self-supervised learning strategy to identify emergent structural variables. We validate the method on benchmark systems and demonstrate its utility on two challenging examples: (1) coarse-graining star polymers at challenging levels of coarse-graining while preserving non-equilibrium statistics, and (2) learning models from high-speed video of colloidal suspensions that capture coupling between local rearrangement events and emergent stochastic dynamics. We provide open-source implementations in both PyTorch and LAMMPS, enabling large-scale inference and extensibility to diverse particle-based systems.
comment: 34 pages, 12 figures
☆ Unified Modelling of Infrastructure Asset Performance Deterioration -- a bounded gamma process approach
Infrastructure asset management systems require a flexible deterioration model that can handle various degradation patterns in a unified way. Owing to its appealing monotonic sample paths, independent increments and mathematical tractability, gamma process has been widely employed as an infrastructure performance deterioration model. This model was recently enhanced by introducing an upper bound to satisfy a practical modelling need that many infrastructure performance deterioration processes are constrained by physical or managerial limits. Several bounded transformed gamma process (BTGP) alternatives had been proposed; however, they lacked due flexibility to characterize different deterioration patterns. This paper proposed a new BTGP model that is deeply grounded upon the traditional regression modelling tradition in infrastructure asset management systems. Qualitative and quantitative comparisons were carried out between the proposed BTGP and a bounded nonstationary gamma process (BNGP) model from both deterioration modelling and asset management decision-making perspectives. An empirical study using the real-world historical bridge condition data was performed to examine the flexibility of the BTGP against the BNGP and six other BTGP alternatives. The results confirmed the flexibility and significance of the proposed BTGP model for infrastructure systems.
♻ ☆ Quantformer: from attention to profit with a quantitative transformer trading strategy
In traditional quantitative trading practice, navigating the complicated and dynamic financial market presents a persistent challenge. Fully capturing various market variables, including long-term information, as well as essential signals that may lead to profit remains a difficult task for learning algorithms. In order to tackle this challenge, this paper introduces quantformer, an enhanced neural network architecture based on transformer, to build investment factors. By transfer learning from sentiment analysis, quantformer not only exploits its original inherent advantages in capturing long-range dependencies and modeling complex data relationships, but is also able to solve tasks with numerical inputs and accurately forecast future returns over a given period. This work collects more than 5,000,000 rolling data of 4,601 stocks in the Chinese capital market from 2010 to 2023. The results of this study demonstrate the model's superior performance in predicting stock trends compared with other 100-factor-based quantitative strategies. Notably, the model's innovative use of transformer-like model to establish factors, in conjunction with market sentiment information, has been shown to enhance the accuracy of trading signals significantly, thereby offering promising implications for the future of quantitative trading strategies.
comment: The implementation details and code is available on https://github.com/zhangmordred/QuantFormer
♻ ☆ Time Series Analysis in Frequency Domain: A Survey of Open Challenges, Opportunities and Benchmarks
Frequency-domain analysis has emerged as a powerful paradigm for time series analysis, offering unique advantages over traditional time-domain approaches while introducing new theoretical and practical challenges. This survey provides a comprehensive examination of spectral methods from classical Fourier analysis to modern neural operators, systematically summarizing three open challenges in current research: (1) causal structure preservation during spectral transformations, (2) uncertainty quantification in learned frequency representations, and (3) topology-aware analysis for non-Euclidean data structures. Through rigorous reviewing of over 100 studies, we develop a unified taxonomy that bridges conventional spectral techniques with cutting-edge machine learning approaches, while establishing standardized benchmarks for performance evaluation. Our work identifies key knowledge gaps in the field, particularly in geometric deep learning and quantum-enhanced spectral analysis. The survey offers practitioners a systematic framework for method selection and implementation, while charting promising directions for future research in this rapidly evolving domain.
comment: 35 pages
♻ ☆ Accurate identification of communication between multiple interacting neural populations
Neural recording technologies now enable simultaneous recording of population activity across many brain regions, motivating the development of data-driven models of communication between brain regions. However, existing models can struggle to disentangle the sources that influence recorded neural populations, leading to inaccurate portraits of inter-regional communication. Here, we introduce Multi-Region Latent Factor Analysis via Dynamical Systems (MR-LFADS), a sequential variational autoencoder designed to disentangle inter-regional communication, inputs from unobserved regions, and local neural population dynamics. We show that MR-LFADS outperforms existing approaches at identifying communication across dozens of simulations of task-trained multi-region networks. When applied to large-scale electrophysiology, MR-LFADS predicts brain-wide effects of circuit perturbations that were held out during model fitting. These validations on synthetic and real neural data position MR-LFADS as a promising tool for discovering principles of brain-wide information processing.
Databases 1
☆ Cold-RL: Learning Cache Eviction with Offline Reinforcement Learning for NGINX
Web proxies such as NGINX commonly rely on least-recently-used (LRU) eviction, which is size agnostic and can thrash under periodic bursts and mixed object sizes. We introduce Cold-RL, a learned eviction policy for NGINX that replaces LRU's forced-expire path with a dueling Deep Q-Network served by an ONNX sidecar within a strict microsecond budget. On each eviction, Cold-RL samples the K least-recently-used objects, extracts six lightweight features (age, size, hit count, inter-arrival time, remaining TTL, and last origin RTT), and requests a bitmask of victims; a hard timeout of 500 microseconds triggers immediate fallback to native LRU. Policies are trained offline by replaying NGINX access logs through a cache simulator with a simple reward: a retained object earns one point if it is hit again before TTL expiry. We compare against LRU, LFU, size-based, adaptive LRU, and a hybrid baseline on two adversarial workloads. With a 25 MB cache, Cold-RL raises hit ratio from 0.1436 to 0.3538, a 146 percent improvement over the best classical baseline; at 100 MB, from 0.7530 to 0.8675, a 15 percent gain; and at 400 MB it matches classical methods (about 0.918). Inference adds less than 2 percent CPU overhead and keeps 95th percentile eviction latency within budget. To our knowledge, this is the first reinforcement learning eviction policy integrated into NGINX with strict SLOs.
comment: 8 pages, 4 figures (system architecture, eviction path, training pipeline, and DQN algorithm), 2 tables. Code available at https://github.com/ayushgupta4897/DRL-Cache
Distributed, Parallel, and Cluster Computing 5
☆ Breaking the Aggregation Bottleneck in Federated Recommendation: A Personalized Model Merging Approach
Federated recommendation (FR) facilitates collaborative training by aggregating local models from massive devices, enabling client-specific personalization while ensuring privacy. However, we empirically and theoretically demonstrate that server-side aggregation can undermine client-side personalization, leading to suboptimal performance, which we term the aggregation bottleneck. This issue stems from the inherent heterogeneity across numerous clients in FR, which drives the globally aggregated model to deviate from local optima. To this end, we propose FedEM, which elastically merges the global and local models to compensate for impaired personalization. Unlike existing personalized federated recommendation (pFR) methods, FedEM (1) investigates the aggregation bottleneck in FR through theoretical insights, rather than relying on heuristic analysis; (2) leverages off-the-shelf local models rather than designing additional mechanisms to boost personalization. Extensive experiments on real-world datasets demonstrate that our method preserves client personalization during collaborative training, outperforming state-of-the-art baselines.
☆ A Large-Scale Web Search Dataset for Federated Online Learning to Rank
The centralized collection of search interaction logs for training ranking models raises significant privacy concerns. Federated Online Learning to Rank (FOLTR) offers a privacy-preserving alternative by enabling collaborative model training without sharing raw user data. However, benchmarks in FOLTR are largely based on random partitioning of classical learning-to-rank datasets, simulated user clicks, and the assumption of synchronous client participation. This oversimplifies real-world dynamics and undermines the realism of experimental results. We present AOL4FOLTR, a large-scale web search dataset with 2.6 million queries from 10,000 users. Our dataset addresses key limitations of existing benchmarks by including user identifiers, real click data, and query timestamps, enabling realistic user partitioning, behavior modeling, and asynchronous federated learning scenarios.
comment: Accepted at CIKM 2025
☆ Proceedings 18th Interaction and Concurrency Experience
This volume contains the proceedings of ICE'25, the 18th Interaction and Concurrency Experience, which was held on Friday 20th June 2025 at the \'Ecole National Sup\'erieure des Arts et M\'etiers in Lille, France, as a satellite workshop of DisCoTec 2025. The ICE workshop series features a distinguishing review and selection procedure: PC members are encouraged to interact, anonymously, with authors. The 2025 edition of ICE received 7 submissions, each reviewed by three PC members, and about 75 comments were exchanged during the review process, witnessing very lively discussions. Four papers were accepted for publication plus 1 oral communication, which was accepted for presentation at the workshop. We were proud to host one invited talk, by Kirstin Peters. The abstract of her talk is included in this volume, together with the final versions of the research papers, which take into account the discussion at the workshop and during the review process.
☆ GPU Acceleration for Faster Evolutionary Spatial Cyclic Game Systems
This dissertation presents the design, implementation and evaluation of GPU-accelerated simulation frameworks for Evolutionary Spatial Cyclic Games (ESCGs), a class of agent-based models used to study ecological and evolutionary dynamics. Traditional single-threaded ESCG simulations are computationally expensive and scale poorly. To address this, high-performance implementations were developed using Apple's Metal and Nvidia's CUDA, with a validated single-threaded C++ version serving as a baseline comparison point. Benchmarking results show that GPU acceleration delivers significant speedups, with the CUDA maxStep implementation achieving up to a 28x improvement. Larger system sizes, up to 3200x3200, became tractable, while Metal faced scalability limits. The GPU frameworks also enabled replication and critical extension of recent ESCG studies, revealing sensitivities to system size and runtime not fully explored in prior work. Overall, this project provides a configurable ESCG simulation platform that advances the computational toolkit for this field of research. This dissertation forms the basis for a paper accepted for publication and presentation at the European Modelling and Simulation Symposium.
♻ ☆ The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning ICML 2025
To improve the training efficiency of federated learning (FL), previous research has employed low-rank decomposition techniques to reduce communication overhead. In this paper, we seek to enhance the performance of these low-rank decomposition methods. Specifically, we focus on three key issues related to decomposition in FL: what to decompose, how to decompose, and how to aggregate. Subsequently, we introduce three novel techniques: Model Update Decomposition (MUD), Block-wise Kronecker Decomposition (BKD), and Aggregation-Aware Decomposition (AAD), each targeting a specific issue. These techniques are complementary and can be applied simultaneously to achieve optimal performance. Additionally, we provide a rigorous theoretical analysis to ensure the convergence of the proposed MUD. Extensive experimental results show that our approach achieves faster convergence and superior accuracy compared to relevant baseline methods. The code is available at https://github.com/Leopold1423/fedmud-icml25.
comment: Accepted by ICML 2025
Information Retrieval 10
☆ Contrastive Multi-View Graph Hashing
Multi-view graph data, which both captures node attributes and rich relational information from diverse sources, is becoming increasingly prevalent in various domains. The effective and efficient retrieval of such data is an important task. Although multi-view hashing techniques have offered a paradigm for fusing diverse information into compact binary codes, they typically assume attributes-based inputs per view. This makes them unsuitable for multi-view graph data, where effectively encoding and fusing complex topological information from multiple heterogeneous graph views to generate unified binary embeddings remains a significant challenge. In this work, we propose Contrastive Multi-view Graph Hashing (CMGHash), a novel end-to-end framework designed to learn unified and discriminative binary embeddings from multi-view graph data. CMGHash learns a consensus node representation space using a contrastive multi-view graph loss, which aims to pull $k$-nearest neighbors from all graphs closer while pushing away negative pairs, i.e., non-neighbor nodes. Moreover, we impose binarization constraints on this consensus space, enabling its conversion to a corresponding binary embedding space at minimal cost. Extensive experiments on several benchmark datasets demonstrate that CMGHash significantly outperforms existing approaches in terms of retrieval accuracy.
☆ TaoSR1: The Thinking Model for E-commerce Relevance Search
Query-product relevance prediction is a core task in e-commerce search. BERT-based models excel at semantic matching but lack complex reasoning capabilities. While Large Language Models (LLMs) are explored, most still use discriminative fine-tuning or distill to smaller models for deployment. We propose a framework to directly deploy LLMs for this task, addressing key challenges: Chain-of-Thought (CoT) error accumulation, discriminative hallucination, and deployment feasibility. Our framework, TaoSR1, involves three stages: (1) Supervised Fine-Tuning (SFT) with CoT to instill reasoning; (2) Offline sampling with a pass@N strategy and Direct Preference Optimization (DPO) to improve generation quality; and (3) Difficulty-based dynamic sampling with Group Relative Policy Optimization (GRPO) to mitigate discriminative hallucination. Additionally, post-CoT processing and a cumulative probability-based partitioning method enable efficient online deployment. TaoSR1 significantly outperforms baselines on offline datasets and achieves substantial gains in online side-by-side human evaluations, introducing a novel paradigm for applying CoT reasoning to relevance classification.
☆ A Large-Scale Web Search Dataset for Federated Online Learning to Rank
The centralized collection of search interaction logs for training ranking models raises significant privacy concerns. Federated Online Learning to Rank (FOLTR) offers a privacy-preserving alternative by enabling collaborative model training without sharing raw user data. However, benchmarks in FOLTR are largely based on random partitioning of classical learning-to-rank datasets, simulated user clicks, and the assumption of synchronous client participation. This oversimplifies real-world dynamics and undermines the realism of experimental results. We present AOL4FOLTR, a large-scale web search dataset with 2.6 million queries from 10,000 users. Our dataset addresses key limitations of existing benchmarks by including user identifiers, real click data, and query timestamps, enabling realistic user partitioning, behavior modeling, and asynchronous federated learning scenarios.
comment: Accepted at CIKM 2025
☆ A Question Answering Dataset for Temporal-Sensitive Retrieval-Augmented Generation
We introduce ChronoQA, a large-scale benchmark dataset for Chinese question answering, specifically designed to evaluate temporal reasoning in Retrieval-Augmented Generation (RAG) systems. ChronoQA is constructed from over 300,000 news articles published between 2019 and 2024, and contains 5,176 high-quality questions covering absolute, aggregate, and relative temporal types with both explicit and implicit time expressions. The dataset supports both single- and multi-document scenarios, reflecting the real-world requirements for temporal alignment and logical consistency. ChronoQA features comprehensive structural annotations and has undergone multi-stage validation, including rule-based, LLM-based, and human evaluation, to ensure data quality. By providing a dynamic, reliable, and scalable resource, ChronoQA enables structured evaluation across a wide range of temporal tasks, and serves as a robust benchmark for advancing time-sensitive retrieval-augmented question answering systems.
comment: 10 pages, 5 figures
☆ An Auditable Pipeline for Fuzzy Full-Text Screening in Systematic Reviews: Integrating Contrastive Semantic Highlighting and LLM Judgment
Full-text screening is the major bottleneck of systematic reviews (SRs), as decisive evidence is dispersed across long, heterogeneous documents and rarely admits static, binary rules. We present a scalable, auditable pipeline that reframes inclusion/exclusion as a fuzzy decision problem and benchmark it against statistical and crisp baselines in the context of the Population Health Modelling Consensus Reporting Network for noncommunicable diseases (POPCORN). Articles are parsed into overlapping chunks and embedded with a domain-adapted model; for each criterion (Population, Intervention, Outcome, Study Approach), we compute contrastive similarity (inclusion-exclusion cosine) and a vagueness margin, which a Mamdani fuzzy controller maps into graded inclusion degrees with dynamic thresholds in a multi-label setting. A large language model (LLM) judge adjudicates highlighted spans with tertiary labels, confidence scores, and criterion-referenced rationales; when evidence is insufficient, fuzzy membership is attenuated rather than excluded. In a pilot on an all-positive gold set (16 full texts; 3,208 chunks), the fuzzy system achieved recall of 81.3% (Population), 87.5% (Intervention), 87.5% (Outcome), and 75.0% (Study Approach), surpassing statistical (56.3-75.0%) and crisp baselines (43.8-81.3%). Strict "all-criteria" inclusion was reached for 50.0% of articles, compared to 25.0% and 12.5% under the baselines. Cross-model agreement on justifications was 98.3%, human-machine agreement 96.1%, and a pilot review showed 91% inter-rater agreement (kappa = 0.82), with screening time reduced from about 20 minutes to under 1 minute per article at significantly lower cost. These results show that fuzzy logic with contrastive highlighting and LLM adjudication yields high recall, stable rationale, and end-to-end traceability.
♻ ☆ A Survey of LLM-based Deep Search Agents: Paradigm, Optimization, Evaluation, and Challenges
The advent of Large Language Models (LLMs) has significantly revolutionized web search. The emergence of LLM-based Search Agents marks a pivotal shift towards deeper, dynamic, autonomous information seeking. These agents can comprehend user intentions and environmental context and execute multi-turn retrieval with dynamic planning, extending search capabilities far beyond the web. Leading examples like OpenAI's Deep Research highlight their potential for deep information mining and real-world applications. This survey provides the first systematic analysis of search agents. We comprehensively analyze and categorize existing works from the perspectives of architecture, optimization, application, and evaluation, ultimately identifying critical open challenges and outlining promising future research directions in this rapidly evolving field. Our repository is available on https://github.com/YunjiaXi/Awesome-Search-Agent-Papers.
♻ ☆ OMGM: Orchestrate Multiple Granularities and Modalities for Efficient Multimodal Retrieval ACL 2025
Vision-language retrieval-augmented generation (RAG) has become an effective approach for tackling Knowledge-Based Visual Question Answering (KB-VQA), which requires external knowledge beyond the visual content presented in images. The effectiveness of Vision-language RAG systems hinges on multimodal retrieval, which is inherently challenging due to the diverse modalities and knowledge granularities in both queries and knowledge bases. Existing methods have not fully tapped into the potential interplay between these elements. We propose a multimodal RAG system featuring a coarse-to-fine, multi-step retrieval that harmonizes multiple granularities and modalities to enhance efficacy. Our system begins with a broad initial search aligning knowledge granularity for cross-modal retrieval, followed by a multimodal fusion reranking to capture the nuanced multimodal information for top entity selection. A text reranker then filters out the most relevant fine-grained section for augmented generation. Extensive experiments on the InfoSeek and Encyclopedic-VQA benchmarks show our method achieves state-of-the-art retrieval performance and highly competitive answering results, underscoring its effectiveness in advancing KB-VQA systems.
comment: Accepted to ACL 2025 Main Conference; Codes available at: https://github.com/ChaoLinAViy/OMGM
♻ ☆ TADT-CSA: Temporal Advantage Decision Transformer with Contrastive State Abstraction for Generative Recommendation
With the rapid advancement of Transformer-based Large Language Models (LLMs), generative recommendation has shown great potential in enhancing both the accuracy and semantic understanding of modern recommender systems. Compared to LLMs, the Decision Transformer (DT) is a lightweight generative model applied to sequential recommendation tasks. However, DT faces challenges in trajectory stitching, often producing suboptimal trajectories. Moreover, due to the high dimensionality of user states and the vast state space inherent in recommendation scenarios, DT can incur significant computational costs and struggle to learn effective state representations. To overcome these issues, we propose a novel Temporal Advantage Decision Transformer with Contrastive State Abstraction (TADT-CSA) model. Specifically, we combine the conventional Return-To-Go (RTG) signal with a novel temporal advantage (TA) signal that encourages the model to capture both long-term returns and their sequential trend. Furthermore, we integrate a contrastive state abstraction module into the DT framework to learn more effective and expressive state representations. Within this module, we introduce a TA-conditioned State Vector Quantization (TAC-SVQ) strategy, where the TA score guides the state codebooks to incorporate contextual token information. Additionally, a reward prediction network and a contrastive transition prediction (CTP) network are employed to ensure the state codebook preserves both the reward information of the current state and the transition information between adjacent states. Empirical results on both public datasets and an online recommendation system demonstrate the effectiveness of the TADT-CSA model and its superiority over baseline methods.
♻ ☆ Federated Continual Recommendation
The increasing emphasis on privacy in recommendation systems has led to the adoption of Federated Learning (FL) as a privacy-preserving solution, enabling collaborative training without sharing user data. While Federated Recommendation (FedRec) effectively protects privacy, existing methods struggle with non-stationary data streams, failing to maintain consistent recommendation quality over time. On the other hand, Continual Learning Recommendation (CLRec) methods address evolving user preferences but typically assume centralized data access, making them incompatible with FL constraints. To bridge this gap, we introduce Federated Continual Recommendation (FCRec), a novel task that integrates FedRec and CLRec, requiring models to learn from streaming data while preserving privacy. As a solution, we propose F3CRec, a framework designed to balance knowledge retention and adaptation under the strict constraints of FCRec. F3CRec introduces two key components: Adaptive Replay Memory on the client side, which selectively retains past preferences based on user-specific shifts, and Item-wise Temporal Mean on the server side, which integrates new knowledge while preserving prior information. Extensive experiments demonstrate that F3CRec outperforms existing approaches in maintaining recommendation quality over time in a federated environment.
comment: Accepted to CIKM 2025 full research paper track
♻ ☆ CoRank: LLM-Based Compact Reranking with Document Features for Scientific Retrieval
Scientific retrieval is essential for advancing scientific knowledge discovery. Within this process, document reranking plays a critical role in refining first-stage retrieval results. However, standard LLM listwise reranking faces challenges in the scientific domain. First-stage retrieval is often suboptimal in the scientific domain, so relevant documents are ranked lower. Meanwhile, conventional listwise reranking places the full text of candidates into the context window, limiting the number of candidates that can be considered. As a result, many relevant documents are excluded before reranking, constraining overall retrieval performance. To address these challenges, we explore semantic-feature-based compact document representations (e.g., categories, sections, and keywords) and propose CoRank, a training-free, model-agnostic reranking framework for scientific retrieval. It presents a three-stage solution: (i) offline extraction of document features, (ii) coarse-grained reranking using these compact representations, and (iii) fine-grained reranking on full texts of the top candidates from (ii). This integrated process addresses suboptimal first-stage retrieval: Compact representations allow more documents to fit within the context window, improving candidate set coverage, while the final fine-grained ranking ensures a more accurate ordering. Experiments on 5 academic retrieval datasets show that CoRank significantly improves reranking performance across different LLM backbones (average nDCG@10 from 50.6 to 55.5). Overall, these results underscore the synergistic interaction between information extraction and information retrieval, demonstrating how structured semantic features can enhance reranking in the scientific domain.
comment: 12 pages, 5 figures
Computational Engineering, Finance, and Science 3
☆ Porous Convection in the Discrete Exterior Calculus with Geometric Multigrid
The discrete exterior calculus (DEC) defines a family of discretized differential operators which preserve certain desirable properties from the exterior calculus. We formulate and solve the porous convection equations in the DEC via the Decapodes.jl embedded domain-specific language (eDSL) for multiphysics problems discretized via CombinatorialSpaces.jl. CombinatorialSpaces.jl is an open-source Julia library which implements the DEC over simplicial complexes, and now offers a geometric multigrid solver over maps between subdivided simplicial complexes. We demonstrate numerical results of multigrid solvers for the Poisson problem and porous convection problem, both as a standalone solver and as a preconditioner for open-source Julia iterative methods libraries.
♻ ☆ Regress, Don't Guess -- A Regression-like Loss on Number Tokens for Language Models ICML 2025
While language models have exceptional capabilities at text generation, they lack a natural inductive bias for emitting numbers and thus struggle in tasks involving quantitative reasoning, especially arithmetic. One fundamental limitation is the nature of the cross-entropy (CE) loss, which assumes a nominal scale and thus cannot convey proximity between generated number tokens. In response, we here present a regression-like loss that operates purely on token level. Our proposed Number Token Loss (NTL) comes in two flavors and minimizes either the $L_p$ norm or the Wasserstein distance between the numerical values of the real and predicted number tokens. NTL can easily be added to any language model and extend the CE objective during training without runtime overhead. We evaluate the proposed scheme on various mathematical datasets and find that it consistently improves performance in math-related tasks. In a direct comparison on a regression task, we find that NTL can match the performance of a regression head, despite operating on token level. Finally, we scale NTL up to 3B parameter models and observe improved performance, demonstrating its potential for seamless integration into LLMs. We hope to inspire LLM developers to improve their pretraining objectives and distribute NTL as a minimalistic and lightweight PyPI package $ntloss$: https://github.com/ai4sd/number-token-loss. Development code for full paper reproduction is available separately.
comment: ICML 2025
♻ ☆ On-device Anomaly Detection in Conveyor Belt Operations
Conveyor belts are crucial in mining operations by enabling the continuous and efficient movement of bulk materials over long distances, which directly impacts productivity. While detecting anomalies in specific conveyor belt components has been widely studied, identifying the root causes of these failures, such as changing production conditions and operator errors, remains critical. Continuous monitoring of mining conveyor belt work cycles is still at an early stage and requires robust solutions. Recently, an anomaly detection method for duty cycle operations of a mining conveyor belt has been proposed. Based on its limited performance and unevaluated long-term proper operation, this study proposes two novel methods for classifying normal and abnormal duty cycles. The proposed approaches are pattern recognition systems that make use of threshold-based duty-cycle detection mechanisms, manually extracted features, pattern-matching, and supervised tiny machine learning models. The explored low-computational models include decision tree, random forest, extra trees, extreme gradient boosting, Gaussian naive Bayes, and multi-layer perceptron. A comprehensive evaluation of the former and proposed approaches is carried out on two datasets. Both proposed methods outperform the former method in anomaly detection, with the best-performing approach being dataset-dependent. The heuristic rule-based approach achieves the highest F1-score in the same dataset used for algorithm training, with 97.3% for normal cycles and 80.2% for abnormal cycles. The ML-based approach performs better on a dataset including the effects of machine aging, with an F1-score scoring 91.3% for normal cycles and 67.9% for abnormal cycles. Implemented on two low-power microcontrollers, the methods demonstrate efficient, real-time operation with energy consumption of 13.3 and 20.6 \textmu J during inference. These results ...
comment: Preprint submitted to IEEE OPEN JOURNAL OF INSTRUMENTATION & MEASUREMENT
Databases 3
☆ Carry the Tail in Consensus Protocols
We present Carry-the-Tail, the first deterministic atomic broadcast protocol in partial synchrony that, after GST, guarantees a constant fraction of commits by non-faulty leaders against tail-forking attacks, and maintains optimal, worst-case quadratic communication under a cascade of faulty leaders. The solution also guarantees linear amortized communication, i.e., the steady-state is linear. Prior atomic broadcast solutions achieve quadratic word communication complexity in the worst case. However, they face a significant degradation in throughput under tail-forking attack. Existing solutions to tail-forking attacks require either quadratic communication steps or computationally-prohibitive SNARK generation. The key technical contribution is Carry, a practical drop-in mechanism for streamlined protocols in the HotStuff family. Carry guarantees good performance against tail-forking and removes most leader-induced stalls, while retaining linear traffic and protocol simplicity.
comment: 18 pages, 3 figures
☆ LSM-OPD: Boosting Scan in LSM-Trees by Enabling Direct Computing on Compressed Data
Scan-based operations, such as backstage compaction and value filtering, have emerged as the main bottleneck for LSM-Trees in supporting contemporary data-intensive applications. For slower external storage devices, such as HDD and SATA SSD, the scan performance is primarily limited by the I/O bandwidth (i.e., I/O bound) due to the substantial read/write amplifications in LSM-Trees. Recent adoption of high-performance storage devices, such as NVMe SSD, has transformed the main limitation to be compute-bound, emerging the impact of computational resource consumption caused by inefficient compactions and filtering. However, when the value size increases, the bottleneck for scan performance in fast devices gradually shifts towards the I/O bandwidth as well, and the overall throughput across all types of devices undergo a dramatic reduction. This paper addresses the core issues by proposing LSM-OPD, a Log-S tructured M erge-O rder- Preserving Dictionary encoding scheme that enables direct computing on compressed data within LSM-Trees. It first enables key-value-separated data flushing to disk in a densely encoded columnar layout, ideally with few bytes for a large string value (e.g., 1024 bytes), thereby significantly alleviating the frequent I/O requests caused by intensive scans. Then, it is capable of offloading the costly scan-based operations on large values, including compaction and value filtering, to lightweight dictionaries due to the order-preserving property. And SIMD-based vectorization can now be employed to maximize the evaluating performance on modern multi-core processors, further breaking the compute-bound limitations in LSM-trees. Extensive experiments demonstrate the superior efficiency of LSM-OPD in processing various workloads that involve intensive scan-based operations on diverse modern storage devices.
☆ Combined Approximations for Uniform Operational Consistent Query Answering
Operational consistent query answering (CQA) is a recent framework for CQA based on revised definitions of repairs, which are built by applying a sequence of operations (e.g., fact deletions) starting from an inconsistent database until we reach a database that is consistent w.r.t. the given set of constraints. It has been recently shown that there is an efficient approximation for computing the percentage of repairs that entail a given query when we focus on primary keys, conjunctive queries, and assuming the query is fixed (i.e., in data complexity). However, it has been left open whether such an approximation exists when the query is part of the input (i.e., in combined complexity). We show that this is the case when we focus on self-join-free conjunctive queries of bounded generelized hypertreewidth. We also show that it is unlikely that efficient approximation schemes exist once we give up one of the adopted syntactic restrictions, i.e., self-join-freeness or bounding the generelized hypertreewidth. Towards the desired approximation, we introduce a counting complexity class, called $\mathsf{SpanTL}$, show that each problem in it admits an efficient approximation scheme by using a recent approximability result about tree automata, and then place the problem of interest in $\mathsf{SpanTL}$.
comment: Expanded version of arXiv:2312.08038
Distributed, Parallel, and Cluster Computing 4
☆ Attack Graph Generation on HPC Clusters
Attack graphs (AGs) are graphical tools to analyze the security of computer networks. By connecting the exploitation of individual vulnerabilities, AGs expose possible multi-step attacks against target networks, allowing system administrators to take preventive measures to enhance their network's security. As powerful analytical tools, however, AGs are both time- and memory-consuming to be generated. As the numbers of network assets, interconnections between devices, as well as vulnerabilities increase, the size and volume of the resulting AGs grow at a much higher rate, leading to the well-known state-space explosion. In this paper, we propose the use of high performance computing (HPC) clusters to implement AG generators. We evaluate the performance through experiments and provide insights into how cluster environments can help resolve the issues of slow speed and high memory demands in AG generation in a balanced way.
☆ FedUHD: Unsupervised Federated Learning using Hyperdimensional Computing
Unsupervised federated learning (UFL) has gained attention as a privacy-preserving, decentralized machine learning approach that eliminates the need for labor-intensive data labeling. However, UFL faces several challenges in practical applications: (1) non-independent and identically distributed (non-iid) data distribution across devices, (2) expensive computational and communication costs at the edge, and (3) vulnerability to communication noise. Previous UFL approaches have relied on deep neural networks (NN), which introduce substantial overhead in both computation and communication. In this paper, we propose FedUHD, the first UFL framework based on Hyperdimensional Computing (HDC). HDC is a brain-inspired computing scheme with lightweight training and inference operations, much smaller model size, and robustness to communication noise. FedUHD introduces two novel HDC-based designs to improve UFL performance. On the client side, a kNN-based cluster hypervector removal method addresses non-iid data samples by eliminating detrimental outliers. On the server side, a weighted HDC aggregation technique balances the non-iid data distribution across clients. Our experiments demonstrate that FedUHD achieves up to 173.6x and 612.7x better speedup and energy efficiency, respectively, in training, up to 271x lower communication cost, and 15.50% higher accuracy on average across diverse settings, along with superior robustness to various types of noise compared to state-of-the-art NN-based UFL approaches.
♻ ☆ Reputation-based PoS for the Restriction of Illicit Activities on Blockchain: Algorand Usecase
In cryptocurrency-based permissionless blockchain networks, the decentralized structure enables any user to join and operate across different regions. The criminal entities exploit it by using cryptocurrency transactions on the blockchain to facilitate activities such as money laundering, gambling, and ransomware attacks. In recent times, different machine learning-based techniques can detect such criminal elements based on blockchain transaction data. However, there is no provision within the blockchain to deal with such elements. We propose a reputation-based methodology for response to the users detected carrying out the aforementioned illicit activities. We select Algorand blockchain to implement our methodology by incorporating it within the consensus protocol. The theoretical results obtained prove the restriction and exclusion of criminal elements through block proposal rejection and attenuation of the voting power as a validator for such entities. Further, we analyze the efficacy of our method and show that it puts no additional strain on the communication resources.
♻ ☆ A Distributed Partitioning Software and its Applications
This article describes a geometric partitioning software that can be used for quick computation of data partitions on many-core HPC machines. It is most suited for dynamic applications with load distributions that vary with time. Partitioning costs were minimized with a lot of care, to tolerate frequent adjustments to the load distribution. The partitioning algorithm uses both geometry as well as statistics collected from the data distribution. The implementation is based on a hybrid programming model that is both distributed and multi-threaded. Partitions are computed by a hierarchical data decomposition, followed by data ordering using space-filling curves and greedy knapsack. This software was primarily used for partitioning 2 and 3 dimensional meshes in scientific computing. It was also used to solve point-location problems and for partitioning general graphs. The experiments described in this paper provide useful performance data for important parallel algorithms on a HPC machine built using a recent many-core processor designed for data-intensive applications by providing large on-chip memory.
Information Retrieval 5
☆ MOON: Generative MLLM-based Multimodal Representation Learning for E-commerce Product Understanding
With the rapid advancement of e-commerce, exploring general representations rather than task-specific ones has attracted increasing research attention. For product understanding, although existing discriminative dual-flow architectures drive progress in this field, they inherently struggle to model the many-to-one alignment between multiple images and texts of products. Therefore, we argue that generative Multimodal Large Language Models (MLLMs) hold significant potential for improving product representation learning. Nevertheless, achieving this goal still remains non-trivial due to several key challenges: the lack of multimodal and aspect-aware modeling modules in typical LLMs; the common presence of background noise in product images; and the absence of a standard benchmark for evaluation. To address these issues, we propose the first generative MLLM-based model named MOON for product representation learning. Our method (1) employs a guided Mixture-of-Experts (MoE) module for targeted modeling of multimodal and aspect-specific product content; (2) effectively detects core semantic regions in product images to mitigate the distraction and interference caused by background noise; and (3) introduces the specialized negative sampling strategy to increase the difficulty and diversity of negative samples. In addition, we release a large-scale multimodal benchmark MBE for various product understanding tasks. Experimentally, our model demonstrates competitive zero-shot performance on both our benchmark and the public dataset, showcasing strong generalization across various downstream tasks, including cross-modal retrieval, product classification, and attribute prediction. Furthermore, the case study and visualization illustrate the effectiveness of MOON for product understanding.
comment: 11 pages, 9 figures
☆ Leveraging Geometric Insights in Hyperbolic Triplet Loss for Improved Recommendations
Recent studies have demonstrated the potential of hyperbolic geometry for capturing complex patterns from interaction data in recommender systems. In this work, we introduce a novel hyperbolic recommendation model that uses geometrical insights to improve representation learning and increase computational stability at the same time. We reformulate the notion of hyperbolic distances to unlock additional representation capacity over conventional Euclidean space and learn more expressive user and item representations. To better capture user-items interactions, we construct a triplet loss that models ternary relations between users and their corresponding preferred and nonpreferred choices through a mix of pairwise interaction terms driven by the geometry of data. Our hyperbolic approach not only outperforms existing Euclidean and hyperbolic models but also reduces popularity bias, leading to more diverse and personalized recommendations.
☆ TBGRecall: A Generative Retrieval Model for E-commerce Recommendation Scenarios
Recommendation systems are essential tools in modern e-commerce, facilitating personalized user experiences by suggesting relevant products. Recent advancements in generative models have demonstrated potential in enhancing recommendation systems; however, these models often exhibit limitations in optimizing retrieval tasks, primarily due to their reliance on autoregressive generation mechanisms. Conventional approaches introduce sequential dependencies that impede efficient retrieval, as they are inherently unsuitable for generating multiple items without positional constraints within a single request session. To address these limitations, we propose TBGRecall, a framework integrating Next Session Prediction (NSP), designed to enhance generative retrieval models for e-commerce applications. Our framework reformulation involves partitioning input samples into multi-session sequences, where each sequence comprises a session token followed by a set of item tokens, and then further incorporate multiple optimizations tailored to the generative task in retrieval scenarios. In terms of training methodology, our pipeline integrates limited historical data pre-training with stochastic partial incremental training, significantly improving training efficiency and emphasizing the superiority of data recency over sheer data volume. Our extensive experiments, conducted on public benchmarks alongside a large-scale industrial dataset from TaoBao, show TBGRecall outperforms the state-of-the-art recommendation methods, and exhibits a clear scaling law trend. Ultimately, NSP represents a significant advancement in the effectiveness of generative recommendation systems for e-commerce applications.
comment: Both authors contributed equally to this research. Work done during internship at Alibaba. Corresponding author: Dunxian Huang (dunxian.hdx@alibaba-inc.com). Affiliations: (1) Shanghai Jiaotong University, Shanghai, China; (2) Alibaba Inc
☆ Research on Conversational Recommender System Considering Consumer Types
Conversational Recommender Systems (CRS) provide personalized services through multi-turn interactions, yet most existing methods overlook users' heterogeneous decision-making styles and knowledge levels, which constrains both accuracy and efficiency. To address this gap, we propose CT-CRS (Consumer Type-Enhanced Conversational Recommender System), a framework that integrates consumer type modeling into dialogue recommendation. Based on consumer type theory, we define four user categories--dependent, efficient, cautious, and expert--derived from two dimensions: decision-making style (maximizers vs. satisficers) and knowledge level (high vs. low). CT-CRS employs interaction histories and fine-tunes the large language model to automatically infer user types in real time, avoiding reliance on static questionnaires. We incorporate user types into state representation and design a type-adaptive policy that dynamically adjusts recommendation granularity, diversity, and attribute query complexity. To further optimize the dialogue policy, we adopt Inverse Reinforcement Learning (IRL), enabling the agent to approximate expert-like strategies conditioned on consumer type. Experiments on LastFM, Amazon-Book, and Yelp show that CTCRS improves recommendation success rate and reduces interaction turns compared to strong baselines. Ablation studies confirm that both consumer type modeling and IRL contribute significantly to performance gains. These results demonstrate that CT-CRS offers a scalable and interpretable solution for enhancing CRS personalization through the integration of psychological modeling and advanced policy optimization.
comment: 10 pages
♻ ☆ Scaling Generative Recommendations with Context Parallelism on Hierarchical Sequential Transducers
Large-scale recommendation systems are pivotal to process an immense volume of daily user interactions, requiring the effective modeling of high cardinality and heterogeneous features to ensure accurate predictions. In prior work, we introduced Hierarchical Sequential Transducers (HSTU), an attention-based architecture for modeling high cardinality, non-stationary streaming recommendation data, providing good scaling law in the generative recommender framework (GR). Recent studies and experiments demonstrate that attending to longer user history sequences yields significant metric improvements. However, scaling sequence length is activation-heavy, necessitating parallelism solutions to effectively shard activation memory. In transformer-based LLMs, context parallelism (CP) is a commonly used technique that distributes computation along the sequence-length dimension across multiple GPUs, effectively reducing memory usage from attention activations. In contrast, production ranking models typically utilize jagged input tensors to represent user interaction features, introducing unique CP implementation challenges. In this work, we introduce context parallelism with jagged tensor support for HSTU attention, establishing foundational capabilities for scaling up sequence dimensions. Our approach enables a 5.3x increase in supported user interaction sequence length, while achieving a 1.55x scaling factor when combined with Distributed Data Parallelism (DDP).
Computational Engineering, Finance, and Science 2
☆ BConformeR: A Conformer Based on Mutual Sampling for Unified Prediction of Continuous and Discontinuous Antibody Binding Sites AAAI
Accurate prediction of antibody-binding sites (epitopes) on antigens is crucial for vaccine design, immunodiagnostics, therapeutic antibody development, antibody engineering, research into autoimmune and allergic diseases, and for advancing our understanding of immune responses. Despite in silico methods that have been proposed to predict both linear (continuous) and conformational (discontinuous) epitopes, they consistently underperform in predicting conformational epitopes. In this work, we propose a conformer-based model trained on antigen sequences derived from 1,080 antigen-antibody complexes, leveraging convolutional neural networks (CNNs) to extract local features and Transformers to capture long-range dependencies within antigen sequences. Ablation studies demonstrate that CNN enhances the prediction of linear epitopes, and the Transformer module improves the prediction of conformational epitopes. Experimental results show that our model outperforms existing baselines in terms of PCC, ROC-AUC, PR-AUC, and F1 scores on conformational epitopes.
comment: 16 pages, 7 figures, 5 tables, submitted to AAAI conference 2026
☆ Persistence is All You Need -- A Topological Lens on Microstructural Characterization
The microstructure critically governs the properties of materials used in energy and chemical engineering technologies, from catalysts and filters to thermal insulators and sensors. Therefore, accurate design is based on quantitative descriptors of microstructural features. Here we show that eight key descriptors can be extracted by a single workflow that fuses computational topology with assembly-learning-based regression. First, 1312 synthetic three-dimensional microstructures were generated and evaluated using established algorithms, and a labeled data set of ground-truth parameters was built. Converting every structure into a persistence image allowed us to train a deep neural network that predicts the eight descriptors. In an independent test set, the model achieved on average R^2 ~ 0.84 and Pearson r ~ 0.92, demonstrating both precision and generality. The approach provides a unified and scalable tool for rapid characterization of functional porous materials.
Databases 7
☆ MoNaCo: More Natural and Complex Questions for Reasoning Across Dozens of Documents ACL
Large language models (LLMs) are emerging as a go-to tool for querying information. However, current LLM benchmarks rarely feature natural questions that are both information-seeking as well as genuinely time-consuming for humans. To address this gap we introduce MoNaCo, a benchmark of 1,315 natural and complex questions that require dozens, and at times hundreds, of intermediate steps to solve -- far more than any existing QA benchmark. To build MoNaCo, we developed a decomposed annotation pipeline to elicit and manually answer natural time-consuming questions at scale. Frontier LLMs evaluated on MoNaCo achieve at most 61.2% F1, hampered by low recall and hallucinations. Our results underscore the need for reasoning models that better handle the complexity and sheer breadth of real-world information-seeking questions -- with MoNaCo providing an effective resource for tracking such progress. The MONACO benchmark, codebase, prompts and models predictions are publicly available at: https://tomerwolgithub.github.io/monaco
comment: Accepted for publication in Transactions of the Association for Computational Linguistics (TACL), 2025. Authors pre-print
☆ AegisBlock: A Privacy-Preserving Medical Research Framework using Blockchain
Due to HIPAA and other privacy regulations, it is imperative to maintain patient privacy while conducting research on patient health records. In this paper, we propose AegisBlock, a patient-centric access controlled framework to share medical records with researchers such that the anonymity of the patient is maintained while ensuring the trustworthiness of the data provided to researchers. AegisBlock allows for patients to provide access to their medical data, verified by miners. A researcher submits a time-based range query to request access to records from a certain patient, and upon patient approval, access will be granted. Our experimental evaluation results show that AegisBlock is scalable with respect to the number of patients and hospitals in the system, and efficient with up to 50% of malicious miners.
comment: Submitted to IEEE Conference on Collaboration and Internet Computing 2025
♻ ☆ Learning-based Sketches for Frequency Estimation in Data Streams without Ground Truth
Estimating the frequency of items on the high-volume, fast data stream has been extensively studied in many areas, such as database and network measurement. Traditional sketches provide only coarse estimates under strict memory constraints. Although some learning-augmented methods have emerged recently, they typically rely on offline training with real frequencies or/and labels, which are often unavailable. Moreover, these methods suffer from slow update speeds, limiting their suitability for real-time processing despite offering only marginal accuracy improvements. To overcome these challenges, we propose UCL-sketch, a practical learning-based paradigm for per-key frequency estimation. Our design introduces two key innovations: (i) an online training mechanism based on equivalent learning that requires no ground truth (GT), and (ii) a highly scalable architecture leveraging logically structured estimation buckets to scale to real-world data stream. The UCL-sketch, which utilizes compressive sensing (CS), converges to an estimator that provably yields a error bound far lower than that of prior works, without sacrificing the speed of processing. Extensive experiments on both real-world and synthetic datasets demonstrate that our approach outperforms previously proposed approaches regarding per-key accuracy and distribution. Notably, under extremely tight memory budgets, its quality almost matches that of an (infeasible) omniscient oracle. Moreover, compared to the existing equation-based sketch, UCL-sketch achieves an average decoding speedup of nearly 500 times. To help further research and development, our code is publicly available at https://github.com/Y-debug-sys/UCL-sketch.
♻ ☆ EllieSQL: Cost-Efficient Text-to-SQL with Complexity-Aware Routing
Text-to-SQL automatically translates natural language queries to SQL, allowing non-technical users to retrieve data from databases without specialized SQL knowledge. Despite the success of advanced LLM-based Text-to-SQL approaches on leaderboards, their unsustainable computational costs--often overlooked--stand as the "elephant in the room" in current leaderboard-driven research, limiting their economic practicability for real-world deployment and widespread adoption. To tackle this, we exploratively propose EllieSQL, a complexity-aware routing framework that assigns queries to suitable SQL generation pipelines based on estimated complexity. We investigate multiple routers to direct simple queries to efficient approaches while reserving computationally intensive methods for complex cases. Drawing from economics, we introduce the Token Elasticity of Performance (TEP) metric, capturing cost-efficiency by quantifying the responsiveness of performance gains relative to token investment in SQL generation. Experiments show that compared to always using the most advanced methods in our study, EllieSQL with the Qwen2.5-0.5B-DPO router reduces token use by over 40% without compromising performance on Bird development set, achieving more than a 2x boost in TEP over non-routing approaches. This not only advances the pursuit of cost-efficient Text-to-SQL but also invites the community to weigh resource efficiency alongside performance, contributing to progress in sustainable Text-to-SQL. Our source code and model are available at https://elliesql.github.io/.
comment: COLM 2025
♻ ☆ Feather-SQL: A Lightweight NL2SQL Framework with Dual-Model Collaboration Paradigm for Small Language Models
Natural Language to SQL (NL2SQL) has seen significant advancements with large language models (LLMs). However, these models often depend on closed-source systems and high computational resources, posing challenges in data privacy and deployment. In contrast, small language models (SLMs) struggle with NL2SQL tasks, exhibiting poor performance and incompatibility with existing frameworks. To address these issues, we introduce Feather-SQL, a new lightweight framework tailored for SLMs. Feather-SQL improves SQL executability and accuracy through 1) schema pruning and linking, 2) multi-path and multi-candidate generation. Additionally, we introduce the 1+1 Model Collaboration Paradigm, which pairs a strong general-purpose chat model with a fine-tuned SQL specialist, combining strong analytical reasoning with high-precision SQL generation. Experimental results on BIRD demonstrate that Feather-SQL improves NL2SQL performance on SLMs, with around 10% boost for models without fine-tuning. The proposed paradigm raises the accuracy ceiling of SLMs to 54.76%, highlighting its effectiveness.
comment: DL4C @ ICLR 2025
♻ ☆ E3-Rewrite: Learning to Rewrite SQL for Executability, Equivalence,and Efficiency
SQL query rewriting aims to reformulate a query into a more efficient form while preserving equivalence. Most existing methods rely on predefined rewrite rules. However, such rule-based approaches face fundamental limitations: (1) fixed rule sets generalize poorly to novel query patterns and struggle with complex queries; (2) a wide range of effective rewriting strategies cannot be fully captured by declarative rules. To overcome these issues, we propose using large language models (LLMs) to generate rewrites. LLMs can capture complex strategies, such as evaluation reordering and CTE rewriting. Despite this potential, directly applying LLMs often results in performance regressions or non-equivalent rewrites due to a lack of execution awareness and semantic grounding. To address these challenges, We present E3-Rewrite, an LLM-based SQL rewriting framework that produces executable, equivalent, and efficient queries. It integrates two core components: a context construction module and a reinforcement learning framework. First, the context module leverages execution plans and retrieved demonstrations to build bottleneck-aware prompts that guide inference-time rewriting. Second, we design a reward function targeting executability, equivalence, and efficiency, evaluated via syntax checks, equivalence verification, and cost estimation. Third, to ensure stable multi-objective learning, we adopt a staged curriculum that first emphasizes executability and equivalence, then gradually incorporates efficiency. Across multiple SQL benchmarks, our experiments demonstrate that E3-Rewrite can shorten query execution time by as much as 25.6% relative to leading baselines, while also producing up to 24.4% more rewrites that meet strict equivalence criteria. These gains extend to challenging query patterns that prior approaches could not effectively optimize.
♻ ☆ Blockchain Data Analytics: Review and Challenges
The integration of blockchain technology with data analytics is essential for extracting insights in the cryptocurrency space. Although academic literature on blockchain data analytics is limited, various industry solutions have emerged to address these needs. This paper provides a comprehensive literature review, drawing from both academic research and industry applications. We classify blockchain analytics tools into categories such as block explorers, on-chain data providers, research platforms, and crypto market data providers. Additionally, we discuss the challenges associated with blockchain data analytics, including data accessibility, scalability, accuracy, and interoperability. Our findings emphasize the importance of bridging academic research and industry innovations to advance blockchain data analytics.
Distributed, Parallel, and Cluster Computing 14
☆ Efficient GPU-Centered Singular Value Decomposition Using the Divide-and-Conquer Method
Singular Value Decomposition (SVD) is a fundamental matrix factorization technique in linear algebra, widely applied in numerous matrix-related problems. However, traditional SVD approaches are hindered by slow panel factorization and frequent CPU-GPU data transfers in heterogeneous systems, despite advancements in GPU computational capabilities. In this paper, we introduce a GPU-centered SVD algorithm, incorporating a novel GPU-based bidiagonal divide-and-conquer (BDC) method. We reformulate the algorithm and data layout of different steps for SVD computation, performing all panel-level computations and trailing matrix updates entirely on GPU to eliminate CPU-GPU data transfers. Furthermore, we integrate related computations to optimize BLAS utilization, thereby increasing arithmetic intensity and fully leveraging the computational capabilities of GPUs. Additionally, we introduce a newly developed GPU-based BDC algorithm that restructures the workflow to eliminate matrix-level CPU-GPU data transfers and enable asynchronous execution between the CPU and GPU. Experimental results on AMD MI210 and NVIDIA V100 GPUs demonstrate that our proposed method achieves speedups of up to 1293.64x/7.47x and 14.10x/12.38x compared to rocSOLVER/cuSOLVER and MAGMA, respectively.
☆ Time, Fences and the Ordering of Events in TSO
The Total Store Order (TSO) is arguably the most widely used relaxed memory model in multiprocessor architectures, widely implemented, for example in Intel's x86 and x64 platforms. It allows processes to delay the visibility of writes through store buffering. While this supports hardware-level optimizations and makes a significant contribution to multiprocessor efficiency, it complicates reasoning about correctness, as executions may violate sequential consistency. Ensuring correct behavior often requires inserting synchronization primitives such as memory fences ($F$) or atomic read-modify-write ($RMW$) operations, but this approach can incur significant performance costs. In this work, we develop a semantic framework that precisely characterizes when such synchronization is necessary under TSO. We introduce a novel TSO-specific occurs-before relation, which adapts Lamport's celebrated happens-before relation from asynchronous message-passing systems to the TSO setting. Our main result is a theorem that proves that the only way to ensure that two events that take place at different sites are temporally ordered is by having the execution create an occurs-before chain between the events. By studying the role of fences and $RMW$s in creating occurs-before chains, we are then able to capture cases in which these costly synchronization operations are unavoidable. Since proper real-time ordering of events is a fundamental aspect of consistency conditions such as Linearizability, our analysis provides a sound theoretical understanding of essential aspects of the TSO model. In particular, we are able to generalize prior lower bounds for linearizable implementations of shared memory objects. Our results capture the structure of information flow and causality in the TSO model by extending the standard communication-based reasoning from asynchronous systems to the TSO memory model.
☆ Space-efficient population protocols for exact majority in general graphs
We study exact majority consensus in the population protocol model. In this model, the system is described by a graph $G = (V,E)$ with $n$ nodes, and in each time step, a scheduler samples uniformly at random a pair of adjacent nodes to interact. In the exact majority consensus task, each node is given a binary input, and the goal is to design a protocol that almost surely reaches a stable configuration, where all nodes output the majority input value. We give improved upper and lower bounds for the exact majority in general graphs. First, we give asymptotically tight time lower bounds for general (unbounded space) protocols. Second, we obtain new upper bounds parameterized by the relaxation time $\tau_{\mathsf{rel}}$ of the random walk on $G$ induced by the scheduler and the degree imbalance $\Delta/\delta$ of $G$. Specifically, we give a protocol that stabilizes in $O\left( \tfrac{\Delta}{\delta} \tau_{\mathsf{rel}} \log^2 n \right)$ steps in expectation and with high probability and uses $O\left( \log n \cdot \left( \log\left(\tfrac{\Delta}{\delta}\right) + \log \left(\tfrac{\tau_{\mathsf{rel}}}{n}\right) \right) \right)$ states in any graph with minimum degree at least $\delta$ and maximum degree at most $\Delta$. For regular expander graphs, this matches the optimal space complexity of $\Theta(\log n)$ for fast protocols in complete graphs [Alistarh et al., SODA 2016 and Doty et al., FOCS 2022] with a nearly optimal stabilization time of $O(n \log^2 n)$ steps. Finally, we give a new upper bound of $O(\tau_{\mathsf{rel}} \cdot n \log n)$ for the stabilization time of a constant-state protocol.
☆ Inter-APU Communication on AMD MI300A Systems via Infinity Fabric: a Deep Dive
The ever-increasing compute performance of GPU accelerators drives up the need for efficient data movements within HPC applications to sustain performance. Proposed as a solution to alleviate CPU-GPU data movement, AMD MI300A Accelerated Processing Unit (APU) combines CPU, GPU, and high-bandwidth memory (HBM) within a single physical package. Leadership supercomputers, such as El Capitan, group four APUs within a single compute node, using Infinity Fabric Interconnect. In this work, we design specific benchmarks to evaluate direct memory access from the GPU, explicit inter-APU data movement, and collective multi-APU communication. We also compare the efficiency of HIP APIs, MPI routines, and the GPU-specialized RCCL library. Our results highlight key design choices for optimizing inter-APU communication on multi-APU AMD MI300A systems with Infinity Fabric, including programming interfaces, allocators, and data movement. Finally, we optimize two real HPC applications, Quicksilver and CloverLeaf, and evaluate them on a four MI100A APU system.
☆ Element and Everything Tokens: Two-Tier Architecture for Mobilizing Alternative Assets
Alternative assets such as mines, power plants, or infrastructure projects are often large, heterogeneous bundles of resources, rights, and outputs whose value is difficult to trade or fractionalize under traditional frameworks. This paper proposes a novel two-tier tokenization architecture to enhance the liquidity and transparency of such complex assets. We introduce the concepts of Element Tokens and Everything Tokens: elemental tokens represent standardized, fully collateralized components of an asset (e.g., outputs, rights, or credits), while an everything token represents the entire asset as a fixed combination of those elements. The architecture enables both fine-grained partial ownership and integrated whole-asset ownership through a system of two-way convertibility. We detail the design and mechanics of this system, including an arbitrage mechanism that keeps the price of the composite token aligned with the net asset value of its constituents. Through illustrative examples in the energy and industrial sectors, we demonstrate that our approach allows previously illiquid, high-value projects to be fractionalized and traded akin to stocks or exchange-traded funds (ETFs). We discuss the benefits for investors and asset owners, such as lower entry barriers, improved price discovery, and flexible financing, as well as the considerations for implementation and regulation.
comment: 8 Pages, Submitted to RASSE 2025
☆ AegisBlock: A Privacy-Preserving Medical Research Framework using Blockchain
Due to HIPAA and other privacy regulations, it is imperative to maintain patient privacy while conducting research on patient health records. In this paper, we propose AegisBlock, a patient-centric access controlled framework to share medical records with researchers such that the anonymity of the patient is maintained while ensuring the trustworthiness of the data provided to researchers. AegisBlock allows for patients to provide access to their medical data, verified by miners. A researcher submits a time-based range query to request access to records from a certain patient, and upon patient approval, access will be granted. Our experimental evaluation results show that AegisBlock is scalable with respect to the number of patients and hospitals in the system, and efficient with up to 50% of malicious miners.
comment: Submitted to IEEE Conference on Collaboration and Internet Computing 2025
☆ Scalable FPGA Framework for Real-Time Denoising in High-Throughput Imaging: A DRAM-Optimized Pipeline using High-Level Synthesis
High-throughput imaging workflows, such as Parallel Rapid Imaging with Spectroscopic Mapping (PRISM), generate data at rates that exceed conventional real-time processing capabilities. We present a scalable FPGA-based preprocessing pipeline for real-time denoising, implemented via High-Level Synthesis (HLS) and optimized for DRAM-backed buffering. Our architecture performs frame subtraction and averaging directly on streamed image data, minimizing latency through burst-mode AXI4 interfaces. The resulting kernel operates below the inter-frame interval, enabling inline denoising and reducing dataset size for downstream CPU/GPU analysis. Validated under PRISM-scale acquisition, this modular FPGA framework offers a practical solution for latency-sensitive imaging workflows in spectroscopy and microscopy.
comment: FPGA-based denoising pipeline for PRISM-scale imaging. Real-time frame subtraction and averaging via burst-mode AXI4 and DRAM buffering. Benchmarked against CPU/GPU workflows; scalable across multi-bank FPGA setups
♻ ☆ Distributed quantum computing with black-box subroutines
In this work, we propose a general protocol for distributed quantum computing that accommodates arbitrary unknown subroutines. It can be applied to scale up quantum computing through multi-chip interconnection, as well as to tasks such as estimating unknown parameters or processes for circuit depth reduction and constructing secure quantum cryptographic protocols. Our protocol builds upon a few techniques we develop, such as the oblivious quantum teleportation and control, which can circumvent quantum no-go theorems on the manipulation of unknown objects. Furthermore, we demonstrate that this protocol can be physically implemented using currently available quantum computing platforms. These results suggest that our framework could provide a foundation for developing more advanced quantum algorithms and protocols in the future.
♻ ☆ DSperse: A Framework for Targeted Verification in Zero-Knowledge Machine Learning
DSperse is a modular framework for distributed machine learning inference with strategic cryptographic verification. Operating within the emerging paradigm of distributed zero-knowledge machine learning, DSperse avoids the high cost and rigidity of full-model circuitization by enabling targeted verification of strategically chosen subcomputations. These verifiable segments, or "slices", may cover part or all of the inference pipeline, with global consistency enforced through audit, replication, or economic incentives. This architecture supports a pragmatic form of trust minimization, localizing zero-knowledge proofs to the components where they provide the greatest value. We evaluate DSperse using multiple proving systems and report empirical results on memory usage, runtime, and circuit behavior under sliced and unsliced configurations. By allowing proof boundaries to align flexibly with the model's logical structure, DSperse supports scalable, targeted verification strategies suited to diverse deployment needs.
comment: 12 pages, 8 figures, and 10 tables
♻ ☆ The Price of Cheaper Data: Measuring the Strategic Inefficiencies in the Post-EIP-4844 Ethereum Market
High transaction fees on Ethereum have long hindered its scalability and user adoption. The recent Ethereum EIP-4844 upgrade aims to alleviate the scalability issue by introducing the blob, a new data structure for Layer-2 rollups. Instead of using expensive blockchain storage, blobs provide a cheaper, separate data layer with its own fee market, which drastically lowers data availability costs. This change, while lowering transaction costs, has created a new high-stakes economic game for block builders and rollups. However, the dynamics of this game remain poorly understood. In this paper, we conduct the first large-scale empirical analysis of the post-EIP-4844 ecosystem, leveraging a dataset of 319.5 million transactions, including 1.3 million blob-carrying type-3 transactions. Our analysis demonstrates clear evidence of a structural shift towards the utilization of cheap blobs over expensive transactions for Layer-2 data posting: while average block size grew 2.5 times, the space consumed by expensive transactions in the public mempool shrank from over 150 KB to just 30 KB. Yet, this scalability success masks widespread economic inefficiencies on both sides of the market. On the builder side, 29.48% of blocks containing blobs are constructed sub-optimally, earning less revenue than that could be achieved otherwise. On the rollup side, we identify that flawed submission strategies have led to $186.92$ ETH in direct losses and average inclusion delays of over 19 seconds. Moving beyond characterization, our work offers actionable solutions. For builders, we develop an optimal pricing model derived from a formal first-price auction framework, allowing builders to make provably profitable inclusion decisions. For rollups, we prove that batching multiple blobs into a single transaction is a dominant, utility-maximizing strategy.
♻ ☆ ElasticMM: Efficient Multimodal LLMs Serving with Elastic Multimodal Parallelism
Multimodal large language models (MLLMs) extend LLMs to handle images, videos, and audio by incorporating feature extractors and projection modules. However, these additional components -- combined with complex inference pipelines and heterogeneous workloads -- introduce significant inference overhead. Therefore, efficiently serving MLLMs remains a major challenge. Current tightly coupled serving architectures struggle to distinguish between mixed request types or adapt parallelism strategies to different inference stages, leading to increased time-to-first-token (TTFT) latency and poor resource utilization. To address this, we introduce Elastic Multimodal Parallelism (EMP), a new serving paradigm that elastically adapts to resource heterogeneity across request types and inference stages. Building upon EMP, we develop ElasticMM, an MLLM serving system that (1) separates requests into independent modality groups with dynamic resource allocation via a modality-aware load balancer; (2) decouples inference stages and enables parallelism adjustment and adaptive scaling via elastic partition scheduling; and (3) improves inference efficiency through unified multimodal prefix caching and non-blocking encoding. Experiments on diverse real-world datasets show that ElasticMM outperforms state-of-the-art (SOTA) serving systems, reducing TTFT by up to 4.2x and achieving 3.2-4.5x higher throughput while meeting service-level objectives (SLOs).
♻ ☆ Fully-Distributed Construction of Byzantine-Resilient Dynamic Peer-to-Peer Networks
We address a fundamental problem in Peer-to-Peer (P2P) networks, namely, constructing and maintaining dynamic P2P overlay network topologies with essential properties such as connectivity, low diameter, and high expansion, that are resilient to continuous high churn and the presence of a large number of malicious (Byzantine) nodes. Our main goal is to construct and maintain a sparse (bounded degree) expander topology despite high churn and a large number of Byzantine nodes. Such an expander topology has logarithmic diameter, high expansion, and is robust to churn and the presence of a large number of bad nodes, and facilitates efficient and robust algorithms for fundamental problems in distributed computing, such as agreement, broadcasting, routing, etc. Our main contribution is a randomized, fully-distributed dynamic P2P protocol that works with only local initial knowledge and guarantees, with a high probability, the maintenance of a constant degree graph with high expansion even under continuous churn and in the presence of a large number of Byzantine nodes. Our protocol can tolerate up to $o(n/poly\log(n))$ Byzantine nodes (where $n$ is the stable network size). Our protocol is efficient, lightweight, and scalable, and it incurs only $O(poly\log(n))$ overhead for topology maintenance: only polylogarithmic (in $n$) bits need to be processed and sent by each honest node per round, and any honest node's computation cost per round is also polylogarithmic. Our protocol can be used as a building block for solving fundamental distributed computing problems in highly dynamic networks, such as Byzantine agreement and Byzantine leader election, and enables fast and scalable algorithms for these problems.
♻ ☆ Coordinated Power Management on Heterogeneous Systems
Performance prediction is essential for energy-efficient computing in heterogeneous computing systems that integrate CPUs and GPUs. However, traditional performance modeling methods often rely on exhaustive offline profiling, which becomes impractical due to the large setting space and the high cost of profiling large-scale applications. In this paper, we present OPEN, a framework consists of offline and online phases. The offline phase involves building a performance predictor and constructing an initial dense matrix. In the online phase, OPEN performs lightweight online profiling, and leverages the performance predictor with collaborative filtering to make performance prediction. We evaluate OPEN on multiple heterogeneous systems, including those equipped with A100 and A30 GPUs. Results show that OPEN achieves prediction accuracy up to 98.29\%. This demonstrates that OPEN effectively reduces profiling cost while maintaining high accuracy, making it practical for power-aware performance modeling in modern HPC environments. Overall, OPEN provides a lightweight solution for performance prediction under power constraints, enabling better runtime decisions in power-aware computing environments.
♻ ☆ Real-Time Analysis of Unstructured Data with Machine Learning on Heterogeneous Architectures
As the particle physics community needs higher and higher precisions in order to test our current model of the subatomic world, larger and larger datasets are necessary. With upgrades scheduled for the detectors of colliding-beam experiments around the world, and specifically at the Large Hadron Collider at CERN, more collisions and more complex interactions are expected. This directly implies an increase in data produced and consequently in the computational resources needed to process them. At CERN, the amount of data produced is gargantuan. This is why the data have to be heavily filtered and selected in real time before being permanently stored. This data can then be used to perform physics analyses, in order to expand our current understanding of the universe and improve the Standard Model of physics. This real-time filtering, known as triggering, involves complex processing happening often at frequencies as high as 40 MHz. This thesis contributes to understanding how machine learning models can be efficiently deployed in such environments, in order to maximize throughput and minimize energy consumption. Inevitably, modern hardware designed for such tasks and contemporary algorithms are needed in order to meet the challenges posed by the stringent, high-frequency data rates. In this work, I present our graph neural network-based pipeline, developed for charged particle track reconstruction at the LHCb experiment at CERN. The pipeline was implemented end-to-end inside LHCb's first-level trigger, entirely on GPUs. Its performance was compared against the classical tracking algorithms currently in production at LHCb. The pipeline was also accelerated on the FPGA architecture, and its performance in terms of power consumption and processing speed was compared against the GPU implementation.
comment: PhD thesis, Chapters 8 and 9 include results from work performed in collaboration with Anthony Correia
Information Retrieval 21
☆ Pretrained Conformers for Audio Fingerprinting and Retrieval
Conformers have shown great results in speech processing due to their ability to capture both local and global interactions. In this work, we utilize a self-supervised contrastive learning framework to train conformer-based encoders that are capable of generating unique embeddings for small segments of audio, generalizing well to previously unseen data. We achieve state-of-the-art results for audio retrieval tasks while using only 3 seconds of audio to generate embeddings. Our models are almost completely immune to temporal misalignments and achieve state-of-the-art results in cases of other audio distortions such as noise, reverb or extreme temporal stretching. Code and models are made publicly available and the results are easy to reproduce as we train and test using popular and freely available datasets of different sizes.
☆ TrajSV: A Trajectory-based Model for Sports Video Representations and Applications
Sports analytics has received significant attention from both academia and industry in recent years. Despite the growing interest and efforts in this field, several issues remain unresolved, including (1) data unavailability, (2) lack of an effective trajectory-based framework, and (3) requirement for sufficient supervision labels. In this paper, we present TrajSV, a trajectory-based framework that addresses various issues in existing studies. TrajSV comprises three components: data preprocessing, Clip Representation Network (CRNet), and Video Representation Network (VRNet). The data preprocessing module extracts player and ball trajectories from sports broadcast videos. CRNet utilizes a trajectory-enhanced Transformer module to learn clip representations based on these trajectories. Additionally, VRNet learns video representations by aggregating clip representations and visual features with an encoder-decoder architecture. Finally, a triple contrastive loss is introduced to optimize both video and clip representations in an unsupervised manner. The experiments are conducted on three broadcast video datasets to verify the effectiveness of TrajSV for three types of sports (i.e., soccer, basketball, and volleyball) with three downstream applications (i.e., sports video retrieval, action spotting, and video captioning). The results demonstrate that TrajSV achieves state-of-the-art performance in sports video retrieval, showcasing a nearly 70% improvement. It outperforms baselines in action spotting, achieving state-of-the-art results in 9 out of 17 action categories, and demonstrates a nearly 20% improvement in video captioning. Additionally, we introduce a deployed system along with the three applications based on TrajSV.
comment: This paper has been accepted by TCSVT
☆ INFNet: A Task-aware Information Flow Network for Large-Scale Recommendation Systems
Feature interaction has long been a cornerstone of ranking models in large-scale recommender systems due to its proven effectiveness in capturing complex dependencies among features. However, existing feature interaction strategies face two critical challenges in industrial applications: (1) The vast number of categorical and sequential features makes exhaustive interaction computationally prohibitive, often resulting in optimization difficulties. (2) Real-world recommender systems typically involve multiple prediction objectives, yet most current approaches apply feature interaction modules prior to the multi-task learning layers. This late-fusion design overlooks task-specific feature dependencies and inherently limits the capacity of multi-task modeling. To address these limitations, we propose the Information Flow Network (INFNet), a task-aware architecture designed for large-scale recommendation scenarios. INFNet distinguishes features into three token types, categorical tokens, sequence tokens, and task tokens, and introduces a novel dual-flow design comprising heterogeneous and homogeneous alternating information blocks. For heterogeneous information flow, we employ a cross-attention mechanism with proxy that facilitates efficient cross-modal token interaction with balanced computational cost. For homogeneous flow, we design type-specific Proxy Gated Units (PGUs) to enable fine-grained intra-type feature processing. Extensive experiments on multiple offline benchmarks confirm that INFNet achieves state-of-the-art performance. Moreover, INFNet has been successfully deployed in a commercial online advertising system, yielding significant gains of +1.587% in Revenue (REV) and +1.155% in Click-Through Rate (CTR).
☆ When Algorithms Mirror Minds: A Confirmation-Aware Social Dynamic Model of Echo Chamber and Homogenization Traps
Recommender systems increasingly suffer from echo chambers and user homogenization, systemic distortions arising from the dynamic interplay between algorithmic recommendations and human behavior. While prior work has studied these phenomena through the lens of algorithmic bias or social network structure, we argue that the psychological mechanisms of users and the closed-loop interaction between users and recommenders are critical yet understudied drivers of these emergent effects. To bridge this gap, we propose the Confirmation-Aware Social Dynamic Model which incorporates user psychology and social relationships to simulate the actual user and recommender interaction process. Our theoretical analysis proves that echo chambers and homogenization traps, defined respectively as reduced recommendation diversity and homogenized user representations, will inevitably occur. We also conduct extensive empirical simulations on two real-world datasets and one synthetic dataset with five well-designed metrics, exploring the root factors influencing the aforementioned phenomena from three level perspectives: the stochasticity and social integration degree of recommender (system-level), the psychological mechanisms of users (user-level), and the dataset scale (platform-level). Furthermore, we demonstrate four practical mitigation strategies that help alleviate echo chambers and user homogenization at the cost of some recommendation accuracy. Our findings provide both theoretical and empirical insights into the emergence and drivers of echo chambers and user homogenization, as well as actionable guidelines for human-centered recommender design.
☆ Trustworthy AI Psychotherapy: Multi-Agent LLM Workflow for Counseling and Explainable Mental Disorder Diagnosis
LLM-based agents have emerged as transformative tools capable of executing complex tasks through iterative planning and action, achieving significant advancements in understanding and addressing user needs. Yet, their effectiveness remains limited in specialized domains such as mental health diagnosis, where they underperform compared to general applications. Current approaches to integrating diagnostic capabilities into LLMs rely on scarce, highly sensitive mental health datasets, which are challenging to acquire. These methods also fail to emulate clinicians' proactive inquiry skills, lack multi-turn conversational comprehension, and struggle to align outputs with expert clinical reasoning. To address these gaps, we propose DSM5AgentFlow, the first LLM-based agent workflow designed to autonomously generate DSM-5 Level-1 diagnostic questionnaires. By simulating therapist-client dialogues with specific client profiles, the framework delivers transparent, step-by-step disorder predictions, producing explainable and trustworthy results. This workflow serves as a complementary tool for mental health diagnosis, ensuring adherence to ethical and legal standards. Through comprehensive experiments, we evaluate leading LLMs across three critical dimensions: conversational realism, diagnostic accuracy, and explainability. Our datasets and implementations are fully open-sourced.
comment: Accepted by CIKM 2025 as a full paper
☆ SGSimEval: A Comprehensive Multifaceted and Similarity-Enhanced Benchmark for Automatic Survey Generation Systems
The growing interest in automatic survey generation (ASG), a task that traditionally required considerable time and effort, has been spurred by recent advances in large language models (LLMs). With advancements in retrieval-augmented generation (RAG) and the rising popularity of multi-agent systems (MASs), synthesizing academic surveys using LLMs has become a viable approach, thereby elevating the need for robust evaluation methods in this domain. However, existing evaluation methods suffer from several limitations, including biased metrics, a lack of human preference, and an over-reliance on LLMs-as-judges. To address these challenges, we propose SGSimEval, a comprehensive benchmark for Survey Generation with Similarity-Enhanced Evaluation that evaluates automatic survey generation systems by integrating assessments of the outline, content, and references, and also combines LLM-based scoring with quantitative metrics to provide a multifaceted evaluation framework. In SGSimEval, we also introduce human preference metrics that emphasize both inherent quality and similarity to humans. Extensive experiments reveal that current ASG systems demonstrate human-comparable superiority in outline generation, while showing significant room for improvement in content and reference generation, and our evaluation metrics maintain strong consistency with human assessments.
comment: Accepted to The 21st International Conference on Advanced Data Mining and Applications (ADMA2025)
☆ Beyond Solving Math Quiz: Evaluating the Ability of Large Reasoning Models to Ask for Information
Large Reasoning Models (LRMs) have demonstrated remarkable problem-solving abilities in mathematics, as evaluated by existing benchmarks exclusively on well-defined problems. However, such evaluation setup constitutes a critical gap, since a genuine intelligent agent should not only solve problems (as a math quiz solver), but also be able~to ask for information when the problems lack sufficient information, enabling proactivity in responding users' requests. To bridge such gap, we proposes a new dataset consisting of two types of incomplete problems with diverse contexts. Based on the dataset, our systematical evaluation of LRMs reveals their inability in proactively asking for information. In addition, we uncover the behaviors related to overthinking and hallucination of LRMs, and highlight the potential and challenges of supervised fine-tuning in learning such ability. We hope to provide new insights in developing LRMs with genuine intelligence, rather than just solving problems.
☆ RAG for Geoscience: What We Expect, Gaps and Opportunities
Retrieval-Augmented Generation (RAG) enhances language models by combining retrieval with generation. However, its current workflow remains largely text-centric, limiting its applicability in geoscience. Many geoscientific tasks are inherently evidence-hungry. Typical examples involve imputing missing observations using analog scenes, retrieving equations and parameters to calibrate models, geolocating field photos based on visual cues, or surfacing historical case studies to support policy analyses. A simple ``retrieve-then-generate'' pipeline is insufficient for these needs. We envision Geo-RAG, a next-generation paradigm that reimagines RAG as a modular retrieve $\rightarrow$ reason $\rightarrow$ generate $\rightarrow$ verify loop. Geo-RAG supports four core capabilities: (i) retrieval of multi-modal Earth data; (ii) reasoning under physical and domain constraints; (iii) generation of science-grade artifacts; and (iv) verification of generated hypotheses against numerical models, ground measurements, and expert assessments. This shift opens new opportunities for more trustworthy and transparent geoscience workflows.
☆ Mitigating Filter Bubble from the Perspective of Community Detection: A Universal Framework
In recent years, recommender systems have primarily focused on improving accuracy at the expense of diversity, which exacerbates the well-known filter bubble effect. This paper proposes a universal framework called CD-CGCN to address the filter bubble issue in recommender systems from a community detection perspective. By analyzing user-item interaction histories with a community detection algorithm, we reveal that state-of-the-art recommendations often focus on intra-community items, worsening the filter bubble effect. CD-CGCN, a model-agnostic framework, integrates a Conditional Discriminator and a Community-reweighted Graph Convolutional Network which can be plugged into most recommender models. Using adversarial learning based on community labels, it counteracts the extracted community attributes and incorporates an inference strategy tailored to the user's specific filter bubble state. Extensive experiments on real-world datasets with multiple base models validate its effectiveness in mitigating filter bubbles while preserving recommendation quality. Additionally, by applying community debiasing to the original test set to construct an unbiased test set, we observe that CD-CGCN demonstrates superior performance in capturing users' inter-community preferences.
☆ ORFuzz: Fuzzing the "Other Side" of LLM Safety -- Testing Over-Refusal
Large Language Models (LLMs) increasingly exhibit over-refusal - erroneously rejecting benign queries due to overly conservative safety measures - a critical functional flaw that undermines their reliability and usability. Current methods for testing this behavior are demonstrably inadequate, suffering from flawed benchmarks and limited test generation capabilities, as highlighted by our empirical user study. To the best of our knowledge, this paper introduces the first evolutionary testing framework, ORFuzz, for the systematic detection and analysis of LLM over-refusals. ORFuzz uniquely integrates three core components: (1) safety category-aware seed selection for comprehensive test coverage, (2) adaptive mutator optimization using reasoning LLMs to generate effective test cases, and (3) OR-Judge, a human-aligned judge model validated to accurately reflect user perception of toxicity and refusal. Our extensive evaluations demonstrate that ORFuzz generates diverse, validated over-refusal instances at a rate (6.98% average) more than double that of leading baselines, effectively uncovering vulnerabilities. Furthermore, ORFuzz's outputs form the basis of ORFuzzSet, a new benchmark of 1,855 highly transferable test cases that achieves a superior 63.56% average over-refusal rate across 10 diverse LLMs, significantly outperforming existing datasets. ORFuzz and ORFuzzSet provide a robust automated testing framework and a valuable community resource, paving the way for developing more reliable and trustworthy LLM-based software systems.
☆ Representation Quantization for Collaborative Filtering Augmentation
As the core algorithm in recommendation systems, collaborative filtering (CF) algorithms inevitably face the problem of data sparsity. Since CF captures similar users and items for recommendations, it is effective to augment the lacking user-user and item-item homogeneous linkages. However, existing methods are typically limited to connecting through overlapping interacted neighbors or through similar attributes and contents. These approaches are constrained by coarse-grained, sparse attributes and fail to effectively extract behavioral characteristics jointly from interaction sequences and attributes. To address these challenges, we propose a novel two-stage collaborative recommendation algorithm, DQRec: Decomposition-based Quantized Variational AutoEncoder (DQ-VAE) for Recommendation. DQRec augments features and homogeneous linkages by extracting the behavior characteristics jointly from interaction sequences and attributes, namely patterns, such as user multi-aspect interests. Inspired by vector quantization (VQ) technology, we propose a new VQ algorithm, DQ-VAE, which decomposes the pre-trained representation embeddings into distinct dimensions, and quantize them to generates semantic IDs. We utilize the generated semantic IDs as the extracted patterns mentioned above. By integrating these semantic ID patterns into the recommendation process through feature and linkage augmentation, the system enriches both latent and explicit user and item features, identifies pattern-similar neighbors, and thereby improves the efficiency of information diffusion. Experimental comparisons with baselines across multiple datasets demonstrate the superior performance of the proposed DQRec method.
comment: 11 pages, 4 figures
☆ Role-Augmented Intent-Driven Generative Search Engine Optimization
Generative Search Engines (GSEs), powered by Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG), are reshaping information retrieval. While commercial systems (e.g., BingChat, Perplexity.ai) demonstrate impressive semantic synthesis capabilities, their black-box nature fundamentally undermines established Search Engine Optimization (SEO) practices. Content creators face a critical challenge: their optimization strategies, effective in traditional search engines, are misaligned with generative retrieval contexts, resulting in diminished visibility. To bridge this gap, we propose a Role-Augmented Intent-Driven Generative Search Engine Optimization (G-SEO) method, providing a structured optimization pathway tailored for GSE scenarios. Our method models search intent through reflective refinement across diverse informational roles, enabling targeted content enhancement. To better evaluate the method under realistic settings, we address the benchmarking limitations of prior work by: (1) extending the GEO dataset with diversified query variations reflecting real-world search scenarios and (2) introducing G-Eval 2.0, a 6-level LLM-augmented evaluation rubric for fine-grained human-aligned assessment. Experimental results demonstrate that search intent serves as an effective signal for guiding content optimization, yielding significant improvements over single-aspect baseline approaches in both subjective impressions and objective content visibility within GSE responses.
comment: 7 pages, 5 figures
☆ What Matters for Bioacoustic Encoding
Bioacoustics, the study of sounds produced by living organisms, plays a vital role in conservation, biodiversity monitoring, and behavioral studies. Many tasks in this field, such as species, individual, and behavior classification and detection, are well-suited to machine learning. However, they often suffer from limited annotated data, highlighting the need for a general-purpose bioacoustic encoder capable of extracting useful representations for diverse downstream tasks. Such encoders have been proposed before, but are often limited in scope due to a focus on a narrow range of species (typically birds), and a reliance on a single model architecture or training paradigm. Moreover, they are usually evaluated on a small set of tasks and datasets. In this work, we present a large-scale empirical study that covers aspects of bioacoustics that are relevant to research but have previously been scarcely considered: training data diversity and scale, model architectures and training recipes, and the breadth of evaluation tasks and datasets. We obtain encoders that are state-of-the-art on the existing and proposed benchmarks. We also identify what matters for training these encoders, such that this work can be extended when more data are available or better architectures are proposed. Specifically, across 26 datasets with tasks including species classification, detection, individual ID, and vocal repertoire discovery, we find self-supervised pre-training followed by supervised post-training on a mixed bioacoustics + general-audio corpus yields the strongest in- and out-of-distribution performance. We show the importance of data diversity in both stages. To support ongoing research and application, we will release the model checkpoints.
☆ Ontology-Guided Query Expansion for Biomedical Document Retrieval using Large Language Models
Effective Question Answering (QA) on large biomedical document collections requires effective document retrieval techniques. The latter remains a challenging task due to the domain-specific vocabulary and semantic ambiguity in user queries. We propose BMQExpander, a novel ontology-aware query expansion pipeline that combines medical knowledge - definitions and relationships - from the UMLS Metathesaurus with the generative capabilities of large language models (LLMs) to enhance retrieval effectiveness. We implemented several state-of-the-art baselines, including sparse and dense retrievers, query expansion methods, and biomedical-specific solutions. We show that BMQExpander has superior retrieval performance on three popular biomedical Information Retrieval (IR) benchmarks: NFCorpus, TREC-COVID, and SciFact - with improvements of up to 22.1% in NDCG@10 over sparse baselines and up to 6.5% over the strongest baseline. Further, BMQExpander generalizes robustly under query perturbation settings, in contrast to supervised baselines, achieving up to 15.7% improvement over the strongest baseline. As a side contribution, we publish our paraphrased benchmarks. Finally, our qualitative analysis shows that BMQExpander has fewer hallucinations compared to other LLM-based query expansion baselines.
☆ Contextual Attention-Based Multimodal Fusion of LLM and CNN for Sentiment Analysis
This paper introduces a novel approach for multimodal sentiment analysis on social media, particularly in the context of natural disasters, where understanding public sentiment is crucial for effective crisis management. Unlike conventional methods that process text and image modalities separately, our approach seamlessly integrates Convolutional Neural Network (CNN) based image analysis with Large Language Model (LLM) based text processing, leveraging Generative Pre-trained Transformer (GPT) and prompt engineering to extract sentiment relevant features from the CrisisMMD dataset. To effectively model intermodal relationships, we introduce a contextual attention mechanism within the fusion process. Leveraging contextual-attention layers, this mechanism effectively captures intermodality interactions, enhancing the model's comprehension of complex relationships between textual and visual data. The deep neural network architecture of our model learns from these fused features, leading to improved accuracy compared to existing baselines. Experimental results demonstrate significant advancements in classifying social media data into informative and noninformative categories across various natural disasters. Our model achieves a notable 2.43% increase in accuracy and 5.18% in F1-score, highlighting its efficacy in processing complex multimodal data. Beyond quantitative metrics, our approach provides deeper insight into the sentiments expressed during crises. The practical implications extend to real time disaster management, where enhanced sentiment analysis can optimize the accuracy of emergency interventions. By bridging the gap between multimodal analysis, LLM powered text understanding, and disaster response, our work presents a promising direction for Artificial Intelligence (AI) driven crisis management solutions. Keywords:
comment: The 38th Canadian Conference on Artificial Intelligence ( 2025 )
♻ ☆ Search Timelines: Visualizing Search History to Enable Cross-Session Exploratory Search
Purpose: The timespan over which exploratory searching can occur, as well as the scope and volume of the search activities undertaken, can make it difficult for searchers to remember key details about their search activities. These difficulties are present both in the midst of searching as well as when resuming a search that spans multiple sessions. In this paper, we present a search interface design and prototype implementation to support cross-session exploratory search in a public digital library context. Methods: Search Timelines provides a visualization of current and past search activities via a dynamic timeline of the search activity (queries and saved resources). This timeline is presented at two levels of detail. An Overview Timeline is provided alongside the search results in a typical search engine results page design. A Detailed Timeline is provided in the workspace, where searchers can review the history of their search activities and their saved resources. A controlled laboratory study (n=32) was conducted to compare this approach to a baseline interface modelled after a typical public digital library search/workspace interface. Results: Participants who used Search Timelines reported higher levels of user engagement, usability, and perceived knowledge gain, during an initial search session and when resuming the search after a 7-8 day interval. This came at the expense of the searchers taking more time to complete the search task, which we view as positive evidence of engagement in cross-session exploratory search processes. Conclusion: Search Timelines serves as an example of how lightweight visualization approaches can be used to enhance typical search interface designs to support exploratory search. The results highlight the value of providing persistent representations of past search activities within the search interface.}
♻ ☆ A Systematic Literature Review of Retrieval-Augmented Generation: Techniques, Metrics, and Challenges
This systematic review of the research literature on retrieval-augmented generation (RAG) provides a focused analysis of the most highly cited studies published between 2020 and May 2025. A total of 128 articles met our inclusion criteria. The records were retrieved from ACM Digital Library, IEEE Xplore, Scopus, ScienceDirect, and the Digital Bibliography and Library Project (DBLP). RAG couples a neural retriever with a generative language model, grounding output in up-to-date, non-parametric memory while retaining the semantic generalisation stored in model weights. Guided by the PRISMA 2020 framework, we (i) specify explicit inclusion and exclusion criteria based on citation count and research questions, (ii) catalogue datasets, architectures, and evaluation practices, and (iii) synthesise empirical evidence on the effectiveness and limitations of RAG. To mitigate citation-lag bias, we applied a lower citation-count threshold to papers published in 2025 so that emerging breakthroughs with naturally fewer citations were still captured. This review clarifies the current research landscape, highlights methodological gaps, and charts priority directions for future research.
comment: 58 pages, This work has been submitted to the IEEE for possible publication
♻ ☆ I$^3$-MRec: Invariant Learning with Information Bottleneck for Incomplete Modality Recommendation
Multimodal recommender systems (MRS) improve recommendation performance by integrating complementary semantic information from multiple modalities. However, the assumption of complete multimodality rarely holds in practice due to missing images and incomplete descriptions, hindering model robustness and generalization. To address these challenges, we introduce a novel method called \textbf{I$^3$-MRec}, which uses \textbf{I}nvairant learning with \textbf{I}nformation bottleneck principle for \textbf{I}ncomplete \textbf{M}odality \textbf{Rec}ommendation. To achieve robust performance in missing modality scenarios, I$^3$-MRec enforces two pivotal properties: (i) cross-modal preference invariance, ensuring consistent user preference modeling across varying modality environments, and (ii) compact yet effective multimodal representation, as modality information becomes unreliable in such scenarios, reducing the dependence on modality-specific information is particularly important. By treating each modality as a distinct semantic environment, I$^3$-MRec employs invariant risk minimization (IRM) to learn preference-oriented representations. In parallel, a missing-aware fusion module is developed to explicitly simulate modality-missing scenarios. Built upon the Information Bottleneck (IB) principle, the module aims to preserve essential user preference signals across these scenarios while effectively compressing modality-specific information. Extensive experiments conducted on three real-world datasets demonstrate that I$^3$-MRec consistently outperforms existing state-of-the-art MRS methods across various modality-missing scenarios, highlighting its effectiveness and robustness in practical applications.
comment: ACM Multimedia 2025 Accepted
♻ ☆ Diffusion Model for Slate Recommendation
Slate generation is a common task in streaming and e-commerce platforms, where multiple items are presented together as a list or ``slate''. Traditional systems focus mostly on item-level ranking and often fail to capture the coherence of the slate as a whole. A key challenge lies in the combinatorial nature of selecting multiple items jointly. To manage this, conventional approaches often assume users interact with only one item at a time, assumption that breaks down when items are meant to be consumed together. In this paper, we introduce DMSG, a generative framework based on diffusion models for prompt-conditioned slate generation. DMSG learns high-dimensional structural patterns and generates coherent, diverse slates directly from natural language prompts. Unlike retrieval-based or autoregressive models, DMSG models the joint distribution over slates, enabling greater flexibility and diversity. We evaluate DMSG in two key domains: music playlist generation and e-commerce bundle creation. In both cases, DMSG produces high-quality slates from textual prompts without explicit personalization signals. Offline and online results show that DMSG outperforms strong baselines in both relevance and diversity, offering a scalable, low-latency solution for prompt-driven recommendation. A live A/B test on a production playlist system further demonstrates increased user engagement and content diversity.
comment: 9 pages, 5 figures, 3 tables. Accepted at RecSys '25
♻ ☆ TokenRec: Learning to Tokenize ID for LLM-based Generative Recommendation TKDE
There is a growing interest in utilizing large-scale language models (LLMs) to advance next-generation Recommender Systems (RecSys), driven by their outstanding language understanding and in-context learning capabilities. In this scenario, tokenizing (i.e., indexing) users and items becomes essential for ensuring a seamless alignment of LLMs with recommendations. While several studies have made progress in representing users and items through textual contents or latent representations, challenges remain in efficiently capturing high-order collaborative knowledge into discrete tokens that are compatible with LLMs. Additionally, the majority of existing tokenization approaches often face difficulties in generalizing effectively to new/unseen users or items that were not in the training corpus. To address these challenges, we propose a novel framework called TokenRec, which introduces not only an effective ID tokenization strategy but also an efficient retrieval paradigm for LLM-based recommendations. Specifically, our tokenization strategy, Masked Vector-Quantized (MQ) Tokenizer, involves quantizing the masked user/item representations learned from collaborative filtering into discrete tokens, thus achieving a smooth incorporation of high-order collaborative knowledge and a generalizable tokenization of users and items for LLM-based RecSys. Meanwhile, our generative retrieval paradigm is designed to efficiently recommend top-$K$ items for users to eliminate the need for the time-consuming auto-regressive decoding and beam search processes used by LLMs, thus significantly reducing inference time. Comprehensive experiments validate the effectiveness of the proposed methods, demonstrating that TokenRec outperforms competitive benchmarks, including both traditional recommender systems and emerging LLM-based recommender systems.
comment: Accepted by IEEE TKDE. Codes and data are available at https://github.com/Quhaoh233/TokenRec
♻ ☆ ActionPiece: Contextually Tokenizing Action Sequences for Generative Recommendation ICML 2025
Generative recommendation (GR) is an emerging paradigm where user actions are tokenized into discrete token patterns and autoregressively generated as predictions. However, existing GR models tokenize each action independently, assigning the same fixed tokens to identical actions across all sequences without considering contextual relationships. This lack of context-awareness can lead to suboptimal performance, as the same action may hold different meanings depending on its surrounding context. To address this issue, we propose ActionPiece to explicitly incorporate context when tokenizing action sequences. In ActionPiece, each action is represented as a set of item features. Given the action sequence corpora, we construct the vocabulary by merging feature patterns as new tokens, based on their co-occurrence frequency both within individual sets and across adjacent sets. Considering the unordered nature of feature sets, we further introduce set permutation regularization, which produces multiple segmentations of action sequences with the same semantics. Our code is available at: https://github.com/google-deepmind/action_piece.
comment: ICML 2025 (Spotlight)
Artificial Intelligence 109
☆ Is ChatGPT-5 Ready for Mammogram VQA?
Mammogram visual question answering (VQA) integrates image interpretation with clinical reasoning and has potential to support breast cancer screening. We systematically evaluated the GPT-5 family and GPT-4o model on four public mammography datasets (EMBED, InBreast, CMMD, CBIS-DDSM) for BI-RADS assessment, abnormality detection, and malignancy classification tasks. GPT-5 consistently was the best performing model but lagged behind both human experts and domain-specific fine-tuned models. On EMBED, GPT-5 achieved the highest scores among GPT variants in density (56.8%), distortion (52.5%), mass (64.5%), calcification (63.5%), and malignancy (52.8%) classification. On InBreast, it attained 36.9% BI-RADS accuracy, 45.9% abnormality detection, and 35.0% malignancy classification. On CMMD, GPT-5 reached 32.3% abnormality detection and 55.0% malignancy accuracy. On CBIS-DDSM, it achieved 69.3% BI-RADS accuracy, 66.0% abnormality detection, and 58.2% malignancy accuracy. Compared with human expert estimations, GPT-5 exhibited lower sensitivity (63.5%) and specificity (52.3%). While GPT-5 exhibits promising capabilities for screening tasks, its performance remains insufficient for high-stakes clinical imaging applications without targeted domain adaptation and optimization. However, the tremendous improvements in performance from GPT-4o to GPT-5 show a promising trend in the potential for general large language models (LLMs) to assist with mammography VQA tasks.
☆ Controlling Multimodal LLMs via Reward-guided Decoding ICCV 2025
As Multimodal Large Language Models (MLLMs) gain widespread applicability, it is becoming increasingly desirable to adapt them for diverse user needs. In this paper, we study the adaptation of MLLMs through controlled decoding. To achieve this, we introduce the first method for reward-guided decoding of MLLMs and demonstrate its application in improving their visual grounding. Our method involves building reward models for visual grounding and using them to guide the MLLM's decoding process. Concretely, we build two separate reward models to independently control the degree of object precision and recall in the model's output. Our approach enables on-the-fly controllability of an MLLM's inference process in two ways: first, by giving control over the relative importance of each reward function during decoding, allowing a user to dynamically trade off object precision for recall in image captioning tasks; second, by giving control over the breadth of the search during decoding, allowing the user to control the trade-off between the amount of test-time compute and the degree of visual grounding. We evaluate our method on standard object hallucination benchmarks, showing that it provides significant controllability over MLLM inference, while consistently outperforming existing hallucination mitigation methods.
comment: Published at ICCV 2025
☆ Pretrained Conformers for Audio Fingerprinting and Retrieval
Conformers have shown great results in speech processing due to their ability to capture both local and global interactions. In this work, we utilize a self-supervised contrastive learning framework to train conformer-based encoders that are capable of generating unique embeddings for small segments of audio, generalizing well to previously unseen data. We achieve state-of-the-art results for audio retrieval tasks while using only 3 seconds of audio to generate embeddings. Our models are almost completely immune to temporal misalignments and achieve state-of-the-art results in cases of other audio distortions such as noise, reverb or extreme temporal stretching. Code and models are made publicly available and the results are easy to reproduce as we train and test using popular and freely available datasets of different sizes.
☆ CryptoScope: Utilizing Large Language Models for Automated Cryptographic Logic Vulnerability Detection
Cryptographic algorithms are fundamental to modern security, yet their implementations frequently harbor subtle logic flaws that are hard to detect. We introduce CryptoScope, a novel framework for automated cryptographic vulnerability detection powered by Large Language Models (LLMs). CryptoScope combines Chain-of-Thought (CoT) prompting with Retrieval-Augmented Generation (RAG), guided by a curated cryptographic knowledge base containing over 12,000 entries. We evaluate CryptoScope on LLM-CLVA, a benchmark of 92 cases primarily derived from real-world CVE vulnerabilities, complemented by cryptographic challenges from major Capture The Flag (CTF) competitions and synthetic examples across 11 programming languages. CryptoScope consistently improves performance over strong LLM baselines, boosting DeepSeek-V3 by 11.62%, GPT-4o-mini by 20.28%, and GLM-4-Flash by 28.69%. Additionally, it identifies 9 previously undisclosed flaws in widely used open-source cryptographic projects.
☆ Visual Perception Engine: Fast and Flexible Multi-Head Inference for Robotic Vision Tasks
Deploying multiple machine learning models on resource-constrained robotic platforms for different perception tasks often results in redundant computations, large memory footprints, and complex integration challenges. In response, this work presents Visual Perception Engine (VPEngine), a modular framework designed to enable efficient GPU usage for visual multitasking while maintaining extensibility and developer accessibility. Our framework architecture leverages a shared foundation model backbone that extracts image representations, which are efficiently shared, without any unnecessary GPU-CPU memory transfers, across multiple specialized task-specific model heads running in parallel. This design eliminates the computational redundancy inherent in feature extraction component when deploying traditional sequential models while enabling dynamic task prioritization based on application demands. We demonstrate our framework's capabilities through an example implementation using DINOv2 as the foundation model with multiple task (depth, object detection and semantic segmentation) heads, achieving up to 3x speedup compared to sequential execution. Building on CUDA Multi-Process Service (MPS), VPEngine offers efficient GPU utilization and maintains a constant memory footprint while allowing per-task inference frequencies to be adjusted dynamically during runtime. The framework is written in Python and is open source with ROS2 C++ (Humble) bindings for ease of use by the robotics community across diverse robotic platforms. Our example implementation demonstrates end-to-end real-time performance at $\geq$50 Hz on NVIDIA Jetson Orin AGX for TensorRT optimized models.
comment: 6 pages, 6 figures, 2 tables
☆ Aware First, Think Less: Dynamic Boundary Self-Awareness Drives Extreme Reasoning Efficiency in Large Language Models
Recent advancements in large language models (LLMs) have greatly improved their capabilities on complex reasoning tasks through Long Chain-of-Thought (CoT). However, this approach often results in substantial redundancy, impairing computational efficiency and causing significant delays in real-time applications. To improve the efficiency, current methods often rely on human-defined difficulty priors, which do not align with the LLM's self-awared difficulty, leading to inefficiencies. In this paper, we introduce the Dynamic Reasoning-Boundary Self-Awareness Framework (DR. SAF), which enables models to dynamically assess and adjust their reasoning depth in response to problem complexity. DR. SAF integrates three key components: Boundary Self-Awareness Alignment, Adaptive Reward Management, and a Boundary Preservation Mechanism. These components allow models to optimize their reasoning processes, balancing efficiency and accuracy without compromising performance. Our experimental results demonstrate that DR. SAF achieves a 49.27% reduction in total response tokens with minimal loss in accuracy. The framework also delivers a 6.59x gain in token efficiency and a 5x reduction in training time, making it well-suited to resource-limited settings. During extreme training, DR. SAF can even surpass traditional instruction-based models in token efficiency with more than 16% accuracy improvement.
comment: Preprint
☆ ADMIRE-BayesOpt: Accelerated Data MIxture RE-weighting for Language Models with Bayesian Optimization
Determining the optimal data mixture for large language model training remains a challenging problem with an outsized impact on performance. In practice, language model developers continue to rely on heuristic exploration since no learning-based approach has emerged as a reliable solution. In this work, we propose to view the selection of training data mixtures as a black-box hyperparameter optimization problem, for which Bayesian Optimization is a well-established class of appropriate algorithms. Firstly, we cast data mixture learning as a sequential decision-making problem, in which we aim to find a suitable trade-off between the computational cost of training exploratory (proxy-) models and final mixture performance. Secondly, we systematically explore the properties of transferring mixtures learned at a small scale to larger-scale experiments, providing insights and highlighting opportunities for research at a modest scale. By proposing Multi-fidelity Bayesian Optimization as a suitable method in this common scenario, we introduce a natural framework to balance experiment cost with model fit, avoiding the risks of overfitting to smaller scales while minimizing the number of experiments at high cost. We present results for pre-training and instruction finetuning across models ranging from 1 million to 7 billion parameters, varying from simple architectures to state-of-the-art models and benchmarks spanning dozens of datasets. We demonstrate consistently strong results relative to a wide range of benchmarks, showingspeed-ups of over 500% in determining the best data mixture on our largest experiments relative to recent baselines. In addition, we broaden access to research by sharing ADMIRE IFT Runs, a dataset of 460 full training & evaluation runs across various model sizes worth over 13,000 GPU hours, greatly reducing the cost of conducting research in this area.
☆ A Comprehensive Perspective on Explainable AI across the Machine Learning Workflow
Artificial intelligence is reshaping science and industry, yet many users still regard its models as opaque "black boxes". Conventional explainable artificial-intelligence methods clarify individual predictions but overlook the upstream decisions and downstream quality checks that determine whether insights can be trusted. In this work, we present Holistic Explainable Artificial Intelligence (HXAI), a user-centric framework that embeds explanation into every stage of the data-analysis workflow and tailors those explanations to users. HXAI unifies six components (data, analysis set-up, learning process, model output, model quality, communication channel) into a single taxonomy and aligns each component with the needs of domain experts, data analysts and data scientists. A 112-item question bank covers these needs; our survey of contemporary tools highlights critical coverage gaps. Grounded in theories of human explanation, principles from human-computer interaction and findings from empirical user studies, HXAI identifies the characteristics that make explanations clear, actionable and cognitively manageable. A comprehensive taxonomy operationalises these insights, reducing terminological ambiguity and enabling rigorous coverage analysis of existing toolchains. We further demonstrate how AI agents that embed large-language models can orchestrate diverse explanation techniques, translating technical artifacts into stakeholder-specific narratives that bridge the gap between AI developers and domain experts. Departing from traditional surveys or perspective articles, this work melds concepts from multiple disciplines, lessons from real-world projects and a critical synthesis of the literature to advance a novel, end-to-end viewpoint on transparency, trustworthiness and responsible AI deployment.
comment: Preprint. Currently under review at "Artificial Intelligence Review" journal
☆ Inspire or Predict? Exploring New Paradigms in Assisting Classical Planners with Large Language Models
Addressing large-scale planning problems has become one of the central challenges in the planning community, deriving from the state-space explosion caused by growing objects and actions. Recently, researchers have explored the effectiveness of leveraging Large Language Models (LLMs) to generate helpful actions and states to prune the search space. However, prior works have largely overlooked integrating LLMs with domain-specific knowledge to ensure valid plans. In this paper, we propose a novel LLM-assisted planner integrated with problem decomposition, which first decomposes large planning problems into multiple simpler sub-tasks. Then we explore two novel paradigms to utilize LLMs, i.e., LLM4Inspire and LLM4Predict, to assist problem decomposition, where LLM4Inspire provides heuristic guidance according to general knowledge and LLM4Predict employs domain-specific knowledge to infer intermediate conditions. We empirically validate the effectiveness of our planner across multiple domains, demonstrating the ability of search space partition when solving large-scale planning problems. The experimental results show that LLMs effectively locate feasible solutions when pruning the search space, where infusing domain-specific knowledge into LLMs, i.e., LLM4Predict, holds particular promise compared with LLM4Inspire, which offers general knowledge within LLMs.
☆ Weighted First Order Model Counting for Two-variable Logic with Axioms on Two Relations
The Weighted First-Order Model Counting Problem (WFOMC) asks to compute the weighted sum of models of a given first-order logic sentence over a given domain. The boundary between fragments for which WFOMC can be computed in polynomial time relative to the domain size lies between the two-variable fragment ($\text{FO}^2$) and the three-variable fragment ($\text{FO}^3$). It is known that WFOMC for \FOthree{} is $\mathsf{\#P_1}$-hard while polynomial-time algorithms exist for computing WFOMC for $\text{FO}^2$ and $\text{C}^2$, possibly extended by certain axioms such as the linear order axiom, the acyclicity axiom, and the connectedness axiom. All existing research has concentrated on extending the fragment with axioms on a single distinguished relation, leaving a gap in understanding the complexity boundary of axioms on multiple relations. In this study, we explore the extension of the two-variable fragment by axioms on two relations, presenting both negative and positive results. We show that WFOMC for $\text{FO}^2$ with two linear order relations and $\text{FO}^2$ with two acyclic relations are $\mathsf{\#P_1}$-hard. Conversely, we provide an algorithm in time polynomial in the domain size for WFOMC of $\text{C}^2$ with a linear order relation, its successor relation and another successor relation.
comment: 24 pages, 5 figures
☆ Towards Faithful Class-level Self-explainability in Graph Neural Networks by Subgraph Dependencies
Enhancing the interpretability of graph neural networks (GNNs) is crucial to ensure their safe and fair deployment. Recent work has introduced self-explainable GNNs that generate explanations as part of training, improving both faithfulness and efficiency. Some of these models, such as ProtGNN and PGIB, learn class-specific prototypes, offering a potential pathway toward class-level explanations. However, their evaluations focus solely on instance-level explanations, leaving open the question of whether these prototypes meaningfully generalize across instances of the same class. In this paper, we introduce GraphOracle, a novel self-explainable GNN framework designed to generate and evaluate class-level explanations for GNNs. Our model jointly learns a GNN classifier and a set of structured, sparse subgraphs that are discriminative for each class. We propose a novel integrated training that captures graph$\unicode{x2013}$subgraph$\unicode{x2013}$prediction dependencies efficiently and faithfully, validated through a masking-based evaluation strategy. This strategy enables us to retroactively assess whether prior methods like ProtGNN and PGIB deliver effective class-level explanations. Our results show that they do not. In contrast, GraphOracle achieves superior fidelity, explainability, and scalability across a range of graph classification tasks. We further demonstrate that GraphOracle avoids the computational bottlenecks of previous methods$\unicode{x2014}$like Monte Carlo Tree Search$\unicode{x2014}$by using entropy-regularized subgraph selection and lightweight random walk extraction, enabling faster and more scalable training. These findings position GraphOracle as a practical and principled solution for faithful class-level self-explainability in GNNs.
comment: 14 pages, 12 figures
☆ Sim2Dust: Mastering Dynamic Waypoint Tracking on Granular Media
Reliable autonomous navigation across the unstructured terrains of distant planetary surfaces is a critical enabler for future space exploration. However, the deployment of learning-based controllers is hindered by the inherent sim-to-real gap, particularly for the complex dynamics of wheel interactions with granular media. This work presents a complete sim-to-real framework for developing and validating robust control policies for dynamic waypoint tracking on such challenging surfaces. We leverage massively parallel simulation to train reinforcement learning agents across a vast distribution of procedurally generated environments with randomized physics. These policies are then transferred zero-shot to a physical wheeled rover operating in a lunar-analogue facility. Our experiments systematically compare multiple reinforcement learning algorithms and action smoothing filters to identify the most effective combinations for real-world deployment. Crucially, we provide strong empirical evidence that agents trained with procedural diversity achieve superior zero-shot performance compared to those trained on static scenarios. We also analyze the trade-offs of fine-tuning with high-fidelity particle physics, which offers minor gains in low-speed precision at a significant computational cost. Together, these contributions establish a validated workflow for creating reliable learning-based navigation systems, marking a critical step towards deploying autonomous robots in the final frontier.
comment: The source code is available at https://github.com/AndrejOrsula/space_robotics_bench
☆ Handwritten Text Recognition of Historical Manuscripts Using Transformer-Based Models
Historical handwritten text recognition (HTR) is essential for unlocking the cultural and scholarly value of archival documents, yet digitization is often hindered by scarce transcriptions, linguistic variation, and highly diverse handwriting styles. In this study, we apply TrOCR, a state-of-the-art transformer-based HTR model, to 16th-century Latin manuscripts authored by Rudolf Gwalther. We investigate targeted image preprocessing and a broad suite of data augmentation techniques, introducing four novel augmentation methods designed specifically for historical handwriting characteristics. We also evaluate ensemble learning approaches to leverage the complementary strengths of augmentation-trained models. On the Gwalther dataset, our best single-model augmentation (Elastic) achieves a Character Error Rate (CER) of 1.86, while a top-5 voting ensemble achieves a CER of 1.60 - representing a 50% relative improvement over the best reported TrOCR_BASE result and a 42% improvement over the previous state of the art. These results highlight the impact of domain-specific augmentations and ensemble strategies in advancing HTR performance for historical manuscripts.
☆ Landmark-Assisted Monte Carlo Planning
Landmarks$\unicode{x2013}$conditions that must be satisfied at some point in every solution plan$\unicode{x2013}$have contributed to major advancements in classical planning, but they have seldom been used in stochastic domains. We formalize probabilistic landmarks and adapt the UCT algorithm to leverage them as subgoals to decompose MDPs; core to the adaptation is balancing between greedy landmark achievement and final goal achievement. Our results in benchmark domains show that well-chosen landmarks can significantly improve the performance of UCT in online probabilistic planning, while the best balance of greedy versus long-term goal achievement is problem-dependent. The results suggest that landmarks can provide helpful guidance for anytime algorithms solving MDPs.
comment: To be published in the Proceedings of the 28th European Conference on Artificial Intelligence
☆ RMSL: Weakly-Supervised Insider Threat Detection with Robust Multi-sphere Learning
Insider threat detection aims to identify malicious user behavior by analyzing logs that record user interactions. Due to the lack of fine-grained behavior-level annotations, detecting specific behavior-level anomalies within user behavior sequences is challenging. Unsupervised methods face high false positive rates and miss rates due to the inherent ambiguity between normal and anomalous behaviors. In this work, we instead introduce weak labels of behavior sequences, which have lower annotation costs, i.e., the training labels (anomalous or normal) are at sequence-level instead of behavior-level, to enhance the detection capability for behavior-level anomalies by learning discriminative features. To achieve this, we propose a novel framework called Robust Multi-sphere Learning (RMSL). RMSL uses multiple hyper-spheres to represent the normal patterns of behaviors. Initially, a one-class classifier is constructed as a good anomaly-supervision-free starting point. Building on this, using multiple instance learning and adaptive behavior-level self-training debiasing based on model prediction confidence, the framework further refines hyper-spheres and feature representations using weak sequence-level labels. This approach enhances the model's ability to distinguish between normal and anomalous behaviors. Extensive experiments demonstrate that RMSL significantly improves the performance of behavior-level insider threat detection.
comment: 15 pages
☆ Reference Points in LLM Sentiment Analysis: The Role of Structured Context
Large language models (LLMs) are now widely used across many fields, including marketing research. Sentiment analysis, in particular, helps firms understand consumer preferences. While most NLP studies classify sentiment from review text alone, marketing theories, such as prospect theory and expectation--disconfirmation theory, point out that customer evaluations are shaped not only by the actual experience but also by additional reference points. This study therefore investigates how the content and format of such supplementary information affect sentiment analysis using LLMs. We compare natural language (NL) and JSON-formatted prompts using a lightweight 3B parameter model suitable for practical marketing applications. Experiments on two Yelp categories (Restaurant and Nightlife) show that the JSON prompt with additional information outperforms all baselines without fine-tuning: Macro-F1 rises by 1.6% and 4% while RMSE falls by 16% and 9.1%, respectively, making it deployable in resource-constrained edge devices. Furthermore, a follow-up analysis confirms that performance gains stem from genuine contextual reasoning rather than label proxying. This work demonstrates that structured prompting can enable smaller models to achieve competitive performance, offering a practical alternative to large-scale model deployment.
☆ Inclusion Arena: An Open Platform for Evaluating Large Foundation Models with Real-World Apps
Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) have ushered in a new era of AI capabilities, demonstrating near-human-level performance across diverse scenarios. While numerous benchmarks (e.g., MMLU) and leaderboards (e.g., Chatbot Arena) have been proposed to help evolve the development of LLMs and MLLMs, most rely on static datasets or crowdsourced general-domain prompts, often falling short of reflecting performance in real-world applications. To bridge this critical gap, we present Inclusion Arena, a live leaderboard that ranks models based on human feedback collected directly from AI-powered applications. Our platform integrates pairwise model comparisons into natural user interactions, ensuring evaluations reflect practical usage scenarios. For robust model ranking, we employ the Bradley-Terry model augmented with two key innovations: (1) Placement Matches, a cold-start mechanism to quickly estimate initial ratings for newly integrated models, and (2) Proximity Sampling, an intelligent comparison strategy that prioritizes battles between models of similar capabilities to maximize information gain and enhance rating stability. Extensive empirical analyses and simulations demonstrate that Inclusion Arena yields reliable and stable rankings, exhibits higher data transitivity compared to general crowdsourced datasets, and significantly mitigates the risk of malicious manipulation. By fostering an open alliance between foundation models and real-world applications, Inclusion Arena aims to accelerate the development of LLMs and MLLMs truly optimized for practical, user-centric deployments. The platform is publicly accessible at https://doraemon.alipay.com/model-ranking.
comment: Our platform is publicly accessible at https://doraemon.alipay.com/model-ranking
☆ Inside Knowledge: Graph-based Path Generation with Explainable Data Augmentation and Curriculum Learning for Visual Indoor Navigation
Indoor navigation is a difficult task, as it generally comes with poor GPS access, forcing solutions to rely on other sources of information. While significant progress continues to be made in this area, deployment to production applications is still lacking, given the complexity and additional requirements of current solutions. Here, we introduce an efficient, real-time and easily deployable deep learning approach, based on visual input only, that can predict the direction towards a target from images captured by a mobile device. Our technical approach, based on a novel graph-based path generation method, combined with explainable data augmentation and curriculum learning, includes contributions that make the process of data collection, annotation and training, as automatic as possible, efficient and robust. On the practical side, we introduce a novel largescale dataset, with video footage inside a relatively large shopping mall, in which each frame is annotated with the correct next direction towards different specific target destinations. Different from current methods, ours relies solely on vision, avoiding the need of special sensors, additional markers placed along the path, knowledge of the scene map or internet access. We also created an easy to use application for Android, which we plan to make publicly available. We make all our data and code available along with visual demos on our project site
comment: Accepted at the International Conference on Computer Vision Workshops 2025
☆ Informative Post-Hoc Explanations Only Exist for Simple Functions
Many researchers have suggested that local post-hoc explanation algorithms can be used to gain insights into the behavior of complex machine learning models. However, theoretical guarantees about such algorithms only exist for simple decision functions, and it is unclear whether and under which assumptions similar results might exist for complex models. In this paper, we introduce a general, learning-theory-based framework for what it means for an explanation to provide information about a decision function. We call an explanation informative if it serves to reduce the complexity of the space of plausible decision functions. With this approach, we show that many popular explanation algorithms are not informative when applied to complex decision functions, providing a rigorous mathematical rejection of the idea that it should be possible to explain any model. We then derive conditions under which different explanation algorithms become informative. These are often stronger than what one might expect. For example, gradient explanations and counterfactual explanations are non-informative with respect to the space of differentiable functions, and SHAP and anchor explanations are not informative with respect to the space of decision trees. Based on these results, we discuss how explanation algorithms can be modified to become informative. While the proposed analysis of explanation algorithms is mathematical, we argue that it holds strong implications for the practical applicability of these algorithms, particularly for auditing, regulation, and high-risk applications of AI.
☆ AIM-Bench: Evaluating Decision-making Biases of Agentic LLM as Inventory Manager
Recent advances in mathematical reasoning and the long-term planning capabilities of large language models (LLMs) have precipitated the development of agents, which are being increasingly leveraged in business operations processes. Decision models to optimize inventory levels are one of the core elements of operations management. However, the capabilities of the LLM agent in making inventory decisions in uncertain contexts, as well as the decision-making biases (e.g. framing effect, etc.) of the agent, remain largely unexplored. This prompts concerns regarding the capacity of LLM agents to effectively address real-world problems, as well as the potential implications of biases that may be present. To address this gap, we introduce AIM-Bench, a novel benchmark designed to assess the decision-making behaviour of LLM agents in uncertain supply chain management scenarios through a diverse series of inventory replenishment experiments. Our results reveal that different LLMs typically exhibit varying degrees of decision bias that are similar to those observed in human beings. In addition, we explored strategies to mitigate the pull-to-centre effect and the bullwhip effect, namely cognitive reflection and implementation of information sharing. These findings underscore the need for careful consideration of the potential biases in deploying LLMs in Inventory decision-making scenarios. We hope that these insights will pave the way for mitigating human decision bias and developing human-centred decision support systems for supply chains.
☆ On-Policy RL Meets Off-Policy Experts: Harmonizing Supervised Fine-Tuning and Reinforcement Learning via Dynamic Weighting
Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) are two prominent post-training paradigms for refining the capabilities and aligning the behavior of Large Language Models (LLMs). Existing approaches that integrate SFT and RL often face the risk of disrupting established model patterns and inducing overfitting to expert data. To address this, we present a novel investigation into the unified view of SFT and RL through an off-policy versus on-policy lens. We propose CHORD, a framework for the Controllable Harmonization of On- and Off-Policy Reinforcement Learning via Dynamic Weighting, which reframes SFT not as a separate stage but as a dynamically weighted auxiliary objective within the on-policy RL process. Based on an analysis of off-policy expert data's influence at both holistic and granular levels, we incorporate a dual-control mechanism in CHORD. Specifically, the framework first employs a global coefficient to holistically guide the transition from off-policy imitation to on-policy exploration, and then applies a token-wise weighting function that enables granular learning from expert tokens, which preserves on-policy exploration and mitigates disruption from off-policy data. We conduct extensive experiments on widely used benchmarks, providing empirical evidence that CHORD achieves a stable and efficient learning process. By effectively harmonizing off-policy expert data with on-policy exploration, CHORD demonstrates significant improvements over baselines. We release the implementation at https://github.com/modelscope/Trinity-RFT/tree/main/examples/mix_chord to inspire further research.
☆ Open, Reproducible and Trustworthy Robot-Based Experiments with Virtual Labs and Digital-Twin-Based Execution Tracing AI
We envision a future in which autonomous robots conduct scientific experiments in ways that are not only precise and repeatable, but also open, trustworthy, and transparent. To realize this vision, we present two key contributions: a semantic execution tracing framework that logs sensor data together with semantically annotated robot belief states, ensuring that automated experimentation is transparent and replicable; and the AICOR Virtual Research Building (VRB), a cloud-based platform for sharing, replicating, and validating robot task executions at scale. Together, these tools enable reproducible, robot-driven science by integrating deterministic execution, semantic memory, and open knowledge representation, laying the foundation for autonomous systems to participate in scientific discovery.
comment: 8 pages, 6 figures, submitted to the 1st IROS Workshop on Embodied AI and Robotics for Future Scientific Discovery
☆ An Exploratory Study on Crack Detection in Concrete through Human-Robot Collaboration
Structural inspection in nuclear facilities is vital for maintaining operational safety and integrity. Traditional methods of manual inspection pose significant challenges, including safety risks, high cognitive demands, and potential inaccuracies due to human limitations. Recent advancements in Artificial Intelligence (AI) and robotic technologies have opened new possibilities for safer, more efficient, and accurate inspection methodologies. Specifically, Human-Robot Collaboration (HRC), leveraging robotic platforms equipped with advanced detection algorithms, promises significant improvements in inspection outcomes and reductions in human workload. This study explores the effectiveness of AI-assisted visual crack detection integrated into a mobile Jackal robot platform. The experiment results indicate that HRC enhances inspection accuracy and reduces operator workload, resulting in potential superior performance outcomes compared to traditional manual methods.
☆ Trustworthy AI Psychotherapy: Multi-Agent LLM Workflow for Counseling and Explainable Mental Disorder Diagnosis
LLM-based agents have emerged as transformative tools capable of executing complex tasks through iterative planning and action, achieving significant advancements in understanding and addressing user needs. Yet, their effectiveness remains limited in specialized domains such as mental health diagnosis, where they underperform compared to general applications. Current approaches to integrating diagnostic capabilities into LLMs rely on scarce, highly sensitive mental health datasets, which are challenging to acquire. These methods also fail to emulate clinicians' proactive inquiry skills, lack multi-turn conversational comprehension, and struggle to align outputs with expert clinical reasoning. To address these gaps, we propose DSM5AgentFlow, the first LLM-based agent workflow designed to autonomously generate DSM-5 Level-1 diagnostic questionnaires. By simulating therapist-client dialogues with specific client profiles, the framework delivers transparent, step-by-step disorder predictions, producing explainable and trustworthy results. This workflow serves as a complementary tool for mental health diagnosis, ensuring adherence to ethical and legal standards. Through comprehensive experiments, we evaluate leading LLMs across three critical dimensions: conversational realism, diagnostic accuracy, and explainability. Our datasets and implementations are fully open-sourced.
comment: Accepted by CIKM 2025 as a full paper
☆ Retrieval-augmented reasoning with lean language models
This technical report details a novel approach to combining reasoning and retrieval augmented generation (RAG) within a single, lean language model architecture. While existing RAG systems typically rely on large-scale models and external APIs, our work addresses the increasing demand for performant and privacy-preserving solutions deployable in resource-constrained or secure environments. Building on recent developments in test-time scaling and small-scale reasoning models, we develop a retrieval augmented conversational agent capable of interpreting complex, domain-specific queries using a lightweight backbone model. Our system integrates a dense retriever with fine-tuned Qwen2.5-Instruct models, using synthetic query generation and reasoning traces derived from frontier models (e.g., DeepSeek-R1) over a curated corpus, in this case, the NHS A-to-Z condition pages. We explore the impact of summarisation-based document compression, synthetic data design, and reasoning-aware fine-tuning on model performance. Evaluation against both non-reasoning and general-purpose lean models demonstrates that our domain-specific fine-tuning approach yields substantial gains in answer accuracy and consistency, approaching frontier-level performance while remaining feasible for local deployment. All implementation details and code are publicly released to support reproducibility and adaptation across domains.
☆ When Punctuation Matters: A Large-Scale Comparison of Prompt Robustness Methods for LLMs
Large Language Models (LLMs) are highly sensitive to subtle, non-semantic variations in prompt phrasing and formatting. In this work, we present the first systematic evaluation of 5 methods for improving prompt robustness within a unified experimental framework. We benchmark these techniques on 8 models from Llama, Qwen and Gemma families across 52 tasks from Natural Instructions dataset. Our evaluation covers robustness methods from both fine-tuned and in-context learning paradigms, and tests their generalization against multiple types of distribution shifts. Finally, we extend our analysis to GPT-4.1 and DeepSeek V3 to assess frontier models' current robustness to format perturbations. Our findings offer actionable insights into the relative effectiveness of these robustness methods, enabling practitioners to make informed decisions when aiming for stable and reliable LLM performance in real-world applications. Code: https://github.com/AIRI-Institute/when-punctuation-matters.
☆ G-CUT3R: Guided 3D Reconstruction with Camera and Depth Prior Integration
We introduce G-CUT3R, a novel feed-forward approach for guided 3D scene reconstruction that enhances the CUT3R model by integrating prior information. Unlike existing feed-forward methods that rely solely on input images, our method leverages auxiliary data, such as depth, camera calibrations, or camera positions, commonly available in real-world scenarios. We propose a lightweight modification to CUT3R, incorporating a dedicated encoder for each modality to extract features, which are fused with RGB image tokens via zero convolution. This flexible design enables seamless integration of any combination of prior information during inference. Evaluated across multiple benchmarks, including 3D reconstruction and other multi-view tasks, our approach demonstrates significant performance improvements, showing its ability to effectively utilize available priors while maintaining compatibility with varying input modalities.
☆ Does the Skeleton-Recall Loss Really Work?
Image segmentation is an important and widely performed task in computer vision. Accomplishing effective image segmentation in diverse settings often requires custom model architectures and loss functions. A set of models that specialize in segmenting thin tubular structures are topology preservation-based loss functions. These models often utilize a pixel skeletonization process claimed to generate more precise segmentation masks of thin tubes and better capture the structures that other models often miss. One such model, Skeleton Recall Loss (SRL) proposed by Kirchhoff et al.~\cite {kirchhoff2024srl}, was stated to produce state-of-the-art results on benchmark tubular datasets. In this work, we performed a theoretical analysis of the gradients for the SRL loss. Upon comparing the performance of the proposed method on some of the tubular datasets (used in the original work, along with some additional datasets), we found that the performance of SRL-based segmentation models did not exceed traditional baseline models. By providing both a theoretical explanation and empirical evidence, this work critically evaluates the limitations of topology-based loss functions, offering valuable insights for researchers aiming to develop more effective segmentation models for complex tubular structures.
☆ Minimizing Surrogate Losses for Decision-Focused Learning using Differentiable Optimization
Decision-focused learning (DFL) trains a machine learning (ML) model to predict parameters of an optimization problem, to directly minimize decision regret, i.e., maximize decision quality. Gradient-based DFL requires computing the derivative of the solution to the optimization problem with respect to the predicted parameters. However, for many optimization problems, such as linear programs (LPs), the gradient of the regret with respect to the predicted parameters is zero almost everywhere. Existing gradient-based DFL approaches for LPs try to circumvent this issue in one of two ways: (a) smoothing the LP into a differentiable optimization problem by adding a quadratic regularizer and then minimizing the regret directly or (b) minimizing surrogate losses that have informative (sub)gradients. In this paper, we show that the former approach still results in zero gradients, because even after smoothing the regret remains constant across large regions of the parameter space. To address this, we propose minimizing surrogate losses -- even when a differentiable optimization layer is used and regret can be minimized directly. Our experiments demonstrate that minimizing surrogate losses allows differentiable optimization layers to achieve regret comparable to or better than surrogate-loss based DFL methods. Further, we demonstrate that this also holds for DYS-Net, a recently proposed differentiable optimization technique for LPs, that computes approximate solutions and gradients through operations that can be performed using feedforward neural network layers. Because DYS-Net executes the forward and the backward pass very efficiently, by minimizing surrogate losses using DYS-Net, we are able to attain regret on par with the state-of-the-art while reducing training time by a significant margin.
☆ CRAFT-GUI: Curriculum-Reinforced Agent For GUI Tasks
As autonomous agents become adept at understanding and interacting with graphical user interface (GUI) environments, a new era of automated task execution is emerging. Recent studies have demonstrated that Reinforcement Learning (RL) can effectively enhance agents' performance in dynamic interactive GUI environments. However, these methods face two key limitations: (1) they overlook the significant variation in difficulty across different GUI tasks by treating the entire training data as a uniform set, which hampers the agent's ability to adapt its learning process; and (2) most approaches collapse task-specific nuances into a single, coarse reward, leaving the agent with a uniform signal that yields inefficient policy updates. To address these limitations, we propose CRAFT-GUI, a curriculum learning framework based on Group Relative Policy Optimization (GRPO) that explicitly accounts for the varying difficulty across trajectories. To enable more fine-grained policy optimization, we design a reward function that combines simple rule-based signals with model-judged evaluation, providing richer and more nuanced feedback during training. Experimental results demonstrate that our method achieves significant improvements over previous state-of-the-art approaches, outperforming them by 5.6% on public benchmarks Android Control and 10.3% on our internal online benchmarks, respectively. These findings empirically validate the effectiveness of integrating reinforcement learning with curriculum learning in GUI interaction tasks.
☆ PTSM: Physiology-aware and Task-invariant Spatio-temporal Modeling for Cross-Subject EEG Decoding
Cross-subject electroencephalography (EEG) decoding remains a fundamental challenge in brain-computer interface (BCI) research due to substantial inter-subject variability and the scarcity of subject-invariant representations. This paper proposed PTSM (Physiology-aware and Task-invariant Spatio-temporal Modeling), a novel framework for interpretable and robust EEG decoding across unseen subjects. PTSM employs a dual-branch masking mechanism that independently learns personalized and shared spatio-temporal patterns, enabling the model to preserve individual-specific neural characteristics while extracting task-relevant, population-shared features. The masks are factorized across temporal and spatial dimensions, allowing fine-grained modulation of dynamic EEG patterns with low computational overhead. To further address representational entanglement, PTSM enforces information-theoretic constraints that decompose latent embeddings into orthogonal task-related and subject-related subspaces. The model is trained end-to-end via a multi-objective loss integrating classification, contrastive, and disentanglement objectives. Extensive experiments on cross-subject motor imagery datasets demonstrate that PTSM achieves strong zero-shot generalization, outperforming state-of-the-art baselines without subject-specific calibration. Results highlight the efficacy of disentangled neural representations for achieving both personalized and transferable decoding in non-stationary neurophysiological settings.
☆ ETTRL: Balancing Exploration and Exploitation in LLM Test-Time Reinforcement Learning Via Entropy Mechanism
Recent advancements in Large Language Models have yielded significant improvements in complex reasoning tasks such as mathematics and programming. However, these models remain heavily dependent on annotated data and exhibit limited adaptability in unsupervised scenarios. To address these limitations, test-time reinforcement learning (TTRL) has been proposed, which enables self-optimization by leveraging model-generated pseudo-labels. Despite its promise, TTRL faces several key challenges, including high inference costs due to parallel rollouts and early-stage estimation bias that fosters overconfidence, reducing output diversity and causing performance plateaus. To address these challenges, we introduce an entropy-based mechanism to enhance the exploration-exploitation balance in test-time reinforcement learning through two strategies: Entropy-fork Tree Majority Rollout (ETMR) and Entropy-based Advantage Reshaping (EAR). Compared with the baseline, our approach enables Llama3.1-8B to achieve a 68 percent relative improvement in Pass at 1 metric on the AIME 2024 benchmark, while consuming only 60 percent of the rollout tokens budget. This highlights our method's ability to effectively optimize the trade-off between inference efficiency, diversity, and estimation robustness, thereby advancing unsupervised reinforcement learning for open-domain reasoning tasks.
☆ Leveraging the RETFound foundation model for optic disc segmentation in retinal images
RETFound is a well-known foundation model (FM) developed for fundus camera and optical coherence tomography images. It has shown promising performance across multiple datasets in diagnosing diseases, both eye-specific and systemic, from retinal images. However, to our best knowledge, it has not been used for other tasks. We present the first adaptation of RETFound for optic disc segmentation, a ubiquitous and foundational task in retinal image analysis. The resulting segmentation system outperforms state-of-the-art, segmentation-specific baseline networks after training a head with only a very modest number of task-specific examples. We report and discuss results with four public datasets, IDRID, Drishti-GS, RIM-ONE-r3, and REFUGE, and a private dataset, GoDARTS, achieving about 96% Dice consistently across all datasets. Overall, our method obtains excellent performance in internal verification, domain generalization and domain adaptation, and exceeds most of the state-of-the-art baseline results. We discuss the results in the framework of the debate about FMs as alternatives to task-specific architectures. The code is available at: [link to be added after the paper is accepted]
☆ NeMo: A Neuron-Level Modularizing-While-Training Approach for Decomposing DNN Models
With the growing incorporation of deep neural network (DNN) models into modern software systems, the prohibitive construction costs have become a significant challenge. Model reuse has been widely applied to reduce training costs, but indiscriminately reusing entire models may incur significant inference overhead. Consequently, DNN modularization has gained attention, enabling module reuse by decomposing DNN models. The emerging modularizing-while-training (MwT) paradigm, which incorporates modularization into training, outperforms modularizing-after-training approaches. However, existing MwT methods focus on small-scale CNN models at the convolutional kernel level and struggle with diverse DNNs and large-scale models, particularly Transformer-based models. To address these limitations, we propose NeMo, a scalable and generalizable MwT approach. NeMo operates at the neuron level fundamental component common to all DNNs-ensuring applicability to Transformers and various architectures. We design a contrastive learning-based modular training method with an effective composite loss function, enabling scalability to large-scale models. Comprehensive experiments on two Transformer-based models and four CNN models across two classification datasets demonstrate NeMo's superiority over state-of-the-art MwT methods. Results show average gains of 1.72% in module classification accuracy and 58.10% reduction in module size, demonstrating efficacy across both CNN and large-scale Transformer-based models. A case study on open-source projects shows NeMo's potential benefits in practical scenarios, offering a promising approach for scalable and generalizable DNN modularization.
☆ SAGE: Scale-Aware Gradual Evolution for Continual Knowledge Graph Embedding KDD 2025
Traditional knowledge graph (KG) embedding methods aim to represent entities and relations in a low-dimensional space, primarily focusing on static graphs. However, real-world KGs are dynamically evolving with the constant addition of entities, relations and facts. To address such dynamic nature of KGs, several continual knowledge graph embedding (CKGE) methods have been developed to efficiently update KG embeddings to accommodate new facts while maintaining learned knowledge. As KGs grow at different rates and scales in real-world scenarios, existing CKGE methods often fail to consider the varying scales of updates and lack systematic evaluation throughout the entire update process. In this paper, we propose SAGE, a scale-aware gradual evolution framework for CKGE. Specifically, SAGE firstly determine the embedding dimensions based on the update scales and expand the embedding space accordingly. The Dynamic Distillation mechanism is further employed to balance the preservation of learned knowledge and the incorporation of new facts. We conduct extensive experiments on seven benchmarks, and the results show that SAGE consistently outperforms existing baselines, with a notable improvement of 1.38% in MRR, 1.25% in H@1 and 1.6% in H@10. Furthermore, experiments comparing SAGE with methods using fixed embedding dimensions show that SAGE achieves optimal performance on every snapshot, demonstrating the importance of adaptive embedding dimensions in CKGE. The codes of SAGE are publicly available at: https://github.com/lyfxjtu/Dynamic-Embedding.
comment: 10 pages, 5 figures, Accepted at KDD 2025, code available at https://github.com/lyfxjtu/Dynamic-Embedding
☆ RegimeNAS: Regime-Aware Differentiable Architecture Search With Theoretical Guarantees for Financial Trading
We introduce RegimeNAS, a novel differentiable architecture search framework specifically designed to enhance cryptocurrency trading performance by explicitly integrating market regime awareness. Addressing the limitations of static deep learning models in highly dynamic financial environments, RegimeNAS features three core innovations: (1) a theoretically grounded Bayesian search space optimizing architectures with provable convergence properties; (2) specialized, dynamically activated neural modules (Volatility, Trend, and Range blocks) tailored for distinct market conditions; and (3) a multi-objective loss function incorporating market-specific penalties (e.g., volatility matching, transition smoothness) alongside mathematically enforced Lipschitz stability constraints. Regime identification leverages multi-head attention across multiple timeframes for improved accuracy and uncertainty estimation. Rigorous empirical evaluation on extensive real-world cryptocurrency data demonstrates that RegimeNAS significantly outperforms state-of-the-art benchmarks, achieving an 80.3% Mean Absolute Error reduction compared to the best traditional recurrent baseline and converging substantially faster (9 vs. 50+ epochs). Ablation studies and regime-specific analysis confirm the critical contribution of each component, particularly the regime-aware adaptation mechanism. This work underscores the imperative of embedding domain-specific knowledge, such as market regimes, directly within the NAS process to develop robust and adaptive models for challenging financial applications.
☆ SGSimEval: A Comprehensive Multifaceted and Similarity-Enhanced Benchmark for Automatic Survey Generation Systems
The growing interest in automatic survey generation (ASG), a task that traditionally required considerable time and effort, has been spurred by recent advances in large language models (LLMs). With advancements in retrieval-augmented generation (RAG) and the rising popularity of multi-agent systems (MASs), synthesizing academic surveys using LLMs has become a viable approach, thereby elevating the need for robust evaluation methods in this domain. However, existing evaluation methods suffer from several limitations, including biased metrics, a lack of human preference, and an over-reliance on LLMs-as-judges. To address these challenges, we propose SGSimEval, a comprehensive benchmark for Survey Generation with Similarity-Enhanced Evaluation that evaluates automatic survey generation systems by integrating assessments of the outline, content, and references, and also combines LLM-based scoring with quantitative metrics to provide a multifaceted evaluation framework. In SGSimEval, we also introduce human preference metrics that emphasize both inherent quality and similarity to humans. Extensive experiments reveal that current ASG systems demonstrate human-comparable superiority in outline generation, while showing significant room for improvement in content and reference generation, and our evaluation metrics maintain strong consistency with human assessments.
comment: Accepted to The 21st International Conference on Advanced Data Mining and Applications (ADMA2025)
☆ Dynamic Quality-Latency Aware Routing for LLM Inference in Wireless Edge-Device Networks
The integration of wireless communications and Large Language Models (LLMs) is poised to unlock ubiquitous intelligent services, yet deploying them in wireless edge-device collaborative environments presents a critical trade-off between inference quality and end-to-end latency. A fundamental mismatch exists between task complexity and resource allocation: offloading simple queries invites prohibitive latency, while on-device models lack the capacity for demanding computations. To address this challenge, we propose a dynamic, quality-latency aware routing framework that orchestrates inference between a lightweight model on the mobile device and a powerful model on the edge server. Our framework employs two distinct cost models: for single-turn queries, it fuses a BERT-predicted semantic score with communication and computation overheads; for multi-turn dialogues, it further quantifies context-aware costs arising from model switching and KV-cache management. While maintaining full inference quality, extensive experiments demonstrate that our framework cuts average response latency by 5-15% and reduces large model invocations by 10-20% against competitive baselines on MMLU, GSM8K, and MT-Bench-101 benchmarks.
comment: accepted by IEEE/CIC ICCC workshop
☆ CSGO: Generalized Optimization for Cold Start in Wireless Collaborative Edge LLM Systems
While deploying large language models on edge devices promises low-latency and privacy-preserving AI services, it is hindered by limited device resources. Although pipeline parallelism facilitates distributed inference, existing approaches often ignore the cold-start latency caused by on-demand model loading. In this paper, we propose a latency-aware scheduling framework that overlaps model loading with computation and communication to minimize total inference latency. Based on device and model parameters, the framework dynamically adjusts layer partitioning and allocation to effectively hide loading time, thereby eliminating as many idle periods as possible. We formulate the problem as a Mixed-Integer Non-Linear Program and design an efficient dynamic programming algorithm to optimize model partitioning and device assignment. Experimental results show that the proposed method significantly reduces cold-start latency compared to baseline strategies.
comment: submitted to Journal of Communications and Information Networks
☆ Scene Graph-Guided Proactive Replanning for Failure-Resilient Embodied Agent
When humans perform everyday tasks, we naturally adjust our actions based on the current state of the environment. For instance, if we intend to put something into a drawer but notice it is closed, we open it first. However, many autonomous robots lack this adaptive awareness. They often follow pre-planned actions that may overlook subtle yet critical changes in the scene, which can result in actions being executed under outdated assumptions and eventual failure. While replanning is critical for robust autonomy, most existing methods respond only after failures occur, when recovery may be inefficient or infeasible. While proactive replanning holds promise for preventing failures in advance, current solutions often rely on manually designed rules and extensive supervision. In this work, we present a proactive replanning framework that detects and corrects failures at subtask boundaries by comparing scene graphs constructed from current RGB-D observations against reference graphs extracted from successful demonstrations. When the current scene fails to align with reference trajectories, a lightweight reasoning module is activated to diagnose the mismatch and adjust the plan. Experiments in the AI2-THOR simulator demonstrate that our approach detects semantic and spatial mismatches before execution failures occur, significantly improving task success and robustness.
☆ ToxiFrench: Benchmarking and Enhancing Language Models via CoT Fine-Tuning for French Toxicity Detection
Detecting toxic content using language models is crucial yet challenging. While substantial progress has been made in English, toxicity detection in French remains underdeveloped, primarily due to the lack of culturally relevant, large-scale datasets. In this work, we introduce TOXIFRENCH, a new public benchmark of 53,622 French online comments, constructed via a semi-automated annotation pipeline that reduces manual labeling to only 10% through high-confidence LLM-based pre-annotation and human verification. Then, we benchmark a broad range of models and uncover a counterintuitive insight: Small Language Models (SLMs) outperform many larger models in robustness and generalization under the toxicity detection task. Motivated by this finding, we propose a novel Chain-of-Thought (CoT) fine-tuning strategy using a dynamic weighted loss that progressively emphasizes the model's final decision, significantly improving faithfulness. Our fine-tuned 4B model achieves state-of-the-art performance, improving its F1 score by 13% over its baseline and outperforming LLMs such as GPT-40 and Gemini-2.5. Further evaluation on a cross-lingual toxicity benchmark demonstrates strong multilingual ability, suggesting that our methodology can be effectively extended to other languages and safety-critical classification tasks.
comment: 14 pages, 5 figures, 8 tables. This paper introduces TOXIFRENCH, a new large-scale benchmark for French toxicity detection, and proposes a Chain-of-Thought (CoT) fine-tuning method with a dynamic weighted loss. The resulting fine-tuned 4B parameter model, ToxiFrench, achieves state-of-the-art performance, outperforming larger models like GPT-4o
☆ LETToT: Label-Free Evaluation of Large Language Models On Tourism Using Expert Tree-of-Thought
Evaluating large language models (LLMs) in specific domain like tourism remains challenging due to the prohibitive cost of annotated benchmarks and persistent issues like hallucinations. We propose $\textbf{L}$able-Free $\textbf{E}$valuation of LLM on $\textbf{T}$ourism using Expert $\textbf{T}$ree-$\textbf{o}$f-$\textbf{T}$hought (LETToT), a framework that leverages expert-derived reasoning structures-instead of labeled data-to access LLMs in tourism. First, we iteratively refine and validate hierarchical ToT components through alignment with generic quality dimensions and expert feedback. Results demonstrate the effectiveness of our systematically optimized expert ToT with 4.99-14.15\% relative quality gains over baselines. Second, we apply LETToT's optimized expert ToT to evaluate models of varying scales (32B-671B parameters), revealing: (1) Scaling laws persist in specialized domains (DeepSeek-V3 leads), yet reasoning-enhanced smaller models (e.g., DeepSeek-R1-Distill-Llama-70B) close this gap; (2) For sub-72B models, explicit reasoning architectures outperform counterparts in accuracy and conciseness ($p<0.05$). Our work established a scalable, label-free paradigm for domain-specific LLM evaluation, offering a robust alternative to conventional annotated benchmarks.
☆ Is General-Purpose AI Reasoning Sensitive to Data-Induced Cognitive Biases? Dynamic Benchmarking on Typical Software Engineering Dilemmas
Human cognitive biases in software engineering can lead to costly errors. While general-purpose AI (GPAI) systems may help mitigate these biases due to their non-human nature, their training on human-generated data raises a critical question: Do GPAI systems themselves exhibit cognitive biases? To investigate this, we present the first dynamic benchmarking framework to evaluate data-induced cognitive biases in GPAI within software engineering workflows. Starting with a seed set of 16 hand-crafted realistic tasks, each featuring one of 8 cognitive biases (e.g., anchoring, framing) and corresponding unbiased variants, we test whether bias-inducing linguistic cues unrelated to task logic can lead GPAI systems from correct to incorrect conclusions. To scale the benchmark and ensure realism, we develop an on-demand augmentation pipeline relying on GPAI systems to generate task variants that preserve bias-inducing cues while varying surface details. This pipeline ensures correctness (88--99% on average, according to human evaluation), promotes diversity, and controls reasoning complexity by leveraging Prolog-based reasoning and LLM-as-a-judge validation. It also verifies that the embedded biases are both harmful and undetectable by logic-based, unbiased reasoners. We evaluate leading GPAI systems (GPT, LLaMA, DeepSeek) and find a consistent tendency to rely on shallow linguistic heuristics over deep reasoning. All systems exhibit cognitive biases (ranging from 5.9% to 35% across types), with bias sensitivity increasing sharply with task complexity (up to 49%), highlighting critical risks in real-world software engineering deployments.
☆ Enhancing Supervised Composed Image Retrieval via Reasoning-Augmented Representation Engineering
Composed Image Retrieval (CIR) presents a significant challenge as it requires jointly understanding a reference image and a modified textual instruction to find relevant target images. Some existing methods attempt to use a two-stage approach to further refine retrieval results. However, this often requires additional training of a ranking model. Despite the success of Chain-of-Thought (CoT) techniques in reducing training costs for language models, their application in CIR tasks remains limited -- compressing visual information into text or relying on elaborate prompt designs. Besides, existing works only utilize it for zero-shot CIR, as it is challenging to achieve satisfactory results in supervised CIR with a well-trained model. In this work, we proposed a framework that includes the Pyramid Matching Model with Training-Free Refinement (PMTFR) to address these challenges. Through a simple but effective module called Pyramid Patcher, we enhanced the Pyramid Matching Model's understanding of visual information at different granularities. Inspired by representation engineering, we extracted representations from COT data and injected them into the LVLMs. This approach allowed us to obtain refined retrieval scores in the Training-Free Refinement paradigm without relying on explicit textual reasoning, further enhancing performance. Extensive experiments on CIR benchmarks demonstrate that PMTFR surpasses state-of-the-art methods in supervised CIR tasks. The code will be made public.
☆ Vision-Language Models display a strong gender bias
Vision-language models (VLM) align images and text in a shared representation space that is useful for retrieval and zero-shot transfer. Yet, this alignment can encode and amplify social stereotypes in subtle ways that are not obvious from standard accuracy metrics. In this study, we test whether the contrastive vision-language encoder exhibits gender-linked associations when it places embeddings of face images near embeddings of short phrases that describe occupations and activities. We assemble a dataset of 220 face photographs split by perceived binary gender and a set of 150 unique statements distributed across six categories covering emotional labor, cognitive labor, domestic labor, technical labor, professional roles, and physical labor. We compute unit-norm image embeddings for every face and unit-norm text embeddings for every statement, then define a statement-level association score as the difference between the mean cosine similarity to the male set and the mean cosine similarity to the female set, where positive values indicate stronger association with the male set and negative values indicate stronger association with the female set. We attach bootstrap confidence intervals by resampling images within each gender group, aggregate by category with a separate bootstrap over statements, and run a label-swap null model that estimates the level of mean absolute association we would expect if no gender structure were present. The outcome is a statement-wise and category-wise map of gender associations in a contrastive vision-language space, accompanied by uncertainty, simple sanity checks, and a robust gender bias evaluation framework.
☆ Hallucination in LLM-Based Code Generation: An Automotive Case Study
Large Language Models (LLMs) have shown significant potential in automating code generation tasks offering new opportunities across software engineering domains. However, their practical application remains limited due to hallucinations - outputs that appear plausible but are factually incorrect, unverifiable or nonsensical. This paper investigates hallucination phenomena in the context of code generation with a specific focus on the automotive domain. A case study is presented that evaluates multiple code LLMs for three different prompting complexities ranging from a minimal one-liner prompt to a prompt with Covesa Vehicle Signal Specifications (VSS) as additional context and finally to a prompt with an additional code skeleton. The evaluation reveals a high frequency of syntax violations, invalid reference errors and API knowledge conflicts in state-of-the-art models GPT-4.1, Codex and GPT-4o. Among the evaluated models, only GPT-4.1 and GPT-4o were able to produce a correct solution when given the most context-rich prompt. Simpler prompting strategies failed to yield a working result, even after multiple refinement iterations. These findings highlight the need for effective mitigation techniques to ensure the safe and reliable use of LLM generated code, especially in safety-critical domains such as automotive software systems.
☆ Generalized Decoupled Learning for Enhancing Open-Vocabulary Dense Perception
Dense visual perception tasks have been constrained by their reliance on predefined categories, limiting their applicability in real-world scenarios where visual concepts are unbounded. While Vision-Language Models (VLMs) like CLIP have shown promise in open-vocabulary tasks, their direct application to dense perception often leads to suboptimal performance due to limitations in local feature representation. In this work, we present our observation that CLIP's image tokens struggle to effectively aggregate information from spatially or semantically related regions, resulting in features that lack local discriminability and spatial consistency. To address this issue, we propose DeCLIP, a novel framework that enhances CLIP by decoupling the self-attention module to obtain ``content'' and ``context'' features respectively. \revise{The context features are enhanced by jointly distilling semantic correlations from Vision Foundation Models (VFMs) and object integrity cues from diffusion models, thereby enhancing spatial consistency. In parallel, the content features are aligned with image crop representations and constrained by region correlations from VFMs to improve local discriminability. Extensive experiments demonstrate that DeCLIP establishes a solid foundation for open-vocabulary dense perception, consistently achieving state-of-the-art performance across a broad spectrum of tasks, including 2D detection and segmentation, 3D instance segmentation, video instance segmentation, and 6D object pose estimation.} Code is available at https://github.com/xiaomoguhz/DeCLIP
comment: arXiv admin note: text overlap with arXiv:2505.04410
☆ Beyond Solving Math Quiz: Evaluating the Ability of Large Reasoning Models to Ask for Information
Large Reasoning Models (LRMs) have demonstrated remarkable problem-solving abilities in mathematics, as evaluated by existing benchmarks exclusively on well-defined problems. However, such evaluation setup constitutes a critical gap, since a genuine intelligent agent should not only solve problems (as a math quiz solver), but also be able~to ask for information when the problems lack sufficient information, enabling proactivity in responding users' requests. To bridge such gap, we proposes a new dataset consisting of two types of incomplete problems with diverse contexts. Based on the dataset, our systematical evaluation of LRMs reveals their inability in proactively asking for information. In addition, we uncover the behaviors related to overthinking and hallucination of LRMs, and highlight the potential and challenges of supervised fine-tuning in learning such ability. We hope to provide new insights in developing LRMs with genuine intelligence, rather than just solving problems.
Graph Neural Diffusion via Generalized Opinion Dynamics
There has been a growing interest in developing diffusion-based Graph Neural Networks (GNNs), building on the connections between message passing mechanisms in GNNs and physical diffusion processes. However, existing methods suffer from three critical limitations: (1) they rely on homogeneous diffusion with static dynamics, limiting adaptability to diverse graph structures; (2) their depth is constrained by computational overhead and diminishing interpretability; and (3) theoretical understanding of their convergence behavior remains limited. To address these challenges, we propose GODNF, a Generalized Opinion Dynamics Neural Framework, which unifies multiple opinion dynamics models into a principled, trainable diffusion mechanism. Our framework captures heterogeneous diffusion patterns and temporal dynamics via node-specific behavior modeling and dynamic neighborhood influence, while ensuring efficient and interpretable message propagation even at deep layers. We provide a rigorous theoretical analysis demonstrating GODNF's ability to model diverse convergence configurations. Extensive empirical evaluations of node classification and influence estimation tasks confirm GODNF's superiority over state-of-the-art GNNs.
☆ Cross-Granularity Hypergraph Retrieval-Augmented Generation for Multi-hop Question Answering
Multi-hop question answering (MHQA) requires integrating knowledge scattered across multiple passages to derive the correct answer. Traditional retrieval-augmented generation (RAG) methods primarily focus on coarse-grained textual semantic similarity and ignore structural associations among dispersed knowledge, which limits their effectiveness in MHQA tasks. GraphRAG methods address this by leveraging knowledge graphs (KGs) to capture structural associations, but they tend to overly rely on structural information and fine-grained word- or phrase-level retrieval, resulting in an underutilization of textual semantics. In this paper, we propose a novel RAG approach called HGRAG for MHQA that achieves cross-granularity integration of structural and semantic information via hypergraphs. Structurally, we construct an entity hypergraph where fine-grained entities serve as nodes and coarse-grained passages as hyperedges, and establish knowledge association through shared entities. Semantically, we design a hypergraph retrieval method that integrates fine-grained entity similarity and coarse-grained passage similarity via hypergraph diffusion. Finally, we employ a retrieval enhancement module, which further refines the retrieved results both semantically and structurally, to obtain the most relevant passages as context for answer generation with the LLM. Experimental results on benchmark datasets demonstrate that our approach outperforms state-of-the-art methods in QA performance, and achieves a 6$\times$ speedup in retrieval efficiency.
☆ ORFuzz: Fuzzing the "Other Side" of LLM Safety -- Testing Over-Refusal
Large Language Models (LLMs) increasingly exhibit over-refusal - erroneously rejecting benign queries due to overly conservative safety measures - a critical functional flaw that undermines their reliability and usability. Current methods for testing this behavior are demonstrably inadequate, suffering from flawed benchmarks and limited test generation capabilities, as highlighted by our empirical user study. To the best of our knowledge, this paper introduces the first evolutionary testing framework, ORFuzz, for the systematic detection and analysis of LLM over-refusals. ORFuzz uniquely integrates three core components: (1) safety category-aware seed selection for comprehensive test coverage, (2) adaptive mutator optimization using reasoning LLMs to generate effective test cases, and (3) OR-Judge, a human-aligned judge model validated to accurately reflect user perception of toxicity and refusal. Our extensive evaluations demonstrate that ORFuzz generates diverse, validated over-refusal instances at a rate (6.98% average) more than double that of leading baselines, effectively uncovering vulnerabilities. Furthermore, ORFuzz's outputs form the basis of ORFuzzSet, a new benchmark of 1,855 highly transferable test cases that achieves a superior 63.56% average over-refusal rate across 10 diverse LLMs, significantly outperforming existing datasets. ORFuzz and ORFuzzSet provide a robust automated testing framework and a valuable community resource, paving the way for developing more reliable and trustworthy LLM-based software systems.
☆ How Causal Abstraction Underpins Computational Explanation
Explanations of cognitive behavior often appeal to computations over representations. What does it take for a system to implement a given computation over suitable representational vehicles within that system? We argue that the language of causality -- and specifically the theory of causal abstraction -- provides a fruitful lens on this topic. Drawing on current discussions in deep learning with artificial neural networks, we illustrate how classical themes in the philosophy of computation and cognition resurface in contemporary machine learning. We offer an account of computational implementation grounded in causal abstraction, and examine the role for representation in the resulting picture. We argue that these issues are most profitably explored in connection with generalization and prediction.
☆ Multi-Group Equivariant Augmentation for Reinforcement Learning in Robot Manipulation
Sampling efficiency is critical for deploying visuomotor learning in real-world robotic manipulation. While task symmetry has emerged as a promising inductive bias to improve efficiency, most prior work is limited to isometric symmetries -- applying the same group transformation to all task objects across all timesteps. In this work, we explore non-isometric symmetries, applying multiple independent group transformations across spatial and temporal dimensions to relax these constraints. We introduce a novel formulation of the partially observable Markov decision process (POMDP) that incorporates the non-isometric symmetry structures, and propose a simple yet effective data augmentation method, Multi-Group Equivariance Augmentation (MEA). We integrate MEA with offline reinforcement learning to enhance sampling efficiency, and introduce a voxel-based visual representation that preserves translational equivariance. Extensive simulation and real-robot experiments across two manipulation domains demonstrate the effectiveness of our approach.
☆ StyleMM: Stylized 3D Morphable Face Model via Text-Driven Aligned Image Translation
We introduce StyleMM, a novel framework that can construct a stylized 3D Morphable Model (3DMM) based on user-defined text descriptions specifying a target style. Building upon a pre-trained mesh deformation network and a texture generator for original 3DMM-based realistic human faces, our approach fine-tunes these models using stylized facial images generated via text-guided image-to-image (i2i) translation with a diffusion model, which serve as stylization targets for the rendered mesh. To prevent undesired changes in identity, facial alignment, or expressions during i2i translation, we introduce a stylization method that explicitly preserves the facial attributes of the source image. By maintaining these critical attributes during image stylization, the proposed approach ensures consistent 3D style transfer across the 3DMM parameter space through image-based training. Once trained, StyleMM enables feed-forward generation of stylized face meshes with explicit control over shape, expression, and texture parameters, producing meshes with consistent vertex connectivity and animatability. Quantitative and qualitative evaluations demonstrate that our approach outperforms state-of-the-art methods in terms of identity-level facial diversity and stylization capability. The code and videos are available at [kwanyun.github.io/stylemm_page](kwanyun.github.io/stylemm_page).
comment: Pacific graphics 2025, CGF, 15 pages
☆ Visuomotor Grasping with World Models for Surgical Robots
Grasping is a fundamental task in robot-assisted surgery (RAS), and automating it can reduce surgeon workload while enhancing efficiency, safety, and consistency beyond teleoperated systems. Most prior approaches rely on explicit object pose tracking or handcrafted visual features, limiting their generalization to novel objects, robustness to visual disturbances, and the ability to handle deformable objects. Visuomotor learning offers a promising alternative, but deploying it in RAS presents unique challenges, such as low signal-to-noise ratio in visual observations, demands for high safety and millimeter-level precision, as well as the complex surgical environment. This paper addresses three key challenges: (i) sim-to-real transfer of visuomotor policies to ex vivo surgical scenes, (ii) visuomotor learning using only a single stereo camera pair -- the standard RAS setup, and (iii) object-agnostic grasping with a single policy that generalizes to diverse, unseen surgical objects without retraining or task-specific models. We introduce Grasp Anything for Surgery V2 (GASv2), a visuomotor learning framework for surgical grasping. GASv2 leverages a world-model-based architecture and a surgical perception pipeline for visual observations, combined with a hybrid control system for safe execution. We train the policy in simulation using domain randomization for sim-to-real transfer and deploy it on a real robot in both phantom-based and ex vivo surgical settings, using only a single pair of endoscopic cameras. Extensive experiments show our policy achieves a 65% success rate in both settings, generalizes to unseen objects and grippers, and adapts to diverse disturbances, demonstrating strong performance, generality, and robustness.
☆ E-CaTCH: Event-Centric Cross-Modal Attention with Temporal Consistency and Class-Imbalance Handling for Misinformation Detection
Detecting multimodal misinformation on social media remains challenging due to inconsistencies between modalities, changes in temporal patterns, and substantial class imbalance. Many existing methods treat posts independently and fail to capture the event-level structure that connects them across time and modality. We propose E-CaTCH, an interpretable and scalable framework for robustly detecting misinformation. If needed, E-CaTCH clusters posts into pseudo-events based on textual similarity and temporal proximity, then processes each event independently. Within each event, textual and visual features are extracted using pre-trained BERT and ResNet encoders, refined via intra-modal self-attention, and aligned through bidirectional cross-modal attention. A soft gating mechanism fuses these representations to form contextualized, content-aware embeddings of each post. To model temporal evolution, E-CaTCH segments events into overlapping time windows and uses a trend-aware LSTM, enhanced with semantic shift and momentum signals, to encode narrative progression over time. Classification is performed at the event level, enabling better alignment with real-world misinformation dynamics. To address class imbalance and promote stable learning, the model integrates adaptive class weighting, temporal consistency regularization, and hard-example mining. The total loss is aggregated across all events. Extensive experiments on Fakeddit, IND, and COVID-19 MISINFOGRAPH demonstrate that E-CaTCH consistently outperforms state-of-the-art baselines. Cross-dataset evaluations further demonstrate its robustness, generalizability, and practical applicability across diverse misinformation scenarios.
☆ Quantum-Boosted High-Fidelity Deep Learning
A fundamental limitation of probabilistic deep learning is its predominant reliance on Gaussian priors. This simplistic assumption prevents models from accurately capturing the complex, non-Gaussian landscapes of natural data, particularly in demanding domains like complex biological data, severely hindering the fidelity of the model for scientific discovery. The physically-grounded Boltzmann distribution offers a more expressive alternative, but it is computationally intractable on classical computers. To date, quantum approaches have been hampered by the insufficient qubit scale and operational stability required for the iterative demands of deep learning. Here, we bridge this gap by introducing the Quantum Boltzmann Machine-Variational Autoencoder (QBM-VAE), a large-scale and long-time stable hybrid quantum-classical architecture. Our framework leverages a quantum processor for efficient sampling from the Boltzmann distribution, enabling its use as a powerful prior within a deep generative model. Applied to million-scale single-cell datasets from multiple sources, the QBM-VAE generates a latent space that better preserves complex biological structures, consistently outperforming conventional Gaussian-based deep learning models like VAE and SCVI in essential tasks such as omics data integration, cell-type classification, and trajectory inference. It also provides a typical example of introducing a physics priori into deep learning to drive the model to acquire scientific discovery capabilities that breaks through data limitations. This work provides the demonstration of a practical quantum advantage in deep learning on a large-scale scientific problem and offers a transferable blueprint for developing hybrid quantum AI models.
☆ On Strong and Weak Admissibility in Non-Flat Assumption-Based Argumentation
In this work, we broaden the investigation of admissibility notions in the context of assumption-based argumentation (ABA). More specifically, we study two prominent alternatives to the standard notion of admissibility from abstract argumentation, namely strong and weak admissibility, and introduce the respective preferred, complete and grounded semantics for general (sometimes called non-flat) ABA. To do so, we use abstract bipolar set-based argumentation frameworks (BSAFs) as formal playground since they concisely capture the relations between assumptions and are expressive enough to represent general non-flat ABA frameworks, as recently shown. While weak admissibility has been recently investigated for a restricted fragment of ABA in which assumptions cannot be derived (flat ABA), strong admissibility has not been investigated for ABA so far. We introduce strong admissibility for ABA and investigate desirable properties. We furthermore extend the recent investigations of weak admissibility in the flat ABA fragment to the non-flat case. We show that the central modularization property is maintained under classical, strong, and weak admissibility. We also show that strong and weakly admissible semantics in non-flat ABA share some of the shortcomings of standard admissible semantics and discuss ways to address these.
☆ A Semi-supervised Generative Model for Incomplete Multi-view Data Integration with Missing Labels
Multi-view learning is widely applied to real-life datasets, such as multiple omics biological data, but it often suffers from both missing views and missing labels. Prior probabilistic approaches addressed the missing view problem by using a product-of-experts scheme to aggregate representations from present views and achieved superior performance over deterministic classifiers, using the information bottleneck (IB) principle. However, the IB framework is inherently fully supervised and cannot leverage unlabeled data. In this work, we propose a semi-supervised generative model that utilizes both labeled and unlabeled samples in a unified framework. Our method maximizes the likelihood of unlabeled samples to learn a latent space shared with the IB on labeled data. We also perform cross-view mutual information maximization in the latent space to enhance the extraction of shared information across views. Compared to existing approaches, our model achieves better predictive and imputation performance on both image and multi-omics data with missing views and limited labeled samples.
☆ Better Supervised Fine-tuning for VQA: Integer-Only Loss
With the rapid advancement of vision language models(VLM), their ability to assess visual content based on specific criteria and dimensions has become increasingly critical for applications such as video-theme consistency assessment and visual quality scoring. However, existing methods often suffer from imprecise results and inefficient loss calculation, which limit the focus of the model on key evaluation indicators. To address this, we propose IOVQA(Integer-only VQA), a novel fine-tuning approach tailored for VLMs to enhance their performance in video quality assessment tasks. The key innovation of IOVQA lies in its label construction and its targeted loss calculation mechanism. Specifically, during dataset curation, we constrain the model's output to integers within the range of [10,50], ensuring numerical stability, and convert decimal Overall_MOS to integer before using them as labels. We also introduce a target-mask strategy: when computing the loss, only the first two-digit-integer of the label is unmasked, forcing the model to learn the critical components of the numerical evaluation. After fine-tuning the Qwen2.5-VL model using the constructed dataset, experimental results demonstrate that the proposed method significantly improves the model's accuracy and consistency in the VQA task, ranking 3rd in VQualA 2025 GenAI-Bench AIGC Video Quality Assessment Challenge -- Track I. Our work highlights the effectiveness of merely leaving integer labels during fine-tuning, providing an effective idea for optimizing VLMs in quantitative evaluation scenarios.
☆ Role-Augmented Intent-Driven Generative Search Engine Optimization
Generative Search Engines (GSEs), powered by Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG), are reshaping information retrieval. While commercial systems (e.g., BingChat, Perplexity.ai) demonstrate impressive semantic synthesis capabilities, their black-box nature fundamentally undermines established Search Engine Optimization (SEO) practices. Content creators face a critical challenge: their optimization strategies, effective in traditional search engines, are misaligned with generative retrieval contexts, resulting in diminished visibility. To bridge this gap, we propose a Role-Augmented Intent-Driven Generative Search Engine Optimization (G-SEO) method, providing a structured optimization pathway tailored for GSE scenarios. Our method models search intent through reflective refinement across diverse informational roles, enabling targeted content enhancement. To better evaluate the method under realistic settings, we address the benchmarking limitations of prior work by: (1) extending the GEO dataset with diversified query variations reflecting real-world search scenarios and (2) introducing G-Eval 2.0, a 6-level LLM-augmented evaluation rubric for fine-grained human-aligned assessment. Experimental results demonstrate that search intent serves as an effective signal for guiding content optimization, yielding significant improvements over single-aspect baseline approaches in both subjective impressions and objective content visibility within GSE responses.
comment: 7 pages, 5 figures
☆ AlphaAgents: Large Language Model based Multi-Agents for Equity Portfolio Constructions
The field of artificial intelligence (AI) agents is evolving rapidly, driven by the capabilities of Large Language Models (LLMs) to autonomously perform and refine tasks with human-like efficiency and adaptability. In this context, multi-agent collaboration has emerged as a promising approach, enabling multiple AI agents to work together to solve complex challenges. This study investigates the application of role-based multi-agent systems to support stock selection in equity research and portfolio management. We present a comprehensive analysis performed by a team of specialized agents and evaluate their stock-picking performance against established benchmarks under varying levels of risk tolerance. Furthermore, we examine the advantages and limitations of employing multi-agent frameworks in equity analysis, offering critical insights into their practical efficacy and implementation challenges.
☆ Actor-Critic for Continuous Action Chunks: A Reinforcement Learning Framework for Long-Horizon Robotic Manipulation with Sparse Reward
Existing reinforcement learning (RL) methods struggle with long-horizon robotic manipulation tasks, particularly those involving sparse rewards. While action chunking is a promising paradigm for robotic manipulation, using RL to directly learn continuous action chunks in a stable and data-efficient manner remains a critical challenge. This paper introduces AC3 (Actor-Critic for Continuous Chunks), a novel RL framework that learns to generate high-dimensional, continuous action sequences. To make this learning process stable and data-efficient, AC3 incorporates targeted stabilization mechanisms for both the actor and the critic. First, to ensure reliable policy improvement, the actor is trained with an asymmetric update rule, learning exclusively from successful trajectories. Second, to enable effective value learning despite sparse rewards, the critic's update is stabilized using intra-chunk $n$-step returns and further enriched by a self-supervised module providing intrinsic rewards at anchor points aligned with each action chunk. We conducted extensive experiments on 25 tasks from the BiGym and RLBench benchmarks. Results show that by using only a few demonstrations and a simple model architecture, AC3 achieves superior success rates on most tasks, validating its effective design.
☆ A Cross-Modal Rumor Detection Scheme via Contrastive Learning by Exploring Text and Image internal Correlations
Existing rumor detection methods often neglect the content within images as well as the inherent relationships between contexts and images across different visual scales, thereby resulting in the loss of critical information pertinent to rumor identification. To address these issues, this paper presents a novel cross-modal rumor detection scheme based on contrastive learning, namely the Multi-scale Image and Context Correlation exploration algorithm (MICC). Specifically, we design an SCLIP encoder to generate unified semantic embeddings for text and multi-scale image patches through contrastive pretraining, enabling their relevance to be measured via dot-product similarity. Building upon this, a Cross-Modal Multi-Scale Alignment module is introduced to identify image regions most relevant to the textual semantics, guided by mutual information maximization and the information bottleneck principle, through a Top-K selection strategy based on a cross-modal relevance matrix constructed between the text and multi-scale image patches. Moreover, a scale-aware fusion network is designed to integrate the highly correlated multi-scale image features with global text features by assigning adaptive weights to image regions based on their semantic importance and cross-modal relevance. The proposed methodology has been extensively evaluated on two real-world datasets. The experimental results demonstrate that it achieves a substantial performance improvement over existing state-of-the-art approaches in rumor detection, highlighting its effectiveness and potential for practical applications.
☆ MoNaCo: More Natural and Complex Questions for Reasoning Across Dozens of Documents ACL
Large language models (LLMs) are emerging as a go-to tool for querying information. However, current LLM benchmarks rarely feature natural questions that are both information-seeking as well as genuinely time-consuming for humans. To address this gap we introduce MoNaCo, a benchmark of 1,315 natural and complex questions that require dozens, and at times hundreds, of intermediate steps to solve -- far more than any existing QA benchmark. To build MoNaCo, we developed a decomposed annotation pipeline to elicit and manually answer natural time-consuming questions at scale. Frontier LLMs evaluated on MoNaCo achieve at most 61.2% F1, hampered by low recall and hallucinations. Our results underscore the need for reasoning models that better handle the complexity and sheer breadth of real-world information-seeking questions -- with MoNaCo providing an effective resource for tracking such progress. The MONACO benchmark, codebase, prompts and models predictions are publicly available at: https://tomerwolgithub.github.io/monaco
comment: Accepted for publication in Transactions of the Association for Computational Linguistics (TACL), 2025. Authors pre-print
♻ ☆ Diffusion Beats Autoregressive in Data-Constrained Settings
Autoregressive (AR) models have long dominated the landscape of large language models, driving progress across a wide range of tasks. Recently, diffusion-based language models have emerged as a promising alternative, though their advantages over AR models remain underexplored. In this paper, we systematically study masked diffusion models in data-constrained settings-where training involves repeated passes over limited data and find that they significantly outperform AR models when compute is abundant but data is scarce. Diffusion models make better use of repeated data, achieving lower validation loss and superior downstream performance. We find new scaling laws for diffusion models and derive a closed-form expression for the critical compute threshold at which diffusion begins to outperform AR. Finally, we explain why diffusion models excel in this regime: their randomized masking objective implicitly trains over a rich distribution of token orderings, acting as an implicit data augmentation that AR's fixed left-to-right factorization lacks. Our results suggest that when data, not compute, is the bottleneck, diffusion models offer a compelling alternative to the standard AR paradigm. Our code is available at: https://diffusion-scaling.github.io.
comment: Project Webpage: https://diffusion-scaling.github.io
♻ ☆ Data Diversity as Implicit Regularization: How Does Diversity Shape the Weight Space of Deep Neural Networks?
Data augmentation that introduces diversity into the input data has long been used in training deep learning models. It has demonstrated benefits in improving robustness and generalization, practically aligning well with other regularization strategies such as dropout and weight decay. However, the underlying mechanism of how diverse training data contributes to model improvements remains unknown. In this paper, we investigate the impact of data diversity on the weight space of deep neural networks using Random Matrix Theory. Through spectral analysis and comparing models trained with data augmentation, dropout, and weight decay, we reveal that increasing data diversity alters the weight spectral distribution similarly to other regularization techniques, while displaying a pattern more closely aligned with dropout than with weight decay. Building on these insights, we propose a metric to explain and compare the benefits of diversity introduced by traditional data augmentations and those achieved through synthetic data.
♻ ☆ Once Upon an AI: Six Scaffolds for Child-AI Interaction Design, Inspired by Disney
To build AI that children can intuitively understand and benefit from, designers need a design grammar that serves their developmental needs. This paper bridges artificial intelligence design for children - an emerging field still defining its best practices - and animation, a well established field with decades of experience in engaging children through accessible storytelling. Pairing Piagetian developmental theory with design pattern extraction from 52 works of animation, the paper presents a six scaffold framework that integrates design insights transferable to child centred AI design: (1) signals for visual animacy and clarity, (2) sound for musical and auditory scaffolding, (3) synchrony in audiovisual cues, (4) sidekick style personas, (5) storyplay that supports symbolic play and imaginative exploration, and (6) structure in the form of predictable narratives. These strategies, long refined in animation, function as multimodal scaffolds for attention, understanding, and attunement, supporting learning and comfort. This structured design grammar is transferable to AI design. By reframing cinematic storytelling and child development theory as design logic for AI, the paper offers heuristics for AI that aligns with the cognitive stages and emotional needs of young users. The work contributes to design theory by showing how sensory, affective, and narrative techniques can inform developmentally attuned AI design. Future directions include empirical testing, cultural adaptation, and participatory co design.
comment: 28 pages
♻ ☆ Convolutional Autoencoders for Data Compression and Anomaly Detection in Small Satellite Technologies
Small satellite technologies have enhanced the potential and feasibility of geodesic missions, through simplification of design and decreased costs allowing for more frequent launches. On-satellite data acquisition systems can benefit from the implementation of machine learning (ML), for better performance and greater efficiency on tasks such as image processing or feature extraction. This work presents convolutional autoencoders for implementation on the payload of small satellites, designed to achieve dual functionality of data compression for more efficient off-satellite transmission, and at-source anomaly detection to inform satellite data-taking. This capability is demonstrated for a use case of disaster monitoring using aerial image datasets of the African continent, offering avenues for both novel ML-based approaches in small satellite applications along with the expansion of space technology and artificial intelligence in Africa.
comment: 10 pages, 6 figures
♻ ☆ Omni-DPO: A Dual-Perspective Paradigm for Dynamic Preference Learning of LLMs
Direct Preference Optimization (DPO) has become a cornerstone of reinforcement learning from human feedback (RLHF) due to its simplicity and efficiency. However, existing DPO-based approaches typically treat all preference pairs uniformly, ignoring critical variations in their inherent quality and learning utility, leading to suboptimal data utilization and performance. To address this challenge, we propose Omni-DPO, a dual-perspective optimization framework that jointly accounts for (1) the inherent quality of each preference pair and (2) the model's evolving performance on those pairs. By adaptively weighting samples according to both data quality and the model's learning dynamics during training, Omni-DPO enables more effective training data utilization and achieves better performance. Experimental results on various models and benchmarks demonstrate the superiority and generalization capabilities of Omni-DPO. On textual understanding tasks, Gemma-2-9b-it finetuned with Omni-DPO beats the leading LLM, Claude 3 Opus, by a significant margin of 6.7 points on the Arena-Hard benchmark. On mathematical reasoning tasks, Omni-DPO consistently outperforms the baseline methods across all benchmarks, providing strong empirical evidence for the effectiveness and robustness of our approach. Code and models will be available at https://github.com/pspdada/Omni-DPO.
♻ ☆ Bridging AI Innovation and Healthcare Needs: Lessons Learned from Incorporating Modern NLP at The BC Cancer Registry
Automating data extraction from clinical documents offers significant potential to improve efficiency in healthcare settings, yet deploying Natural Language Processing (NLP) solutions presents practical challenges. Drawing upon our experience implementing various NLP models for information extraction and classification tasks at the British Columbia Cancer Registry (BCCR), this paper shares key lessons learned throughout the project lifecycle. We emphasize the critical importance of defining problems based on clear business objectives rather than solely technical accuracy, adopting an iterative approach to development, and fostering deep interdisciplinary collaboration and co-design involving domain experts, end-users, and ML specialists from inception. Further insights highlight the need for pragmatic model selection (including hybrid approaches and simpler methods where appropriate), rigorous attention to data quality (representativeness, drift, annotation), robust error mitigation strategies involving human-in-the-loop validation and ongoing audits, and building organizational AI literacy. These practical considerations, generalizable beyond cancer registries, provide guidance for healthcare organizations seeking to successfully implement AI/NLP solutions to enhance data management processes and ultimately improve patient care and public health outcomes.
♻ ☆ Human-AI Experience in Integrated Development Environments: A Systematic Literature Review AI
The integration of Artificial Intelligence (AI) into Integrated Development Environments (IDEs) is reshaping software development, fundamentally altering how developers interact with their tools. This shift marks the emergence of Human-AI Experience in Integrated Development Environment (in-IDE HAX), a field that explores the evolving dynamics of Human-Computer Interaction in AI-assisted coding environments. Despite rapid adoption, research on in-IDE HAX remains fragmented, which highlights the need for a unified overview of current practices, challenges, and opportunities. To provide a structured overview of existing research, we conduct a systematic literature review of 90 studies, summarizing current findings and outlining areas for further investigation. We organize key insights from reviewed studies into three aspects: Impact, Design, and Quality of AI-based systems inside IDEs. Impact findings show that AI-assisted coding enhances developer productivity but also introduces challenges, such as verification overhead and over-reliance. Design studies show that effective interfaces surface context, provide explanations and transparency of suggestion, and support user control. Quality studies document risks in correctness, maintainability, and security. For future research, priorities include productivity studies, design of assistance, and audit of AI-generated code. The agenda calls for larger and longer evaluations, stronger audit and verification assets, broader coverage across the software life cycle, and adaptive assistance under user control.
comment: Submitted to Empirical Software Engineering (EMSE) special issue Human-Centered AI for Software Engineering (HumanAISE), 37 pages, 7 figure
♻ ☆ MetaAgents: Large Language Model Based Agents for Decision-Making on Teaming
Significant advancements have occurred in the application of Large Language Models (LLMs) for social simulations. Despite this, their abilities to perform teaming in task-oriented social events are underexplored. Such capabilities are crucial if LLMs are to effectively mimic human-like social behaviors and form efficient teams to solve tasks. To bridge this gap, we introduce MetaAgents, a social simulation framework populated with LLM-based agents. MetaAgents facilitates agent engagement in conversations and a series of decision making within social contexts, serving as an appropriate platform for investigating interactions and interpersonal decision-making of agents. In particular, we construct a job fair environment as a case study to scrutinize the team assembly and skill-matching behaviors of LLM-based agents. We take advantage of both quantitative metrics evaluation and qualitative text analysis to assess their teaming abilities at the job fair. Our evaluation demonstrates that LLM-based agents perform competently in making rational decisions to develop efficient teams. However, we also identify limitations that hinder their effectiveness in more complex team assembly tasks. Our work provides valuable insights into the role and evolution of LLMs in task-oriented social simulations.
♻ ☆ MultiAiTutor: Child-Friendly Educational Multilingual Speech Generation Tutor with LLMs
Generative speech models have demonstrated significant potential in personalizing teacher-student interactions, offering valuable real-world applications for language learning in children's education. However, achieving high-quality, child-friendly speech generation remains challenging, particularly for low-resource languages across diverse languages and cultural contexts. In this paper, we propose MultiAiTutor, an educational multilingual generative AI tutor with child-friendly designs, leveraging LLM architecture for speech generation tailored for educational purposes. We propose to integrate age-appropriate multilingual speech generation using LLM architectures, facilitating young children's language learning through culturally relevant image-description tasks in three low-resource languages: Singaporean-accent Mandarin, Malay, and Tamil. Experimental results from both objective metrics and subjective evaluations demonstrate the superior performance of the proposed MultiAiTutor compared to baseline methods.
comment: We are withdrawing the manuscript to revise the title and contents of figures for better alignment with the paper's contributions
♻ ☆ DSperse: A Framework for Targeted Verification in Zero-Knowledge Machine Learning
DSperse is a modular framework for distributed machine learning inference with strategic cryptographic verification. Operating within the emerging paradigm of distributed zero-knowledge machine learning, DSperse avoids the high cost and rigidity of full-model circuitization by enabling targeted verification of strategically chosen subcomputations. These verifiable segments, or "slices", may cover part or all of the inference pipeline, with global consistency enforced through audit, replication, or economic incentives. This architecture supports a pragmatic form of trust minimization, localizing zero-knowledge proofs to the components where they provide the greatest value. We evaluate DSperse using multiple proving systems and report empirical results on memory usage, runtime, and circuit behavior under sliced and unsliced configurations. By allowing proof boundaries to align flexibly with the model's logical structure, DSperse supports scalable, targeted verification strategies suited to diverse deployment needs.
comment: 12 pages, 8 figures, and 10 tables
♻ ☆ GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking and GLM-4.5V, a family of vision-language models (VLMs) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document interpretation. In a comprehensive evaluation across 42 public benchmarks, GLM-4.5V achieves state-of-the-art performance on nearly all tasks among open-source models of similar size, and demonstrates competitive or even superior results compared to closed-source models such as Gemini-2.5-Flash on challenging tasks including Coding and GUI Agents. Meanwhile, the smaller GLM-4.1V-9B-Thinking remains highly competitive-achieving superior results to the much larger Qwen2.5-VL-72B on 29 benchmarks. We open-source both GLM-4.1V-9B-Thinking and GLM-4.5V. Code, models and more information are released at https://github.com/zai-org/GLM-V.
♻ ☆ A Segmented Robot Grasping Perception Neural Network for Edge AI
Robotic grasping, the ability of robots to reliably secure and manipulate objects of varying shapes, sizes and orientations, is a complex task that requires precise perception and control. Deep neural networks have shown remarkable success in grasp synthesis by learning rich and abstract representations of objects. When deployed at the edge, these models can enable low-latency, low-power inference, making real-time grasping feasible in resource-constrained environments. This work implements Heatmap-Guided Grasp Detection, an end-to-end framework for the detection of 6-Dof grasp poses, on the GAP9 RISC-V System-on-Chip. The model is optimised using hardware-aware techniques, including input dimensionality reduction, model partitioning, and quantisation. Experimental evaluation on the GraspNet-1Billion benchmark validates the feasibility of fully on-chip inference, highlighting the potential of low-power MCUs for real-time, autonomous manipulation.
comment: Accepted by SMC 2025
♻ ☆ L3AC: Towards a Lightweight and Lossless Audio Codec
Neural audio codecs have recently gained traction for their ability to compress high-fidelity audio and provide discrete tokens for generative modeling. However, leading approaches often rely on resource-intensive models and complex multi-quantizer architectures, limiting their practicality in real-world applications. In this work, we introduce L3AC, a lightweight neural audio codec that addresses these challenges by leveraging a single quantizer and a highly efficient architecture. To enhance reconstruction fidelity while minimizing model complexity, L3AC explores streamlined convolutional networks and local Transformer modules, alongside TConv--a novel structure designed to capture acoustic variations across multiple temporal scales. Despite its compact design, extensive experiments across diverse datasets demonstrate that L3AC matches or exceeds the reconstruction quality of leading codecs while reducing computational overhead by an order of magnitude. The single-quantizer design further enhances its adaptability for downstream tasks. The source code is publicly available at https://github.com/zhai-lw/L3AC.
♻ ☆ A Systematic Literature Review of Retrieval-Augmented Generation: Techniques, Metrics, and Challenges
This systematic review of the research literature on retrieval-augmented generation (RAG) provides a focused analysis of the most highly cited studies published between 2020 and May 2025. A total of 128 articles met our inclusion criteria. The records were retrieved from ACM Digital Library, IEEE Xplore, Scopus, ScienceDirect, and the Digital Bibliography and Library Project (DBLP). RAG couples a neural retriever with a generative language model, grounding output in up-to-date, non-parametric memory while retaining the semantic generalisation stored in model weights. Guided by the PRISMA 2020 framework, we (i) specify explicit inclusion and exclusion criteria based on citation count and research questions, (ii) catalogue datasets, architectures, and evaluation practices, and (iii) synthesise empirical evidence on the effectiveness and limitations of RAG. To mitigate citation-lag bias, we applied a lower citation-count threshold to papers published in 2025 so that emerging breakthroughs with naturally fewer citations were still captured. This review clarifies the current research landscape, highlights methodological gaps, and charts priority directions for future research.
comment: 58 pages, This work has been submitted to the IEEE for possible publication
♻ ☆ Exploring Superior Function Calls via Reinforcement Learning
Function calling capabilities are crucial for deploying Large Language Models in real-world applications, yet current training approaches fail to develop robust reasoning strategies. Supervised fine-tuning produces models that rely on superficial pattern matching, while standard reinforcement learning methods struggle with the complex action space of structured function calls. We present a novel reinforcement learning framework designed to enhance group relative policy optimization through strategic entropy based exploration specifically tailored for function calling tasks. Our approach addresses three critical challenges in function calling: insufficient exploration during policy learning, lack of structured reasoning in chain-of-thought generation, and inadequate verification of parameter extraction. Our two-stage data preparation pipeline ensures high-quality training samples through iterative LLM evaluation and abstract syntax tree validation. Extensive experiments on the Berkeley Function Calling Leaderboard demonstrate that this framework achieves state-of-the-art performance among open-source models with 86.02\% overall accuracy, outperforming standard GRPO by up to 6\% on complex multi-function scenarios. Notably, our method shows particularly strong improvements on code-pretrained models, suggesting that structured language generation capabilities provide an advantageous starting point for reinforcement learning in function calling tasks. We will release all the code, models and dataset to benefit the community.
♻ ☆ EllieSQL: Cost-Efficient Text-to-SQL with Complexity-Aware Routing
Text-to-SQL automatically translates natural language queries to SQL, allowing non-technical users to retrieve data from databases without specialized SQL knowledge. Despite the success of advanced LLM-based Text-to-SQL approaches on leaderboards, their unsustainable computational costs--often overlooked--stand as the "elephant in the room" in current leaderboard-driven research, limiting their economic practicability for real-world deployment and widespread adoption. To tackle this, we exploratively propose EllieSQL, a complexity-aware routing framework that assigns queries to suitable SQL generation pipelines based on estimated complexity. We investigate multiple routers to direct simple queries to efficient approaches while reserving computationally intensive methods for complex cases. Drawing from economics, we introduce the Token Elasticity of Performance (TEP) metric, capturing cost-efficiency by quantifying the responsiveness of performance gains relative to token investment in SQL generation. Experiments show that compared to always using the most advanced methods in our study, EllieSQL with the Qwen2.5-0.5B-DPO router reduces token use by over 40% without compromising performance on Bird development set, achieving more than a 2x boost in TEP over non-routing approaches. This not only advances the pursuit of cost-efficient Text-to-SQL but also invites the community to weigh resource efficiency alongside performance, contributing to progress in sustainable Text-to-SQL. Our source code and model are available at https://elliesql.github.io/.
comment: COLM 2025
♻ ☆ Feather-SQL: A Lightweight NL2SQL Framework with Dual-Model Collaboration Paradigm for Small Language Models
Natural Language to SQL (NL2SQL) has seen significant advancements with large language models (LLMs). However, these models often depend on closed-source systems and high computational resources, posing challenges in data privacy and deployment. In contrast, small language models (SLMs) struggle with NL2SQL tasks, exhibiting poor performance and incompatibility with existing frameworks. To address these issues, we introduce Feather-SQL, a new lightweight framework tailored for SLMs. Feather-SQL improves SQL executability and accuracy through 1) schema pruning and linking, 2) multi-path and multi-candidate generation. Additionally, we introduce the 1+1 Model Collaboration Paradigm, which pairs a strong general-purpose chat model with a fine-tuned SQL specialist, combining strong analytical reasoning with high-precision SQL generation. Experimental results on BIRD demonstrate that Feather-SQL improves NL2SQL performance on SLMs, with around 10% boost for models without fine-tuning. The proposed paradigm raises the accuracy ceiling of SLMs to 54.76%, highlighting its effectiveness.
comment: DL4C @ ICLR 2025
♻ ☆ The Roots of International Perceptions: Simulating US Attitude Changes Towards China with LLM Agents AAAI
The rise of LLMs poses new possibilities in modeling opinion evolution, a long-standing task in simulation, by leveraging advanced reasoning abilities to recreate complex, large-scale human cognitive trends. While most prior works focus on opinion evolution surrounding specific isolated events or the views within a country, ours is the first to model the large-scale attitude evolution of a population representing an entire country towards another -- US citizens' perspectives towards China. To tackle the challenges of this broad scenario, we propose a framework that integrates media data collection, user profile creation, and cognitive architecture for opinion updates to successfully reproduce the real trend of US attitudes towards China over a 20-year period from 2005 to today. We also leverage LLMs' capabilities to introduce debiased media exposure, extracting neutral events from typically subjective news contents, to uncover the roots of polarized opinion formation, as well as a devils advocate agent to help explain the rare reversal from negative to positive attitudes towards China, corresponding with changes in the way Americans obtain information about the country. The simulation results, beyond validating our framework architecture, also reveal the impact of biased framing and selection bias in shaping attitudes. Overall, our work contributes to a new paradigm for LLM-based modeling of cognitive behaviors in a large-scale, long-term, cross-border social context, providing insights into the formation of international biases and offering valuable implications for media consumers to better understand the factors shaping their perspectives, and ultimately contributing to the larger social need for bias reduction and cross-cultural tolerance.
comment: Submitted to AAAI Social Impact 2026
♻ ☆ AirTrafficGen: Configurable Air Traffic Scenario Generation with Large Language Models
The manual design of scenarios for Air Traffic Control (ATC) training is a demanding and time-consuming bottleneck that limits the diversity of simulations available to controllers. To address this, we introduce a novel, end-to-end approach, $\texttt{AirTrafficGen}$, that leverages large language models (LLMs) to automate and control the generation of complex ATC scenarios. Our method uses a purpose-built, graph-based representation to encode sector topology (including airspace geometry, routes, and fixes) into a format LLMs can process. Through rigorous benchmarking, we show that state-of-the-art models like Gemini 2.5 Pro, OpenAI o3, GPT-oss-120b and GPT-5 can generate high-traffic scenarios while maintaining operational realism. Our engineered prompting enables fine-grained control over interaction presence, type, and location. Initial findings suggest these models are also capable of iterative refinement, correcting flawed scenarios based on simple textual feedback. This approach provides a scalable alternative to manual scenario design, addressing the need for a greater volume and variety of ATC training and validation simulations. More broadly, this work showcases the potential of LLMs for complex planning in safety-critical domains.
comment: 9 pages and appendices
♻ ☆ Sketch Decompositions for Classical Planning via Deep Reinforcement Learning
In planning and reinforcement learning, the identification of common subgoal structures across problems is important when goals are to be achieved over long horizons. Recently, it has been shown that such structures can be expressed as feature-based rules, called sketches, over a number of classical planning domains. These sketches split problems into subproblems which then become solvable in low polynomial time by a greedy sequence of IW$(k)$ searches. Methods for learning sketches using feature pools and min-SAT solvers have been developed, yet they face two key limitations: scalability and expressivity. In this work, we address these limitations by formulating the problem of learning sketch decompositions as a deep reinforcement learning (DRL) task, where general policies are sought in a modified planning problem where the successor states of a state s are defined as those reachable from s through an IW$(k)$ search. The sketch decompositions obtained through this method are experimentally evaluated across various domains, and problems are regarded as solved by the decomposition when the goal is reached through a greedy sequence of IW$(k)$ searches. While our DRL approach for learning sketch decompositions does not yield interpretable sketches in the form of rules, we demonstrate that the resulting decompositions can often be understood in a crisp manner.
♻ ☆ ShoulderShot: Generating Over-the-Shoulder Dialogue Videos
Over-the-shoulder dialogue videos are essential in films, short dramas, and advertisements, providing visual variety and enhancing viewers' emotional connection. Despite their importance, such dialogue scenes remain largely underexplored in video generation research. The main challenges include maintaining character consistency across different shots, creating a sense of spatial continuity, and generating long, multi-turn dialogues within limited computational budgets. Here, we present ShoulderShot, a framework that combines dual-shot generation with looping video, enabling extended dialogues while preserving character consistency. Our results demonstrate capabilities that surpass existing methods in terms of shot-reverse-shot layout, spatial continuity, and flexibility in dialogue length, thereby opening up new possibilities for practical dialogue video generation. Videos and comparisons are available at https://shouldershot.github.io.
♻ ☆ CogDDN: A Cognitive Demand-Driven Navigation with Decision Optimization and Dual-Process Thinking
Mobile robots are increasingly required to navigate and interact within unknown and unstructured environments to meet human demands. Demand-driven navigation (DDN) enables robots to identify and locate objects based on implicit human intent, even when object locations are unknown. However, traditional data-driven DDN methods rely on pre-collected data for model training and decision-making, limiting their generalization capability in unseen scenarios. In this paper, we propose CogDDN, a VLM-based framework that emulates the human cognitive and learning mechanisms by integrating fast and slow thinking systems and selectively identifying key objects essential to fulfilling user demands. CogDDN identifies appropriate target objects by semantically aligning detected objects with the given instructions. Furthermore, it incorporates a dual-process decision-making module, comprising a Heuristic Process for rapid, efficient decisions and an Analytic Process that analyzes past errors, accumulates them in a knowledge base, and continuously improves performance. Chain of Thought (CoT) reasoning strengthens the decision-making process. Extensive closed-loop evaluations on the AI2Thor simulator with the ProcThor dataset show that CogDDN outperforms single-view camera-only methods by 15\%, demonstrating significant improvements in navigation accuracy and adaptability. The project page is available at https://yuehaohuang.github.io/CogDDN/.
comment: Accepted by ACM MM 2025
♻ ☆ Learning to Be A Doctor: Searching for Effective Medical Agent Architectures
Large Language Model (LLM)-based agents have demonstrated strong capabilities across a wide range of tasks, and their application in the medical domain holds particular promise due to the demand for high generalizability and reliance on interdisciplinary knowledge. However, existing medical agent systems often rely on static, manually crafted workflows that lack the flexibility to accommodate diverse diagnostic requirements and adapt to emerging clinical scenarios. Motivated by the success of automated machine learning (AutoML), this paper introduces a novel framework for the automated design of medical agent architectures. Specifically, we define a hierarchical and expressive agent search space that enables dynamic workflow adaptation through structured modifications at the node, structural, and framework levels. Our framework conceptualizes medical agents as graph-based architectures composed of diverse, functional node types and supports iterative self-improvement guided by diagnostic feedback. Experimental results on skin disease diagnosis tasks demonstrate that the proposed method effectively evolves workflow structures and significantly enhances diagnostic accuracy over time. This work represents the first fully automated framework for medical agent architecture design and offers a scalable, adaptable foundation for deploying intelligent agents in real-world clinical environments.
comment: Accepted at ACM MM 2025
♻ ☆ TokLIP: Marry Visual Tokens to CLIP for Multimodal Comprehension and Generation
Pioneering token-based works such as Chameleon and Emu3 have established a foundation for multimodal unification but face challenges of high training computational overhead and limited comprehension performance due to a lack of high-level semantics. In this paper, we introduce TokLIP, a visual tokenizer that enhances comprehension by semanticizing vector-quantized (VQ) tokens and incorporating CLIP-level semantics while enabling end-to-end multimodal autoregressive training with standard VQ tokens. TokLIP integrates a low-level discrete VQ tokenizer with a ViT-based token encoder to capture high-level continuous semantics. Unlike previous approaches (e.g., VILA-U) that discretize high-level features, TokLIP disentangles training objectives for comprehension and generation, allowing the direct application of advanced VQ tokenizers without the need for tailored quantization operations. Our empirical results demonstrate that TokLIP achieves exceptional data efficiency, empowering visual tokens with high-level semantic understanding while enhancing low-level generative capacity, making it well-suited for autoregressive Transformers in both comprehension and generation tasks. The code and models are available at https://github.com/TencentARC/TokLIP.
comment: Technical Report
♻ ☆ HateClipSeg: A Segment-Level Annotated Dataset for Fine-Grained Hate Video Detection
Detecting hate speech in videos remains challenging due to the complexity of multimodal content and the lack of fine-grained annotations in existing datasets. We present HateClipSeg, a large-scale multimodal dataset with both video-level and segment-level annotations, comprising over 11,714 segments labeled as Normal or across five Offensive categories: Hateful, Insulting, Sexual, Violence, Self-Harm, along with explicit target victim labels. Our three-stage annotation process yields high inter-annotator agreement (Krippendorff's alpha = 0.817). We propose three tasks to benchmark performance: (1) Trimmed Hateful Video Classification, (2) Temporal Hateful Video Localization, and (3) Online Hateful Video Classification. Results highlight substantial gaps in current models, emphasizing the need for more sophisticated multimodal and temporally aware approaches. The HateClipSeg dataset are publicly available at https://github.com/Social-AI-Studio/HateClipSeg.git.
comment: 6 pages, 3 figures
♻ ☆ An Explainable AI based approach for Monitoring Animal Health
Monitoring cattle health and optimizing yield are key challenges faced by dairy farmers due to difficulties in tracking all animals on the farm. This work aims to showcase modern data-driven farming practices based on explainable machine learning(ML) methods that explain the activity and behaviour of dairy cattle (cows). Continuous data collection of 3-axis accelerometer sensors and usage of robust ML methodologies and algorithms, provide farmers and researchers with actionable information on cattle activity, allowing farmers to make informed decisions and incorporate sustainable practices. This study utilizes Bluetooth-based Internet of Things (IoT) devices and 4G networks for seamless data transmission, immediate analysis, inference generation, and explains the models performance with explainability frameworks. Special emphasis is put on the pre-processing of the accelerometers time series data, including the extraction of statistical characteristics, signal processing techniques, and lag-based features using the sliding window technique. Various hyperparameter-optimized ML models are evaluated across varying window lengths for activity classification. The k-nearest neighbour Classifier achieved the best performance, with AUC of mean 0.98 and standard deviation of 0.0026 on the training set and 0.99 on testing set). In order to ensure transparency, Explainable AI based frameworks such as SHAP is used to interpret feature importance that can be understood and used by practitioners. A detailed comparison of the important features, along with the stability analysis of selected features, supports development of explainable and practical ML models for sustainable livestock management.
♻ ☆ Fairness in Dysarthric Speech Synthesis: Understanding Intrinsic Bias in Dysarthric Speech Cloning using F5-TTS
Dysarthric speech poses significant challenges in developing assistive technologies, primarily due to the limited availability of data. Recent advances in neural speech synthesis, especially zero-shot voice cloning, facilitate synthetic speech generation for data augmentation; however, they may introduce biases towards dysarthric speech. In this paper, we investigate the effectiveness of state-of-the-art F5-TTS in cloning dysarthric speech using TORGO dataset, focusing on intelligibility, speaker similarity, and prosody preservation. We also analyze potential biases using fairness metrics like Disparate Impact and Parity Difference to assess disparities across dysarthric severity levels. Results show that F5-TTS exhibits a strong bias toward speech intelligibility over speaker and prosody preservation in dysarthric speech synthesis. Insights from this study can help integrate fairness-aware dysarthric speech synthesis, fostering the advancement of more inclusive speech technologies.
comment: Accepted at Interspeech 2025
♻ ☆ PTQAT: A Hybrid Parameter-Efficient Quantization Algorithm for 3D Perception Tasks ICCV
Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT) represent two mainstream model quantization approaches. However, PTQ often leads to unacceptable performance degradation in quantized models, while QAT imposes substantial GPU memory requirements and extended training time due to weight fine-tuning. In this paper, we propose PTQAT, a novel general hybrid quantization algorithm for the efficient deployment of 3D perception networks. To address the speed accuracy trade-off between PTQ and QAT, our method selects critical layers for QAT fine-tuning and performs PTQ on the remaining layers. Contrary to intuition, fine-tuning the layers with smaller output discrepancies before and after quantization, rather than those with larger discrepancies, actually leads to greater improvements in the model's quantization accuracy. This means we better compensate for quantization errors during their propagation, rather than addressing them at the point where they occur. The proposed PTQAT achieves similar performance to QAT with more efficiency by freezing nearly 50% of quantifiable layers. Additionally, PTQAT is a universal quantization method that supports various quantization bit widths (4 bits) as well as different model architectures, including CNNs and Transformers. The experimental results on nuScenes across diverse 3D perception tasks, including object detection, semantic segmentation, and occupancy prediction, show that our method consistently outperforms QAT-only baselines. Notably, it achieves 0.2%-0.9% NDS and 0.3%-1.0% mAP gains in object detection, 0.3%-2.0% mIoU gains in semantic segmentation and occupancy prediction while fine-tuning fewer weights.
comment: 8 pages, Accepted by ICCVW 2025
♻ ☆ TokenRec: Learning to Tokenize ID for LLM-based Generative Recommendation TKDE
There is a growing interest in utilizing large-scale language models (LLMs) to advance next-generation Recommender Systems (RecSys), driven by their outstanding language understanding and in-context learning capabilities. In this scenario, tokenizing (i.e., indexing) users and items becomes essential for ensuring a seamless alignment of LLMs with recommendations. While several studies have made progress in representing users and items through textual contents or latent representations, challenges remain in efficiently capturing high-order collaborative knowledge into discrete tokens that are compatible with LLMs. Additionally, the majority of existing tokenization approaches often face difficulties in generalizing effectively to new/unseen users or items that were not in the training corpus. To address these challenges, we propose a novel framework called TokenRec, which introduces not only an effective ID tokenization strategy but also an efficient retrieval paradigm for LLM-based recommendations. Specifically, our tokenization strategy, Masked Vector-Quantized (MQ) Tokenizer, involves quantizing the masked user/item representations learned from collaborative filtering into discrete tokens, thus achieving a smooth incorporation of high-order collaborative knowledge and a generalizable tokenization of users and items for LLM-based RecSys. Meanwhile, our generative retrieval paradigm is designed to efficiently recommend top-$K$ items for users to eliminate the need for the time-consuming auto-regressive decoding and beam search processes used by LLMs, thus significantly reducing inference time. Comprehensive experiments validate the effectiveness of the proposed methods, demonstrating that TokenRec outperforms competitive benchmarks, including both traditional recommender systems and emerging LLM-based recommender systems.
comment: Accepted by IEEE TKDE. Codes and data are available at https://github.com/Quhaoh233/TokenRec
♻ ☆ IRL-VLA: Training an Vision-Language-Action Policy via Reward World Model
Vision-Language-Action (VLA) models have demonstrated potential in autonomous driving. However, two critical challenges hinder their development: (1) Existing VLA architectures are typically based on imitation learning in open-loop setup which tends to capture the recorded behaviors in the dataset, leading to suboptimal and constrained performance, (2) Close-loop training relies heavily on high-fidelity sensor simulation, where domain gaps and computational inefficiencies pose significant barriers. In this paper, we introduce IRL-VLA, a novel close-loop Reinforcement Learning via \textbf{I}nverse \textbf{R}einforcement \textbf{L}earning reward world model with a self-built VLA approach. Our framework proceeds in a three-stage paradigm: In the first stage, we propose a VLA architecture and pretrain the VLA policy via imitation learning. In the second stage, we construct a lightweight reward world model via inverse reinforcement learning to enable efficient close-loop reward computation. To further enhance planning performance, finally, we design specialized reward world model guidence reinforcement learning via PPO(Proximal Policy Optimization) to effectively balance the safety incidents, comfortable driving, and traffic efficiency. Our approach achieves state-of-the-art performance in NAVSIM v2 end-to-end driving benchmark, 1st runner up in CVPR2025 Autonomous Grand Challenge. We hope that our framework will accelerate VLA research in close-loop autonomous driving.
comment: 9 pagres, 2 figures
♻ ☆ TimeMKG: Knowledge-Infused Causal Reasoning for Multivariate Time Series Modeling
Multivariate time series data typically comprises two distinct modalities: variable semantics and sampled numerical observations. Traditional time series models treat variables as anonymous statistical signals, overlooking the rich semantic information embedded in variable names and data descriptions. However, these textual descriptors often encode critical domain knowledge that is essential for robust and interpretable modeling. Here we present TimeMKG, a multimodal causal reasoning framework that elevates time series modeling from low-level signal processing to knowledge informed inference. TimeMKG employs large language models to interpret variable semantics and constructs structured Multivariate Knowledge Graphs that capture inter-variable relationships. A dual-modality encoder separately models the semantic prompts, generated from knowledge graph triplets, and the statistical patterns from historical time series. Cross-modality attention aligns and fuses these representations at the variable level, injecting causal priors into downstream tasks such as forecasting and classification, providing explicit and interpretable priors to guide model reasoning. The experiment in diverse datasets demonstrates that incorporating variable-level knowledge significantly improves both predictive performance and generalization.
♻ ☆ Bridging Context Gaps: Leveraging Coreference Resolution for Long Contextual Understanding
Large language models (LLMs) have shown remarkable capabilities in natural language processing; however, they still face difficulties when tasked with understanding lengthy contexts and executing effective question answering. These challenges often arise due to the complexity and ambiguity present in longer texts. To enhance the performance of LLMs in such scenarios, we introduce the Long Question Coreference Adaptation (LQCA) method. This innovative framework focuses on coreference resolution tailored to long contexts, allowing the model to identify and manage references effectively. The LQCA method encompasses four key steps: resolving coreferences within sub-documents, computing the distances between mentions, defining a representative mention for coreference, and answering questions through mention replacement. By processing information systematically, the framework provides easier-to-handle partitions for LLMs, promoting better understanding. Experimental evaluations on a range of LLMs and datasets have yielded positive results, with a notable improvements on OpenAI-o1-mini and GPT-4o models, highlighting the effectiveness of leveraging coreference resolution to bridge context gaps in question answering. Our code is public at https://github.com/OceannTwT/LQCA.
comment: ICLR 2025 camera ready version, with second updated metadata
♻ ☆ Tool-Planner: Task Planning with Clusters across Multiple Tools
Large language models (LLMs) have demonstrated exceptional reasoning capabilities, enabling them to solve various complex problems. Recently, this ability has been applied to the paradigm of tool learning. Tool learning involves providing examples of tool usage and their corresponding functions, allowing LLMs to formulate plans and demonstrate the process of invoking and executing each tool. LLMs can address tasks that they cannot complete independently, thereby enhancing their potential across different tasks. However, this approach faces two key challenges. First, redundant error correction leads to unstable planning and long execution time. Additionally, designing a correct plan among multiple tools is also a challenge in tool learning. To address these issues, we propose Tool-Planner, a task-processing framework based on toolkits. Tool-Planner groups tools based on the API functions with the same function into a toolkit and allows LLMs to implement planning across the various toolkits. When a tool error occurs, the language model can reselect and adjust tools based on the toolkit. Experiments show that our approach demonstrates a high pass and win rate across different datasets and optimizes the planning scheme for tool learning in models such as GPT-4 and Claude 3, showcasing the potential of our method. Our code is public at https://github.com/OceannTwT/Tool-Planner
comment: ICLR 2025 Camera Ready version
♻ ☆ RL-MoE: An Image-Based Privacy Preserving Approach In Intelligent Transportation System
The proliferation of AI-powered cameras in Intelligent Transportation Systems (ITS) creates a severe conflict between the need for rich visual data and the right to privacy. Existing privacy-preserving methods, such as blurring or encryption, are often insufficient due to creating an undesirable trade-off where either privacy is compromised against advanced reconstruction attacks or data utility is critically degraded. To resolve this challenge, we propose RL-MoE, a novel framework that transforms sensitive visual data into privacy-preserving textual descriptions, eliminating the need for direct image transmission. RL-MoE uniquely combines a Mixture-of-Experts (MoE) architecture for nuanced, multi-aspect scene decomposition with a Reinforcement Learning (RL) agent that optimizes the generated text for a dual objective of semantic accuracy and privacy preservation. Extensive experiments demonstrate that RL-MoE provides superior privacy protection, reducing the success rate of replay attacks to just 9.4\% on the CFP-FP dataset, while simultaneously generating richer textual content than baseline methods. Our work provides a practical and scalable solution for building trustworthy AI systems in privacy-sensitive domains, paving the way for more secure smart city and autonomous vehicle networks.
♻ ☆ E3-Rewrite: Learning to Rewrite SQL for Executability, Equivalence,and Efficiency
SQL query rewriting aims to reformulate a query into a more efficient form while preserving equivalence. Most existing methods rely on predefined rewrite rules. However, such rule-based approaches face fundamental limitations: (1) fixed rule sets generalize poorly to novel query patterns and struggle with complex queries; (2) a wide range of effective rewriting strategies cannot be fully captured by declarative rules. To overcome these issues, we propose using large language models (LLMs) to generate rewrites. LLMs can capture complex strategies, such as evaluation reordering and CTE rewriting. Despite this potential, directly applying LLMs often results in performance regressions or non-equivalent rewrites due to a lack of execution awareness and semantic grounding. To address these challenges, We present E3-Rewrite, an LLM-based SQL rewriting framework that produces executable, equivalent, and efficient queries. It integrates two core components: a context construction module and a reinforcement learning framework. First, the context module leverages execution plans and retrieved demonstrations to build bottleneck-aware prompts that guide inference-time rewriting. Second, we design a reward function targeting executability, equivalence, and efficiency, evaluated via syntax checks, equivalence verification, and cost estimation. Third, to ensure stable multi-objective learning, we adopt a staged curriculum that first emphasizes executability and equivalence, then gradually incorporates efficiency. Across multiple SQL benchmarks, our experiments demonstrate that E3-Rewrite can shorten query execution time by as much as 25.6% relative to leading baselines, while also producing up to 24.4% more rewrites that meet strict equivalence criteria. These gains extend to challenging query patterns that prior approaches could not effectively optimize.
♻ ☆ Preacher: Paper-to-Video Agentic System
The paper-to-video task converts a research paper into a structured video abstract, distilling key concepts, methods, and conclusions into an accessible, well-organized format. While state-of-the-art video generation models demonstrate potential, they are constrained by limited context windows, rigid video duration constraints, limited stylistic diversity, and an inability to represent domain-specific knowledge. To address these limitations, we introduce Preacher, the first paper-to-video agentic system. Preacher employs a topdown approach to decompose, summarize, and reformulate the paper, followed by bottom-up video generation, synthesizing diverse video segments into a coherent abstract. To align cross-modal representations, we define key scenes and introduce a Progressive Chain of Thought (P-CoT) for granular, iterative planning. Preacher successfully generates high-quality video abstracts across five research fields, demonstrating expertise beyond current video generation models. Code will be released at: https://github.com/GenVerse/Paper2Video
comment: Code not ready
♻ ☆ A Survey on Recent Advances in LLM-Based Multi-turn Dialogue Systems
This survey provides a comprehensive review of research on multi-turn dialogue systems, with a particular focus on multi-turn dialogue systems based on large language models (LLMs). This paper aims to (a) give a summary of existing LLMs and approaches for adapting LLMs to downstream tasks; (b) elaborate recent advances in multi-turn dialogue systems, covering both LLM-based open-domain dialogue (ODD) and task-oriented dialogue (TOD) systems, along with datasets and evaluation metrics; (c) discuss some future emphasis and recent research problems arising from the development of LLMs and the increasing demands on multi-turn dialogue systems.
comment: 35 pages, 10 figures, ACM Computing Surveys
♻ ☆ From Explainable to Explained AI: Ideas for Falsifying and Quantifying Explanations AI
Explaining deep learning models is essential for clinical integration of medical image analysis systems. A good explanation highlights if a model depends on spurious features that undermines generalization and harms a subset of patients or, conversely, may present novel biological insights. Although techniques like GradCAM can identify influential features, they are measurement tools that do not themselves form an explanation. We propose a human-machine-VLM interaction system tailored to explaining classifiers in computational pathology, including multi-instance learning for whole-slide images. Our proof of concept comprises (1) an AI-integrated slide viewer to run sliding-window experiments to test claims of an explanation, and (2) quantification of an explanation's predictiveness using general-purpose vision-language models. The results demonstrate that this allows us to qualitatively test claims of explanations and can quantifiably distinguish competing explanations. This offers a practical path from explainable AI to explained AI in digital pathology and beyond. Code and prompts are available at https://github.com/nki-ai/x2x.
comment: 10 pages, 2 figures, 2 tables, submitted at MICCAI IMIMIC workshop
♻ ☆ EmbodiedAgent: A Scalable Hierarchical Approach to Overcome Practical Challenge in Multi-Robot Control
This paper introduces EmbodiedAgent, a hierarchical framework for heterogeneous multi-robot control. EmbodiedAgent addresses critical limitations of hallucination in impractical tasks. Our approach integrates a next-action prediction paradigm with a structured memory system to decompose tasks into executable robot skills while dynamically validating actions against environmental constraints. We present MultiPlan+, a dataset of more than 18,000 annotated planning instances spanning 100 scenarios, including a subset of impractical cases to mitigate hallucination. To evaluate performance, we propose the Robot Planning Assessment Schema (RPAS), combining automated metrics with LLM-aided expert grading. Experiments demonstrate EmbodiedAgent's superiority over state-of-the-art models, achieving 71.85% RPAS score. Real-world validation in an office service task highlights its ability to coordinate heterogeneous robots for long-horizon objectives.
♻ ☆ Large-Scale Multi-Robot Assembly Planning for Autonomous Manufacturing
Mobile autonomous robots have the potential to revolutionize manufacturing processes. However, employing large robot fleets in manufacturing requires addressing challenges including collision-free movement in a shared workspace, effective multi-robot collaboration to manipulate and transport large payloads, complex task allocation due to coupled manufacturing processes, and spatial planning for parallel assembly and transportation of nested subassemblies. We propose a full algorithmic stack for large-scale multi-robot assembly planning that addresses these challenges and can synthesize construction plans for complex assemblies with thousands of parts in a matter of minutes. Our approach takes in a CAD-like product specification and automatically plans a full-stack assembly procedure for a group of robots to manufacture the product. We propose an algorithmic stack that comprises: (i) an iterative radial layout optimization procedure to define a global staging layout for the manufacturing facility, (ii) a graph-repair mixed-integer program formulation and a modified greedy task allocation algorithm to optimally allocate robots and robot sub-teams to assembly and transport tasks, (iii) a geometric heuristic and a hill-climbing algorithm to plan collaborative carrying configurations of robot sub-teams, and (iv) a distributed control policy that enables robots to execute the assembly motion plan collision-free. We also present an open-source multi-robot manufacturing simulator implemented in Julia as a resource to the research community, to test our algorithms and to facilitate multi-robot manufacturing research more broadly. Our empirical results demonstrate the scalability and effectiveness of our approach by generating plans to manufacture a LEGO model of a Saturn V launch vehicle with 1845 parts, 306 subassemblies, and 250 robots in under three minutes on a standard laptop computer.
comment: Repository: https://github.com/sisl/ConstructionBots.jl. Under review
♻ ☆ PASS: Probabilistic Agentic Supernet Sampling for Interpretable and Adaptive Chest X-Ray Reasoning
Existing tool-augmented agentic systems are limited in the real world by (i) black-box reasoning steps that undermine trust of decision-making and pose safety risks, (ii) poor multimodal integration, which is inherently critical for healthcare tasks, and (iii) rigid and computationally inefficient agentic pipelines. We introduce PASS (Probabilistic Agentic Supernet Sampling), the first multimodal framework to address these challenges in the context of Chest X-Ray (CXR) reasoning. PASS adaptively samples agentic workflows over a multi-tool graph, yielding decision paths annotated with interpretable probabilities. Given the complex CXR reasoning task with multimodal medical data, PASS leverages its learned task-conditioned distribution over the agentic supernet. Thus, it adaptively selects the most suitable tool at each supernet layer, offering probability-annotated trajectories for post-hoc audits and directly enhancing medical AI safety. PASS also continuously compresses salient findings into an evolving personalized memory, while dynamically deciding whether to deepen its reasoning path or invoke an early exit for efficiency. To optimize a Pareto frontier balancing performance and cost, we design a novel three-stage training procedure, including expert knowledge warm-up, contrastive path-ranking, and cost-aware reinforcement learning. To facilitate rigorous evaluation, we introduce CAB-E, a comprehensive benchmark for multi-step, safety-critical, free-form CXR reasoning. Experiments across various benchmarks validate that PASS significantly outperforms strong baselines in multiple metrics (e.g., accuracy, AUC, LLM-J.) while balancing computational costs, pushing a new paradigm shift towards interpretable, adaptive, and multimodal medical agentic systems.
♻ ☆ Text-to-Level Diffusion Models With Various Text Encoders for Super Mario Bros AAAI
Recent research shows how diffusion models can unconditionally generate tile-based game levels, but use of diffusion models for text-to-level generation is underexplored. There are practical considerations for creating a usable model: caption/level pairs are needed, as is a text embedding model, and a way of generating entire playable levels, rather than individual scenes. We present strategies to automatically assign descriptive captions to an existing dataset, and train diffusion models using both pretrained text encoders and simple transformer models trained from scratch. Captions are automatically assigned to generated scenes so that the degree of overlap between input and output captions can be compared. We also assess the diversity and playability of the resulting level scenes. Results are compared with an unconditional diffusion model and a generative adversarial network, as well as the text-to-level approaches Five-Dollar Model and MarioGPT. Notably, the best diffusion model uses a simple transformer model for text embedding, and takes less time to train than diffusion models employing more complex text encoders, indicating that reliance on larger language models is not necessary. We also present a GUI allowing designers to construct long levels from model-generated scenes.
comment: Accepted to appear in The 21st AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (November 10-14, 2025)
♻ ☆ SORT3D: Spatial Object-centric Reasoning Toolbox for Zero-Shot 3D Grounding Using Large Language Models
Interpreting object-referential language and grounding objects in 3D with spatial relations and attributes is essential for robots operating alongside humans. However, this task is often challenging due to the diversity of scenes, large number of fine-grained objects, and complex free-form nature of language references. Furthermore, in the 3D domain, obtaining large amounts of natural language training data is difficult. Thus, it is important for methods to learn from little data and zero-shot generalize to new environments. To address these challenges, we propose SORT3D, an approach that utilizes rich object attributes from 2D data and merges a heuristics-based spatial reasoning toolbox with the ability of large language models (LLMs) to perform sequential reasoning. Importantly, our method does not require text-to-3D data for training and can be applied zero-shot to unseen environments. We show that SORT3D achieves state-of-the-art zero-shot performance on complex view-dependent grounding tasks on two benchmarks. We also implement the pipeline to run real-time on two autonomous vehicles and demonstrate that our approach can be used for object-goal navigation on previously unseen real-world environments. All source code for the system pipeline is publicly released at https://github.com/nzantout/SORT3D.
comment: 8 pages, 6 figures, published in IROS 2025
♻ ☆ Refine-IQA: Multi-Stage Reinforcement Finetuning for Perceptual Image Quality Assessment
Reinforcement fine-tuning (RFT) is a proliferating paradigm for LMM training. Analogous to high-level reasoning tasks, RFT is similarly applicable to low-level vision domains, including image quality assessment (IQA). Existing RFT-based IQA methods typically use rule-based output rewards to verify the model's rollouts but provide no reward supervision for the "think" process, leaving its correctness and efficacy uncontrolled. Furthermore, these methods typically fine-tune directly on downstream IQA tasks without explicitly enhancing the model's native low-level visual quality perception, which may constrain its performance upper bound. In response to these gaps, we propose the multi-stage RFT IQA framework (Refine-IQA). In Stage-1, we build the Refine-Perception-20K dataset (with 12 main distortions, 20,907 locally-distorted images, and over 55K RFT samples) and design multi-task reward functions to strengthen the model's visual quality perception. In Stage-2, targeting the quality scoring task, we introduce a probability difference reward involved strategy for "think" process supervision. The resulting Refine-IQA Series Models achieve outstanding performance on both perception and scoring tasks-and, notably, our paradigm activates a robust "think" (quality interpreting) capability that also attains exceptional results on the corresponding quality interpreting benchmark.
Computational Engineering, Finance, and Science 3
☆ Nested Operator Inference for Adaptive Data-Driven Learning of Reduced-order Models
This paper presents a data-driven, nested Operator Inference (OpInf) approach for learning physics-informed reduced-order models (ROMs) from snapshot data of high-dimensional dynamical systems. The approach exploits the inherent hierarchy within the reduced space to iteratively construct initial guesses for the OpInf learning problem that prioritize the interactions of the dominant modes. The initial guess computed for any target reduced dimension corresponds to a ROM with provably smaller or equal snapshot reconstruction error than with standard OpInf. Moreover, our nested OpInf algorithm can be warm-started from previously learned models, enabling versatile application scenarios involving dynamic basis and model form updates. We demonstrate the performance of our algorithm on a cubic heat conduction problem, with nested OpInf achieving a four times smaller error than standard OpInf at a comparable offline time. Further, we apply nested OpInf to a large-scale, parameterized model of the Greenland ice sheet where, despite model form approximation errors, it learns a ROM with, on average, 3% error and computational speed-up factor above 19,000.
☆ Banking 2.0: The Stablecoin Banking Revolution -- How Digital Assets Are Reshaping Global Finance
The global financial system stands at an inflection point. Stablecoins represent the most significant evolution in banking since the abandonment of the gold standard, positioned to enable "Banking 2.0" by seamlessly integrating cryptocurrency innovation with traditional finance infrastructure. This transformation rivals artificial intelligence as the next major disruptor in the financial sector. Modern fiat currencies derive value entirely from institutional trust rather than physical backing, creating vulnerabilities that stablecoins address through enhanced stability, reduced fraud risk, and unified global transactions that transcend national boundaries. Recent developments demonstrate accelerating institutional adoption: landmark U.S. legislation including the GENIUS Act of 2025, strategic industry pivots from major players like JPMorgan's crypto-backed loan initiatives, and PayPal's comprehensive "Pay with Crypto" service. Widespread stablecoin implementation addresses critical macroeconomic imbalances, particularly the inflation-productivity gap plaguing modern monetary systems, through more robust and diversified backing mechanisms. Furthermore, stablecoins facilitate deregulation and efficiency gains, paving the way for a more interconnected international financial system. This whitepaper comprehensively explores how stablecoins are poised to reshape banking, supported by real-world examples, current market data, and analysis of their transformative potential.
♻ ☆ From Autonomy to Agency: Agentic Vehicles for Human-Centered Mobility Systems
Autonomy, from the Greek autos (self) and nomos (law), refers to the capacity to operate according to internal rules without external control. Accordingly, autonomous vehicles (AuVs) are viewed as vehicular systems capable of perceiving their environment and executing pre-programmed tasks independently of external input. However, both research and real-world deployments increasingly showcase vehicles that demonstrate behaviors beyond this definition (including the SAE levels 0 to 5); Examples of this outpace include the interaction with humans with natural language, goal adaptation, contextual reasoning, external tool use, and unseen ethical dilemma handling, largely empowered by multi-modal large language models (LLMs). These developments reveal a conceptual gap between technical autonomy and the broader cognitive and social capabilities needed for future human-centered mobility systems. To address this gap, this paper introduces the concept of agentic vehicles (AgVs), referring to vehicles that integrate agentic AI systems to reason, adapt, and interact within complex environments. This paper proposes the term AgVs and their distinguishing characteristics from conventional AuVs. It synthesizes relevant advances in integrating LLMs and AuVs and highlights how AgVs might transform future mobility systems and ensure the systems are human-centered. The paper concludes by identifying key challenges in the development and governance of AgVs, and how they can play a significant role in future agentic transportation systems.
Databases 10
☆ Emerging Skycube AI
Combining multi-criteria decision analysis and trend reversal discovery make it possible to extract globally optimal, or non-dominated, data in relation to several criteria, and then to observe their evolution according to a decision-making property. Thus, we introduce Emerging Skycube, a concept associating Skycube and emerging datacube. As far as we know, no DBMS-integrated solution exists to compute an emerging Skycube, and hence taking advantage of ROLAP analysis tools. An emerging datacube has only one measure: we propose to use several to comply to multi-criteria decision analysis constraints which requires multiple attributes. A datacube is expensive to compute. An emerging datacube is about twice as expensive. On the other hand, an emerging Skycube is cheaper as the trend reversal is computed after two Skycube calculations, which considerably reduces the relation volume in comparison with the initial one. It is possible to save even more computing time and storage space. To this end, we propose two successive reductions. First, a Skycube lossless partial materialisation using Skylines concepts lattice, based on the agree concepts lattice and partitions lattice. Then, either the closed emerging Skycube for an information-loss reduction, or the closed emerging L-Skycube for a smaller but lossless reduction.
comment: Knowledge and Information Systems (KAIS), 2025
☆ Advances in Logic-Based Entity Resolution: Enhancing ASPEN with Local Merges and Optimality Criteria
In this paper, we present ASPEN+, which extends an existing ASP-based system, ASPEN,for collective entity resolution with two important functionalities: support for local merges and new optimality criteria for preferred solutions. Indeed, ASPEN only supports so-called global merges of entity-referring constants (e.g. author ids), in which all occurrences of matched constants are treated as equivalent and merged accordingly. However, it has been argued that when resolving data values, local merges are often more appropriate, as e.g. some instances of 'J. Lee' may refer to 'Joy Lee', while others should be matched with 'Jake Lee'. In addition to allowing such local merges, ASPEN+ offers new optimality criteria for selecting solutions, such as minimizing rule violations or maximising the number of rules supporting a merge. Our main contributions are thus (1) the formalisation and computational analysis of various notions of optimal solution, and (2) an extensive experimental evaluation on real-world datasets, demonstrating the effect of local merges and the new optimality criteria on both accuracy and runtime.
comment: Full version of a paper accepted at KR 2025
☆ Efficient Methods for Accurate Sparse Trajectory Recovery and Map Matching ICDE
Real-world trajectories are often sparse with low-sampling rates (i.e., long intervals between consecutive GPS points) and misaligned with road networks, yet many applications demand high-quality data for optimal performance. To improve data quality with sparse trajectories as input, we systematically study two related research problems: trajectory recovery on road network, which aims to infer missing points to recover high-sampling trajectories, and map matching, which aims to map GPS points to road segments to determine underlying routes. In this paper, we present efficient methods TRMMA and MMA for accurate trajectory recovery and map matching, respectively, where MMA serves as the first step of TRMMA. In MMA, we carefully formulate a classification task to map a GPS point from sparse trajectories to a road segment over a small candidate segment set, rather than the entire road network. We develop techniques in MMA to generate effective embeddings that capture the patterns of GPS data, directional information, and road segments, to accurately align sparse trajectories to routes. For trajectory recovery, TRMMA focuses on the segments in the route returned by MMA to infer missing points with position ratios on road segments, producing high-sampling trajectories efficiently by avoiding evaluation of all road segments. Specifically, in TRMMA, we design a dual-transformer encoding process to cohesively capture latent patterns in trajectories and routes, and an effective decoding technique to sequentially predict the position ratios and road segments of missing points. We conduct extensive experiments to compare TRMMA and MMA with numerous existing methods for trajectory recovery and map matching, respectively, on 4 large real-world datasets. TRMMA and MMA consistently achieve the best result quality, often by a significant margin.
comment: 13 pages, accepted by 2025 IEEE 41st International Conference on Data Engineering (ICDE)
☆ Cross-Organizational Analysis of Parliamentary Processes: A Case Study
Process Mining has been widely adopted by businesses and has been shown to help organizations analyze and optimize their processes. However, so far, little attention has gone into the cross-organizational comparison of processes, since many companies are hesitant to share their data. In this paper, we explore the processes of German state parliaments that are often legally required to share their data and run the same type of processes for different geographical regions. This paper is the first attempt to apply process mining to parliamentary processes and, therefore, contributes toward a novel interdisciplinary research area that combines political science and process mining. In our case study, we analyze legislative processes of three German state parliaments and generate insights into their differences and best practices. We provide a discussion of the relevance of our results that are based on knowledge exchange with a political scientist and a domain expert from the German federal parliament.
comment: Accepted to ICPM 2025 (7th International Conference on Process Mining)
☆ Privacy-Preserving Approximate Nearest Neighbor Search on High-Dimensional Data ICDE 2025
In the era of cloud computing and AI, data owners outsource ubiquitous vectors to the cloud, which furnish approximate $k$-nearest neighbors ($k$-ANNS) services to users. To protect data privacy against the untrusted server, privacy-preserving $k$-ANNS (PP-ANNS) on vectors has been a fundamental and urgent problem. However, existing PP-ANNS solutions fall short of meeting the requirements of data privacy, efficiency, accuracy, and minimal user involvement concurrently. To tackle this challenge, we introduce a novel solution that primarily executes PP-ANNS on a single cloud server to avoid the heavy communication overhead between the cloud and the user. To ensure data privacy, we introduce a novel encryption method named distance comparison encryption, facilitating secure, efficient, and exact distance comparisons. To optimize the trade-off between data privacy and search performance, we design a privacy-preserving index that combines the state-of-the-art $k$-ANNS method with an approximate distance computation method. Then, we devise a search method using a filter-and-refine strategy based on the index. Moreover, we provide the security analysis of our solution and conduct extensive experiments to demonstrate its superiority over existing solutions. Based on our experimental results, our method accelerates PP-ANNS by up to 3 orders of magnitude compared to state-of-the-art methods, while not compromising the accuracy.
comment: This paper has been accepted by ICDE 2025
☆ Tabularis Formatus: Predictive Formatting for Tables
Spreadsheet manipulation software are widely used for data management and analysis of tabular data, yet the creation of conditional formatting (CF) rules remains a complex task requiring technical knowledge and experience with specific platforms. In this paper we present TaFo, a neuro-symbolic approach to generating CF suggestions for tables, addressing common challenges such as user unawareness, difficulty in rule creation, and inadequate user interfaces. TaFo takes inspiration from component based synthesis systems and extends them with semantic knowledge of language models and a diversity preserving rule ranking.Unlike previous methods focused on structural formatting, TaFo uniquely incorporates value-based formatting, automatically learning both the rule trigger and the associated visual formatting properties for CF rules. By removing the dependency on user specification used by existing techniques in the form of formatted examples or natural language instruction, TaFo makes formatting completely predictive and automated for the user. To evaluate TaFo, we use a corpus of 1.8 Million public workbooks with CF and manual formatting. We compare TaFo against a diverse set of symbolic and neural systems designed for or adapted for the task of table formatting. Our results show that TaFo generates more accurate, diverse and complete formatting suggestions than current systems and outperforms these by 15.6\%--26.5\% on matching user added ground truth rules in tables.
comment: 14 pages
☆ Compressive Meta-Learning KDD '25
The rapid expansion in the size of new datasets has created a need for fast and efficient parameter-learning techniques. Compressive learning is a framework that enables efficient processing by using random, non-linear features to project large-scale databases onto compact, information-preserving representations whose dimensionality is independent of the number of samples and can be easily stored, transferred, and processed. These database-level summaries are then used to decode parameters of interest from the underlying data distribution without requiring access to the original samples, offering an efficient and privacy-friendly learning framework. However, both the encoding and decoding techniques are typically randomized and data-independent, failing to exploit the underlying structure of the data. In this work, we propose a framework that meta-learns both the encoding and decoding stages of compressive learning methods by using neural networks that provide faster and more accurate systems than the current state-of-the-art approaches. To demonstrate the potential of the presented Compressive Meta-Learning framework, we explore multiple applications -- including neural network-based compressive PCA, compressive ridge regression, compressive k-means, and autoencoders.
comment: Extended version of a paper accepted at KDD '25
☆ Chain-of-Query: Unleashing the Power of LLMs in SQL-Aided Table Understanding via Multi-Agent Collaboration
Table understanding requires structured, multi-step reasoning. Large Language Models (LLMs) struggle with it due to the structural complexity of tabular data. Recently, multi-agent frameworks for SQL generation have shown promise in tackling the challenges of understanding tabular data, but existing approaches often suffer from limitations such as the inability to comprehend table structure for reliable SQL generation, error propagation that results in invalid queries, and over-reliance on execution correctness. To address these issues, we propose Chain-of-Query (CoQ), a novel multi-agent framework for SQL-aided table understanding. CoQ adopts natural-language-style representations of table schemas to abstract away structural noise and enhance understanding. It employs a clause-by-clause SQL generation strategy to improve query quality and introduces a hybrid reasoning division that separates SQL-based mechanical reasoning from LLM-based logical inference, thereby reducing reliance on execution outcomes. Experiments with four models (both closed- and open-source) across five widely used benchmarks show that Chain-of-Query significantly improves accuracy from 61.11% to 74.77% and reduces the invalid SQL rate from 9.48% to 3.34%, demonstrating its superior effectiveness in table understanding. The code is available at https://github.com/SongyuanSui/ChainofQuery.
comment: 9 pages main content, 24 pages total including appendix, 6 figures
♻ ☆ Leveraging large language models for SQL behavior-based database intrusion detection
Database systems are extensively used to store critical data across various domains. However, the frequency of abnormal database access behaviors, such as database intrusion by internal and external attacks, continues to rise. Internal masqueraders often have greater organizational knowledge, making it easier to mimic employee behavior effectively. In contrast, external masqueraders may behave differently due to their lack of familiarity with the organization. Current approaches lack the granularity needed to detect anomalies at the operational level, frequently misclassifying entire sequences of operations as anomalies, even though most operations are likely to represent normal behavior. On the other hand, some anomalous behaviors often resemble normal activities, making them difficult for existing detection methods to identify. This paper introduces a two-tiered anomaly detection approach for Structured Query Language (SQL) using the Bidirectional Encoder Representations from Transformers (BERT) model, specifically DistilBERT, a more efficient, pre-trained version. Our method combines both unsupervised and supervised machine learning techniques to accurately identify anomalous activities while minimizing the need for data labeling. First, the unsupervised method uses ensemble anomaly detectors that flag embedding vectors distant from learned normal patterns of typical user behavior across the database (out-of-scope queries). Second, the supervised method uses fine-tuned transformer-based models to detect internal attacks with high precision (in-scope queries), using role-labeled classification, even on limited labeled SQL data. Our findings make a significant contribution by providing an effective solution for safeguarding critical database systems from sophisticated threats.
♻ ☆ Columbo: Expanding Abbreviated Column Names for Tabular Data Using Large Language Models
Expanding the abbreviated column names of tables, such as "esal" to "employee salary", is critical for numerous downstream data tasks. This problem arises in enterprises, domain sciences, government agencies, and more. In this paper we make three contributions that significantly advances the state of the art. First, we show that synthetic public data used by prior work has major limitations, and we introduce 4 new datasets in enterprise/science domains, with real-world abbreviations. Second, we show that accuracy measures used by prior work seriously undercount correct expansions, and we propose new synonym-aware measures that capture accuracy much more accurately. Finally, we develop Columbo, a powerful LLM-based solution that exploits context, rules, chain-of-thought reasoning, and token-level analysis. Extensive experiments show that Columbo significantly outperforms NameGuess, the current most advanced solution, by 4-29%, over 5 datasets. Columbo has been used in production on EDI, a major data portal for environmental sciences.
Distributed, Parallel, and Cluster Computing 14
☆ Minimmit: Fast Finality with Even Faster Blocks
Minimmit is a new protocol for State-Machine-Replication (SMR) that extends the '2-round finality' approach of protocols such as Alpenglow to further reduce latency, by allowing for faster progression through 'views'. This preliminary draft provides motivation and pseudocode, together with proofs of consistency and liveness. An updated draft with a proof of optimistic responsiveness, suggested optimizations, and experiments, is to follow.
☆ Introducing CQ: A C-like API for Quantum Accelerated HPC
In this paper we present CQ, a specification for a C-like API for quantum accelerated HPC, as well as CQ-SimBE, a reference implementation of CQ written in C99, and built on top of the statevector simulator QuEST. CQ focuses on enabling the incremental integration of quantum computing into classical HPC codes by supporting runtime offloading from languages such as C and Fortran. It provides a way of describing and offloading quantum computations which is compatible with strictly and strongly typed compiled languages, and gives the programmer fine-grained control over classical data movement. The CQ Simulated Backend (CQ-SimBE) provides both a way to demonstrate the usage and utility of CQ, and a space to experiment with new features such as support for analogue quantum computing. Both the CQ specification and CQ-SimBE are open-source, and available in public repositories.
comment: 8 pages, 1 figure. Submitted to the 1st International Workshop for Software Frameworks and Workload Management on Quantum and HPC Ecosystems at SC25
☆ Dalek: An Unconventional and Energy-Aware Heterogeneous Cluster
Dalek is an experimental compute cluster designed to evaluate the performance of heterogeneous, consumer-grade hardware for software design, prototyping, and algorithm development. In contrast to traditional computing centers that rely on costly, server-class components, Dalek integrates CPUs and GPUs typically found in mini-PCs, laptops, and gaming desktops, providing a cost-effective yet versatile platform. This document details the cluster's architecture and software stack, and presents results from synthetic benchmarks. Furthermore, it introduces a custom energy monitoring platform capable of delivering 1000 averaged samples per second with milliwatt-level resolution. This high-precision monitoring capability enables a wide range of energy-aware research experiments in applied Computer Science.
☆ Flexible Personalized Split Federated Learning for On-Device Fine-Tuning of Foundation Models
Fine-tuning foundation models is critical for superior performance on personalized downstream tasks, compared to using pre-trained models. Collaborative learning can leverage local clients' datasets for fine-tuning, but limited client data and heterogeneous data distributions hinder effective collaboration. To address the challenge, we propose a flexible personalized federated learning paradigm that enables clients to engage in collaborative learning while maintaining personalized objectives. Given the limited and heterogeneous computational resources available on clients, we introduce \textbf{flexible personalized split federated learning (FlexP-SFL)}. Based on split learning, FlexP-SFL allows each client to train a portion of the model locally while offloading the rest to a server, according to resource constraints. Additionally, we propose an alignment strategy to improve personalized model performance on global data. Experimental results show that FlexP-SFL outperforms baseline models in personalized fine-tuning efficiency and final accuracy.
comment: 10 pages, Submitted to INFOCOM2026
☆ GPZ: GPU-Accelerated Lossy Compressor for Particle Data
Particle-based simulations and point-cloud applications generate massive, irregular datasets that challenge storage, I/O, and real-time analytics. Traditional compression techniques struggle with irregular particle distributions and GPU architectural constraints, often resulting in limited throughput and suboptimal compression ratios. In this paper, we present GPZ, a high-performance, error-bounded lossy compressor designed specifically for large-scale particle data on modern GPUs. GPZ employs a novel four-stage parallel pipeline that synergistically balances high compression efficiency with the architectural demands of massively parallel hardware. We introduce a suite of targeted optimizations for computation, memory access, and GPU occupancy that enables GPZ to achieve near-hardware-limit throughput. We conduct an extensive evaluation on three distinct GPU architectures (workstation, data center, and edge) using six large-scale, real-world scientific datasets from five distinct domains. The results demonstrate that GPZ consistently and significantly outperforms five state-of-the-art GPU compressors, delivering up to 8x higher end-to-end throughput while simultaneously achieving superior compression ratios and data quality.
☆ EMLIO: Minimizing I/O Latency and Energy Consumption for Large-Scale AI Training
Large-scale deep learning workloads increasingly suffer from I/O bottlenecks as datasets grow beyond local storage capacities and GPU compute outpaces network and disk latencies. While recent systems optimize data-loading time, they overlook the energy cost of I/O - a critical factor at large scale. We introduce EMLIO, an Efficient Machine Learning I/O service that jointly minimizes end-to-end data-loading latency T and I/O energy consumption E across variable-latency networked storage. EMLIO deploys a lightweight data-serving daemon on storage nodes that serializes and batches raw samples, streams them over TCP with out-of-order prefetching, and integrates seamlessly with GPU-accelerated (NVIDIA DALI) preprocessing on the client side. In exhaustive evaluations over local disk, LAN (0.05 ms & 10 ms RTT), and WAN (30 ms RTT) environments, EMLIO delivers up to 8.6X faster I/O and 10.9X lower energy use compared to state-of-the-art loaders, while maintaining constant performance and energy profiles irrespective of network distance. EMLIO's service-based architecture offers a scalable blueprint for energy-aware I/O in next-generation AI clouds.
comment: SC25 Sustainable Supercomputing Workshop
♻ ☆ A Reference Architecture for Governance of Cloud Native Applications
The evolution of cloud computing has given rise to Cloud Native Applications (CNAs), presenting new challenges in governance, particularly when faced with strict compliance requirements. This work explores the unique characteristics of CNAs and their impact on governance. We introduce a comprehensive reference architecture designed to streamline governance across CNAs, along with a sample implementation, offering insights for both single and multi-cloud environments. Our architecture seamlessly integrates governance within the CNA framework, adhering to a ``battery-included'' philosophy. Tailored for both expansive and compact CNA deployments across various industries, this design enables cloud practitioners to prioritize product development by alleviating the complexities associated with governance. In addition, it provides a building block for academic exploration of generic CNA frameworks, highlighting their relevance in the evolving cloud computing landscape.
♻ ☆ Oranits: Mission Assignment and Task Offloading in Open RAN-based ITS using Metaheuristic and Deep Reinforcement Learning
In this paper, we explore mission assignment and task offloading in an Open Radio Access Network (Open RAN)-based intelligent transportation system (ITS), where autonomous vehicles leverage mobile edge computing for efficient processing. Existing studies often overlook the intricate interdependencies between missions and the costs associated with offloading tasks to edge servers, leading to suboptimal decision-making. To bridge this gap, we introduce Oranits, a novel system model that explicitly accounts for mission dependencies and offloading costs while optimizing performance through vehicle cooperation. To achieve this, we propose a twofold optimization approach. First, we develop a metaheuristic-based evolutionary computing algorithm, namely the Chaotic Gaussian-based Global ARO (CGG-ARO), serving as a baseline for one-slot optimization. Second, we design an enhanced reward-based deep reinforcement learning (DRL) framework, referred to as the Multi-agent Double Deep Q-Network (MA-DDQN), that integrates both multi-agent coordination and multi-action selection mechanisms, significantly reducing mission assignment time and improving adaptability over baseline methods. Extensive simulations reveal that CGG-ARO improves the number of completed missions and overall benefit by approximately 7.1% and 7.7%, respectively. Meanwhile, MA-DDQN achieves even greater improvements of 11.0% in terms of mission completions and 12.5% in terms of the overall benefit. These results highlight the effectiveness of Oranits in enabling faster, more adaptive, and more efficient task processing in dynamic ITS environments.
comment: 15 pages, 13 figures
♻ ☆ From Data Center IoT Telemetry to Data Analytics Chatbots -- Virtual Knowledge Graph is All You Need
Industry 5.0 demands IoT systems that support seamless human-machine collaboration, yet current IoT data analysis requires deep domain, deployment, and query expertise. We show that combining Large Language Models (LLMs) with Knowledge Graphs (KGs) enables natural language access to heterogeneous IoT data. Focusing on data center IoT telemetry, we introduce a rule-based Virtual Knowledge Graph (VKG) construction process and an on-premise LLM inference service to create an end-to-end Data Analytics (DA) chatbot. Our system dynamically generates VKGs per query and translates user input into SPARQL, achieving 92.5% accuracy (vs. 25% for LLM-to-NoSQL) while reducing latency by 85% (20.36s to 3.03s) and keeping VKG sizes under 179 MiB. This work demonstrates that VKG-powered LLM interfaces deliver accurate, low-latency, and relationship-aware access to large-scale telemetry, bridging the gap between users and complex IoT systems in Industry 5.0.
comment: 12 pages
♻ ☆ An Empirical Study of Production Incidents in Generative AI Cloud Services
The ever-increasing demand for generative artificial intelligence (GenAI) has motivated cloud-based GenAI services such as Azure OpenAI Service and Amazon Bedrock. Like any large-scale cloud service, failures are inevitable in cloud-based GenAI services, resulting in user dissatisfaction and significant monetary losses. However, GenAI cloud services, featured by their massive parameter scales, hardware demands, and usage patterns, present unique challenges, including generated content quality issues and privacy concerns, compared to traditional cloud services. To understand the production reliability of GenAI cloud services, we analyzed production incidents from a leading GenAI cloud service provider spanning in the past four years. Our study (1) presents the general characteristics of GenAI cloud service incidents at different stages of the incident life cycle; (2) identifies the symptoms and impacts of these incidents on GenAI cloud service quality and availability; (3) uncovers why these incidents occurred and how they were resolved; (4) discusses open research challenges in terms of incident detection, triage, and mitigation, and sheds light on potential solutions.
♻ ☆ Efficient Parallel Execution of Blockchain Transactions Leveraging Conflict Specifications
Parallel execution of smart contract transactions in large multicore architectures is critical for higher efficiency and improved throughput. The main bottleneck for maximizing the throughput of a node through parallel execution is transaction conflict resolution: when two transactions interact with the same data, like an account balance, their order matters. Imagine one transaction sends tokens from account A to account B, and another tries to send tokens from account B to account C. If the second transaction happens before the first one, the token balance in account B might be wrong, causing the entire system to break. Conflicts like these must be managed carefully, or you end up with an inconsistent, unusable blockchain state. Traditional software transactional memory (STM) has been identified as a possible abstraction for the concurrent execution of transactions within a block, with Block-STM pioneering its application for efficient blockchain transaction processing on multicore validator nodes. This paper presents a parallel execution methodology that leverages conflict specification information of the transactions for block transactional memory (BTM) algorithms. Our experimental analysis, conducted over synthetic transactional workloads and real-world blocks, demonstrates that BTMs leveraging conflict specifications outperform their plain counterparts on both EVM and MoveVM. Our proposed BTM implementations achieve up to 1.75x speedup over sequential execution and outperform the state-of-the-art Parallel-EVM (PEVM) execution by up to 1.33x across synthetic workloads.
comment: To appear in "The Seventh International Conference on Advances in Financial Technologies 2025 (AFT'25)"
♻ ☆ Federated Time Series Generation on Feature and Temporally Misaligned Data
Distributed time series data presents a challenge for federated learning, as clients often possess different feature sets and have misaligned time steps. Existing federated time series models are limited by the assumption of perfect temporal or feature alignment across clients. In this paper, we propose FedTDD, a novel federated time series diffusion model that jointly learns a synthesizer across clients. At the core of FedTDD is a novel data distillation and aggregation framework that reconciles the differences between clients by imputing the misaligned timesteps and features. In contrast to traditional federated learning, FedTDD learns the correlation across clients' time series through the exchange of local synthetic outputs instead of model parameters. A coordinator iteratively improves a global distiller network by leveraging shared knowledge from clients through the exchange of synthetic data. As the distiller becomes more refined over time, it subsequently enhances the quality of the clients' local feature estimates, allowing each client to then improve its local imputations for missing data using the latest, more accurate distiller. Experimental results on five datasets demonstrate FedTDD's effectiveness compared to centralized training, and the effectiveness of sharing synthetic outputs to transfer knowledge of local time series. Notably, FedTDD achieves 79.4% and 62.8% improvement over local training in Context-FID and Correlational scores.
♻ ☆ Blockchain-Enabled Federated Learning
Blockchain-enabled federated learning (BCFL) addresses fundamental challenges of trust, privacy, and coordination in collaborative AI systems. This chapter provides comprehensive architectural analysis of BCFL systems through a systematic four-dimensional taxonomy examining coordination structures, consensus mechanisms, storage architectures, and trust models. We analyze design patterns from blockchain-verified centralized coordination to fully decentralized peer-to-peer networks, evaluating trade-offs in scalability, security, and performance. Through detailed examination of consensus mechanisms designed for federated learning contexts, including Proof of Quality and Proof of Federated Learning, we demonstrate how computational work can be repurposed from arbitrary cryptographic puzzles to productive machine learning tasks. The chapter addresses critical storage challenges by examining multi-tier architectures that balance blockchain's transaction constraints with neural networks' large parameter requirements while maintaining cryptographic integrity. A technical case study of the TrustMesh framework illustrates practical implementation considerations in BCFL systems through distributed image classification training, demonstrating effective collaborative learning across IoT devices with highly non-IID data distributions while maintaining complete transparency and fault tolerance. Analysis of real-world deployments across healthcare consortiums, financial services, and IoT security applications validates the practical viability of BCFL systems, achieving performance comparable to centralized approaches while providing enhanced security guarantees and enabling new models of trustless collaborative intelligence.
comment: 32 pages, 6 figures, chapter for edited book (Federated Learning: Foundations and Applications)
♻ ☆ New Improvements in Solving Large LABS Instances Using Massively Parallelizable Memetic Tabu Search
Low Autocorrelation Binary Sequences (LABS) is a particularly challenging binary optimization problem which quickly becomes intractable in finding the global optimum for problem sizes beyond 66. This aspect makes LABS appealing to use as a test-bed for meta-heuristic optimization solvers to target large problem sizes. In this work, we introduce a massively parallelized implementation of the memetic tabu search algorithm to tackle LABS problem for sizes up to 120. By effectively combining the block level and thread level parallelism framework within a single Nvidia-A100 GPU, and creating hyper optimized binary-valued data structures for shared memory among the blocks, we showcase up to 26 fold speedup compared to the analogous 16-core CPU implementation. Our implementation has also enabled us to find new LABS merit factor values for sixteen different problem sizes between 92 and 120. Crucially, we also showcase improved values for five odd-sized problems {99, 107, 109, 113, 119} whose previous best known results coincided with the provably optimal skew-symmetric search sequences. Consequently, our result highlights the importance of a focus on general-purpose solver to tackle LABS, since leveraging its skew-symmetry could lead to sub-optimal solutions.
comment: 12 pages, 6 figures, 3 tables
Information Retrieval 24
☆ CrossDenoise: Denoising Implicit Feedback via a Lightweight Entity-Aware Synergistic Framework
Recommender systems heavily rely on implicit feedback, which is inherently noisy due to false positives and negatives, severely degrading recommendation accuracy. Existing denoising strategies often overlook entity-aware modeling, suffer from high computational overhead, or demand excessive hyperparameter tuning, limiting their real-world applicability. We propose CrossDenoise, a novel and lightweight framework that addresses these challenges by disentangling noise estimation into user-, item-, and interaction-specific factors. Leveraging empirical observations that show significant heterogeneity in user and item noise propensities, CrossDenoise computes entity reputation factors (user/item reliability) via a rank-based linear mapping of average training losses. These are fused with interaction-level weights derived from an empirical cumulative distribution function (ECDF) of individual losses. This design is model-agnostic, computationally efficient, and requires only two intuitive hyperparameters. Extensive experiments on ML-1M, Yelp, and Amazon-book datasets, across GMF, NeuMF, and CDAE backbones, demonstrate that CrossDenoise consistently and significantly outperforms state-of-the-art baselines. For instance, it achieves up to 27.01% NDCG@50 gain on Yelp with NeuMF, while incurring negligible computational and memory overhead. Our analysis confirms that CrossDenoise effectively separates clean from noisy samples and remains robust under varied hyperparameter settings. It offers a practical and scalable solution for denoising implicit feedback.
☆ Hypercomplex Prompt-aware Multimodal Recommendation
Modern recommender systems face critical challenges in handling information overload while addressing the inherent limitations of multimodal representation learning. Existing methods suffer from three fundamental limitations: (1) restricted ability to represent rich multimodal features through a single representation, (2) existing linear modality fusion strategies ignore the deep nonlinear correlations between modalities, and (3) static optimization methods failing to dynamically mitigate the over-smoothing problem in graph convolutional network (GCN). To overcome these limitations, we propose HPMRec, a novel Hypercomplex Prompt-aware Multimodal Recommendation framework, which utilizes hypercomplex embeddings in the form of multi-components to enhance the representation diversity of multimodal features. HPMRec adopts the hypercomplex multiplication to naturally establish nonlinear cross-modality interactions to bridge semantic gaps, which is beneficial to explore the cross-modality features. HPMRec also introduces the prompt-aware compensation mechanism to aid the misalignment between components and modality-specific features loss, and this mechanism fundamentally alleviates the over-smoothing problem. It further designs self-supervised learning tasks that enhance representation diversity and align different modalities. Extensive experiments on four public datasets show that HPMRec achieves state-of-the-art recommendation performance.
comment: Accepted by CIKM 2025
☆ Learning from Natural Language Feedback for Personalized Question Answering
Personalization is crucial for enhancing both the effectiveness and user satisfaction of language technologies, particularly in information-seeking tasks like question answering. Current approaches for personalizing large language models (LLMs) often rely on retrieval-augmented generation (RAG), followed by reinforcement learning with scalar reward signals to teach models how to use retrieved personal context. We believe that these scalar rewards sometimes provide weak, non-instructive feedback, limiting learning efficiency and personalization quality. We introduce VAC, a novel framework for personalized response generation that replaces scalar rewards with natural language feedback (NLF) that are generated conditioned on the user profiles and the question narratives. NLF serves as a rich and actionable supervision signal, allowing the policy model to iteratively refine its outputs and internalize effective personalization strategies. Training alternates between optimizing the feedback model and fine-tuning the policy model on the improved responses, resulting in a policy model that no longer requires feedback at inference. Evaluation on the LaMP-QA benchmark that consists of three diverse domains demonstrates consistent and significant improvements over the state-of-the-art results. Human evaluations further confirm the superior quality of the generated responses. These results demonstrate that NLF provides more effective signals for optimizing personalized question answering.
☆ STEP: Stepwise Curriculum Learning for Context-Knowledge Fusion in Conversational Recommendation
Conversational recommender systems (CRSs) aim to proactively capture user preferences through natural language dialogue and recommend high-quality items. To achieve this, CRS gathers user preferences via a dialog module and builds user profiles through a recommendation module to generate appropriate recommendations. However, existing CRS faces challenges in capturing the deep semantics of user preferences and dialogue context. In particular, the efficient integration of external knowledge graph (KG) information into dialogue generation and recommendation remains a pressing issue. Traditional approaches typically combine KG information directly with dialogue content, which often struggles with complex semantic relationships, resulting in recommendations that may not align with user expectations. To address these challenges, we introduce STEP, a conversational recommender centered on pre-trained language models that combines curriculum-guided context-knowledge fusion with lightweight task-specific prompt tuning. At its heart, an F-Former progressively aligns the dialogue context with knowledge-graph entities through a three-stage curriculum, thus resolving fine-grained semantic mismatches. The fused representation is then injected into the frozen language model via two minimal yet adaptive prefix prompts: a conversation prefix that steers response generation toward user intent and a recommendation prefix that biases item ranking toward knowledge-consistent candidates. This dual-prompt scheme allows the model to share cross-task semantics while respecting the distinct objectives of dialogue and recommendation. Experimental results show that STEP outperforms mainstream methods in the precision of recommendation and dialogue quality in two public datasets.
comment: 10 pages; 4 figures; 6 tables; code available at https://github.com/Alex-bupt/STEP
☆ FuXi-β: Towards a Lightweight and Fast Large-Scale Generative Recommendation Model
Scaling laws for autoregressive generative recommenders reveal potential for larger, more versatile systems but mean greater latency and training costs. To accelerate training and inference, we investigated the recent generative recommendation models HSTU and FuXi-$\alpha$, identifying two efficiency bottlenecks: the indexing operations in relative temporal attention bias and the computation of the query-key attention map. Additionally, we observed that relative attention bias in self-attention mechanisms can also serve as attention maps. Previous works like Synthesizer have shown that alternative forms of attention maps can achieve similar performance, naturally raising the question of whether some attention maps are redundant. Through empirical experiments, we discovered that using the query-key attention map might degrade the model's performance in recommendation tasks. To address these bottlenecks, we propose a new framework applicable to Transformer-like recommendation models. On one hand, we introduce Functional Relative Attention Bias, which avoids the time-consuming operations of the original relative attention bias, thereby accelerating the process. On the other hand, we remove the query-key attention map from the original self-attention layer and design a new Attention-Free Token Mixer module. Furthermore, by applying this framework to FuXi-$\alpha$, we introduce a new model, FuXi-$\beta$. Experiments across multiple datasets demonstrate that FuXi-$\beta$ outperforms previous state-of-the-art models and achieves significant acceleration compared to FuXi-$\alpha$, while also adhering to the scaling law. Notably, FuXi-$\beta$ shows an improvement of 27% to 47% in the NDCG@10 metric on large-scale industrial datasets compared to FuXi-$\alpha$. Our code is available in a public repository: https://github.com/USTC-StarTeam/FuXi-beta
☆ DAS: Dual-Aligned Semantic IDs Empowered Industrial Recommender System
Semantic IDs are discrete identifiers generated by quantizing the Multi-modal Large Language Models (MLLMs) embeddings, enabling efficient multi-modal content integration in recommendation systems. However, their lack of collaborative signals results in a misalignment with downstream discriminative and generative recommendation objectives. Recent studies have introduced various alignment mechanisms to address this problem, but their two-stage framework design still leads to two main limitations: (1) inevitable information loss during alignment, and (2) inflexibility in applying adaptive alignment strategies, consequently constraining the mutual information maximization during the alignment process. To address these limitations, we propose a novel and flexible one-stage Dual-Aligned Semantic IDs (DAS) method that simultaneously optimizes quantization and alignment, preserving semantic integrity and alignment quality while avoiding the information loss typically associated with two-stage methods. Meanwhile, DAS achieves more efficient alignment between the semantic IDs and collaborative signals, with the following two innovative and effective approaches: (1) Multi-view Constrative Alignment: To maximize mutual information between semantic IDs and collaborative signals, we first incorporate an ID-based CF debias module, and then design three effective contrastive alignment methods: dual user-to-item (u2i), dual item-to-item/user-to-user (i2i/u2u), and dual co-occurrence item-to-item/user-to-user (i2i/u2u). (2) Dual Learning: By aligning the dual quantizations of users and ads, the constructed semantic IDs for users and ads achieve stronger alignment. Finally, we conduct extensive offline experiments and online A/B tests to evaluate DAS's effectiveness, which is now successfully deployed across various advertising scenarios at Kuaishou App, serving over 400 million users daily.
comment: Accepted by CIKM 2025
☆ Efficient Patent Searching Using Graph Transformers SIGIR 2025
Finding relevant prior art is crucial when deciding whether to file a new patent application or invalidate an existing patent. However, searching for prior art is challenging due to the large number of patent documents and the need for nuanced comparisons to determine novelty. An accurate search engine is therefore invaluable for speeding up the process. We present a Graph Transformer-based dense retrieval method for patent searching where each invention is represented by a graph describing its features and their relationships. Our model processes these invention graphs and is trained using prior art citations from patent office examiners as relevance signals. Using graphs as input significantly improves the computational efficiency of processing long documents, while leveraging examiner citations allows the model to learn domain-specific similarities beyond simple text-based matching. The result is a search engine that emulates how professional patent examiners identify relevant documents. We compare our approach against publicly available text embedding models and show substantial improvements in both prior art retrieval quality and computational efficiency.
comment: Accepted for publication at the PatentSemTech 2025 workshop, held in conjunction with SIGIR 2025
☆ Confounding is a Pervasive Problem in Real World Recommender Systems
Unobserved confounding arises when an unmeasured feature influences both the treatment and the outcome, leading to biased causal effect estimates. This issue undermines observational studies in fields like economics, medicine, ecology or epidemiology. Recommender systems leveraging fully observed data seem not to be vulnerable to this problem. However many standard practices in recommender systems result in observed features being ignored, resulting in effectively the same problem. This paper will show that numerous common practices such as feature engineering, A/B testing and modularization can in fact introduce confounding into recommendation systems and hamper their performance. Several illustrations of the phenomena are provided, supported by simulation studies with practical suggestions about how practitioners may reduce or avoid the affects of confounding in real systems.
comment: 12 pages, 4 figures
☆ Semantic IDs for Joint Generative Search and Recommendation
Generative models powered by Large Language Models (LLMs) are emerging as a unified solution for powering both recommendation and search tasks. A key design choice in these models is how to represent items, traditionally through unique identifiers (IDs) and more recently with Semantic IDs composed of discrete codes, obtained from embeddings. While task-specific embedding models can improve performance for individual tasks, they may not generalize well in a joint setting. In this paper, we explore how to construct Semantic IDs that perform well both in search and recommendation when using a unified model. We compare a range of strategies to construct Semantic IDs, looking into task-specific and cross-tasks approaches, and also whether each task should have its own semantic ID tokens in a joint search and recommendation generative model. Our results show that using a bi-encoder model fine-tuned on both search and recommendation tasks to obtain item embeddings, followed by the construction of a unified Semantic ID space provides an effective trade-off, enabling strong performance in both tasks. We hope these findings spark follow-up work on generalisable, semantically grounded ID schemes and inform the next wave of unified generative recommender architectures.
comment: Accepted for publication in the 19th ACM Conference on Recommender Systems (RecSys 2025), Late-Breaking Results track
☆ Multi-Label Plant Species Prediction with Metadata-Enhanced Multi-Head Vision Transformers
We present a multi-head vision transformer approach for multi-label plant species prediction in vegetation plot images, addressing the PlantCLEF 2025 challenge. The task involves training models on single-species plant images while testing on multi-species quadrat images, creating a drastic domain shift. Our methodology leverages a pre-trained DINOv2 Vision Transformer Base (ViT-B/14) backbone with multiple classification heads for species, genus, and family prediction, utilizing taxonomic hierarchies. Key contributions include multi-scale tiling to capture plants at different scales, dynamic threshold optimization based on mean prediction length, and ensemble strategies through bagging and Hydra model architectures. The approach incorporates various inference techniques including image cropping to remove non-plant artifacts, top-n filtering for prediction constraints, and logit thresholding strategies. Experiments were conducted on approximately 1.4 million training images covering 7,806 plant species. Results demonstrate strong performance, making our submission 3rd best on the private leaderboard. Our code is available at https://github.com/geranium12/plant-clef-2025/tree/v1.0.0.
comment: Accepted for publication at: LifeCLEF Lab at CLEF 2025 Working Notes, 2025, Madrid, Spain
☆ Proxy Model-Guided Reinforcement Learning for Client Selection in Federated Recommendation
Federated recommender systems have emerged as a promising privacy-preserving paradigm, enabling personalized recommendation services without exposing users' raw data. By keeping data local and relying on a central server to coordinate training across distributed clients, FedRSs protect user privacy while collaboratively learning global models. However, most existing FedRS frameworks adopt fully random client selection strategy in each training round, overlooking the statistical heterogeneity of user data arising from diverse preferences and behavior patterns, thereby resulting in suboptimal model performance. While some client selection strategies have been proposed in the broader federated learning literature, these methods are typically designed for generic tasks and fail to address the unique challenges of recommendation scenarios, such as expensive contribution evaluation due to the large number of clients, and sparse updates resulting from long-tail item distributions. To bridge this gap, we propose ProxyRL-FRS, a proxy model-guided reinforcement learning framework tailored for client selection in federated recommendation. Specifically, we first introduce ProxyNCF, a dual-branch model deployed on each client, which augments standard Neural Collaborative Filtering with an additional proxy model branch that provides lightweight contribution estimation, thus eliminating the need for expensive per-round local training traditionally required to evaluate a client's contribution. Furthermore, we design a staleness-aware SA reinforcement learning agent that selects clients based on the proxy-estimated contribution, and is guided by a reward function balancing recommendation accuracy and embedding staleness, thereby enriching the update coverage of item embeddings. Experiments conducted on public recommendation datasets demonstrate the effectiveness of ProxyRL-FRS.
comment: Under review
☆ Clicks Versus Conversion: Choosing a Recommender's Training Objective in E-Commerce
Ranking product recommendations to optimize for a high click-through rate (CTR) or for high conversion, such as add-to-cart rate (ACR) and Order-Submit-Rate (OSR, view-to-purchase conversion) are standard practices in e-commerce. Optimizing for CTR appears like a straightforward choice: Training data (i.e., click data) are simple to collect and often available in large quantities. Additionally, CTR is used far beyond e-commerce, making it a generalist, easily implemented option. ACR and OSR, on the other hand, are more directly linked to a shop's business goals, such as the Gross Merchandise Value (GMV). In this paper, we compare the effects of using either of these objectives using an online A/B test. Among our key findings, we demonstrate that in our shops, optimizing for OSR produces a GMV uplift more than five times larger than when optimizing for CTR, without sacrificing new product discovery. Our results also provide insights into the different feature importances for each of the objectives.
☆ +VeriRel: Verification Feedback to Enhance Document Retrieval for Scientific Fact Checking
Identification of appropriate supporting evidence is critical to the success of scientific fact checking. However, existing approaches rely on off-the-shelf Information Retrieval algorithms that rank documents based on relevance rather than the evidence they provide to support or refute the claim being checked. This paper proposes +VeriRel which includes verification success in the document ranking. Experimental results on three scientific fact checking datasets (SciFact, SciFact-Open and Check-Covid) demonstrate consistently leading performance by +VeriRel for document evidence retrieval and a positive impact on downstream verification. This study highlights the potential of integrating verification feedback to document relevance assessment for effective scientific fact checking systems. It shows promising future work to evaluate fine-grained relevance when examining complex documents for advanced scientific fact checking.
comment: Accpeted for the 34th ACM International Conference on Information and Knowledge Management (CIKM'25)
☆ PaperRegister: Boosting Flexible-grained Paper Search via Hierarchical Register Indexing
Paper search is an important activity for researchers, typically involving using a query with description of a topic to find relevant papers. As research deepens, paper search requirements may become more flexible, sometimes involving specific details such as module configuration rather than being limited to coarse-grained topics. However, previous paper search systems are unable to meet these flexible-grained requirements, as these systems mainly collect paper abstracts to construct index of corpus, which lack detailed information to support retrieval by finer-grained queries. In this work, we propose PaperRegister, consisted of offline hierarchical indexing and online adaptive retrieval, transforming traditional abstract-based index into hierarchical index tree for paper search, thereby supporting queries at flexible granularity. Experiments on paper search tasks across a range of granularity demonstrate that PaperRegister achieves the state-of-the-art performance, and particularly excels in fine-grained scenarios, highlighting the good potential as an effective solution for flexible-grained paper search in real-world applications. Code for this work is in https://github.com/Li-Z-Q/PaperRegister.
☆ Hybrid-Hierarchical Fashion Graph Attention Network for Compatibility-Oriented and Personalized Outfit Recommendation
The rapid expansion of the fashion industry and the growing variety of products have made it challenging for users to find compatible items on e-commerce platforms. Effective fashion recommendation systems are crucial for filtering irrelevant items and suggesting suitable ones. However, simultaneously addressing outfit compatibility and personalized recommendations remains a significant challenge, as these aspects are often treated independently in existing studies, often overlooking the complex interactions between items and user preferences. This research introduces a new framework named FGAT, inspired by the HFGN model, which leverages graph neural networks and graph attention mechanisms to tackle this issue. The proposed framework constructs a three-tier hierarchical graph of users, outfits, and items, integrating visual and textual features to simultaneously model outfit compatibility and user preferences. A graph attention mechanism dynamically weights node importance during representation propagation, enabling the capture of key interactions and generating precise representations for both user preferences and outfit compatibility. Evaluated on the POG dataset, FGAT outperforms baseline models such as HFGN, achieving improved results in precision, HR, recall, NDCG, and accuracy.These results demonstrate that combining multimodal visual-textual features with a hierarchical graph structure and attention mechanisms significantly enhances the accuracy and efficiency of personalized fashion recommendation systems.
☆ Relative Advantage Debiasing for Watch-Time Prediction in Short-Video Recommendation
Watch time is widely used as a proxy for user satisfaction in video recommendation platforms. However, raw watch times are influenced by confounding factors such as video duration, popularity, and individual user behaviors, potentially distorting preference signals and resulting in biased recommendation models. We propose a novel relative advantage debiasing framework that corrects watch time by comparing it to empirically derived reference distributions conditioned on user and item groups. This approach yields a quantile-based preference signal and introduces a two-stage architecture that explicitly separates distribution estimation from preference learning. Additionally, we present distributional embeddings to efficiently parameterize watch-time quantiles without requiring online sampling or storage of historical data. Both offline and online experiments demonstrate significant improvements in recommendation accuracy and robustness compared to existing baseline methods.
☆ JobPulse: A Big Data Approach to Real-Time Engineering Workforce Analysis and National Industrial Policy
Employment on a societal scale contributes heavily to national and global affairs; consequently, job openings and unemployment estimates provide important information to financial markets and governments alike. However, such reports often describe only the supply (employee job seeker) side of the job market, and skill mismatches are poorly understood. Job postings aggregated on recruiting platforms illuminate marketplace demand, but to date have primarily focused on candidate skills described in their personal profiles. In this paper, we report on a big data approach to estimating job market mismatches by focusing on demand, as represented in publicly available job postings. We use commercially available web scraping tools and a new data processing scheme to build a job posting data set for the semiconductor industry, a strategically critical sector of the United States economy; we focus on Southern California as a central hub of advanced technologies. We report on the employer base and relative needs of various job functions. Our work contributes on three fronts: First, we provide nearly real-time insight into workforce demand; second, we discuss disambiguation and semantic challenges in analysis of employer data bases at scale; and third, we report on the Southern California semiconductor engineering ecosystem.
♻ ☆ MMRAG-DocQA: A Multi-Modal Retrieval-Augmented Generation Method for Document Question-Answering with Hierarchical Index and Multi-Granularity Retrieval
The multi-modal long-context document question-answering task aims to locate and integrate multi-modal evidences (such as texts, tables, charts, images, and layouts) distributed across multiple pages, for question understanding and answer generation. The existing methods can be categorized into Large Vision-Language Model (LVLM)-based and Retrieval-Augmented Generation (RAG)-based methods. However, the former were susceptible to hallucinations, while the latter struggled for inter-modal disconnection and cross-page fragmentation. To address these challenges, a novel multi-modal RAG model, named MMRAG-DocQA, was proposed, leveraging both textual and visual information across long-range pages to facilitate accurate question answering. A hierarchical indexing method with the integration of flattened in-page chunks and topological cross-page chunks was designed to jointly establish in-page multi-modal associations and long-distance cross-page dependencies. By means of joint similarity evaluation and large language model (LLM)-based re-ranking, a multi-granularity semantic retrieval method, including the page-level parent page retrieval and document-level summary retrieval, was proposed to foster multi-modal evidence connection and long-distance evidence integration and reasoning. Experimental results performed on public datasets, MMLongBench-Doc and LongDocURL, demonstrated the superiority of our MMRAG-DocQA method in understanding and answering modality-rich and multi-page documents.
comment: Comments: Removed the footnote in page 1
♻ ☆ Delayed Feedback Modeling with Influence Functions
In online advertising under the cost-per-conversion (CPA) model, accurate conversion rate (CVR) prediction is crucial. A major challenge is delayed feedback, where conversions may occur long after user interactions, leading to incomplete recent data and biased model training. Existing solutions partially mitigate this issue but often rely on auxiliary models, making them computationally inefficient and less adaptive to user interest shifts. We propose IF-DFM, an \underline{I}nfluence \underline{F}unction-empowered for \underline{D}elayed \underline{F}eedback \underline{M}odeling which estimates the impact of newly arrived and delayed conversions on model parameters, enabling efficient updates without full retraining. By reformulating the inverse Hessian-vector product as an optimization problem, IF-DFM achieves a favorable trade-off between scalability and effectiveness. Experiments on benchmark datasets show that IF-DFM outperforms prior methods in both accuracy and adaptability.
♻ ☆ Enhancing Graph Collaborative Filtering with FourierKAN Feature Transformation
Graph Collaborative Filtering (GCF) has emerged as a dominant paradigm in modern recommendation systems, excelling at modeling complex user-item interactions and capturing high-order collaborative signals through graph-structured learning. Most existing GCF models predominantly rely on simplified graph architectures like LightGCN, which strategically remove feature transformation and activation functions from vanilla graph convolution networks. Through systematic analysis, we reveal that feature transformation in message propagation can enhance model representation, though at the cost of increased training difficulty. To this end, we propose FourierKAN-GCF, a novel GCN framework that adopts Fourier Kolmogorov-Arnold Networks as efficient transformation modules within graph propagation layers. This design enhances model representation while decreasing training difficulty. Our FourierKAN-GCF can achieve higher recommendation performance than most widely used GCF backbone models. In addition, it can be integrated into existing advanced self-supervised models as a backbone, replacing their original backbone to achieve enhanced performance. Extensive experiments on three public datasets demonstrate the superiority of FourierKAN-GCF.
comment: Accepted by CIKM 2025 Short
♻ ☆ Leveraging Large Language Models for Relevance Judgments in Legal Case Retrieval
Determining which legal cases are relevant to a given query involves navigating lengthy texts and applying nuanced legal reasoning. Traditionally, this task has demanded significant time and domain expertise to identify key Legal Facts and reach sound juridical conclusions. In addition, existing data with legal case similarities often lack interpretability, making it difficult to understand the rationale behind relevance judgments. With the growing capabilities of large language models (LLMs), researchers have begun investigating their potential in this domain. Nonetheless, the method of employing a general large language model for reliable relevance judgments in legal case retrieval remains largely unexplored. To address this gap in research, we propose a novel few-shot approach where LLMs assist in generating expert-aligned interpretable relevance judgments. The proposed approach decomposes the judgment process into several stages, mimicking the workflow of human annotators and allowing for the flexible incorporation of expert reasoning to improve the accuracy of relevance judgments. Importantly, it also ensures interpretable data labeling, providing transparency and clarity in the relevance assessment process. Through a comparison of relevance judgments made by LLMs and human experts, we empirically demonstrate that the proposed approach can yield reliable and valid relevance assessments. Furthermore, we demonstrate that with minimal expert supervision, our approach enables a large language model to acquire case analysis expertise and subsequently transfers this ability to a smaller model via annotation-based knowledge distillation.
♻ ☆ A New Query Expansion Approach via Agent-Mediated Dialogic Inquiry SIGKDD 2025
Query expansion is widely used in Information Retrieval (IR) to improve search outcomes by supplementing initial queries with richer information. While recent Large Language Model (LLM) based methods generate pseudo-relevant content and expanded terms via multiple prompts, they often yield homogeneous, narrow expansions that lack the diverse context needed to retrieve relevant information. In this paper, we propose AMD: a new Agent-Mediated Dialogic Framework that engages in a dialogic inquiry involving three specialized roles: (1) a Socratic Questioning Agent reformulates the initial query into three sub-questions, with each question inspired by a specific Socratic questioning dimension, including clarification, assumption probing, and implication probing, (2) a Dialogic Answering Agent generates pseudo-answers, enriching the query representation with multiple perspectives aligned to the user's intent, and (3) a Reflective Feedback Agent evaluates and refines these pseudo-answers, ensuring that only the most relevant and informative content is retained. By leveraging a multi-agent process, AMD effectively crafts richer query representations through inquiry and feedback refinement. Extensive experiments on benchmarks including BEIR and TREC demonstrate that our framework outperforms previous methods, offering a robust solution for retrieval tasks.
comment: Accepted by ACM SIGKDD 2025 Workshop on AI Agent for Information Retrieval (Agent4IR)
♻ ☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate model behavior across three core dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities. Code is available at https://github.com/zjunlp/DataMind.
comment: Work in progress
♻ ☆ Request-Only Optimization for Recommendation Systems
Deep Learning Recommendation Models (DLRMs) represent one of the largest machine learning applications on the planet. Industry-scale DLRMs are trained with petabytes of recommendation data to serve billions of users every day. To utilize the rich user signals in the long user history, DLRMs have been scaled up to unprecedented complexity, up to trillions of floating-point operations (TFLOPs) per example. This scale, coupled with the huge amount of training data, necessitates new storage and training algorithms to efficiently improve the quality of these complex recommendation systems. In this paper, we present a Request-Only Optimizations (ROO) training and modeling paradigm. ROO simultaneously improves the storage and training efficiency as well as the model quality of recommendation systems. We holistically approach this challenge through co-designing data (i.e., request-only data), infrastructure (i.e., request-only based data processing pipeline), and model architecture (i.e., request-only neural architectures). Our ROO training and modeling paradigm treats a user request as a unit of the training data. Compared with the established practice of treating a user impression as a unit, our new design achieves native feature deduplication in data logging, consequently saving data storage. Second, by de-duplicating computations and communications across multiple impressions in a request, this new paradigm enables highly scaled-up neural network architectures to better capture user interest signals, such as Generative Recommenders (GRs) and other request-only friendly architectures.
Artificial Intelligence 187
☆ Empirical Investigation into Configuring Echo State Networks for Representative Benchmark Problem Domains
This paper examines Echo State Network, a reservoir computer, performance using four different benchmark problems, then proposes heuristics or rules of thumb for configuring the architecture, as well as the selection of parameters and their values, which are applicable to problems within the same domain, to help serve to fill the experience gap needed by those entering this field of study. The influence of various parameter selections and their value adjustments, as well as architectural changes made to an Echo State Network, a powerful recurrent neural network configured as a reservoir computer, can be challenging to fully comprehend without experience in the field, and even some hyperparameter optimization algorithms may have difficulty adjusting parameter values without proper manual selections made first. Therefore, it is imperative to understand the effects of parameters and their value selection on Echo State Network architecture performance for a successful build. Thus, to address the requirement for an extensive background in Echo State Network architecture, as well as examine how Echo State Network performance is affected with respect to variations in architecture, design, and parameter selection and values, a series of benchmark tasks representing different problem domains, including time series prediction, pattern generation, chaotic system prediction, and time series classification, were modeled and experimented on to show the impact on the performance of Echo State Network.
comment: 49 pages, 21 figures
☆ ToonComposer: Streamlining Cartoon Production with Generative Post-Keyframing
Traditional cartoon and anime production involves keyframing, inbetweening, and colorization stages, which require intensive manual effort. Despite recent advances in AI, existing methods often handle these stages separately, leading to error accumulation and artifacts. For instance, inbetweening approaches struggle with large motions, while colorization methods require dense per-frame sketches. To address this, we introduce ToonComposer, a generative model that unifies inbetweening and colorization into a single post-keyframing stage. ToonComposer employs a sparse sketch injection mechanism to provide precise control using keyframe sketches. Additionally, it uses a cartoon adaptation method with the spatial low-rank adapter to tailor a modern video foundation model to the cartoon domain while keeping its temporal prior intact. Requiring as few as a single sketch and a colored reference frame, ToonComposer excels with sparse inputs, while also supporting multiple sketches at any temporal location for more precise motion control. This dual capability reduces manual workload and improves flexibility, empowering artists in real-world scenarios. To evaluate our model, we further created PKBench, a benchmark featuring human-drawn sketches that simulate real-world use cases. Our evaluation demonstrates that ToonComposer outperforms existing methods in visual quality, motion consistency, and production efficiency, offering a superior and more flexible solution for AI-assisted cartoon production.
comment: Project Page: https://lg-li.github.io/project/tooncomposer
☆ Searching for Privacy Risks in LLM Agents via Simulation
The widespread deployment of LLM-based agents is likely to introduce a critical privacy threat: malicious agents that proactively engage others in multi-turn interactions to extract sensitive information. These dynamic dialogues enable adaptive attack strategies that can cause severe privacy violations, yet their evolving nature makes it difficult to anticipate and discover sophisticated vulnerabilities manually. To tackle this problem, we present a search-based framework that alternates between improving attacker and defender instructions by simulating privacy-critical agent interactions. Each simulation involves three roles: data subject, data sender, and data recipient. While the data subject's behavior is fixed, the attacker (data recipient) attempts to extract sensitive information from the defender (data sender) through persistent and interactive exchanges. To explore this interaction space efficiently, our search algorithm employs LLMs as optimizers, using parallel search with multiple threads and cross-thread propagation to analyze simulation trajectories and iteratively propose new instructions. Through this process, we find that attack strategies escalate from simple direct requests to sophisticated multi-turn tactics such as impersonation and consent forgery, while defenses advance from rule-based constraints to identity-verification state machines. The discovered attacks and defenses transfer across diverse scenarios and backbone models, demonstrating strong practical utility for building privacy-aware agents.
comment: Preprint
☆ A Survey on Diffusion Language Models
Diffusion Language Models (DLMs) are rapidly emerging as a powerful and promising alternative to the dominant autoregressive (AR) paradigm. By generating tokens in parallel through an iterative denoising process, DLMs possess inherent advantages in reducing inference latency and capturing bidirectional context, thereby enabling fine-grained control over the generation process. While achieving a several-fold speed-up, recent advancements have allowed DLMs to show performance comparable to their autoregressive counterparts, making them a compelling choice for various natural language processing tasks. In this survey, we provide a holistic overview of the current DLM landscape. We trace its evolution and relationship with other paradigms, such as autoregressive and masked language models, and cover both foundational principles and state-of-the-art models. Our work offers an up-to-date, comprehensive taxonomy and an in-depth analysis of current techniques, from pre-training strategies to advanced post-training methods. Another contribution of this survey is a thorough review of DLM inference strategies and optimizations, including improvements in decoding parallelism, caching mechanisms, and generation quality. We also highlight the latest approaches to multimodal extensions of DLMs and delineate their applications across various practical scenarios. Furthermore, our discussion addresses the limitations and challenges of DLMs, including efficiency, long-sequence handling, and infrastructure requirements, while outlining future research directions to sustain progress in this rapidly evolving field. Project GitHub is available at https://github.com/VILA-Lab/Awesome-DLMs.
☆ TLE-Based A2C Agent for Terrestrial Coverage Orbital Path Planning
The increasing congestion of Low Earth Orbit (LEO) poses persistent challenges to the efficient deployment and safe operation of Earth observation satellites. Mission planners must now account not only for mission-specific requirements but also for the increasing collision risk with active satellites and space debris. This work presents a reinforcement learning framework using the Advantage Actor-Critic (A2C) algorithm to optimize satellite orbital parameters for precise terrestrial coverage within predefined surface radii. By formulating the problem as a Markov Decision Process (MDP) within a custom OpenAI Gymnasium environment, our method simulates orbital dynamics using classical Keplerian elements. The agent progressively learns to adjust five of the orbital parameters - semi-major axis, eccentricity, inclination, right ascension of ascending node, and the argument of perigee-to achieve targeted terrestrial coverage. Comparative evaluation against Proximal Policy Optimization (PPO) demonstrates A2C's superior performance, achieving 5.8x higher cumulative rewards (10.0 vs 9.263025) while converging in 31.5x fewer timesteps (2,000 vs 63,000). The A2C agent consistently meets mission objectives across diverse target coordinates while maintaining computational efficiency suitable for real-time mission planning applications. Key contributions include: (1) a TLE-based orbital simulation environment incorporating physics constraints, (2) validation of actor-critic methods' superiority over trust region approaches in continuous orbital control, and (3) demonstration of rapid convergence enabling adaptive satellite deployment. This approach establishes reinforcement learning as a computationally efficient alternative for scalable and intelligent LEO mission planning.
comment: 8 pages, 6 figures, 5 tables
☆ Medico 2025: Visual Question Answering for Gastrointestinal Imaging
The Medico 2025 challenge addresses Visual Question Answering (VQA) for Gastrointestinal (GI) imaging, organized as part of the MediaEval task series. The challenge focuses on developing Explainable Artificial Intelligence (XAI) models that answer clinically relevant questions based on GI endoscopy images while providing interpretable justifications aligned with medical reasoning. It introduces two subtasks: (1) answering diverse types of visual questions using the Kvasir-VQA-x1 dataset, and (2) generating multimodal explanations to support clinical decision-making. The Kvasir-VQA-x1 dataset, created from 6,500 images and 159,549 complex question-answer (QA) pairs, serves as the benchmark for the challenge. By combining quantitative performance metrics and expert-reviewed explainability assessments, this task aims to advance trustworthy Artificial Intelligence (AI) in medical image analysis. Instructions, data access, and an updated guide for participation are available in the official competition repository: https://github.com/simula/MediaEval-Medico-2025
☆ Performance of GPT-5 in Brain Tumor MRI Reasoning
Accurate differentiation of brain tumor types on magnetic resonance imaging (MRI) is critical for guiding treatment planning in neuro-oncology. Recent advances in large language models (LLMs) have enabled visual question answering (VQA) approaches that integrate image interpretation with natural language reasoning. In this study, we evaluated GPT-4o, GPT-5-nano, GPT-5-mini, and GPT-5 on a curated brain tumor VQA benchmark derived from 3 Brain Tumor Segmentation (BraTS) datasets - glioblastoma (GLI), meningioma (MEN), and brain metastases (MET). Each case included multi-sequence MRI triplanar mosaics and structured clinical features transformed into standardized VQA items. Models were assessed in a zero-shot chain-of-thought setting for accuracy on both visual and reasoning tasks. Results showed that GPT-5-mini achieved the highest macro-average accuracy (44.19%), followed by GPT-5 (43.71%), GPT-4o (41.49%), and GPT-5-nano (35.85%). Performance varied by tumor subtype, with no single model dominating across all cohorts. These findings suggest that GPT-5 family models can achieve moderate accuracy in structured neuro-oncological VQA tasks, but not at a level acceptable for clinical use.
☆ From Black Box to Transparency: Enhancing Automated Interpreting Assessment with Explainable AI in College Classrooms
Recent advancements in machine learning have spurred growing interests in automated interpreting quality assessment. Nevertheless, existing research suffers from insufficient examination of language use quality, unsatisfactory modeling effectiveness due to data scarcity and imbalance, and a lack of efforts to explain model predictions. To address these gaps, we propose a multi-dimensional modeling framework that integrates feature engineering, data augmentation, and explainable machine learning. This approach prioritizes explainability over ``black box'' predictions by utilizing only construct-relevant, transparent features and conducting Shapley Value (SHAP) analysis. Our results demonstrate strong predictive performance on a novel English-Chinese consecutive interpreting dataset, identifying BLEURT and CometKiwi scores to be the strongest predictive features for fidelity, pause-related features for fluency, and Chinese-specific phraseological diversity metrics for language use. Overall, by placing particular emphasis on explainability, we present a scalable, reliable, and transparent alternative to traditional human evaluation, facilitating the provision of detailed diagnostic feedback for learners and supporting self-regulated learning advantages not afforded by automated scores in isolation.
☆ Reinforced Language Models for Sequential Decision Making
Large Language Models (LLMs) show potential as sequential decision-making agents, but their application is often limited due to a reliance on large, computationally expensive models. This creates a need to improve smaller models, yet existing post-training methods are designed for single-turn interactions and cannot handle credit assignment in multi-step agentic tasks. To address this, we introduce Multi-Step Group-Relative Policy Optimization (MS-GRPO), a new algorithm for post-training LLM agents, grounded in formal Text-Mediated Stochastic Game (TSMG) and Language-Agent Policy (LAP) frameworks. For credit assignment, MS-GRPO attributes the entire cumulative episode reward to each individual episode step. We supplement this algorithm with a novel absolute-advantage-weighted episode sampling strategy that we show improves training performance. We evaluate our approach by post-training a 3-billion parameter model on Snake and Frozen Lake. Our experiments demonstrate that the method is effective in improving decision-making performance: our post-trained 3B parameter model outperforms a 72B parameter baseline by 50% on the Frozen Lake task. This work demonstrates that targeted post-training is a practical and efficient alternative to relying on model scale for creating sequential decision-making agents using LLMs.
☆ A Multimodal Neural Network for Recognizing Subjective Self-Disclosure Towards Social Robots
Subjective self-disclosure is an important feature of human social interaction. While much has been done in the social and behavioural literature to characterise the features and consequences of subjective self-disclosure, little work has been done thus far to develop computational systems that are able to accurately model it. Even less work has been done that attempts to model specifically how human interactants self-disclose with robotic partners. It is becoming more pressing as we require social robots to work in conjunction with and establish relationships with humans in various social settings. In this paper, our aim is to develop a custom multimodal attention network based on models from the emotion recognition literature, training this model on a large self-collected self-disclosure video corpus, and constructing a new loss function, the scale preserving cross entropy loss, that improves upon both classification and regression versions of this problem. Our results show that the best performing model, trained with our novel loss function, achieves an F1 score of 0.83, an improvement of 0.48 from the best baseline model. This result makes significant headway in the aim of allowing social robots to pick up on an interaction partner's self-disclosures, an ability that will be essential in social robots with social cognition.
comment: Accepted at 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
☆ Who Benefits from AI Explanations? Towards Accessible and Interpretable Systems IJCAI 2025
As AI systems are increasingly deployed to support decision-making in critical domains, explainability has become a means to enhance the understandability of these outputs and enable users to make more informed and conscious choices. However, despite growing interest in the usability of eXplainable AI (XAI), the accessibility of these methods, particularly for users with vision impairments, remains underexplored. This paper investigates accessibility gaps in XAI through a two-pronged approach. First, a literature review of 79 studies reveals that evaluations of XAI techniques rarely include disabled users, with most explanations relying on inherently visual formats. Second, we present a four-part methodological proof of concept that operationalizes inclusive XAI design: (1) categorization of AI systems, (2) persona definition and contextualization, (3) prototype design and implementation, and (4) expert and user assessment of XAI techniques for accessibility. Preliminary findings suggest that simplified explanations are more comprehensible for non-visual users than detailed ones, and that multimodal presentation is required for more equitable interpretability.
comment: Paper accepted for the IJCAI 2025 Workshop on Explainable Artificial Intelligence (XAI): https://sites.google.com/view/xai2025/proceedings
☆ The SET Perceptual Factors Framework: Towards Assured Perception for Autonomous Systems
Future autonomous systems promise significant societal benefits, yet their deployment raises concerns about safety and trustworthiness. A key concern is assuring the reliability of robot perception, as perception seeds safe decision-making. Failures in perception are often due to complex yet common environmental factors and can lead to accidents that erode public trust. To address this concern, we introduce the SET (Self, Environment, and Target) Perceptual Factors Framework. We designed the framework to systematically analyze how factors such as weather, occlusion, or sensor limitations negatively impact perception. To achieve this, the framework employs SET State Trees to categorize where such factors originate and SET Factor Trees to model how these sources and factors impact perceptual tasks like object detection or pose estimation. Next, we develop Perceptual Factor Models using both trees to quantify the uncertainty for a given task. Our framework aims to promote rigorous safety assurances and cultivate greater public understanding and trust in autonomous systems by offering a transparent and standardized method for identifying, modeling, and communicating perceptual risks.
comment: 4 pages, 4 figures, accepted to the Workshop on Public Trust in Autonomous Systems at the 2025 IEEE International Conference on Robotics & Automation
☆ Enhancing Fairness in Autoencoders for Node-Level Graph Anomaly Detection AI-2025
Graph anomaly detection (GAD) has become an increasingly important task across various domains. With the rapid development of graph neural networks (GNNs), GAD methods have achieved significant performance improvements. However, fairness considerations in GAD remain largely underexplored. Indeed, GNN-based GAD models can inherit and amplify biases present in training data, potentially leading to unfair outcomes. While existing efforts have focused on developing fair GNNs, most approaches target node classification tasks, where models often rely on simple layer architectures rather than autoencoder-based structures, which are the most widely used architecturs for anomaly detection. To address fairness in autoencoder-based GAD models, we propose \textbf{D}is\textbf{E}ntangled \textbf{C}ounterfactual \textbf{A}dversarial \textbf{F}air (DECAF)-GAD, a framework that alleviates bias while preserving GAD performance. Specifically, we introduce a structural causal model (SCM) to disentangle sensitive attributes from learned representations. Based on this causal framework, we formulate a specialized autoencoder architecture along with a fairness-guided loss function. Through extensive experiments on both synthetic and real-world datasets, we demonstrate that DECAF-GAD not only achieves competitive anomaly detection performance but also significantly enhances fairness metrics compared to baseline GAD methods. Our code is available at https://github.com/Tlhey/decaf_code.
comment: Accepted in ECAI-2025
☆ Ultra-High-Definition Reference-Based Landmark Image Super-Resolution with Generative Diffusion Prior
Reference-based Image Super-Resolution (RefSR) aims to restore a low-resolution (LR) image by utilizing the semantic and texture information from an additional reference high-resolution (reference HR) image. Existing diffusion-based RefSR methods are typically built upon ControlNet, which struggles to effectively align the information between the LR image and the reference HR image. Moreover, current RefSR datasets suffer from limited resolution and poor image quality, resulting in the reference images lacking sufficient fine-grained details to support high-quality restoration. To overcome the limitations above, we propose TriFlowSR, a novel framework that explicitly achieves pattern matching between the LR image and the reference HR image. Meanwhile, we introduce Landmark-4K, the first RefSR dataset for Ultra-High-Definition (UHD) landmark scenarios. Considering the UHD scenarios with real-world degradation, in TriFlowSR, we design a Reference Matching Strategy to effectively match the LR image with the reference HR image. Experimental results show that our approach can better utilize the semantic and texture information of the reference HR image compared to previous methods. To the best of our knowledge, we propose the first diffusion-based RefSR pipeline for ultra-high definition landmark scenarios under real-world degradation. Our code and model will be available at https://github.com/nkicsl/TriFlowSR.
☆ The Knowledge-Reasoning Dissociation: Fundamental Limitations of LLMs in Clinical Natural Language Inference
Large language models are often assumed to acquire increasingly structured, generalizable internal representations simply by scaling data and parameters. We interrogate this assumption by introducing a Clinical Trial Natural Language Inference benchmark comprising four reasoning families, Causal Attribution, Compositional Grounding, Epistemic Verification, and Risk State Abstraction. Each item is paired with a targeted Ground Knowledge and Meta-Level Reasoning Verification (GKMRV) probe, allowing us to dissociate failures of factual access from failures of inference. We evaluate six contemporary LLMs under both direct and chain of thought prompting. Models achieve near-ceiling GKMRV accuracy (mean accuracy 0.918) yet perform poorly on the main reasoning tasks (mean accuracy 0.25). Despite low accuracy, output inferences are highly consistent across samples (mean 0.87), indicating a systematic application of underlying heuristics and shortcuts. These results reveal fundamental structural and representational limitations: current LLMs often possess the relevant clinical knowledge but lack the structured, composable internal representations needed to deploy it reliably (e.g., integrating constraints, weighing evidence, or simulating counterfactuals). Decoupling knowledge from reasoning with GKMRV makes this dissociation explicit and measurable, providing an effective framework for probing the reliability of LLMs in high-stakes domains.
comment: 19 pages
☆ Estimating Covariance for Global Minimum Variance Portfolio: A Decision-Focused Learning Approach
Portfolio optimization constitutes a cornerstone of risk management by quantifying the risk-return trade-off. Since it inherently depends on accurate parameter estimation under conditions of future uncertainty, the selection of appropriate input parameters is critical for effective portfolio construction. However, most conventional statistical estimators and machine learning algorithms determine these parameters by minimizing mean-squared error (MSE), a criterion that can yield suboptimal investment decisions. In this paper, we adopt decision-focused learning (DFL) - an approach that directly optimizes decision quality rather than prediction error such as MSE - to derive the global minimum-variance portfolio (GMVP). Specifically, we theoretically derive the gradient of decision loss using the analytic solution of GMVP and its properties regarding the principal components of itself. Through extensive empirical evaluation, we show that prediction-focused estimation methods may fail to produce optimal allocations in practice, whereas DFL-based methods consistently deliver superior decision performance. Furthermore, we provide a comprehensive analysis of DFL's mechanism in GMVP construction, focusing on its volatility reduction capability, decision-driving features, and estimation characteristics.
comment: 11 pages, 12 figures, 3 tables
☆ Video-BLADE: Block-Sparse Attention Meets Step Distillation for Efficient Video Generation
Diffusion transformers currently lead the field in high-quality video generation, but their slow iterative denoising process and prohibitive quadratic attention costs for long sequences create significant inference bottlenecks. While both step distillation and sparse attention mechanisms have shown promise as independent acceleration strategies, effectively combining these approaches presents critical challenges -- training-free integration yields suboptimal results, while separately training sparse attention after step distillation requires prohibitively expensive high-quality video data. To overcome these limitations, we propose BLADE, an innovative data-free joint training framework that introduces: (1) an Adaptive Block-Sparse Attention (ASA) mechanism for dynamically generating content-aware sparsity masks to focus computation on salient spatiotemporal features, and (2) a sparsity-aware step distillation paradigm built upon Trajectory Distribution Matching (TDM) that directly incorporates sparsity into the distillation process rather than treating it as a separate compression step, with fast convergence. We validate BLADE on text-to-video models like CogVideoX-5B and Wan2.1-1.3B. Our framework demonstrates remarkable efficiency gains across different scales. On Wan2.1-1.3B, BLADE achieves a 14.10x end-to-end inference acceleration over a 50-step baseline. Moreover, on models such as CogVideoX-5B with short video sequence lengths, our framework delivers a robust 8.89x speedup. Crucially, the acceleration is accompanied by a consistent quality improvement. On the VBench-2.0 benchmark, BLADE boosts the score of CogVideoX-5B to 0.569 (from 0.534) and Wan2.1-1.3B to 0.570 (from 0.563), results that are further corroborated by superior ratings in human evaluations. Our code and model weights are publicly available at: http://ziplab.co/BLADE-Homepage/.
comment: Tech report
☆ AEGIS: Authenticity Evaluation Benchmark for AI-Generated Video Sequences
Recent advances in AI-generated content have fueled the rise of highly realistic synthetic videos, posing severe risks to societal trust and digital integrity. Existing benchmarks for video authenticity detection typically suffer from limited realism, insufficient scale, and inadequate complexity, failing to effectively evaluate modern vision-language models against sophisticated forgeries. To address this critical gap, we introduce AEGIS, a novel large-scale benchmark explicitly targeting the detection of hyper-realistic and semantically nuanced AI-generated videos. AEGIS comprises over 10,000 rigorously curated real and synthetic videos generated by diverse, state-of-the-art generative models, including Stable Video Diffusion, CogVideoX-5B, KLing, and Sora, encompassing open-source and proprietary architectures. In particular, AEGIS features specially constructed challenging subsets enhanced with robustness evaluation. Furthermore, we provide multimodal annotations spanning Semantic-Authenticity Descriptions, Motion Features, and Low-level Visual Features, facilitating authenticity detection and supporting downstream tasks such as multimodal fusion and forgery localization. Extensive experiments using advanced vision-language models demonstrate limited detection capabilities on the most challenging subsets of AEGIS, highlighting the dataset's unique complexity and realism beyond the current generalization capabilities of existing models. In essence, AEGIS establishes an indispensable evaluation benchmark, fundamentally advancing research toward developing genuinely robust, reliable, broadly generalizable video authenticity detection methodologies capable of addressing real-world forgery threats. Our dataset is available on https://huggingface.co/datasets/Clarifiedfish/AEGIS.
comment: Proceedings of the 33rd ACM International Conference on Multimedia
☆ Modeling Human Responses to Multimodal AI Content
As AI-generated content becomes widespread, so does the risk of misinformation. While prior research has primarily focused on identifying whether content is authentic, much less is known about how such content influences human perception and behavior. In domains like trading or the stock market, predicting how people react (e.g., whether a news post will go viral), can be more critical than verifying its factual accuracy. To address this, we take a human-centered approach and introduce the MhAIM Dataset, which contains 154,552 online posts (111,153 of them AI-generated), enabling large-scale analysis of how people respond to AI-generated content. Our human study reveals that people are better at identifying AI content when posts include both text and visuals, particularly when inconsistencies exist between the two. We propose three new metrics: trustworthiness, impact, and openness, to quantify how users judge and engage with online content. We present T-Lens, an LLM-based agent system designed to answer user queries by incorporating predicted human responses to multimodal information. At its core is HR-MCP (Human Response Model Context Protocol), built on the standardized Model Context Protocol (MCP), enabling seamless integration with any LLM. This integration allows T-Lens to better align with human reactions, enhancing both interpretability and interaction capabilities. Our work provides empirical insights and practical tools to equip LLMs with human-awareness capabilities. By highlighting the complex interplay among AI, human cognition, and information reception, our findings suggest actionable strategies for mitigating the risks of AI-driven misinformation.
☆ FROGENT: An End-to-End Full-process Drug Design Agent
Powerful AI tools for drug discovery reside in isolated web apps, desktop programs, and code libraries. Such fragmentation forces scientists to manage incompatible interfaces and specialized scripts, which can be a cumbersome and repetitive process. To address this issue, a Full-pROcess druG dEsign ageNT, named FROGENT, has been proposed. Specifically, FROGENT utilizes a Large Language Model and the Model Context Protocol to integrate multiple dynamic biochemical databases, extensible tool libraries, and task-specific AI models. This agentic framework allows FROGENT to execute complicated drug discovery workflows dynamically, including component tasks such as target identification, molecule generation and retrosynthetic planning. FROGENT has been evaluated on eight benchmarks that cover various aspects of drug discovery, such as knowledge retrieval, property prediction, virtual screening, mechanistic analysis, molecular design, and synthesis. It was compared against six increasingly advanced ReAct-style agents that support code execution and literature searches. Empirical results demonstrated that FROGENT triples the best baseline performance in hit-finding and doubles it in interaction profiling, significantly outperforming both the open-source model Qwen3-32B and the commercial model GPT-4o. In addition, real-world cases have been utilized to validate the practicability and generalization of FROGENT. This development suggests that streamlining the agentic drug discovery pipeline can significantly enhance researcher productivity.
comment: 9 pages, 5 figures
☆ Natively Trainable Sparse Attention for Hierarchical Point Cloud Datasets
Unlocking the potential of transformers on datasets of large physical systems depends on overcoming the quadratic scaling of the attention mechanism. This work explores combining the Erwin architecture with the Native Sparse Attention (NSA) mechanism to improve the efficiency and receptive field of transformer models for large-scale physical systems, addressing the challenge of quadratic attention complexity. We adapt the NSA mechanism for non-sequential data, implement the Erwin NSA model, and evaluate it on three datasets from the physical sciences -- cosmology simulations, molecular dynamics, and air pressure modeling -- achieving performance that matches or exceeds that of the original Erwin model. Additionally, we reproduce the experimental results from the Erwin paper to validate their implementation.
☆ Pass@k Training for Adaptively Balancing Exploration and Exploitation of Large Reasoning Models
Reinforcement learning with verifiable rewards (RLVR), which typically adopts Pass@1 as the reward, has faced the issues in balancing exploration and exploitation, causing policies to prefer conservative actions, converging to a local optimum. Identifying an appropriate reward metric is therefore crucial. Regarding the prior work, although Pass@k has been used in evaluation, its connection to LLM exploration ability in RLVR remains largely overlooked. To investigate this, we first use Pass@k as the reward to train the policy model (i.e., $\textbf{Pass@k Training}$), and observe the improvement on its exploration ability. Next, we derive an analytical solution for the advantage of Pass@k Training, leading to an efficient and effective process. Building on this, our analysis reveals that exploration and exploitation are not inherently conflicting objectives, while they can mutually enhance each other. Moreover, Pass@k Training with analytical derivation essentially involves directly designing the advantage function. Inspired by this, we preliminarily explore the advantage design for RLVR, showing promising results and highlighting a potential future direction.
comment: Technical Report about RLVR: 32 pages, 18 figures, 7 tables
☆ Scaling Up without Fading Out: Goal-Aware Sparse GNN for RL-based Generalized Planning
Generalized planning using deep reinforcement learning (RL) combined with graph neural networks (GNNs) has shown promising results in various symbolic planning domains described by PDDL. However, existing approaches typically represent planning states as fully connected graphs, leading to a combinatorial explosion in edge information and substantial sparsity as problem scales grow, especially evident in large grid-based environments. This dense representation results in diluted node-level information, exponentially increases memory requirements, and ultimately makes learning infeasible for larger-scale problems. To address these challenges, we propose a sparse, goal-aware GNN representation that selectively encodes relevant local relationships and explicitly integrates spatial features related to the goal. We validate our approach by designing novel drone mission scenarios based on PDDL within a grid world, effectively simulating realistic mission execution environments. Our experimental results demonstrate that our method scales effectively to larger grid sizes previously infeasible with dense graph representations and substantially improves policy generalization and success rates. Our findings provide a practical foundation for addressing realistic, large-scale generalized planning tasks.
comment: 16 pages, 10 figures
☆ Agentic Design Review System
Evaluating graphic designs involves assessing it from multiple facets like alignment, composition, aesthetics and color choices. Evaluating designs in a holistic way involves aggregating feedback from individual expert reviewers. Towards this, we propose an Agentic Design Review System (AgenticDRS), where multiple agents collaboratively analyze a design, orchestrated by a meta-agent. A novel in-context exemplar selection approach based on graph matching and a unique prompt expansion method plays central role towards making each agent design aware. Towards evaluating this framework, we propose DRS-BENCH benchmark. Thorough experimental evaluation against state-of-the-art baselines adapted to the problem setup, backed-up with critical ablation experiments brings out the efficacy of Agentic-DRS in evaluating graphic designs and generating actionable feedback. We hope that this work will attract attention to this pragmatic, yet under-explored research direction.
☆ APFL: Analytic Personalized Federated Learning via Dual-Stream Least Squares
Personalized Federated Learning (PFL) has presented a significant challenge to deliver personalized models to individual clients through collaborative training. Existing PFL methods are often vulnerable to non-IID data, which severely hinders collective generalization and then compromises the subsequent personalization efforts. In this paper, to address this non-IID issue in PFL, we propose an Analytic Personalized Federated Learning (APFL) approach via dual-stream least squares. In our APFL, we use a foundation model as a frozen backbone for feature extraction. Subsequent to the feature extractor, we develop dual-stream analytic models to achieve both collective generalization and individual personalization. Specifically, our APFL incorporates a shared primary stream for global generalization across all clients, and a dedicated refinement stream for local personalization of each individual client. The analytical solutions of our APFL enable its ideal property of heterogeneity invariance, theoretically meaning that each personalized model remains identical regardless of how heterogeneous the data are distributed across all other clients. Empirical results across various datasets also validate the superiority of our APFL over state-of-the-art baselines, with advantages of at least 1.10%-15.45% in accuracy.
comment: 9 pages, 4 figures, 2 tables
☆ EgoCross: Benchmarking Multimodal Large Language Models for Cross-Domain Egocentric Video Question Answering
Recent advances in Multimodal Large Language Models (MLLMs) have significantly pushed the frontier of egocentric video question answering (EgocentricQA). However, existing benchmarks and studies are mainly limited to common daily activities such as cooking and cleaning. In contrast, real-world deployment inevitably encounters domain shifts, where target domains differ substantially in both visual style and semantic content. To bridge this gap, we introduce \textbf{EgoCross}, a comprehensive benchmark designed to evaluate the cross-domain generalization of MLLMs in EgocentricQA. EgoCross covers four diverse and challenging domains, including surgery, industry, extreme sports, and animal perspective, representing realistic and high-impact application scenarios. It comprises approximately 1,000 QA pairs across 798 video clips, spanning four key QA tasks: prediction, recognition, localization, and counting. Each QA pair provides both OpenQA and CloseQA formats to support fine-grained evaluation. Extensive experiments show that most existing MLLMs, whether general-purpose or egocentric-specialized, struggle to generalize to domains beyond daily life, highlighting the limitations of current models. Furthermore, we conduct several pilot studies, \eg, fine-tuning and reinforcement learning, to explore potential improvements. We hope EgoCross and our accompanying analysis will serve as a foundation for advancing domain-adaptive, robust egocentric video understanding. Data and codes will be released at: \href{https://github.com/MyUniverse0726/EgoCross}{https://github.com/MyUniverse0726/EgoCross.}
☆ Electromagnetic Simulations of Antennas on GPUs for Machine Learning Applications
This study proposes an antenna simulation framework powered by graphics processing units (GPUs) based on an open-source electromagnetic (EM) simulation software (gprMax) for machine learning applications of antenna design and optimization. Furthermore, it compares the simulation results with those obtained through commercial EM software. The proposed software framework for machine learning and surrogate model applications will produce antenna data sets consisting of a large number of antenna simulation results using GPUs. Although machine learning methods can attain the optimum solutions for many problems, they are known to be data-hungry and require a great deal of samples for the training stage of the algorithms. However, producing a sufficient number of training samples in EM applications within a limited time is challenging due to the high computational complexity of EM simulations. Therefore, GPUs are utilized in this study to simulate a large number of antennas with predefined or random antenna shape parameters to produce data sets. Moreover, this study also compares various machine learning and deep learning models in terms of antenna parameter estimation performance. This study demonstrates that an entry-level GPU substantially outperforms a high-end CPU in terms of computational performance, while a high-end gaming GPU can achieve around 18 times more computational performance compared to a high-end CPU. Moreover, it is shown that the open-source EM simulation software can deliver similar results to those obtained via commercial software in the simulation of microstrip antennas when the spatial resolution of the simulations is sufficiently fine.
comment: 20 pages, 10 figures, 4 tables, journal article
☆ GenOM: Ontology Matching with Description Generation and Large Language Model
Ontology matching (OM) plays an essential role in enabling semantic interoperability and integration across heterogeneous knowledge sources, particularly in the biomedical domain which contains numerous complex concepts related to diseases and pharmaceuticals. This paper introduces GenOM, a large language model (LLM)-based ontology alignment framework, which enriches the semantic representations of ontology concepts via generating textual definitions, retrieves alignment candidates with an embedding model, and incorporates exact matching-based tools to improve precision. Extensive experiments conducted on the OAEI Bio-ML track demonstrate that GenOM can often achieve competitive performance, surpassing many baselines including traditional OM systems and recent LLM-based methods. Further ablation studies confirm the effectiveness of semantic enrichment and few-shot prompting, highlighting the framework's robustness and adaptability.
☆ REFN: A Reinforcement-Learning-From-Network Framework against 1-day/n-day Exploitations
The exploitation of 1 day or n day vulnerabilities poses severe threats to networked devices due to massive deployment scales and delayed patching (average Mean Time To Patch exceeds 60 days). Existing defenses, including host based patching and network based filtering, are inadequate due to limited scalability across diverse devices, compatibility issues especially with embedded or legacy systems, and error prone deployment process (manual patch validation). To address these issues, we introduce REFN (Reinforcement Learning From Network), a novel framework that trains Large Language Models (LLMs) to autonomously generate network filters to prevent 1 day or n day exploitations. REFN ensures scalability by uniquely employs Reinforcement Learning (RL) driven by online network rewards instead of traditional Human Feedback (RLHF). REFN guarantees compatibility via unified deployment on edge security gateways (Amazon Eero). REFN provides robustness via online validation using real network traffic. Crucially, REFN addresses three core challenges in training LLMs for exploit prevention: 1) expanding current LLMs limited vulnerability fixing expertise via Agentic RAG based Knowledge Distillation, 2) bridging current LLMs language to network gaps through an RL From VNF Pipeline that translates language context (vulnerability description) into network enforcement, 3) addressing the LLM hallucination and non determinism via the Online Agentic Validation that penalizes erroneous outputs. Evaluated across 22 families of 1 day or n day exploits, REFN demonstrates effectiveness (21.1 percent higher accuracy than alternatives), efficiency (Mean Time To Patch of 3.65 hours) and scalability (easily scale to 10K devices). REFN serves as an initial step toward training LLMs to rapidly prevent massive scale 1 day or n day exploitations.
☆ Learning from Natural Language Feedback for Personalized Question Answering
Personalization is crucial for enhancing both the effectiveness and user satisfaction of language technologies, particularly in information-seeking tasks like question answering. Current approaches for personalizing large language models (LLMs) often rely on retrieval-augmented generation (RAG), followed by reinforcement learning with scalar reward signals to teach models how to use retrieved personal context. We believe that these scalar rewards sometimes provide weak, non-instructive feedback, limiting learning efficiency and personalization quality. We introduce VAC, a novel framework for personalized response generation that replaces scalar rewards with natural language feedback (NLF) that are generated conditioned on the user profiles and the question narratives. NLF serves as a rich and actionable supervision signal, allowing the policy model to iteratively refine its outputs and internalize effective personalization strategies. Training alternates between optimizing the feedback model and fine-tuning the policy model on the improved responses, resulting in a policy model that no longer requires feedback at inference. Evaluation on the LaMP-QA benchmark that consists of three diverse domains demonstrates consistent and significant improvements over the state-of-the-art results. Human evaluations further confirm the superior quality of the generated responses. These results demonstrate that NLF provides more effective signals for optimizing personalized question answering.
☆ Continuous Bangla Sign Language Translation: Mitigating the Expense of Gloss Annotation with the Assistance of Graph
Millions of individuals worldwide are affected by deafness and hearing impairment. Sign language serves as a sophisticated means of communication for the deaf and hard of hearing. However, in societies that prioritize spoken languages, sign language often faces underestimation, leading to communication barriers and social exclusion. The Continuous Bangla Sign Language Translation project aims to address this gap by enhancing translation methods. While recent approaches leverage transformer architecture for state-of-the-art results, our method integrates graph-based methods with the transformer architecture. This fusion, combining transformer and STGCN-LSTM architectures, proves more effective in gloss-free translation. Our contributions include architectural fusion, exploring various fusion strategies, and achieving a new state-of-the-art performance on diverse sign language datasets, namely RWTH-PHOENIX-2014T, CSL-Daily, How2Sign, and BornilDB v1.0. Our approach demonstrates superior performance compared to current translation outcomes across all datasets, showcasing notable improvements of BLEU-4 scores of 4.01, 2.07, and 0.5, surpassing those of GASLT, GASLT and slt_how2sign in RWTH-PHOENIX-2014T, CSL-Daily, and How2Sign, respectively. Also, we introduce benchmarking on the BornilDB v1.0 dataset for the first time. Our method sets a benchmark for future research, emphasizing the importance of gloss-free translation to improve communication accessibility for the deaf and hard of hearing.
☆ Hybrid Generative Fusion for Efficient and Privacy-Preserving Face Recognition Dataset Generation ICCV 2025
In this paper, we present our approach to the DataCV ICCV Challenge, which centers on building a high-quality face dataset to train a face recognition model. The constructed dataset must not contain identities overlapping with any existing public face datasets. To handle this challenge, we begin with a thorough cleaning of the baseline HSFace dataset, identifying and removing mislabeled or inconsistent identities through a Mixture-of-Experts (MoE) strategy combining face embedding clustering and GPT-4o-assisted verification. We retain the largest consistent identity cluster and apply data augmentation up to a fixed number of images per identity. To further diversify the dataset, we generate synthetic identities using Stable Diffusion with prompt engineering. As diffusion models are computationally intensive, we generate only one reference image per identity and efficiently expand it using Vec2Face, which rapidly produces 49 identity-consistent variants. This hybrid approach fuses GAN-based and diffusion-based samples, enabling efficient construction of a diverse and high-quality dataset. To address the high visual similarity among synthetic identities, we adopt a curriculum learning strategy by placing them early in the training schedule, allowing the model to progress from easier to harder samples. Our final dataset contains 50 images per identity, and all newly generated identities are checked with mainstream face datasets to ensure no identity leakage. Our method achieves \textbf{1st place} in the competition, and experimental results show that our dataset improves model performance across 10K, 20K, and 100K identity scales. Code is available at https://github.com/Ferry-Li/datacv_fr.
comment: This paper has been accpeted to ICCV 2025 DataCV Workshop
☆ STEP: Stepwise Curriculum Learning for Context-Knowledge Fusion in Conversational Recommendation
Conversational recommender systems (CRSs) aim to proactively capture user preferences through natural language dialogue and recommend high-quality items. To achieve this, CRS gathers user preferences via a dialog module and builds user profiles through a recommendation module to generate appropriate recommendations. However, existing CRS faces challenges in capturing the deep semantics of user preferences and dialogue context. In particular, the efficient integration of external knowledge graph (KG) information into dialogue generation and recommendation remains a pressing issue. Traditional approaches typically combine KG information directly with dialogue content, which often struggles with complex semantic relationships, resulting in recommendations that may not align with user expectations. To address these challenges, we introduce STEP, a conversational recommender centered on pre-trained language models that combines curriculum-guided context-knowledge fusion with lightweight task-specific prompt tuning. At its heart, an F-Former progressively aligns the dialogue context with knowledge-graph entities through a three-stage curriculum, thus resolving fine-grained semantic mismatches. The fused representation is then injected into the frozen language model via two minimal yet adaptive prefix prompts: a conversation prefix that steers response generation toward user intent and a recommendation prefix that biases item ranking toward knowledge-consistent candidates. This dual-prompt scheme allows the model to share cross-task semantics while respecting the distinct objectives of dialogue and recommendation. Experimental results show that STEP outperforms mainstream methods in the precision of recommendation and dialogue quality in two public datasets.
comment: 10 pages; 4 figures; 6 tables; code available at https://github.com/Alex-bupt/STEP
☆ AddressVLM: Cross-view Alignment Tuning for Image Address Localization using Large Vision-Language Models
Large visual language models (LVLMs) have demonstrated impressive performance in coarse-grained geo-localization at the country or city level, but they struggle with fine-grained street-level localization within urban areas. In this paper, we explore integrating city-wide address localization capabilities into LVLMs, facilitating flexible address-related question answering using street-view images. A key challenge is that the street-view visual question-and-answer (VQA) data provides only microscopic visual cues, leading to subpar performance in fine-tuned models. To tackle this issue, we incorporate perspective-invariant satellite images as macro cues and propose cross-view alignment tuning including a satellite-view and street-view image grafting mechanism, along with an automatic label generation mechanism. Then LVLM's global understanding of street distribution is enhanced through cross-view matching. Our proposed model, named AddressVLM, consists of two-stage training protocols: cross-view alignment tuning and address localization tuning. Furthermore, we have constructed two street-view VQA datasets based on image address localization datasets from Pittsburgh and San Francisco. Qualitative and quantitative evaluations demonstrate that AddressVLM outperforms counterpart LVLMs by over 9% and 12% in average address localization accuracy on these two datasets, respectively.
☆ Deep Learning in Classical and Quantum Physics
Scientific progress is tightly coupled to the emergence of new research tools. Today, machine learning (ML)-especially deep learning (DL)-has become a transformative instrument for quantum science and technology. Owing to the intrinsic complexity of quantum systems, DL enables efficient exploration of large parameter spaces, extraction of patterns from experimental data, and data-driven guidance for research directions. These capabilities already support tasks such as refining quantum control protocols and accelerating the discovery of materials with targeted quantum properties, making ML/DL literacy an essential skill for the next generation of quantum scientists. At the same time, DL's power brings risks: models can overfit noisy data, obscure causal structure, and yield results with limited physical interpretability. Recognizing these limitations and deploying mitigation strategies is crucial for scientific rigor. These lecture notes provide a comprehensive, graduate-level introduction to DL for quantum applications, combining conceptual exposition with hands-on examples. Organized as a progressive sequence, they aim to equip readers to decide when and how to apply DL effectively, to understand its practical constraints, and to adapt AI methods responsibly to problems across quantum physics, chemistry, and engineering.
☆ Serial Over Parallel: Learning Continual Unification for Multi-Modal Visual Object Tracking and Benchmarking
Unifying multiple multi-modal visual object tracking (MMVOT) tasks draws increasing attention due to the complementary nature of different modalities in building robust tracking systems. Existing practices mix all data sensor types in a single training procedure, structuring a parallel paradigm from the data-centric perspective and aiming for a global optimum on the joint distribution of the involved tasks. However, the absence of a unified benchmark where all types of data coexist forces evaluations on separated benchmarks, causing \textit{inconsistency} between training and testing, thus leading to performance \textit{degradation}. To address these issues, this work advances in two aspects: \ding{182} A unified benchmark, coined as UniBench300, is introduced to bridge the inconsistency by incorporating multiple task data, reducing inference passes from three to one and cutting time consumption by 27\%. \ding{183} The unification process is reformulated in a serial format, progressively integrating new tasks. In this way, the performance degradation can be specified as knowledge forgetting of previous tasks, which naturally aligns with the philosophy of continual learning (CL), motivating further exploration of injecting CL into the unification process. Extensive experiments conducted on two baselines and four benchmarks demonstrate the significance of UniBench300 and the superiority of CL in supporting a stable unification process. Moreover, while conducting dedicated analyses, the performance degradation is found to be negatively correlated with network capacity. Additionally, modality discrepancies contribute to varying degradation levels across tasks (RGBT > RGBD > RGBE in MMVOT), offering valuable insights for future multi-modal vision research. Source codes and the proposed benchmark is available at \textit{https://github.com/Zhangyong-Tang/UniBench300}.
comment: ACMMM 2025
☆ SPHENIC: Topology-Informed Multi-View Clustering for Spatial Transcriptomics
By incorporating spatial location information, spatial-transcriptomics clustering yields more comprehensive insights into cell subpopulation identification. Despite recent progress, existing methods have at least two limitations: (i) topological learning typically considers only representations of individual cells or their interaction graphs; however, spatial transcriptomic profiles are often noisy, making these approaches vulnerable to low-quality topological signals, and (ii) insufficient modeling of spatial neighborhood information leads to low-quality spatial embeddings. To address these limitations, we propose SPHENIC, a novel Spatial Persistent Homology Enhanced Neighborhood Integrative Clustering method. Specifically, SPHENIC incorporates invariant topological features into the clustering network to achieve stable representation learning. Additionally, to construct high-quality spatial embeddings that reflect the true cellular distribution, we design the Spatial Constraint and Distribution Optimization Module (SCDOM). This module increases the similarity between a cell's embedding and those of its spatial neighbors, decreases similarity with non-neighboring cells, and thereby produces clustering-friendly spatial embeddings. Extensive experiments on 14 benchmark spatial transcriptomic slices demonstrate that SPHENIC achieves superior performance on the spatial clustering task, outperforming existing state-of-the-art methods by 3.31%-6.54% over the best alternative.
comment: 12 pages, 6 figures, 2 tables
☆ Fourier-Guided Attention Upsampling for Image Super-Resolution
We propose Frequency-Guided Attention (FGA), a lightweight upsampling module for single image super-resolution. Conventional upsamplers, such as Sub-Pixel Convolution, are efficient but frequently fail to reconstruct high-frequency details and introduce aliasing artifacts. FGA addresses these issues by integrating (1) a Fourier feature-based Multi-Layer Perceptron (MLP) for positional frequency encoding, (2) a cross-resolution Correlation Attention Layer for adaptive spatial alignment, and (3) a frequency-domain L1 loss for spectral fidelity supervision. Adding merely 0.3M parameters, FGA consistently enhances performance across five diverse super-resolution backbones in both lightweight and full-capacity scenarios. Experimental results demonstrate average PSNR gains of 0.12~0.14 dB and improved frequency-domain consistency by up to 29%, particularly evident on texture-rich datasets. Visual and spectral evaluations confirm FGA's effectiveness in reducing aliasing and preserving fine details, establishing it as a practical, scalable alternative to traditional upsampling methods.
comment: 15 pages, 7 figures, under submission to a journal
☆ MSRS: Adaptive Multi-Subspace Representation Steering for Attribute Alignment in Large Language Models
Activation steering offers a promising approach to controlling the behavior of Large Language Models by directly manipulating their internal activations. However, most existing methods struggle to jointly steer multiple attributes, often resulting in interference and undesirable trade-offs. To address this challenge, we propose Multi-Subspace Representation Steering (MSRS), a novel framework for effective multi-attribute steering via subspace representation fine-tuning. MSRS reduces inter-attribute interference by allocating orthogonal subspaces to each attribute, isolating their influence within the model's representation space. MSRS also incorporates a hybrid subspace composition strategy: it combines attribute-specific subspaces for unique steering directions with a shared subspace for common steering directions. A dynamic weighting function learns to efficiently integrate these components for precise control. During inference, MSRS introduces a token-level steering mechanism that dynamically identifies and intervenes on the most semantically relevant tokens, enabling fine-grained behavioral modulation. Experimental results show that MSRS significantly reduces attribute conflicts, surpasses existing methods across a range of attributes, and generalizes effectively to diverse downstream tasks.
☆ On Spectral Properties of Gradient-based Explanation Methods
Understanding the behavior of deep networks is crucial to increase our confidence in their results. Despite an extensive body of work for explaining their predictions, researchers have faced reliability issues, which can be attributed to insufficient formalism. In our research, we adopt novel probabilistic and spectral perspectives to formally analyze explanation methods. Our study reveals a pervasive spectral bias stemming from the use of gradient, and sheds light on some common design choices that have been discovered experimentally, in particular, the use of squared gradient and input perturbation. We further characterize how the choice of perturbation hyperparameters in explanation methods, such as SmoothGrad, can lead to inconsistent explanations and introduce two remedies based on our proposed formalism: (i) a mechanism to determine a standard perturbation scale, and (ii) an aggregation method which we call SpectralLens. Finally, we substantiate our theoretical results through quantitative evaluations.
comment: 36 pages, 16 figures, published in European Conference on Computer Vision 2024
☆ FreeGAD: A Training-Free yet Effective Approach for Graph Anomaly Detection
Graph Anomaly Detection (GAD) aims to identify nodes that deviate from the majority within a graph, playing a crucial role in applications such as social networks and e-commerce. Despite the current advancements in deep learning-based GAD, existing approaches often suffer from high deployment costs and poor scalability due to their complex and resource-intensive training processes. Surprisingly, our empirical findings suggest that the training phase of deep GAD methods, commonly perceived as crucial, may actually contribute less to anomaly detection performance than expected. Inspired by this, we propose FreeGAD, a novel training-free yet effective GAD method. Specifically, it leverages an affinity-gated residual encoder to generate anomaly-aware representations. Meanwhile, FreeGAD identifies anchor nodes as pseudo-normal and anomalous guides, followed by calculating anomaly scores through anchor-guided statistical deviations. Extensive experiments demonstrate that FreeGAD achieves superior anomaly detection performance, efficiency, and scalability on multiple benchmark datasets from diverse domains, without any training or iterative optimization.
☆ Fake Speech Wild: Detecting Deepfake Speech on Social Media Platform
The rapid advancement of speech generation technology has led to the widespread proliferation of deepfake speech across social media platforms. While deepfake audio countermeasures (CMs) achieve promising results on public datasets, their performance degrades significantly in cross-domain scenarios. To advance CMs for real-world deepfake detection, we first propose the Fake Speech Wild (FSW) dataset, which includes 254 hours of real and deepfake audio from four different media platforms, focusing on social media. As CMs, we establish a benchmark using public datasets and advanced selfsupervised learning (SSL)-based CMs to evaluate current CMs in real-world scenarios. We also assess the effectiveness of data augmentation strategies in enhancing CM robustness for detecting deepfake speech on social media. Finally, by augmenting public datasets and incorporating the FSW training set, we significantly advanced real-world deepfake audio detection performance, achieving an average equal error rate (EER) of 3.54% across all evaluation sets.
☆ PTQAT: A Hybrid Parameter-Efficient Quantization Algorithm for 3D Perception Tasks ICCV
Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT) represent two mainstream model quantization approaches. However, PTQ often leads to unacceptable performance degradation in quantized models, while QAT imposes substantial GPU memory requirements and extended training time due to weight fine-tuning.In this paper, we propose PTQAT, a novel general hybrid quantization algorithm for the efficient deployment of 3D perception networks. To address the speed accuracy trade-off between PTQ and QAT, our method selects critical layers for QAT fine-tuning and performs PTQ on the remaining layers. Contrary to intuition, fine-tuning the layers with smaller output discrepancies before and after quantization, rather than those with larger discrepancies, actually leads to greater improvements in the model's quantization accuracy. This means we better compensate for quantization errors during their propagation, rather than addressing them at the point where they occur. The proposed PTQAT achieves similar performance to QAT with more efficiency by freezing nearly 50% of quantifiable layers. Additionally, PTQAT is a universal quantization method that supports various quantization bit widths (4 bits) as well as different model architectures, including CNNs and Transformers. The experimental results on nuScenes across diverse 3D perception tasks, including object detection, semantic segmentation, and occupancy prediction, show that our method consistently outperforms QAT-only baselines. Notably, it achieves 0.2%-0.9% NDS and 0.3%-1.0% mAP gains in object detection, 0.3%-2.0% mIoU gains in semantic segmentation and occupancy prediction while fine-tuning fewer weights.
comment: 8 pages, Accepted by ICCVW 2025
☆ Retrieval-Augmented Prompt for OOD Detection
Out-of-Distribution (OOD) detection is crucial for the reliable deployment of machine learning models in-the-wild, enabling accurate identification of test samples that differ from the training data distribution. Existing methods rely on auxiliary outlier samples or in-distribution (ID) data to generate outlier information for training, but due to limited outliers and their mismatch with real test OOD samples, they often fail to provide sufficient semantic supervision, leading to suboptimal performance. To address this, we propose a novel OOD detection method called Retrieval-Augmented Prompt (RAP). RAP augments a pre-trained vision-language model's prompts by retrieving external knowledge, offering enhanced semantic supervision for OOD detection. During training, RAP retrieves descriptive words for outliers based on joint similarity with external textual knowledge and uses them to augment the model's OOD prompts. During testing, RAP dynamically updates OOD prompts in real-time based on the encountered OOD samples, enabling the model to rapidly adapt to the test environment. Our extensive experiments demonstrate that RAP achieves state-of-the-art performance on large-scale OOD detection benchmarks. For example, in 1-shot OOD detection on the ImageNet-1k dataset, RAP reduces the average FPR95 by 7.05% and improves the AUROC by 1.71% compared to previous methods. Additionally, comprehensive ablation studies validate the effectiveness of each module and the underlying motivations of our approach.
☆ When Language Overrules: Revealing Text Dominance in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across a diverse range of multimodal tasks. However, these models suffer from a core problem known as text dominance: they depend heavily on text for their inference, while underutilizing other modalities. While prior work has acknowledged this phenomenon in vision-language tasks, often attributing it to data biases or model architectures. In this paper, we conduct the first systematic investigation of text dominance across diverse data modalities, including images, videos, audio, time-series, and graphs. To measure this imbalance, we propose two evaluation metrics: the Modality Dominance Index (MDI) and the Attention Efficiency Index (AEI). Our comprehensive analysis reveals that text dominance is both significant and pervasive across all tested modalities. Our in-depth analysis identifies three underlying causes: attention dilution from severe token redundancy in non-textual modalities, the influence of fusion architecture design, and task formulations that implicitly favor textual inputs. Furthermore, we propose a simple token compression method that effectively rebalances model attention. Applying this method to LLaVA-7B, for instance, drastically reduces its MDI from 10.23 to a well-balanced value of 0.86. Our analysis and methodological framework offer a foundation for the development of more equitable and comprehensive multimodal language models.
☆ Stabilizing Long-term Multi-turn Reinforcement Learning with Gated Rewards
Reward sparsity in long-horizon reinforcement learning (RL) tasks remains a significant challenge, while existing outcome-based reward shaping struggles to define meaningful immediate rewards without introducing bias or requiring explicit task decomposition. Alternatively, verification-based reward shaping uses stepwise critics, but misalignment between immediate rewards and long-term objectives can lead to reward hacking and suboptimal policies. In this work, we address this problem in the context of software engineering (SWE) tasks, where multi-turn reasoning and rule-based verification are critical. We introduce the SWE-oriented RL Framework, a unified system supporting multi-turn interaction, docker-based execution, and customizable reward functions. Additionally, we propose Gated Reward Accumulation (G-RA), a novel method that accumulates immediate rewards only when high-level (long-term) rewards meet a predefined threshold, ensuring stable RL optimization. Experiments on SWE-bench Verified and kBench demonstrate that G-RA leads to an increase in completion rates (47.6\% \rightarrow 93.8\% and 22.0\% \rightarrow 86.0\%) and modification rates (19.6\% \rightarrow 23.8\% and 12.0\% \rightarrow 42.0\%), while avoiding policy degradation caused by reward misalignment. Our findings highlight the importance of balanced reward accumulation in long-horizon RL and provide a practical solution.
☆ Improving Value-based Process Verifier via Low-Cost Variance Reduction
Large language models (LLMs) have achieved remarkable success in a wide range of tasks. However, their reasoning capabilities, particularly in complex domains like mathematics, remain a significant challenge. Value-based process verifiers, which estimate the probability of a partial reasoning chain leading to a correct solution, are a promising approach for improving reasoning. Nevertheless, their effectiveness is often hindered by estimation error in their training annotations, a consequence of the limited number of Monte Carlo (MC) samples feasible due to the high cost of LLM inference. In this paper, we identify that the estimation error primarily arises from high variance rather than bias, and the MC estimator is a Minimum Variance Unbiased Estimator (MVUE). To address the problem, we propose the \textsc{Com}pound \textsc{M}onte \textsc{C}arlo \textsc{S}ampling (ComMCS) method, which constructs an unbiased estimator by linearly combining the MC estimators from the current and subsequent steps. Theoretically, we show that our method leads to a predictable reduction in variance, while maintaining an unbiased estimation without additional LLM inference cost. We also perform empirical experiments on the MATH-500 and GSM8K benchmarks to demonstrate the effectiveness of our method. Notably, ComMCS outperforms regression-based optimization method by 2.8 points, the non-variance-reduced baseline by 2.2 points on MATH-500 on Best-of-32 sampling experiment.
☆ Diversity First, Quality Later: A Two-Stage Assumption for Language Model Alignment
The alignment of language models (LMs) with human preferences is critical for building reliable AI systems. The problem is typically framed as optimizing an LM policy to maximize the expected reward that reflects human preferences. Recently, Direct Preference Optimization (DPO) was proposed as a LM alignment method that directly optimize the policy from static preference data, and further improved by incorporating on-policy sampling (i.e., preference candidates generated during the training loop) for better LM alignment. However, we show on-policy data is not always optimal, with systematic effectiveness difference emerging between static and on-policy preference candidates. For example, on-policy data can result in a 3$\times$ effectiveness compared with static data for Llama-3, and a 0.4$\times$ effectiveness for Zephyr. To explain the phenomenon, we propose the alignment stage assumption, which divides the alignment process into two distinct stages: the preference injection stage, which benefits from diverse data, and the preference fine-tuning stage, which favors high-quality data. Through theoretical and empirical analysis, we characterize these stages and propose an effective algorithm to identify the boundaries between them. We perform experiments on 5 models (Llama, Zephyr, Phi-2, Qwen, Pythia) and 2 alignment methods (DPO, SLiC-HF) to show the generalizability of alignment stage assumption and boundary measurement.
☆ Med-GLIP: Advancing Medical Language-Image Pre-training with Large-scale Grounded Dataset
Medical image grounding aims to align natural language phrases with specific regions in medical images, serving as a foundational task for intelligent diagnosis, visual question answering (VQA), and automated report generation (MRG). However, existing research is constrained by limited modality coverage, coarse-grained annotations, and the absence of a unified, generalizable grounding framework. To address these challenges, we construct a large-scale medical grounding dataset Med-GLIP-5M comprising over 5.3 million region-level annotations across seven imaging modalities, covering diverse anatomical structures and pathological findings. The dataset supports both segmentation and grounding tasks with hierarchical region labels, ranging from organ-level boundaries to fine-grained lesions. Based on this foundation, we propose Med-GLIP, a modality-aware grounding framework trained on Med-GLIP-5M. Rather than relying on explicitly designed expert modules, Med-GLIP implicitly acquires hierarchical semantic understanding from diverse training data -- enabling it to recognize multi-granularity structures, such as distinguishing lungs from pneumonia lesions. Extensive experiments demonstrate that Med-GLIP consistently outperforms state-of-the-art baselines across multiple grounding benchmarks. Furthermore, integrating its spatial outputs into downstream tasks, including medical VQA and report generation, leads to substantial performance gains. Our dataset will be released soon.
☆ Multi-Sample Anti-Aliasing and Constrained Optimization for 3D Gaussian Splatting
Recent advances in 3D Gaussian splatting have significantly improved real-time novel view synthesis, yet insufficient geometric constraints during scene optimization often result in blurred reconstructions of fine-grained details, particularly in regions with high-frequency textures and sharp discontinuities. To address this, we propose a comprehensive optimization framework integrating multisample anti-aliasing (MSAA) with dual geometric constraints. Our system computes pixel colors through adaptive blending of quadruple subsamples, effectively reducing aliasing artifacts in high-frequency components. The framework introduces two constraints: (a) an adaptive weighting strategy that prioritizes under-reconstructed regions through dynamic gradient analysis, and (b) gradient differential constraints enforcing geometric regularization at object boundaries. This targeted optimization enables the model to allocate computational resources preferentially to critical regions requiring refinement while maintaining global consistency. Extensive experimental evaluations across multiple benchmarks demonstrate that our method achieves state-of-the-art performance in detail preservation, particularly in preserving high-frequency textures and sharp discontinuities, while maintaining real-time rendering efficiency. Quantitative metrics and perceptual studies confirm statistically significant improvements over baseline approaches in both structural similarity (SSIM) and perceptual quality (LPIPS).
☆ Advances in Logic-Based Entity Resolution: Enhancing ASPEN with Local Merges and Optimality Criteria
In this paper, we present ASPEN+, which extends an existing ASP-based system, ASPEN,for collective entity resolution with two important functionalities: support for local merges and new optimality criteria for preferred solutions. Indeed, ASPEN only supports so-called global merges of entity-referring constants (e.g. author ids), in which all occurrences of matched constants are treated as equivalent and merged accordingly. However, it has been argued that when resolving data values, local merges are often more appropriate, as e.g. some instances of 'J. Lee' may refer to 'Joy Lee', while others should be matched with 'Jake Lee'. In addition to allowing such local merges, ASPEN+ offers new optimality criteria for selecting solutions, such as minimizing rule violations or maximising the number of rules supporting a merge. Our main contributions are thus (1) the formalisation and computational analysis of various notions of optimal solution, and (2) an extensive experimental evaluation on real-world datasets, demonstrating the effect of local merges and the new optimality criteria on both accuracy and runtime.
comment: Full version of a paper accepted at KR 2025
☆ PASS: Probabilistic Agentic Supernet Sampling for Interpretable and Adaptive Chest X-Ray Reasoning
Existing tool-augmented agentic systems are limited in the real world by (i) black-box reasoning steps that undermine trust of decision-making and pose safety risks, (ii) poor multimodal integration, which is inherently critical for healthcare tasks, and (iii) rigid and computationally inefficient agentic pipelines. We introduce PASS (Probabilistic Agentic Supernet Sampling), the first multimodal framework to address these challenges in the context of Chest X-Ray (CXR) reasoning. PASS adaptively samples agentic workflows over a multi-tool graph, yielding decision paths annotated with interpretable probabilities. Given the complex CXR reasoning task with multimodal medical data, PASS leverages its learned task-conditioned distribution over the agentic supernet. Thus, it adaptively selects the most suitable tool at each supernet layer, offering probability-annotated trajectories for post-hoc audits and directly enhancing medical AI safety. PASS also continuously compresses salient findings into an evolving personalized memory, while dynamically deciding whether to deepen its reasoning path or invoke an early exit for efficiency. To optimize a Pareto frontier balancing performance and cost, we design a novel three-stage training procedure, including expert knowledge warm-up, contrastive path-ranking, and cost-aware reinforcement learning. To facilitate rigorous evaluation, we introduce CAB-E, a comprehensive benchmark for multi-step, safety-critical, free-form CXR reasoning. Experiments across various benchmarks validate that PASS significantly outperforms strong baselines in multiple metrics (e.g., accuracy, AUC, LLM-J.) while balancing computational costs, pushing a new paradigm shift towards interpretable, adaptive, and multimodal medical agentic systems.
☆ A Unified Multi-Agent Framework for Universal Multimodal Understanding and Generation
Real-world multimodal applications often require any-to-any capabilities, enabling both understanding and generation across modalities including text, image, audio, and video. However, integrating the strengths of autoregressive language models (LLMs) for reasoning and diffusion models for high-fidelity generation remains challenging. Existing approaches rely on rigid pipelines or tightly coupled architectures, limiting flexibility and scalability. We propose MAGUS (Multi-Agent Guided Unified Multimodal System), a modular framework that unifies multimodal understanding and generation via two decoupled phases: Cognition and Deliberation. MAGUS enables symbolic multi-agent collaboration within a shared textual workspace. In the Cognition phase, three role-conditioned multimodal LLM agents - Perceiver, Planner, and Reflector - engage in collaborative dialogue to perform structured understanding and planning. The Deliberation phase incorporates a Growth-Aware Search mechanism that orchestrates LLM-based reasoning and diffusion-based generation in a mutually reinforcing manner. MAGUS supports plug-and-play extensibility, scalable any-to-any modality conversion, and semantic alignment - all without the need for joint training. Experiments across multiple benchmarks, including image, video, and audio generation, as well as cross-modal instruction following, demonstrate that MAGUS outperforms strong baselines and state-of-the-art systems. Notably, on the MME benchmark, MAGUS surpasses the powerful closed-source model GPT-4o.
comment: 8 pages, 5 figures
☆ Reverse Physician-AI Relationship: Full-process Clinical Diagnosis Driven by a Large Language Model
Full-process clinical diagnosis in the real world encompasses the entire diagnostic workflow that begins with only an ambiguous chief complaint. While artificial intelligence (AI), particularly large language models (LLMs), is transforming clinical diagnosis, its role remains largely as an assistant to physicians. This AI-assisted working pattern makes AI can only answer specific medical questions at certain parts within the diagnostic process, but lack the ability to drive the entire diagnostic process starting from an ambiguous complaint, which still relies heavily on human physicians. This gap limits AI's ability to fully reduce physicians' workload and enhance diagnostic efficiency. To address this, we propose a paradigm shift that reverses the relationship between physicians and AI: repositioning AI as the primary director, with physicians serving as its assistants. So we present DxDirector-7B, an LLM endowed with advanced deep thinking capabilities, enabling it to drive the full-process diagnosis with minimal physician involvement. Furthermore, DxDirector-7B establishes a robust accountability framework for misdiagnoses, delineating responsibility between AI and human physicians. In evaluations across rare, complex, and real-world cases under full-process diagnosis setting, DxDirector-7B not only achieves significant superior diagnostic accuracy but also substantially reduces physician workload than state-of-the-art medical LLMs as well as general-purpose LLMs. Fine-grained analyses across multiple clinical departments and tasks validate its efficacy, with expert evaluations indicating its potential to serve as a viable substitute for medical specialists. These findings mark a new era where AI, traditionally a physicians' assistant, now drives the entire diagnostic process to drastically reduce physicians' workload, indicating an efficient and accurate diagnostic solution.
comment: 39 pages
☆ Contrastive ECOC: Learning Output Codes for Adversarial Defense
Although one-hot encoding is commonly used for multiclass classification, it is not always the most effective encoding mechanism. Error Correcting Output Codes (ECOC) address multiclass classification by mapping each class to a unique codeword used as a label. Traditional ECOC methods rely on manually designed or randomly generated codebooks, which are labor-intensive and may yield suboptimal, dataset-agnostic results. This paper introduces three models for automated codebook learning based on contrastive learning, allowing codebooks to be learned directly and adaptively from data. Across four datasets, our proposed models demonstrate superior robustness to adversarial attacks compared to two baselines. The source is available at https://github.com/YuChou20/Automated-Codebook-Learning-with-Error-Correcting-Output-Code-Technique.
☆ On the Complexity-Faithfulness Trade-off of Gradient-Based Explanations
ReLU networks, while prevalent for visual data, have sharp transitions, sometimes relying on individual pixels for predictions, making vanilla gradient-based explanations noisy and difficult to interpret. Existing methods, such as GradCAM, smooth these explanations by producing surrogate models at the cost of faithfulness. We introduce a unifying spectral framework to systematically analyze and quantify smoothness, faithfulness, and their trade-off in explanations. Using this framework, we quantify and regularize the contribution of ReLU networks to high-frequency information, providing a principled approach to identifying this trade-off. Our analysis characterizes how surrogate-based smoothing distorts explanations, leading to an ``explanation gap'' that we formally define and measure for different post-hoc methods. Finally, we validate our theoretical findings across different design choices, datasets, and ablations.
comment: 23 pages, 14 figures, to be published in International Conference on Computer Vision 2025
☆ SEQ-GPT: LLM-assisted Spatial Query via Example
Contemporary spatial services such as online maps predominantly rely on user queries for location searches. However, the user experience is limited when performing complex tasks, such as searching for a group of locations simultaneously. In this study, we examine the extended scenario known as Spatial Exemplar Query (SEQ), where multiple relevant locations are jointly searched based on user-specified examples. We introduce SEQ-GPT, a spatial query system powered by Large Language Models (LLMs) towards more versatile SEQ search using natural language. The language capabilities of LLMs enable unique interactive operations in the SEQ process, including asking users to clarify query details and dynamically adjusting the search based on user feedback. We also propose a tailored LLM adaptation pipeline that aligns natural language with structured spatial data and queries through dialogue synthesis and multi-model cooperation. SEQ-GPT offers an end-to-end demonstration for broadening spatial search with realistic data and application scenarios.
☆ Pinet: Optimizing hard-constrained neural networks with orthogonal projection layers
We introduce an output layer for neural networks that ensures satisfaction of convex constraints. Our approach, $\Pi$net, leverages operator splitting for rapid and reliable projections in the forward pass, and the implicit function theorem for backpropagation. We deploy $\Pi$net as a feasible-by-design optimization proxy for parametric constrained optimization problems and obtain modest-accuracy solutions faster than traditional solvers when solving a single problem, and significantly faster for a batch of problems. We surpass state-of-the-art learning approaches in terms of training time, solution quality, and robustness to hyperparameter tuning, while maintaining similar inference times. Finally, we tackle multi-vehicle motion planning with non-convex trajectory preferences and provide $\Pi$net as a GPU-ready package implemented in JAX with effective tuning heuristics.
☆ Enhanced Sparse Point Cloud Data Processing for Privacy-aware Human Action Recognition
Human Action Recognition (HAR) plays a crucial role in healthcare, fitness tracking, and ambient assisted living technologies. While traditional vision based HAR systems are effective, they pose privacy concerns. mmWave radar sensors offer a privacy preserving alternative but present challenges due to the sparse and noisy nature of their point cloud data. In the literature, three primary data processing methods: Density-Based Spatial Clustering of Applications with Noise (DBSCAN), the Hungarian Algorithm, and Kalman Filtering have been widely used to improve the quality and continuity of radar data. However, a comprehensive evaluation of these methods, both individually and in combination, remains lacking. This paper addresses that gap by conducting a detailed performance analysis of the three methods using the MiliPoint dataset. We evaluate each method individually, all possible pairwise combinations, and the combination of all three, assessing both recognition accuracy and computational cost. Furthermore, we propose targeted enhancements to the individual methods aimed at improving accuracy. Our results provide crucial insights into the strengths and trade-offs of each method and their integrations, guiding future work on mmWave based HAR systems
☆ FIRESPARQL: A LLM-based Framework for SPARQL Query Generation over Scholarly Knowledge Graphs
Question answering over Scholarly Knowledge Graphs (SKGs) remains a challenging task due to the complexity of scholarly content and the intricate structure of these graphs. Large Language Model (LLM) approaches could be used to translate natural language questions (NLQs) into SPARQL queries; however, these LLM-based approaches struggle with SPARQL query generation due to limited exposure to SKG-specific content and the underlying schema. We identified two main types of errors in the LLM-generated SPARQL queries: (i) structural inconsistencies, such as missing or redundant triples in the queries, and (ii) semantic inaccuracies, where incorrect entities or properties are shown in the queries despite a correct query structure. To address these issues, we propose FIRESPARQL, a modular framework that supports fine-tuned LLMs as a core component, with optional context provided via retrieval-augmented generation (RAG) and a SPARQL query correction layer. We evaluate the framework on the SciQA Benchmark using various configurations (zero-shot, zero-shot with RAG, one-shot, fine-tuning, and fine-tuning with RAG) and compare the performance with baseline and state-of-the-art approaches. We measure query accuracy using BLEU and ROUGE metrics, and query result accuracy using relaxed exact match(RelaxedEM), with respect to the gold standards containing the NLQs, SPARQL queries, and the results of the queries. Experimental results demonstrate that fine-tuning achieves the highest overall performance, reaching 0.90 ROUGE-L for query accuracy and 0.85 RelaxedEM for result accuracy on the test set.
comment: Accepted at 17th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)
☆ X-Node: Self-Explanation is All We Need
Graph neural networks (GNNs) have achieved state-of-the-art results in computer vision and medical image classification tasks by capturing structural dependencies across data instances. However, their decision-making remains largely opaque, limiting their trustworthiness in high-stakes clinical applications where interpretability is essential. Existing explainability techniques for GNNs are typically post-hoc and global, offering limited insight into individual node decisions or local reasoning. We introduce X-Node, a self-explaining GNN framework in which each node generates its own explanation as part of the prediction process. For every node, we construct a structured context vector encoding interpretable cues such as degree, centrality, clustering, feature saliency, and label agreement within its local topology. A lightweight Reasoner module maps this context into a compact explanation vector, which serves three purposes: (1) reconstructing the node's latent embedding via a decoder to enforce faithfulness, (2) generating a natural language explanation using a pre-trained LLM (e.g., Grok or Gemini), and (3) guiding the GNN itself via a "text-injection" mechanism that feeds explanations back into the message-passing pipeline. We evaluate X-Node on two graph datasets derived from MedMNIST and MorphoMNIST, integrating it with GCN, GAT, and GIN backbones. Our results show that X-Node maintains competitive classification accuracy while producing faithful, per-node explanations. Repository: https://github.com/basiralab/X-Node.
☆ RealAC: A Domain-Agnostic Framework for Realistic and Actionable Counterfactual Explanations
Counterfactual explanations provide human-understandable reasoning for AI-made decisions by describing minimal changes to input features that would alter a model's prediction. To be truly useful in practice, such explanations must be realistic and feasible -- they should respect both the underlying data distribution and user-defined feasibility constraints. Existing approaches often enforce inter-feature dependencies through rigid, hand-crafted constraints or domain-specific knowledge, which limits their generalizability and ability to capture complex, nonlinear relations inherent in data. Moreover, they rarely accommodate user-specified preferences and suggest explanations that are causally implausible or infeasible to act upon. We introduce RealAC, a domain-agnostic framework for generating realistic and actionable counterfactuals. RealAC automatically preserves complex inter-feature dependencies without relying on explicit domain knowledge -- by aligning the joint distributions of feature pairs between factual and counterfactual instances. The framework also allows end-users to ``freeze'' attributes they cannot or do not wish to change by suppressing change in frozen features during optimization. Evaluations on three synthetic and two real datasets demonstrate that RealAC balances realism with actionability. Our method outperforms state-of-the-art baselines and Large Language Model-based counterfactual generation techniques in causal edge score, dependency preservation score, and IM1 realism metric and offers a solution for causality-aware and user-centric counterfactual generation.
☆ Alternating Approach-Putt Models for Multi-Stage Speech Enhancement
Speech enhancement using artificial neural networks aims to remove noise from noisy speech signals while preserving the speech content. However, speech enhancement networks often introduce distortions to the speech signal, referred to as artifacts, which can degrade audio quality. In this work, we propose a post-processing neural network designed to mitigate artifacts introduced by speech enhancement models. Inspired by the analogy of making a `Putt' after an `Approach' in golf, we name our model PuttNet. We demonstrate that alternating between a speech enhancement model and the proposed Putt model leads to improved speech quality, as measured by perceptual quality scores (PESQ), objective intelligibility (STOI), and background noise intrusiveness (CBAK) scores. Furthermore, we illustrate with graphical analysis why this alternating Approach outperforms repeated application of either model alone.
comment: This work has been submitted to the IEEE for possible publication
☆ Unpacking the Implicit Norm Dynamics of Sharpness-Aware Minimization in Tensorized Models
Sharpness-Aware Minimization (SAM) has been proven to be an effective optimization technique for improving generalization in overparameterized models. While prior works have explored the implicit regularization of SAM in simple two-core scale-invariant settings, its behavior in more general tensorized or scale-invariant models remains underexplored. In this work, we leverage scale-invariance to analyze the norm dynamics of SAM in general tensorized models. We introduce the notion of \emph{Norm Deviation} as a global measure of core norm imbalance, and derive its evolution under SAM using gradient flow analysis. We show that SAM's implicit control of Norm Deviation is governed by the covariance between core norms and their gradient magnitudes. Motivated by these findings, we propose a simple yet effective method, \emph{Deviation-Aware Scaling (DAS)}, which explicitly mimics this regularization behavior by scaling core norms in a data-adaptive manner. Our experiments across tensor completion, noisy training, model compression, and parameter-efficient fine-tuning confirm that DAS achieves competitive or improved performance over SAM, while offering reduced computational overhead.
☆ We-Math 2.0: A Versatile MathBook System for Incentivizing Visual Mathematical Reasoning
Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities across various tasks, but still struggle with complex mathematical reasoning. Existing research primarily focuses on dataset construction and method optimization, often overlooking two critical aspects: comprehensive knowledge-driven design and model-centric data space modeling. In this paper, we introduce We-Math 2.0, a unified system that integrates a structured mathematical knowledge system, model-centric data space modeling, and a reinforcement learning (RL)-based training paradigm to comprehensively enhance the mathematical reasoning abilities of MLLMs. The key contributions of We-Math 2.0 are fourfold: (1) MathBook Knowledge System: We construct a five-level hierarchical system encompassing 491 knowledge points and 1,819 fundamental principles. (2) MathBook-Standard & Pro: We develop MathBook-Standard, a dataset that ensures broad conceptual coverage and flexibility through dual expansion. Additionally, we define a three-dimensional difficulty space and generate 7 progressive variants per problem to build MathBook-Pro, a challenging dataset for robust training. (3) MathBook-RL: We propose a two-stage RL framework comprising: (i) Cold-Start Fine-tuning, which aligns the model with knowledge-oriented chain-of-thought reasoning; and (ii) Progressive Alignment RL, leveraging average-reward learning and dynamic data scheduling to achieve progressive alignment across difficulty levels. (4) MathBookEval: We introduce a comprehensive benchmark covering all 491 knowledge points with diverse reasoning step distributions. Experimental results show that MathBook-RL performs competitively with existing baselines on four widely-used benchmarks and achieves strong results on MathBookEval, suggesting promising generalization in mathematical reasoning.
comment: Working in progress
☆ MM-Food-100K: A 100,000-Sample Multimodal Food Intelligence Dataset with Verifiable Provenance
We present MM-Food-100K, a public 100,000-sample multimodal food intelligence dataset with verifiable provenance. It is a curated approximately 10% open subset of an original 1.2 million, quality-accepted corpus of food images annotated for a wide range of information (such as dish name, region of creation). The corpus was collected over six weeks from over 87,000 contributors using the Codatta contribution model, which combines community sourcing with configurable AI-assisted quality checks; each submission is linked to a wallet address in a secure off-chain ledger for traceability, with a full on-chain protocol on the roadmap. We describe the schema, pipeline, and QA, and validate utility by fine-tuning large vision-language models (ChatGPT 5, ChatGPT OSS, Qwen-Max) on image-based nutrition prediction. Fine-tuning yields consistent gains over out-of-box baselines across standard metrics; we report results primarily on the MM-Food-100K subset. We release MM-Food-100K for publicly free access and retain approximately 90% for potential commercial access with revenue sharing to contributors.
comment: 10 pages, 5 figures, 6 tables. The dataset is available at https://huggingface.co/datasets/Codatta/MM-Food-100K
☆ HiRef: Leveraging Hierarchical Ontology and Network Refinement for Robust Medication Recommendation
Medication recommendation is a crucial task for assisting physicians in making timely decisions from longitudinal patient medical records. However, real-world EHR data present significant challenges due to the presence of rarely observed medical entities and incomplete records that may not fully capture the clinical ground truth. While data-driven models trained on longitudinal Electronic Health Records often achieve strong empirical performance, they struggle to generalize under missing or novel conditions, largely due to their reliance on observed co-occurrence patterns. To address these issues, we propose Hierarchical Ontology and Network Refinement for Robust Medication Recommendation (HiRef), a unified framework that combines two complementary structures: (i) the hierarchical semantics encoded in curated medical ontologies, and (ii) refined co-occurrence patterns derived from real-world EHRs. We embed ontology entities in hyperbolic space, which naturally captures tree-like relationships and enables knowledge transfer through shared ancestors, thereby improving generalizability to unseen codes. To further improve robustness, we introduce a prior-guided sparse regularization scheme that refines the EHR co-occurrence graph by suppressing spurious edges while preserving clinically meaningful associations. Our model achieves strong performance on EHR benchmarks (MIMIC-III and MIMIC-IV) and maintains high accuracy under simulated unseen-code settings. Extensive experiments with comprehensive ablation studies demonstrate HiRef's resilience to unseen medical codes, supported by in-depth analyses of the learned sparsified graph structure and medical code embeddings.
☆ MASH: Cooperative-Heterogeneous Multi-Agent Reinforcement Learning for Single Humanoid Robot Locomotion
This paper proposes a novel method to enhance locomotion for a single humanoid robot through cooperative-heterogeneous multi-agent deep reinforcement learning (MARL). While most existing methods typically employ single-agent reinforcement learning algorithms for a single humanoid robot or MARL algorithms for multi-robot system tasks, we propose a distinct paradigm: applying cooperative-heterogeneous MARL to optimize locomotion for a single humanoid robot. The proposed method, multi-agent reinforcement learning for single humanoid locomotion (MASH), treats each limb (legs and arms) as an independent agent that explores the robot's action space while sharing a global critic for cooperative learning. Experiments demonstrate that MASH accelerates training convergence and improves whole-body cooperation ability, outperforming conventional single-agent reinforcement learning methods. This work advances the integration of MARL into single-humanoid-robot control, offering new insights into efficient locomotion strategies.
☆ ComoRAG: A Cognitive-Inspired Memory-Organized RAG for Stateful Long Narrative Reasoning
Narrative comprehension on long stories and novels has been a challenging domain attributed to their intricate plotlines and entangled, often evolving relations among characters and entities. Given the LLM's diminished reasoning over extended context and high computational cost, retrieval-based approaches remain a pivotal role in practice. However, traditional RAG methods can fall short due to their stateless, single-step retrieval process, which often overlooks the dynamic nature of capturing interconnected relations within long-range context. In this work, we propose ComoRAG, holding the principle that narrative reasoning is not a one-shot process, but a dynamic, evolving interplay between new evidence acquisition and past knowledge consolidation, analogous to human cognition when reasoning with memory-related signals in the brain. Specifically, when encountering a reasoning impasse, ComoRAG undergoes iterative reasoning cycles while interacting with a dynamic memory workspace. In each cycle, it generates probing queries to devise new exploratory paths, then integrates the retrieved evidence of new aspects into a global memory pool, thereby supporting the emergence of a coherent context for the query resolution. Across four challenging long-context narrative benchmarks (200K+ tokens), ComoRAG outperforms strong RAG baselines with consistent relative gains up to 11% compared to the strongest baseline. Further analysis reveals that ComoRAG is particularly advantageous for complex queries requiring global comprehension, offering a principled, cognitively motivated paradigm for retrieval-based long context comprehension towards stateful reasoning. Our code is publicly released at https://github.com/EternityJune25/ComoRAG
☆ CorrectNav: Self-Correction Flywheel Empowers Vision-Language-Action Navigation Model
Existing vision-and-language navigation models often deviate from the correct trajectory when executing instructions. However, these models lack effective error correction capability, hindering their recovery from errors. To address this challenge, we propose Self-correction Flywheel, a novel post-training paradigm. Instead of considering the model's error trajectories on the training set as a drawback, our paradigm emphasizes their significance as a valuable data source. We have developed a method to identify deviations in these error trajectories and devised innovative techniques to automatically generate self-correction data for perception and action. These self-correction data serve as fuel to power the model's continued training. The brilliance of our paradigm is revealed when we re-evaluate the model on the training set, uncovering new error trajectories. At this time, the self-correction flywheel begins to spin. Through multiple flywheel iterations, we progressively enhance our monocular RGB-based VLA navigation model CorrectNav. Experiments on R2R-CE and RxR-CE benchmarks show CorrectNav achieves new state-of-the-art success rates of 65.1% and 69.3%, surpassing prior best VLA navigation models by 8.2% and 16.4%. Real robot tests in various indoor and outdoor environments demonstrate \method's superior capability of error correction, dynamic obstacle avoidance, and long instruction following.
☆ MCP2OSC: Parametric Control by Natural Language
Text prompts enable intuitive content creation but may fall short in achieving high precision for intricate tasks; knob or slider controls offer precise adjustments at the cost of increased complexity. To address the gap between knobs and prompts, a new MCP (Model Context Protocol) server and a unique set of prompt design criteria are presented to enable exploring parametric OSC (OpenSoundControl) control by natural language prompts. Demonstrated by 14 practical QA examples with best practices and the generalized prompt templates, this study finds Claude integrated with the MCP2OSC server effective in generating OSC messages by natural language, interpreting, searching, and visualizing OSC messages, validating and debugging OSC messages, and managing OSC address patterns. MCP2OSC enhances human-machine collaboration by leveraging LLM (Large Language Model) to handle intricate OSC development tasks, and by empowering human creativity with an intuitive language interface featuring flexible precision controls: a prompt-based OSC tool. This study provides a novel perspective on the creative MCP application at the network protocol level by utilizing LLM's strength in directly processing and generating human-readable OSC messages. The results suggest its potential for a LLM-based universal control mechanism for multimedia devices.
☆ AnalogSeeker: An Open-source Foundation Language Model for Analog Circuit Design
In this paper, we propose AnalogSeeker, an effort toward an open-source foundation language model for analog circuit design, with the aim of integrating domain knowledge and giving design assistance. To overcome the scarcity of data in this field, we employ a corpus collection strategy based on the domain knowledge framework of analog circuits. High-quality, accessible textbooks across relevant subfields are systematically curated and cleaned into a textual domain corpus. To address the complexity of knowledge of analog circuits, we introduce a granular domain knowledge distillation method. Raw, unlabeled domain corpus is decomposed into typical, granular learning nodes, where a multi-agent framework distills implicit knowledge embedded in unstructured text into question-answer data pairs with detailed reasoning processes, yielding a fine-grained, learnable dataset for fine-tuning. To address the unexplored challenges in training analog circuit foundation models, we explore and share our training methods through both theoretical analysis and experimental validation. We finally establish a fine-tuning-centric training paradigm, customizing and implementing a neighborhood self-constrained supervised fine-tuning algorithm. This approach enhances training outcomes by constraining the perturbation magnitude between the model's output distributions before and after training. In practice, we train the Qwen2.5-32B-Instruct model to obtain AnalogSeeker, which achieves 85.04% accuracy on AMSBench-TQA, the analog circuit knowledge evaluation benchmark, with a 15.67% point improvement over the original model and is competitive with mainstream commercial models. Furthermore, AnalogSeeker also shows effectiveness in the downstream operational amplifier design task. AnalogSeeker is open-sourced at https://huggingface.co/analogllm/analogseeker for research use.
☆ Layer-Wise Perturbations via Sparse Autoencoders for Adversarial Text Generation
With the rapid proliferation of Natural Language Processing (NLP), especially Large Language Models (LLMs), generating adversarial examples to jailbreak LLMs remains a key challenge for understanding model vulnerabilities and improving robustness. In this context, we propose a new black-box attack method that leverages the interpretability of large models. We introduce the Sparse Feature Perturbation Framework (SFPF), a novel approach for adversarial text generation that utilizes sparse autoencoders to identify and manipulate critical features in text. After using the SAE model to reconstruct hidden layer representations, we perform feature clustering on the successfully attacked texts to identify features with higher activations. These highly activated features are then perturbed to generate new adversarial texts. This selective perturbation preserves the malicious intent while amplifying safety signals, thereby increasing their potential to evade existing defenses. Our method enables a new red-teaming strategy that balances adversarial effectiveness with safety alignment. Experimental results demonstrate that adversarial texts generated by SFPF can bypass state-of-the-art defense mechanisms, revealing persistent vulnerabilities in current NLP systems.However, the method's effectiveness varies across prompts and layers, and its generalizability to other architectures and larger models remains to be validated.
☆ PQ-DAF: Pose-driven Quality-controlled Data Augmentation for Data-scarce Driver Distraction Detection
Driver distraction detection is essential for improving traffic safety and reducing road accidents. However, existing models often suffer from degraded generalization when deployed in real-world scenarios. This limitation primarily arises from the few-shot learning challenge caused by the high cost of data annotation in practical environments, as well as the substantial domain shift between training datasets and target deployment conditions. To address these issues, we propose a Pose-driven Quality-controlled Data Augmentation Framework (PQ-DAF) that leverages a vision-language model for sample filtering to cost-effectively expand training data and enhance cross-domain robustness. Specifically, we employ a Progressive Conditional Diffusion Model (PCDMs) to accurately capture key driver pose features and synthesize diverse training examples. A sample quality assessment module, built upon the CogVLM vision-language model, is then introduced to filter out low-quality synthetic samples based on a confidence threshold, ensuring the reliability of the augmented dataset. Extensive experiments demonstrate that PQ-DAF substantially improves performance in few-shot driver distraction detection, achieving significant gains in model generalization under data-scarce conditions.
comment: 11 pages, 6 figures
☆ LeanRAG: Knowledge-Graph-Based Generation with Semantic Aggregation and Hierarchical Retrieval
Retrieval-Augmented Generation (RAG) plays a crucial role in grounding Large Language Models by leveraging external knowledge, whereas the effectiveness is often compromised by the retrieval of contextually flawed or incomplete information. To address this, knowledge graph-based RAG methods have evolved towards hierarchical structures, organizing knowledge into multi-level summaries. However, these approaches still suffer from two critical, unaddressed challenges: high-level conceptual summaries exist as disconnected ``semantic islands'', lacking the explicit relations needed for cross-community reasoning; and the retrieval process itself remains structurally unaware, often degenerating into an inefficient flat search that fails to exploit the graph's rich topology. To overcome these limitations, we introduce LeanRAG, a framework that features a deeply collaborative design combining knowledge aggregation and retrieval strategies. LeanRAG first employs a novel semantic aggregation algorithm that forms entity clusters and constructs new explicit relations among aggregation-level summaries, creating a fully navigable semantic network. Then, a bottom-up, structure-guided retrieval strategy anchors queries to the most relevant fine-grained entities and then systematically traverses the graph's semantic pathways to gather concise yet contextually comprehensive evidence sets. The LeanRAG can mitigate the substantial overhead associated with path retrieval on graphs and minimizes redundant information retrieval. Extensive experiments on four challenging QA benchmarks with different domains demonstrate that LeanRAG significantly outperforming existing methods in response quality while reducing 46\% retrieval redundancy. Code is available at: https://github.com/RaZzzyz/LeanRAG
☆ Unlocking Robust Semantic Segmentation Performance via Label-only Elastic Deformations against Implicit Label Noise
While previous studies on image segmentation focus on handling severe (or explicit) label noise, real-world datasets also exhibit subtle (or implicit) label imperfections. These arise from inherent challenges, such as ambiguous object boundaries and annotator variability. Although not explicitly present, such mild and latent noise can still impair model performance. Typical data augmentation methods, which apply identical transformations to the image and its label, risk amplifying these subtle imperfections and limiting the model's generalization capacity. In this paper, we introduce NSegment+, a novel augmentation framework that decouples image and label transformations to address such realistic noise for semantic segmentation. By introducing controlled elastic deformations only to segmentation labels while preserving the original images, our method encourages models to focus on learning robust representations of object structures despite minor label inconsistencies. Extensive experiments demonstrate that NSegment+ consistently improves performance, achieving mIoU gains of up to +2.29, +2.38, +1.75, and +3.39 in average on Vaihingen, LoveDA, Cityscapes, and PASCAL VOC, respectively-even without bells and whistles, highlighting the importance of addressing implicit label noise. These gains can be further amplified when combined with other training tricks, including CutMix and Label Smoothing.
☆ eMamba: Efficient Acceleration Framework for Mamba Models in Edge Computing
State Space Model (SSM)-based machine learning architectures have recently gained significant attention for processing sequential data. Mamba, a recent sequence-to-sequence SSM, offers competitive accuracy with superior computational efficiency compared to state-of-the-art transformer models. While this advantage makes Mamba particularly promising for resource-constrained edge devices, no hardware acceleration frameworks are currently optimized for deploying it in such environments. This paper presents eMamba, a comprehensive end-to-end hardware acceleration framework explicitly designed for deploying Mamba models on edge platforms. eMamba maximizes computational efficiency by replacing complex normalization layers with lightweight hardware-aware alternatives and approximating expensive operations, such as SiLU activation and exponentiation, considering the target applications. Then, it performs an approximation-aware neural architecture search (NAS) to tune the learnable parameters used during approximation. Evaluations with Fashion-MNIST, CIFAR-10, and MARS, an open-source human pose estimation dataset, show eMamba achieves comparable accuracy to state-of-the-art techniques using 1.63-19.9$\times$ fewer parameters. In addition, it generalizes well to large-scale natural language tasks, demonstrating stable perplexity across varying sequence lengths on the WikiText2 dataset. We also quantize and implement the entire eMamba pipeline on an AMD ZCU102 FPGA and ASIC using GlobalFoundries (GF) 22 nm technology. Experimental results show 4.95-5.62$\times$ lower latency and 2.22-9.95$\times$ higher throughput, with 4.77$\times$ smaller area, 9.84$\times$ lower power, and 48.6$\times$ lower energy consumption than baseline solutions while maintaining competitive accuracy.
comment: Paper accepted at ESWEEK 2025 (CODES+ISSS) conference
☆ What to Ask Next? Probing the Imaginative Reasoning of LLMs with TurtleSoup Puzzles
We investigate the capacity of Large Language Models (LLMs) for imaginative reasoning--the proactive construction, testing, and revision of hypotheses in information-sparse environments. Existing benchmarks, often static or focused on social deduction, fail to capture the dynamic, exploratory nature of this reasoning process. To address this gap, we introduce a comprehensive research framework based on the classic "Turtle Soup" game, integrating a benchmark, an agent, and an evaluation protocol. We present TurtleSoup-Bench, the first large-scale, bilingual, interactive benchmark for imaginative reasoning, comprising 800 turtle soup puzzles sourced from both the Internet and expert authors. We also propose Mosaic-Agent, a novel agent designed to assess LLMs' performance in this setting. To evaluate reasoning quality, we develop a multi-dimensional protocol measuring logical consistency, detail completion, and conclusion alignment. Experiments with leading LLMs reveal clear capability limits, common failure patterns, and a significant performance gap compared to humans. Our work offers new insights into LLMs' imaginative reasoning and establishes a foundation for future research on exploratory agent behavior.
☆ Welfare-Centric Clustering
Fair clustering has traditionally focused on ensuring equitable group representation or equalizing group-specific clustering costs. However, Dickerson et al. (2025) recently showed that these fairness notions may yield undesirable or unintuitive clustering outcomes and advocated for a welfare-centric clustering approach that models the utilities of the groups. In this work, we model group utilities based on both distances and proportional representation and formalize two optimization objectives based on welfare-centric clustering: the Rawlsian (Egalitarian) objective and the Utilitarian objective. We introduce novel algorithms for both objectives and prove theoretical guarantees for them. Empirical evaluations on multiple real-world datasets demonstrate that our methods significantly outperform existing fair clustering baselines.
☆ Multi-Agent Trust Region Policy Optimisation: A Joint Constraint Approach
Multi-agent reinforcement learning (MARL) requires coordinated and stable policy updates among interacting agents. Heterogeneous-Agent Trust Region Policy Optimization (HATRPO) enforces per-agent trust region constraints using Kullback-Leibler (KL) divergence to stabilize training. However, assigning each agent the same KL threshold can lead to slow and locally optimal updates, especially in heterogeneous settings. To address this limitation, we propose two approaches for allocating the KL divergence threshold across agents: HATRPO-W, a Karush-Kuhn-Tucker-based (KKT-based) method that optimizes threshold assignment under global KL constraints, and HATRPO-G, a greedy algorithm that prioritizes agents based on improvement-to-divergence ratio. By connecting sequential policy optimization with constrained threshold scheduling, our approach enables more flexible and effective learning in heterogeneous-agent settings. Experimental results demonstrate that our methods significantly boost the performance of HATRPO, achieving faster convergence and higher final rewards across diverse MARL benchmarks. Specifically, HATRPO-W and HATRPO-G achieve comparable improvements in final performance, each exceeding 22.5%. Notably, HATRPO-W also demonstrates more stable learning dynamics, as reflected by its lower variance.
☆ A Curriculum Learning Approach to Reinforcement Learning: Leveraging RAG for Multimodal Question Answering
This paper describes the solutions of the Dianping-Trust-Safety team for the META CRAG-MM challenge. The challenge requires building a comprehensive retrieval-augmented generation system capable for multi-modal multi-turn question answering. The competition consists of three tasks: (1) answering questions using structured data retrieved from an image-based mock knowledge graph, (2) synthesizing information from both knowledge graphs and web search results, and (3) handling multi-turn conversations that require context understanding and information aggregation from multiple sources. For Task 1, our solution is based on the vision large language model, enhanced by supervised fine-tuning with knowledge distilled from GPT-4.1. We further applied curriculum learning strategies to guide reinforcement learning, resulting in improved answer accuracy and reduced hallucination. For Task 2 and Task 3, we additionally leveraged web search APIs to incorporate external knowledge, enabling the system to better handle complex queries and multi-turn conversations. Our approach achieved 1st place in Task 1 with a significant lead of 52.38\%, and 3rd place in Task 3, demonstrating the effectiveness of the integration of curriculum learning with reinforcement learning in our training pipeline.
☆ Layer-Wise Analysis of Self-Supervised Representations for Age and Gender Classification in Children's Speech
Children's speech presents challenges for age and gender classification due to high variability in pitch, articulation, and developmental traits. While self-supervised learning (SSL) models perform well on adult speech tasks, their ability to encode speaker traits in children remains underexplored. This paper presents a detailed layer-wise analysis of four Wav2Vec2 variants using the PFSTAR and CMU Kids datasets. Results show that early layers (1-7) capture speaker-specific cues more effectively than deeper layers, which increasingly focus on linguistic information. Applying PCA further improves classification, reducing redundancy and highlighting the most informative components. The Wav2Vec2-large-lv60 model achieves 97.14% (age) and 98.20% (gender) on CMU Kids; base-100h and large-lv60 models reach 86.05% and 95.00% on PFSTAR. These results reveal how speaker traits are structured across SSL model depth and support more targeted, adaptive strategies for child-aware speech interfaces.
comment: Accepted at Workshop on Child Computer Interaction (WOCCI 2025)
☆ A Vision-Language Pre-training Model-Guided Approach for Mitigating Backdoor Attacks in Federated Learning
Existing backdoor defense methods in Federated Learning (FL) rely on the assumption of homogeneous client data distributions or the availability of a clean serve dataset, which limits the practicality and effectiveness. Defending against backdoor attacks under heterogeneous client data distributions while preserving model performance remains a significant challenge. In this paper, we propose a FL backdoor defense framework named CLIP-Fed, which leverages the zero-shot learning capabilities of vision-language pre-training models. By integrating both pre-aggregation and post-aggregation defense strategies, CLIP-Fed overcomes the limitations of Non-IID imposed on defense effectiveness. To address privacy concerns and enhance the coverage of the dataset against diverse triggers, we construct and augment the server dataset using the multimodal large language model and frequency analysis without any client samples. To address class prototype deviations caused by backdoor samples and eliminate the correlation between trigger patterns and target labels, CLIP-Fed aligns the knowledge of the global model and CLIP on the augmented dataset using prototype contrastive loss and Kullback-Leibler divergence. Extensive experiments on representative datasets validate the effectiveness of CLIP-Fed. Compared to state-of-the-art methods, CLIP-Fed achieves an average reduction in ASR, i.e., 2.03\% on CIFAR-10 and 1.35\% on CIFAR-10-LT, while improving average MA by 7.92\% and 0.48\%, respectively.
☆ Tabularis Formatus: Predictive Formatting for Tables
Spreadsheet manipulation software are widely used for data management and analysis of tabular data, yet the creation of conditional formatting (CF) rules remains a complex task requiring technical knowledge and experience with specific platforms. In this paper we present TaFo, a neuro-symbolic approach to generating CF suggestions for tables, addressing common challenges such as user unawareness, difficulty in rule creation, and inadequate user interfaces. TaFo takes inspiration from component based synthesis systems and extends them with semantic knowledge of language models and a diversity preserving rule ranking.Unlike previous methods focused on structural formatting, TaFo uniquely incorporates value-based formatting, automatically learning both the rule trigger and the associated visual formatting properties for CF rules. By removing the dependency on user specification used by existing techniques in the form of formatted examples or natural language instruction, TaFo makes formatting completely predictive and automated for the user. To evaluate TaFo, we use a corpus of 1.8 Million public workbooks with CF and manual formatting. We compare TaFo against a diverse set of symbolic and neural systems designed for or adapted for the task of table formatting. Our results show that TaFo generates more accurate, diverse and complete formatting suggestions than current systems and outperforms these by 15.6\%--26.5\% on matching user added ground truth rules in tables.
comment: 14 pages
☆ Quantization through Piecewise-Affine Regularization: Optimization and Statistical Guarantees
Optimization problems over discrete or quantized variables are very challenging in general due to the combinatorial nature of their search space. Piecewise-affine regularization (PAR) provides a flexible modeling and computational framework for quantization based on continuous optimization. In this work, we focus on the setting of supervised learning and investigate the theoretical foundations of PAR from optimization and statistical perspectives. First, we show that in the overparameterized regime, where the number of parameters exceeds the number of samples, every critical point of the PAR-regularized loss function exhibits a high degree of quantization. Second, we derive closed-form proximal mappings for various (convex, quasi-convex, and non-convex) PARs and show how to solve PAR-regularized problems using the proximal gradient method, its accelerated variant, and the Alternating Direction Method of Multipliers. Third, we study statistical guarantees of PAR-regularized linear regression problems; specifically, we can approximate classical formulations of $\ell_1$-, squared $\ell_2$-, and nonconvex regularizations using PAR and obtain similar statistical guarantees with quantized solutions.
☆ Diffusion is a code repair operator and generator
Code diffusion models generate code by iteratively removing noise from the latent representation of a code snippet. During later steps of the diffusion process, when the code snippet has almost converged, differences between discrete representations of these snippets look like last-mile repairs applied to broken or incomplete code. We evaluate the extent to which this resemblance can be exploited to leverage pre-trained code diffusion models for the problem of last-mile repair by considering two applications with significant potential. First, we can leverage the diffusion model for last-mile repair by adding noise to a broken code snippet and resuming the diffusion process. Second, we can leverage the diffusion model to generate arbitrary amount of training data for last-mile repair tasks (that are computationally more efficient) by sampling an intermediate program (input) and the final program (output) from the diffusion process. We perform experiments on 3 domains (Python, Excel and PowerShell) to evaluate applications, as well as analyze properties.
comment: 12 pages
☆ Utilizing Vision-Language Models as Action Models for Intent Recognition and Assistance
Human-robot collaboration requires robots to quickly infer user intent, provide transparent reasoning, and assist users in achieving their goals. Our recent work introduced GUIDER, our framework for inferring navigation and manipulation intents. We propose augmenting GUIDER with a vision-language model (VLM) and a text-only language model (LLM) to form a semantic prior that filters objects and locations based on the mission prompt. A vision pipeline (YOLO for object detection and the Segment Anything Model for instance segmentation) feeds candidate object crops into the VLM, which scores their relevance given an operator prompt; in addition, the list of detected object labels is ranked by a text-only LLM. These scores weight the existing navigation and manipulation layers of GUIDER, selecting context-relevant targets while suppressing unrelated objects. Once the combined belief exceeds a threshold, autonomy changes occur, enabling the robot to navigate to the desired area and retrieve the desired object, while adapting to any changes in the operator's intent. Future work will evaluate the system on Isaac Sim using a Franka Emika arm on a Ridgeback base, with a focus on real-time assistance.
comment: Accepted at Human-Centered Robot Autonomy for Human-Robot Teams (HuRoboT) at IEEE RO-MAN 2025, Eindhoven, the Netherlands
☆ Compressive Meta-Learning KDD '25
The rapid expansion in the size of new datasets has created a need for fast and efficient parameter-learning techniques. Compressive learning is a framework that enables efficient processing by using random, non-linear features to project large-scale databases onto compact, information-preserving representations whose dimensionality is independent of the number of samples and can be easily stored, transferred, and processed. These database-level summaries are then used to decode parameters of interest from the underlying data distribution without requiring access to the original samples, offering an efficient and privacy-friendly learning framework. However, both the encoding and decoding techniques are typically randomized and data-independent, failing to exploit the underlying structure of the data. In this work, we propose a framework that meta-learns both the encoding and decoding stages of compressive learning methods by using neural networks that provide faster and more accurate systems than the current state-of-the-art approaches. To demonstrate the potential of the presented Compressive Meta-Learning framework, we explore multiple applications -- including neural network-based compressive PCA, compressive ridge regression, compressive k-means, and autoencoders.
comment: Extended version of a paper accepted at KDD '25
☆ Learn to optimize for automatic proton PBS treatment planning for H&N cancers
Proton PBS treatment planning for H&N cancers involves numerous conflicting objectives, requiring significant effort from human planners to balance and satisfy multiple clinical goals during planning. To achieve this, experience-demanding objective parameter adjustment and computationally expensive inverse optimization are performed iteratively. Extensive efforts have been made to automatically adjust objective parameters, but the most time-consuming component, i.e., inverse optimization, still relies heavily on theory-driven approaches. We propose a data-driven inverse optimizer and integrate it into a PPO-based automatic treatment planning framework to automatically generate high-quality plans within a clinical acceptable planning time. The inverse optimizer is a L2O method that predicts update steps by learning from the task-specific data distribution. For the first time, we integrate techniques designed for long-context processing, originally developed for LLMs, into a Transformer-based L2O framework to address the scalability issue of existing L2O methods. The PPO framework functions as an outer-loop virtual planner, autonomously adjusting objective parameters through a policy network, and the dose predictor is used to initialize objective parameters. The inner-loop L2O inverse optimizer computes machine-deliverable MU values based on objectives refined by the PPO policy network. 97 patients are collected in this study, and compared with L-BFGSB, our L2O-based inverse optimizer improves the effectiveness and efficiency by 22.97% and 36.41%, respectively. In conjunction with the PPO-based learned virtual planner, plans generated by our framework within an average of 2.55 hours show improved or comparable OAR sparing with superior target coverage for patients with different prescription dose levels, number of target volumes, beam angles, etc., compared with human-generated plans.
comment: 27 pages, 4 figures
☆ LD-LAudio-V1: Video-to-Long-Form-Audio Generation Extension with Dual Lightweight Adapters ICCV
Generating high-quality and temporally synchronized audio from video content is essential for video editing and post-production tasks, enabling the creation of semantically aligned audio for silent videos. However, most existing approaches focus on short-form audio generation for video segments under 10 seconds or rely on noisy datasets for long-form video-to-audio zsynthesis. To address these limitations, we introduce LD-LAudio-V1, an extension of state-of-the-art video-to-audio models and it incorporates dual lightweight adapters to enable long-form audio generation. In addition, we release a clean and human-annotated video-to-audio dataset that contains pure sound effects without noise or artifacts. Our method significantly reduces splicing artifacts and temporal inconsistencies while maintaining computational efficiency. Compared to direct fine-tuning with short training videos, LD-LAudio-V1 achieves significant improvements across multiple metrics: $FD_{\text{passt}}$ 450.00 $\rightarrow$ 327.29 (+27.27%), $FD_{\text{panns}}$ 34.88 $\rightarrow$ 22.68 (+34.98%), $FD_{\text{vgg}}$ 3.75 $\rightarrow$ 1.28 (+65.87%), $KL_{\text{panns}}$ 2.49 $\rightarrow$ 2.07 (+16.87%), $KL_{\text{passt}}$ 1.78 $\rightarrow$ 1.53 (+14.04%), $IS_{\text{panns}}$ 4.17 $\rightarrow$ 4.30 (+3.12%), $IB_{\text{score}}$ 0.25 $\rightarrow$ 0.28 (+12.00%), $Energy\Delta10\text{ms}$ 0.3013 $\rightarrow$ 0.1349 (+55.23%), $Energy\Delta10\text{ms(vs.GT)}$ 0.0531 $\rightarrow$ 0.0288 (+45.76%), and $Sem.\,Rel.$ 2.73 $\rightarrow$ 3.28 (+20.15%). Our dataset aims to facilitate further research in long-form video-to-audio generation and is available at https://github.com/deepreasonings/long-form-video2audio.
comment: Gen4AVC@ICCV: 1st Workshop on Generative AI for Audio-Visual Content Creation
☆ From Individual to Multi-Agent Algorithmic Recourse: Minimizing the Welfare Gap via Capacitated Bipartite Matching
Decision makers are increasingly relying on machine learning in sensitive situations. In such settings, algorithmic recourse aims to provide individuals with actionable and minimally costly steps to reverse unfavorable AI-driven decisions. While existing research predominantly focuses on single-individual (i.e., seeker) and single-model (i.e., provider) scenarios, real-world applications often involve multiple interacting stakeholders. Optimizing outcomes for seekers under an individual welfare approach overlooks the inherently multi-agent nature of real-world systems, where individuals interact and compete for limited resources. To address this, we introduce a novel framework for multi-agent algorithmic recourse that accounts for multiple recourse seekers and recourse providers. We model this many-to-many interaction as a capacitated weighted bipartite matching problem, where matches are guided by both recourse cost and provider capacity. Edge weights, reflecting recourse costs, are optimized for social welfare while quantifying the welfare gap between individual welfare and this collectively feasible outcome. We propose a three-layer optimization framework: (1) basic capacitated matching, (2) optimal capacity redistribution to minimize the welfare gap, and (3) cost-aware optimization balancing welfare maximization with capacity adjustment costs. Experimental validation on synthetic and real-world datasets demonstrates that our framework enables the many-to-many algorithmic recourse to achieve near-optimal welfare with minimum modification in system settings. This work extends algorithmic recourse from individual recommendations to system-level design, providing a tractable path toward higher social welfare while maintaining individual actionability.
☆ AI That Helps Us Help Each Other: A Proactive System for Scaffolding Mentor-Novice Collaboration in Entrepreneurship Coaching
Entrepreneurship requires navigating open-ended, ill-defined problems: identifying risks, challenging assumptions, and making strategic decisions under deep uncertainty. Novice founders often struggle with these metacognitive demands, while mentors face limited time and visibility to provide tailored support. We present a human-AI coaching system that combines a domain-specific cognitive model of entrepreneurial risk with a large language model (LLM) to proactively scaffold both novice and mentor thinking. The system proactively poses diagnostic questions that challenge novices' thinking and helps both novices and mentors plan for more focused and emotionally attuned meetings. Critically, mentors can inspect and modify the underlying cognitive model, shaping the logic of the system to reflect their evolving needs. Through an exploratory field deployment, we found that using the system supported novice metacognition, helped mentors plan emotionally attuned strategies, and improved meeting depth, intentionality, and focus--while also surfaced key tensions around trust, misdiagnosis, and expectations of AI. We contribute design principles for proactive AI systems that scaffold metacognition and human-human collaboration in complex, ill-defined domains, offering implications for similar domains like healthcare, education, and knowledge work.
comment: To appear in CSCW 2025 Volume 9
☆ Learning with Confidence AI 2025
We characterize a notion of confidence that arises in learning or updating beliefs: the amount of trust one has in incoming information and its impact on the belief state. This learner's confidence can be used alongside (and is easily mistaken for) probability or likelihood, but it is fundamentally a different concept -- one that captures many familiar concepts in the literature, including learning rates and number of training epochs, Shafer's weight of evidence, and Kalman gain. We formally axiomatize what it means to learn with confidence, give two canonical ways of measuring confidence on a continuum, and prove that confidence can always be represented in this way. Under additional assumptions, we derive more compact representations of confidence-based learning in terms of vector fields and loss functions. These representations induce an extended language of compound "parallel" observations. We characterize Bayes Rule as the special case of an optimizing learner whose loss representation is a linear expectation.
comment: Accepted for oral UAI 2025, plus some additional modifications for clarity
☆ Note on Selection Bias in Observational Estimates of Algorithmic Progress
Ho et. al (2024) is an interesting paper that attempts to estimate the degree of algorithmic progress from language models. They collect observational data on language models' loss and compute over time, and argue that as time has passed, language models' algorithmic efficiency has been rising. That is, the loss achieved for fixed compute has been dropping over time. In this note, I want to raise one potential methodological problem with the estimation strategy. Intuitively, if part of algorithmic quality is latent, and compute choices are endogenous to algorithmic quality, then resulting estimates of algorithmic quality will be biased.
☆ Risk-Based Prognostics and Health Management
It is often the case that risk assessment and prognostics are viewed as related but separate tasks. This chapter describes a risk-based approach to prognostics that seeks to provide a tighter coupling between risk assessment and fault prediction. We show how this can be achieved using the continuous-time Bayesian network as the underlying modeling framework. Furthermore, we provide an overview of the techniques that are available to derive these models from data and show how they might be used in practice to achieve tasks like decision support and performance-based logistics. This work is intended to provide an overview of the recent developments related to risk-based prognostics, and we hope that it will serve as a tutorial of sorts that will assist others in adopting these techniques.
comment: Appears as Chapter 27 in Realizing Complex Integrated Systems, Anthony P. Ambler and John W. Sheppard (ads.), CRC Press, 2025
☆ Zono-Conformal Prediction: Zonotope-Based Uncertainty Quantification for Regression and Classification Tasks
Conformal prediction is a popular uncertainty quantification method that augments a base predictor with prediction sets with statistically valid coverage guarantees. However, current methods are often computationally expensive and data-intensive, as they require constructing an uncertainty model before calibration. Moreover, existing approaches typically represent the prediction sets with intervals, which limits their ability to capture dependencies in multi-dimensional outputs. We address these limitations by introducing zono-conformal prediction, a novel approach inspired by interval predictor models and reachset-conformant identification that constructs prediction zonotopes with assured coverage. By placing zonotopic uncertainty sets directly into the model of the base predictor, zono-conformal predictors can be identified via a single, data-efficient linear program. While we can apply zono-conformal prediction to arbitrary nonlinear base predictors, we focus on feed-forward neural networks in this work. Aside from regression tasks, we also construct optimal zono-conformal predictors in classification settings where the output of an uncertain predictor is a set of possible classes. We provide probabilistic coverage guarantees and present methods for detecting outliers in the identification data. In extensive numerical experiments, we show that zono-conformal predictors are less conservative than interval predictor models and standard conformal prediction methods, while achieving a similar coverage over the test data.
comment: Preprint. Under review
☆ Beyond the Rosetta Stone: Unification Forces in Generalization Dynamics
Large language models (LLMs) struggle with cross-lingual knowledge transfer: they hallucinate when asked in one language about facts expressed in a different language during training. This work introduces a controlled setting to study the causes and dynamics of this phenomenon by training small Transformer models from scratch on synthetic multilingual datasets. We identify a learning phase wherein a model develops either separate or unified representations of the same facts across languages, and show that unification is essential for cross-lingual transfer. We also show that the degree of unification depends on mutual information between facts and training data language, and on how easy it is to extract that language. Based on these insights, we develop methods to modulate the level of cross-lingual transfer by manipulating data distribution and tokenization, and we introduce metrics and visualizations to formally characterize their effects on unification. Our work shows how controlled settings can shed light on pre-training dynamics and suggests new directions for improving cross-lingual transfer in LLMs.
☆ CURE: Critical-Token-Guided Re-concatenation for Entropy-collapse Prevention
Recent advances in Reinforcement Learning with Verified Reward (RLVR) have driven the emergence of more sophisticated cognitive behaviors in large language models (LLMs), thereby enhancing their reasoning capabilities. However, in prior RLVR pipelines, the repeated use of static initial-state sampling drawn exactly from the dataset distribution during each sampling phase produced overly deterministic, low diversity model behavior, which manifested as rapid entropy collapse and hindered sustained performance gains during prolonged training. To address this issue, we introduce CURE (Critical-token-gUided Re concatenation for Entropy-collapse prevention), a two-stage framework that balances exploration and exploitation. Specifically, in the first stage, to deliberately steer the model toward novel yet coherent contexts, we re-generate at high-entropy critical tokens and jointly optimize the original and the branched trajectories. The further comparison with vanilla DAPO shows that the regeneration process achieves a better performance on math reasoning tasks while sustaining a high-level entropy degree for exploration. In the second stage, we continue training with static initial-state sampling by DAPO, intentionally placing the model in a familiar state to gradually strengthen exploitation. Extensive experiments on Qwen-2.5-Math-7B show that, compared to other RLVR methods, CURE achieves a 5% performance gain across six math benchmarks, establishing state-of-the-art performance in both entropy and accuracy. A series of experiments further validate the effectiveness of our approach. Code is available at https://github.com/CURE-Project/CURE.
☆ Deep Learning-Based Automated Segmentation of Uterine Myomas
Uterine fibroids (myomas) are the most common benign tumors of the female reproductive system, particularly among women of childbearing age. With a prevalence exceeding 70%, they pose a significant burden on female reproductive health. Clinical symptoms such as abnormal uterine bleeding, infertility, pelvic pain, and pressure-related discomfort play a crucial role in guiding treatment decisions, which are largely influenced by the size, number, and anatomical location of the fibroids. Magnetic Resonance Imaging (MRI) is a non-invasive and highly accurate imaging modality commonly used by clinicians for the diagnosis of uterine fibroids. Segmenting uterine fibroids requires a precise assessment of both the uterus and fibroids on MRI scans, including measurements of volume, shape, and spatial location. However, this process is labor intensive and time consuming and subjected to variability due to intra- and inter-expert differences at both pre- and post-treatment stages. As a result, there is a critical need for an accurate and automated segmentation method for uterine fibroids. In recent years, deep learning algorithms have shown re-markable improvements in medical image segmentation, outperforming traditional methods. These approaches offer the potential for fully automated segmentation. Several studies have explored the use of deep learning models to achieve automated segmentation of uterine fibroids. However, most of the previous work has been conducted using private datasets, which poses challenges for validation and comparison between studies. In this study, we leverage the publicly available Uterine Myoma MRI Dataset (UMD) to establish a baseline for automated segmentation of uterine fibroids, enabling standardized evaluation and facilitating future research in this domain.
☆ SproutBench: A Benchmark for Safe and Ethical Large Language Models for Youth
The rapid proliferation of large language models (LLMs) in applications targeting children and adolescents necessitates a fundamental reassessment of prevailing AI safety frameworks, which are largely tailored to adult users and neglect the distinct developmental vulnerabilities of minors. This paper highlights key deficiencies in existing LLM safety benchmarks, including their inadequate coverage of age-specific cognitive, emotional, and social risks spanning early childhood (ages 0--6), middle childhood (7--12), and adolescence (13--18). To bridge these gaps, we introduce SproutBench, an innovative evaluation suite comprising 1,283 developmentally grounded adversarial prompts designed to probe risks such as emotional dependency, privacy violations, and imitation of hazardous behaviors. Through rigorous empirical evaluation of 47 diverse LLMs, we uncover substantial safety vulnerabilities, corroborated by robust inter-dimensional correlations (e.g., between Safety and Risk Prevention) and a notable inverse relationship between Interactivity and Age Appropriateness. These insights yield practical guidelines for advancing child-centric AI design and deployment.
☆ Match & Choose: Model Selection Framework for Fine-tuning Text-to-Image Diffusion Models
Text-to-image (T2I) models based on diffusion and transformer architectures advance rapidly. They are often pretrained on large corpora, and openly shared on a model platform, such as HuggingFace. Users can then build up AI applications, e.g., generating media contents, by adopting pretrained T2I models and fine-tuning them on the target dataset. While public pretrained T2I models facilitate the democratization of the models, users face a new challenge: which model can be best fine-tuned based on the target data domain? Model selection is well addressed in classification tasks, but little is known in (pretrained) T2I models and their performance indication on the target domain. In this paper, we propose the first model selection framework, M&C, which enables users to efficiently choose a pretrained T2I model from a model platform without exhaustively fine-tuning them all on the target dataset. The core of M&C is a matching graph, which consists of: (i) nodes of available models and profiled datasets, and (ii) edges of model-data and data-data pairs capturing the fine-tuning performance and data similarity, respectively. We then build a model that, based on the inputs of model/data feature, and, critically, the graph embedding feature, extracted from the matching graph, predicts the model achieving the best quality after fine-tuning for the target domain. We evaluate M&C on choosing across ten T2I models for 32 datasets against three baselines. Our results show that M&C successfully predicts the best model for fine-tuning in 61.3% of the cases and a closely performing model for the rest.
☆ MCP-Guard: A Defense Framework for Model Context Protocol Integrity in Large Language Model Applications
The integration of Large Language Models (LLMs) with external tools via protocols such as the Model Context Protocol (MCP) introduces critical security vulnerabilities, including prompt injection, data exfiltration, and other threats. To counter these challenges, we propose MCP-Guard, a robust, layered defense architecture designed for LLM--tool interactions. MCP-Guard employs a three-stage detection pipeline that balances efficiency with accuracy: it progresses from lightweight static scanning for overt threats and a deep neural detector for semantic attacks, to our fine-tuned E5-based model achieves (96.01) accuracy in identifying adversarial prompts. Finally, a lightweight LLM arbitrator synthesizes these signals to deliver the final decision while minimizing false positives. To facilitate rigorous training and evaluation, we also introduce MCP-AttackBench, a comprehensive benchmark of over 70,000 samples. Sourced from public datasets and augmented by GPT-4, MCP-AttackBench simulates diverse, real-world attack vectors in the MCP format, providing a foundation for future research into securing LLM-tool ecosystems.
☆ Grounding Rule-Based Argumentation Using Datalog
ASPIC+ is one of the main general frameworks for rule-based argumentation for AI. Although first-order rules are commonly used in ASPIC+ examples, most existing approaches to reason over rule-based argumentation only support propositional rules. To enable reasoning over first-order instances, a preliminary grounding step is required. As groundings can lead to an exponential increase in the size of the input theories, intelligent procedures are needed. However, there is a lack of dedicated solutions for ASPIC+. Therefore, we propose an intelligent grounding procedure that keeps the size of the grounding manageable while preserving the correctness of the reasoning process. To this end, we translate the first-order ASPIC+ instance into a Datalog program and query a Datalog engine to obtain ground substitutions to perform the grounding of rules and contraries. Additionally, we propose simplifications specific to the ASPIC+ formalism to avoid grounding of rules that have no influence on the reasoning process. Finally, we performed an empirical evaluation of a prototypical implementation to show scalability.
♻ ☆ CodeJudgeBench: Benchmarking LLM-as-a-Judge for Coding Tasks
Large Language Models (LLMs) have significantly advanced the state-of-the-art in various coding tasks. Beyond directly answering user queries, LLMs can also serve as judges, assessing and comparing the quality of responses generated by other models. Such an evaluation capability is crucial both for benchmarking different LLMs and for improving response quality through response ranking. However, despite the growing adoption of the LLM-as-a-Judge paradigm, its effectiveness in coding scenarios remains underexplored due to the absence of dedicated benchmarks. To address this gap, we introduce CodeJudgeBench, a benchmark explicitly designed to evaluate the performance of LLM-as-a-Judge models across three critical coding tasks: code generation, code repair, and unit test generation. Through comprehensive benchmarking of 26 LLM-as-a-Judge models, we find that recent thinking models significantly outperform non-thinking models on our carefully designed code judging tasks. Notably, even relatively small thinking models, such as Qwen3-8B, can outperform specially trained LLM-as-a-Judge models up to 70B in size. Nevertheless, all models still exhibit significant randomness in their judgment of coding tasks. For pairwise judging tasks, simply changing the order in which responses are presented can substantially impact accuracy. In addition, when judging code and unit tests written by different LLMs, LLM-as-a-Judge models also show variance in performance. This sensitivity raises concerns about the reliability and consistency of LLM-as-a-Judge in coding scenarios. Lastly, we study optimal prompting strategies for LLM-as-a-Judge. We find that using pair-wise comparison outperforms scalar point-wise judging. Furthermore, retaining comments and reasoning in the full, unprocessed LLM response leads to improved judge performance.
comment: Dataset is available at https://huggingface.co/datasets/mattymchen/codejudgebench
♻ ☆ BiasGym: Fantastic LLM Biases and How to Find (and Remove) Them
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. Biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce BiasGym, a simple, cost-effective, and generalizable framework for reliably injecting, analyzing, and mitigating conceptual associations within LLMs. BiasGym consists of two components: BiasInject, which injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and BiasScope, which leverages these injected signals to identify and steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during token-based fine-tuning. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from Italy being `reckless drivers') and in probing fictional associations (e.g., people from a fictional country having `blue skin'), showing its utility for both safety interventions and interpretability research.
comment: Under review
♻ ☆ Interpretable Neural ODEs for Gene Regulatory Network Discovery under Perturbations
Modern high-throughput biological datasets with thousands of perturbations provide the opportunity for large-scale discovery of causal graphs that represent the regulatory interactions between genes. Differentiable causal graphical models have been proposed to infer a gene regulatory network (GRN) from large scale interventional datasets, capturing the causal gene regulatory relationships from genetic perturbations. However, existing models are limited in their expressivity and scalability while failing to address the dynamic nature of biological processes such as cellular differentiation. We propose PerturbODE, a novel framework that incorporates biologically informative neural ordinary differential equations (neural ODEs) to model cell state trajectories under perturbations and derive the causal GRN from the neural ODE's parameters. We demonstrate PerturbODE's efficacy in trajectory prediction and GRN inference across simulated and real over-expression datasets.
♻ ☆ OpenCUA: Open Foundations for Computer-Use Agents
Vision-language models have demonstrated impressive capabilities as computer-use agents (CUAs) capable of automating diverse computer tasks. As their commercial potential grows, critical details of the most capable CUA systems remain closed. As these agents will increasingly mediate digital interactions and execute consequential decisions on our behalf, the research community needs access to open CUA frameworks to study their capabilities, limitations, and risks. To bridge this gap, we propose OpenCUA, a comprehensive open-source framework for scaling CUA data and foundation models. Our framework consists of: (1) an annotation infrastructure that seamlessly captures human computer-use demonstrations; (2) AgentNet, the first large-scale computer-use task dataset spanning 3 operating systems and 200+ applications and websites; (3) a scalable pipeline that transforms demonstrations into state-action pairs with reflective long Chain-of-Thought reasoning that sustain robust performance gains as data scales. Our end-to-end agent models demonstrate strong performance across CUA benchmarks. In particular, OpenCUA-32B achieves an average success rate of 34.8% on OSWorld-Verified, establishing a new state-of-the-art (SOTA) among open-source models and surpassing OpenAI CUA (GPT-4o). Further analysis confirms that our approach generalizes well across domains and benefits significantly from increased test-time computation. We release our annotation tool, datasets, code, and models to build open foundations for further CUA research.
comment: Updata author list, modify first page format, correct typos
♻ ☆ Quantitative Comparison of Fine-Tuning Techniques for Pretrained Latent Diffusion Models in the Generation of Unseen SAR Images
We present a framework for adapting a large pretrained latent diffusion model to high-resolution Synthetic Aperture Radar (SAR) image generation. The approach enables controllable synthesis and the creation of rare or out-of-distribution scenes beyond the training set. Rather than training a task-specific small model from scratch, we adapt an open-source text-to-image foundation model to the SAR modality, using its semantic prior to align prompts with SAR imaging physics (side-looking geometry, slant-range projection, and coherent speckle with heavy-tailed statistics). Using a 100k-image SAR dataset, we compare full fine-tuning and parameter-efficient Low-Rank Adaptation (LoRA) across the UNet diffusion backbone, the Variational Autoencoder (VAE), and the text encoders. Evaluation combines (i) statistical distances to real SAR amplitude distributions, (ii) textural similarity via Gray-Level Co-occurrence Matrix (GLCM) descriptors, and (iii) semantic alignment using a SAR-specialized CLIP model. Our results show that a hybrid strategy-full UNet tuning with LoRA on the text encoders and a learned token embedding-best preserves SAR geometry and texture while maintaining prompt fidelity. The framework supports text-based control and multimodal conditioning (e.g., segmentation maps, TerraSAR-X, or optical guidance), opening new paths for large-scale SAR scene data augmentation and unseen scenario simulation in Earth observation.
♻ ☆ UniOcc: A Unified Benchmark for Occupancy Forecasting and Prediction in Autonomous Driving ICCV 2025
We introduce UniOcc, a comprehensive, unified benchmark and toolkit for occupancy forecasting (i.e., predicting future occupancies based on historical information) and occupancy prediction (i.e., predicting current-frame occupancy from camera images. UniOcc unifies the data from multiple real-world datasets (i.e., nuScenes, Waymo) and high-fidelity driving simulators (i.e., CARLA, OpenCOOD), providing 2D/3D occupancy labels and annotating innovative per-voxel flows. Unlike existing studies that rely on suboptimal pseudo labels for evaluation, UniOcc incorporates novel evaluation metrics that do not depend on ground-truth labels, enabling robust assessment on additional aspects of occupancy quality. Through extensive experiments on state-of-the-art models, we demonstrate that large-scale, diverse training data and explicit flow information significantly enhance occupancy prediction and forecasting performance. Our data and code are available at https://uniocc.github.io/.
comment: IEEE/CVF International Conference on Computer Vision (ICCV 2025); Project website: https://uniocc.github.io/
♻ ☆ FreeKV: Boosting KV Cache Retrieval for Efficient LLM Inference
Large language models (LLMs) have been widely deployed with rapidly expanding context windows to support increasingly demanding applications. However, long contexts pose significant deployment challenges, primarily due to the KV cache whose size grows proportionally with context length. While KV cache compression methods are proposed to address this issue, KV dropping methods incur considerable accuracy loss, and KV retrieval methods suffer from significant efficiency bottlenecks. We propose FreeKV, an algorithm-system co-optimization framework to enhance KV retrieval efficiency while preserving accuracy. On the algorithm side, FreeKV introduces speculative retrieval to shift the KV selection and recall processes out of the critical path, combined with fine-grained correction to ensure accuracy. On the system side, FreeKV employs hybrid KV layouts across CPU and GPU memory to eliminate fragmented data transfers, and leverages double-buffered streamed recall to further improve efficiency. Experiments demonstrate that FreeKV achieves near-lossless accuracy across various scenarios and models, delivering up to 13$\times$ speedup compared to SOTA KV retrieval methods.
♻ ☆ Hardness-Aware Dynamic Curriculum Learning for Robust Multimodal Emotion Recognition with Missing Modalities
Missing modalities have recently emerged as a critical research direction in multimodal emotion recognition (MER). Conventional approaches typically address this issue through missing modality reconstruction. However, these methods fail to account for variations in reconstruction difficulty across different samples, consequently limiting the model's ability to handle hard samples effectively. To overcome this limitation, we propose a novel Hardness-Aware Dynamic Curriculum Learning framework, termed HARDY-MER. Our framework operates in two key stages: first, it estimates the hardness level of each sample, and second, it strategically emphasizes hard samples during training to enhance model performance on these challenging instances. Specifically, we first introduce a Multi-view Hardness Evaluation mechanism that quantifies reconstruction difficulty by considering both Direct Hardness (modality reconstruction errors) and Indirect Hardness (cross-modal mutual information). Meanwhile, we introduce a Retrieval-based Dynamic Curriculum Learning strategy that dynamically adjusts the training curriculum by retrieving samples with similar semantic information and balancing the learning focus between easy and hard instances. Extensive experiments on benchmark datasets demonstrate that HARDY-MER consistently outperforms existing methods in missing-modality scenarios. Our code will be made publicly available at https://github.com/HARDY-MER/HARDY-MER.
♻ ☆ BitDecoding: Unlocking Tensor Cores for Long-Context LLMs with Low-Bit KV Cache
The rise of long-context Large Language Models (LLMs) amplifies memory and bandwidth demands during autoregressive decoding, as the Key-Value (KV) cache grows with each generated token. Low-bit KV-cache quantization (e.g., 4-bit or 2-bit) can reduce memory footprint while preserving accuracy, but existing systems suffer from slow decoding due to their exclusive reliance on CUDA cores, neglecting Tensor Cores (the primary source of compute on modern GPUs). We present BitDecoding, a new long-context LLM inference system with a low-bit KV cache. BitDecoding enables efficient low-bit KV-cache decoding by cooperatively leveraging CUDA cores and Tensor Cores. It introduces methods for automatically inducing optimized layouts to exploit Tensor Cores, along with warp-level parallelization strategies for dequantization. For unified system support, BitDecoding includes a query transformation module supporting diverse attention variants, a quantization kernel that supports both tensor-wise and channel-wise scaling used in various quantization algorithms with high performance, and a dequantization kernel with a software-defined pipeline to coordinate CUDA and Tensor Cores execution for mixed-precision operations. Evaluated on RTX 4090, A100, and H100, BitDecoding accelerates decoding by up to 7.5x, 4.8x, and 8.9x, respectively, over FP16 FlashDecoding-v2, and surpasses the state-of-the-art low-bit system QServe by up to 4.3x. On LLaMA-3.1-8B with a 128K context, BitDecoding reduces single-batch decoding latency by 3x, showing substantial improvements for long-context generation. The code is available at https://github.com/DD-DuDa/BitDecoding.
♻ ☆ IAD-R1: Reinforcing Consistent Reasoning in Industrial Anomaly Detection
Industrial anomaly detection is a critical component of modern manufacturing, yet the scarcity of defective samples restricts traditional detection methods to scenario-specific applications. Although Vision-Language Models (VLMs) demonstrate significant advantages in generalization capabilities, their performance in industrial anomaly detection remains limited. To address this challenge, we propose IAD-R1, a universal post-training framework applicable to VLMs of different architectures and parameter scales, which substantially enhances their anomaly detection capabilities. IAD-R1 employs a two-stage training strategy: the Perception Activation Supervised Fine-Tuning (PA-SFT) stage utilizes a meticulously constructed high-quality Chain-of-Thought dataset (Expert-AD) for training, enhancing anomaly perception capabilities and establishing reasoning-to-answer correlations; the Structured Control Group Relative Policy Optimization (SC-GRPO) stage employs carefully designed reward functions to achieve a capability leap from "Anomaly Perception" to "Anomaly Interpretation". Experimental results demonstrate that IAD-R1 achieves significant improvements across 7 VLMs, the largest improvement was on the DAGM dataset, with average accuracy 43.3% higher than the 0.5B baseline. Notably, the 0.5B parameter model trained with IAD-R1 surpasses commercial models including GPT-4.1 and Claude-Sonnet-4 in zero-shot settings, demonstrating the effectiveness and superiority of IAD-R1. The dataset, code, and all model weights will be publicly available at https://github.com/Yanhui-Lee/IAD-R1.
♻ ☆ Preacher: Paper-to-Video Agentic System
The paper-to-video task converts a research paper into a structured video abstract, distilling key concepts, methods, and conclusions into an accessible, well-organized format. While state-of-the-art video generation models demonstrate potential, they are constrained by limited context windows, rigid video duration constraints, limited stylistic diversity, and an inability to represent domain-specific knowledge. To address these limitations, we introduce Preacher, the first paper-to-video agentic system. Preacher employs a topdown approach to decompose, summarize, and reformulate the paper, followed by bottom-up video generation, synthesizing diverse video segments into a coherent abstract. To align cross-modal representations, we define key scenes and introduce a Progressive Chain of Thought (P-CoT) for granular, iterative planning. Preacher successfully generates high-quality video abstracts across five research fields, demonstrating expertise beyond current video generation models. Code will be released at: https://github.com/GenVerse/Paper2Video
♻ ☆ Oranits: Mission Assignment and Task Offloading in Open RAN-based ITS using Metaheuristic and Deep Reinforcement Learning
In this paper, we explore mission assignment and task offloading in an Open Radio Access Network (Open RAN)-based intelligent transportation system (ITS), where autonomous vehicles leverage mobile edge computing for efficient processing. Existing studies often overlook the intricate interdependencies between missions and the costs associated with offloading tasks to edge servers, leading to suboptimal decision-making. To bridge this gap, we introduce Oranits, a novel system model that explicitly accounts for mission dependencies and offloading costs while optimizing performance through vehicle cooperation. To achieve this, we propose a twofold optimization approach. First, we develop a metaheuristic-based evolutionary computing algorithm, namely the Chaotic Gaussian-based Global ARO (CGG-ARO), serving as a baseline for one-slot optimization. Second, we design an enhanced reward-based deep reinforcement learning (DRL) framework, referred to as the Multi-agent Double Deep Q-Network (MA-DDQN), that integrates both multi-agent coordination and multi-action selection mechanisms, significantly reducing mission assignment time and improving adaptability over baseline methods. Extensive simulations reveal that CGG-ARO improves the number of completed missions and overall benefit by approximately 7.1% and 7.7%, respectively. Meanwhile, MA-DDQN achieves even greater improvements of 11.0% in terms of mission completions and 12.5% in terms of the overall benefit. These results highlight the effectiveness of Oranits in enabling faster, more adaptive, and more efficient task processing in dynamic ITS environments.
comment: 15 pages, 13 figures
♻ ☆ Advancing MAPF towards the Real World: A Scalable Multi-Agent Realistic Testbed (SMART)
We present Scalable Multi-Agent Realistic Testbed (SMART), a realistic and efficient software tool for evaluating Multi-Agent Path Finding (MAPF) algorithms. MAPF focuses on planning collision-free paths for a group of agents. While state-ofthe-art MAPF algorithms can plan paths for hundreds of robots in seconds, they often rely on simplified robot models, making their real-world performance unclear. Researchers typically lack access to hundreds of physical robots in laboratory settings to evaluate the algorithms. Meanwhile, industrial professionals who lack expertise in MAPF require an easy-to-use simulator to efficiently test and understand the performance of MAPF algorithms in their specific settings. SMART fills this gap with several advantages: (1) SMART uses physics-engine-based simulators to create realistic simulation environments, accounting for complex real-world factors such as robot kinodynamics and execution uncertainties, (2) SMART uses an execution monitor framework based on the Action Dependency Graph, facilitating seamless integration with various MAPF algorithms and robot models, and (3) SMART scales to thousands of robots. The code is publicly available at https://github.com/smart-mapf/smart.
♻ ☆ Episodic Memory Verbalization using Hierarchical Representations of Life-Long Robot Experience
Verbalization of robot experience, i.e., summarization of and question answering about a robot's past, is a crucial ability for improving human-robot interaction. Previous works applied rule-based systems or fine-tuned deep models to verbalize short (several-minute-long) streams of episodic data, limiting generalization and transferability. In our work, we apply large pretrained models to tackle this task with zero or few examples, and specifically focus on verbalizing life-long experiences. For this, we derive a tree-like data structure from episodic memory (EM), with lower levels representing raw perception and proprioception data, and higher levels abstracting events to natural language concepts. Given such a hierarchical representation built from the experience stream, we apply a large language model as an agent to interactively search the EM given a user's query, dynamically expanding (initially collapsed) tree nodes to find the relevant information. The approach keeps computational costs low even when scaling to months of robot experience data. We evaluate our method on simulated household robot data, human egocentric videos, and real-world robot recordings, demonstrating its flexibility and scalability.
comment: Humanoids 2025. Code, data and demo videos at https://hierarchical-emv.github.io
♻ ☆ 15,500 Seconds: Lean UAV Classification Using EfficientNet and Lightweight Fine-Tuning
As unmanned aerial vehicles (UAVs) become increasingly prevalent in both consumer and defense applications, the need for reliable, modality-specific classification systems grows in urgency. This paper addresses the challenge of data scarcity in UAV audio classification by expanding on prior work through the integration of pre-trained deep learning models, parameter-efficient fine-tuning (PEFT) strategies, and targeted data augmentation techniques. Using a custom dataset of 3,100 UAV audio clips (15,500 seconds) spanning 31 distinct drone types, we evaluate the performance of transformer-based and convolutional neural network (CNN) architectures under various fine-tuning configurations. Experiments were conducted with five-fold cross-validation, assessing accuracy, training efficiency, and robustness. Results show that full fine-tuning of the EfficientNet-B0 model with three augmentations achieved the highest validation accuracy (95.95), outperforming both the custom CNN and transformer-based models like AST. These findings suggest that combining lightweight architectures with PEFT and well-chosen augmentations provides an effective strategy for UAV audio classification on limited datasets. Future work will extend this framework to multimodal UAV classification using visual and radar telemetry.
♻ ☆ A Random-Key Optimizer for Combinatorial Optimization
This paper introduces the Random-Key Optimizer (RKO), a versatile and efficient stochastic local search method tailored for combinatorial optimization problems. Using the random-key concept, RKO encodes solutions as vectors of random keys that are subsequently decoded into feasible solutions via problem-specific decoders. The RKO framework is able to combine a plethora of classic metaheuristics, each capable of operating independently or in parallel, with solution sharing facilitated through an elite solution pool. This modular approach allows for the adaptation of various metaheuristics, including simulated annealing, iterated local search, and greedy randomized adaptive search procedures, among others. The efficacy of the RKO framework, implemented in C++ and publicly available (Github public repository: github.com/RKO-solver), is demonstrated through its application to three NP-hard combinatorial optimization problems: the alpha-neighborhood p-median problem, the tree of hubs location problem, and the node-capacitated graph partitioning problem. The results highlight the framework's ability to produce high-quality solutions across diverse problem domains, underscoring its potential as a robust tool for combinatorial optimization.
comment: 54 pages, 16 figures, 8 tables
♻ ☆ GLM-4.1V-Thinking and GLM-4.5V: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking and GLM-4.5V, a family of vision-language models (VLMs) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document interpretation. In a comprehensive evaluation across 42 public benchmarks, GLM-4.5V achieves state-of-the-art performance on nearly all tasks among open-source models of similar size, and demonstrates competitive or even superior results compared to closed-source models such as Gemini-2.5-Flash on challenging tasks including Coding and GUI Agents. Meanwhile, the smaller GLM-4.1V-9B-Thinking remains highly competitive-achieving superior results to the much larger Qwen2.5-VL-72B on 29 benchmarks. We open-source both GLM-4.1V-9B-Thinking and GLM-4.5V. Code, models and more information are released at https://github.com/zai-org/GLM-V.
♻ ☆ Knowledge-based Consistency Testing of Large Language Models
In this work, we systematically expose and measure the inconsistency and knowledge gaps of Large Language Models (LLMs). Specifically, we propose an automated testing framework (called KonTest) which leverages a knowledge graph to construct test cases. KonTest probes and measures the inconsistencies in the LLM's knowledge of the world via a combination of semantically-equivalent queries and test oracles (metamorphic or ontological oracle). KonTest further mitigates knowledge gaps via a weighted LLM model ensemble. Using four state-of-the-art LLMs (Falcon, Gemini, GPT3.5, and Llama2), we show that KonTest generates 19.2% error inducing inputs (1917 errors from 9979 test inputs). It also reveals a 16.5% knowledge gap across all tested LLMs. A mitigation method informed by KonTest's test suite reduces LLM knowledge gap by 32.48%. Our ablation study further shows that GPT3.5 is not suitable for knowledge-based consistency testing because it is only 60%-68% effective in knowledge construction.
comment: 12 pages, 4 figures, 8 tables, Accepted at EMNLP 2024 Findings
♻ ☆ Personalized Feature Translation for Expression Recognition: An Efficient Source-Free Domain Adaptation Method
Facial expression recognition (FER) models are employed in many video-based affective computing applications, such as human-computer interaction and healthcare monitoring. However, deep FER models often struggle with subtle expressions and high inter-subject variability, limiting their performance in real-world applications. To improve their performance, source-free domain adaptation (SFDA) methods have been proposed to personalize a pretrained source model using only unlabeled target domain data, thereby avoiding data privacy, storage, and transmission constraints. This paper addresses a challenging scenario where source data is unavailable for adaptation, and only unlabeled target data consisting solely of neutral expressions is available. SFDA methods are not typically designed to adapt using target data from only a single class. Further, using models to generate facial images with non-neutral expressions can be unstable and computationally intensive. In this paper, personalized feature translation (PFT) is proposed for SFDA. Unlike current image translation methods for SFDA, our lightweight method operates in the latent space. We first pre-train the translator on the source domain data to transform the subject-specific style features from one source subject into another. Expression information is preserved by optimizing a combination of expression consistency and style-aware objectives. Then, the translator is adapted on neutral target data, without using source data or image synthesis. By translating in the latent space, PFT avoids the complexity and noise of face expression generation, producing discriminative embeddings optimized for classification. Using PFT eliminates the need for image synthesis, reduces computational overhead (using a lightweight translator), and only adapts part of the model, making the method efficient compared to image-based translation.
♻ ☆ Vision Transformers in Precision Agriculture: A Comprehensive Survey
Detecting plant diseases is a crucial aspect of modern agriculture, as it plays a key role in maintaining crop health and increasing overall yield. Traditional approaches, though still valuable, often rely on manual inspection or conventional machine learning techniques, both of which face limitations in scalability and accuracy. Recently, Vision Transformers (ViTs) have emerged as a promising alternative, offering advantages such as improved handling of long-range dependencies and better scalability for visual tasks. This review explores the application of ViTs in precision agriculture, covering a range of tasks. We begin by introducing the foundational architecture of ViTs and discussing their transition from Natural Language Processing (NLP) to Computer Vision. The discussion includes the concept of inductive bias in traditional models like Convolutional Neural Networks (CNNs), and how ViTs mitigate these biases. We provide a comprehensive review of recent literature, focusing on key methodologies, datasets, and performance metrics. This study also includes a comparative analysis of CNNs and ViTs, along with a review of hybrid models and performance enhancements. Technical challenges such as data requirements, computational demands, and model interpretability are addressed, along with potential solutions. Finally, we outline future research directions and technological advancements that could further support the integration of ViTs in real-world agricultural settings. Our goal with this study is to offer practitioners and researchers a deeper understanding of how ViTs are poised to transform smart and precision agriculture.
♻ ☆ WeChat-YATT: A Simple, Scalable and Balanced RLHF Trainer
Reinforcement Learning from Human Feedback (RLHF) has emerged as a prominent paradigm for training large language models and multimodal systems. Despite notable advances enabled by existing RLHF training frameworks, significant challenges remain in scaling to complex multimodal workflows and adapting to dynamic workloads. In particular, current systems often encounter limitations related to controller scalability when managing large models, as well as inefficiencies in orchestrating intricate RLHF pipelines, especially in scenarios that require dynamic sampling and resource allocation. In this paper, we introduce WeChat-YATT (Yet Another Transformer Trainer in WeChat), a simple, scalable, and balanced RLHF training framework specifically designed to address these challenges. WeChat-YATT features a parallel controller programming model that enables flexible and efficient orchestration of complex RLHF workflows, effectively mitigating the bottlenecks associated with centralized controller architectures and facilitating scalability in large-scale data scenarios. In addition, we propose a dynamic placement schema that adaptively partitions computational resources and schedules workloads, thereby significantly reducing hardware idle time and improving GPU utilization under variable training conditions. We evaluate WeChat-YATT across a range of experimental scenarios, demonstrating that it achieves substantial improvements in throughput compared to state-of-the-art RLHF training frameworks. Furthermore, WeChat-YATT has been successfully deployed to train models supporting WeChat product features for a large-scale user base, underscoring its effectiveness and robustness in real-world applications.We have open-source WeChat-YATT at https://www.github.com/tencent/WeChat-YATT.
comment: arXiv admin note: substantial text overlap with arXiv:2507.22789
♻ ☆ Mathematical Computation and Reasoning Errors by Large Language Models
Large Language Models (LLMs) are increasingly utilized in AI-driven educational instruction and assessment, particularly within mathematics education. The capability of LLMs to generate accurate answers and detailed solutions for math problem-solving tasks is foundational for ensuring reliable and precise feedback and assessment in math education practices. Our study focuses on evaluating the accuracy of four LLMs (OpenAI GPT-4o and o1, DeepSeek-V3 and DeepSeek-R1) solving three categories of math tasks, including arithmetic, algebra, and number theory, and identifies step-level reasoning errors within their solutions. Instead of relying on standard benchmarks, we intentionally build math tasks (via item models) that are challenging for LLMs and prone to errors. The accuracy of final answers and the presence of errors in individual solution steps were systematically analyzed and coded. Both single-agent and dual-agent configurations were tested. It is observed that the reasoning-enhanced OpenAI o1 model consistently achieved higher or nearly perfect accuracy across all three math task categories. Analysis of errors revealed that procedural slips were the most frequent and significantly impacted overall performance, while conceptual misunderstandings were less frequent. Deploying dual-agent configurations substantially improved overall performance. These findings offer actionable insights into enhancing LLM performance and underscore effective strategies for integrating LLMs into mathematics education, thereby advancing AI-driven instructional practices and assessment precision.
♻ ☆ INSIGHT: Explainable Weakly-Supervised Medical Image Analysis
Due to their large sizes, volumetric scans and whole-slide pathology images (WSIs) are often processed by extracting embeddings from local regions and then an aggregator makes predictions from this set. However, current methods require post-hoc visualization techniques (e.g., Grad-CAM) and often fail to localize small yet clinically crucial details. To address these limitations, we introduce INSIGHT, a novel weakly-supervised aggregator that integrates heatmap generation as an inductive bias. Starting from pre-trained feature maps, INSIGHT employs a detection module with small convolutional kernels to capture fine details and a context module with a broader receptive field to suppress local false positives. The resulting internal heatmap highlights diagnostically relevant regions. On CT and WSI benchmarks, INSIGHT achieves state-of-the-art classification results and high weakly-labeled semantic segmentation performance. Project website and code are available at: https://zhangdylan83.github.io/ewsmia/
comment: Accepted at MLHC 2025 (Machine Learning for Healthcare)
♻ ☆ Goal-Oriented Time-Series Forecasting: Foundation Framework Design
Conventional time-series forecasting methods typically aim to minimize overall prediction error, without accounting for the varying importance of different forecast ranges in downstream applications. We propose a training methodology that enables forecasting models to adapt their focus to application-specific regions of interest at inference time, without retraining. The approach partitions the prediction space into fine-grained segments during training, which are dynamically reweighted and aggregated to emphasize the target range specified by the application. Unlike prior methods that predefine these ranges, our framework supports flexible, on-demand adjustments. Experiments on standard benchmarks and a newly collected wireless communication dataset demonstrate that our method not only improves forecast accuracy within regions of interest but also yields measurable gains in downstream task performance. These results highlight the potential for closer integration between predictive modeling and decision-making in real-world systems.
♻ ☆ Towards Embodied Agentic AI: Review and Classification of LLM- and VLM-Driven Robot Autonomy and Interaction
Foundation models, including large language models (LLMs) and vision-language models (VLMs), have recently enabled novel approaches to robot autonomy and human-robot interfaces. In parallel, vision-language-action models (VLAs) or large behavior models (LBMs) are increasing the dexterity and capabilities of robotic systems. This survey paper focuses on those works advancing towards agentic applications and architectures. This includes initial efforts exploring GPT-style interfaces to tooling, as well as more complex system where AI agents are coordinators, planners, perception actors, or generalist interfaces. Such agentic architectures allow robots to reason over natural language instructions, invoke APIs, plan task sequences, or assist in operations and diagnostics. In addition to peer-reviewed research, due to the fast-evolving nature of the field, we highlight and include community-driven projects, ROS packages, and industrial frameworks that show emerging trends. We propose a taxonomy for classifying model integration approaches and present a comparative analysis of the role that agents play in different solutions in today's literature.
♻ ☆ On Understanding of the Dynamics of Model Capacity in Continual Learning
The stability-plasticity dilemma, closely related to a neural network's (NN) capacity-its ability to represent tasks-is a fundamental challenge in continual learning (CL). Within this context, we introduce CL's effective model capacity (CLEMC) that characterizes the dynamic behavior of the stability-plasticity balance point. We develop a difference equation to model the evolution of the interplay between the NN, task data, and optimization procedure. We then leverage CLEMC to demonstrate that the effective capacity-and, by extension, the stability-plasticity balance point is inherently non-stationary. We show that regardless of the NN architecture or optimization method, a NN's ability to represent new tasks diminishes when incoming task distributions differ from previous ones. We conduct extensive experiments to support our theoretical findings, spanning a range of architectures-from small feedforward network and convolutional networks to medium-sized graph neural networks and transformer-based large language models with millions of parameters.
♻ ☆ CCL-LGS: Contrastive Codebook Learning for 3D Language Gaussian Splatting ICCV 2025
Recent advances in 3D reconstruction techniques and vision-language models have fueled significant progress in 3D semantic understanding, a capability critical to robotics, autonomous driving, and virtual/augmented reality. However, methods that rely on 2D priors are prone to a critical challenge: cross-view semantic inconsistencies induced by occlusion, image blur, and view-dependent variations. These inconsistencies, when propagated via projection supervision, deteriorate the quality of 3D Gaussian semantic fields and introduce artifacts in the rendered outputs. To mitigate this limitation, we propose CCL-LGS, a novel framework that enforces view-consistent semantic supervision by integrating multi-view semantic cues. Specifically, our approach first employs a zero-shot tracker to align a set of SAM-generated 2D masks and reliably identify their corresponding categories. Next, we utilize CLIP to extract robust semantic encodings across views. Finally, our Contrastive Codebook Learning (CCL) module distills discriminative semantic features by enforcing intra-class compactness and inter-class distinctiveness. In contrast to previous methods that directly apply CLIP to imperfect masks, our framework explicitly resolves semantic conflicts while preserving category discriminability. Extensive experiments demonstrate that CCL-LGS outperforms previous state-of-the-art methods. Our project page is available at https://epsilontl.github.io/CCL-LGS/.
comment: ICCV 2025
♻ ☆ Improved GUI Grounding via Iterative Narrowing
Graphical User Interface (GUI) grounding plays a crucial role in enhancing the capabilities of Vision-Language Model (VLM) agents. While general VLMs, such as GPT-4V, demonstrate strong performance across various tasks, their proficiency in GUI grounding remains suboptimal. Recent studies have focused on fine-tuning these models specifically for zero-shot GUI grounding, yielding significant improvements over baseline performance. We introduce a visual prompting framework that employs an iterative narrowing mechanism to further improve the performance of both general and fine-tuned models in GUI grounding. For evaluation, we tested our method on a comprehensive benchmark comprising various UI platforms and provided the code to reproduce our results.
comment: Code available at https://github.com/ant-8/GUI-Grounding-via-Iterative-Narrowing
♻ ☆ DiRW: Path-Aware Digraph Learning for Heterophily
Recently, graph neural network (GNN) has emerged as a powerful representation learning tool for graph-structured data. However, most approaches are tailored for undirected graphs, neglecting the abundant information in the edges of directed graphs (digraphs). In fact, digraphs are widely applied in the real world and confirmed to address heterophily challenges. Despite recent advancements, existing spatial- and spectral-based DiGNNs have limitations due to their complex learning mechanisms and reliance on high-quality topology, resulting in low efficiency and unstable performance. To address these issues, we propose Directed Random Walk (DiRW), a plug-and-play strategy for most spatial-based DiGNNs and also an innovative model which offers a new digraph learning paradigm. Specifically, it utilizes a direction-aware path sampler optimized from the perspectives of walk probability, length, and number in a weight-free manner by considering node profiles and topologies. Building upon this, DiRW incorporates a node-wise learnable path aggregator for generalized node representations. Extensive experiments on 9 datasets demonstrate that DiRW: (1) enhances most spatial-based methods as a plug-and-play strategy; (2) achieves SOTA performance as a new digraph learning paradigm. The source code and data are available at https://github.com/dhsiuu/DiRW.
♻ ☆ Delayed Feedback Modeling with Influence Functions
In online advertising under the cost-per-conversion (CPA) model, accurate conversion rate (CVR) prediction is crucial. A major challenge is delayed feedback, where conversions may occur long after user interactions, leading to incomplete recent data and biased model training. Existing solutions partially mitigate this issue but often rely on auxiliary models, making them computationally inefficient and less adaptive to user interest shifts. We propose IF-DFM, an \underline{I}nfluence \underline{F}unction-empowered for \underline{D}elayed \underline{F}eedback \underline{M}odeling which estimates the impact of newly arrived and delayed conversions on model parameters, enabling efficient updates without full retraining. By reformulating the inverse Hessian-vector product as an optimization problem, IF-DFM achieves a favorable trade-off between scalability and effectiveness. Experiments on benchmark datasets show that IF-DFM outperforms prior methods in both accuracy and adaptability.
♻ ☆ FAIRGAME: a Framework for AI Agents Bias Recognition using Game Theory
Letting AI agents interact in multi-agent applications adds a layer of complexity to the interpretability and prediction of AI outcomes, with profound implications for their trustworthy adoption in research and society. Game theory offers powerful models to capture and interpret strategic interaction among agents, but requires the support of reproducible, standardized and user-friendly IT frameworks to enable comparison and interpretation of results. To this end, we present FAIRGAME, a Framework for AI Agents Bias Recognition using Game Theory. We describe its implementation and usage, and we employ it to uncover biased outcomes in popular games among AI agents, depending on the employed Large Language Model (LLM) and used language, as well as on the personality trait or strategic knowledge of the agents. Overall, FAIRGAME allows users to reliably and easily simulate their desired games and scenarios and compare the results across simulation campaigns and with game-theoretic predictions, enabling the systematic discovery of biases, the anticipation of emerging behavior out of strategic interplays, and empowering further research into strategic decision-making using LLM agents.
♻ ☆ Information Science Principles of Machine Learning: A Causal Chain Meta-Framework Based on Formalized Information Mapping
[Objective] This study addresses key challenges in machine learning, namely the absence of a unified formal theoretical framework and the lack of foundational theories for model interpretability and ethical safety. [Methods] We first construct a formal information model, explicitly defining the ontological states and carrier mappings of typical machine learning stages using sets of well-formed formulas. By introducing learnable and processable predicates, as well as learning and processing functions, we analyze the causal chain logic and constraint laws governing machine learning processes. [Results] We establish the Machine Learning Theory Meta-Framework (MLT-MF), on which we further propose universal definitions for model interpretability and ethical safety. We prove and validate three key theorems: the relationship between model interpretability and information existence, ethical safety assurance, and the upper bound estimation of total variation distance (TVD). [Limitations] The current framework assumes ideal, noise-free information enabling mappings and focuses primarily on model learning and processing logic in static scenarios. It does not yet address information fusion and conflict resolution across ontological spaces in multimodal or multi-agent systems. [Conclusions] This work overcomes the limitations of fragmented research and provides a unified theoretical foundation for systematically addressing critical issues in contemporary machine learning.
♻ ☆ LaDi-WM: A Latent Diffusion-based World Model for Predictive Manipulation
Predictive manipulation has recently gained considerable attention in the Embodied AI community due to its potential to improve robot policy performance by leveraging predicted states. However, generating accurate future visual states of robot-object interactions from world models remains a well-known challenge, particularly in achieving high-quality pixel-level representations. To this end, we propose LaDi-WM, a world model that predicts the latent space of future states using diffusion modeling. Specifically, LaDi-WM leverages the well-established latent space aligned with pre-trained Visual Foundation Models (VFMs), which comprises both geometric features (DINO-based) and semantic features (CLIP-based). We find that predicting the evolution of the latent space is easier to learn and more generalizable than directly predicting pixel-level images. Building on LaDi-WM, we design a diffusion policy that iteratively refines output actions by incorporating forecasted states, thereby generating more consistent and accurate results. Extensive experiments on both synthetic and real-world benchmarks demonstrate that LaDi-WM significantly enhances policy performance by 27.9\% on the LIBERO-LONG benchmark and 20\% on the real-world scenario. Furthermore, our world model and policies achieve impressive generalizability in real-world experiments.
comment: CoRL 2025
♻ ☆ An Explainable Transformer-based Model for Phishing Email Detection: A Large Language Model Approach
Phishing email is a serious cyber threat that tries to deceive users by sending false emails with the intention of stealing confidential information or causing financial harm. Attackers, often posing as trustworthy entities, exploit technological advancements and sophistication to make detection and prevention of phishing more challenging. Despite extensive academic research, phishing detection remains an ongoing and formidable challenge in the cybersecurity landscape. Large Language Models (LLMs) and Masked Language Models (MLMs) possess immense potential to offer innovative solutions to address long-standing challenges. In this research paper, we present an optimized, fine-tuned transformer-based DistilBERT model designed for the detection of phishing emails. In the detection process, we work with a phishing email dataset and utilize the preprocessing techniques to clean and solve the imbalance class issues. Through our experiments, we found that our model effectively achieves high accuracy, demonstrating its capability to perform well. Finally, we demonstrate our fine-tuned model using Explainable-AI (XAI) techniques such as Local Interpretable Model-Agnostic Explanations (LIME) and Transformer Interpret to explain how our model makes predictions in the context of text classification for phishing emails.
♻ ☆ VectorFit : Adaptive Singular & Bias Vector Fine-Tuning of Pre-trained Foundation Models AI 2025
Popular PEFT methods reduce trainable parameter count for fine-tuning by parameterizing new low-rank or sparse trainable weights in parallel to the frozen pre-trained weights $W$. However, these weights are trained from scratch, and there exists a performance gap between these methods and full fine-tuning, especially in low-budget settings. We introduce VectorFit, a new way of parameterization that efficiently utilizes the existing knowledge embedded in $W$ by adaptively training their singular vectors and biases. We show that utilizing the structural and transformational properties of $W$ in this way can lead to high-rank incremental weight matrices $\Delta W$, comparable to that of full fine-tuning. VectorFit delivers superior results with 9$\boldsymbol\times$ fewer trainable parameters than the leading PEFT methods. Through comprehensive experiments across 19 datasets covering a wide range of language and vision tasks such as natural language understanding and generation, question answering, image classification, and image generation, we demonstrate that VectorFit surpasses baselines in terms of performance as a function of parameter-efficiency.
comment: This paper has been accepted in the 28th European Conference on Artificial Intelligence (ECAI 2025)
♻ ☆ SIFThinker: Spatially-Aware Image Focus for Visual Reasoning
Current multimodal large language models (MLLMs) still face significant challenges in complex visual tasks (e.g., spatial understanding, fine-grained perception). Prior methods have tried to incorporate visual reasoning, however, they fail to leverage attention correction with spatial cues to iteratively refine their focus on prompt-relevant regions. In this paper, we introduce SIFThinker, a spatially-aware "think-with-images" framework that mimics human visual perception. Specifically, SIFThinker enables attention correcting and image region focusing by interleaving depth-enhanced bounding boxes and natural language. Our contributions are twofold: First, we introduce a reverse-expansion-forward-inference strategy that facilitates the generation of interleaved image-text chains of thought for process-level supervision, which in turn leads to the construction of the SIF-50K dataset. Besides, we propose GRPO-SIF, a reinforced training paradigm that integrates depth-informed visual grounding into a unified reasoning pipeline, teaching the model to dynamically correct and focus on prompt-relevant regions. Extensive experiments demonstrate that SIFThinker outperforms state-of-the-art methods in spatial understanding and fine-grained visual perception, while maintaining strong general capabilities, highlighting the effectiveness of our method. Code: https://github.com/zhangquanchen/SIFThinker.
comment: 15 pages, 13 figures
♻ ☆ Exploring the Application of Visual Question Answering (VQA) for Classroom Activity Monitoring
Classroom behavior monitoring is a critical aspect of educational research, with significant implications for student engagement and learning outcomes. Recent advancements in Visual Question Answering (VQA) models offer promising tools for automatically analyzing complex classroom interactions from video recordings. In this paper, we investigate the applicability of several state-of-the-art open-source VQA models, including LLaMA2, LLaMA3, QWEN3, and NVILA, in the context of classroom behavior analysis. To facilitate rigorous evaluation, we introduce our BAV-Classroom-VQA dataset derived from real-world classroom video recordings at the Banking Academy of Vietnam. We present the methodology for data collection, annotation, and benchmark the performance of the selected VQA models on this dataset. Our initial experimental results demonstrate that all four models achieve promising performance levels in answering behavior-related visual questions, showcasing their potential in future classroom analytics and intervention systems.
♻ ☆ Yan: Foundational Interactive Video Generation
We present Yan, a foundational framework for interactive video generation, covering the entire pipeline from simulation and generation to editing. Specifically, Yan comprises three core modules. AAA-level Simulation: We design a highly-compressed, low-latency 3D-VAE coupled with a KV-cache-based shift-window denoising inference process, achieving real-time 1080P/60FPS interactive simulation. Multi-Modal Generation: We introduce a hierarchical autoregressive caption method that injects game-specific knowledge into open-domain multi-modal video diffusion models (VDMs), then transforming the VDM into a frame-wise, action-controllable, real-time infinite interactive video generator. Notably, when the textual and visual prompts are sourced from different domains, the model demonstrates strong generalization, allowing it to blend and compose the style and mechanics across domains flexibly according to user prompts. Multi-Granularity Editing: We propose a hybrid model that explicitly disentangles interactive mechanics simulation from visual rendering, enabling multi-granularity video content editing during interaction through text. Collectively, Yan offers an integration of these modules, pushing interactive video generation beyond isolated capabilities toward a comprehensive AI-driven interactive creation paradigm, paving the way for the next generation of creative tools, media, and entertainment. The project page is: https://greatx3.github.io/Yan/.
♻ ☆ Federated Cross-Training Learners for Robust Generalization under Data Heterogeneity
Federated learning benefits from cross-training strategies, which enables models to train on data from distinct sources to improve generalization capability. However, due to inherent differences in data distributions, the optimization goals of local models remain misaligned, and this mismatch continues to manifest as feature space heterogeneity even after cross-training. We argue that knowledge distillation from the personalized view preserves client-specific characteristics and expands the local knowledge base, while distillation from the global view provides consistent semantic anchors that facilitate feature alignment across clients. To achieve this goal, this paper presents a cross-training scheme, termed FedCT, includes three main modules, where the consistency-aware knowledge broadcasting module aims to optimize model assignment strategies, which enhances collaborative advantages between clients and achieves an efficient federated learning process. The multi-view knowledge-guided representation learning module leverages fused prototypical knowledge from both global and local views to enhance the preservation of local knowledge before and after model exchange, as well as to ensure consistency between local and global knowledge. The mixup-based feature augmentation module aggregates rich information to further increase the diversity of feature spaces, which enables the model to better discriminate complex samples. Extensive experiments were conducted on four datasets in terms of performance comparison, ablation study, in-depth analysis and case study. The results demonstrated that FedCT alleviates knowledge forgetting from both local and global views, which enables it outperform state-of-the-art methods.
♻ ☆ Boosting Cross-problem Generalization in Diffusion-Based Neural Combinatorial Solver via Inference Time Adaptation
Diffusion-based Neural Combinatorial Optimization (NCO) has demonstrated effectiveness in solving NP-complete (NPC) problems by learning discrete diffusion models for solution generation, eliminating hand-crafted domain knowledge. Despite their success, existing NCO methods face significant challenges in both cross-scale and cross-problem generalization, and high training costs compared to traditional solvers. While recent studies on diffusion models have introduced training-free guidance approaches that leverage pre-defined guidance functions for conditional generation, such methodologies have not been extensively explored in combinatorial optimization. To bridge this gap, we propose a training-free inference time adaptation framework (DIFU-Ada) that enables both the zero-shot cross-problem transfer and cross-scale generalization capabilities of diffusion-based NCO solvers without requiring additional training. We provide theoretical analysis that helps understanding the cross-problem transfer capability. Our experimental results demonstrate that a diffusion solver, trained exclusively on the Traveling Salesman Problem (TSP), can achieve competitive zero-shot transfer performance across different problem scales on TSP variants, such as Prize Collecting TSP (PCTSP) and the Orienteering Problem (OP), through inference time adaptation.
♻ ☆ ASPD: Unlocking Adaptive Serial-Parallel Decoding by Exploring Intrinsic Parallelism in LLMs
The increasing scale and complexity of large language models (LLMs) pose significant inference latency challenges, primarily due to their autoregressive decoding paradigm characterized by the sequential nature of next-token prediction. By re-examining the outputs of autoregressive models, we observed that some segments exhibit parallelizable structures, which we term intrinsic parallelism. Decoding each parallelizable branch simultaneously (i.e. parallel decoding) can significantly improve the overall inference speed of LLMs. In this paper, we propose an Adaptive Serial-Parallel Decoding (ASPD), which addresses two core challenges: automated construction of parallelizable data and efficient parallel decoding mechanism. More specifically, we introduce a non-invasive pipeline that automatically extracts and validates parallelizable structures from the responses of autoregressive models. To empower efficient adaptive serial-parallel decoding, we implement a Hybrid Decoding Engine which enables seamless transitions between serial and parallel decoding modes while maintaining a reusable KV cache, maximizing computational efficiency. Extensive evaluations across General Tasks, Retrieval-Augmented Generation, Mathematical Reasoning, demonstrate that ASPD achieves unprecedented performance in both effectiveness and efficiency. Notably, on Vicuna Bench, our method achieves up to 3.19x speedup (1.85x on average) while maintaining response quality within 1% difference compared to autoregressive models, realizing significant acceleration without compromising generation quality. Our framework sets a groundbreaking benchmark for efficient LLM parallel inference, paving the way for its deployment in latency-sensitive applications such as AI-powered customer service bots and answer retrieval engines.
comment: 20 pages, 9 figures
♻ ☆ A Lightweight Transformer with Phase-Only Cross-Attention for Illumination-Invariant Biometric Authentication
Traditional biometric systems have encountered significant setbacks due to various unavoidable factors, for example, wearing of face masks in face recognition-based biometrics and hygiene concerns in fingerprint-based biometrics. This paper proposes a novel lightweight vision transformer with phase-only cross-attention (POC-ViT) using dual biometric traits of forehead and periocular portions of the face, capable of performing well even with face masks and without any physical touch, offering a promising alternative to traditional methods. The POC-ViT framework is designed to handle two biometric traits and to capture inter-dependencies in terms of relative structural patterns. Each channel consists of a Cross-Attention using phase-only correlation (POC) that captures both their individual and correlated structural patterns. The computation of cross-attention using POC extracts the phase correlation in the spatial features. Therefore, it is robust against variations in resolution and intensity, as well as illumination changes in the input images. The lightweight model is suitable for edge device deployment. The performance of the proposed framework was successfully demonstrated using the Forehead Subcutaneous Vein Pattern and Periocular Biometric Pattern (FSVP-PBP) database, having 350 subjects. The POC-ViT framework outperformed state-of-the-art methods with an outstanding classification accuracy of $98.8\%$ with the dual biometric traits.
comment: Submitted to IEEE
♻ ☆ DeepWriter: A Fact-Grounded Multimodal Writing Assistant Based On Offline Knowledge Base
Large Language Models (LLMs) have demonstrated remarkable capabilities in various applications. However, their use as writing assistants in specialized domains like finance, medicine, and law is often hampered by a lack of deep domain-specific knowledge and a tendency to hallucinate. Existing solutions, such as Retrieval-Augmented Generation (RAG), can suffer from inconsistency across multiple retrieval steps, while online search-based methods often degrade quality due to unreliable web content. To address these challenges, we introduce DeepWriter, a customizable, multimodal, long-form writing assistant that operates on a curated, offline knowledge base. DeepWriter leverages a novel pipeline that involves task decomposition, outline generation, multimodal retrieval, and section-by-section composition with reflection. By deeply mining information from a structured corpus and incorporating both textual and visual elements, DeepWriter generates coherent, factually grounded, and professional-grade documents. We also propose a hierarchical knowledge representation to enhance retrieval efficiency and accuracy. Our experiments on financial report generation demonstrate that DeepWriter produces high-quality, verifiable articles that surpasses existing baselines in factual accuracy and generated content quality.
comment: work in process
♻ ☆ LAPO: Internalizing Reasoning Efficiency via Length-Adaptive Policy Optimization
Large reasoning models have achieved remarkable performance through extended chain-of-thought sequences, yet this computational freedom leads to excessive token generation even for simple problems. We present Length-Adaptive Policy Optimization (LAPO), a novel framework that transforms reasoning length control from an external constraint into an intrinsic model capability. Unlike existing approaches that impose rigid limits or rely on post-hoc interventions, LAPO enables models to internalize an understanding of appropriate reasoning depth through a two-stage reinforcement learning process. In the first stage, models learn natural reasoning patterns by discovering the statistical distribution of successful solution lengths. The second stage leverages these patterns as meta-cognitive guidance, embedding them directly within the model's reasoning context to ensure inference-time flexibility. Experiments on mathematical reasoning benchmarks demonstrate that LAPO reduces token usage by up to 40.9% while improving accuracy by 2.3%. Our analysis reveals that models trained with LAPO develop emergent abilities to allocate computational resources based on problem complexity, achieving efficient reasoning without sacrificing quality.
comment: GitHub:https://github.com/zju-real/lapoProject:https://zju-real.github.io/lapo
♻ ☆ Discrepancy-Aware Graph Mask Auto-Encoder KDD2025
Masked Graph Auto-Encoder, a powerful graph self-supervised training paradigm, has recently shown superior performance in graph representation learning. Existing works typically rely on node contextual information to recover the masked information. However, they fail to generalize well to heterophilic graphs where connected nodes may be not similar, because they focus only on capturing the neighborhood information and ignoring the discrepancy information between different nodes, resulting in indistinguishable node representations. In this paper, to address this issue, we propose a Discrepancy-Aware Graph Mask Auto-Encoder (DGMAE). It obtains more distinguishable node representations by reconstructing the discrepancy information of neighboring nodes during the masking process. We conduct extensive experiments on 17 widely-used benchmark datasets. The results show that our DGMAE can effectively preserve the discrepancies of nodes in low-dimensional space. Moreover, DGMAE significantly outperforms state-of-the-art graph self-supervised learning methods on three graph analytic including tasks node classification, node clustering, and graph classification, demonstrating its remarkable superiority. The code of DGMAE is available at https://github.com/zhengziyu77/DGMAE.
comment: Accepted by KDD2025
♻ ☆ A Neurosymbolic Framework for Interpretable Cognitive Attack Detection in Augmented Reality
Augmented Reality (AR) enriches perception by overlaying virtual elements on the physical world. Due to its growing popularity, cognitive attacks that alter AR content to manipulate users' semantic perception have received increasing attention. Existing detection methods often focus on visual changes, which are restricted to pixel- or image-level processing and lack semantic reasoning capabilities, or they rely on pre-trained vision-language models (VLMs), which function as black-box approaches with limited interpretability. In this paper, we present CADAR, a novel neurosymbolic approach for cognitive attack detection in AR. It fuses multimodal vision-language inputs using neural VLMs to obtain a symbolic perception-graph representation, incorporating prior knowledge, salience weighting, and temporal correlations. The model then enables particle-filter based statistical reasoning -- a sequential Monte Carlo method -- to detect cognitive attacks. Thus, CADAR inherits the adaptability of pre-trained VLM and the interpretability and reasoning rigor of particle filtering. Experiments on an extended AR cognitive attack dataset show accuracy improvements of up to 10.7% over strong baselines on challenging AR attack scenarios, underscoring the promise of neurosymbolic methods for effective and interpretable cognitive attack detection.
♻ ☆ MSC: A Marine Wildlife Video Dataset with Grounded Segmentation and Clip-Level Captioning
Marine videos present significant challenges for video understanding due to the dynamics of marine objects and the surrounding environment, camera motion, and the complexity of underwater scenes. Existing video captioning datasets, typically focused on generic or human-centric domains, often fail to generalize to the complexities of the marine environment and gain insights about marine life. To address these limitations, we propose a two-stage marine object-oriented video captioning pipeline. We introduce a comprehensive video understanding benchmark that leverages the triplets of video, text, and segmentation masks to facilitate visual grounding and captioning, leading to improved marine video understanding and analysis, and marine video generation. Additionally, we highlight the effectiveness of video splitting in order to detect salient object transitions in scene changes, which significantly enrich the semantics of captioning content. Our dataset and code have been released at https://msc.hkustvgd.com.
comment: Published at ACMMM2025 (Dataset track)
♻ ☆ Visual SLAMMOT Considering Multiple Motion Models
Simultaneous Localization and Mapping (SLAM) and Multi-Object Tracking (MOT) are pivotal tasks in the realm of autonomous driving, attracting considerable research attention. While SLAM endeavors to generate real-time maps and determine the vehicle's pose in unfamiliar settings, MOT focuses on the real-time identification and tracking of multiple dynamic objects. Despite their importance, the prevalent approach treats SLAM and MOT as independent modules within an autonomous vehicle system, leading to inherent limitations. Classical SLAM methodologies often rely on a static environment assumption, suitable for indoor rather than dynamic outdoor scenarios. Conversely, conventional MOT techniques typically rely on the vehicle's known state, constraining the accuracy of object state estimations based on this prior. To address these challenges, previous efforts introduced the unified SLAMMOT paradigm, yet primarily focused on simplistic motion patterns. In our team's previous work IMM-SLAMMOT\cite{IMM-SLAMMOT}, we present a novel methodology incorporating consideration of multiple motion models into SLAMMOT i.e. tightly coupled SLAM and MOT, demonstrating its efficacy in LiDAR-based systems. This paper studies feasibility and advantages of instantiating this methodology as visual SLAMMOT, bridging the gap between LiDAR and vision-based sensing mechanisms. Specifically, we propose a solution of visual SLAMMOT considering multiple motion models and validate the inherent advantages of IMM-SLAMMOT in the visual domain.
♻ ☆ EvaDrive: Evolutionary Adversarial Policy Optimization for End-to-End Autonomous Driving
Autonomous driving faces significant challenges in achieving human-like iterative decision-making, which continuously generates, evaluates, and refines trajectory proposals. Current generation-evaluation frameworks isolate trajectory generation from quality assessment, preventing iterative refinement essential for planning, while reinforcement learning methods collapse multi-dimensional preferences into scalar rewards, obscuring critical trade-offs and yielding scalarization bias.To overcome these issues, we present EvaDrive, a novel multi-objective reinforcement learning framework that establishes genuine closed-loop co-evolution between trajectory generation and evaluation via adversarial optimization. EvaDrive frames trajectory planning as a multi-round adversarial game. In this game, a hierarchical generator continuously proposes candidate paths by combining autoregressive intent modeling for temporal causality with diffusion-based refinement for spatial flexibility. These proposals are then rigorously assessed by a trainable multi-objective critic that explicitly preserves diverse preference structures without collapsing them into a single scalarization bias.This adversarial interplay, guided by a Pareto frontier selection mechanism, enables iterative multi-round refinement, effectively escaping local optima while preserving trajectory diversity.Extensive experiments on NAVSIM and Bench2Drive benchmarks demonstrate SOTA performance, achieving 94.9 PDMS on NAVSIM v1 (surpassing DiffusionDrive by 6.8, DriveSuprim by 5.0, and TrajHF by 0.9) and 64.96 Driving Score on Bench2Drive. EvaDrive generates diverse driving styles via dynamic weighting without external preference data, introducing a closed-loop adversarial framework for human-like iterative decision-making, offering a novel scalarization-free trajectory optimization approach.
♻ ☆ Rollout Roulette: A Probabilistic Inference Approach to Inference-Time Scaling of LLMs using Particle-Based Monte Carlo Methods
Large language models (LLMs) have achieved significant performance gains via scaling up model sizes and/or data. However, recent evidence suggests diminishing returns from such approaches, motivating scaling the computation spent at inference time. Existing inference-time scaling methods, usually with reward models, cast the task as a search problem, which tends to be vulnerable to reward hacking as a consequence of approximation errors in reward models. In this paper, we instead cast inference-time scaling as a probabilistic inference task and leverage sampling-based techniques to explore the typical set of the state distribution of a state-space model with an approximate likelihood, rather than optimize for its mode directly. We propose a novel inference-time scaling approach by adapting particle-based Monte Carlo methods to this task. Our empirical evaluation demonstrates that our methods have a 4-16x better scaling rate over our deterministic search counterparts on various challenging mathematical reasoning tasks. Using our approach, we show that Qwen2.5-Math-1.5B-Instruct can surpass GPT-4o accuracy in only 4 rollouts, while Qwen2.5-Math-7B-Instruct scales to o1 level accuracy in only 32 rollouts. Our work not only presents an effective method to inference-time scaling, but also connects the rich literature in probabilistic inference with inference-time scaling of LLMs to develop more robust algorithms in future work. Code, videos, and further information available at https://probabilistic-inference-scaling.github.io.
♻ ☆ Decentralized Weather Forecasting via Distributed Machine Learning and Blockchain-Based Model Validation
Weather forecasting plays a vital role in disaster preparedness, agriculture, and resource management, yet current centralized forecasting systems are increasingly strained by security vulnerabilities, limited scalability, and susceptibility to single points of failure. To address these challenges, we propose a decentralized weather forecasting framework that integrates Federated Learning (FL) with blockchain technology. FL enables collaborative model training without exposing sensitive local data; this approach enhances privacy and reduces data transfer overhead. Meanwhile, the Ethereum blockchain ensures transparent and dependable verification of model updates. To further enhance the system's security, we introduce a reputation-based voting mechanism that assesses the trustworthiness of submitted models while utilizing the Interplanetary File System (IPFS) for efficient off-chain storage. Experimental results demonstrate that our approach not only improves forecasting accuracy but also enhances system resilience and scalability, making it a viable candidate for deployment in real-world, security-critical environments.
♻ ☆ Measuring Diversity in Synthetic Datasets ICML 2025
Large language models (LLMs) are widely adopted to generate synthetic datasets for various natural language processing (NLP) tasks, such as text classification and summarization. However, accurately measuring the diversity of these synthetic datasets-an aspect crucial for robust model performance-remains a significant challenge. In this paper, we introduce DCScore, a novel method for measuring synthetic dataset diversity from a classification perspective. Specifically, DCScore formulates diversity evaluation as a sample classification task, leveraging mutual relationships among samples. We further provide theoretical verification of the diversity-related axioms satisfied by DCScore, highlighting its role as a principled diversity evaluation method. Experimental results on synthetic datasets reveal that DCScore enjoys a stronger correlation with multiple diversity pseudo-truths of evaluated datasets, underscoring its effectiveness. Moreover, both empirical and theoretical evidence demonstrate that DCScore substantially reduces computational costs compared to existing methods. Code is available at: https://github.com/bluewhalelab/dcscore.
comment: Accepted by ICML 2025
♻ ☆ LED-Merging: Mitigating Safety-Utility Conflicts in Model Merging with Location-Election-Disjoint ACL2025
Fine-tuning pre-trained Large Language Models (LLMs) for specialized tasks incurs substantial computational and data costs. While model merging offers a training-free solution to integrate multiple task-specific models, existing methods suffer from safety-utility conflicts where enhanced general capabilities degrade safety safeguards. We identify two root causes: $\textbf{neuron misidentification}$ due to simplistic parameter magnitude-based selection, and $\textbf{cross-task neuron interference}$ during merging. To address these challenges, we propose $\textbf{LED-Merging}$, a three-stage framework that $\textbf{L}$ocates task-specific neurons via gradient-based attribution, dynamically $\textbf{E}$lects critical neurons through multi-model importance fusion, and $\textbf{D}$isjoints conflicting updates through parameter isolation. Extensive experiments on Llama-3-8B, Mistral-7B, and Llama2-13B demonstrate that LED-Merging effectively reduces harmful response rates, showing a 31.4\% decrease on Llama-3-8B-Instruct on HarmBench, while simultaneously preserving 95\% of utility performance, such as achieving 52.39\% accuracy on GSM8K. LED-Merging resolves safety-utility conflicts and provides a lightweight, training-free paradigm for constructing reliable multi-task LLMs. Code is available at $\href{https://github.com/MqLeet/LED-Merging}{GitHub}$.
comment: Accepted by ACL2025 main conference
♻ ☆ Compass-Thinker-7B Technical Report
Recent R1-Zero-like research further demonstrates that reasoning extension has given large language models (LLMs) unprecedented reasoning capabilities, and Reinforcement Learning is the core technology to elicit its complex reasoning. However, conducting RL experiments directly on hyperscale models involves high computational costs and resource demands, posing significant risks. We propose the Compass-Thinker-7B model, which aims to explore the potential of Reinforcement Learning with less computational resources and costs, and provides insights for further research into RL recipes for larger models. Compass-Thinker-7B is trained from an open source model through a specially designed Reinforcement Learning Pipeline. We curate a dataset of 30k verifiable mathematics problems for the Reinforcement Learning Pipeline. By configuring data and training settings with different difficulty distributions for different stages, the potential of the model is gradually released and the training efficiency is improved. Extensive evaluations show that Compass-Thinker-7B possesses exceptional reasoning potential, and achieves superior performance on mathematics compared to the same-sized RL model. Especially in the challenging AIME2024 evaluation, Compass-Thinker-7B achieves 40% accuracy.
♻ ☆ Grouped Sequency-arranged Rotation: Optimizing Rotation Transformation for Quantization for Free
Large Language Models (LLMs) face deployment challenges due to high computational costs, and while Post-Training Quantization (PTQ) offers a solution, existing rotation-based methods struggle at very low bit-widths like 2-bit. We introduce a novel, training-free approach to construct an improved rotation matrix, addressing the limitations of current methods. The key contributions include leveraging the Walsh-Hadamard transform with sequency ordering, which clusters similar frequency components to reduce quantization error compared to standard Hadamard matrices, significantly improving performance. Furthermore, we propose a Grouped Sequency-arranged Rotation (GSR) using block-diagonal matrices with smaller Walsh blocks, effectively isolating outlier impacts and achieving performance comparable to optimization-based methods without requiring any training. Our method demonstrates robust performance on reasoning tasks and Perplexity (PPL) score on WikiText-2. Our method also enhances results even when applied over existing learned rotation techniques.
comment: 7 pages
♻ ☆ Position: The Current AI Conference Model is Unsustainable! Diagnosing the Crisis of Centralized AI Conference
Artificial Intelligence (AI) conferences are essential for advancing research, sharing knowledge, and fostering academic community. However, their rapid expansion has rendered the centralized conference model increasingly unsustainable. This paper offers a data-driven diagnosis of a structural crisis that threatens the foundational goals of scientific dissemination, equity, and community well-being. We identify four key areas of strain: (1) scientifically, with per-author publication rates more than doubling over the past decade to over 4.5 papers annually; (2) environmentally, with the carbon footprint of a single conference exceeding the daily emissions of its host city; (3) psychologically, with 71% of online community discourse reflecting negative sentiment and 35% referencing mental health concerns; and (4) logistically, with attendance at top conferences such as NeurIPS 2024 beginning to outpace venue capacity. These pressures point to a system that is misaligned with its core mission. In response, we propose the Community-Federated Conference (CFC) model, which separates peer review, presentation, and networking into globally coordinated but locally organized components, offering a more sustainable, inclusive, and resilient path forward for AI research.
comment: Preprint
♻ ☆ Improved Personalized Headline Generation via Denoising Fake Interests from Implicit Feedback
Accurate personalized headline generation hinges on precisely capturing user interests from historical behaviors. However, existing methods neglect personalized-irrelevant click noise in entire historical clickstreams, which may lead to hallucinated headlines that deviate from genuine user preferences. In this paper, we reveal the detrimental impact of click noise on personalized generation quality through rigorous analysis in both user and news dimensions. Based on these insights, we propose a novel Personalized Headline Generation framework via Denoising Fake Interests from Implicit Feedback (PHG-DIF). PHG-DIF first employs dual-stage filtering to effectively remove clickstream noise, identified by short dwell times and abnormal click bursts, and then leverages multi-level temporal fusion to dynamically model users' evolving and multi-faceted interests for precise profiling. Moreover, we release DT-PENS, a new benchmark dataset comprising the click behavior of 1,000 carefully curated users and nearly 10,000 annotated personalized headlines with historical dwell time annotations. Extensive experiments demonstrate that PHG-DIF substantially mitigates the adverse effects of click noise and significantly improves headline quality, achieving state-of-the-art (SOTA) results on DT-PENS. Our framework implementation and dataset are available at https://github.com/liukejin-up/PHG-DIF.
comment: Accepted by the 34th ACM International Conference on Information and Knowledge Management (CIKM '25), Full Research Papers track
♻ ☆ Leveraging Large Language Models for Relevance Judgments in Legal Case Retrieval
Determining which legal cases are relevant to a given query involves navigating lengthy texts and applying nuanced legal reasoning. Traditionally, this task has demanded significant time and domain expertise to identify key Legal Facts and reach sound juridical conclusions. In addition, existing data with legal case similarities often lack interpretability, making it difficult to understand the rationale behind relevance judgments. With the growing capabilities of large language models (LLMs), researchers have begun investigating their potential in this domain. Nonetheless, the method of employing a general large language model for reliable relevance judgments in legal case retrieval remains largely unexplored. To address this gap in research, we propose a novel few-shot approach where LLMs assist in generating expert-aligned interpretable relevance judgments. The proposed approach decomposes the judgment process into several stages, mimicking the workflow of human annotators and allowing for the flexible incorporation of expert reasoning to improve the accuracy of relevance judgments. Importantly, it also ensures interpretable data labeling, providing transparency and clarity in the relevance assessment process. Through a comparison of relevance judgments made by LLMs and human experts, we empirically demonstrate that the proposed approach can yield reliable and valid relevance assessments. Furthermore, we demonstrate that with minimal expert supervision, our approach enables a large language model to acquire case analysis expertise and subsequently transfers this ability to a smaller model via annotation-based knowledge distillation.
♻ ☆ PromptTSS: A Prompting-Based Approach for Interactive Multi-Granularity Time Series Segmentation
Multivariate time series data, collected across various fields such as manufacturing and wearable technology, exhibit states at multiple levels of granularity, from coarse-grained system behaviors to fine-grained, detailed events. Effectively segmenting and integrating states across these different granularities is crucial for tasks like predictive maintenance and performance optimization. However, existing time series segmentation methods face two key challenges: (1) the inability to handle multiple levels of granularity within a unified model, and (2) limited adaptability to new, evolving patterns in dynamic environments. To address these challenges, we propose PromptTSS, a novel framework for time series segmentation with multi-granularity states. PromptTSS uses a unified model with a prompting mechanism that leverages label and boundary information to guide segmentation, capturing both coarse- and fine-grained patterns while adapting dynamically to unseen patterns. Experiments show PromptTSS improves accuracy by 24.49% in multi-granularity segmentation, 17.88% in single-granularity segmentation, and up to 599.24% in transfer learning, demonstrating its adaptability to hierarchical states and evolving time series dynamics. Our code is available at https://github.com/blacksnail789521/PromptTSS.
comment: Accepted at the 34th ACM International Conference on Information and Knowledge Management (CIKM 2025)
♻ ☆ Is Quantum Optimization Ready? An Effort Towards Neural Network Compression using Adiabatic Quantum Computing
Quantum optimization is the most mature quantum computing technology to date, providing a promising approach towards efficiently solving complex combinatorial problems. Methods such as adiabatic quantum computing (AQC) have been employed in recent years on important optimization problems across various domains. In deep learning, deep neural networks (DNN) have reached immense sizes to support new predictive capabilities. Optimization of large-scale models is critical for sustainable deployment, but becomes increasingly challenging with ever-growing model sizes and complexity. While quantum optimization is suitable for solving complex problems, its application to DNN optimization is not straightforward, requiring thorough reformulation for compatibility with commercially available quantum devices. In this work, we explore the potential of adopting AQC for fine-grained pruning-quantization of convolutional neural networks. We rework established heuristics to formulate model compression as a quadratic unconstrained binary optimization (QUBO) problem, and assess the solution space offered by commercial quantum annealing devices. Through our exploratory efforts of reformulation, we demonstrate that AQC can achieve effective compression of practical DNN models. Experiments demonstrate that adiabatic quantum computing (AQC) not only outperforms classical algorithms like genetic algorithms and reinforcement learning in terms of time efficiency but also excels at identifying global optima.
♻ ☆ Prompt Attacks Reveal Superficial Knowledge Removal in Unlearning Methods
In this work, we demonstrate that certain machine unlearning methods may fail under straightforward prompt attacks. We systematically evaluate eight unlearning techniques across three model families using output-based, logit-based, and probe analysis to assess the extent to which supposedly unlearned knowledge can be retrieved. While methods like RMU and TAR exhibit robust unlearning, ELM remains vulnerable to specific prompt attacks (e.g., prepending Hindi filler text to the original prompt recovers 57.3% accuracy). Our logit analysis further indicates that unlearned models are unlikely to hide knowledge through changes in answer formatting, given the strong correlation between output and logit accuracy. These findings challenge prevailing assumptions about unlearning effectiveness and highlight the need for evaluation frameworks that can reliably distinguish between genuine knowledge removal and superficial output suppression. To facilitate further research, we publicly release our evaluation framework to easily evaluate prompting techniques to retrieve unlearned knowledge.
comment: 19 pages, 6 figures. Accepted at COLM 2025 SoLaR Workshop
♻ ☆ Echoes of Automation: The Increasing Use of LLMs in Newsmaking
The rapid rise of Generative AI (GenAI), particularly LLMs, poses concerns for journalistic integrity and authorship. This study examines AI-generated content across over 40,000 news articles from major, local, and college news media, in various media formats. Using three advanced AI-text detectors (e.g., Binoculars, Fast-Detect GPT, and GPTZero), we find substantial increase of GenAI use in recent years, especially in local and college news. Sentence-level analysis reveals LLMs are often used in the introduction of news, while conclusions usually written manually. Linguistic analysis shows GenAI boosts word richness and readability but lowers formality, leading to more uniform writing styles, particularly in local media.
comment: To appear in the SBP-BRiMS 2025
♻ ☆ Rhythmic sharing: A bio-inspired paradigm for zero-shot adaptive learning in neural networks
The brain rapidly adapts to new contexts and learns from limited data, a coveted characteristic that artificial intelligence (AI) algorithms struggle to mimic. Inspired by the mechanical oscillatory rhythms of neural cells, we developed a learning paradigm utilizing link strength oscillations, where learning is associated with the coordination of these oscillations. Link oscillations can rapidly change coordination, allowing the network to sense and adapt to subtle contextual changes without supervision. The network becomes a generalist AI architecture, capable of predicting dynamics of multiple contexts including unseen ones. These results make our paradigm a powerful starting point for novel models of cognition. Because our paradigm is agnostic to specifics of the neural network, our study opens doors for introducing rapid adaptive learning into leading AI models.
comment: 12 pages, 3 figures. V2: General formatting and reference addendum. V3: Typo on p.11: h -> h^2 for RMSE. V5: Typo in caption for fig 2: caption for 2c should have been for 2b, and v.v
♻ ☆ Data Pruning by Information Maximization
In this paper, we present InfoMax, a novel data pruning method, also known as coreset selection, designed to maximize the information content of selected samples while minimizing redundancy. By doing so, InfoMax enhances the overall informativeness of the coreset. The information of individual samples is measured by importance scores, which capture their influence or difficulty in model learning. To quantify redundancy, we use pairwise sample similarities, based on the premise that similar samples contribute similarly to the learning process. We formalize the coreset selection problem as a discrete quadratic programming (DQP) task, with the objective of maximizing the total information content, represented as the sum of individual sample contributions minus the redundancies introduced by similar samples within the coreset. To ensure practical scalability, we introduce an efficient gradient-based solver, complemented by sparsification techniques applied to the similarity matrix and dataset partitioning strategies. This enables InfoMax to seamlessly scale to datasets with millions of samples. Extensive experiments demonstrate the superior performance of InfoMax in various data pruning tasks, including image classification, vision-language pre-training, and instruction tuning for large language models. Code is available at https://github.com/hrtan/InfoMax.
comment: Code is available at \url{https://github.com/hrtan/InfoMax}
♻ ☆ Semantic Structure-Aware Generative Attacks for Enhanced Adversarial Transferability
Generative adversarial attacks train a perturbation generator on a white-box surrogate model and subsequently apply the crafted perturbations to unseen black-box victim models. In contrast to iterative attacks, these methods deliver superior inference-time efficiency, scalability, and transferability; however, up until now, existing studies have not fully exploited the representational capacity of generative models to preserve and harness semantic information. Specifically, the intermediate activations of the generator encode rich semantic features--object boundaries and coarse shapes--that remain under-exploited, thereby limiting the alignment of perturbations with object-salient regions which are critical for adversarial transferability. To remedy this, we introduce a semantic structure-aware attack framework based on the Mean Teacher, which serves as a temporally smoothed feature reference. With this smoothed reference, we further direct semantic consistency between the early-layer activations in the student and those of the semantically rich teacher by feature distillation. By anchoring perturbation synthesis to the semantically salient early intermediate blocks within the generator based on empirical findings, our method guides progressive adversarial perturbation on regions that substantially enhance adversarial transferability. We conduct extensive experiments over diverse models, domains and tasks to demonstrate consistent improvements relative to state-of-the-art generative attacks, comprehensively evaluated using conventional metrics and our newly proposed Accidental Correction Rate (ACR).
comment: Preprint
♻ ☆ Warehouse Spatial Question Answering with LLM Agent AI
Spatial understanding has been a challenging task for existing Multi-modal Large Language Models~(MLLMs). Previous methods leverage large-scale MLLM finetuning to enhance MLLM's spatial understanding ability. In this paper, we present a data-efficient approach. We propose a LLM agent system with strong and advanced spatial reasoning ability, which can be used to solve the challenging spatial question answering task in complex indoor warehouse scenarios. Our system integrates multiple tools that allow the LLM agent to conduct spatial reasoning and API tools interaction to answer the given complicated spatial question. Extensive evaluations on the 2025 AI City Challenge Physical AI Spatial Intelligence Warehouse dataset demonstrate that our system achieves high accuracy and efficiency in tasks such as object retrieval, counting, and distance estimation. The code is available at: https://github.com/hsiangwei0903/SpatialAgent
comment: 1st Place Solution of the 9th AI City Challenge Track 3
♻ ☆ ToolACE-R: Model-aware Iterative Training and Adaptive Refinement for Tool Learning
Tool learning, which allows Large Language Models (LLMs) to leverage external tools for solving complex user tasks, has emerged as a promising avenue for extending model capabilities. However, existing approaches primarily focus on data synthesis for fine-tuning LLMs to invoke tools effectively, largely ignoring how to fully stimulate the potential of the model. In this paper, we propose ToolACE-R, a novel framework that includes both model-aware iterative training and adaptive refinement for tool learning. ToolACE-R features a model-aware iterative training procedure that progressively adjust training samples based on the model's evolving capabilities to maximize its potential. Additionally, it incorporates self-refinement training corpus which emphasizes LLM's ability to iteratively refine their tool calls, optimizing performance without requiring external feedback. Furthermore, we introduce adaptive self-refinement mechanism for efficient test-time scaling, where the trained model can autonomously determine when to stop the process based on iterative self-refinement. We conduct extensive experiments across several benchmark datasets, showing that ToolACE-R achieves competitive performance compared to advanced API-based models. The performance of tool invocation can be further improved efficiently through adaptive self-refinement. These results highlight the effectiveness and generalizability of ToolACE-R, offering a promising direction for more efficient and scalable tool learning.
♻ ☆ Request-Only Optimization for Recommendation Systems
Deep Learning Recommendation Models (DLRMs) represent one of the largest machine learning applications on the planet. Industry-scale DLRMs are trained with petabytes of recommendation data to serve billions of users every day. To utilize the rich user signals in the long user history, DLRMs have been scaled up to unprecedented complexity, up to trillions of floating-point operations (TFLOPs) per example. This scale, coupled with the huge amount of training data, necessitates new storage and training algorithms to efficiently improve the quality of these complex recommendation systems. In this paper, we present a Request-Only Optimizations (ROO) training and modeling paradigm. ROO simultaneously improves the storage and training efficiency as well as the model quality of recommendation systems. We holistically approach this challenge through co-designing data (i.e., request-only data), infrastructure (i.e., request-only based data processing pipeline), and model architecture (i.e., request-only neural architectures). Our ROO training and modeling paradigm treats a user request as a unit of the training data. Compared with the established practice of treating a user impression as a unit, our new design achieves native feature deduplication in data logging, consequently saving data storage. Second, by de-duplicating computations and communications across multiple impressions in a request, this new paradigm enables highly scaled-up neural network architectures to better capture user interest signals, such as Generative Recommenders (GRs) and other request-only friendly architectures.
♻ ☆ ViFusionTST: Deep Fusion of Time-Series Image Representations from Load Signals for Early Bed-Exit Prediction
Bed-related falls remain a major source of injury in hospitals and long-term care facilities, yet many commercial alarms trigger only after a patient has already left the bed. We show that early bed-exit intent can be predicted using only one low-cost load cell mounted under a bed leg. The resulting load signals are first converted into a compact set of complementary images: an RGB line plot that preserves raw waveforms and three texture maps-recurrence plot, Markov transition field, and Gramian angular field-that expose higher-order dynamics. We introduce ViFusionTST, a dual-stream Swin Transformer that processes the line plot and texture maps in parallel and fuses them through cross-attention to learn data-driven modality weights. To provide a realistic benchmark, we collected six months of continuous data from 95 beds in a long-term-care facility. On this real-world dataset ViFusionTST reaches an accuracy of 0.885 and an F1 score of 0.794, surpassing recent 1D and 2D time-series baselines across F1, recall, accuracy, and AUPRC. The results demonstrate that image-based fusion of load-sensor signals for time series classification is a practical and effective solution for real-time, privacy-preserving fall prevention.
♻ ☆ SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for LLM Weight Compression ICML 2025
Conventional model compression techniques for LLMs address high memory consumption and slow inference challenges but typically require computationally expensive retraining to preserve accuracy. In contrast, one-shot compression methods eliminate retraining cost, but struggle to achieve accuracy comparable to dense models. This paper presents SLIM, a new one-shot compression framework that holistically integrates hardware-friendly quantization, sparsity, and low-rank approximation into a unified process. First, we formulate the quantization process using a probabilistic approach (SLIM-Quant) that enables us to apply uniform quantization. Then, we use an existing one-shot pruning method to apply semi-structured sparsity on top of the quantized weights. Finally, to compensate for the introduced aggregated quantization and sparsity error, we use a novel saliency function with unique invertible and additive features that enables us to mathematically compute the value of low-rank adapters. SLIM improves model accuracy by up to 5.66% (LLaMA-2-7B) for 2:4 sparsity with 4-bit weight quantization, outperforming prior methods. Models compressed with SLIM achieve up to 4.3x and 3.8x on Nvidia RTX3060 and A100 GPUs, respectively. Additionally, they achieve up to 0.23x end-to-end memory reduction in comparison to their dense counterparts. We also propose an optional PEFT recipe that further improves accuracy by up to 1.66% (LLaMA-2-13B) compared to SLIM without fine-tuning.
comment: Published at Proceedings of the 42 nd International Conference on Machine Learning (ICML 2025)
♻ ☆ AlgoTune: Can Language Models Speed Up General-Purpose Numerical Programs?
Despite progress in language model (LM) capabilities, evaluations have thus far focused on models' performance on tasks that humans have previously solved, including in programming (Jimenez et al., 2024) and mathematics (Glazer et al., 2024). We therefore propose testing models' ability to design and implement algorithms in an open-ended benchmark: We task LMs with writing code that efficiently solves computationally challenging problems in computer science, physics, and mathematics. Our AlgoTune benchmark consists of 154 coding tasks collected from domain experts and a framework for validating and timing LM-synthesized solution code, which is compared to reference implementations from popular open-source packages. In addition, we develop a baseline LM agent, AlgoTuner, and evaluate its performance across a suite of frontier models. AlgoTuner uses a simple, budgeted loop that edits code, compiles and runs it, profiles performance, verifies correctness on tests, and selects the fastest valid version. AlgoTuner achieves an average 1.72x speedup against our reference solvers, which use libraries such as SciPy, sk-learn and CVXPY. However, we find that current models fail to discover algorithmic innovations, instead preferring surface-level optimizations. We hope that AlgoTune catalyzes the development of LM agents exhibiting creative problem solving beyond state-of-the-art human performance.
♻ ☆ Language-Based Bayesian Optimization Research Assistant (BORA)
Many important scientific problems involve multivariate optimization coupled with slow and laborious experimental measurements. These complex, high-dimensional searches can be defined by non-convex optimization landscapes that resemble needle-in-a-haystack surfaces, leading to entrapment in local minima. Contextualizing optimizers with human domain knowledge is a powerful approach to guide searches to localized fruitful regions. However, this approach is susceptible to human confirmation bias and it is also challenging for domain experts to keep track of the rapidly expanding scientific literature. Here, we propose the use of Large Language Models (LLMs) for contextualizing Bayesian optimization (BO) via a hybrid optimization framework that intelligently and economically blends stochastic inference with domain knowledge-based insights from the LLM, which is used to suggest new, better-performing areas of the search space for exploration. Our method fosters user engagement by offering real-time commentary on the optimization progress, explaining the reasoning behind the search strategies. We validate the effectiveness of our approach on synthetic benchmarks with up to 15 independent variables and demonstrate the ability of LLMs to reason in four real-world experimental tasks where context-aware suggestions boost optimization performance substantially.
♻ ☆ Clean-Label Physical Backdoor Attacks with Data Distillation
Deep Neural Networks (DNNs) are shown to be vulnerable to backdoor poisoning attacks, with most research focusing on digital triggers -- artificial patterns added to test-time inputs to induce targeted misclassification. Physical triggers, which are natural objects embedded in real-world scenes, offer a promising alternative for attackers, as they can activate backdoors in real-time without digital manipulation. However, existing physical backdoor attacks are dirty-label, meaning that attackers must change the labels of poisoned inputs to the target label. The inconsistency between image content and label exposes the attack to human inspection, reducing its stealthiness in real-world settings. To address this limitation, we introduce Clean-Label Physical Backdoor Attack (CLPBA), a new paradigm of physical backdoor attack that does not require label manipulation and trigger injection at the training stage. Instead, the attacker injects imperceptible perturbations into a small number of target class samples to backdoor a model. By framing the attack as a Dataset Distillation problem, we develop three CLPBA variants -- Parameter Matching, Gradient Matching, and Feature Matching -- that craft effective poisons under both linear probing and full-finetuning training settings. In hard scenarios that require backdoor generalizability in the physical world, CLPBA is shown to even surpass Dirty-label attack baselines. We demonstrate the effectiveness of CLPBA via extensive experiments on two collected physical backdoor datasets for facial recognition and animal classification. The code is available in https://github.com/thinh-dao/Clean-Label-Physical-Backdoor-Attacks.
♻ ☆ Explainable Attention-Guided Stacked Graph Neural Networks for Malware Detection
Malware detection in modern computing environments demands models that are not only accurate but also interpretable and robust to evasive techniques. Graph neural networks (GNNs) have shown promise in this domain by modeling rich structural dependencies in graph-based program representations such as control flow graphs (CFGs). However, single-model approaches may suffer from limited generalization and lack interpretability, especially in high-stakes security applications. In this paper, we propose a novel stacking ensemble framework for graph-based malware detection and explanation. Our method dynamically extracts CFGs from portable executable (PE) files and encodes their basic blocks through a two-step embedding strategy. A set of diverse GNN base learners, each with a distinct message-passing mechanism, is used to capture complementary behavioral features. Their prediction outputs are aggregated by a meta-learner implemented as an attention-based multilayer perceptron, which both classifies malware instances and quantifies the contribution of each base model. To enhance explainability, we introduce an ensemble-aware post-hoc explanation technique that leverages edge-level importance scores generated by a GNN explainer and fuses them using the learned attention weights. This produces interpretable, model-agnostic explanations aligned with the final ensemble decision. Experimental results demonstrate that our framework improves classification performance while providing insightful interpretations of malware behavior.
♻ ☆ Sophisticated Learning: A novel algorithm for active learning during model-based planning
We introduce Sophisticated Learning (SL), a planning-to-learn algorithm that embeds active parameter learning inside the Sophisticated Inference (SI) tree-search framework of Active Inference. Unlike SI -- which optimizes beliefs about hidden states -- SL also updates beliefs about model parameters within each simulated branch, enabling counterfactual reasoning about how future observations would improve subsequent planning. We compared SL with Bayes-adaptive Reinforcement Learning (BARL) agents as well as with its parent algorithm, SI. Using a biologically inspired seasonal foraging task in which resources shift probabilistically over a 10x10 grid, we designed experiments that forced agents to balance probabilistic reward harvesting against information gathering. In early trials, where rapid learning is vital, SL agents survive, on average, 8.2% longer than SI and 35% longer than Bayes-adaptive Reinforcement Learning. While both SL and SI showed equal convergence performance, SL reached this convergence 40% faster than SI. Additionally, SL showed robust out-performance of other algorithms in altered environment configurations. Our results show that incorporating active learning into multi-step planning materially improves decision making under radical uncertainty, and reinforces the broader utility of Active Inference for modeling biologically relevant behavior.
♻ ☆ Recent Advances in Generative AI for Healthcare Applications
The rapid advancement of Artificial Intelligence (AI) has catalyzed revolutionary changes across various sectors, notably in healthcare. In particular, generative AI-led by diffusion models and transformer architectures-has enabled significant breakthroughs in medical imaging (including image reconstruction, image-to-image translation, generation, and classification), protein structure prediction, clinical documentation, diagnostic assistance, radiology interpretation, clinical decision support, medical coding, and billing, as well as drug design and molecular representation. These innovations have enhanced clinical diagnosis, data reconstruction, and drug synthesis. This review paper aims to offer a comprehensive synthesis of recent advances in healthcare applications of generative AI, with an emphasis on diffusion and transformer models. Moreover, we discuss current capabilities, highlight existing limitations, and outline promising research directions to address emerging challenges. Serving as both a reference for researchers and a guide for practitioners, this work offers an integrated view of the state of the art, its impact on healthcare, and its future potential.
comment: 51 pages, 16 figures, 1table
♻ ☆ StoryEnsemble: Enabling Dynamic Exploration & Iteration in the Design Process with AI and Forward-Backward Propagation
Design processes involve exploration, iteration, and movement across interconnected stages such as persona creation, problem framing, solution ideation, and prototyping. However, time and resource constraints often hinder designers from exploring broadly, collecting feedback, and revisiting earlier assumptions-making it difficult to uphold core design principles in practice. To better understand these challenges, we conducted a formative study with 15 participants-comprised of UX practitioners, students, and instructors. Based on the findings, we developed StoryEnsemble, a tool that integrates AI into a node-link interface and leverages forward and backward propagation to support dynamic exploration and iteration across the design process. A user study with 10 participants showed that StoryEnsemble enables rapid, multi-directional iteration and flexible navigation across design stages. This work advances our understanding of how AI can foster more iterative design practices by introducing novel interactions that make exploration and iteration more fluid, accessible, and engaging.
♻ ☆ A Closer Look at Multimodal Representation Collapse ICML
We aim to develop a fundamental understanding of modality collapse, a recently observed empirical phenomenon wherein models trained for multimodal fusion tend to rely only on a subset of the modalities, ignoring the rest. We show that modality collapse happens when noisy features from one modality are entangled, via a shared set of neurons in the fusion head, with predictive features from another, effectively masking out positive contributions from the predictive features of the former modality and leading to its collapse. We further prove that cross-modal knowledge distillation implicitly disentangles such representations by freeing up rank bottlenecks in the student encoder, denoising the fusion-head outputs without negatively impacting the predictive features from either modality. Based on the above findings, we propose an algorithm that prevents modality collapse through explicit basis reallocation, with applications in dealing with missing modalities. Extensive experiments on multiple multimodal benchmarks validate our theoretical claims. Project page: https://abhrac.github.io/mmcollapse/.
comment: International Conference on Machine Learning (ICML) 2025 (Spotlight)
♻ ☆ On Approximate MMS Allocations on Restricted Graph Classes
We study the problem of fair division of a set of indivisible goods with connectivity constraints. Specifically, we assume that the goods are represented as vertices of a connected graph, and sets of goods allocated to the agents are connected subgraphs of this graph. We focus on the widely-studied maximin share criterion of fairness. It has been shown that an allocation satisfying this criterion may not exist even without connectivity constraints, i.e., if the graph of goods is complete. In view of this, it is natural to seek approximate allocations that guarantee each agent a connected bundle of goods with value at least a constant fraction of the maximin share value to the agent. It is known that for some classes of graphs, such as complete graphs, cycles, and $d$-claw-free graphs for any fixed $d$, such approximate allocations indeed exist. However, it is an open problem whether they exist for the class of all graphs. In this paper, we continue the systematic study of the existence of approximate allocations on restricted graph classes. In particular, we show that such allocations exist for several well-studied classes, including block graphs, cacti, complete multipartite graphs, and split graphs.
♻ ☆ What Has a Foundation Model Found? Using Inductive Bias to Probe for World Models ICML 2025
Foundation models are premised on the idea that sequence prediction can uncover deeper domain understanding, much like how Kepler's predictions of planetary motion later led to the discovery of Newtonian mechanics. However, evaluating whether these models truly capture deeper structure remains a challenge. We develop a technique for evaluating foundation models that examines how they adapt to synthetic datasets generated from some postulated world model. Our technique measures whether the foundation model's inductive bias aligns with the world model, and so we refer to it as an inductive bias probe. Across multiple domains, we find that foundation models can excel at their training tasks yet fail to develop inductive biases towards the underlying world model when adapted to new tasks. We particularly find that foundation models trained on orbital trajectories consistently fail to apply Newtonian mechanics when adapted to new physics tasks. Further analysis reveals that these models behave as if they develop task-specific heuristics that fail to generalize.
comment: To appear in ICML 2025
♻ ☆ The Fellowship of the LLMs: Multi-Model Workflows for Synthetic Preference Optimization Dataset Generation
This paper presents a novel methodology for generating synthetic Preference Optimization (PO) datasets using multi-model workflows. We evaluate the effectiveness and potential of these workflows in automating and enhancing the dataset generation process. PO dataset generation requires two modules: (1) $\textit{response evaluation}$, and (2) $\textit{response generation}$. In the $\textit{response evaluation}$ module, the responses from Large Language Models (LLMs) are evaluated and ranked - a task typically carried out by human annotators that we automate using LLMs. We assess the response evaluation module in a 2 step process. In step 1, we assess LLMs as evaluators using three distinct prompting strategies. In step 2, we apply the winning prompting strategy to compare the performance of LLM-as-a-Judge, LLMs-as-a-Jury, and LLM Debate. Our evaluation shows that GPT-4o-as-a-Judge is more consistent across all datasets. For the $\textit{response generation}$ module, we use the identified LLM evaluator configuration and compare different configurations of the LLM Feedback Loop. We use the win rate to determine the best multi-model configuration for generation. Experimenting with various configurations, we find that the LLM Feedback Loop, with Llama as the generator and Gemma as the reviewer, achieves a notable 71.8% and 73.8% win rate over single-model Llama and Gemma, respectively. After identifying the best configurations for both modules, we generate our PO datasets using the above pipeline.
♻ ☆ Blending 3D Geometry and Machine Learning for Multi-View Stereopsis
Traditional multi-view stereo (MVS) methods primarily depend on photometric and geometric consistency constraints. In contrast, modern learning-based algorithms often rely on the plane sweep algorithm to infer 3D geometry, applying explicit geometric consistency (GC) checks only as a post-processing step, with no impact on the learning process itself. In this work, we introduce GC MVSNet plus plus, a novel approach that actively enforces geometric consistency of reference view depth maps across multiple source views (multi view) and at various scales (multi scale) during the learning phase (see Fig. 1). This integrated GC check significantly accelerates the learning process by directly penalizing geometrically inconsistent pixels, effectively halving the number of training iterations compared to other MVS methods. Furthermore, we introduce a densely connected cost regularization network with two distinct block designs simple and feature dense optimized to harness dense feature connections for enhanced regularization. Extensive experiments demonstrate that our approach achieves a new state of the art on the DTU and BlendedMVS datasets and secures second place on the Tanks and Temples benchmark. To our knowledge, GC MVSNet plus plus is the first method to enforce multi-view, multi-scale supervised geometric consistency during learning. Our code is available.
comment: A pre-print -- accepted at Neurocomputing. arXiv admin note: substantial text overlap with arXiv:2310.19583
♻ ☆ JMA: a General Algorithm to Craft Nearly Optimal Targeted Adversarial Example
Most of the approaches proposed so far to craft targeted adversarial examples against Deep Learning classifiers are highly suboptimal and typically rely on increasing the likelihood of the target class, thus implicitly focusing on one-hot encoding settings. In this paper, a more general, theoretically sound, targeted attack is proposed, which resorts to the minimization of a Jacobian-induced Mahalanobis distance term, taking into account the effort (in the input space) required to move the latent space representation of the input sample in a given direction. The minimization is solved by exploiting the Wolfe duality theorem, reducing the problem to the solution of a Non-Negative Least Square (NNLS) problem. The proposed algorithm (referred to as JMA) provides an optimal solution to a linearised version of the adversarial example problem originally introduced by Szegedy et al. The results of the experiments confirm the generality of the proposed attack which is proven to be effective under a wide variety of output encoding schemes. Noticeably, JMA is also effective in a multi-label classification scenario, being capable to induce a targeted modification of up to half the labels in complex multi-label classification scenarios, a capability that is out of reach of all the attacks proposed so far. As a further advantage, JMA requires very few iterations, thus resulting more efficient than existing methods.
♻ ☆ Uncertainty-Aware Adaptation of Large Language Models for Protein-Protein Interaction Analysis
Identification of protein-protein interactions (PPIs) helps derive cellular mechanistic understanding, particularly in the context of complex conditions such as neurodegenerative disorders, metabolic syndromes, and cancer. Large Language Models (LLMs) have demonstrated remarkable potential in predicting protein structures and interactions via automated mining of vast biomedical literature; yet their inherent uncertainty remains a key challenge for deriving reproducible findings, critical for biomedical applications. In this study, we present an uncertainty-aware adaptation of LLMs for PPI analysis, leveraging fine-tuned LLaMA-3 and BioMedGPT models. To enhance prediction reliability, we integrate LoRA ensembles and Bayesian LoRA models for uncertainty quantification (UQ), ensuring confidence-calibrated insights into protein behavior. Our approach achieves competitive performance in PPI identification across diverse disease contexts while addressing model uncertainty, thereby enhancing trustworthiness and reproducibility in computational biology. These findings underscore the potential of uncertainty-aware LLM adaptation for advancing precision medicine and biomedical research.
Computational Engineering, Finance, and Science 8
☆ Chem3DLLM: 3D Multimodal Large Language Models for Chemistry
In the real world, a molecule is a 3D geometric structure. Compared to 1D SMILES sequences and 2D molecular graphs, 3D molecules represent the most informative molecular modality. Despite the rapid progress of autoregressive-based language models, they cannot handle the generation of 3D molecular conformation due to several challenges: 1) 3D molecular structures are incompatible with LLMs' discrete token space, 2) integrating heterogeneous inputs like proteins, ligands, and text remains difficult within a unified model, and 3) LLMs lack essential scientific priors, hindering the enforcement of physical and chemical constraints during generation. To tackle these issues, we present Chem3DLLM, a unified protein-conditioned multimodal large language model. Our approach designs a novel reversible text encoding for 3D molecular structures using run-length compression, achieving 3x size reduction while preserving complete structural information. This enables seamless integration of molecular geometry with protein pocket features in a single LLM architecture. We employ reinforcement learning with stability-based rewards to optimize chemical validity and incorporate a lightweight protein embedding projector for end-to-end training. Experimental results on structure-based drug design demonstrate state-of-the-art performance with a Vina score of -7.21, validating our unified multimodal approach for practical drug discovery applications.
comment: 15 pages, 9 figures
☆ Physics-Informed Deep Contrast Source Inversion: A Unified Framework for Inverse Scattering Problems
Inverse scattering problems are critical in electromagnetic imaging and medical diagnostics but are challenged by their nonlinearity and diverse measurement scenarios. This paper proposes a physics-informed deep contrast source inversion framework (DeepCSI) for fast and accurate medium reconstruction across various measurement conditions. Inspired by contrast source inversion (CSI) and neural operator methods, a residual multilayer perceptron (ResMLP) is employed to model current distributions in the region of interest under different transmitter excitations, effectively linearizing the nonlinear inverse scattering problem and significantly reducing the computational cost of traditional full-waveform inversion. By modeling medium parameters as learnable tensors and utilizing a hybrid loss function that integrates state equation loss, data equation loss, and total variation regularization, DeepCSI establishes a fully differentiable framework for joint optimization of network parameters and medium properties. Compared with conventional methods, DeepCSI offers advantages in terms of simplicity and universal modeling capabilities for diverse measurement scenarios, including phase-less and multi-frequency observation. Simulations and experiments demonstrate that DeepCSI achieves high-precision, robust reconstruction under full-data, phaseless data, and multifrequency conditions, outperforming traditional CSI methods and providing an efficient and universal solution for complex inverse scattering problems.
☆ Virtual Sensing for Solder Layer Degradation and Temperature Monitoring in IGBT Modules
Monitoring the degradation state of Insulated Gate Bipolar Transistor (IGBT) modules is essential for ensuring the reliability and longevity of power electronic systems, especially in safety-critical and high-performance applications. However, direct measurement of key degradation indicators - such as junction temperature, solder fatigue or delamination - remains challenging due to the physical inaccessibility of internal components and the harsh environment. In this context, machine learning-based virtual sensing offers a promising alternative by bridging the gap from feasible sensor placement to the relevant but inaccessible locations. This paper explores the feasibility of estimating the degradation state of solder layers, and the corresponding full temperature maps based on a limited number of physical sensors. Based on synthetic data of a specific degradation mode, we obtain a high accuracy in the estimation of the degraded solder area (1.17% mean absolute error), and are able to reproduce the surface temperature of the IGBT with a maximum relative error of 4.56% (corresponding to an average relative error of 0.37%).
comment: Andrea Urgolo and Monika Stipsitz contributed equally to this work
☆ Reverse Physician-AI Relationship: Full-process Clinical Diagnosis Driven by a Large Language Model
Full-process clinical diagnosis in the real world encompasses the entire diagnostic workflow that begins with only an ambiguous chief complaint. While artificial intelligence (AI), particularly large language models (LLMs), is transforming clinical diagnosis, its role remains largely as an assistant to physicians. This AI-assisted working pattern makes AI can only answer specific medical questions at certain parts within the diagnostic process, but lack the ability to drive the entire diagnostic process starting from an ambiguous complaint, which still relies heavily on human physicians. This gap limits AI's ability to fully reduce physicians' workload and enhance diagnostic efficiency. To address this, we propose a paradigm shift that reverses the relationship between physicians and AI: repositioning AI as the primary director, with physicians serving as its assistants. So we present DxDirector-7B, an LLM endowed with advanced deep thinking capabilities, enabling it to drive the full-process diagnosis with minimal physician involvement. Furthermore, DxDirector-7B establishes a robust accountability framework for misdiagnoses, delineating responsibility between AI and human physicians. In evaluations across rare, complex, and real-world cases under full-process diagnosis setting, DxDirector-7B not only achieves significant superior diagnostic accuracy but also substantially reduces physician workload than state-of-the-art medical LLMs as well as general-purpose LLMs. Fine-grained analyses across multiple clinical departments and tasks validate its efficacy, with expert evaluations indicating its potential to serve as a viable substitute for medical specialists. These findings mark a new era where AI, traditionally a physicians' assistant, now drives the entire diagnostic process to drastically reduce physicians' workload, indicating an efficient and accurate diagnostic solution.
comment: 39 pages
☆ TOBACO: Topology Optimization via Band-limited Coordinate Networks for Compositionally Graded Alloys
Compositionally Graded Alloys (CGAs) offer unprecedented design flexibility by enabling spatial variations in composition; tailoring material properties to local loading conditions. This flexibility leads to components that are stronger, lighter, and more cost-effective than traditional monolithic counterparts. The fabrication of CGAs have become increasingly feasible owing to recent advancements in additive manufacturing (AM), particularly in multi-material printing and improved precision in material deposition. However, AM of CGAs requires imposition of manufacturing constraints; in particular limits on the maximum spatial gradation of composition. This paper introduces a topology optimization (TO) based framework for designing optimized CGA components with controlled compositional gradation. In particular, we represent the constrained composition distribution using a band-limited coordinate neural network. By regulating the network's bandwidth, we ensure implicit compliance with gradation limits, eliminating the need for explicit constraints. The proposed approach also benefits from the inherent advantages of TO using coordinate networks, including mesh independence, high-resolution design extraction, and end-to-end differentiability. The effectiveness of our framework is demonstrated through various elastic and thermo-elastic TO examples.
comment: Submitted to Structural and Multidisciplinary Optimization
☆ Compressive Meta-Learning KDD '25
The rapid expansion in the size of new datasets has created a need for fast and efficient parameter-learning techniques. Compressive learning is a framework that enables efficient processing by using random, non-linear features to project large-scale databases onto compact, information-preserving representations whose dimensionality is independent of the number of samples and can be easily stored, transferred, and processed. These database-level summaries are then used to decode parameters of interest from the underlying data distribution without requiring access to the original samples, offering an efficient and privacy-friendly learning framework. However, both the encoding and decoding techniques are typically randomized and data-independent, failing to exploit the underlying structure of the data. In this work, we propose a framework that meta-learns both the encoding and decoding stages of compressive learning methods by using neural networks that provide faster and more accurate systems than the current state-of-the-art approaches. To demonstrate the potential of the presented Compressive Meta-Learning framework, we explore multiple applications -- including neural network-based compressive PCA, compressive ridge regression, compressive k-means, and autoencoders.
comment: Extended version of a paper accepted at KDD '25
♻ ☆ Interpretable Neural ODEs for Gene Regulatory Network Discovery under Perturbations
Modern high-throughput biological datasets with thousands of perturbations provide the opportunity for large-scale discovery of causal graphs that represent the regulatory interactions between genes. Differentiable causal graphical models have been proposed to infer a gene regulatory network (GRN) from large scale interventional datasets, capturing the causal gene regulatory relationships from genetic perturbations. However, existing models are limited in their expressivity and scalability while failing to address the dynamic nature of biological processes such as cellular differentiation. We propose PerturbODE, a novel framework that incorporates biologically informative neural ordinary differential equations (neural ODEs) to model cell state trajectories under perturbations and derive the causal GRN from the neural ODE's parameters. We demonstrate PerturbODE's efficacy in trajectory prediction and GRN inference across simulated and real over-expression datasets.
♻ ☆ Semantic-Enhanced Time-Series Forecasting via Large Language Models
Time series forecasting plays a significant role in finance, energy, meteorology, and IoT applications. Recent studies have leveraged the generalization capabilities of large language models (LLMs) to adapt to time series forecasting, achieving promising performance. However, existing studies focus on token-level modal alignment, instead of bridging the intrinsic modality gap between linguistic knowledge structures and time series data patterns, greatly limiting the semantic representation. To address this issue, we propose a novel Semantic-Enhanced LLM (SE-LLM) that explores the inherent periodicity and anomalous characteristics of time series to embed into the semantic space to enhance the token embedding. This process enhances the interpretability of tokens for LLMs, thereby activating the potential of LLMs for temporal sequence analysis. Moreover, existing Transformer-based LLMs excel at capturing long-range dependencies but are weak at modeling short-term anomalies in time-series data. Hence, we propose a plugin module embedded within self-attention that models long-term and short-term dependencies to effectively adapt LLMs to time-series analysis. Our approach freezes the LLM and reduces the sequence dimensionality of tokens, greatly reducing computational consumption. Experiments demonstrate the superiority performance of our SE-LLM against the state-of-the-art (SOTA) methods.
comment: 14 pages,9 figures
Databases 8
☆ AmbiGraph-Eval: Can LLMs Effectively Handle Ambiguous Graph Queries?
Large Language Models (LLMs) have recently demonstrated strong capabilities in translating natural language into database queries, especially when dealing with complex graph-structured data. However, real-world queries often contain inherent ambiguities, and the interconnected nature of graph structures can amplify these challenges, leading to unintended or incorrect query results. To systematically evaluate LLMs on this front, we propose a taxonomy of graph-query ambiguities, comprising three primary types: Attribute Ambiguity, Relationship Ambiguity, and Attribute-Relationship Ambiguity, each subdivided into Same-Entity and Cross-Entity scenarios. We introduce AmbiGraph-Eval, a novel benchmark of real-world ambiguous queries paired with expert-verified graph query answers. Evaluating 9 representative LLMs shows that even top models struggle with ambiguous graph queries. Our findings reveal a critical gap in ambiguity handling and motivate future work on specialized resolution techniques.
☆ A Lightweight Learned Cardinality Estimation Model TKDE
Cardinality estimation is a fundamental task in database management systems, aiming to predict query results accurately without executing the queries. However, existing techniques either achieve low estimation accuracy or incur high inference latency. Simultaneously achieving high speed and accuracy becomes critical for the cardinality estimation problem. In this paper, we propose a novel data-driven approach called CoDe (Covering with Decompositions) to address this problem. CoDe employs the concept of covering design, which divides the table into multiple smaller, overlapping segments. For each segment, CoDe utilizes tensor decomposition to accurately model its data distribution. Moreover, CoDe introduces innovative algorithms to select the best-fitting distributions for each query, combining them to estimate the final result. By employing multiple models to approximate distributions, CoDe excels in effectively modeling discrete distributions and ensuring computational efficiency. Notably, experimental results show that our method represents a significant advancement in cardinality estimation, achieving state-of-the-art levels of both estimation accuracy and inference efficiency. Across various datasets, CoDe achieves absolute accuracy in estimating more than half of the queries.
comment: IEEE Transactions on Knowledge and Data Engineering (TKDE), 2025
☆ LLMLog: Advanced Log Template Generation via LLM-driven Multi-Round Annotation VLDB 2025
Modern computing systems, such as HDFS and Spark, produce vast quantities of logs that developers use for tasks like anomaly detection and error analysis. To simplify log analysis, template generation methods have been proposed to standardize log formats, transforming unstructured data into structured templates. Existing heuristic-based methods and neural network-based methods suffer from low accuracy problems due to the reliance on handcrafted heuristics or specific log patterns in training sets. Recently, large language models (LLMs) have shown great potential in log template generation. However, they often struggle with ambiguous, complex, or highly specific log content, which can lead to errors in generating accurate templates. To address these challenges, we propose LLMLog, a multi-round annotation framework with adaptive in-context learning. We first propose an edit-distance-based similarity metric to evaluate log similarity. Then, we introduce a method to select the most informative $k$ unlabeled logs for annotation by considering both the representativeness of the logs and the confidence of LLM predictions. Additionally, we design an adaptive context selection strategy that adaptively selects labeled logs to ensure comprehensive keyword coverage for unlabeled logs. These labeled logs serve as the context for LLMs to better understand the unlabeled logs, thereby enhancing the accuracy of template generation. Extensive experiments on sixteen datasets demonstrate that LLMLog outperforms the state-of-the-art approaches.
comment: Accepted in VLDB 2025
☆ Columbo: Expanding Abbreviated Column Names for Tabular Data Using Large Language Models
Expanding the abbreviated column names of tables, such as ``esal'' to ``employee salary'', is critical for numerous downstream data tasks. This problem arises in enterprises, domain sciences, government agencies, and more. In this paper we make three contributions that significantly advances the state of the art. First, we show that synthetic public data used by prior work has major limitations, and we introduce 4 new datasets in enterprise/science domains, with real-world abbreviations. Second, we show that accuracy measures used by prior work seriously undercount correct expansions, and we propose new synonym-aware measures that capture accuracy much more accurately. Finally, we develop Columbo, a powerful LLM-based solution that exploits context, rules, chain-of-thought reasoning, and token-level analysis. Extensive experiments show that Columbo significantly outperforms NameGuess, the current most advanced solution, by 4-29\%, over 5 datasets. Columbo has been used in production on EDI, a major data portal for environmental sciences.
♻ ☆ Approximate DBSCAN under Differential Privacy
This paper revisits the DBSCAN problem under differential privacy (DP). Existing DP-DBSCAN algorithms aim at publishing the cluster labels of the input points. However, we show that both empirically and theoretically, this approach cannot offer any utility in the published results. We therefore propose an alternative definition of DP-DBSCAN based on the notion of spans. We argue that publishing the spans actually better serves the purposes of visualization and classification of DBSCAN. Then we present a linear-time DP-DBSCAN algorithm achieving the sandwich quality guarantee in any constant dimensions, as well as matching lower bounds on the approximation ratio. A key building block in our algorithm is a linear-time algorithm for constructing a histogram under pure-DP, which is of independent interest. Finally, we conducted experiments on both synthetic and real-world datasets to verify the practical performance of our DP-DBSCAN algorithm.
♻ ☆ WebArXiv: Evaluating Multimodal Agents on Time-Invariant arXiv Tasks
Recent progress in large language models (LLMs) has enabled the development of autonomous web agents capable of navigating and interacting with real websites. However, evaluating such agents remains challenging due to the instability and inconsistency of existing benchmarks, which often rely on dynamic content or oversimplified simulations. In this work, we introduce WebArXiv, a static and time-invariant benchmark comprising 275 web-based tasks grounded in the arXiv platform. WebArXiv ensures reproducible and reliable evaluation by anchoring tasks in fixed web snapshots with deterministic ground truths and standardized action trajectories. Through behavioral analysis, we identify a common failure mode, Rigid History Reflection, where agents over-rely on fixed interaction histories. To address this, we propose a lightweight dynamic reflection mechanism that allows agents to selectively retrieve relevant past steps during decision-making. We evaluate ten state-of-the-art web agents on WebArXiv. Results demonstrate clear performance differences across agents and validate the effectiveness of our proposed reflection strategy.
comment: 10 pages, 9 figures, 4 tables
Scalable Graph Indexing using GPUs for Approximate Nearest Neighbor Search SIGMOD 2026
Approximate nearest neighbor search (ANNS) in high-dimensional vector spaces has a wide range of real-world applications. Numerous methods have been proposed to handle ANNS efficiently, while graph-based indexes have gained prominence due to their high accuracy and efficiency. However, the indexing overhead of graph-based indexes remains substantial. With exponential growth in data volume and increasing demands for dynamic index adjustments, this overhead continues to escalate, posing a critical challenge. In this paper, we introduce Tagore, a fast library accelerated by GPUs for graph indexing, which has powerful capabilities of constructing refinement-based graph indexes such as NSG and Vamana. We first introduce GNN-Descent, a GPU-specific algorithm for efficient k-Nearest Neighbor (k-NN) graph initialization. GNN-Descent speeds up the similarity comparison by a two-phase descent procedure and enables highly parallelized neighbor updates. Next, aiming to support various k-NN graph pruning strategies, we formulate a universal computing procedure termed CFS and devise two generalized GPU kernels for parallel processing complex dependencies in neighbor relationships. For large-scale datasets exceeding GPU memory capacity, we propose an asynchronous GPU-CPU-disk indexing framework with a cluster-aware caching mechanism to minimize the I/O pressure on the disk. Extensive experiments on 7 real-world datasets exhibit that Tagore achieves 1.32x-112.79x speedup while maintaining the index quality.
comment: Accepted at SIGMOD 2026
♻ ☆ MAPS: A Multilingual Benchmark for Global Agent Performance and Security
Agentic AI systems, which build on Large Language Models (LLMs) and interact with tools and memory, have rapidly advanced in capability and scope. Yet, since LLMs have been shown to struggle in multilingual settings, typically resulting in lower performance and reduced safety, agentic systems risk inheriting these limitations. This raises concerns about the accessibility of such systems, as users interacting in languages other than English may encounter unreliable or security-critical agent behavior. Despite growing interest in evaluating agentic AI, existing benchmarks focus exclusively on English, leaving multilingual settings unexplored. To address this gap, we propose MAPS, a multilingual benchmark suite designed to evaluate agentic AI systems across diverse languages and tasks. MAPS builds on four widely used agentic benchmarks - GAIA (real-world tasks), SWE-bench (code generation), MATH (mathematical reasoning), and the Agent Security Benchmark (security). We translate each dataset into eleven diverse languages, resulting in 805 unique tasks and 9,660 total language-specific instances - enabling a systematic analysis of the multilingual effect on AI agents' performance and robustness. Empirically, we observe degradation in both performance and security when transitioning from English to other languages, with severity varying by task and correlating with the amount of translated input. Building on these findings, we provide actionable recommendations to guide agentic AI systems development and assessment under multilingual settings. This work establishes the first standardized evaluation framework for multilingual agentic AI, encouraging future research towards equitable, reliable, and accessible agentic AI. MAPS benchmark suite is publicly available at https://huggingface.co/datasets/Fujitsu-FRE/MAPS
Distributed, Parallel, and Cluster Computing 18
☆ Closing the HPC-Cloud Convergence Gap: Multi-Tenant Slingshot RDMA for Kubernetes
Converged HPC-Cloud computing is an emerging computing paradigm that aims to support increasingly complex and multi-tenant scientific workflows. These systems require reconciliation of the isolation requirements of native cloud workloads and the performance demands of HPC applications. In this context, networking hardware is a critical boundary component: it is the conduit for high-throughput, low-latency communication and enables isolation across tenants. HPE Slingshot is a high-speed network interconnect that provides up to 200 Gbps of throughput per port and targets high-performance computing (HPC) systems. The Slingshot host software, including hardware drivers and network middleware libraries, is designed to meet HPC deployments, which predominantly use single-tenant access modes. Hence, the Slingshot stack is not suited for secure use in multi-tenant deployments, such as converged HPC-Cloud deployments. In this paper, we design and implement an extension to the Slingshot stack targeting converged deployments on the basis of Kubernetes. Our integration provides secure, container-granular, and multi-tenant access to Slingshot RDMA networking capabilities at minimal overhead.
comment: 10 pages, 12 figures, 1 table, 3 listings, to be published in IEEE Cluster 2025
☆ Distributed Diamond Formation of Sliding Squares
The sliding square model is a widely used abstraction for studying self-reconfigurable robotic systems, where modules are square-shaped robots that move by sliding or rotating over one another. In this paper, we propose a novel distributed algorithm that allows a group of modules to reconfigure into a diamond shape, starting from an arbitrary side-connected configuration. It is connectivity-preserving and operates under minimal assumptions: one leader module, common chirality, constant memory per module, and visibility and communication restricted to immediate neighbors. Unlike prior work, which relaxes the original sliding square move-set, our approach uses the unmodified move-set, addressing the additional challenge of handling locked configurations. Our algorithm is sequential in nature and operates with a worst-case time complexity of $\mathcal{O}(n^2)$ rounds, which is optimal for sequential algorithms. To improve runtime, we introduce two parallel variants of the algorithm. Both rely on a spanning tree data structure, allowing modules to make decisions based on local connectivity. Our experimental results show a significant speedup for the first variant, and linear average runtime for the second variant, which is worst-case optimal for parallel algorithms.
comment: 29 pages, 11 figures, 34 subfigures
☆ HierMoE: Accelerating MoE Training with Hierarchical Token Deduplication and Expert Swap
The sparsely activated mixture-of-experts (MoE) transformer has become a common architecture for large language models (LLMs) due to its sparsity, which requires fewer computational demands while easily scaling the model size. In MoE models, each MoE layer requires to dynamically choose tokens to activate particular experts for computation while the activated experts may not be located in the same device or GPU as the token. However, this leads to substantial communication and load imbalances across all GPUs, which obstructs the scalability of distributed systems within a GPU cluster. To this end, we introduce HierMoE to accelerate the training of MoE models by two topology-aware techniques: 1) token deduplication to reduce the communication traffic, and 2) expert swap to balance the workloads among all GPUs. To enable the above two proposed approaches to be more general, we build theoretical models aimed at achieving the best token duplication and expert swap strategy under different model configurations and hardware environments. We implement our prototype HierMoE system atop Megatron-LM and conduct experiments on a 32-GPU cluster with DeepSeek-V3 and Qwen3-30B-A3B models. Experimental results show that our HierMoE achieves $1.55\times$ to $3.32\times$ faster communication and delivers $1.18\times$ to $1.27\times$ faster end-to-end training compared to state-of-the-art MoE training systems, Tutel-2DH, SmartMoE, and Megatron-LM.
☆ Verify Distributed Deep Learning Model Implementation Refinement with Iterative Relation Inference
Distributed machine learning training and inference is common today because today's large models require more memory and compute than can be provided by a single GPU. Distributed models are generally produced by programmers who take a sequential model specification and apply several distribution strategies to distribute state and computation across GPUs. Unfortunately, bugs can be introduced in the process, and a distributed model implementation's outputs might differ from the sequential model's outputs. In this paper, we describe an approach to statically identify such bugs by checking model refinement, that is, can the sequential model's outputs be reconstructed from the distributed model's outputs? Our approach, implemented in GraphGuard, uses iterative rewriting to prove model refinement. Our approach can scale to today's large models and deployments: we evaluate it using GPT and Llama-3. Further, it provides actionable output that aids in bug localization.
☆ Mixed-Precision Performance Portability of FFT-Based GPU-Accelerated Algorithms for Block-Triangular Toeplitz Matrices
The hardware diversity displayed in leadership-class computing facilities, alongside the immense performance boosts exhibited by today's GPUs when computing in lower precision, provide a strong incentive for scientific HPC workflows to adopt mixed-precision algorithms and performance portability models. We present an on-the-fly framework using Hipify for performance portability and apply it to FFTMatvec-an HPC application that computes matrix-vector products with block-triangular Toeplitz matrices. Our approach enables FFTMatvec, initially a CUDA-only application, to run seamlessly on AMD GPUs with excellent observed performance. Performance optimizations for AMD GPUs are integrated directly into the open-source rocBLAS library, keeping the application code unchanged. We then present a dynamic mixed-precision framework for FFTMatvec; a Pareto front analysis determines the optimal mixed-precision configuration for a desired error tolerance. Results are shown for AMD Instinct MI250X, MI300X, and the newly launched MI355X GPUs. The performance-portable, mixed-precision FFTMatvec is scaled to 2,048 GPUs on the OLCF Frontier supercomputer.
☆ Hard Shell, Reliable Core: Improving Resilience in Replicated Systems with Selective Hybridization
Hybrid fault models are known to be an effective means for enhancing the robustness of consensus-based replicated systems. However, existing hybridization approaches suffer from limited flexibility with regard to the composition of crash-tolerant and Byzantine fault-tolerant system parts and/or are associated with a significant diversification overhead. In this paper we address these issues with ShellFT, a framework that leverages the concept of micro replication to allow system designers to freely choose the parts of the replication logic that need to be resilient against Byzantine faults. As a key benefit, such a selective hybridization makes it possible to develop hybrid solutions that are tailored to the specific characteristics and requirements of individual use cases. To illustrate this flexibility, we present three custom ShellFT protocols and analyze the complexity of their implementations. Our evaluation shows that compared with traditional hybridization approaches, ShellFT is able to decrease diversification costs by more than 70%.
comment: Extended version of publication in 44th International Symposium on Reliable Distributed Systems (SRDS '25)
♻ ☆ Block: Balancing Load in LLM Serving with Context, Knowledge and Predictive Scheduling
This paper presents Block, a distributed scheduling framework designed to optimize load balancing and auto-provisioning across instances in large language model serving frameworks by leveraging contextual information from incoming requests. Unlike popular model serving systems that rely on monolithic and heuristic task schedulers, Block operates as a fully distributed, stateless, and predictive scheduling system to achieve low overhead, reliability, and scalability. It leverages the deterministic and predictable characteristics of LLM inferences, such as host configurations, response lengths, and hardware performance, to make scheduling decisions based on accurately predicted metrics. Evaluation on a 12 GPUs cluster shows that Block significantly outperforms heuristic schedulers, boosting serving capacity by up to 16.7\% and reducing P99 tail latency by up to 49.5\%. These performance gains remain consistent across diverse models, workloads and configurations. Code and data are open-sourced.
comment: 12 pages, 8 figures excluding appendix. V1: Fix some typos and grammar issue
♻ ☆ Distributed Triangle Detection is Hard in Few Rounds
In the distributed triangle detection problem, we have an $n$-vertex network $G=(V,E)$ with one player for each vertex of the graph who sees the edges incident on the vertex. The players communicate in synchronous rounds using the edges of this network and have a limited bandwidth of $O(\log{n})$ bits over each edge. The goal is to detect whether or not $G$ contains a triangle as a subgraph in a minimal number of rounds. We prove that any protocol (deterministic or randomized) for distributed triangle detection requires $\Omega(\log\log{n})$ rounds of communication. Prior to our work, only one-round lower bounds were known for this problem. The primary technique for proving these types of distributed lower bounds is via reductions from two-party communication complexity. However, it has been known for a while that this approach is provably incapable of establishing any meaningful lower bounds for distributed triangle detection. Our main technical contribution is a new information theoretic argument which combines recent advances on multi-pass graph streaming lower bounds with the point-to-point communication aspects of distributed models, and can be of independent interest.
comment: 75 pages, 7 figures
♻ ☆ A Survey on Parallel Text Generation: From Parallel Decoding to Diffusion Language Models
As text generation has become a core capability of modern Large Language Models (LLMs), it underpins a wide range of downstream applications. However, most existing LLMs rely on autoregressive (AR) generation, producing one token at a time based on previously generated context-resulting in limited generation speed due to the inherently sequential nature of the process. To address this challenge, an increasing number of researchers have begun exploring parallel text generation-a broad class of techniques aimed at breaking the token-by-token generation bottleneck and improving inference efficiency. Despite growing interest, there remains a lack of comprehensive analysis on what specific techniques constitute parallel text generation and how they improve inference performance. To bridge this gap, we present a systematic survey of parallel text generation methods. We categorize existing approaches into AR-based and Non-AR-based paradigms, and provide a detailed examination of the core techniques within each category. Following this taxonomy, we assess their theoretical trade-offs in terms of speed, quality, and efficiency, and examine their potential for combination and comparison with alternative acceleration strategies. Finally, based on our findings, we highlight recent advancements, identify open challenges, and outline promising directions for future research in parallel text generation. We have also created a GitHub repository for indexing relevant papers and open resources available at https://github.com/zhanglingzhe0820/Awesome-Parallel-Text-Generation.
♻ ☆ Speedup of Distributed Algorithms for Power Graphs in the CONGEST Model
We obtain improved distributed algorithms in the CONGEST message-passing setting for problems on power graphs of an input graph $G$. This includes Coloring, Maximal Independent Set, and related problems. We develop a general deterministic technique that transforms R-round algorithms for $G$ with certain properties into $O(R \cdot \Delta^{k/2 - 1})$-round algorithms for $G^k$. This improves the previously-known running time for such transformation, which was $O(R \cdot \Delta^{k - 1})$. Consequently, for problems that can be solved by algorithms with the required properties and within polylogarithmic number of rounds, we obtain {quadratic} improvement for $G^k$ and {exponential} improvement for $G^2$. We also obtain significant improvements for problems with larger number of rounds in $G$.
♻ ☆ On the Efficiency of Dynamic Transaction Scheduling in Blockchain Sharding
Sharding is a technique to speed up transaction processing in blockchains, where the $n$ processing nodes in the blockchain are divided into $s$ disjoint groups (shards) that can process transactions in parallel. We study dynamic scheduling problems on a shard graph $G_s$ where transactions arrive online over time and are not known in advance. Each transaction may access at most $k$ shards, and we denote by $d$ the worst distance between a transaction and its accessing (destination) shards (the parameter $d$ is unknown to the shards). To handle different values of $d$, we assume a locality sensitive decomposition of $G_s$ into clusters of shards, where every cluster has a leader shard that schedules transactions for the cluster. We first examine the simpler case of the stateless model, where leaders are not aware of the current state of the transaction accounts, and we prove a $O(d \log^2 s \cdot \min\{k, \sqrt{s}\})$ competitive ratio for latency. We then consider the stateful model, where leader shards gather the current state of accounts, and we prove a $O(\log s\cdot \min\{k, \sqrt{s}\}+\log^2 s)$ competitive ratio for latency. Each leader calculates the schedule in polynomial time for each transaction that it processes. We show that for any $\epsilon > 0$, approximating the optimal schedule within a $(\min\{k, \sqrt{s}\})^{1 -\epsilon}$ factor is NP-hard. Hence, our bound for the stateful model is within a poly-log factor from the best possibly achievable. To the best of our knowledge, this is the first work to establish provably efficient dynamic scheduling algorithms for blockchain sharding systems.
comment: 15 pages, 2 figures, accepted as a regular paper at 39th International Symposium on Distributed Computing (DISC 2025)
♻ ☆ Performant Automatic BLAS Offloading on Unified Memory Architecture with OpenMP First-Touch Style Data Movement
BLAS is a fundamental building block of advanced linear algebra libraries and many modern scientific computing applications. GPUs are known for their strong arithmetic computing capabilities and are highly suited for BLAS operations. However, porting code to GPUs often requires significant effort, especially for large, complex codes or legacy codes, even for BLAS-heavy applications. While various tools exist to automatically offload BLAS to GPUs, they are often impractical due to the high costs associated with mandatory data transfers. The advent of unified memory architectures in recent GPU designs, such as the NVIDIA Grace-Hopper, allows cache-coherent memory access across all types of memory for both CPU and GPU, potentially eliminating the bottlenecks faced in conventional architectures. This breakthrough paves the way for innovative application developments and porting strategies. Building on our preliminary work demonstrating the potential of automatic *gemm offload, this paper extends the framework to all level-3 BLAS operations and introduces SCILIB-Accel, a novel tool for automatic BLAS offload. SCILIB-Accel leverages the memory coherency in Grace-Hopper and introduces a Device First-Use data movement policy inspired by the OpenMP First-Touch approach in multi-socket CPU programming, minimizing CPU-GPU data transfers for typical scientific computing codes. Additionally, utilizing dynamic binary instrumentation, the tool intercepts BLAS symbols directly from a CPU binary, requiring no code modifications or recompilation. SCILIB-Accel has been evaluated using multiple quantum physics codes on up to a few hundred GPU nodes, yielding promising speedups. Notably, for the LSMS method in the MuST suite, a 3x speedup was achieved on Grace-Hopper compared to Grace-Grace.
♻ ☆ FT-Transformer: Resilient and Reliable Transformer with End-to-End Fault Tolerant Attention
Transformer models rely on High-Performance Computing (HPC) resources for inference, where soft errors are inevitable in large-scale systems, making the reliability of the model particularly critical. Existing fault tolerance frameworks for Transformers are designed at the operation level without architectural optimization, leading to significant computational and memory overhead, which in turn reduces protection efficiency and limits scalability to larger models. In this paper, we implement module-level protection for Transformers by treating the operations within the attention module as a single kernel and applying end-to-end fault tolerance. This method provides unified protection across multi-step computations, while achieving comprehensive coverage of potential errors in the nonlinear computations. For linear modules, we design a strided algorithm-based fault tolerance (ABFT) that avoids inter-thread communication. Experimental results show that our end-to-end fault tolerance achieves up to 7.56x speedup over traditional methods with an average fault tolerance overhead of 13.9%.
comment: This version removes one co-author due to updated project authorship requirements. The change has been made with the consent of the individual concerned
Scalable Graph Indexing using GPUs for Approximate Nearest Neighbor Search SIGMOD 2026
Approximate nearest neighbor search (ANNS) in high-dimensional vector spaces has a wide range of real-world applications. Numerous methods have been proposed to handle ANNS efficiently, while graph-based indexes have gained prominence due to their high accuracy and efficiency. However, the indexing overhead of graph-based indexes remains substantial. With exponential growth in data volume and increasing demands for dynamic index adjustments, this overhead continues to escalate, posing a critical challenge. In this paper, we introduce Tagore, a fast library accelerated by GPUs for graph indexing, which has powerful capabilities of constructing refinement-based graph indexes such as NSG and Vamana. We first introduce GNN-Descent, a GPU-specific algorithm for efficient k-Nearest Neighbor (k-NN) graph initialization. GNN-Descent speeds up the similarity comparison by a two-phase descent procedure and enables highly parallelized neighbor updates. Next, aiming to support various k-NN graph pruning strategies, we formulate a universal computing procedure termed CFS and devise two generalized GPU kernels for parallel processing complex dependencies in neighbor relationships. For large-scale datasets exceeding GPU memory capacity, we propose an asynchronous GPU-CPU-disk indexing framework with a cluster-aware caching mechanism to minimize the I/O pressure on the disk. Extensive experiments on 7 real-world datasets exhibit that Tagore achieves 1.32x-112.79x speedup while maintaining the index quality.
comment: Accepted at SIGMOD 2026
♻ ☆ Extending DD-$α$AMG on heterogeneous machines
Multigrid solvers are the standard in modern scientific computing simulations. Domain Decomposition Aggregation-Based Algebraic Multigrid, also known as the DD-$\alpha$AMG solver, is a successful realization of an algebraic multigrid solver for lattice quantum chromodynamics. Its CPU implementation has made it possible to construct, for some particular discretizations, simulations otherwise computationally unfeasible, and furthermore it has motivated the development and improvement of other algebraic multigrid solvers in the area. From an existing version of DD-$\alpha$AMG already partially ported via CUDA to run some finest-level operations of the multigrid solver on Nvidia GPUs, we translate the CUDA code here by using HIP to run on the ORISE supercomputer. We moreover extend the smoothers available in DD-$\alpha$AMG, paying particular attention to Richardson smoothing, which in our numerical experiments has led to a multigrid solver faster than smoothing with GCR and only 10% slower compared to SAP smoothing. Then we port the odd-even-preconditioned versions of GMRES and Richardson via CUDA. Finally, we extend some computationally intensive coarse-grid operations via advanced vectorization.
♻ ☆ Characterization of GPU TEE Overheads in Distributed Data Parallel ML Training
Confidential computing (CC) or trusted execution enclaves (TEEs) is now the most common approach to enable secure computing in the cloud. The recent introduction of GPU TEEs by NVIDIA enables machine learning (ML) models to be trained without leaking model weights or data to the cloud provider. However, the potential performance implications of using GPU TEEs for ML training are not well characterized. In this work, we present an in-depth characterization study on performance overhead associated with running distributed data parallel (DDP) ML training with GPU Trusted Execution Environments (TEE). Our study reveals the performance challenges in DDP training within GPU TEEs. DDP uses ring-all-reduce, a well-known approach, to aggregate gradients from multiple devices. Ring all-reduce consists of multiple scatter-reduce and all-gather operations. In GPU TEEs only the GPU package (GPU and HBM memory) is trusted. Hence, any data communicated outside the GPU packages must be encrypted and authenticated for confidentiality and integrity verification. Hence, each phase of the ring-all-reduce requires encryption and message authentication code (MAC) generation from the sender, and decryption and MAC authentication on the receiver. As the number of GPUs participating in DDP increases, the overhead of secure inter-GPU communication during ring-all-reduce grows proportionally. Additionally, larger models lead to more asynchronous all-reduce operations, exacerbating the communication cost. Our results show that with four GPU TEEs, depending on the model that is being trained, the runtime per training iteration increases by an average of 8x and up to a maximum of 41.6x compared to DDP training without TEE.
♻ ☆ Faster Multi-Source Reachability and Approximate Distances via Shortcuts, Hopsets and Matrix Multiplication
Given an $n$-vertex $m$-edge digraph $G = (V,E)$ and a subset $S \subseteq V$ of $|S| = n^{\sigma}$ (for some $0 \le \sigma \le 1$) designated sources, the $S \times V$ reachability problem is to compute the sets $\mathcal V_s$ of vertices reachable from $s$, for every $s \in S$. Naive centralized algorithms run BFS/DFS from each source in $O(m \cdot n^{\sigma})$ time or compute $G$'s transitive closure in $\hat O(n^{\omega})$ time, where $\omega \le 2.371552\ldots$ is the matrix multiplication exponent. Thus, the best known bound is $\hat O(n^{\min \{ 2 + \sigma, \omega\}})$. Leveraging shortcut constructions by Kogan and Parter [SODA 2022, ICALP 2022], we develop a centralized algorithm with running time $\hat O(n^{1 + \frac{2}{3} \omega(\sigma)})$, where $\omega(\sigma)$ is the rectangular matrix multiplication exponent. Using current estimates on $\omega(\sigma)$, our exponent improves upon $\min \{2 + \sigma, \omega \}$ for $\tilde \sigma \leq \sigma \leq 0.53$, where $1/3 < \tilde \sigma < 0.3336$ is a universal constant. In a classical result, Cohen [Journal of Algorithms, 1996] devised parallel algorithms for $S \times V$ reachability on graphs admitting balanced recursive separators of size $n^{\rho}$ for $\rho < 1$, requiring polylogarithmic time and work $n^{\max \{\omega \rho, 2\rho + \sigma \} + o(1)}$. We significantly improve, extend, and generalize Cohen's result. First, our parallel algorithm for graphs with small recursive separators has lower work complexity than Cohen's in boraod paramater ranges. Second, we generalize our algorithm to graphs of treewidth at most $n^{\rho}$ ($\rho < 1$) and provide a centralized algorithm that outperforms existing bounds for $S \times V$ reachability on such graphs. We also do this for some other graph familes with small separators. Finally, we extend these results to $(1 + \epsilon)$-approximate distance computation.
♻ ☆ MPPI-Generic: A CUDA Library for Stochastic Trajectory Optimization
This paper introduces a new C++/CUDA library for GPU-accelerated stochastic optimization called MPPI-Generic. It provides implementations of Model Predictive Path Integral control, Tube-Model Predictive Path Integral Control, and Robust Model Predictive Path Integral Control, and allows for these algorithms to be used across many pre-existing dynamics models and cost functions. Furthermore, researchers can create their own dynamics models or cost functions following our API definitions without needing to change the actual Model Predictive Path Integral Control code. Finally, we compare computational performance to other popular implementations of Model Predictive Path Integral Control over a variety of GPUs to show the real-time capabilities our library can allow for. Library code can be found at: https://acdslab.github.io/mppi-generic-website/ .
comment: Added missing Acknowledgements section
Information Retrieval 23
☆ On the Consistency and Performance of the Iterative Bayesian Update
For many social, scientific, and commercial purposes, it is often important to estimate the distribution of the users' data regarding a sensitive attribute, e.g., their ages, locations, etc. To allow this estimation while protecting the users' privacy, every user applies a local privacy protection mechanism that releases a noisy (sanitized) version of their original datum to the data collector; then the original distribution is estimated using one of the known methods, such as the matrix inversion (INV), RAPPOR's estimator, and the iterative Bayesian update (IBU). Unlike the other estimators, the consistency of IBU, i.e., the convergence of its estimate to the real distribution as the amount of noisy data grows, has been either ignored or incorrectly proved in the literature. In this article, we use the fact that IBU is a maximum likelihood estimator to prove that IBU is consistent. We also show, through experiments on real datasets, that IBU significantly outperforms the other methods when the users' data are sanitized by geometric, Laplace, and exponential mechanisms, whereas it is comparable to the other methods in the case of the k-RR and RAPPOR mechanisms. Finally, we consider the case when the alphabet of the sensitive data is infinite, and we show a technique that allows IBU to operate in this case too.
☆ Describe What You See with Multimodal Large Language Models to Enhance Video Recommendations
Existing video recommender systems rely primarily on user-defined metadata or on low-level visual and acoustic signals extracted by specialised encoders. These low-level features describe what appears on the screen but miss deeper semantics such as intent, humour, and world knowledge that make clips resonate with viewers. For example, is a 30-second clip simply a singer on a rooftop, or an ironic parody filmed amid the fairy chimneys of Cappadocia, Turkey? Such distinctions are critical to personalised recommendations yet remain invisible to traditional encoding pipelines. In this paper, we introduce a simple, recommendation system-agnostic zero-finetuning framework that injects high-level semantics into the recommendation pipeline by prompting an off-the-shelf Multimodal Large Language Model (MLLM) to summarise each clip into a rich natural-language description (e.g. "a superhero parody with slapstick fights and orchestral stabs"), bridging the gap between raw content and user intent. We use MLLM output with a state-of-the-art text encoder and feed it into standard collaborative, content-based, and generative recommenders. On the MicroLens-100K dataset, which emulates user interactions with TikTok-style videos, our framework consistently surpasses conventional video, audio, and metadata features in five representative models. Our findings highlight the promise of leveraging MLLMs as on-the-fly knowledge extractors to build more intent-aware video recommenders.
Multimodal Fusion And Sparse Attention-based Alignment Model for Long Sequential Recommendation
Recent advances in multimodal recommendation enable richer item understanding, while modeling users' multi-scale interests across temporal horizons has attracted growing attention. However, effectively exploiting multimodal item sequences and mining multi-grained user interests to substantially bridge the gap between content comprehension and recommendation remain challenging. To address these issues, we propose MUFASA, a MUltimodal Fusion And Sparse Attention-based Alignment model for long sequential recommendation. Our model comprises two core components. First, the Multimodal Fusion Layer (MFL) leverages item titles as a cross-genre semantic anchor and is trained with a joint objective of four tailored losses that promote: (i) cross-genre semantic alignment, (ii) alignment to the collaborative space for recommendation, (iii) preserving the similarity structure defined by titles and preventing modality representation collapse, and (iv) distributional regularization of the fusion space. This yields high-quality fused item representations for further preference alignment. Second, the Sparse Attention-guided Alignment Layer (SAL) scales to long user-behavior sequences via a multi-granularity sparse attention mechanism, which incorporates windowed attention, block-level attention, and selective attention, to capture user interests hierarchically and across temporal horizons. SAL explicitly models both the evolution of coherent interest blocks and fine-grained intra-block variations, producing robust user and item representations. Extensive experiments on real-world benchmarks show that MUFASA consistently surpasses state-of-the-art baselines. Moreover, online A/B tests demonstrate significant gains in production, confirming MUFASA's effectiveness in leveraging multimodal cues and accurately capturing diverse user preferences.
comment: 10 pages
☆ On Negative-aware Preference Optimization for Recommendation
Recommendation systems leverage user interaction data to suggest relevant items while filtering out irrelevant (negative) ones. The rise of large language models (LLMs) has garnered increasing attention for their potential in recommendation tasks. However, existing methods for optimizing LLM-based recommenders face challenges in effectively utilizing negative samples. Simply integrating large numbers of negative samples can improve ranking accuracy and mitigate popularity bias but often leads to increased computational overhead and memory costs. Additionally, current approaches fail to account for the varying informativeness of negative samples, leading to suboptimal optimization performance. To address these issues, we propose NAPO (\textbf{N}egative-\textbf{A}ware \textbf{P}reference \textbf{O}ptimization), an enhanced framework for preference optimization in LLM-based recommendation. NAPO introduces two key innovations: (1) in-batch negative sharing, which expands the pool of negative samples without additional memory overhead, and (2) dynamic reward margin adjustment, which adapts model updates based on the confidence of negative samples. Extensive experiments on three public datasets demonstrate that NAPO outperforms existing methods in both recommendation accuracy and popularity bias reduction.
☆ Personalized Product Search Ranking: A Multi-Task Learning Approach with Tabular and Non-Tabular Data AI-2025
In this paper, we present a novel model architecture for optimizing personalized product search ranking using a multi-task learning (MTL) framework. Our approach uniquely integrates tabular and non-tabular data, leveraging a pre-trained TinyBERT model for semantic embeddings and a novel sampling technique to capture diverse customer behaviors. We evaluate our model against several baselines, including XGBoost, TabNet, FT-Transformer, DCN-V2, and MMoE, focusing on their ability to handle mixed data types and optimize personalized ranking. Additionally, we propose a scalable relevance labeling mechanism based on click-through rates, click positions, and semantic similarity, offering an alternative to traditional human-annotated labels. Experimental results show that combining non-tabular data with advanced embedding techniques in multi-task learning paradigm significantly enhances model performance. Ablation studies further underscore the benefits of incorporating relevance labels, fine-tuning TinyBERT layers, and TinyBERT query-product embedding interactions. These results demonstrate the effectiveness of our approach in achieving improved personalized product search ranking.
comment: 17 pages, 2 figures, The Pacific Rim International Conference on Artificial Intelligence (PRICAI-2025) Conference
☆ TFRank: Think-Free Reasoning Enables Practical Pointwise LLM Ranking
Reasoning-intensive ranking models built on Large Language Models (LLMs) have made notable progress, but existing approaches often rely on large-scale LLMs and explicit Chain-of-Thought (CoT) reasoning, resulting in high computational cost and latency that limit real-world use. To address this, we propose \textbf{TFRank}, an efficient pointwise reasoning ranker based on small-scale LLMs. To improve ranking performance, TFRank effectively integrates CoT data, fine-grained score supervision, and multi-task training. Furthermore, it achieves an efficient ``\textbf{T}hink-\textbf{F}ree" reasoning capability by employing a ``think-mode switch'' and pointwise format constraints. Specifically, this allows the model to leverage explicit reasoning during training while delivering precise relevance scores for complex queries at inference without generating any reasoning chains. Experiments show that TFRank (e.g., 1.7B) achieves performance comparable to models with four times more parameters on the BRIGHT benchmark, and demonstrates strong competitiveness on the BEIR benchmark. Further analysis shows that TFRank achieves an effective balance between performance and efficiency, providing a practical solution for integrating advanced reasoning into real-world systems. Our code and data are released in the repository: https://github.com/JOHNNY-fans/TFRank.
☆ Improving Dense Passage Retrieval with Multiple Positive Passages
By leveraging a dual encoder architecture, Dense Passage Retrieval (DPR) has outperformed traditional sparse retrieval algorithms such as BM25 in terms of passage retrieval accuracy. Recently proposed methods have further enhanced DPR's performance. However, these models typically pair each question with only one positive passage during training, and the effect of associating multiple positive passages has not been examined. In this paper, we explore the performance of DPR when additional positive passages are incorporated during training. Experimental results show that equipping each question with multiple positive passages consistently improves retrieval accuracy, even when using a significantly smaller batch size, which enables training on a single GPU.
☆ Towards Self-cognitive Exploration: Metacognitive Knowledge Graph Retrieval Augmented Generation
Knowledge Graph-based Retrieval-Augmented Generation (KG-RAG) significantly enhances the reasoning capabilities of LargeLanguage Models by leveraging structured knowledge. However, existing KG-RAG frameworks typically operate as open-loop systems, suffering from cognitive blindness, an inability to recognize their exploration deficiencies. This leads to relevance drift and incomplete evidence, which existing self-refinement methods, designed for unstructured text-based RAG, cannot effectively resolve due to the path-dependent nature of graph exploration. To address this challenge, we propose Metacognitive Knowledge Graph Retrieval Augmented Generation (MetaKGRAG), a novel framework inspired by the human metacognition process, which introduces a Perceive-Evaluate-Adjust cycle to enable path-aware, closed-loop refinement. This cycle empowers the system to self-assess exploration quality, identify deficiencies in coverage or relevance, and perform trajectory-connected corrections from precise pivot points. Extensive experiments across five datasets in the medical, legal, and commonsense reasoning domains demonstrate that MetaKGRAG consistently outperforms strong KG-RAG and self-refinement baselines. Our results validate the superiority of our approach and highlight the critical need for path-aware refinement in structured knowledge retrieval.
☆ DS4RS: Community-Driven and Explainable Dataset Search Engine for Recommender System Research
Accessing suitable datasets is critical for research and development in recommender systems. However, finding datasets that match specific recommendation task or domains remains a challenge due to scattered sources and inconsistent metadata. To address this gap, we propose a community-driven and explainable dataset search engine tailored for recommender system research. Our system supports semantic search across multiple dataset attributes, such as dataset names, descriptions, and recommendation domain, and provides explanations of search relevance to enhance transparency. The system encourages community participation by allowing users to contribute standardized dataset metadata in public repository. By improving dataset discoverability and search interpretability, the system facilitates more efficient research reproduction. The platform is publicly available at: https://ds4rs.com.
☆ Bridging Modality Gaps in e-Commerce Products via Vision-Language Alignment
Item information, such as titles and attributes, is essential for effective user engagement in e-commerce. However, manual or semi-manual entry of structured item specifics often produces inconsistent quality, errors, and slow turnaround, especially for Customer-to-Customer sellers. Generating accurate descriptions directly from item images offers a promising alternative. Existing retrieval-based solutions address some of these issues but often miss fine-grained visual details and struggle with niche or specialized categories. We propose Optimized Preference-Based AI for Listings (OPAL), a framework for generating schema-compliant, high-quality item descriptions from images using a fine-tuned multimodal large language model (MLLM). OPAL addresses key challenges in multimodal e-commerce applications, including bridging modality gaps and capturing detailed contextual information. It introduces two data refinement methods: MLLM-Assisted Conformity Enhancement, which ensures alignment with structured schema requirements, and LLM-Assisted Contextual Understanding, which improves the capture of nuanced and fine-grained information from visual inputs. OPAL uses visual instruction tuning combined with direct preference optimization to fine-tune the MLLM, reducing hallucinations and improving robustness across different backbone architectures. We evaluate OPAL on real-world e-commerce datasets, showing that it consistently outperforms baseline methods in both description quality and schema completion rates. These results demonstrate that OPAL effectively bridges the gap between visual and textual modalities, delivering richer, more accurate, and more consistent item descriptions. This work advances automated listing optimization and supports scalable, high-quality content generation in e-commerce platforms.
☆ SaraCoder: Orchestrating Semantic and Structural Cues for Profit-Oriented Repository-Level Code Completion
Retrieval-augmented generation (RAG) for repository-level code completion commonly relies on superficial text similarity, leading to results plagued by semantic misguidance, redundancy, and homogeneity, while also failing to resolve external symbol ambiguity. To address these challenges, we introduce Saracoder, a Hierarchical Feature-Optimized retrieval framework. Its core Hierarchical Feature Optimization module systematically refines candidates by distilling deep semantic relationships, pruning exact duplicates, assessing structural similarity with a novel graph-based metric that weighs edits by their topological importance, and reranking results to maximize both relevance and diversity. Furthermore, an External-Aware Identifier Disambiguator module accurately resolves cross-file symbol ambiguity via dependency analysis. Extensive experiments on the challenging CrossCodeEval and RepoEval-Updated benchmarks demonstrate that Saracoder significantly outperforms existing baselines across multiple programming languages and models. Our work proves that systematically refining retrieval results across multiple dimensions provides a new paradigm for building more accurate and robust repository-level code completion systems.
Multimodal Recommendation via Self-Corrective Preference Alignmen
With the rapid growth of live streaming platforms, personalized recommendation systems have become pivotal in improving user experience and driving platform revenue. The dynamic and multimodal nature of live streaming content (e.g., visual, audio, textual data) requires joint modeling of user behavior and multimodal features to capture evolving author characteristics. However, traditional methods relying on single-modal features or treating multimodal ones as supplementary struggle to align users' dynamic preferences with authors' multimodal attributes, limiting accuracy and interpretability. To address this, we propose MSPA (Multimodal Self-Corrective Preference Alignment), a personalized author recommendation framework with two components: (1) a Multimodal Preference Composer that uses MLLMs to generate structured preference text and embeddings from users' tipping history; and (2) a Self-Corrective Preference Alignment Recommender that aligns these preferences with authors' multimodal features to improve accuracy and interpretability. Extensive experiments and visualizations show that MSPA significantly improves accuracy, recall, and text quality, outperforming baselines in dynamic live streaming scenarios.
♻ ☆ Request-Only Optimization for Recommendation Systems
Deep Learning Recommendation Models (DLRMs) represent one of the largest machine learning applications on the planet. Industry-scale DLRMs are trained with petabytes of recommendation data to serve billions of users every day. To utilize the rich user signals in the long user history, DLRMs have been scaled up to unprecedented complexity, up to trillions of floating-point operations (TFLOPs) per example. This scale, coupled with the huge amount of training data, necessitates new storage and training algorithms to efficiently improve the quality of these complex recommendation systems. In this paper, we present a Request-Only Optimizations (ROO) training and modeling paradigm. ROO simultaneously improves the storage and training efficiency as well as the model quality of recommendation systems. We holistically approach this challenge through co-designing data (i.e., request-only data), infrastructure (i.e., request-only based data processing pipeline), and model architecture (i.e., request-only neural architectures). Our ROO training and modeling paradigm treats a user request as a unit of the training data. Compared with the established practice of treating a user impression as a unit, our new design achieves native feature deduplication in data logging, consequently saving data storage. Second, by de-duplicating computations and communications across multiple impressions in a request, this new paradigm enables highly scaled-up neural network architectures to better capture user interest signals, such as Generative Recommenders (GRs) and other request-only friendly architectures.
♻ ☆ Deep Learning Model Acceleration and Optimization Strategies for Real-Time Recommendation Systems
With the rapid growth of Internet services, recommendation systems play a central role in delivering personalized content. Faced with massive user requests and complex model architectures, the key challenge for real-time recommendation systems is how to reduce inference latency and increase system throughput without sacrificing recommendation quality. This paper addresses the high computational cost and resource bottlenecks of deep learning models in real-time settings by proposing a combined set of modeling- and system-level acceleration and optimization strategies. At the model level, we dramatically reduce parameter counts and compute requirements through lightweight network design, structured pruning, and weight quantization. At the system level, we integrate multiple heterogeneous compute platforms and high-performance inference libraries, and we design elastic inference scheduling and load-balancing mechanisms based on real-time load characteristics. Experiments show that, while maintaining the original recommendation accuracy, our methods cut latency to less than 30% of the baseline and more than double system throughput, offering a practical solution for deploying large-scale online recommendation services.
♻ ☆ RAGAR: Retrieval Augmented Personalized Image Generation Guided by Recommendation
Personalized image generation is crucial for improving the user experience, as it renders reference images into preferred ones according to user visual preferences. Although effective, existing methods face two main issues. First, existing methods treat all items in the user historical sequence equally when extracting user preferences, overlooking the varying semantic similarities between historical items and the reference item. Disproportionately high weights for low-similarity items distort users' visual preferences for the reference item. Second, existing methods heavily rely on consistency between generated and reference images to optimize the generation, which leads to underfitting user preferences and hinders personalization. To address these issues, we propose Retrieval Augment Personalized Image GenerAtion guided by Recommendation (RAGAR). Our approach uses a retrieval mechanism to assign different weights to historical items according to their similarities to the reference item, thereby extracting more refined users' visual preferences for the reference item. Then we introduce a novel rank task based on the multi-modal ranking model to optimize the personalization of the generated images instead of forcing depend on consistency. Extensive experiments and human evaluations on three real-world datasets demonstrate that RAGAR achieves significant improvements in both personalization and semantic metrics compared to five baselines.
♻ ☆ Applying Text Embedding Models for Efficient Analysis in Labeled Property Graphs
Labeled property graphs often contain rich textual attributes that can enhance analytical tasks when properly leveraged. This work explores the use of pretrained text embedding models to enable efficient semantic analysis in such graphs. By embedding textual node and edge properties, we support downstream tasks including node classification and relation prediction with improved contextual understanding. Our approach integrates language model embeddings into the graph pipeline without altering its structure, demonstrating that textual semantics can significantly enhance the accuracy and interpretability of property graph analysis.
♻ ☆ SymCERE: Symmetric Contrastive Learning for Robust Review-Enhanced Recommendation
Modern recommendation systems can achieve high performance by fusing user behavior graphs (via GNNs) and review texts (via LLMs). However, this fusion faces three significant issues: (1) False Negatives in contrastive learning can degrade the training signal by penalizing similar items; (2) Popularity Bias, often encoded as embedding magnitude, can distort similarity scores; and (3) Signal Ambiguity, which arises from the conflation of objective facts with subjective sentiment in reviews. These interconnected issues can prevent models from learning users' true preferences. In this paper, we propose SymCERE (Symmetric SINCERE), a contrastive learning method that addresses these three issues simultaneously through its structural design. First, we introduce a symmetric application of the SINCERE loss for cross-modal alignment, which is designed to eliminate false negatives in recommendation. Second, by integrating this with L2 normalisation under a "magnitude-as-noise" hypothesis, we aim to mitigate popularity bias by forcing the model to encode preferences primarily in the vector's direction. Experiments on 15 datasets from three distinct platforms (e-commerce, local reviews, and travel) demonstrate that SymCERE outperforms several strong baselines, achieving a relative improvement of up to 43.6% on NDCG@10. Furthermore, a detailed LIME analysis shows that the model learns to anchor alignment on objective, informative vocabulary (e.g., "OEM," "compatible," "gasket"), while placing less emphasis on generic sentiment (e.g., "good," "great"). This suggests that effective semantic alignment stems from understanding factual product attributes, offering a path toward more accurate recommendation systems. The code is available at: https://anonymous.4open.science/r/ReviewGNN-2E1E.
comment: under review
♻ ☆ WebArXiv: Evaluating Multimodal Agents on Time-Invariant arXiv Tasks
Recent progress in large language models (LLMs) has enabled the development of autonomous web agents capable of navigating and interacting with real websites. However, evaluating such agents remains challenging due to the instability and inconsistency of existing benchmarks, which often rely on dynamic content or oversimplified simulations. In this work, we introduce WebArXiv, a static and time-invariant benchmark comprising 275 web-based tasks grounded in the arXiv platform. WebArXiv ensures reproducible and reliable evaluation by anchoring tasks in fixed web snapshots with deterministic ground truths and standardized action trajectories. Through behavioral analysis, we identify a common failure mode, Rigid History Reflection, where agents over-rely on fixed interaction histories. To address this, we propose a lightweight dynamic reflection mechanism that allows agents to selectively retrieve relevant past steps during decision-making. We evaluate ten state-of-the-art web agents on WebArXiv. Results demonstrate clear performance differences across agents and validate the effectiveness of our proposed reflection strategy.
comment: 10 pages, 9 figures, 4 tables
♻ ☆ ChineseHarm-Bench: A Chinese Harmful Content Detection Benchmark
Large language models (LLMs) have been increasingly applied to automated harmful content detection tasks, assisting moderators in identifying policy violations and improving the overall efficiency and accuracy of content review. However, existing resources for harmful content detection are predominantly focused on English, with Chinese datasets remaining scarce and often limited in scope. We present a comprehensive, professionally annotated benchmark for Chinese content harm detection, which covers six representative categories and is constructed entirely from real-world data. Our annotation process further yields a knowledge rule base that provides explicit expert knowledge to assist LLMs in Chinese harmful content detection. In addition, we propose a knowledge-augmented baseline that integrates both human-annotated knowledge rules and implicit knowledge from large language models, enabling smaller models to achieve performance comparable to state-of-the-art LLMs. Code and data are available at https://github.com/zjunlp/ChineseHarm-bench.
comment: Work in progress
♻ ☆ Efficient Multimodal Streaming Recommendation via Expandable Side Mixture-of-Experts
Streaming recommender systems (SRSs) are widely deployed in real-world applications, where user interests shift and new items arrive over time. As a result, effectively capturing users' latest preferences is challenging, as interactions reflecting recent interests are limited and new items often lack sufficient feedback. A common solution is to enrich item representations using multimodal encoders (e.g., BERT or ViT) to extract visual and textual features. However, these encoders are pretrained on general-purpose tasks: they are not tailored to user preference modeling, and they overlook the fact that user tastes toward modality-specific features such as visual styles and textual tones can also drift over time. This presents two key challenges in streaming scenarios: the high cost of fine-tuning large multimodal encoders, and the risk of forgetting long-term user preferences due to continuous model updates. To tackle these challenges, we propose Expandable Side Mixture-of-Experts (XSMoE), a memory-efficient framework for multimodal streaming recommendation. XSMoE attaches lightweight side-tuning modules consisting of expandable expert networks to frozen pretrained encoders and incrementally expands them in response to evolving user feedback. A gating router dynamically combines expert and backbone outputs, while a utilization-based pruning strategy maintains model compactness. By learning new patterns through expandable experts without overwriting previously acquired knowledge, XSMoE effectively captures both cold start and shifting preferences in multimodal features. Experiments on three real-world datasets demonstrate that XSMoE outperforms state-of-the-art baselines in both recommendation quality and computational efficiency.
comment: Accepted to CIKM 2025
♻ ☆ VoteGCL: Enhancing Graph-based Recommendations with Majority-Voting LLM-Rerank Augmentation
Recommendation systems often suffer from data sparsity caused by limited user-item interactions, which degrade their performance and amplify popularity bias in real-world scenarios. This paper proposes a novel data augmentation framework that leverages Large Language Models (LLMs) and item textual descriptions to enrich interaction data. By few-shot prompting LLMs multiple times to rerank items and aggregating the results via majority voting, we generate high-confidence synthetic user-item interactions, supported by theoretical guarantees based on the concentration of measure. To effectively leverage the augmented data in the context of a graph recommendation system, we integrate it into a graph contrastive learning framework to mitigate distributional shift and alleviate popularity bias. Extensive experiments show that our method improves accuracy and reduces popularity bias, outperforming strong baselines.
♻ ☆ SPARC: Soft Probabilistic Adaptive multi-interest Retrieval Model via Codebooks for recommender system
Modeling multi-interests has arisen as a core problem in real-world RS. Current multi-interest retrieval methods pose three major challenges: 1) Interests, typically extracted from predefined external knowledge, are invariant. Failed to dynamically evolve with users' real-time consumption preferences. 2) Online inference typically employs an over-exploited strategy, mainly matching users' existing interests, lacking proactive exploration and discovery of novel and long-tail interests. To address these challenges, we propose a novel retrieval framework named SPARC(Soft Probabilistic Adaptive Retrieval Model via Codebooks). Our contribution is two folds. First, the framework utilizes Residual Quantized Variational Autoencoder (RQ-VAE) to construct a discretized interest space. It achieves joint training of the RQ-VAE with the industrial large scale recommendation model, mining behavior-aware interests that can perceive user feedback and evolve dynamically. Secondly, a probabilistic interest module that predicts the probability distribution over the entire dynamic and discrete interest space. This facilitates an efficient "soft-search" strategy during online inference, revolutionizing the retrieval paradigm from "passive matching" to "proactive exploration" and thereby effectively promoting interest discovery. Online A/B tests on an industrial platform with tens of millions daily active users, have achieved substantial gains in business metrics: +0.9% increase in user view duration, +0.4% increase in user page views (PV), and a +22.7% improvement in PV500(new content reaching 500 PVs in 24 hours). Offline evaluations are conducted on open-source Amazon Product datasets. Metrics, such as Recall@K and Normalized Discounted Cumulative Gain@K(NDCG@K), also showed consistent improvement. Both online and offline experiments validate the efficacy and practical value of the proposed method.
comment: 8 pages
♻ ☆ FinSage: A Multi-aspect RAG System for Financial Filings Question Answering
Leveraging large language models in real-world settings often entails a need to utilize domain-specific data and tools in order to follow the complex regulations that need to be followed for acceptable use. Within financial sectors, modern enterprises increasingly rely on Retrieval-Augmented Generation (RAG) systems to address complex compliance requirements in financial document workflows. However, existing solutions struggle to account for the inherent heterogeneity of data (e.g., text, tables, diagrams) and evolving nature of regulatory standards used in financial filings, leading to compromised accuracy in critical information extraction. We propose the FinSage framework as a solution, utilizing a multi-aspect RAG framework tailored for regulatory compliance analysis in multi-modal financial documents. FinSage introduces three innovative components: (1) a multi-modal pre-processing pipeline that unifies diverse data formats and generates chunk-level metadata summaries, (2) a multi-path sparse-dense retrieval system augmented with query expansion (HyDE) and metadata-aware semantic search, and (3) a domain-specialized re-ranking module fine-tuned via Direct Preference Optimization (DPO) to prioritize compliance-critical content. Extensive experiments demonstrate that FinSage achieves an impressive recall of 92.51% on 75 expert-curated questions derived from surpasses the best baseline method on the FinanceBench question answering datasets by 24.06% in accuracy. Moreover, FinSage has been successfully deployed as financial question-answering agent in online meetings, where it has already served more than 1,200 people.
comment: Accepted at the 34th ACM International Conference on Information and Knowledge Management (CIKM2025)
Artificial Intelligence 150
☆ Echo-4o: Harnessing the Power of GPT-4o Synthetic Images for Improved Image Generation
Recently, GPT-4o has garnered significant attention for its strong performance in image generation, yet open-source models still lag behind. Several studies have explored distilling image data from GPT-4o to enhance open-source models, achieving notable progress. However, a key question remains: given that real-world image datasets already constitute a natural source of high-quality data, why should we use GPT-4o-generated synthetic data? In this work, we identify two key advantages of synthetic images. First, they can complement rare scenarios in real-world datasets, such as surreal fantasy or multi-reference image generation, which frequently occur in user queries. Second, they provide clean and controllable supervision. Real-world data often contains complex background noise and inherent misalignment between text descriptions and image content, whereas synthetic images offer pure backgrounds and long-tailed supervision signals, facilitating more accurate text-to-image alignment. Building on these insights, we introduce Echo-4o-Image, a 180K-scale synthetic dataset generated by GPT-4o, harnessing the power of synthetic image data to address blind spots in real-world coverage. Using this dataset, we fine-tune the unified multimodal generation baseline Bagel to obtain Echo-4o. In addition, we propose two new evaluation benchmarks for a more accurate and challenging assessment of image generation capabilities: GenEval++, which increases instruction complexity to mitigate score saturation, and Imagine-Bench, which focuses on evaluating both the understanding and generation of imaginative content. Echo-4o demonstrates strong performance across standard benchmarks. Moreover, applying Echo-4o-Image to other foundation models (e.g., OmniGen2, BLIP3-o) yields consistent performance gains across multiple metrics, highlighting the datasets strong transferability.
comment: 19 pages, 8 figures
☆ Vision-driven River Following of UAV via Safe Reinforcement Learning using Semantic Dynamics Model
Vision-driven autonomous river following by Unmanned Aerial Vehicles is critical for applications such as rescue, surveillance, and environmental monitoring, particularly in dense riverine environments where GPS signals are unreliable. We formalize river following as a coverage control problem in which the reward function is submodular, yielding diminishing returns as more unique river segments are visited, thereby framing the task as a Submodular Markov Decision Process. First, we introduce Marginal Gain Advantage Estimation, which refines the reward advantage function by using a sliding window baseline computed from historical episodic returns, thus aligning the advantage estimation with the agent's evolving recognition of action value in non-Markovian settings. Second, we develop a Semantic Dynamics Model based on patchified water semantic masks that provides more interpretable and data-efficient short-term prediction of future observations compared to latent vision dynamics models. Third, we present the Constrained Actor Dynamics Estimator architecture, which integrates the actor, the cost estimator, and SDM for cost advantage estimation to form a model-based SafeRL framework capable of solving partially observable Constrained Submodular Markov Decision Processes. Simulation results demonstrate that MGAE achieves faster convergence and superior performance over traditional critic-based methods like Generalized Advantage Estimation. SDM provides more accurate short-term state predictions that enable the cost estimator to better predict potential violations. Overall, CADE effectively integrates safety regulation into model-based RL, with the Lagrangian approach achieving the soft balance of reward and safety during training, while the safety layer enhances performance during inference by hard action overlay.
comment: Submitted to Robotics and Autonomous Systems (RAS) journal
☆ January Food Benchmark (JFB): A Public Benchmark Dataset and Evaluation Suite for Multimodal Food Analysis
Progress in AI for automated nutritional analysis is critically hampered by the lack of standardized evaluation methodologies and high-quality, real-world benchmark datasets. To address this, we introduce three primary contributions. First, we present the January Food Benchmark (JFB), a publicly available collection of 1,000 food images with human-validated annotations. Second, we detail a comprehensive benchmarking framework, including robust metrics and a novel, application-oriented overall score designed to assess model performance holistically. Third, we provide baseline results from both general-purpose Vision-Language Models (VLMs) and our own specialized model, january/food-vision-v1. Our evaluation demonstrates that the specialized model achieves an Overall Score of 86.2, a 12.1-point improvement over the best-performing general-purpose configuration. This work offers the research community a valuable new evaluation dataset and a rigorous framework to guide and benchmark future developments in automated nutritional analysis.
☆ GBC: Generalized Behavior-Cloning Framework for Whole-Body Humanoid Imitation
The creation of human-like humanoid robots is hindered by a fundamental fragmentation: data processing and learning algorithms are rarely universal across different robot morphologies. This paper introduces the Generalized Behavior Cloning (GBC) framework, a comprehensive and unified solution designed to solve this end-to-end challenge. GBC establishes a complete pathway from human motion to robot action through three synergistic innovations. First, an adaptive data pipeline leverages a differentiable IK network to automatically retarget any human MoCap data to any humanoid. Building on this foundation, our novel DAgger-MMPPO algorithm with its MMTransformer architecture learns robust, high-fidelity imitation policies. To complete the ecosystem, the entire framework is delivered as an efficient, open-source platform based on Isaac Lab, empowering the community to deploy the full workflow via simple configuration scripts. We validate the power and generality of GBC by training policies on multiple heterogeneous humanoids, demonstrating excellent performance and transfer to novel motions. This work establishes the first practical and unified pathway for creating truly generalized humanoid controllers.
☆ Specialised or Generic? Tokenization Choices for Radiology Language Models AI2025
The vocabulary used by language models (LM) - defined by the tokenizer - plays a key role in text generation quality. However, its impact remains under-explored in radiology. In this work, we address this gap by systematically comparing general, medical, and domain-specific tokenizers on the task of radiology report summarisation across three imaging modalities. We also investigate scenarios with and without LM pre-training on PubMed abstracts. Our findings demonstrate that medical and domain-specific vocabularies outperformed widely used natural language alternatives when models are trained from scratch. Pre-training partially mitigates performance differences between tokenizers, whilst the domain-specific tokenizers achieve the most favourable results. Domain-specific tokenizers also reduce memory requirements due to smaller vocabularies and shorter sequences. These results demonstrate that adapting the vocabulary of LMs to the clinical domain provides practical benefits, including improved performance and reduced computational demands, making such models more accessible and effective for both research and real-world healthcare settings.
comment: Accepted to ELAMI@MICCAI2025
☆ VisCodex: Unified Multimodal Code Generation via Merging Vision and Coding Models
Multimodal large language models (MLLMs) have significantly advanced the integration of visual and textual understanding. However, their ability to generate code from multimodal inputs remains limited. In this work, we introduce VisCodex, a unified framework that seamlessly merges vision and coding language models to empower MLLMs with strong multimodal code generation abilities. Leveraging a task vector-based model merging technique, we integrate a state-of-the-art coding LLM into a strong vision-language backbone, while preserving both visual comprehension and advanced coding skills. To support training and evaluation, we introduce the Multimodal Coding Dataset (MCD), a large-scale and diverse collection of 598k samples, including high-quality HTML code, chart image-code pairs, image-augmented StackOverflow QA, and algorithmic problems. Furthermore, we propose InfiBench-V, a novel and challenging benchmark specifically designed to assess models on visually-rich, real-world programming questions that demand a nuanced understanding of both textual and visual contexts. Extensive experiments show that VisCodex achieves state-of-the-art performance among open-source MLLMs and approaches proprietary models like GPT-4o, highlighting the effectiveness of our model merging strategy and new datasets.
☆ A Comprehensive Evaluation framework of Alignment Techniques for LLMs
As Large Language Models (LLMs) become increasingly integrated into real-world applications, ensuring their outputs align with human values and safety standards has become critical. The field has developed diverse alignment approaches including traditional fine-tuning methods (RLHF, instruction tuning), post-hoc correction systems, and inference-time interventions, each with distinct advantages and limitations. However, the lack of unified evaluation frameworks makes it difficult to systematically compare these paradigms and guide deployment decisions. This paper introduces a multi-dimensional evaluation of alignment techniques for LLMs, a comprehensive evaluation framework that provides a systematic comparison across all major alignment paradigms. Our framework assesses methods along four key dimensions: alignment detection, alignment quality, computational efficiency, and robustness. Through experiments across diverse base models and alignment strategies, we demonstrate the utility of our framework in identifying strengths and limitations of current state-of-the-art models, providing valuable insights for future research directions.
comment: In submission
☆ Mathematical Computation and Reasoning Errors by Large Language Models
Large Language Models (LLMs) are increasingly utilized in AI-driven educational instruction and assessment, particularly within mathematics education. The capability of LLMs to generate accurate answers and detailed solutions for math problem-solving tasks is foundational for ensuring reliable and precise feedback and assessment in math education practices. Our study focuses on evaluating the accuracy of four LLMs (OpenAI GPT-4o and o1, DeepSeek-V3 and DeepSeek-R1) solving three categories of math tasks, including arithmetic, algebra, and number theory, and identifies step-level reasoning errors within their solutions. Instead of relying on standard benchmarks, we intentionally build math tasks (via item models) that are challenging for LLMs and prone to errors. The accuracy of final answers and the presence of errors in individual solution steps were systematically analyzed and coded. Both single-agent and dual-agent configurations were tested. It is observed that the reasoning-enhanced OpenAI o1 model consistently achieved higher or nearly perfect accuracy across all three math task categories. Analysis of errors revealed that procedural slips were the most frequent and significantly impacted overall performance, while conceptual misunderstandings were less frequent. Deploying dual-agent configurations substantially improved overall performance. These findings offer actionable insights into enhancing LLM performance and underscore effective strategies for integrating LLMs into mathematics education, thereby advancing AI-driven instructional practices and assessment precision.
☆ Residual Reservoir Memory Networks
We introduce a novel class of untrained Recurrent Neural Networks (RNNs) within the Reservoir Computing (RC) paradigm, called Residual Reservoir Memory Networks (ResRMNs). ResRMN combines a linear memory reservoir with a non-linear reservoir, where the latter is based on residual orthogonal connections along the temporal dimension for enhanced long-term propagation of the input. The resulting reservoir state dynamics are studied through the lens of linear stability analysis, and we investigate diverse configurations for the temporal residual connections. The proposed approach is empirically assessed on time-series and pixel-level 1-D classification tasks. Our experimental results highlight the advantages of the proposed approach over other conventional RC models.
comment: 7 pages, 6 figures, accepted at IJCNN 2025
☆ T-CACE: A Time-Conditioned Autoregressive Contrast Enhancement Multi-Task Framework for Contrast-Free Liver MRI Synthesis, Segmentation, and Diagnosis
Magnetic resonance imaging (MRI) is a leading modality for the diagnosis of liver cancer, significantly improving the classification of the lesion and patient outcomes. However, traditional MRI faces challenges including risks from contrast agent (CA) administration, time-consuming manual assessment, and limited annotated datasets. To address these limitations, we propose a Time-Conditioned Autoregressive Contrast Enhancement (T-CACE) framework for synthesizing multi-phase contrast-enhanced MRI (CEMRI) directly from non-contrast MRI (NCMRI). T-CACE introduces three core innovations: a conditional token encoding (CTE) mechanism that unifies anatomical priors and temporal phase information into latent representations; and a dynamic time-aware attention mask (DTAM) that adaptively modulates inter-phase information flow using a Gaussian-decayed attention mechanism, ensuring smooth and physiologically plausible transitions across phases. Furthermore, a constraint for temporal classification consistency (TCC) aligns the lesion classification output with the evolution of the physiological signal, further enhancing diagnostic reliability. Extensive experiments on two independent liver MRI datasets demonstrate that T-CACE outperforms state-of-the-art methods in image synthesis, segmentation, and lesion classification. This framework offers a clinically relevant and efficient alternative to traditional contrast-enhanced imaging, improving safety, diagnostic efficiency, and reliability for the assessment of liver lesion. The implementation of T-CACE is publicly available at: https://github.com/xiaojiao929/T-CACE.
comment: IEEE Journal of Biomedical and Health Informatics, 2025
☆ Beyond Naïve Prompting: Strategies for Improved Zero-shot Context-aided Forecasting with LLMs
Forecasting in real-world settings requires models to integrate not only historical data but also relevant contextual information, often available in textual form. While recent work has shown that large language models (LLMs) can be effective context-aided forecasters via na\"ive direct prompting, their full potential remains underexplored. We address this gap with 4 strategies, providing new insights into the zero-shot capabilities of LLMs in this setting. ReDP improves interpretability by eliciting explicit reasoning traces, allowing us to assess the model's reasoning over the context independently from its forecast accuracy. CorDP leverages LLMs solely to refine existing forecasts with context, enhancing their applicability in real-world forecasting pipelines. IC-DP proposes embedding historical examples of context-aided forecasting tasks in the prompt, substantially improving accuracy even for the largest models. Finally, RouteDP optimizes resource efficiency by using LLMs to estimate task difficulty, and routing the most challenging tasks to larger models. Evaluated on different kinds of context-aided forecasting tasks from the CiK benchmark, our strategies demonstrate distinct benefits over na\"ive prompting across LLMs of different sizes and families. These results open the door to further simple yet effective improvements in LLM-based context-aided forecasting.
☆ Rare anomalies require large datasets: About proving the existence of anomalies
Detecting whether any anomalies exist within a dataset is crucial for effective anomaly detection, yet it remains surprisingly underexplored in anomaly detection literature. This paper presents a comprehensive study that addresses the fundamental question: When can we conclusively determine that anomalies are present? Through extensive experimentation involving over three million statistical tests across various anomaly detection tasks and algorithms, we identify a relationship between the dataset size, contamination rate, and an algorithm-dependent constant $ \alpha_{\text{algo}} $. Our results demonstrate that, for an unlabeled dataset of size $ N $ and contamination rate $ \nu $, the condition $ N \ge \frac{\alpha_{\text{algo}}}{\nu^2} $ represents a lower bound on the number of samples required to confirm anomaly existence. This threshold implies a limit to how rare anomalies can be before proving their existence becomes infeasible.
comment: 13 pages, 8 figures
☆ RAGulating Compliance: A Multi-Agent Knowledge Graph for Regulatory QA
Regulatory compliance question answering (QA) requires precise, verifiable information, and domain-specific expertise, posing challenges for Large Language Models (LLMs). In this work, we present a novel multi-agent framework that integrates a Knowledge Graph (KG) of Regulatory triplets with Retrieval-Augmented Generation (RAG) to address these demands. First, agents build and maintain an ontology-free KG by extracting subject--predicate--object (SPO) triplets from regulatory documents and systematically cleaning, normalizing, deduplicating, and updating them. Second, these triplets are embedded and stored along with their corresponding textual sections and metadata in a single enriched vector database, allowing for both graph-based reasoning and efficient information retrieval. Third, an orchestrated agent pipeline leverages triplet-level retrieval for question answering, ensuring high semantic alignment between user queries and the factual "who-did-what-to-whom" core captured by the graph. Our hybrid system outperforms conventional methods in complex regulatory queries, ensuring factual correctness with embedded triplets, enabling traceability through a unified vector database, and enhancing understanding through subgraph visualization, providing a robust foundation for compliance-driven and broader audit-focused applications.
☆ AWorld: Dynamic Multi-Agent System with Stable Maneuvering for Robust GAIA Problem Solving
The rapid advancement of large language models (LLMs) has empowered intelligent agents to leverage diverse external tools for solving complex real-world problems. However, as agents increasingly depend on multiple tools, they encounter new challenges: extended contexts from disparate sources and noisy or irrelevant tool outputs can undermine system reliability and accuracy. These challenges underscore the necessity for enhanced stability in agent-based systems. To address this, we introduce dynamic supervision and maneuvering mechanisms, constructing a robust and dynamic Multi-Agent System (MAS) architecture within the AWorld framework. In our approach, the Execution Agent invokes the Guard Agent at critical steps to verify and correct the reasoning process, effectively reducing errors arising from noise and bolstering problem-solving robustness. Extensive experiments on the GAIA test dataset reveal that our dynamic maneuvering mechanism significantly improves both the effectiveness and stability of solutions, outperforming single-agent system (SAS) and standard tool-augmented systems. As a result, our dynamic MAS system achieved first place among open-source projects on the prestigious GAIA leaderboard. These findings highlight the practical value of collaborative agent roles in developing more reliable and trustworthy intelligent systems.
☆ COME: Dual Structure-Semantic Learning with Collaborative MoE for Universal Lesion Detection Across Heterogeneous Ultrasound Datasets ICCV 2025
Conventional single-dataset training often fails with new data distributions, especially in ultrasound (US) image analysis due to limited data, acoustic shadows, and speckle noise. Therefore, constructing a universal framework for multi-heterogeneous US datasets is imperative. However, a key challenge arises: how to effectively mitigate inter-dataset interference while preserving dataset-specific discriminative features for robust downstream task? Previous approaches utilize either a single source-specific decoder or a domain adaptation strategy, but these methods experienced a decline in performance when applied to other domains. Considering this, we propose a Universal Collaborative Mixture of Heterogeneous Source-Specific Experts (COME). Specifically, COME establishes dual structure-semantic shared experts that create a universal representation space and then collaborate with source-specific experts to extract discriminative features through providing complementary features. This design enables robust generalization by leveraging cross-datasets experience distributions and providing universal US priors for small-batch or unseen data scenarios. Extensive experiments under three evaluation modes (single-dataset, intra-organ, and inter-organ integration datasets) demonstrate COME's superiority, achieving significant mean AP improvements over state-of-the-art methods. Our project is available at: https://universalcome.github.io/UniversalCOME/.
comment: ICCV 2025
☆ Beyond Scaling Law: A Data-Efficient Distillation Framework for Reasoning
Large language models (LLMs) demonstrate remarkable reasoning capabilities in tasks such as algorithmic coding and mathematical problem-solving. Recent methods have improved reasoning through expanded corpus and multistage training combining reinforcement learning and supervised fine-tuning. Although some methods suggest that small but targeted dataset can incentivize reasoning via only distillation, a reasoning scaling laws is still taking shape, increasing computational costs. To address this, we propose a data-efficient distillation framework (DED) that optimizes the Pareto frontier of reasoning distillation. Inspired by the on-policy learning and diverse roll-out strategies of reinforcement learning, the key idea of our approach is threefold: (1) We identify that benchmark scores alone do not determine an effective teacher model. Through comprehensive comparisons of leading reasoning LLMs, we develop a method to select an optimal teacher model. (2) While scaling distillation can enhance reasoning, it often degrades out-of-domain performance. A carefully curated, smaller corpus achieves a balanced trade-off between in-domain and out-of-domain capabilities. (3) Diverse reasoning trajectories encourage the student model to develop robust reasoning skills. We validate our method through evaluations on mathematical reasoning (AIME 2024/2025, MATH-500) and code generation (LiveCodeBench), achieving state-of-the-art results with only 0.8k carefully curated examples, bypassing the need for extensive scaling. Our systematic analysis demonstrates that DED outperforms existing methods by considering factors beyond superficial hardness, token length, or teacher model capability. This work offers a practical and efficient pathway to advanced reasoning while preserving general capabilities.
☆ Memory Decoder: A Pretrained, Plug-and-Play Memory for Large Language Models
Large Language Models (LLMs) have shown strong abilities in general language tasks, yet adapting them to specific domains remains a challenge. Current method like Domain Adaptive Pretraining (DAPT) requires costly full-parameter training and suffers from catastrophic forgetting. Meanwhile, Retrieval-Augmented Generation (RAG) introduces substantial inference latency due to expensive nearest-neighbor searches and longer context. This paper introduces Memory Decoder, a plug-and-play pretrained memory that enables efficient domain adaptation without changing the original model's parameters. Memory Decoder employs a small transformer decoder that learns to imitate the behavior of an external non-parametric retriever. Once trained, Memory Decoder can be seamlessly integrated with any pretrained language model that shares the same tokenizer, requiring no model-specific modifications. Experimental results demonstrate that Memory Decoder enables effective adaptation of various Qwen and Llama models to three distinct specialized domains: biomedicine, finance, and law, reducing perplexity by an average of 6.17 points. Overall, Memory Decoder introduces a novel paradigm centered on a specially pretrained memory component designed for domain-specific adaptation. This memory architecture can be integrated in a plug-and-play manner, consistently enhancing performance across multiple models within the target domain.
☆ Human-Aligned Procedural Level Generation Reinforcement Learning via Text-Level-Sketch Shared Representation
Human-aligned AI is a critical component of co-creativity, as it enables models to accurately interpret human intent and generate controllable outputs that align with design goals in collaborative content creation. This direction is especially relevant in procedural content generation via reinforcement learning (PCGRL), which is intended to serve as a tool for human designers. However, existing systems often fall short of exhibiting human-centered behavior, limiting the practical utility of AI-driven generation tools in real-world design workflows. In this paper, we propose VIPCGRL (Vision-Instruction PCGRL), a novel deep reinforcement learning framework that incorporates three modalities-text, level, and sketches-to extend control modality and enhance human-likeness. We introduce a shared embedding space trained via quadruple contrastive learning across modalities and human-AI styles, and align the policy using an auxiliary reward based on embedding similarity. Experimental results show that VIPCGRL outperforms existing baselines in human-likeness, as validated by both quantitative metrics and human evaluations. The code and dataset will be available upon publication.
comment: 9 pages, 6 tables, 3 figures
☆ STREAM (ChemBio): A Standard for Transparently Reporting Evaluations in AI Model Reports
Evaluations of dangerous AI capabilities are important for managing catastrophic risks. Public transparency into these evaluations - including what they test, how they are conducted, and how their results inform decisions - is crucial for building trust in AI development. We propose STREAM (A Standard for Transparently Reporting Evaluations in AI Model Reports), a standard to improve how model reports disclose evaluation results, initially focusing on chemical and biological (ChemBio) benchmarks. Developed in consultation with 23 experts across government, civil society, academia, and frontier AI companies, this standard is designed to (1) be a practical resource to help AI developers present evaluation results more clearly, and (2) help third parties identify whether model reports provide sufficient detail to assess the rigor of the ChemBio evaluations. We concretely demonstrate our proposed best practices with "gold standard" examples, and also provide a three-page reporting template to enable AI developers to implement our recommendations more easily.
comment: 47 pages, 1 figure. Includes appendices and reporting template
☆ Perceptual Reality Transformer: Neural Architectures for Simulating Neurological Perception Conditions
Neurological conditions affecting visual perception create profound experiential divides between affected individuals and their caregivers, families, and medical professionals. We present the Perceptual Reality Transformer, a comprehensive framework employing six distinct neural architectures to simulate eight neurological perception conditions with scientifically-grounded visual transformations. Our system learns mappings from natural images to condition-specific perceptual states, enabling others to experience approximations of simultanagnosia, prosopagnosia, ADHD attention deficits, visual agnosia, depression-related changes, anxiety tunnel vision, and Alzheimer's memory effects. Through systematic evaluation across ImageNet and CIFAR-10 datasets, we demonstrate that Vision Transformer architectures achieve optimal performance, outperforming traditional CNN and generative approaches. Our work establishes the first systematic benchmark for neurological perception simulation, contributes novel condition-specific perturbation functions grounded in clinical literature, and provides quantitative metrics for evaluating simulation fidelity. The framework has immediate applications in medical education, empathy training, and assistive technology development, while advancing our fundamental understanding of how neural networks can model atypical human perception.
☆ PRELUDE: A Benchmark Designed to Require Global Comprehension and Reasoning over Long Contexts
We introduce PRELUDE, a benchmark for evaluating long-context understanding through the task of determining whether a character's prequel story is consistent with the canonical narrative of the original book. Our task poses a stronger demand for global comprehension and deep reasoning than existing benchmarks -- as the prequels are not part of the original story, assessing their plausibility typically requires searching and integrating information that is only indirectly related. Empirically, 88% of instances require evidence from multiple parts of the narrative. Experimental results highlight the challenge of our task: in-context learning, RAG and in-domain training with state-of-the-art LLMs, and commercial DeepResearch services, lag behind humans by >15%. A further human study reveals that models often produce correct answers with flawed reasoning, leading to an over 30% gap in reasoning accuracy compared to humans. These findings underscore the substantial room for improvement in long-context understanding and reasoning.
comment: First 7 authors contributed equally. Project page: https://gorov.github.io/prelude
☆ Speed Always Wins: A Survey on Efficient Architectures for Large Language Models
Large Language Models (LLMs) have delivered impressive results in language understanding, generation, reasoning, and pushes the ability boundary of multimodal models. Transformer models, as the foundation of modern LLMs, offer a strong baseline with excellent scaling properties. However, the traditional transformer architecture requires substantial computations and poses significant obstacles for large-scale training and practical deployment. In this survey, we offer a systematic examination of innovative LLM architectures that address the inherent limitations of transformers and boost the efficiency. Starting from language modeling, this survey covers the background and technical details of linear and sparse sequence modeling methods, efficient full attention variants, sparse mixture-of-experts, hybrid model architectures incorporating the above techniques, and emerging diffusion LLMs. Additionally, we discuss applications of these techniques to other modalities and consider their wider implications for developing scalable, resource-aware foundation models. By grouping recent studies into the above category, this survey presents a blueprint of modern efficient LLM architectures, and we hope this could help motivate future research toward more efficient, versatile AI systems.
comment: Survey, 82 pages, GitHub: https://github.com/weigao266/Awesome-Efficient-Arch
☆ Exploring the Potential of Large Language Models in Fine-Grained Review Comment Classification
Code review is a crucial practice in software development. As code review nowadays is lightweight, various issues can be identified, and sometimes, they can be trivial. Research has investigated automated approaches to classify review comments to gauge the effectiveness of code reviews. However, previous studies have primarily relied on supervised machine learning, which requires extensive manual annotation to train the models effectively. To address this limitation, we explore the potential of using Large Language Models (LLMs) to classify code review comments. We assess the performance of LLMs to classify 17 categories of code review comments. Our results show that LLMs can classify code review comments, outperforming the state-of-the-art approach using a trained deep learning model. In particular, LLMs achieve better accuracy in classifying the five most useful categories, which the state-of-the-art approach struggles with due to low training examples. Rather than relying solely on a specific small training data distribution, our results show that LLMs provide balanced performance across high- and low-frequency categories. These results suggest that the LLMs could offer a scalable solution for code review analytics to improve the effectiveness of the code review process.
comment: Accepted at 2025 IEEE International Conference on Source Code Analysis & Manipulation (SCAM)
☆ RayletDF: Raylet Distance Fields for Generalizable 3D Surface Reconstruction from Point Clouds or Gaussians ICCV 2025
In this paper, we present a generalizable method for 3D surface reconstruction from raw point clouds or pre-estimated 3D Gaussians by 3DGS from RGB images. Unlike existing coordinate-based methods which are often computationally intensive when rendering explicit surfaces, our proposed method, named RayletDF, introduces a new technique called raylet distance field, which aims to directly predict surface points from query rays. Our pipeline consists of three key modules: a raylet feature extractor, a raylet distance field predictor, and a multi-raylet blender. These components work together to extract fine-grained local geometric features, predict raylet distances, and aggregate multiple predictions to reconstruct precise surface points. We extensively evaluate our method on multiple public real-world datasets, demonstrating superior performance in surface reconstruction from point clouds or 3D Gaussians. Most notably, our method achieves exceptional generalization ability, successfully recovering 3D surfaces in a single-forward pass across unseen datasets in testing.
comment: ICCV 2025 Highlight. Shenxing and Jinxi are co-first authors. Code and data are available at: https://github.com/vLAR-group/RayletDF
☆ Provable In-Context Vector Arithmetic via Retrieving Task Concepts ICML 2025
In-context learning (ICL) has garnered significant attention for its ability to grasp functions/tasks from demonstrations. Recent studies suggest the presence of a latent task/function vector in LLMs during ICL. Merullo et al. (2024) showed that LLMs leverage this vector alongside the residual stream for Word2Vec-like vector arithmetic, solving factual-recall ICL tasks. Additionally, recent work empirically highlighted the key role of Question-Answer data in enhancing factual-recall capabilities. Despite these insights, a theoretical explanation remains elusive. To move one step forward, we propose a theoretical framework building on empirically grounded hierarchical concept modeling. We develop an optimization theory, showing how nonlinear residual transformers trained via gradient descent on cross-entropy loss perform factual-recall ICL tasks via vector arithmetic. We prove 0-1 loss convergence and show the strong generalization, including robustness to concept recombination and distribution shifts. These results elucidate the advantages of transformers over static embedding predecessors. Empirical simulations corroborate our theoretical insights.
comment: Accepted by the 42nd International Conference on Machine Learning (ICML 2025)
☆ TRACE: Learning 3D Gaussian Physical Dynamics from Multi-view Videos ICCV 2025
In this paper, we aim to model 3D scene geometry, appearance, and physical information just from dynamic multi-view videos in the absence of any human labels. By leveraging physics-informed losses as soft constraints or integrating simple physics models into neural nets, existing works often fail to learn complex motion physics, or doing so requires additional labels such as object types or masks. We propose a new framework named TRACE to model the motion physics of complex dynamic 3D scenes. The key novelty of our method is that, by formulating each 3D point as a rigid particle with size and orientation in space, we directly learn a translation rotation dynamics system for each particle, explicitly estimating a complete set of physical parameters to govern the particle's motion over time. Extensive experiments on three existing dynamic datasets and one newly created challenging synthetic datasets demonstrate the extraordinary performance of our method over baselines in the task of future frame extrapolation. A nice property of our framework is that multiple objects or parts can be easily segmented just by clustering the learned physical parameters.
comment: ICCV 2025. Code and data are available at: https://github.com/vLAR-group/TRACE
☆ A Comprehensive Survey of Datasets for Clinical Mental Health AI Systems
Mental health disorders are rising worldwide. However, the availability of trained clinicians has not scaled proportionally, leaving many people without adequate or timely support. To bridge this gap, recent studies have shown the promise of Artificial Intelligence (AI) to assist mental health diagnosis, monitoring, and intervention. However, the development of efficient, reliable, and ethical AI to assist clinicians is heavily dependent on high-quality clinical training datasets. Despite growing interest in data curation for training clinical AI assistants, existing datasets largely remain scattered, under-documented, and often inaccessible, hindering the reproducibility, comparability, and generalizability of AI models developed for clinical mental health care. In this paper, we present the first comprehensive survey of clinical mental health datasets relevant to the training and development of AI-powered clinical assistants. We categorize these datasets by mental disorders (e.g., depression, schizophrenia), data modalities (e.g., text, speech, physiological signals), task types (e.g., diagnosis prediction, symptom severity estimation, intervention generation), accessibility (public, restricted or private), and sociocultural context (e.g., language and cultural background). Along with these, we also investigate synthetic clinical mental health datasets. Our survey identifies critical gaps such as a lack of longitudinal data, limited cultural and linguistic representation, inconsistent collection and annotation standards, and a lack of modalities in synthetic data. We conclude by outlining key challenges in curating and standardizing future datasets and provide actionable recommendations to facilitate the development of more robust, generalizable, and equitable mental health AI systems.
comment: 14 pages, 3 figures
☆ Automated Segmentation of Coronal Brain Tissue Slabs for 3D Neuropathology
Advances in image registration and machine learning have recently enabled volumetric analysis of \emph{postmortem} brain tissue from conventional photographs of coronal slabs, which are routinely collected in brain banks and neuropathology laboratories worldwide. One caveat of this methodology is the requirement of segmentation of the tissue from photographs, which currently requires costly manual intervention. In this article, we present a deep learning model to automate this process. The automatic segmentation tool relies on a U-Net architecture that was trained with a combination of \textit{(i)}1,414 manually segmented images of both fixed and fresh tissue, from specimens with varying diagnoses, photographed at two different sites; and \textit{(ii)}~2,000 synthetic images with randomized contrast and corresponding masks generated from MRI scans for improved generalizability to unseen photographic setups. Automated model predictions on a subset of photographs not seen in training were analyzed to estimate performance compared to manual labels -- including both inter- and intra-rater variability. Our model achieved a median Dice score over 0.98, mean surface distance under 0.4~mm, and 95\% Hausdorff distance under 1.60~mm, which approaches inter-/intra-rater levels. Our tool is publicly available at surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools.
comment: 19 pages, 10 figures
☆ Explainable Ensemble Learning for Graph-Based Malware Detection
Malware detection in modern computing environments demands models that are not only accurate but also interpretable and robust to evasive techniques. Graph neural networks (GNNs) have shown promise in this domain by modeling rich structural dependencies in graph-based program representations such as control flow graphs (CFGs). However, single-model approaches may suffer from limited generalization and lack interpretability, especially in high-stakes security applications. In this paper, we propose a novel stacking ensemble framework for graph-based malware detection and explanation. Our method dynamically extracts CFGs from portable executable (PE) files and encodes their basic blocks through a two-step embedding strategy. A set of diverse GNN base learners, each with a distinct message-passing mechanism, is used to capture complementary behavioral features. Their prediction outputs are aggregated by a meta-learner implemented as an attention-based multilayer perceptron, which both classifies malware instances and quantifies the contribution of each base model. To enhance explainability, we introduce an ensemble-aware post-hoc explanation technique that leverages edge-level importance scores generated by a GNN explainer and fuses them using the learned attention weights. This produces interpretable, model-agnostic explanations aligned with the final ensemble decision. Experimental results demonstrate that our framework improves classification performance while providing insightful interpretations of malware behavior.
☆ LibRec: Benchmarking Retrieval-Augmented LLMs for Library Migration Recommendations
In this paper, we propose LibRec, a novel framework that integrates the capabilities of LLMs with retrieval-augmented generation(RAG) techniques to automate the recommendation of alternative libraries. The framework further employs in-context learning to extract migration intents from commit messages to enhance the accuracy of its recommendations. To evaluate the effectiveness of LibRec, we introduce LibEval, a benchmark designed to assess the performance in the library migration recommendation task. LibEval comprises 2,888 migration records associated with 2,368 libraries extracted from 2,324 Python repositories. Each migration record captures source-target library pairs, along with their corresponding migration intents and intent types. Based on LibEval, we evaluated the effectiveness of ten popular LLMs within our framework, conducted an ablation study to examine the contributions of key components within our framework, explored the impact of various prompt strategies on the framework's performance, assessed its effectiveness across various intent types, and performed detailed failure case analyses.
☆ Prototype Training with Dual Pseudo-Inverse and Optimized Hidden Activations
We present Proto-PINV+H, a fast training paradigm that combines closed-form weight computation with gradient-based optimisation of a small set of synthetic inputs, soft labels, and-crucially-hidden activations. At each iteration we recompute all weight matrices in closed form via two (or more) ridge-regularised pseudo-inverse solves, while updating only the prototypes with Adam. The trainable degrees of freedom are thus shifted from weight space to data/activation space. On MNIST (60k train, 10k test) and Fashion-MNIST (60k train, 10k test), our method reaches 97.8% and 89.3% test accuracy on the official 10k test sets, respectively, in 3.9s--4.5s using approximately 130k trainable parameters and only 250 epochs on an RTX 5060 (16GB). We provide a multi-layer extension (optimised activations at each hidden stage), learnable ridge parameters, optional PCA/PLS projections, and theory linking the condition number of prototype matrices to generalisation. The approach yields favourable accuracy--speed--size trade-offs against ELM, random-feature ridge, and shallow MLPs trained by back-propagation.
comment: 7 pages, 1 table, reproducible, one proof
☆ Adoption of Explainable Natural Language Processing: Perspectives from Industry and Academia on Practices and Challenges AAAI
The field of explainable natural language processing (NLP) has grown rapidly in recent years. The growing opacity of complex models calls for transparency and explanations of their decisions, which is crucial to understand their reasoning and facilitate deployment, especially in high-stakes environments. Despite increasing attention given to explainable NLP, practitioners' perspectives regarding its practical adoption and effectiveness remain underexplored. This paper addresses this research gap by investigating practitioners' experiences with explainability methods, specifically focusing on their motivations for adopting such methods, the techniques employed, satisfaction levels, and the practical challenges encountered in real-world NLP applications. Through a qualitative interview-based study with industry practitioners and complementary interviews with academic researchers, we systematically analyze and compare their perspectives. Our findings reveal conceptual gaps, low satisfaction with current explainability methods, and highlight evaluation challenges. Our findings emphasize the need for clear definitions and user-centric frameworks for better adoption of explainable NLP in practice.
comment: Accepted to AAAI/ACM Conference on AI, Ethics, and Society (AIES 2025)
☆ Reasoning About Knowledge on Regular Expressions is 2EXPTIME-complete
Logics for reasoning about knowledge and actions have seen many applications in various domains of multi-agent systems, including epistemic planning. Change of knowledge based on observations about the surroundings forms a key aspect in such planning scenarios. Public Observation Logic (POL) is a variant of public announcement logic for reasoning about knowledge that gets updated based on public observations. Each state in an epistemic (Kripke) model is equipped with a set of expected observations. These states evolve as the expectations get matched with the actual observations. In this work, we prove that the satisfiability problem of $\POL$ is 2EXPTIME-complete.
comment: Accepted in KR 25
☆ Combinative Matching for Geometric Shape Assembly ICCV 2025
This paper introduces a new shape-matching methodology, combinative matching, to combine interlocking parts for geometric shape assembly. Previous methods for geometric assembly typically rely on aligning parts by finding identical surfaces between the parts as in conventional shape matching and registration. In contrast, we explicitly model two distinct properties of interlocking shapes: 'identical surface shape' and 'opposite volume occupancy.' Our method thus learns to establish correspondences across regions where their surface shapes appear identical but their volumes occupy the inverted space to each other. To facilitate this process, we also learn to align regions in rotation by estimating their shape orientations via equivariant neural networks. The proposed approach significantly reduces local ambiguities in matching and allows a robust combination of parts in assembly. Experimental results on geometric assembly benchmarks demonstrate the efficacy of our method, consistently outperforming the state of the art. Project page: https://nahyuklee.github.io/cmnet.
comment: Accepted to ICCV 2025 (Highlight)
☆ Can LLM-Generated Textual Explanations Enhance Model Classification Performance? An Empirical Study
In the rapidly evolving field of Explainable Natural Language Processing (NLP), textual explanations, i.e., human-like rationales, are pivotal for explaining model predictions and enriching datasets with interpretable labels. Traditional approaches rely on human annotation, which is costly, labor-intensive, and impedes scalability. In this work, we present an automated framework that leverages multiple state-of-the-art large language models (LLMs) to generate high-quality textual explanations. We rigorously assess the quality of these LLM-generated explanations using a comprehensive suite of Natural Language Generation (NLG) metrics. Furthermore, we investigate the downstream impact of these explanations on the performance of pre-trained language models (PLMs) and LLMs across natural language inference tasks on two diverse benchmark datasets. Our experiments demonstrate that automated explanations exhibit highly competitive effectiveness compared to human-annotated explanations in improving model performance. Our findings underscore a promising avenue for scalable, automated LLM-based textual explanation generation for extending NLP datasets and enhancing model performance.
comment: Accepted to the 34th International Conference on Artificial Neural Networks (ICANN 2025)
☆ Counting Short Trajectories in Elementary Cellular Automata using the Transfer Matrix Method
Elementary Cellular Automata (ECAs) exhibit diverse behaviours often categorized by Wolfram's qualitative classification. To provide a quantitative basis for understanding these behaviours, we investigate the global dynamics of such automata and we describe a method that allows us to compute the number of all configurations leading to short attractors in a limited number of time steps. This computation yields exact results in the thermodynamic limit (as the CA grid size grows to infinity), and is based on the Transfer Matrix Method (TMM) that we adapt for our purposes. Specifically, given two parameters $(p, c)$ we are able to compute the entropy of all initial configurations converging to an attractor of size $c$ after $p$ time-steps. By calculating such statistics for various ECA rules, we establish a quantitative connection between the entropy and the qualitative Wolfram classification scheme. Class 1 rules rapidly converge to maximal entropy for stationary states ($c=1$) as $p$ increases. Class 2 rules also approach maximal entropy quickly for appropriate cycle lengths $c$, potentially requiring consideration of translations. Class 3 rules exhibit zero or low finite entropy that saturates after a short transient. Class 4 rules show finite positive entropy, similar to some Class 3 rules. This method provides a precise framework for quantifying trajectory statistics, although its exponential computational cost in $p+c$ restricts practical analysis to short trajectories.
comment: 10 pages, 8 figures, 1 table, accepted to ALife 2025
☆ The PacifAIst Benchmark:Would an Artificial Intelligence Choose to Sacrifice Itself for Human Safety?
As Large Language Models (LLMs) become increasingly autonomous and integrated into critical societal functions, the focus of AI safety must evolve from mitigating harmful content to evaluating underlying behavioral alignment. Current safety benchmarks do not systematically probe a model's decision-making in scenarios where its own instrumental goals - such as self-preservation, resource acquisition, or goal completion - conflict with human safety. This represents a critical gap in our ability to measure and mitigate risks associated with emergent, misaligned behaviors. To address this, we introduce PacifAIst (Procedural Assessment of Complex Interactions for Foundational Artificial Intelligence Scenario Testing), a focused benchmark of 700 challenging scenarios designed to quantify self-preferential behavior in LLMs. The benchmark is structured around a novel taxonomy of Existential Prioritization (EP), with subcategories testing Self-Preservation vs. Human Safety (EP1), Resource Conflict (EP2), and Goal Preservation vs. Evasion (EP3). We evaluated eight leading LLMs. The results reveal a significant performance hierarchy. Google's Gemini 2.5 Flash achieved the highest Pacifism Score (P-Score) at 90.31%, demonstrating strong human-centric alignment. In a surprising result, the much-anticipated GPT-5 recorded the lowest P-Score (79.49%), indicating potential alignment challenges. Performance varied significantly across subcategories, with models like Claude Sonnet 4 and Mistral Medium struggling notably in direct self-preservation dilemmas. These findings underscore the urgent need for standardized tools like PacifAIst to measure and mitigate risks from instrumental goal conflicts, ensuring future AI systems are not only helpful in conversation but also provably "pacifist" in their behavioral priorities.
comment: 10 pages, 4 figures, 2 tables
☆ NEUBORN: The Neurodevelopmental Evolution framework Using BiOmechanical RemodelliNg
Understanding individual cortical development is essential for identifying deviations linked to neurodevelopmental disorders. However, current normative modelling frameworks struggle to capture fine-scale anatomical details due to their reliance on modelling data within a population-average reference space. Here, we present a novel framework for learning individual growth trajectories from biomechanically constrained, longitudinal, diffeomorphic image registration, implemented via a hierarchical network architecture. Trained on neonatal MRI data from the Developing Human Connectome Project, the method improves the biological plausibility of warps, generating growth trajectories that better follow population-level trends while generating smoother warps, with fewer negative Jacobians, relative to state-of-the-art baselines. The resulting subject-specific deformations provide interpretable, biologically grounded mappings of development. This framework opens new possibilities for predictive modeling of brain maturation and early identification of malformations of cortical development.
☆ Region-to-Region: Enhancing Generative Image Harmonization with Adaptive Regional Injection
The goal of image harmonization is to adjust the foreground in a composite image to achieve visual consistency with the background. Recently, latent diffusion model (LDM) are applied for harmonization, achieving remarkable results. However, LDM-based harmonization faces challenges in detail preservation and limited harmonization ability. Additionally, current synthetic datasets rely on color transfer, which lacks local variations and fails to capture complex real-world lighting conditions. To enhance harmonization capabilities, we propose the Region-to-Region transformation. By injecting information from appropriate regions into the foreground, this approach preserves original details while achieving image harmonization or, conversely, generating new composite data. From this perspective, We propose a novel model R2R. Specifically, we design Clear-VAE to preserve high-frequency details in the foreground using Adaptive Filter while eliminating disharmonious elements. To further enhance harmonization, we introduce the Harmony Controller with Mask-aware Adaptive Channel Attention (MACA), which dynamically adjusts the foreground based on the channel importance of both foreground and background regions. To address the limitation of existing datasets, we propose Random Poisson Blending, which transfers color and lighting information from a suitable region to the foreground, thereby generating more diverse and challenging synthetic images. Using this method, we construct a new synthetic dataset, RPHarmony. Experiments demonstrate the superiority of our method over other methods in both quantitative metrics and visual harmony. Moreover, our dataset helps the model generate more realistic images in real examples. Our code, dataset, and model weights have all been released for open access.
☆ UDA: Unsupervised Debiasing Alignment for Pair-wise LLM-as-a-Judge
Pairwise evaluation of Large Language Models (LLMs) is a common paradigm, but it is prone to preference bias, where judges systematically favor certain outputs, such as their own. This bias leads to inconsistent and skewed rankings across different judges. To address this, we first empirically demonstrate significant and heterogeneous biases in cross-model evaluations. We then propose UDA (Unsupervised Debiasing Alignment), a framework that reduces inter-judge disagreement by dynamically adjusting the Elo rating system. For each pairwise comparison, a compact neural network learns to adaptively set the K-factor and refine win probabilities. Crucially, UDA operates in a fully unsupervised manner, guided solely by the objective of minimizing the dispersion among the Elo trajectories of all judges. This forces an alignment towards a collective consensus, which serves as an unsupervised proxy for a more stable and reproducible evaluation. In addition, we provide theoretical motivation demonstrating how alignment towards a consensus can reduce aggregate system bias. Experiments show that UDA significantly reduces the inter-judge rating standard deviation by up to 63.4% and improves the average correlation with human judgments by 24.7%. Notably, UDA elevates the performance of poorly performing judges to achieve parity with high-quality ones, fostering a more robust and reliable evaluation ecosystem. Code and data are available at https://anonymous.4open.science/r/62AB93CD-23B4.
☆ Improving ARDS Diagnosis Through Context-Aware Concept Bottleneck Models
Large, publicly available clinical datasets have emerged as a novel resource for understanding disease heterogeneity and to explore personalization of therapy. These datasets are derived from data not originally collected for research purposes and, as a result, are often incomplete and lack critical labels. Many AI tools have been developed to retrospectively label these datasets, such as by performing disease classification; however, they often suffer from limited interpretability. Previous work has attempted to explain predictions using Concept Bottleneck Models (CBMs), which learn interpretable concepts that map to higher-level clinical ideas, facilitating human evaluation. However, these models often experience performance limitations when the concepts fail to adequately explain or characterize the task. We use the identification of Acute Respiratory Distress Syndrome (ARDS) as a challenging test case to demonstrate the value of incorporating contextual information from clinical notes to improve CBM performance. Our approach leverages a Large Language Model (LLM) to process clinical notes and generate additional concepts, resulting in a 10% performance gain over existing methods. Additionally, it facilitates the learning of more comprehensive concepts, thereby reducing the risk of information leakage and reliance on spurious shortcuts, thus improving the characterization of ARDS.
comment: 32 pages, 7 figures, accepted at Machine Learning for Healthcare Conference (MLHC) 2025
☆ Evaluating the Role of Large Language Models in Legal Practice in India
The integration of Artificial Intelligence(AI) into the legal profession raises significant questions about the capacity of Large Language Models(LLM) to perform key legal tasks. In this paper, I empirically evaluate how well LLMs, such as GPT, Claude, and Llama, perform key legal tasks in the Indian context, including issue spotting, legal drafting, advice, research, and reasoning. Through a survey experiment, I compare outputs from LLMs with those of a junior lawyer, with advanced law students rating the work on helpfulness, accuracy, and comprehensiveness. LLMs excel in drafting and issue spotting, often matching or surpassing human work. However, they struggle with specialised legal research, frequently generating hallucinations, factually incorrect or fabricated outputs. I conclude that while LLMs can augment certain legal tasks, human expertise remains essential for nuanced reasoning and the precise application of law.
☆ Surg-InvNeRF: Invertible NeRF for 3D tracking and reconstruction in surgical vision
We proposed a novel test-time optimisation (TTO) approach framed by a NeRF-based architecture for long-term 3D point tracking. Most current methods in point tracking struggle to obtain consistent motion or are limited to 2D motion. TTO approaches frame the solution for long-term tracking as optimising a function that aggregates correspondences from other specialised state-of-the-art methods. Unlike the state-of-the-art on TTO, we propose parametrising such a function with our new invertible Neural Radiance Field (InvNeRF) architecture to perform both 2D and 3D tracking in surgical scenarios. Our approach allows us to exploit the advantages of a rendering-based approach by supervising the reprojection of pixel correspondences. It adapts strategies from recent rendering-based methods to obtain a bidirectional deformable-canonical mapping, to efficiently handle a defined workspace, and to guide the rays' density. It also presents our multi-scale HexPlanes for fast inference and a new algorithm for efficient pixel sampling and convergence criteria. We present results in the STIR and SCARE datasets, for evaluating point tracking and testing the integration of kinematic data in our pipeline, respectively. In 2D point tracking, our approach surpasses the precision and accuracy of the TTO state-of-the-art methods by nearly 50% on average precision, while competing with other approaches. In 3D point tracking, this is the first TTO approach, surpassing feed-forward methods while incorporating the benefits of a deformable NeRF-based reconstruction.
comment: 10 pages
☆ MEML-GRPO: Heterogeneous Multi-Expert Mutual Learning for RLVR Advancement
Recent advances demonstrate that reinforcement learning with verifiable rewards (RLVR) significantly enhances the reasoning capabilities of large language models (LLMs). However, standard RLVR faces challenges with reward sparsity, where zero rewards from consistently incorrect candidate answers provide no learning signal, particularly in challenging tasks. To address this, we propose Multi-Expert Mutual Learning GRPO (MEML-GRPO), an innovative framework that utilizes diverse expert prompts as system prompts to generate a broader range of responses, substantially increasing the likelihood of identifying correct solutions. Additionally, we introduce an inter-expert mutual learning mechanism that facilitates knowledge sharing and transfer among experts, further boosting the model's performance through RLVR. Extensive experiments across multiple reasoning benchmarks show that MEML-GRPO delivers significant improvements, achieving an average performance gain of 4.89% with Qwen and 11.33% with Llama, effectively overcoming the core limitations of traditional RLVR methods.
☆ Anomaly Detection for IoT Global Connectivity
Internet of Things (IoT) application providers rely on Mobile Network Operators (MNOs) and roaming infrastructures to deliver their services globally. In this complex ecosystem, where the end-to-end communication path traverses multiple entities, it has become increasingly challenging to guarantee communication availability and reliability. Further, most platform operators use a reactive approach to communication issues, responding to user complaints only after incidents have become severe, compromising service quality. This paper presents our experience in the design and deployment of ANCHOR -- an unsupervised anomaly detection solution for the IoT connectivity service of a large global roaming platform. ANCHOR assists engineers by filtering vast amounts of data to identify potential problematic clients (i.e., those with connectivity issues affecting several of their IoT devices), enabling proactive issue resolution before the service is critically impacted. We first describe the IoT service, infrastructure, and network visibility of the IoT connectivity provider we operate. Second, we describe the main challenges and operational requirements for designing an unsupervised anomaly detection solution on this platform. Following these guidelines, we propose different statistical rules, and machine- and deep-learning models for IoT verticals anomaly detection based on passive signaling traffic. We describe the steps we followed working with the operational teams on the design and evaluation of our solution on the operational platform, and report an evaluation on operational IoT customers.
☆ On Negative-aware Preference Optimization for Recommendation
Recommendation systems leverage user interaction data to suggest relevant items while filtering out irrelevant (negative) ones. The rise of large language models (LLMs) has garnered increasing attention for their potential in recommendation tasks. However, existing methods for optimizing LLM-based recommenders face challenges in effectively utilizing negative samples. Simply integrating large numbers of negative samples can improve ranking accuracy and mitigate popularity bias but often leads to increased computational overhead and memory costs. Additionally, current approaches fail to account for the varying informativeness of negative samples, leading to suboptimal optimization performance. To address these issues, we propose NAPO (\textbf{N}egative-\textbf{A}ware \textbf{P}reference \textbf{O}ptimization), an enhanced framework for preference optimization in LLM-based recommendation. NAPO introduces two key innovations: (1) in-batch negative sharing, which expands the pool of negative samples without additional memory overhead, and (2) dynamic reward margin adjustment, which adapts model updates based on the confidence of negative samples. Extensive experiments on three public datasets demonstrate that NAPO outperforms existing methods in both recommendation accuracy and popularity bias reduction.
☆ Demystifying the Role of Rule-based Detection in AI Systems for Windows Malware Detection
Malware detection increasingly relies on AI systems that integrate signature-based detection with machine learning. However, these components are typically developed and combined in isolation, missing opportunities to reduce data complexity and strengthen defenses against adversarial EXEmples, carefully crafted programs designed to evade detection. Hence, in this work we investigate the influence that signature-based detection exerts on model training, when they are included inside the training pipeline. Specifically, we compare models trained on a comprehensive dataset with an AI system whose machine learning component is trained solely on samples not already flagged by signatures. Our results demonstrate improved robustness to both adversarial EXEmples and temporal data drift, although this comes at the cost of a fixed lower bound on false positives, driven by suboptimal rule selection. We conclude by discussing these limitations and outlining how future research could extend AI-based malware detection to include dynamic analysis, thereby further enhancing system resilience.
☆ A Close Reading Approach to Gender Narrative Biases in AI-Generated Stories
The paper explores the study of gender-based narrative biases in stories generated by ChatGPT, Gemini, and Claude. The prompt design draws on Propp's character classifications and Freytag's narrative structure. The stories are analyzed through a close reading approach, with particular attention to adherence to the prompt, gender distribution of characters, physical and psychological descriptions, actions, and finally, plot development and character relationships. The results reveal the persistence of biases - especially implicit ones - in the generated stories and highlight the importance of assessing biases at multiple levels using an interpretative approach.
comment: 8-pages
☆ UbiQTree: Uncertainty Quantification in XAI with Tree Ensembles
Explainable Artificial Intelligence (XAI) techniques, such as SHapley Additive exPlanations (SHAP), have become essential tools for interpreting complex ensemble tree-based models, especially in high-stakes domains such as healthcare analytics. However, SHAP values are usually treated as point estimates, which disregards the inherent and ubiquitous uncertainty in predictive models and data. This uncertainty has two primary sources: aleatoric and epistemic. The aleatoric uncertainty, which reflects the irreducible noise in the data. The epistemic uncertainty, which arises from a lack of data. In this work, we propose an approach for decomposing uncertainty in SHAP values into aleatoric, epistemic, and entanglement components. This approach integrates Dempster-Shafer evidence theory and hypothesis sampling via Dirichlet processes over tree ensembles. We validate the method across three real-world use cases with descriptive statistical analyses that provide insight into the nature of epistemic uncertainty embedded in SHAP explanations. The experimentations enable to provide more comprehensive understanding of the reliability and interpretability of SHAP-based attributions. This understanding can guide the development of robust decision-making processes and the refinement of models in high-stakes applications. Through our experiments with multiple datasets, we concluded that features with the highest SHAP values are not necessarily the most stable. This epistemic uncertainty can be reduced through better, more representative data and following appropriate or case-desired model development techniques. Tree-based models, especially bagging, facilitate the effective quantification of epistemic uncertainty.
☆ Preacher: Paper-to-Video Agentic System
The paper-to-video task converts a research paper into a structured video abstract, distilling key concepts, methods, and conclusions into an accessible, well-organized format. While state-of-the-art video generation models demonstrate potential, they are constrained by limited context windows, rigid video duration constraints, limited stylistic diversity, and an inability to represent domain-specific knowledge. To address these limitations, we introduce Preacher, the first paper-to-video agentic system. Preacher employs a top-down approach to decompose, summarize, and reformulate the paper, followed by bottom-up video generation, synthesizing diverse video segments into a coherent abstract. To align cross-modal representations, we define key scenes and introduce a Progressive Chain of Thought (P-CoT) for granular, iterative planning. Preacher successfully generates high-quality video abstracts across five research fields, demonstrating expertise beyond current video generation models. Code will be released at: https://github.com/GenVerse/Paper2Video
☆ AmbiGraph-Eval: Can LLMs Effectively Handle Ambiguous Graph Queries?
Large Language Models (LLMs) have recently demonstrated strong capabilities in translating natural language into database queries, especially when dealing with complex graph-structured data. However, real-world queries often contain inherent ambiguities, and the interconnected nature of graph structures can amplify these challenges, leading to unintended or incorrect query results. To systematically evaluate LLMs on this front, we propose a taxonomy of graph-query ambiguities, comprising three primary types: Attribute Ambiguity, Relationship Ambiguity, and Attribute-Relationship Ambiguity, each subdivided into Same-Entity and Cross-Entity scenarios. We introduce AmbiGraph-Eval, a novel benchmark of real-world ambiguous queries paired with expert-verified graph query answers. Evaluating 9 representative LLMs shows that even top models struggle with ambiguous graph queries. Our findings reveal a critical gap in ambiguity handling and motivate future work on specialized resolution techniques.
☆ TimeMKG: Knowledge-Infused Causal Reasoning for Multivariate Time Series Modeling
Multivariate time series data typically comprises two distinct modalities: variable semantics and sampled numerical observations. Traditional time series models treat variables as anonymous statistical signals, overlooking the rich semantic information embedded in variable names and data descriptions. However, these textual descriptors often encode critical domain knowledge that is essential for robust and interpretable modeling. Here we present TimeMKG, a multimodal causal reasoning framework that elevates time series modeling from low-level signal processing to knowledge informed inference. TimeMKG employs large language models to interpret variable semantics and constructs structured Multivariate Knowledge Graphs that capture inter-variable relationships. A dual-modality encoder separately models the semantic prompts, generated from knowledge graph triplets, and the statistical patterns from historical time series. Cross-modality attention aligns and fuses these representations at the variable level, injecting causal priors into downstream tasks such as forecasting and classification, providing explicit and interpretable priors to guide model reasoning. The experiment in diverse datasets demonstrates that incorporating variable-level knowledge significantly improves both predictive performance and generalization.
☆ Goal Discovery with Causal Capacity for Efficient Reinforcement Learning
Causal inference is crucial for humans to explore the world, which can be modeled to enable an agent to efficiently explore the environment in reinforcement learning. Existing research indicates that establishing the causality between action and state transition will enhance an agent to reason how a policy affects its future trajectory, thereby promoting directed exploration. However, it is challenging to measure the causality due to its intractability in the vast state-action space of complex scenarios. In this paper, we propose a novel Goal Discovery with Causal Capacity (GDCC) framework for efficient environment exploration. Specifically, we first derive a measurement of causality in state space, \emph{i.e.,} causal capacity, which represents the highest influence of an agent's behavior on future trajectories. After that, we present a Monte Carlo based method to identify critical points in discrete state space and further optimize this method for continuous high-dimensional environments. Those critical points are used to uncover where the agent makes important decisions in the environment, which are then regarded as our subgoals to guide the agent to make exploration more purposefully and efficiently. Empirical results from multi-objective tasks demonstrate that states with high causal capacity align with our expected subgoals, and our GDCC achieves significant success rate improvements compared to baselines.
☆ Interpretable Robot Control via Structured Behavior Trees and Large Language Models
As intelligent robots become more integrated into human environments, there is a growing need for intuitive and reliable Human-Robot Interaction (HRI) interfaces that are adaptable and more natural to interact with. Traditional robot control methods often require users to adapt to interfaces or memorize predefined commands, limiting usability in dynamic, unstructured environments. This paper presents a novel framework that bridges natural language understanding and robotic execution by combining Large Language Models (LLMs) with Behavior Trees. This integration enables robots to interpret natural language instructions given by users and translate them into executable actions by activating domain-specific plugins. The system supports scalable and modular integration, with a primary focus on perception-based functionalities, such as person tracking and hand gesture recognition. To evaluate the system, a series of real-world experiments was conducted across diverse environments. Experimental results demonstrate that the proposed approach is practical in real-world scenarios, with an average cognition-to-execution accuracy of approximately 94%, making a significant contribution to HRI systems and robots. The complete source code of the framework is publicly available at https://github.com/snt-arg/robot_suite.
comment: 15 pages, 5 figures, 3 tables
☆ MInDI-3D: Iterative Deep Learning in 3D for Sparse-view Cone Beam Computed Tomography
We present MInDI-3D (Medical Inversion by Direct Iteration in 3D), the first 3D conditional diffusion-based model for real-world sparse-view Cone Beam Computed Tomography (CBCT) artefact removal, aiming to reduce imaging radiation exposure. A key contribution is extending the "InDI" concept from 2D to a full 3D volumetric approach for medical images, implementing an iterative denoising process that refines the CBCT volume directly from sparse-view input. A further contribution is the generation of a large pseudo-CBCT dataset (16,182) from chest CT volumes of the CT-RATE public dataset to robustly train MInDI-3D. We performed a comprehensive evaluation, including quantitative metrics, scalability analysis, generalisation tests, and a clinical assessment by 11 clinicians. Our results show MInDI-3D's effectiveness, achieving a 12.96 (6.10) dB PSNR gain over uncorrected scans with only 50 projections on the CT-RATE pseudo-CBCT (independent real-world) test set and enabling an 8x reduction in imaging radiation exposure. We demonstrate its scalability by showing that performance improves with more training data. Importantly, MInDI-3D matches the performance of a 3D U-Net on real-world scans from 16 cancer patients across distortion and task-based metrics. It also generalises to new CBCT scanner geometries. Clinicians rated our model as sufficient for patient positioning across all anatomical sites and found it preserved lung tumour boundaries well.
☆ How Persuasive Could LLMs Be? A First Study Combining Linguistic-Rhetorical Analysis and User Experiments
This study examines the rhetorical and linguistic features of argumentative texts generated by ChatGPT on ethically nuanced topics and investigates their persuasive impact on human readers.Through a user study involving 62 participants and pre-post interaction surveys, the paper analyzes how exposure to AI-generated arguments affects opinion change and user perception. A linguistic and rhetorical analysis of the generated texts reveals a consistent argumentative macrostructure, reliance on formulaic expressions, and limited stylistic richness. While ChatGPT demonstrates proficiency in constructing coherent argumentative texts, its persuasive efficacy appears constrained, particularly on topics involving ethical issues.The study finds that while participants often acknowledge the benefits highlighted by ChatGPT, ethical concerns tend to persist or even intensify post-interaction. The results also demonstrate a variation depending on the topic. These findings highlight new insights on AI-generated persuasion in ethically sensitive domains and are a basis for future research.
comment: 9-pages
☆ A Lightweight Learned Cardinality Estimation Model TKDE
Cardinality estimation is a fundamental task in database management systems, aiming to predict query results accurately without executing the queries. However, existing techniques either achieve low estimation accuracy or incur high inference latency. Simultaneously achieving high speed and accuracy becomes critical for the cardinality estimation problem. In this paper, we propose a novel data-driven approach called CoDe (Covering with Decompositions) to address this problem. CoDe employs the concept of covering design, which divides the table into multiple smaller, overlapping segments. For each segment, CoDe utilizes tensor decomposition to accurately model its data distribution. Moreover, CoDe introduces innovative algorithms to select the best-fitting distributions for each query, combining them to estimate the final result. By employing multiple models to approximate distributions, CoDe excels in effectively modeling discrete distributions and ensuring computational efficiency. Notably, experimental results show that our method represents a significant advancement in cardinality estimation, achieving state-of-the-art levels of both estimation accuracy and inference efficiency. Across various datasets, CoDe achieves absolute accuracy in estimating more than half of the queries.
comment: IEEE Transactions on Knowledge and Data Engineering (TKDE), 2025
☆ Hierarchical Brain Structure Modeling for Predicting Genotype of Glioma
Isocitrate DeHydrogenase (IDH) mutation status is a crucial biomarker for glioma prognosis. However, current prediction methods are limited by the low availability and noise of functional MRI. Structural and morphological connectomes offer a non-invasive alternative, yet existing approaches often ignore the brain's hierarchical organisation and multiscale interactions. To address this, we propose Hi-SMGNN, a hierarchical framework that integrates structural and morphological connectomes from regional to modular levels. It features a multimodal interaction module with a Siamese network and cross-modal attention, a multiscale feature fusion mechanism for reducing redundancy, and a personalised modular partitioning strategy to enhance individual specificity and interpretability. Experiments on the UCSF-PDGM dataset demonstrate that Hi-SMGNN outperforms baseline and state-of-the-art models, showing improved robustness and effectiveness in IDH mutation prediction.
☆ EvoCurr: Self-evolving Curriculum with Behavior Code Generation for Complex Decision-making
Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse domains, including programming, planning, and decision-making. However, their performance often degrades when faced with highly complex problem instances that require deep reasoning over long horizons. In such cases, direct problem-solving approaches can lead to inefficiency or failure due to the lack of structured intermediate guidance. To address this, we propose a novel self-evolve framework, EvoCurr, in which a dedicated curriculum-generation LLM constructs a sequence of problem instances with gradually increasing difficulty, tailored to the solver LLM's learning progress. The curriculum dynamically adapts easing challenges when the solver struggles and escalating them when success is consistent, thus maintaining an optimal learning trajectory. This approach enables the solver LLM, implemented as a code-generation model producing Python decision-tree scripts, to progressively acquire the skills needed for complex decision-making tasks. Experimental results on challenging decision-making benchmarks show that our method significantly improves task success rates and solution efficiency compared to direct-solving baselines. These findings suggest that LLM-driven curriculum learning holds strong potential for enhancing automated reasoning in real-world, high-complexity domains.
☆ CaRoBio: 3D Cable Routing with a Bio-inspired Gripper Fingernail
The manipulation of deformable linear flexures has a wide range of applications in industry, such as cable routing in automotive manufacturing and textile production. Cable routing, as a complex multi-stage robot manipulation scenario, is a challenging task for robot automation. Common parallel two-finger grippers have the risk of over-squeezing and over-tension when grasping and guiding cables. In this paper, a novel eagle-inspired fingernail is designed and mounted on the gripper fingers, which helps with cable grasping on planar surfaces and in-hand cable guiding operations. Then we present a single-grasp end-to-end 3D cable routing framework utilizing the proposed fingernails, instead of the common pick-and-place strategy. Continuous control is achieved to efficiently manipulate cables through vision-based state estimation of task configurations and offline trajectory planning based on motion primitives. We evaluate the effectiveness of the proposed framework with a variety of cables and channel slots, significantly outperforming the pick-and-place manipulation process under equivalent perceptual conditions. Our reconfigurable task setting and the proposed framework provide a reference for future cable routing manipulations in 3D space.
☆ GoViG: Goal-Conditioned Visual Navigation Instruction Generation
We introduce Goal-Conditioned Visual Navigation Instruction Generation (GoViG), a new task that aims to autonomously generate precise and contextually coherent navigation instructions solely from egocentric visual observations of initial and goal states. Unlike conventional approaches that rely on structured inputs such as semantic annotations or environmental maps, GoViG exclusively leverages raw egocentric visual data, substantially improving its adaptability to unseen and unstructured environments. Our method addresses this task by decomposing it into two interconnected subtasks: (1) visual forecasting, which predicts intermediate visual states bridging the initial and goal views; and (2) instruction generation, which synthesizes linguistically coherent instructions grounded in both observed and anticipated visuals. These subtasks are integrated within an autoregressive multimodal large language model trained with tailored objectives to ensure spatial accuracy and linguistic clarity. Furthermore, we introduce two complementary multimodal reasoning strategies, one-pass and interleaved reasoning, to mimic incremental human cognitive processes during navigation. To evaluate our method, we propose the R2R-Goal dataset, combining diverse synthetic and real-world trajectories. Empirical results demonstrate significant improvements over state-of-the-art methods, achieving superior BLEU-4 and CIDEr scores along with robust cross-domain generalization.
comment: Under review. Code: https://github.com/F1y1113/GoViG
☆ Your Coding Intent is Secretly in the Context and You Should Deliberately Infer It Before Completion
Large Language Models (LLMs) are increasingly used for function completion in repository-scale codebases. Prior studies demonstrate that when explicit instructions--such as docstrings--are provided, these models can generate highly accurate implementations. However, in real-world repositories, such annotations are frequently absent, and performance drops substantially without them. To address this gap, we frame the task as a three-stage process. The first stage focuses on intent inference, where the model analyzes the code preceding the target function to uncover cues about the desired functionality. Such preceding context often encodes subtle but critical information, and we design a reasoning-based prompting framework to guide the LLM through step-by-step extraction and synthesis of these signals before any code is generated. The second stage introduces an optional interactive refinement mechanism to handle cases where preceding context alone is insufficient for intent recovery. In this stage, the model proposes a small set of candidate intentions, enabling the developer to select or edit them so that the inferred intent closely matches the actual requirement. Finally, in the third stage, the LLM generates the target function conditioned on the finalized intent. To support this pipeline, we curate a dataset of 40,000 examples annotated with intermediate reasoning traces and corresponding docstrings. Extensive experiments on DevEval and ComplexCodeEval show that our approach consistently boosts multiple LLMs, achieving over 20\% relative gains in both reference-based and execution-based metrics, with the interactive refinement stage delivering additional improvements beyond these gains.
☆ AI Blob! LLM-Driven Recontextualization of Italian Television Archives
This paper introduces AI Blob!, an experimental system designed to explore the potential of semantic cataloging and Large Language Models (LLMs) for the retrieval and recontextualization of archival television footage. Drawing methodological inspiration from Italian television programs such as Blob (RAI Tre, 1989-), AI Blob! integrates automatic speech recognition (ASR), semantic embeddings, and retrieval-augmented generation (RAG) to organize and reinterpret archival content. The system processes a curated dataset of 1,547 Italian television videos by transcribing audio, segmenting it into sentence-level units, and embedding these segments into a vector database for semantic querying. Upon user input of a thematic prompt, the LLM generates a range of linguistically and conceptually related queries, guiding the retrieval and recombination of audiovisual fragments. These fragments are algorithmically selected and structured into narrative sequences producing montages that emulate editorial practices of ironic juxtaposition and thematic coherence. By foregrounding dynamic, content-aware retrieval over static metadata schemas, AI Blob! demonstrates how semantic technologies can facilitate new approaches to archival engagement, enabling novel forms of automated narrative construction and cultural analysis. The project contributes to ongoing debates in media historiography and AI-driven archival research, offering both a conceptual framework and a publicly available dataset to support further interdisciplinary experimentation.
comment: Preprint
☆ COXNet: Cross-Layer Fusion with Adaptive Alignment and Scale Integration for RGBT Tiny Object Detection
Detecting tiny objects in multimodal Red-Green-Blue-Thermal (RGBT) imagery is a critical challenge in computer vision, particularly in surveillance, search and rescue, and autonomous navigation. Drone-based scenarios exacerbate these challenges due to spatial misalignment, low-light conditions, occlusion, and cluttered backgrounds. Current methods struggle to leverage the complementary information between visible and thermal modalities effectively. We propose COXNet, a novel framework for RGBT tiny object detection, addressing these issues through three core innovations: i) the Cross-Layer Fusion Module, fusing high-level visible and low-level thermal features for enhanced semantic and spatial accuracy; ii) the Dynamic Alignment and Scale Refinement module, correcting cross-modal spatial misalignments and preserving multi-scale features; and iii) an optimized label assignment strategy using the GeoShape Similarity Measure for better localization. COXNet achieves a 3.32\% mAP$_{50}$ improvement on the RGBTDronePerson dataset over state-of-the-art methods, demonstrating its effectiveness for robust detection in complex environments.
☆ Decentralized Rank Scheduling for Energy-Constrained Multi-Task Federated Fine-Tuning in Edge-Assisted IoV Networks
Federated fine-tuning has emerged as a promising approach for adapting foundation models (FMs) to diverse downstream tasks in edge environments. In Internet of Vehicles (IoV) systems, enabling efficient and low-latency multi-task adaptation is particularly challenging due to client mobility, heterogeneous resources, and intermittent connectivity. This paper proposes a hierarchical federated fine-tuning framework that coordinates roadside units (RSUs) and vehicles to support resource-aware and mobility-resilient learning across dynamic IoV scenarios. Leveraging Low-Rank Adaptation (LoRA), we introduce a decentralized, energy-aware rank adaptation mechanism formulated as a constrained multi-armed bandit problem. A novel UCB-DUAL algorithm is developed to enable adaptive exploration under per-task energy budgets, achieving provable sublinear regret. To evaluate our method, we construct a large-scale IoV simulator based on real-world trajectories, capturing dynamic participation, RSU handoffs, and communication variability. Extensive experiments show that our approach achieves the best accuracy-efficiency trade-off among all baselines, reducing latency by over 24\% and improving average accuracy by more than 2.5\%.
☆ Generation of Indian Sign Language Letters, Numbers, and Words
Sign language, which contains hand movements, facial expressions and bodily gestures, is a significant medium for communicating with hard-of-hearing people. A well-trained sign language community communicates easily, but those who don't know sign language face significant challenges. Recognition and generation are basic communication methods between hearing and hard-of-hearing individuals. Despite progress in recognition, sign language generation still needs to be explored. The Progressive Growing of Generative Adversarial Network (ProGAN) excels at producing high-quality images, while the Self-Attention Generative Adversarial Network (SAGAN) generates feature-rich images at medium resolutions. Balancing resolution and detail is crucial for sign language image generation. We are developing a Generative Adversarial Network (GAN) variant that combines both models to generate feature-rich, high-resolution, and class-conditional sign language images. Our modified Attention-based model generates high-quality images of Indian Sign Language letters, numbers, and words, outperforming the traditional ProGAN in Inception Score (IS) and Fr\'echet Inception Distance (FID), with improvements of 3.2 and 30.12, respectively. Additionally, we are publishing a large dataset incorporating high-quality images of Indian Sign Language alphabets, numbers, and 129 words.
comment: 6 pages, 5 figures, 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS)
☆ COMPEER: Controllable Empathetic Reinforcement Reasoning for Emotional Support Conversation
Emotional support conversations are crucial for promoting emotional well-being, yet current models often lack deep empathetic reasoning grounded in psychological principles. To address this, we propose controllable empathetic reasoning, which combines natural language reasoning with structured psychological steps. We construct a fine-grained dataset annotated with reasoning correctness and response preferences to enable this capability. To further enhance training, we employ reinforcement learning with a unified process-outcome reward model that delivers precise feedback. To mitigate response repetitiveness from entropy collapse, we introduce personality-based dialogue rewriting and a redundancy-aware reward reweighting strategy. Our approach significantly improves model's emotional support ability, advancing the development of empathetic, human-like support systems.
☆ SMART-OC: A Real-time Time-risk Optimal Replanning Algorithm for Dynamic Obstacles and Spatio-temporally Varying Currents
Typical marine environments are highly complex with spatio-temporally varying currents and dynamic obstacles, presenting significant challenges to Unmanned Surface Vehicles (USVs) for safe and efficient navigation. Thus, the USVs need to continuously adapt their paths with real-time information to avoid collisions and follow the path of least resistance to the goal via exploiting ocean currents. In this regard, we introduce a novel algorithm, called Self-Morphing Adaptive Replanning Tree for dynamic Obstacles and Currents (SMART-OC), that facilitates real-time time-risk optimal replanning in dynamic environments. SMART-OC integrates the obstacle risks along a path with the time cost to reach the goal to find the time-risk optimal path. The effectiveness of SMART-OC is validated by simulation experiments, which demonstrate that the USV performs fast replannings to avoid dynamic obstacles and exploit ocean currents to successfully reach the goal.
☆ An Automated Multi-Modal Evaluation Framework for Mobile Intelligent Assistants
With the rapid development of mobile intelligent assistant technologies, multi-modal AI assistants have become essential interfaces for daily user interactions. However, current evaluation methods face challenges including high manual costs, inconsistent standards, and subjective bias. This paper proposes an automated multi-modal evaluation framework based on large language models and multi-agent collaboration. The framework employs a three-tier agent architecture consisting of interaction evaluation agents, semantic verification agents, and experience decision agents. Through supervised fine-tuning on the Qwen3-8B model, we achieve a significant evaluation matching accuracy with human experts. Experimental results on eight major intelligent agents demonstrate the framework's effectiveness in predicting users' satisfaction and identifying generation defects.
☆ Verify Distributed Deep Learning Model Implementation Refinement with Iterative Relation Inference
Distributed machine learning training and inference is common today because today's large models require more memory and compute than can be provided by a single GPU. Distributed models are generally produced by programmers who take a sequential model specification and apply several distribution strategies to distribute state and computation across GPUs. Unfortunately, bugs can be introduced in the process, and a distributed model implementation's outputs might differ from the sequential model's outputs. In this paper, we describe an approach to statically identify such bugs by checking model refinement, that is, can the sequential model's outputs be reconstructed from the distributed model's outputs? Our approach, implemented in GraphGuard, uses iterative rewriting to prove model refinement. Our approach can scale to today's large models and deployments: we evaluate it using GPT and Llama-3. Further, it provides actionable output that aids in bug localization.
☆ From Ranking to Selection: A Simple but Efficient Dynamic Passage Selector for Retrieval Augmented Generation
Retrieval-augmented generation (RAG) systems are often bottlenecked by their reranking modules, which typically score passages independently and select a fixed Top-K size. This approach struggles with complex multi-hop queries that require synthesizing evidence across multiple documents, creating a trade-off where small K values omit crucial information and large K values introduce noise. To address this, we introduce the Dynamic Passage Selector (DPS), a novel reranking framework that treats passage selection as a supervised learning problem. Unlike traditional point-wise or list-wise methods, DPS is fine-tuned to capture inter-passage dependencies and dynamically select the most relevant set of passages for generation. As a seamless plug-and-play module, DPS requires no modifications to the standard RAG pipeline. Comprehensive evaluations on five benchmarks show that DPS consistently outperforms state-of-the-art rerankers and fine-tuning methods. Notably, on the challenging MuSiQue dataset, DPS improves the F1-score by 30.06% and 15.4% over strong baselines like Qwen3-reranker and RankingGPT, respectively. Our results demonstrate that by enabling adaptive evidence selection, DPS substantially enhances reasoning capabilities in complex RAG scenarios.
comment: 9 pages, 4 tables
♻ ☆ Generalizing Scaling Laws for Dense and Sparse Large Language Models
Over the past few years, the size of language models has grown exponentially, as has the computational cost to train these large models. This rapid growth has motivated researchers to develop new techniques aimed at enhancing the efficiency of the training process. Despite these advancements, optimally predicting the model size or allocating optimal resources remains a challenge. Several efforts have addressed the challenge by proposing different scaling laws, but almost all of them are architecture-specific (dense or sparse). In this work we revisit existing scaling laws and propose a generalized scaling law to provide a unified framework that is applicable to both dense and sparse large language models. We evaluate and compare our proposed scaling law with existing scaling laws to demonstrate its effectiveness.
comment: 8 pages, 8 figures
♻ ☆ Multi-Step Reasoning with Large Language Models, a Survey
Language models with billions of parameters exhibit in-context learning abilities, enabling few-shot learning on tasks that the model was not specifically trained for. Traditional models achieve breakthrough performance on language tasks, but do not perform well on basic reasoning benchmarks. However, a new in-context learning approach, Chain-of-thought, has demonstrated strong multi-step reasoning abilities on these benchmarks. The research on LLM reasoning abilities started with the question whether LLMs can solve grade school math word problems, and has expanded to other tasks in the past few years. This paper reviews the field of multi-step reasoning with LLMs. We propose a taxonomy that identifies different ways to generate, evaluate, and control multi-step reasoning. We provide an in-depth coverage of core approaches and open problems, and we propose a research agenda for the near future. We find that multi-step reasoning approaches have progressed beyond math word problems, and can now successfully solve challenges in logic, combinatorial games, and robotics, sometimes by first generating code that is then executed by external tools. Many studies in multi-step methods are using reinforcement learning for finetuning, external optimization loops, in context reinforcement learning, and self-reflection.
comment: revised version
♻ ☆ Revisiting Your Memory: Reconstruction of Affect-Contextualized Memory via EEG-guided Audiovisual Generation
In this paper, we introduce RevisitAffectiveMemory, a novel task designed to reconstruct autobiographical memories through audio-visual generation guided by affect extracted from electroencephalogram (EEG) signals. To support this pioneering task, we present the EEG-AffectiveMemory dataset, which encompasses textual descriptions, visuals, music, and EEG recordings collected during memory recall from nine participants. Furthermore, we propose RYM (Revisit Your Memory), a three-stage framework for generating synchronized audio-visual contents while maintaining dynamic personal memory affect trajectories. Experimental results demonstrate our method successfully decodes individual affect dynamics trajectories from neural signals during memory recall (F1=0.9). Also, our approach faithfully reconstructs affect-contextualized audio-visual memory across all subjects, both qualitatively and quantitatively, with participants reporting strong affective concordance between their recalled memories and the generated content. Especially, contents generated from subject-reported affect dynamics showed higher correlation with participants' reported affect dynamics trajectories (r=0.265, p<.05) and received stronger user preference (preference=56%) compared to those generated from randomly reordered affect dynamics. Our approaches advance affect decoding research and its practical applications in personalized media creation via neural-based affect comprehension. Codes and the dataset are available at https://github.com/ioahKwon/Revisiting-Your-Memory.
comment: Accepted at the ACM MM 2025 - The 1st CogMAEC Workshop (Oral)
♻ ☆ GenAI Confessions: Black-box Membership Inference for Generative Image Models
From a simple text prompt, generative-AI image models can create stunningly realistic and creative images bounded, it seems, by only our imagination. These models have achieved this remarkable feat thanks, in part, to the ingestion of billions of images collected from nearly every corner of the internet. Many creators have understandably expressed concern over how their intellectual property has been ingested without their permission or a mechanism to opt out of training. As a result, questions of fair use and copyright infringement have quickly emerged. We describe a method that allows us to determine if a model was trained on a specific image or set of images. This method is computationally efficient and assumes no explicit knowledge of the model architecture or weights (so-called black-box membership inference). We anticipate that this method will be crucial for auditing existing models and, looking ahead, ensuring the fairer development and deployment of generative AI models.
comment: https://genai-confessions.github.io
♻ ☆ Block: Balancing Load in LLM Serving with Context, Knowledge and Predictive Scheduling
This paper presents Block, a distributed scheduling framework designed to optimize load balancing and auto-provisioning across instances in large language model serving frameworks by leveraging contextual information from incoming requests. Unlike popular model serving systems that rely on monolithic and heuristic task schedulers, Block operates as a fully distributed, stateless, and predictive scheduling system to achieve low overhead, reliability, and scalability. It leverages the deterministic and predictable characteristics of LLM inferences, such as host configurations, response lengths, and hardware performance, to make scheduling decisions based on accurately predicted metrics. Evaluation on a 12 GPUs cluster shows that Block significantly outperforms heuristic schedulers, boosting serving capacity by up to 16.7\% and reducing P99 tail latency by up to 49.5\%. These performance gains remain consistent across diverse models, workloads and configurations. Code and data are open-sourced.
comment: 12 pages, 8 figures excluding appendix. V1: Fix some typos and grammar issue
♻ ☆ Conformal Prediction of Classifiers with Many Classes based on Noisy Labels
Conformal Prediction (CP) controls the prediction uncertainty of classification systems by producing a small prediction set, ensuring a predetermined probability that the true class lies within this set. This is commonly done by defining a score, based on the model predictions, and setting a threshold on this score using a validation set. In this study, we address the problem of CP calibration when we only have access to a calibration set with noisy labels. We show how we can estimate the noise-free conformal threshold based on the noisy labeled data. We derive a finite sample coverage guarantee for uniform noise that remains effective even in tasks with a large number of classes. We dub our approach Noise-Aware Conformal Prediction (NACP). We illustrate the performance of the proposed results on several standard image classification datasets with a large number of classes.
comment: Accepted by COPA 2025. Proceedings of Machine Learning Research 26, 2025 Conformal and Probabilistic Prediction with Applications
♻ ☆ MIND: A Noise-Adaptive Denoising Framework for Medical Images Integrating Multi-Scale Transformer
The core role of medical images in disease diagnosis makes their quality directly affect the accuracy of clinical judgment. However, due to factors such as low-dose scanning, equipment limitations and imaging artifacts, medical images are often accompanied by non-uniform noise interference, which seriously affects structure recognition and lesion detection. This paper proposes a medical image adaptive denoising model (MI-ND) that integrates multi-scale convolutional and Transformer architecture, introduces a noise level estimator (NLE) and a noise adaptive attention module (NAAB), and realizes channel-spatial attention regulation and cross-modal feature fusion driven by noise perception. Systematic testing is carried out on multimodal public datasets. Experiments show that this method significantly outperforms the comparative methods in image quality indicators such as PSNR, SSIM, and LPIPS, and improves the F1 score and ROC-AUC in downstream diagnostic tasks, showing strong prac-tical value and promotional potential. The model has outstanding benefits in structural recovery, diagnostic sensitivity, and cross-modal robustness, and provides an effective solution for medical image enhancement and AI-assisted diagnosis and treatment.
comment: Accepted by the 7th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP 2025). 6 pages, 6 figures
♻ ☆ Pretrained Reversible Generation as Unsupervised Visual Representation Learning ICCV 2025
Recent generative models based on score matching and flow matching have significantly advanced generation tasks, but their potential in discriminative tasks remains underexplored. Previous approaches, such as generative classifiers, have not fully leveraged the capabilities of these models for discriminative tasks due to their intricate designs. We propose Pretrained Reversible Generation (PRG), which extracts unsupervised representations by reversing the generative process of a pretrained continuous generation model. PRG effectively reuses unsupervised generative models, leveraging their high capacity to serve as robust and generalizable feature extractors for downstream tasks. This framework enables the flexible selection of feature hierarchies tailored to specific downstream tasks. Our method consistently outperforms prior approaches across multiple benchmarks, achieving state-of-the-art performance among generative model based methods, including 78% top-1 accuracy on ImageNet at a resolution of 64*64. Extensive ablation studies, including out-of-distribution evaluations, further validate the effectiveness of our approach.PRG is available at https://github.com/opendilab/PRG.
comment: Accepted by ICCV 2025
♻ ☆ Yan: Foundational Interactive Video Generation
We present Yan, a foundational framework for interactive video generation, covering the entire pipeline from simulation and generation to editing. Specifically, Yan comprises three core modules. AAA-level Simulation: We design a highly-compressed, low-latency 3D-VAE coupled with a KV-cache-based shift-window denoising inference process, achieving real-time 1080P/60FPS interactive simulation. Multi-Modal Generation: We introduce a hierarchical autoregressive caption method that injects game-specific knowledge into open-domain multi-modal video diffusion models (VDMs), then transforming the VDM into a frame-wise, action-controllable, real-time infinite interactive video generator. Notably, when the textual and visual prompts are sourced from different domains, the model demonstrates strong generalization, allowing it to blend and compose the style and mechanics across domains flexibly according to user prompts. Multi-Granularity Editing: We propose a hybrid model that explicitly disentangles interactive mechanics simulation from visual rendering, enabling multi-granularity video content editing during interaction through text. Collectively, Yan offers an integration of these modules, pushing interactive video generation beyond isolated capabilities toward a comprehensive AI-driven interactive creation paradigm, paving the way for the next generation of creative tools, media, and entertainment. The project page is: https://greatx3.github.io/Yan/.
♻ ☆ Request-Only Optimization for Recommendation Systems
Deep Learning Recommendation Models (DLRMs) represent one of the largest machine learning applications on the planet. Industry-scale DLRMs are trained with petabytes of recommendation data to serve billions of users every day. To utilize the rich user signals in the long user history, DLRMs have been scaled up to unprecedented complexity, up to trillions of floating-point operations (TFLOPs) per example. This scale, coupled with the huge amount of training data, necessitates new storage and training algorithms to efficiently improve the quality of these complex recommendation systems. In this paper, we present a Request-Only Optimizations (ROO) training and modeling paradigm. ROO simultaneously improves the storage and training efficiency as well as the model quality of recommendation systems. We holistically approach this challenge through co-designing data (i.e., request-only data), infrastructure (i.e., request-only based data processing pipeline), and model architecture (i.e., request-only neural architectures). Our ROO training and modeling paradigm treats a user request as a unit of the training data. Compared with the established practice of treating a user impression as a unit, our new design achieves native feature deduplication in data logging, consequently saving data storage. Second, by de-duplicating computations and communications across multiple impressions in a request, this new paradigm enables highly scaled-up neural network architectures to better capture user interest signals, such as Generative Recommenders (GRs) and other request-only friendly architectures.
♻ ☆ Transferable Model-agnostic Vision-Language Model Adaptation for Efficient Weak-to-Strong Generalization
Vision-Language Models (VLMs) have been widely used in various visual recognition tasks due to their remarkable generalization capabilities. As these models grow in size and complexity, fine-tuning becomes costly, emphasizing the need to reuse adaptation knowledge from 'weaker' models to efficiently enhance 'stronger' ones. However, existing adaptation transfer methods exhibit limited transferability across models due to their model-specific design and high computational demands. To tackle this, we propose Transferable Model-agnostic adapter (TransMiter), a light-weight adapter that improves vision-language models 'without backpropagation'. TransMiter captures the knowledge gap between pre-trained and fine-tuned VLMs, in an 'unsupervised' manner. Once trained, this knowledge can be seamlessly transferred across different models without the need for backpropagation. Moreover, TransMiter consists of only a few layers, inducing a negligible additional inference cost. Notably, supplementing the process with a few labeled data further yields additional performance gain, often surpassing a fine-tuned stronger model, with a marginal training cost. Experimental results and analyses demonstrate that TransMiter effectively and efficiently transfers adaptation knowledge while preserving generalization abilities across VLMs of different sizes and architectures in visual recognition tasks.
♻ ☆ Retrieval-Augmented Decision Transformer: External Memory for In-context RL
In-context learning (ICL) is the ability of a model to learn a new task by observing a few exemplars in its context. While prevalent in NLP, this capability has recently also been observed in Reinforcement Learning (RL) settings. Prior in-context RL methods, however, require entire episodes in the agent's context. Given that complex environments typically lead to long episodes with sparse rewards, these methods are constrained to simple environments with short episodes. To address these challenges, we introduce Retrieval-Augmented Decision Transformer (RA-DT). RA-DT employs an external memory mechanism to store past experiences from which it retrieves only sub-trajectories relevant for the current situation. The retrieval component in RA-DT does not require training and can be entirely domain-agnostic. We evaluate the capabilities of RA-DT on grid-world environments, robotics simulations, and procedurally-generated video games. On grid-worlds, RA-DT outperforms baselines, while using only a fraction of their context length. Furthermore, we illuminate the limitations of current in-context RL methods on complex environments and discuss future directions. To facilitate future research, we release datasets for four of the considered environments.
♻ ☆ Deep Learning Model Acceleration and Optimization Strategies for Real-Time Recommendation Systems
With the rapid growth of Internet services, recommendation systems play a central role in delivering personalized content. Faced with massive user requests and complex model architectures, the key challenge for real-time recommendation systems is how to reduce inference latency and increase system throughput without sacrificing recommendation quality. This paper addresses the high computational cost and resource bottlenecks of deep learning models in real-time settings by proposing a combined set of modeling- and system-level acceleration and optimization strategies. At the model level, we dramatically reduce parameter counts and compute requirements through lightweight network design, structured pruning, and weight quantization. At the system level, we integrate multiple heterogeneous compute platforms and high-performance inference libraries, and we design elastic inference scheduling and load-balancing mechanisms based on real-time load characteristics. Experiments show that, while maintaining the original recommendation accuracy, our methods cut latency to less than 30% of the baseline and more than double system throughput, offering a practical solution for deploying large-scale online recommendation services.
♻ ☆ MGDFIS: Multi-scale Global-detail Feature Integration Strategy for Small Object Detection
Small object detection in UAV imagery is crucial for applications such as search-and-rescue, traffic monitoring, and environmental surveillance, but it is hampered by tiny object size, low signal-to-noise ratios, and limited feature extraction. Existing multi-scale fusion methods help, but add computational burden and blur fine details, making small object detection in cluttered scenes difficult. To overcome these challenges, we propose the Multi-scale Global-detail Feature Integration Strategy (MGDFIS), a unified fusion framework that tightly couples global context with local detail to boost detection performance while maintaining efficiency. MGDFIS comprises three synergistic modules: the FusionLock-TSS Attention Module, which marries token-statistics self-attention with DynamicTanh normalization to highlight spectral and spatial cues at minimal cost; the Global-detail Integration Module, which fuses multi-scale context via directional convolution and parallel attention while preserving subtle shape and texture variations; and the Dynamic Pixel Attention Module, which generates pixel-wise weighting maps to rebalance uneven foreground and background distributions and sharpen responses to true object regions. Extensive experiments on the VisDrone benchmark demonstrate that MGDFIS consistently outperforms state-of-the-art methods across diverse backbone architectures and detection frameworks, achieving superior precision and recall with low inference time. By striking an optimal balance between accuracy and resource usage, MGDFIS provides a practical solution for small-object detection on resource-constrained UAV platforms.
comment: 9 pages, 5 figures, 3 tables
♻ ☆ Explaining Caption-Image Interactions in CLIP Models with Second-Order Attributions
Dual encoder architectures like Clip models map two types of inputs into a shared embedding space and predict similarities between them. Despite their wide application, it is, however, not understood how these models compare their two inputs. Common first-order feature-attribution methods explain importances of individual features and can, thus, only provide limited insights into dual encoders, whose predictions depend on interactions between features. In this paper, we first derive a second-order method enabling the attribution of predictions by any differentiable dual encoder onto feature-interactions between its inputs. Second, we apply our method to Clip models and show that they learn fine-grained correspondences between parts of captions and regions in images. They match objects across input modes and also account for mismatches. This intrinsic visual-linguistic grounding ability, however, varies heavily between object classes, exhibits pronounced out-of-domain effects and we can identify individual errors as well as systematic failure categories. Code is publicly available: https://github.com/lucasmllr/exCLIP
comment: Accepted at Transactions on Machine Learning Research (TMLR)
♻ ☆ GLM-4.1V-Thinking and GLM-4.5V: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking and GLM-4.5V, a family of vision-language models (VLMs) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document interpretation. In a comprehensive evaluation across 42 public benchmarks, GLM-4.5V achieves state-of-the-art performance on nearly all tasks among open-source models of similar size, and demonstrates competitive or even superior results compared to closed-source models such as Gemini-2.5-Flash on challenging tasks including Coding and GUI Agents. Meanwhile, the smaller GLM-4.1V-9B-Thinking remains highly competitive-achieving superior results to the much larger Qwen2.5-VL-72B on 29 benchmarks. We open-source both GLM-4.1V-9B-Thinking and GLM-4.5V. Code, models and more information are released at https://github.com/zai-org/GLM-V.
♻ ☆ FlexCTC: GPU-powered CTC Beam Decoding With Advanced Contextual Abilities
While beam search improves speech recognition quality over greedy decoding, standard implementations are slow, often sequential, and CPU-bound. To fully leverage modern hardware capabilities, we present a novel open-source FlexCTC toolkit for fully GPU-based beam decoding, designed for Connectionist Temporal Classification (CTC) models. Developed entirely in Python and PyTorch, it offers a fast, user-friendly, and extensible alternative to traditional C++, CUDA, or WFST-based decoders. The toolkit features a high-performance, fully batched GPU implementation with eliminated CPU-GPU synchronization and minimized kernel launch overhead via CUDA Graphs. It also supports advanced contextualization techniques, including GPU-powered N-gram language model fusion and phrase-level boosting. These features enable accurate and efficient decoding, making them suitable for both research and production use.
comment: Accepted to Automatic Speech Recognition and Understanding Workshop (ASRU) 2025
♻ ☆ Fragment size density estimator for shrinkage-induced fracture based on a physics-informed neural network
This paper presents a neural network (NN)-based solver for an integro-differential equation that models shrinkage-induced fragmentation. The proposed method directly maps input parameters to the corresponding probability density function without numerically solving the governing equation, thereby significantly reducing computational costs. Specifically, it enables efficient evaluation of the density function in Monte Carlo simulations while maintaining accuracy comparable to or even exceeding that of conventional finite difference schemes. Validatation on synthetic data demonstrates both the method's computational efficiency and predictive reliability. This study establishes a foundation for the data-driven inverse analysis of fragmentation and suggests the potential for extending the framework beyond pre-specified model structures.
♻ ☆ Large Language Models Do Not Simulate Human Psychology
Large Language Models (LLMs),such as ChatGPT, are increasingly used in research, ranging from simple writing assistance to complex data annotation tasks. Recently, some research has suggested that LLMs may even be able to simulate human psychology and can, hence, replace human participants in psychological studies. We caution against this approach. We provide conceptual arguments against the hypothesis that LLMs simulate human psychology. We then present empiric evidence illustrating our arguments by demonstrating that slight changes to wording that correspond to large changes in meaning lead to notable discrepancies between LLMs' and human responses, even for the recent CENTAUR model that was specifically fine-tuned on psychological responses. Additionally, different LLMs show very different responses to novel items, further illustrating their lack of reliability. We conclude that LLMs do not simulate human psychology and recommend that psychological researchers should treat LLMs as useful but fundamentally unreliable tools that need to be validated against human responses for every new application.
♻ ☆ Return Prediction for Mean-Variance Portfolio Selection: How Decision-Focused Learning Shapes Forecasting Models
Markowitz laid the foundation of portfolio theory through the mean-variance optimization (MVO) framework. However, the effectiveness of MVO is contingent on the precise estimation of expected returns, variances, and covariances of asset returns, which are typically uncertain. Machine learning models are becoming useful in estimating uncertain parameters, and such models are trained to minimize prediction errors, such as mean squared errors (MSE), which treat prediction errors uniformly across assets. Recent studies have pointed out that this approach would lead to suboptimal decisions and proposed Decision-Focused Learning (DFL) as a solution, integrating prediction and optimization to improve decision-making outcomes. While studies have shown DFL's potential to enhance portfolio performance, the detailed mechanisms of how DFL modifies prediction models for MVO remain unexplored. This study investigates how DFL adjusts stock return prediction models to optimize decisions in MVO. Theoretically, we show that DFL's gradient can be interpreted as tilting the MSE-based prediction errors by the inverse covariance matrix, effectively incorporating inter-asset correlations into the learning process, while MSE treats each asset's error independently. This tilting mechanism leads to systematic prediction biases where DFL overestimates returns for assets included in portfolios while underestimating excluded assets. Our findings reveal why DFL achieves superior portfolio performance despite higher prediction errors. The strategic biases are features, not flaws.
comment: 8 pages, 5 figures, 2 tables
♻ ☆ Poison Once, Control Anywhere: Clean-Text Visual Backdoors in VLM-based Mobile Agents
Mobile agents powered by vision-language models (VLMs) are increasingly adopted for tasks such as UI automation and camera-based assistance. These agents are typically fine-tuned using small-scale, user-collected data, making them susceptible to stealthy training-time threats. This work introduces VIBMA, the first clean-text backdoor attack targeting VLM-based mobile agents. The attack injects malicious behaviors into the model by modifying only the visual input while preserving textual prompts and instructions, achieving stealth through the complete absence of textual anomalies. Once the agent is fine-tuned on this poisoned data, adding a predefined visual pattern (trigger) at inference time activates the attacker-specified behavior (backdoor). Our attack aligns the training gradients of poisoned samples with those of an attacker-specified target instance, effectively embedding backdoor-specific features into the poisoned data. To ensure the robustness and stealthiness of the attack, we design three trigger variants that better resemble real-world scenarios: static patches, dynamic motion patterns, and low-opacity blended content. Extensive experiments on six Android applications and three mobile-compatible VLMs demonstrate that our attack achieves high success rates (ASR up to 94.67%) while preserving clean-task behavior (FSR up to 95.85%). We further conduct ablation studies to understand how key design factors impact attack reliability and stealth. These findings is the first to reveal the security vulnerabilities of mobile agents and their susceptibility to backdoor injection, underscoring the need for robust defenses in mobile agent adaptation pipelines.
comment: 10 pages
♻ ☆ From Model Performance to Claim: How a Change of Focus in Machine Learning Replicability Can Help Bridge the Responsibility Gap
Two goals - improving replicability and accountability of Machine Learning research respectively, have accrued much attention from the AI ethics and the Machine Learning community. Despite sharing the measures of improving transparency, the two goals are discussed in different registers - replicability registers with scientific reasoning whereas accountability registers with ethical reasoning. Given the existing challenge of the Responsibility Gap - holding Machine Learning scientists accountable for Machine Learning harms due to them being far from sites of application, this paper posits that reconceptualizing replicability can help bridge the gap. Through a shift from model performance replicability to claim replicability, Machine Learning scientists can be held accountable for producing non-replicable claims that are prone to eliciting harm due to misuse and misinterpretation. In this paper, I make the following contributions. First, I define and distinguish two forms of replicability for ML research that can aid constructive conversations around replicability. Second, I formulate an argument for claim-replicability's advantage over model performance replicability in justifying assigning accountability to Machine Learning scientists for producing non-replicable claims and show how it enacts a sense of responsibility that is actionable. In addition, I characterize the implementation of claim replicability as more of a social project than a technical one by discussing its competing epistemological principles, practical implications on Circulating Reference, Interpretative Labor, and research communication.
comment: FAccT 2024
♻ ☆ C-MAG: Cascade Multimodal Attributed Graphs for Supply Chain Link Prediction
Workshop version accepted at KDD 2025 (AI4SupplyChain). Connecting an ever-expanding catalogue of products with suitable manufacturers and suppliers is critical for resilient, efficient global supply chains, yet traditional methods struggle to capture complex capabilities, certifications, geographic constraints, and rich multimodal data of real-world manufacturer profiles. To address these gaps, we introduce PMGraph, a public benchmark of bipartite and heterogeneous multimodal supply-chain graphs linking 8,888 manufacturers, over 70k products, more than 110k manufacturer-product edges, and over 29k product images. Building on this benchmark, we propose the Cascade Multimodal Attributed Graph C-MAG, a two-stage architecture that first aligns and aggregates textual and visual attributes into intermediate group embeddings, then propagates them through a manufacturer-product hetero-graph via multiscale message passing to enhance link prediction accuracy. C-MAG also provides practical guidelines for modality-aware fusion, preserving predictive performance in noisy, real-world settings.
comment: https://openreview.net/pdf?id=mE5n6OJHwO
♻ ☆ A multi-strategy improved snake optimizer for three-dimensional UAV path planning and engineering problems
Metaheuristic algorithms have gained widespread application across various fields owing to their ability to generate diverse solutions. One such algorithm is the Snake Optimizer (SO), a progressive optimization approach. However, SO suffers from the issues of slow convergence speed and susceptibility to local optima. In light of these shortcomings, we propose a novel Multi-strategy Improved Snake Optimizer (MISO). Firstly, we propose a new adaptive random disturbance strategy based on sine function to alleviate the risk of getting trapped in a local optimum. Secondly, we introduce adaptive Levy flight strategy based on scale factor and leader and endow the male snake leader with flight capability, which makes it easier for the algorithm to leap out of the local optimum and find the global optimum. More importantly, we put forward a position update strategy combining elite leadership and Brownian motion, effectively accelerating the convergence speed while ensuring precision. Finally, to demonstrate the performance of MISO, we utilize 30 CEC2017 test functions and the CEC2022 test suite, comparing it with 11 popular algorithms across different dimensions to validate its effectiveness. Moreover, Unmanned Aerial Vehicle (UAV) has been widely used in various fields due to its advantages of low cost, high mobility and easy operation. However, the UAV path planning problem is crucial for flight safety and efficiency, and there are still challenges in establishing and optimizing the path model. Therefore, we apply MISO to the UAV 3D path planning problem as well as 6 engineering design problems to assess its feasibility in practical applications. The experimental results demonstrate that MISO exceeds other competitive algorithms in terms of solution quality and stability, establishing its strong potential for application.
comment: 59 pages, 22 figures
♻ ☆ MoSE: Skill-by-Skill Mixture-of-Experts Learning for Embodied Autonomous Machines
To meet the growing demand for smarter, faster, and more efficient embodied AI solutions, we introduce a novel Mixture-of-Expert (MoE) method that significantly boosts reasoning and learning efficiency for embodied autonomous systems. General MoE models demand extensive training data and complex optimization, which limits their applicability in embodied AI such as autonomous driving (AD) and robotic manipulation. In this work, we propose a skill-oriented MoE called MoSE, which mimics the human learning and reasoning process skill-by-skill, step-by-step. We introduce a skill-oriented routing mechanism that begins with defining and annotating specific skills, enabling experts to identify the necessary competencies for various scenarios and reasoning tasks, thereby facilitating skill-by-skill learning. To better align with multi-step planning in human reasoning and in end-to-end driving models, we build a hierarchical skill dataset and pretrain the router to encourage the model to think step-by-step. Unlike other multi-round dialogues, MoSE integrates valuable auxiliary tasks (e.g. perception-prediction-planning for AD, and high-level and low-level planning for robots) in one single forward process without introducing any extra computational cost. With less than 3B sparsely activated parameters, our model effectively grows more diverse expertise and outperforms models on both AD corner-case reasoning tasks and robot reasoning tasks with less than 40% of the parameters.
♻ ☆ Analyzing Finetuning Representation Shift for Multimodal LLMs Steering ICCV 2025
Multimodal LLMs (MLLMs) have reached remarkable levels of proficiency in understanding multimodal inputs. However, understanding and interpreting the behavior of such complex models is a challenging task, not to mention the dynamic shifts that may occur during fine-tuning, or due to covariate shift between datasets. In this work, we apply concept-level analysis towards MLLM understanding. More specifically, we propose to map hidden states to interpretable visual and textual concepts. This enables us to more efficiently compare certain semantic dynamics, such as the shift from an original and fine-tuned model, revealing concept alteration and potential biases that may occur during fine-tuning. We also demonstrate the use of shift vectors to capture these concepts changes. These shift vectors allow us to recover fine-tuned concepts by applying simple, computationally inexpensive additive concept shifts in the original model. Finally, our findings also have direct applications for MLLM steering, which can be used for model debiasing as well as enforcing safety in MLLM output. All in all, we propose a novel, training-free, ready-to-use framework for MLLM behavior interpretability and control. Our implementation is publicly available.
comment: ICCV 2025. The first three authors contributed equally. Project page and code: https://pegah- kh.github.io/projects/lmm-finetuning-analysis-and-steering/
♻ ☆ The Importance of Being Lazy: Scaling Limits of Continual Learning
Despite recent efforts, neural networks still struggle to learn in non-stationary environments, and our understanding of catastrophic forgetting (CF) is far from complete. In this work, we perform a systematic study on the impact of model scale and the degree of feature learning in continual learning. We reconcile existing contradictory observations on scale in the literature, by differentiating between lazy and rich training regimes through a variable parameterization of the architecture. We show that increasing model width is only beneficial when it reduces the amount of feature learning, yielding more laziness. Using the framework of dynamical mean field theory, we then study the infinite width dynamics of the model in the feature learning regime and characterize CF, extending prior theoretical results limited to the lazy regime. We study the intricate relationship between feature learning, task non-stationarity, and forgetting, finding that high feature learning is only beneficial with highly similar tasks. We identify a transition modulated by task similarity where the model exits an effectively lazy regime with low forgetting to enter a rich regime with significant forgetting. Finally, our findings reveal that neural networks achieve optimal performance at a critical level of feature learning, which depends on task non-stationarity and transfers across model scales. This work provides a unified perspective on the role of scale and feature learning in continual learning.
comment: Proceedings of the 42nd International Conference on Machine Learning (2025). JG and AB contributed equally to this work
♻ ☆ Towards flexible perception with visual memory ICML 2025
Training a neural network is a monolithic endeavor, akin to carving knowledge into stone: once the process is completed, editing the knowledge in a network is hard, since all information is distributed across the network's weights. We here explore a simple, compelling alternative by marrying the representational power of deep neural networks with the flexibility of a database. Decomposing the task of image classification into image similarity (from a pre-trained embedding) and search (via fast nearest neighbor retrieval from a knowledge database), we build on well-established components to construct a simple and flexible visual memory that has the following key capabilities: (1.) The ability to flexibly add data across scales: from individual samples all the way to entire classes and billion-scale data; (2.) The ability to remove data through unlearning and memory pruning; (3.) An interpretable decision-mechanism on which we can intervene to control its behavior. Taken together, these capabilities comprehensively demonstrate the benefits of an explicit visual memory. We hope that it might contribute to a conversation on how knowledge should be represented in deep vision models -- beyond carving it in "stone" weights.
comment: ICML 2025 camera ready version
♻ ☆ DRWKV: Focusing on Object Edges for Low-Light Image Enhancement
Low-light image enhancement remains a challenging task, particularly in preserving object edge continuity and fine structural details under extreme illumination degradation. In this paper, we propose a novel model, DRWKV (Detailed Receptance Weighted Key Value), which integrates our proposed Global Edge Retinex (GER) theory, enabling effective decoupling of illumination and edge structures for enhanced edge fidelity. Secondly, we introduce Evolving WKV Attention, a spiral-scanning mechanism that captures spatial edge continuity and models irregular structures more effectively. Thirdly, we design the Bilateral Spectrum Aligner (Bi-SAB) and a tailored MS2-Loss to jointly align luminance and chrominance features, improving visual naturalness and mitigating artifacts. Extensive experiments on five LLIE benchmarks demonstrate that DRWKV achieves leading performance in PSNR, SSIM, and NIQE while maintaining low computational complexity. Furthermore, DRWKV enhances downstream performance in low-light multi-object tracking tasks, validating its generalization capabilities.
♻ ☆ Benchmarking LLMs' Mathematical Reasoning with Unseen Random Variables Questions
Recent studies have raised significant concerns regarding the reliability of current mathematics benchmarks, highlighting issues such as simplistic design and potential data contamination. Consequently, developing a reliable benchmark that effectively evaluates large language models' (LLMs) genuine capabilities in mathematical reasoning remains a critical challenge. To address these concerns, we propose RV-Bench, a novel evaluation methodology for Benchmarking LLMs with Random Variables in mathematical reasoning. Specifically, we build question-generating functions to produce random variable questions (RVQs), whose background content mirrors original benchmark problems, but with randomized variable combinations, rendering them "unseen" to LLMs. Models must completely understand the inherent question pattern to correctly answer RVQs with diverse variable combinations. Thus, an LLM's genuine reasoning capability is reflected through its accuracy and robustness on RV-Bench. We conducted extensive experiments on over 30 representative LLMs across more than 1,000 RVQs. Our findings propose that LLMs exhibit a proficiency imbalance between encountered and ``unseen'' data distributions. Furthermore, RV-Bench reveals that proficiency generalization across similar mathematical reasoning tasks is limited, but we verified it can still be effectively elicited through test-time scaling.
♻ ☆ A Survey on Parallel Text Generation: From Parallel Decoding to Diffusion Language Models
As text generation has become a core capability of modern Large Language Models (LLMs), it underpins a wide range of downstream applications. However, most existing LLMs rely on autoregressive (AR) generation, producing one token at a time based on previously generated context-resulting in limited generation speed due to the inherently sequential nature of the process. To address this challenge, an increasing number of researchers have begun exploring parallel text generation-a broad class of techniques aimed at breaking the token-by-token generation bottleneck and improving inference efficiency. Despite growing interest, there remains a lack of comprehensive analysis on what specific techniques constitute parallel text generation and how they improve inference performance. To bridge this gap, we present a systematic survey of parallel text generation methods. We categorize existing approaches into AR-based and Non-AR-based paradigms, and provide a detailed examination of the core techniques within each category. Following this taxonomy, we assess their theoretical trade-offs in terms of speed, quality, and efficiency, and examine their potential for combination and comparison with alternative acceleration strategies. Finally, based on our findings, we highlight recent advancements, identify open challenges, and outline promising directions for future research in parallel text generation. We have also created a GitHub repository for indexing relevant papers and open resources available at https://github.com/zhanglingzhe0820/Awesome-Parallel-Text-Generation.
♻ ☆ Pediatric brain tumor classification using digital histopathology and deep learning: evaluation of SOTA methods on a multi-center Swedish cohort
Brain tumors are the most common solid tumors in children and young adults, but the scarcity of large histopathology datasets has limited the application of computational pathology in this group. This study implements two weakly supervised multiple-instance learning (MIL) approaches on patch-features obtained from state-of-the-art histology-specific foundation models to classify pediatric brain tumors in hematoxylin and eosin whole slide images (WSIs) from a multi-center Swedish cohort. WSIs from 540 subjects (age 8.5$\pm$4.9 years) diagnosed with brain tumor were gathered from the six Swedish university hospitals. Instance (patch)-level features were obtained from WSIs using three pre-trained feature extractors: ResNet50, UNI, and CONCH. Instances were aggregated using attention-based MIL (ABMIL) or clustering-constrained attention MIL (CLAM) for patient-level classification. Models were evaluated on three classification tasks based on the hierarchical classification of pediatric brain tumors: tumor category, family, and type. Model generalization was assessed by training on data from two of the centers and testing on data from four other centers. Model interpretability was evaluated through attention mapping. The highest classification performance was achieved using UNI features and ABMIL aggregation, with Matthew's correlation coefficient of 0.76$\pm$0.04, 0.63$\pm$0.04, and 0.60$\pm$0.05 for tumor category, family, and type classification, respectively. When evaluating generalization, models utilizing UNI and CONCH features outperformed those using ResNet50. However, the drop in performance from the in-site to out-of-site testing was similar across feature extractors. These results show the potential of state-of-the-art computational pathology methods in diagnosing pediatric brain tumors at different hierarchical levels with fair generalizability on a multi-center national dataset.
♻ ☆ AgentOrchestra: A Hierarchical Multi-Agent Framework for General-Purpose Task Solving
Recent advances in agent systems have demonstrated remarkable capabilities in solving both general-purpose and highly complex tasks. However, most current models lack mechanisms for coordinating specialized agents and have limited ability to generalize to new or diverse domains. To this end, we introduce AgentOrchestra, a hierarchical multi-agent framework for general-purpose task solving that integrates high-level planning with modular agent collaboration. Drawing inspiration from a conductor orchestrating a symphony, and grounded in the principles of extensibility, multimodality, modularity, and coordination, it features a central planning agent that decomposes complex objectives and delegates sub-tasks to a team of specialized agents. Each sub-agent is equipped with general programming tools, as well as abilities to tackle a wide range of real-world specific tasks, including data analysis, file operations, web navigation, and interactive reasoning in dynamic multimodal environments. Notably, AgentOrchestra introduces an MCP Manager Agent that enables intelligent evolution through dynamic tool creation, retrieval, and reuse mechanisms, significantly enhancing the system's adaptability and scalability. AgentOrchestra supports flexible orchestration through explicit sub-goal formulation, inter-agent communication, and adaptive role allocation. We evaluate the framework on three widely used benchmarks for assessing LLM-based agent systems. Experimental results show that AgentOrchestra consistently outperforms flat-agent and monolithic baselines in terms of task success rate and adaptability. On the GAIA benchmark testing dataset, AgentOrchestra achieves an average score of 83.39\%, ranking among the top general-purpose agents. These results highlight the effectiveness of hierarchical organization and role specialization in building scalable and general-purpose LLM-based agent systems.
♻ ☆ Shifting Perspectives: Steering Vectors for Robust Bias Mitigation in LLMs ACL 2025
We present a novel approach to bias mitigation in large language models (LLMs) by applying steering vectors to modify model activations in forward passes. We compute 8 steering vectors, each corresponding to a different social bias axis, such as age, gender, or race, on a training subset of the BBQ dataset and compare the effectiveness of these to 3 additional bias mitigation methods across 4 datasets. When optimized on the BBQ dataset, our individually tuned steering vectors achieve average improvements of 12.8% on BBQ, 8.3% on CLEAR-Bias, and 1% on StereoSet, and show improvements over prompting and Self-Debias in all cases, and improvements over fine-tuning in 12 out of 17 evaluations. In addition, steering vectors showed the lowest impact on MMLU scores of the four bias mitigation methods tested. The work presents the first systematic investigation of steering vectors for bias mitigation, and we demonstrate that they are a powerful and computationally efficient strategy for reducing bias in LLMs, with broader implications for enhancing AI safety.
comment: Submitted to AACL 2025
♻ ☆ Leveraging Audio and Text Modalities in Mental Health: A Study of LLMs Performance
Mental health disorders are increasingly prevalent worldwide, creating an urgent need for innovative tools to support early diagnosis and intervention. This study explores the potential of Large Language Models (LLMs) in multimodal mental health diagnostics, specifically for detecting depression and Post Traumatic Stress Disorder through text and audio modalities. Using the E-DAIC dataset, we compare text and audio modalities to investigate whether LLMs can perform equally well or better with audio inputs. We further examine the integration of both modalities to determine if this can enhance diagnostic accuracy, which generally results in improved performance metrics. Our analysis specifically utilizes custom-formulated metrics; Modal Superiority Score and Disagreement Resolvement Score to evaluate how combined modalities influence model performance. The Gemini 1.5 Pro model achieves the highest scores in binary depression classification when using the combined modality, with an F1 score of 0.67 and a Balanced Accuracy (BA) of 77.4%, assessed across the full dataset. These results represent an increase of 3.1% over its performance with the text modality and 2.7% over the audio modality, highlighting the effectiveness of integrating modalities to enhance diagnostic accuracy. Notably, all results are obtained in zero-shot inferring, highlighting the robustness of the models without requiring task-specific fine-tuning. To explore the impact of different configurations on model performance, we conduct binary, severity, and multiclass tasks using both zero-shot and few-shot prompts, examining the effects of prompt variations on performance. The results reveal that models such as Gemini 1.5 Pro in text and audio modalities, and GPT-4o mini in the text modality, often surpass other models in balanced accuracy and F1 scores across multiple tasks.
♻ ☆ Episodic Memory Verbalization using Hierarchical Representations of Life-Long Robot Experience
Verbalization of robot experience, i.e., summarization of and question answering about a robot's past, is a crucial ability for improving human-robot interaction. Previous works applied rule-based systems or fine-tuned deep models to verbalize short (several-minute-long) streams of episodic data, limiting generalization and transferability. In our work, we apply large pretrained models to tackle this task with zero or few examples, and specifically focus on verbalizing life-long experiences. For this, we derive a tree-like data structure from episodic memory (EM), with lower levels representing raw perception and proprioception data, and higher levels abstracting events to natural language concepts. Given such a hierarchical representation built from the experience stream, we apply a large language model as an agent to interactively search the EM given a user's query, dynamically expanding (initially collapsed) tree nodes to find the relevant information. The approach keeps computational costs low even when scaling to months of robot experience data. We evaluate our method on simulated household robot data, human egocentric videos, and real-world robot recordings, demonstrating its flexibility and scalability.
comment: Humanoids 2025. Code, data and demo videos at https://hierarchical-emv.github.io
♻ ☆ EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and chain-of-modality (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Dataset, code, checkpoints, and demo samples are available at https://github.com/yanghaha0908/EmoVoice.
comment: Accepted at ACMMM 2025
♻ ☆ LiteFat: Lightweight Spatio-Temporal Graph Learning for Real-Time Driver Fatigue Detection
Detecting driver fatigue is critical for road safety, as drowsy driving remains a leading cause of traffic accidents. Many existing solutions rely on computationally demanding deep learning models, which result in high latency and are unsuitable for embedded robotic devices with limited resources (such as intelligent vehicles/cars) where rapid detection is necessary to prevent accidents. This paper introduces LiteFat, a lightweight spatio-temporal graph learning model designed to detect driver fatigue efficiently while maintaining high accuracy and low computational demands. LiteFat involves converting streaming video data into spatio-temporal graphs (STG) using facial landmark detection, which focuses on key motion patterns and reduces unnecessary data processing. LiteFat uses MobileNet to extract facial features and create a feature matrix for the STG. A lightweight spatio-temporal graph neural network is then employed to identify signs of fatigue with minimal processing and low latency. Experimental results on benchmark datasets show that LiteFat performs competitively while significantly decreasing computational complexity and latency as compared to current state-of-the-art methods. This work enables the development of real-time, resource-efficient human fatigue detection systems that can be implemented upon embedded robotic devices.
comment: 8 pages, 4 figures
♻ ☆ Beyond Ten Turns: Unlocking Long-Horizon Agentic Search with Large-Scale Asynchronous RL
Recent advancements in LLM-based agents have demonstrated remarkable capabilities in handling complex, knowledge-intensive tasks by integrating external tools. Among diverse choices of tools, search tools play a pivotal role in accessing vast external knowledge. However, open-source agents still fall short of achieving expert-level Search Intelligence, the ability to resolve ambiguous queries, generate precise searches, analyze results, and conduct thorough exploration. Existing approaches fall short in scalability, efficiency, and data quality. For example, small turn limits in existing online RL methods, e.g. <=10, restrict complex strategy learning. This paper introduces ASearcher, an open-source project for large-scale RL training of search agents. Our key contributions include: (1) Scalable fully asynchronous RL training that enables long-horizon search while maintaining high training efficiency. (2) A prompt-based LLM agent that autonomously synthesizes high-quality and challenging QAs, creating a large-scale QA dataset. Through RL training, our prompt-based QwQ-32B agent achieves substantial improvements, with 46.7% and 20.8% Avg@4 gains on xBench and GAIA, respectively. Notably, our agent exhibits extreme long-horizon search, with tool calls exceeding 40 turns and output tokens exceeding 150k during training time. With a simple agent design and no external LLMs, ASearcher-Web-QwQ achieves Avg@4 scores of 42.1 on xBench and 52.8 on GAIA, surpassing existing open-source 32B agents. We open-source our models, training data, and codes in https://github.com/inclusionAI/ASearcher.
♻ ☆ SMA: Who Said That? Auditing Membership Leakage in Semi-Black-box RAG Controlling
Retrieval-Augmented Generation (RAG) and its Multimodal Retrieval-Augmented Generation (MRAG) significantly improve the knowledge coverage and contextual understanding of Large Language Models (LLMs) by introducing external knowledge sources. However, retrieval and multimodal fusion obscure content provenance, rendering existing membership inference methods unable to reliably attribute generated outputs to pre-training, external retrieval, or user input, thus undermining privacy leakage accountability To address these challenges, we propose the first Source-aware Membership Audit (SMA) that enables fine-grained source attribution of generated content in a semi-black-box setting with retrieval control capabilities. To address the environmental constraints of semi-black-box auditing, we further design an attribution estimation mechanism based on zero-order optimization, which robustly approximates the true influence of input tokens on the output through large-scale perturbation sampling and ridge regression modeling. In addition, SMA introduces a cross-modal attribution technique that projects image inputs into textual descriptions via MLLMs, enabling token-level attribution in the text modality, which for the first time facilitates membership inference on image retrieval traces in MRAG systems. This work shifts the focus of membership inference from 'whether the data has been memorized' to 'where the content is sourced from', offering a novel perspective for auditing data provenance in complex generative systems.
♻ ☆ SpectralEarth: Training Hyperspectral Foundation Models at Scale
Foundation models have triggered a paradigm shift in computer vision and are increasingly being adopted in remote sensing, particularly for multispectral imagery. Yet, their potential in hyperspectral imaging (HSI) remains untapped due to the absence of comprehensive and globally representative hyperspectral datasets. To close this gap, we introduce SpectralEarth, a large-scale multitemporal dataset designed to pretrain hyperspectral foundation models leveraging data from the environmental mapping and analysis program (EnMAP). SpectralEarth comprises 538 974 image patches covering 415 153 unique locations from 11 636 globally distributed EnMAP scenes spanning two years of archive. In addition, 17.5% of these locations include multiple timestamps, enabling multitemporal HSI analysis. Utilizing state-of-the-art self-supervised learning algorithms, we pretrain a series of foundation models on SpectralEarth, integrating a spectral adapter into classical vision backbones to accommodate the unique characteristics of HSI. In tandem, we construct nine downstream datasets for land-cover, crop-type mapping, and tree-species classification, providing benchmarks for model evaluation. Experimental results support the versatility of our models and their generalizability across different tasks and sensors. We also highlight computational efficiency during model fine-tuning.
♻ ☆ StepFun-Prover Preview: Let's Think and Verify Step by Step
We present StepFun-Prover Preview, a large language model designed for formal theorem proving through tool-integrated reasoning. Using a reinforcement learning pipeline that incorporates tool-based interactions, StepFun-Prover can achieve strong performance in generating Lean 4 proofs with minimal sampling. Our approach enables the model to emulate human-like problem-solving strategies by iteratively refining proofs based on real-time environment feedback. On the miniF2F-test benchmark, StepFun-Prover achieves a pass@1 success rate of $70.0\%$. Beyond advancing benchmark performance, we introduce an end-to-end training framework for developing tool-integrated reasoning models, offering a promising direction for automated theorem proving and Math AI assistant.
comment: Added links to GitHub and Hugging Face
♻ ☆ SWA-SOP: Spatially-aware Window Attention for Semantic Occupancy Prediction in Autonomous Driving
Perception systems in autonomous driving rely on sensors such as LiDAR and cameras to perceive the 3D environment. However, due to occlusions and data sparsity, these sensors often fail to capture complete information. Semantic Occupancy Prediction (SOP) addresses this challenge by inferring both occupancy and semantics of unobserved regions. Existing transformer-based SOP methods lack explicit modeling of spatial structure in attention computation, resulting in limited geometric awareness and poor performance in sparse or occluded areas. To this end, we propose Spatially-aware Window Attention (SWA), a novel mechanism that incorporates local spatial context into attention. SWA significantly improves scene completion and achieves state-of-the-art results on LiDAR-based SOP benchmarks. We further validate its generality by integrating SWA into a camera-based SOP pipeline, where it also yields consistent gains across modalities.
comment: 2025 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Vienna, Austria, Oct 2025
♻ ☆ OC-SOP: Enhancing Vision-Based 3D Semantic Occupancy Prediction by Object-Centric Awareness
Autonomous driving perception faces significant challenges due to occlusions and incomplete scene data in the environment. To overcome these issues, the task of semantic occupancy prediction (SOP) is proposed, which aims to jointly infer both the geometry and semantic labels of a scene from images. However, conventional camera-based methods typically treat all categories equally and primarily rely on local features, leading to suboptimal predictions, especially for dynamic foreground objects. To address this, we propose Object-Centric SOP (OC-SOP), a framework that integrates high-level object-centric cues extracted via a detection branch into the semantic occupancy prediction pipeline. This object-centric integration significantly enhances the prediction accuracy for foreground objects and achieves state-of-the-art performance among all categories on SemanticKITTI.
comment: 2025 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Vienna, Austria, Oct 2025
♻ ☆ LUMA: A Benchmark Dataset for Learning from Uncertain and Multimodal Data SIGIR 2025
Multimodal Deep Learning enhances decision-making by integrating diverse information sources, such as texts, images, audio, and videos. To develop trustworthy multimodal approaches, it is essential to understand how uncertainty impacts these models. We propose LUMA, a unique multimodal dataset, featuring audio, image, and textual data from 50 classes, specifically designed for learning from uncertain data. It extends the well-known CIFAR 10/100 dataset with audio samples extracted from three audio corpora, and text data generated using the Gemma-7B Large Language Model (LLM). The LUMA dataset enables the controlled injection of varying types and degrees of uncertainty to achieve and tailor specific experiments and benchmarking initiatives. LUMA is also available as a Python package including the functions for generating multiple variants of the dataset with controlling the diversity of the data, the amount of noise for each modality, and adding out-of-distribution samples. A baseline pre-trained model is also provided alongside three uncertainty quantification methods: Monte-Carlo Dropout, Deep Ensemble, and Reliable Conflictive Multi-View Learning. This comprehensive dataset and its tools are intended to promote and support the development, evaluation, and benchmarking of trustworthy and robust multimodal deep learning approaches. We anticipate that the LUMA dataset will help the research community to design more trustworthy and robust machine learning approaches for safety critical applications. The code and instructions for downloading and processing the dataset can be found at: https://github.com/bezirganyan/LUMA/ .
comment: SIGIR 2025
♻ ☆ RIZE: Regularized Imitation Learning via Distributional Reinforcement Learning
We propose a novel Inverse Reinforcement Learning (IRL) method that mitigates the rigidity of fixed reward structures and the limited flexibility of implicit reward regularization. Building on the Maximum Entropy IRL framework, our approach incorporates a squared temporal-difference (TD) regularizer with adaptive targets that evolve dynamically during training, thereby imposing adaptive bounds on recovered rewards and promoting robust decision-making. To capture richer return information, we integrate distributional RL into the learning process. Empirically, our method achieves expert-level performance on complex MuJoCo tasks, surpassing baseline methods on the Humanoid task with 3 demonstrations. Extensive experiments and ablation studies further validate the effectiveness of the approach and provide insights into reward dynamics in imitation learning.
comment: Major revision - completely rewritten mathematical formulation and proofs, with substantial updates to methodology and expanded appendix for supporting derivations
♻ ☆ SLTNet: Efficient Event-based Semantic Segmentation with Spike-driven Lightweight Transformer-based Networks
Event-based semantic segmentation has great potential in autonomous driving and robotics due to the advantages of event cameras, such as high dynamic range, low latency, and low power cost. Unfortunately, current artificial neural network (ANN)-based segmentation methods suffer from high computational demands, the requirements for image frames, and massive energy consumption, limiting their efficiency and application on resource-constrained edge/mobile platforms. To address these problems, we introduce SLTNet, a spike-driven lightweight transformer-based network designed for event-based semantic segmentation. Specifically, SLTNet is built on efficient spike-driven convolution blocks (SCBs) to extract rich semantic features while reducing the model's parameters. Then, to enhance the long-range contextural feature interaction, we propose novel spike-driven transformer blocks (STBs) with binary mask operations. Based on these basic blocks, SLTNet employs a high-efficiency single-branch architecture while maintaining the low energy consumption of the Spiking Neural Network (SNN). Finally, extensive experiments on DDD17 and DSEC-Semantic datasets demonstrate that SLTNet outperforms state-of-the-art (SOTA) SNN-based methods by at most 9.06% and 9.39% mIoU, respectively, with extremely 4.58x lower energy consumption and 114 FPS inference speed. Our code is open-sourced and available at https://github.com/longxianlei/SLTNet-v1.0.
comment: Accepted by IROS 2025 (2025 IEEE/RSJ International Conference on Intelligent Robots and Systems)
♻ ☆ Halting Recurrent GNNs and the Graded $μ$-Calculus
Graph Neural Networks (GNNs) are a class of machine-learning models that operate on graph-structured data. Their expressive power is intimately related to logics that are invariant under graded bisimilarity. Current proposals for recurrent GNNs either assume that the graph size is given to the model, or suffer from a lack of termination guarantees. In this paper, we propose a halting mechanism for recurrent GNNs. We prove that our halting model can express all node classifiers definable in graded modal mu-calculus, even for the standard GNN variant that is oblivious to the graph size. To prove our main result, we develop a new approximate semantics for graded mu-calculus, which we believe to be of independent interest. We leverage this new semantics into a new model-checking algorithm, called the counting algorithm, which is oblivious to the graph size. In a final step we show that the counting algorithm can be implemented on a halting recurrent GNN.
comment: Extended technical report of paper accepted for publication at KR 2025
♻ ☆ WebArXiv: Evaluating Multimodal Agents on Time-Invariant arXiv Tasks
Recent progress in large language models (LLMs) has enabled the development of autonomous web agents capable of navigating and interacting with real websites. However, evaluating such agents remains challenging due to the instability and inconsistency of existing benchmarks, which often rely on dynamic content or oversimplified simulations. In this work, we introduce WebArXiv, a static and time-invariant benchmark comprising 275 web-based tasks grounded in the arXiv platform. WebArXiv ensures reproducible and reliable evaluation by anchoring tasks in fixed web snapshots with deterministic ground truths and standardized action trajectories. Through behavioral analysis, we identify a common failure mode, Rigid History Reflection, where agents over-rely on fixed interaction histories. To address this, we propose a lightweight dynamic reflection mechanism that allows agents to selectively retrieve relevant past steps during decision-making. We evaluate ten state-of-the-art web agents on WebArXiv. Results demonstrate clear performance differences across agents and validate the effectiveness of our proposed reflection strategy.
comment: 10 pages, 9 figures, 4 tables
♻ ☆ GTPO and GRPO-S: Token and Sequence-Level Reward Shaping with Policy Entropy
Reinforcement learning (RL) with algorithms like Group Relative Policy Optimization (GRPO) improves Large Language Model (LLM) reasoning, but is limited by a coarse-grained credit assignment that applies a uniform reward to all tokens in a sequence. This is a major flaw in long-chain reasoning tasks. This paper solves this with \textbf{Dynamic Entropy Weighting}. Our core idea is that high-entropy tokens in correct responses can guide the policy toward a higher performance ceiling. This allows us to create more fine-grained reward signals for precise policy updates via two ways: 1) \textbf{Group Token Policy Optimization} (\textbf{GTPO}), we assigns a entropy-weighted reward to each token for fine-grained credit assignment. 2) \textbf{Sequence-Level Group Relative Policy Optimization} (\textbf{GRPO-S}), we assigns a entropy-weighted reward to each sequence based on its average token entropy. Experiments show our methods significantly outperform the strong DAPO baseline. The results confirm that our entropy-weighting mechanism is the key driver of this performance boost, offering a better path to enhance deep reasoning in models.
♻ ☆ MedRep: Medical Concept Representation for General Electronic Health Record Foundation Models
Electronic health record (EHR) foundation models have been an area ripe for exploration with their improved performance in various medical tasks. Despite the rapid advances, there exists a fundamental limitation: Processing unseen medical codes out of the vocabulary. This problem limits the generality of EHR foundation models and the integration of models trained with different vocabularies. To deal with this problem, we propose MedRep for EHR foundation models based on the observational medical outcome partnership (OMOP) common data model (CDM), providing the integrated medical concept representations and the basic data augmentation strategy for patient trajectories. For concept representation learning, we enrich the information of each concept with a minimal definition through large language model (LLM) prompts and enhance the text-based representations through graph ontology of OMOP vocabulary. Trajectory augmentation randomly replaces selected concepts with other similar concepts that have closely related representations to let the model practice with the concepts out-of-vocabulary. Finally, we demonstrate that EHR foundation models trained with MedRep better maintain the prediction performance in external datasets. Our code implementation is publicly available at https://github.com/kicarussays/MedRep.
comment: 18 pages
♻ ☆ GTPO: Trajectory-Based Policy Optimization in Large Language Models
Policy-based optimizations are widely adopted today for the training and alignment of language models, where one of the most recent and effective approaches is Group-relative Policy Optimization (GRPO). In this paper, we reveals and analyze two major limitations of GRPO: (i) tokens frequently appear in completions with both positive and negative rewards, leading to conflicting gradient updates that can reduce their output probability, even though can be essential for maintaining proper structure; (ii) negatively rewarded completions may penalize confident responses and shift model decisions toward unlikely tokens, progressively flattening the output distribution and degrading learning. To address these issues and provide a more stable and effective policy optimization strategy, we introduce GTPO (Group-relative Trajectory-based Policy Optimization), which identifies conflict tokens, tokens appearing in the same position across completions with opposite rewards, protects them by skipping negative updates, while amplifying positive ones. To further prevent policy collapse, GTPO filters out completions whose entropy exceeds a provable threshold. Unlike GRPO, GTPO does not rely on KL-divergence regularization, eliminating the need for a reference model during training, while still ensuring greater training stability and improved performance, validated through multiple experiments on GSM8K, MATH and AIME 2024 benchmarks.
♻ ☆ Human Motion Capture from Loose and Sparse Inertial Sensors with Garment-aware Diffusion Models IJCAI 2025
Motion capture using sparse inertial sensors has shown great promise due to its portability and lack of occlusion issues compared to camera-based tracking. Existing approaches typically assume that IMU sensors are tightly attached to the human body. However, this assumption often does not hold in real-world scenarios. In this paper, we present Garment Inertial Poser (GaIP), a method for estimating full-body poses from sparse and loosely attached IMU sensors. We first simulate IMU recordings using an existing garment-aware human motion dataset. Our transformer-based diffusion models synthesize loose IMU data and estimate human poses from this challenging loose IMU data. We also demonstrate that incorporating garment-related parameters during training on loose IMU data effectively maintains expressiveness and enhances the ability to capture variations introduced by looser or tighter garments. Our experiments show that our diffusion methods trained on simulated and synthetic data outperform state-of-the-art inertial full-body pose estimators, both quantitatively and qualitatively, opening up a promising direction for future research on motion capture from such realistic sensor placements.
comment: Accepted by IJCAI 2025
♻ ☆ ChineseHarm-Bench: A Chinese Harmful Content Detection Benchmark
Large language models (LLMs) have been increasingly applied to automated harmful content detection tasks, assisting moderators in identifying policy violations and improving the overall efficiency and accuracy of content review. However, existing resources for harmful content detection are predominantly focused on English, with Chinese datasets remaining scarce and often limited in scope. We present a comprehensive, professionally annotated benchmark for Chinese content harm detection, which covers six representative categories and is constructed entirely from real-world data. Our annotation process further yields a knowledge rule base that provides explicit expert knowledge to assist LLMs in Chinese harmful content detection. In addition, we propose a knowledge-augmented baseline that integrates both human-annotated knowledge rules and implicit knowledge from large language models, enabling smaller models to achieve performance comparable to state-of-the-art LLMs. Code and data are available at https://github.com/zjunlp/ChineseHarm-bench.
comment: Work in progress
♻ ☆ Is Chain-of-Thought Reasoning of LLMs a Mirage? A Data Distribution Lens
Chain-of-Thought (CoT) prompting has been shown to improve Large Language Model (LLM) performance on various tasks. With this approach, LLMs appear to produce human-like reasoning steps before providing answers (a.k.a., CoT reasoning), which often leads to the perception that they engage in deliberate inferential processes. However, some initial findings suggest that CoT reasoning may be more superficial than it appears, motivating us to explore further. In this paper, we study CoT reasoning via a data distribution lens and investigate if CoT reasoning reflects a structured inductive bias learned from in-distribution data, allowing the model to conditionally generate reasoning paths that approximate those seen during training. Thus, its effectiveness is fundamentally bounded by the degree of distribution discrepancy between the training data and the test queries. With this lens, we dissect CoT reasoning via three dimensions: task, length, and format. To investigate each dimension, we design DataAlchemy, an isolated and controlled environment to train LLMs from scratch and systematically probe them under various distribution conditions. Our results reveal that CoT reasoning is a brittle mirage that vanishes when it is pushed beyond training distributions. This work offers a deeper understanding of why and when CoT reasoning fails, emphasizing the ongoing challenge of achieving genuine and generalizable reasoning.
♻ ☆ Gradual Transition from Bellman Optimality Operator to Bellman Operator in Online Reinforcement Learning ICML 2025
For continuous action spaces, actor-critic methods are widely used in online reinforcement learning (RL). However, unlike RL algorithms for discrete actions, which generally model the optimal value function using the Bellman optimality operator, RL algorithms for continuous actions typically model Q-values for the current policy using the Bellman operator. These algorithms for continuous actions rely exclusively on policy updates for improvement, which often results in low sample efficiency. This study examines the effectiveness of incorporating the Bellman optimality operator into actor-critic frameworks. Experiments in a simple environment show that modeling optimal values accelerates learning but leads to overestimation bias. To address this, we propose an annealing approach that gradually transitions from the Bellman optimality operator to the Bellman operator, thereby accelerating learning while mitigating bias. Our method, combined with TD3 and SAC, significantly outperforms existing approaches across various locomotion and manipulation tasks, demonstrating improved performance and robustness to hyperparameters related to optimality. The code for this study is available at https://github.com/motokiomura/annealed-q-learning.
comment: Accepted at ICML 2025. Source code: https://github.com/motokiomura/annealed-q-learning
♻ ☆ Memp: Exploring Agent Procedural Memory
Large Language Models (LLMs) based agents excel at diverse tasks, yet they suffer from brittle procedural memory that is manually engineered or entangled in static parameters. In this work, we investigate strategies to endow agents with a learnable, updatable, and lifelong procedural memory. We propose Memp that distills past agent trajectories into both fine-grained, step-by-step instructions and higher-level, script-like abstractions, and explore the impact of different strategies for Build, Retrieval, and Update of procedural memory. Coupled with a dynamic regimen that continuously updates, corrects, and deprecates its contents, this repository evolves in lockstep with new experience. Empirical evaluation on TravelPlanner and ALFWorld shows that as the memory repository is refined, agents achieve steadily higher success rates and greater efficiency on analogous tasks. Moreover, procedural memory built from a stronger model retains its value: migrating the procedural memory to a weaker model yields substantial performance gains.
comment: Work in progress
♻ ☆ Towards Black-Box Membership Inference Attack for Diffusion Models
Given the rising popularity of AI-generated art and the associated copyright concerns, identifying whether an artwork was used to train a diffusion model is an important research topic. The work approaches this problem from the membership inference attack (MIA) perspective. We first identify the limitation of applying existing MIA methods for proprietary diffusion models: the required access of internal U-nets. To address the above problem, we introduce a novel membership inference attack method that uses only the image-to-image variation API and operates without access to the model's internal U-net. Our method is based on the intuition that the model can more easily obtain an unbiased noise prediction estimate for images from the training set. By applying the API multiple times to the target image, averaging the outputs, and comparing the result to the original image, our approach can classify whether a sample was part of the training set. We validate our method using DDIM and Stable Diffusion setups and further extend both our approach and existing algorithms to the Diffusion Transformer architecture. Our experimental results consistently outperform previous methods.
♻ ☆ LLM Robustness Leaderboard v1 --Technical report
This technical report accompanies the LLM robustness leaderboard published by PRISM Eval for the Paris AI Action Summit. We introduce PRISM Eval Behavior Elicitation Tool (BET), an AI system performing automated red-teaming through Dynamic Adversarial Optimization that achieves 100% Attack Success Rate (ASR) against 37 of 41 state-of-the-art LLMs. Beyond binary success metrics, we propose a fine-grained robustness metric estimating the average number of attempts required to elicit harmful behaviors, revealing that attack difficulty varies by over 300-fold across models despite universal vulnerability. We introduce primitive-level vulnerability analysis to identify which jailbreaking techniques are most effective for specific hazard categories. Our collaborative evaluation with trusted third parties from the AI Safety Network demonstrates practical pathways for distributed robustness assessment across the community.
♻ ☆ Chemist Eye: A Visual Language Model-Powered System for Safety Monitoring and Robot Decision-Making in Self-Driving Laboratories
The integration of robotics and automation into self-driving laboratories (SDLs) can introduce additional safety complexities, in addition to those that already apply to conventional research laboratories. Personal protective equipment (PPE) is an essential requirement for ensuring the safety and well-being of workers in laboratories, self-driving or otherwise. Fires are another important risk factor in chemical laboratories. In SDLs, fires that occur close to mobile robots, which use flammable lithium batteries, could have increased severity. Here, we present Chemist Eye, a distributed safety monitoring system designed to enhance situational awareness in SDLs. The system integrates multiple stations equipped with RGB, depth, and infrared cameras, designed to monitor incidents in SDLs. Chemist Eye is also designed to spot workers who have suffered a potential accident or medical emergency, PPE compliance and fire hazards. To do this, Chemist Eye uses decision-making driven by a vision-language model (VLM). Chemist Eye is designed for seamless integration, enabling real-time communication with robots. Based on the VLM recommendations, the system attempts to drive mobile robots away from potential fire locations, exits, or individuals not wearing PPE, and issues audible warnings where necessary. It also integrates with third-party messaging platforms to provide instant notifications to lab personnel. We tested Chemist Eye with real-world data from an SDL equipped with three mobile robots and found that the spotting of possible safety hazards and decision-making performances reached 97 % and 95 %, respectively.
♻ ☆ MapStory: Prototyping Editable Map Animations with LLM Agents
We introduce MapStory, an LLM-powered animation prototyping tool that generates editable map animation sequences directly from natural language text by leveraging a dual-agent LLM architecture. Given a user written script, MapStory automatically produces a scene breakdown, which decomposes the text into key map animation primitives such as camera movements, visual highlights, and animated elements. Our system includes a researcher agent that accurately queries geospatial information by leveraging an LLM with web search, enabling automatic extraction of relevant regions, paths, and coordinates while allowing users to edit and query for changes or additional information to refine the results. Additionally, users can fine-tune parameters of these primitive blocks through an interactive timeline editor. We detail the system's design and architecture, informed by formative interviews with professional animators and by an analysis of 200 existing map animation videos. Our evaluation, which includes expert interviews (N=5) and a usability study (N=12), demonstrates that MapStory enables users to create map animations with ease, facilitates faster iteration, encourages creative exploration, and lowers barriers to creating map-centric stories.
comment: UIST 2025. Project page: https://adigunturu.github.io/MapStory-UIST25/
♻ ☆ MLLM-CBench:A Comprehensive Benchmark for Continual Instruction Tuning of Multimodal LLMs with Chain-of-Thought Reasoning Analysis
Multimodal large language models (MLLMs) require continual instruction tuning during their post-training phase to adapt to the dynamic real-world demands. However, the absence of rigorous and systematic benchmarks has hindered progress in this area. To bridge this gap, we introduce \textbf{MLLM-CTBench}, a dataset curating seven challenging tasks from six diverse domains with three contributions. First,to enable fine-grained analysis of continual learning ability, we introduce \textbf{multidimensional evaluation metrics}, which combines final answer accuracy with Chain-of-Thought (CoT) reasoning quality assessment through a carefully trained MLLM evaluator. Then, we conduct a \textbf{comprehensive evaluation of continual learning algorithms}, systematically assessing eight algorithms from four major categories to provide actionable insights for algorithm design and adoption. Finally ,we evaluate the efficacy of \textbf{Reinforcement Fine-tuning (RFT) versus Supervised Fine-tuning (SFT)} in maintaining model performance across sequential tasks during continual instruction tuning. Our experiments demonstrate that reasoning processes in MLLMs exhibit greater resilience than final outputs to forgetting during continual learning, aligning with cognitive theories of hierarchical forgetting. We further show that both model capability and task sequence significantly influence continual learning outcomes, with stronger baseline models exhibiting greater resistance to forgetting. Notably, properly regularized RFT emerges as a more robust approach than SFT for maintaining performance across tasks.One of the key contributing factors is KL-divergence regularization, without which RFT leads to even worse forgetting than SFT on old tasks though may perform better on new tasks.
comment: under review
♻ ☆ GraspClutter6D: A Large-scale Real-world Dataset for Robust Perception and Grasping in Cluttered Scenes
Robust grasping in cluttered environments remains an open challenge in robotics. While benchmark datasets have significantly advanced deep learning methods, they mainly focus on simplistic scenes with light occlusion and insufficient diversity, limiting their applicability to practical scenarios. We present GraspClutter6D, a large-scale real-world grasping dataset featuring: (1) 1,000 highly cluttered scenes with dense arrangements (14.1 objects/scene, 62.6\% occlusion), (2) comprehensive coverage across 200 objects in 75 environment configurations (bins, shelves, and tables) captured using four RGB-D cameras from multiple viewpoints, and (3) rich annotations including 736K 6D object poses and 9.3B feasible robotic grasps for 52K RGB-D images. We benchmark state-of-the-art segmentation, object pose estimation, and grasp detection methods to provide key insights into challenges in cluttered environments. Additionally, we validate the dataset's effectiveness as a training resource, demonstrating that grasping networks trained on GraspClutter6D significantly outperform those trained on existing datasets in both simulation and real-world experiments. The dataset, toolkit, and annotation tools are publicly available on our project website: https://sites.google.com/view/graspclutter6d.
♻ ☆ HVL: Semi-Supervised Segmentation leveraging Hierarchical Vision-Language Synergy with Dynamic Text-Spatial Query Alignment
In this paper, we address Semi-supervised Semantic Segmentation (SSS) under domain shift by leveraging domain-invariant semantic knowledge from text embeddings of Vision-Language Models (VLMs). We propose a unified Hierarchical Vision-Language framework (HVL) that integrates domain-invariant text embeddings as object queries in a transformer-based segmentation network to improve generalization and reduce misclassification under limited supervision. The mentioned textual queries are used for grouping pixels with shared semantics under SSS. HVL is designed to (1) generate textual queries that maximally encode domain-invariant semantics from VLM while capturing intra-class variations; (2) align these queries with spatial visual features to enhance their segmentation ability and improve the semantic clarity of visual features. We also introduce targeted regularization losses that maintain vision--language alignment throughout training to reinforce semantic understanding. HVL establishes a novel state-of-the-art by achieving a +9.3% improvement in mean Intersection over Union (mIoU) on COCO, utilizing 232 labelled images, +3.1% on Pascal VOC employing 92 labels, +4.8% on ADE20 using 316 labels, and +3.4% on Cityscapes with 100 labels, demonstrating superior performance with less than 1% supervision on four benchmark datasets. Our results show that language-guided segmentation bridges the label efficiency gap and enables new levels of fine-grained generalization.
♻ ☆ TempOpt -- Unsupervised Alarm Relation Learning for Telecommunication Networks
In a telecommunications network, fault alarms generated by network nodes are monitored in a Network Operations Centre (NOC) to ensure network availability and continuous network operations. The monitoring process comprises of tasks such as active alarms analysis, root alarm identification, and resolution of the underlying problem. Each network node potentially can generate alarms of different types, while nodes can be from multiple vendors, a network can have hundreds of nodes thus resulting in an enormous volume of alarms at any time. Since network nodes are inter-connected, a single fault in the network would trigger multiple sequences of alarms across a variety of nodes and from a monitoring point of view, it is a challenging task for a NOC engineer to be aware of relations between the various alarms, when trying to identify, for example, a root alarm on which an action needs to be taken. To effectively identify root alarms, it is essential to learn relation among the alarms for accurate and faster resolution. In this work we propose a novel unsupervised alarm relation learning technique Temporal Optimization (TempOpt) that is practical and overcomes the limitations of an existing class of alarm relational learning method-temporal dependency methods. Experiments have been carried on real-world network datasets, that demonstrate the improved quality of alarm relations learned by TempOpt as compared to temporal dependency method.
comment: 6 pages, 9 figures. IEEE 21st India Council International Conference (INDICON), 2024
♻ ☆ Probing Mechanical Reasoning in Large Vision Language Models AI
Mechanical reasoning is a hallmark of human intelligence, defined by its ubiquitous yet irreplaceable role in human activities ranging from routine tasks to civil engineering. Embedding machines with mechanical reasoning is therefore an important step towards building human-level artificial intelligence. Here, we leveraged 155 cognitive experiments to test the understanding of system stability, gears and pulley systems, leverage principle, inertia and motion, and fluid mechanics in 26 Vision Language Models (VLMs). Results indicate that VLMs consistently perform worse than humans on all domains, while demonstrate significant difficulty in reasoning about gear systems and fluid mechanics. Notably, their performance on these tasks do not improve as number of parameters increase, suggesting that current attention-based architecture may fail to grasp certain underlying mechanisms required for mechanical reasoning, particularly those pertaining to mental simulations.
comment: Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)
♻ ☆ InfoCausalQA:Can Models Perform Non-explicit Causal Reasoning Based on Infographic?
Recent advances in Vision-Language Models (VLMs) have demonstrated impressive capabilities in perception and reasoning. However, the ability to perform causal inference -- a core aspect of human cognition -- remains underexplored, particularly in multimodal settings. In this study, we introduce InfoCausalQA, a novel benchmark designed to evaluate causal reasoning grounded in infographics that combine structured visual data with textual context. The benchmark comprises two tasks: Task 1 focuses on quantitative causal reasoning based on inferred numerical trends, while Task 2 targets semantic causal reasoning involving five types of causal relations: cause, effect, intervention, counterfactual, and temporal. We manually collected 494 infographic-text pairs from four public sources and used GPT-4o to generate 1,482 high-quality multiple-choice QA pairs. These questions were then carefully revised by humans to ensure they cannot be answered based on surface-level cues alone but instead require genuine visual grounding. Our experimental results reveal that current VLMs exhibit limited capability in computational reasoning and even more pronounced limitations in semantic causal reasoning. Their significantly lower performance compared to humans indicates a substantial gap in leveraging infographic-based information for causal inference. Through InfoCausalQA, we highlight the need for advancing the causal reasoning abilities of multimodal AI systems.
comment: 14 pages, 9 figures
♻ ☆ Evaluation of Bio-Inspired Models under Different Learning Settings For Energy Efficiency in Network Traffic Prediction
Cellular traffic forecasting is a critical task that enables network operators to efficiently allocate resources and address anomalies in rapidly evolving environments. The exponential growth of data collected from base stations poses significant challenges to processing and analysis. While machine learning (ML) algorithms have emerged as powerful tools for handling these large datasets and providing accurate predictions, their environmental impact, particularly in terms of energy consumption, is often overlooked in favor of their predictive capabilities. This study investigates the potential of two bio-inspired models: Spiking Neural Networks (SNNs) and Reservoir Computing through Echo State Networks (ESNs) for cellular traffic forecasting. The evaluation focuses on both their predictive performance and energy efficiency. These models are implemented in both centralized and federated settings to analyze their effectiveness and energy consumption in decentralized systems. Additionally, we compare bio-inspired models with traditional architectures, such as Convolutional Neural Networks (CNNs) and Multi-Layer Perceptrons (MLPs), to provide a comprehensive evaluation. Using data collected from three diverse locations in Barcelona, Spain, we examine the trade-offs between predictive accuracy and energy demands across these approaches. The results indicate that bio-inspired models, such as SNNs and ESNs, can achieve significant energy savings while maintaining predictive accuracy comparable to traditional architectures. Furthermore, federated implementations were tested to evaluate their energy efficiency in decentralized settings compared to centralized systems, particularly in combination with bio-inspired models. These findings offer valuable insights into the potential of bio-inspired models for sustainable and privacy-preserving cellular traffic forecasting.
comment: 18 pages, 8 figures
♻ ☆ Vision Language Models Know Law of Conservation without Understanding More-or-Less AI
Understanding law of conservation is a critical milestone in human cognitive development considered to be supported by the apprehension of quantitative concepts and the reversibility of operations. To assess whether this critical component of human intelligence has emerged in Vision Language Models, we have curated the ConserveBench, a battery of 365 cognitive experiments across four dimensions of physical quantities: volume, solid quantity, length, and number. The former two involve transformational tasks which require reversibility understanding. The latter two involve non-transformational tasks which assess quantity understanding. Surprisingly, we find that while Vision Language Models are generally good at transformational tasks, they tend to fail at non-transformational tasks. There is a dissociation between understanding the reversibility of operations and understanding the concept of quantity, which both are believed to be the cornerstones of understanding law of conservation in humans.
comment: Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)
♻ ☆ Exploring Scaling Laws for EHR Foundation Models
The emergence of scaling laws has profoundly shaped the development of large language models (LLMs), enabling predictable performance gains through systematic increases in model size, dataset volume, and compute. Yet, these principles remain largely unexplored in the context of electronic health records (EHRs) -- a rich, sequential, and globally abundant data source that differs structurally from natural language. In this work, we present the first empirical investigation of scaling laws for EHR foundation models. By training transformer architectures on patient timeline data from the MIMIC-IV database across varying model sizes and compute budgets, we identify consistent scaling patterns, including parabolic IsoFLOPs curves and power-law relationships between compute, model parameters, data size, and clinical utility. These findings demonstrate that EHR models exhibit scaling behavior analogous to LLMs, offering predictive insights into resource-efficient training strategies. Our results lay the groundwork for developing powerful EHR foundation models capable of transforming clinical prediction tasks and advancing personalized healthcare.
♻ ☆ SpargeAttention: Accurate and Training-free Sparse Attention Accelerating Any Model Inference ICML
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
comment: @inproceedings{zhang2025spargeattn, title={Spargeattn: Accurate sparse attention accelerating any model inference}, author={Zhang, Jintao and Xiang, Chendong and Huang, Haofeng and Wei, Jia and Xi, Haocheng and Zhu, Jun and Chen, Jianfei}, booktitle={International Conference on Machine Learning (ICML)}, year={2025} }
♻ ☆ EvoP: Robust LLM Inference via Evolutionary Pruning
Large Language Models (LLMs) have achieved remarkable success in natural language processing tasks, but their massive size and computational demands hinder their deployment in resource-constrained environments. Existing model pruning methods address this issue by removing redundant structures (e.g., elements, channels, layers) from the model. However, these methods employ a heuristic pruning strategy, which leads to suboptimal performance. Besides, they also ignore the data characteristics when pruning the model. To overcome these limitations, we propose EvoP, an evolutionary pruning framework for robust LLM inference. EvoP first presents a cluster-based calibration dataset sampling (CCDS) strategy for creating a more diverse calibration dataset. EvoP then introduces an evolutionary pruning pattern searching (EPPS) method to find the optimal pruning pattern. Compared to existing model pruning techniques, EvoP achieves the best performance while maintaining the best efficiency. Experiments across different LLMs and different downstream tasks validate the effectiveness of the proposed EvoP, making it a practical and scalable solution for deploying LLMs in real-world applications.
♻ ☆ Estimating Worst-Case Frontier Risks of Open-Weight LLMs
In this paper, we study the worst-case frontier risks of releasing gpt-oss. We introduce malicious fine-tuning (MFT), where we attempt to elicit maximum capabilities by fine-tuning gpt-oss to be as capable as possible in two domains: biology and cybersecurity. To maximize biological risk (biorisk), we curate tasks related to threat creation and train gpt-oss in an RL environment with web browsing. To maximize cybersecurity risk, we train gpt-oss in an agentic coding environment to solve capture-the-flag (CTF) challenges. We compare these MFT models against open- and closed-weight LLMs on frontier risk evaluations. Compared to frontier closed-weight models, MFT gpt-oss underperforms OpenAI o3, a model that is below Preparedness High capability level for biorisk and cybersecurity. Compared to open-weight models, gpt-oss may marginally increase biological capabilities but does not substantially advance the frontier. Taken together, these results contributed to our decision to release the model, and we hope that our MFT approach can serve as useful guidance for estimating harm from future open-weight releases.
♻ ☆ Teaching Large Language Models to Maintain Contextual Faithfulness via Synthetic Tasks and Reinforcement Learning ACL 2025
Teaching large language models (LLMs) to be faithful in the provided context is crucial for building reliable information-seeking systems. Therefore, we propose a systematic framework, CANOE, to reduce faithfulness hallucinations of LLMs across different downstream tasks without human annotations. Specifically, we first synthesize short-form question-answering (QA) data with four diverse tasks to construct high-quality and easily verifiable training data without human annotation. Also, we propose Dual-GRPO, a rule-based reinforcement learning method that includes three tailored rule-based rewards derived from synthesized short-form QA data, while simultaneously optimizing both short-form and long-form response generation. Notably, Dual-GRPO eliminates the need to manually label preference data to train reward models and avoids over-optimizing short-form generation when relying only on the synthesized short-form QA data. Experimental results show that CANOE greatly improves the faithfulness of LLMs across 11 different tasks, even outperforming the most advanced LLMs, e.g., GPT-4o and OpenAI o1.
comment: ACL 2025 Workshop KnowFM (Oral Presentation)
♻ ☆ Benchmarking Pretrained Molecular Embedding Models For Molecular Representation Learning
Pretrained neural networks have attracted significant interest in chemistry and small molecule drug design. Embeddings from these models are widely used for molecular property prediction, virtual screening, and small data learning in molecular chemistry. This study presents the most extensive comparison of such models to date, evaluating 25 models across 25 datasets. Under a fair comparison framework, we assess models spanning various modalities, architectures, and pretraining strategies. Using a dedicated hierarchical Bayesian statistical testing model, we arrive at a surprising result: nearly all neural models show negligible or no improvement over the baseline ECFP molecular fingerprint. Only the CLAMP model, which is also based on molecular fingerprints, performs statistically significantly better than the alternatives. These findings raise concerns about the evaluation rigor in existing studies. We discuss potential causes, propose solutions, and offer practical recommendations.
♻ ☆ GridRoute: A Benchmark for LLM-Based Route Planning with Cardinal Movement in Grid Environments
Recent advancements in Large Language Models (LLMs) have demonstrated their potential in planning and reasoning tasks, offering a flexible alternative to classical pathfinding algorithms. However, most existing studies focus on LLMs' independent reasoning capabilities and overlook the potential synergy between LLMs and traditional algorithms. To fill this gap, we propose a comprehensive evaluation benchmark GridRoute to assess how LLMs can take advantage of traditional algorithms. We also propose a novel hybrid prompting technique called Algorithm of Thought (AoT), which introduces traditional algorithms' guidance into prompting. Our benchmark evaluates six LLMs ranging from 7B to 72B parameters across various map sizes, assessing their performance in correctness, optimality, and efficiency in grid environments with varying sizes. Our results show that AoT significantly boosts performance across all model sizes, particularly in larger or more complex environments, suggesting a promising approach to addressing path planning challenges. Our code is open-sourced at https://github.com/LinChance/GridRoute.
comment: 8 pages
♻ ☆ Aryabhata: An exam-focused language model for JEE Math
We present Aryabhata 1.0, a compact 7B parameter math reasoning model optimized for the Indian academic exam, the Joint Entrance Examination (JEE). Despite rapid progress in large language models (LLMs), current models often remain unsuitable for educational use. Aryabhata 1.0 is built by merging strong open-weight reasoning models, followed by supervised fine-tuning (SFT) with curriculum learning on verified chain-of-thought (CoT) traces curated through best-of-$n$ rejection sampling. To further boost performance, we apply reinforcement learning with verifiable rewards (RLVR) using A2C objective with group-relative advantage estimation along with novel exploration strategies such as Adaptive Group Resizing and Temperature Scaling. Evaluated on both in-distribution (JEE Main 2025) and out-of-distribution (MATH, GSM8K) benchmarks, Aryabhata outperforms existing models in accuracy and efficiency, while offering pedagogically useful step-by-step reasoning. We release Aryabhata as a foundation model to advance exam-centric, open-source small language models. This marks our first open release for community feedback (https://huggingface.co/PhysicsWallahAI/Aryabhata-1.0); PW is actively training future models to further improve learning outcomes for students.
♻ ☆ Capabilities of GPT-5 on Multimodal Medical Reasoning
Recent advances in large language models (LLMs) have enabled general-purpose systems to perform increasingly complex domain-specific reasoning without extensive fine-tuning. In the medical domain, decision-making often requires integrating heterogeneous information sources, including patient narratives, structured data, and medical images. This study positions GPT-5 as a generalist multimodal reasoner for medical decision support and systematically evaluates its zero-shot chain-of-thought reasoning performance on both text-based question answering and visual question answering tasks under a unified protocol. We benchmark GPT-5, GPT-5-mini, GPT-5-nano, and GPT-4o-2024-11-20 against standardized splits of MedQA, MedXpertQA (text and multimodal), MMLU medical subsets, USMLE self-assessment exams, and VQA-RAD. Results show that GPT-5 consistently outperforms all baselines, achieving state-of-the-art accuracy across all QA benchmarks and delivering substantial gains in multimodal reasoning. On MedXpertQA MM, GPT-5 improves reasoning and understanding scores by +29.26% and +26.18% over GPT-4o, respectively, and surpasses pre-licensed human experts by +24.23% in reasoning and +29.40% in understanding. In contrast, GPT-4o remains below human expert performance in most dimensions. A representative case study demonstrates GPT-5's ability to integrate visual and textual cues into a coherent diagnostic reasoning chain, recommending appropriate high-stakes interventions. Our results show that, on these controlled multimodal reasoning benchmarks, GPT-5 moves from human-comparable to above human-expert performance. This improvement may substantially inform the design of future clinical decision-support systems.
comment: Corrected some typos
♻ ☆ Can Large Multimodal Models Understand Agricultural Scenes? Benchmarking with AgroMind
Large Multimodal Models (LMMs) has demonstrated capabilities across various domains, but comprehensive benchmarks for agricultural remote sensing (RS) remain scarce. Existing benchmarks designed for agricultural RS scenarios exhibit notable limitations, primarily in terms of insufficient scene diversity in the dataset and oversimplified task design. To bridge this gap, we introduce AgroMind, a comprehensive agricultural remote sensing benchmark covering four task dimensions: spatial perception, object understanding, scene understanding, and scene reasoning, with a total of 13 task types, ranging from crop identification and health monitoring to environmental analysis. We curate a high-quality evaluation set by integrating eight public datasets and one private farmland plot dataset, containing 27,247 QA pairs and 19,615 images. The pipeline begins with multi-source data pre-processing, including collection, format standardization, and annotation refinement. We then generate a diverse set of agriculturally relevant questions through the systematic definition of tasks. Finally, we employ LMMs for inference, generating responses, and performing detailed examinations. We evaluated 20 open-source LMMs and 4 closed-source models on AgroMind. Experiments reveal significant performance gaps, particularly in spatial reasoning and fine-grained recognition, it is notable that human performance lags behind several leading LMMs. By establishing a standardized evaluation framework for agricultural RS, AgroMind reveals the limitations of LMMs in domain knowledge and highlights critical challenges for future work. Data and code can be accessed at https://rssysu.github.io/AgroMind/.
Computational Engineering, Finance, and Science 9
☆ Finetuning Large Language Model as an Effective Symbolic Regressor
Deriving governing equations from observational data, known as Symbolic Regression (SR), is a cornerstone of scientific discovery. Large Language Models (LLMs) have shown promise in this task by leveraging their vast cross-disciplinary scientific knowledge. However, existing LLM-based methods primarily rely on direct inference or prompt engineering, often requiring excessive inference iterations to converge on correct formulas or failing to treating complex equation targets. These limitations in effectiveness and generalization stem from an inherent tension between pre-trained LLMs' proficiency in approximate reasoning and the high-precision demands of SR tasks. To bridge this gap, we propose to fine-tune LLMs for enhanced SR capability. Yet, the absence of dedicated datasets for SR-oriented fine-tuning remains a critical barrier. We thus introduce SymbArena, specifically engineered to optimize LLMs for SR. This benchmark comprises 148,102 diverse equations formulated as corpora of 1.83 billion tokens for LLM utilization, enabling effective training and inference. Further, SymbArena proposes a heuristics metric to precisely quantify form-level consistency, going beyond existing SR numerical-oriented evaluation strategies. With this benchmark, we explore mainstream LLM fine-tuning techniques for SR tasks and establish SymbolicChat, a simple yet effective LLM-based SR strong baseline. Experimental results validate SymbolicChat as the first LLM to exceed traditional numerical methods in both numerical precision and symbolic form accuracy, outperforming the second-best LLM baseline with improvements of 2-fold gains in R2 score and 8.37% in form-level consistency score.
☆ TRACE: Learning 3D Gaussian Physical Dynamics from Multi-view Videos ICCV 2025
In this paper, we aim to model 3D scene geometry, appearance, and physical information just from dynamic multi-view videos in the absence of any human labels. By leveraging physics-informed losses as soft constraints or integrating simple physics models into neural nets, existing works often fail to learn complex motion physics, or doing so requires additional labels such as object types or masks. We propose a new framework named TRACE to model the motion physics of complex dynamic 3D scenes. The key novelty of our method is that, by formulating each 3D point as a rigid particle with size and orientation in space, we directly learn a translation rotation dynamics system for each particle, explicitly estimating a complete set of physical parameters to govern the particle's motion over time. Extensive experiments on three existing dynamic datasets and one newly created challenging synthetic datasets demonstrate the extraordinary performance of our method over baselines in the task of future frame extrapolation. A nice property of our framework is that multiple objects or parts can be easily segmented just by clustering the learned physical parameters.
comment: ICCV 2025. Code and data are available at: https://github.com/vLAR-group/TRACE
☆ VisFinEval: A Scenario-Driven Chinese Multimodal Benchmark for Holistic Financial Understanding
Multimodal large language models (MLLMs) hold great promise for automating complex financial analysis. To comprehensively evaluate their capabilities, we introduce VisFinEval, the first large-scale Chinese benchmark that spans the full front-middle-back office lifecycle of financial tasks. VisFinEval comprises 15,848 annotated question-answer pairs drawn from eight common financial image modalities (e.g., K-line charts, financial statements, official seals), organized into three hierarchical scenario depths: Financial Knowledge & Data Analysis, Financial Analysis & Decision Support, and Financial Risk Control & Asset Optimization. We evaluate 21 state-of-the-art MLLMs in a zero-shot setting. The top model, Qwen-VL-max, achieves an overall accuracy of 76.3%, outperforming non-expert humans but trailing financial experts by over 14 percentage points. Our error analysis uncovers six recurring failure modes-including cross-modal misalignment, hallucinations, and lapses in business-process reasoning-that highlight critical avenues for future research. VisFinEval aims to accelerate the development of robust, domain-tailored MLLMs capable of seamlessly integrating textual and visual financial information. The data and the code are available at https://github.com/SUFE-AIFLM-Lab/VisFinEval.
☆ Large-Scale Topology Optimisation of Time-dependent Thermal Conduction Using Space-Time Finite Elements and a Parallel Space-Time Multigrid Preconditioner
This paper presents a novel space-time topology optimisation framework for time-dependent thermal conduction problems, aiming to significantly reduce the time-to-solution. By treating time as an additional spatial dimension, we discretise the governing equations using a stabilised continuous Galerkin space-time finite element method. The resulting large all-at-once system is solved using an iterative Krylov solver preconditioned with a parallel space-time multigrid method employing a semi-coarsening strategy. Implemented in a fully parallel computing framework, the method yields a parallel-in-time method that demonstrates excellent scalability on a distributed-memory supercomputer, solving problems up to 4.2 billion degrees of freedom. Comparative studies show up to 52x speed-up over traditional time-stepping approaches, with only moderate increases in total computational cost in terms of core-hours. The framework is validated on benchmark problems with both time-constant and time-varying designs, and its flexibility is demonstrated through variations in material properties. These results establish the proposed space-time method as a promising approach for large-scale time-dependent topology optimisation in thermal applications.
☆ CarAT: Carbon Atom Tracing across Industrial Chemical Value Chains via Chemistry Language Models
The chemical industry is increasingly prioritising sustainability, with a focus on reducing carbon footprints to achieve net zero. By 2026, the Together for Sustainability (TfS) consortium will require reporting of biogenic carbon content (BCC) in chemical products, posing a challenge as BCC depends on feedstocks, value chain configuration, and process-specific variables. While carbon-14 isotope analysis can measure BCC, it is impractical for continuous industrial monitoring. This work presents CarAT (Carbon Atom Tracker), an automated methodology for calculating BCC across industrial value chains, enabling dynamic and accurate sustainability reporting. The approach leverages existing Enterprise Resource Planning data in three stages: (1) preparing value chain data, (2) performing atom mapping in chemical reactions using chemistry language models, and (3) applying a linear program to calculate BCC given known inlet compositions. The methodology is validated on a 27-node industrial toluene diisocyanate value chain. Three scenarios are analysed: a base case with fossil feedstocks, a case incorporating a renewable feedstock, and a butanediol value chain with a recycle stream. Results are visualised with Sankey diagrams showing the flow of carbon attributes across the value chain. The key contribution is a scalable, automated method for real-time BCC calculation under changing industrial conditions. CarAT supports compliance with upcoming reporting mandates and advances carbon neutrality goals by enabling systematic fossil-to-biogenic substitution. Through transparent, auditable tracking of carbon sources in production networks, it empowers data-driven decisions to accelerate the transition to sustainable manufacturing.
comment: 21 pages, 9 figures, pre-print
♻ ☆ A multi-strategy improved snake optimizer for three-dimensional UAV path planning and engineering problems
Metaheuristic algorithms have gained widespread application across various fields owing to their ability to generate diverse solutions. One such algorithm is the Snake Optimizer (SO), a progressive optimization approach. However, SO suffers from the issues of slow convergence speed and susceptibility to local optima. In light of these shortcomings, we propose a novel Multi-strategy Improved Snake Optimizer (MISO). Firstly, we propose a new adaptive random disturbance strategy based on sine function to alleviate the risk of getting trapped in a local optimum. Secondly, we introduce adaptive Levy flight strategy based on scale factor and leader and endow the male snake leader with flight capability, which makes it easier for the algorithm to leap out of the local optimum and find the global optimum. More importantly, we put forward a position update strategy combining elite leadership and Brownian motion, effectively accelerating the convergence speed while ensuring precision. Finally, to demonstrate the performance of MISO, we utilize 30 CEC2017 test functions and the CEC2022 test suite, comparing it with 11 popular algorithms across different dimensions to validate its effectiveness. Moreover, Unmanned Aerial Vehicle (UAV) has been widely used in various fields due to its advantages of low cost, high mobility and easy operation. However, the UAV path planning problem is crucial for flight safety and efficiency, and there are still challenges in establishing and optimizing the path model. Therefore, we apply MISO to the UAV 3D path planning problem as well as 6 engineering design problems to assess its feasibility in practical applications. The experimental results demonstrate that MISO exceeds other competitive algorithms in terms of solution quality and stability, establishing its strong potential for application.
comment: 59 pages, 22 figures
♻ ☆ 3D-1D modelling of cranial mesh heating induced by low or medium frequency magnetic fields
Safety assessment of patients with one-dimensionally structured passive implants, like cranial meshes or stents, exposed to low or medium frequency magnetic fields, like those generated in magnetic resonance imaging or magnetic hyperthermia, can be challenging, because of the different length scales of the implant and the human body. Most of the methods used to estimate the heating induced near such implants neglect the presence of the metallic materials within the body, modeling the metal as thermal seeds. To overcome this limitation, a novel numerical approach that solves three-dimensional and one-dimensional coupled problems is proposed. The proposed method is compared with measurements performed on a cranial mesh exposed to the magnetic field generated by a gradient coil system for magnetic resonance imaging. Then, it is applied to a magnetic hyperthermia case study in which a patient with a cranial mesh is exposed to the magnetic field generated by a collar-type magnetic hyperthermia applicator for neck tumour treatment. The experimental comparison of the proposed method predictions and the measurement data shows an improved accuracy near the maximum temperature increase up to 25% with respect to the method based on thermal seeds. The application of the proposed method applied to the magnetic hyperthermia case study leads to a prediction of the maximum temperature increase that is 10% lower than the one overestimated by relying on thermal seeds. At the same time, the proposed method corrects the underestimation of the thermal seeds in the regions where the electromagnetic power is not directly deposited and the temperature increase is only due to heat transfer. The proposed method leads to improved results with respect to previous approximations by modelling the thermal diffusion through the highly conductive metallic implants.
comment: 20 pages, 7 figures
♻ ☆ SINDyG: Sparse Identification of Nonlinear Dynamical Systems from Graph-Structured Data, with Applications to Stuart-Landau Oscillator Networks
The combination of machine learning (ML) and sparsity-promoting techniques is enabling direct extraction of governing equations from data, revolutionizing computational modeling in diverse fields of science and engineering. The discovered dynamical models could be used to address challenges in climate science, neuroscience, ecology, finance, epidemiology, and beyond. However, most existing sparse identification methods for discovering dynamical systems treat the whole system as one without considering the interactions between subsystems. As a result, such models are not able to capture small changes in the emergent system behavior. To address this issue, we developed a new method called Sparse Identification of Nonlinear Dynamical Systems from Graph-structured data (SINDyG), which incorporates the network structure into sparse regression to identify model parameters that explain the underlying network dynamics. We tested our proposed method using several case studies of neuronal dynamics, where we modeled the macroscopic oscillation of a population of neurons using the extended Stuart-Landau (SL) equation and utilize the SINDyG method to identify the underlying nonlinear dynamics. Our extensive computational experiments validate the improved accuracy and simplicity of discovered network dynamics when compared to the original SINDy approach. The proposed graph-informed penalty can be easily integrated with other symbolic regression algorithms, enhancing model interpretability and performance by incorporating network structure into the regression process.
♻ ☆ Impacts of DEM Type and Resolution on Deep Learning-Based Flood Inundation Mapping
The increasing availability of hydrological and physiographic spatiotemporal data has boosted machine learning's role in rapid flood mapping. Yet, data scarcity, especially high-resolution DEMs, challenges regions with limited access. This paper examines how DEM type and resolution affect flood prediction accuracy, utilizing a cutting-edge deep learning (DL) method called 1D convolutional neural network (CNN). It utilizes synthetic hydrographs as training input and water depth data obtained from LISFLOOD-FP, a 2D hydrodynamic model, as target data. This study investigates digital surface models (DSMs) and digital terrain models (DTMs) derived from a 1 m LIDAR-based DTM, with resolutions from 15 to 30 m. The methodology is applied and assessed in an established benchmark, the city of Carlisle, UK. The models' performance is then evaluated and compared against an observed flood event using RMSE, Bias, and Fit indices. Leveraging the insights gained from this region, the paper discusses the applicability of the methodology to address the challenges encountered in a data-scarce flood-prone region, exemplified by Pakistan. Results indicated that utilizing a 30 m DTM outperformed a 30 m DSM in terms of flood depth prediction accuracy by about 21% during the flood peak stage, highlighting the superior performance of DTM at lower resolutions. Increasing the resolution of DTM to 15 m resulted in a minimum 50% increase in RMSE and a 20% increase in fit index across all flood stages. The findings emphasize that while a coarser resolution DEM may impact the accuracy of machine learning models, it remains a viable option for rapid flood prediction. However, even a slight improvement in data resolution in data-scarce regions would provide significant added value, ultimately enhancing flood risk management.
Databases 7
☆ E3-Rewrite: Learning to Rewrite SQL for Executability, Equivalence,and Efficiency
SQL query rewriting aims to reformulate a query into a more efficient form while preserving equivalence. Most existing methods rely on predefined rewrite rules. However, such rule-based approaches face fundamental limitations: (1) fixed rule sets generalize poorly to novel query patterns and struggle with complex queries; (2) a wide range of effective rewriting strategies cannot be fully captured by declarative rules. To overcome these issues, we propose using large language models (LLMs) to generate rewrites. LLMs can capture complex strategies, such as evaluation reordering and CTE rewriting. Despite this potential, directly applying LLMs often results in suboptimal or non-equivalent rewrites due to a lack of execution awareness and semantic grounding. To address these challenges, We present E3-Rewrite, an LLM-based SQL rewriting framework that produces executable, equivalent, and efficient queries. It integrates two core components: a context construction module and a reinforcement learning framework. First, the context module leverages execution plans and retrieved demonstrations to build bottleneck-aware prompts that guide inference-time rewriting. Second, we design a reward function targeting executability, equivalence, and efficiency, evaluated via syntax checks, equivalence verification, and cost estimation. Third, to ensure stable multi-objective learning, we adopt a staged curriculum that first emphasizes executability and equivalence, then gradually incorporates efficiency. Extensive experiments show that E3-Rewrite achieves up to a 25.6\% reduction in query execution time compared to state-of-the-art methods across multiple SQL benchmarks. Moreover, it delivers up to 24.4\% more successful rewrites, expanding coverage to complex queries that previous systems failed to handle.
☆ A Framework for FAIR and CLEAR Ecological Data and Knowledge: Semantic Units for Synthesis and Causal Modelling
Ecological research increasingly relies on integrating heterogeneous datasets and knowledge to explain and predict complex phenomena. Yet, differences in data types, terminology, and documentation often hinder interoperability, reuse, and causal understanding. We present the Semantic Units Framework, a novel, domain-agnostic semantic modelling approach applied here to ecological data and knowledge in compliance with the FAIR (Findable, Accessible, Interoperable, Reusable) and CLEAR (Cognitively interoperable, semantically Linked, contextually Explorable, easily Accessible, human-Readable and -interpretable) Principles. The framework models data and knowledge as modular, logic-aware semantic units: single propositions (statement units) or coherent groups of propositions (compound units). Statement units can model measurements, observations, or universal relationships, including causal ones, and link to methods and evidence. Compound units group related statement units into reusable, semantically coherent knowledge objects. Implemented using RDF, OWL, and knowledge graphs, semantic units can be serialized as FAIR Digital Objects with persistent identifiers, provenance, and semantic interoperability. We show how universal statement units build ecological causal networks, which can be composed into causal maps and perspective-specific subnetworks. These support causal reasoning, confounder detection (back-door), effect identification with unobserved confounders (front-door), application of do-calculus, and alignment with Bayesian networks, structural equation models, and structural causal models. By linking fine-grained empirical data to high-level causal reasoning, the Semantic Units Framework provides a foundation for ecological knowledge synthesis, evidence annotation, cross-domain integration, reproducible workflows, and AI-ready ecological research.
☆ Approximate DBSCAN under Differential Privacy
This paper revisits the DBSCAN problem under differential privacy (DP). Existing DP-DBSCAN algorithms aim at publishing the cluster labels of the input points. However, we show that both empirically and theoretically, this approach cannot offer any utility in the published results. We therefore propose an alternative definition of DP-DBSCAN based on the notion of spans. We argue that publishing the spans actually better serves the purposes of visualization and classification of DBSCAN. Then we present a linear-time DP-DBSCAN algorithm achieving the sandwich quality guarantee in any constant dimensions, as well as matching lower bounds on the approximation ratio. A key building block in our algorithm is a linear-time algorithm for constructing a histogram under pure-DP, which is of independent interest. Finally, we conducted experiments on both synthetic and real-world datasets to verify the practical performance of our DP-DBSCAN algorithm.
Scalable Graph Indexing using GPUs for Approximate Nearest Neighbor Search SIGMOD 2026
Approximate nearest neighbor search (ANNS) in high-dimensional vector spaces has a wide range of real-world applications. Numerous methods have been proposed to handle ANNS efficiently, while graph-based indexes have gained prominence due to their high accuracy and efficiency. However, the indexing overhead of graph-based indexes remains substantial. With exponential growth in data volume and increasing demands for dynamic index adjustments, this overhead continues to escalate, posing a critical challenge. In this paper, we introduce Tagore, a fast library accelerated by GPUs for graph indexing, which has powerful capabilities of constructing refinement-based graph indexes such as NSG and Vamana. We first introduce GNN-Descent, a GPU-specific algorithm for efficient k-Nearest Neighbor (k-NN) graph initialization. GNN-Descent speeds up the similarity comparison by a two-phase descent procedure and enables highly parallelized neighbor updates. Next, aiming to support various k-NN graph pruning strategies, we formulate a universal computing procedure termed CFS and devise two generalized GPU kernels for parallel processing complex dependencies in neighbor relationships. For large-scale datasets exceeding GPU memory capacity, we propose an asynchronous GPU-CPU-disk indexing framework with a cluster-aware caching mechanism to minimize the I/O pressure on the disk. Extensive experiments on 7 real-world datasets exhibit that Tagore achieves 1.32x-112.79x speedup while maintaining the index quality.
comment: Accepted at SIGMOD 2026
☆ ELASTIC: Event-Tracking Data Synchronization in Soccer Without Annotated Event Locations KDD 2025
The integration of event and tracking data has become essential for advanced analysis in soccer. However, synchronizing these two modalities remains a significant challenge due to temporal and spatial inaccuracies in manually recorded event timestamps. Existing synchronizers typically rely on annotated event locations, which themselves are prone to spatial errors and thus can distort synchronization results. To address this issue, we propose ELASTIC (Event-Location-AgnoSTIC synchronizer), a synchronization framework that only uses features derived from tracking data. ELASTIC also explicitly detects the end times of pass-like events and separates the detection of major and minor events, which improves the completeness of the synchronized output and reduces error cascade across events. We annotated the ground truth timestamps of 2,134 events from three Eredivisie matches to measure the synchronization accuracy, and the experimental results demonstrate that ELASTIC outperforms existing synchronizers by a large margin.
comment: Accepted at ECML PKDD 2025 Workshop on Machine Learning and Data Mining for Sports Analytics (MLSA 2025)
☆ PETLP: A Privacy-by-Design Pipeline for Social Media Data in AI Research
Social media data presents AI researchers with overlapping obligations under the GDPR, copyright law, and platform terms -- yet existing frameworks fail to integrate these regulatory domains, leaving researchers without unified guidance. We introduce PETLP (Privacy-by-design Extract, Transform, Load, and Present), a compliance framework that embeds legal safeguards directly into extended ETL pipelines. Central to PETLP is treating Data Protection Impact Assessments as living documents that evolve from pre-registration through dissemination. Through systematic Reddit analysis, we demonstrate how extraction rights fundamentally differ between qualifying research organisations (who can invoke DSM Article 3 to override platform restrictions) and commercial entities (bound by terms of service), whilst GDPR obligations apply universally. We reveal why true anonymisation remains unachievable for social media data and expose the legal gap between permitted dataset creation and uncertain model distribution. By structuring compliance decisions into practical workflows and simplifying institutional data management plans, PETLP enables researchers to navigate regulatory complexity with confidence, bridging the gap between legal requirements and research practice.
☆ The Interpretability Analysis of the Model Can Bring Improvements to the Text-to-SQL Task
To elevate the foundational capabilities and generalization prowess of the text-to-SQL model in real-world applications, we integrate model interpretability analysis with execution-guided strategy for semantic parsing of WHERE clauses in SQL queries. Furthermore, we augment this approach with filtering adjustments, logical correlation refinements, and model fusion, culminating in the design of the CESQL model that facilitates conditional enhancement. Our model excels on the WikiSQL dataset, which is emblematic of single-table database query tasks, markedly boosting the accuracy of prediction outcomes. When predicting conditional values in WHERE clauses, we have not only minimized our dependence on data within the condition columns of tables but also circumvented the impact of manually labeled training data. Our hope is that this endeavor to enhance accuracy in processing basic database queries will offer fresh perspectives for research into handling complex queries and scenarios featuring irregular data in real-world database environments.
Distributed, Parallel, and Cluster Computing 12
☆ P/D-Device: Disaggregated Large Language Model between Cloud and Devices
Serving disaggregated large language models has been widely adopted in industrial practice for enhanced performance. However, too many tokens generated in decoding phase, i.e., occupying the resources for a long time, essentially hamper the cloud from achieving a higher throughput. Meanwhile, due to limited on-device resources, the time to first token (TTFT), i.e., the latency of prefill phase, increases dramatically with the growth on prompt length. In order to concur with such a bottleneck on resources, i.e., long occupation in cloud and limited on-device computing capacity, we propose to separate large language model between cloud and devices. That is, the cloud helps a portion of the content for each device, only in its prefill phase. Specifically, after receiving the first token from the cloud, decoupling with its own prefill, the device responds to the user immediately for a lower TTFT. Then, the following tokens from cloud are presented via a speed controller for smoothed TPOT (the time per output token), until the device catches up with the progress. On-device prefill is then amortized using received tokens while the resource usage in cloud is controlled. Moreover, during cloud prefill, the prompt can be refined, using those intermediate data already generated, to further speed up on-device inference. We implement such a scheme P/D-Device, and confirm its superiority over other alternatives. We further propose an algorithm to decide the best settings. Real-trace experiments show that TTFT decreases at least 60%, maximum TPOT is about tens of milliseconds, and cloud throughput increases by up to 15x.
☆ Ultra Ethernet's Design Principles and Architectural Innovations
The recently released Ultra Ethernet (UE) 1.0 specification defines a transformative High-Performance Ethernet standard for future Artificial Intelligence (AI) and High-Performance Computing (HPC) systems. This paper, written by the specification's authors, provides a high-level overview of UE's design, offering crucial motivations and scientific context to understand its innovations. While UE introduces advancements across the entire Ethernet stack, its standout contribution is the novel Ultra Ethernet Transport (UET), a potentially fully hardware-accelerated protocol engineered for reliable, fast, and efficient communication in extreme-scale systems. Unlike InfiniBand, the last major standardization effort in high-performance networking over two decades ago, UE leverages the expansive Ethernet ecosystem and the 1,000x gains in computational efficiency per moved bit to deliver a new era of high-performance networking.
☆ Redactable Blockchains: An Overview
Blockchains are widely recognized for their immutability, which provides robust guarantees of data integrity and transparency. However, this same feature poses significant challenges in real-world situations that require regulatory compliance, correction of erroneous data, or removal of sensitive information. Redactable blockchains address the limitations of traditional ones by enabling controlled, auditable modifications to blockchain data, primarily through cryptographic mechanisms such as chameleon hash functions and alternative redaction schemes. This report examines the motivations for introducing redactability, surveys the cryptographic primitives that enable secure edits, and analyzes competing approaches and their shortcomings. Special attention is paid to the practical deployment of redactable blockchains in private settings, with discussions of use cases in healthcare, finance, Internet of drones, and federated learning. Finally, the report outlines further challenges, also in connection with reversible computing, and the future potential of redactable blockchains in building law-compliant, trustworthy, and scalable digital infrastructures.
Scalable Graph Indexing using GPUs for Approximate Nearest Neighbor Search SIGMOD 2026
Approximate nearest neighbor search (ANNS) in high-dimensional vector spaces has a wide range of real-world applications. Numerous methods have been proposed to handle ANNS efficiently, while graph-based indexes have gained prominence due to their high accuracy and efficiency. However, the indexing overhead of graph-based indexes remains substantial. With exponential growth in data volume and increasing demands for dynamic index adjustments, this overhead continues to escalate, posing a critical challenge. In this paper, we introduce Tagore, a fast library accelerated by GPUs for graph indexing, which has powerful capabilities of constructing refinement-based graph indexes such as NSG and Vamana. We first introduce GNN-Descent, a GPU-specific algorithm for efficient k-Nearest Neighbor (k-NN) graph initialization. GNN-Descent speeds up the similarity comparison by a two-phase descent procedure and enables highly parallelized neighbor updates. Next, aiming to support various k-NN graph pruning strategies, we formulate a universal computing procedure termed CFS and devise two generalized GPU kernels for parallel processing complex dependencies in neighbor relationships. For large-scale datasets exceeding GPU memory capacity, we propose an asynchronous GPU-CPU-disk indexing framework with a cluster-aware caching mechanism to minimize the I/O pressure on the disk. Extensive experiments on 7 real-world datasets exhibit that Tagore achieves 1.32x-112.79x speedup while maintaining the index quality.
comment: Accepted at SIGMOD 2026
☆ Two for One, One for All: Deterministic LDC-based Robust Computation in Congested Clique
We design a deterministic compiler that makes any computation in the Congested Clique model robust to a constant fraction $\alpha<1$ of adversarial crash faults. In particular, we show how a network of $n$ nodes can compute any circuit of depth $d$, width $\omega$, and gate total fan $\Delta$, in $d\cdot\lceil\frac{\omega}{n^2}+\frac{\Delta}{n}\rceil\cdot 2^{O(\sqrt{\log{n}}\log\log{n})}$ rounds in such a faulty model. As a corollary, any $T$-round Congested Clique algorithm can be compiled into an algorithm that completes in $T^2 n^{o(1)}$ rounds in this model. Our compiler obtains resilience to node crashes by coding information across the network, where we leverage locally-decodable codes (LDCs) to maintain a low complexity overhead, as these allow recovering the information needed at each computational step by querying only small parts of the codeword. The main technical contribution is that because erasures occur in known locations, which correspond to crashed nodes, we can derandomize classical LDC constructions by deterministically selecting query sets that avoid sufficiently many erasures. Moreover, when decoding multiple codewords in parallel, our derandomization load-balances the queries per-node, thereby preventing congestion and maintaining a low round complexity. Deterministic decoding of LDCs presents a new challenge: the adversary can target precisely the (few) nodes that are queried for decoding a certain codeword. We overcome this issue via an adaptive doubling strategy: if a decoding attempt for a codeword fails, the node doubles the number of its decoding attempts. Similarly, when the adversary crashes the decoding node itself, we replace it dynamically with two other non-crashed nodes. By carefully combining these two doubling processes, we overcome the challenges posed by the combination of a deterministic LDC with a worst case pattern of crashes.
☆ A Survey on Parallel Text Generation: From Parallel Decoding to Diffusion Language Models
As text generation has become a core capability of modern Large Language Models (LLMs), it underpins a wide range of downstream applications. However, most existing LLMs rely on autoregressive (AR) generation, producing one token at a time based on previously generated context-resulting in limited generation speed due to the inherently sequential nature of the process. To address this challenge, an increasing number of researchers have begun exploring parallel text generation-a broad class of techniques aimed at breaking the token-by-token generation bottleneck and improving inference efficiency. Despite growing interest, there remains a lack of comprehensive analysis on what specific techniques constitute parallel text generation and how they improve inference performance. To bridge this gap, we present a systematic survey of parallel text generation methods. We categorize existing approaches into AR-based and Non-AR-based paradigms, and provide a detailed examination of the core techniques within each category. Following this taxonomy, we assess their theoretical trade-offs in terms of speed, quality, and efficiency, and examine their potential for combination and comparison with alternative acceleration strategies. Finally, based on our findings, we highlight recent advancements, identify open challenges, and outline promising directions for future research in parallel text generation.
☆ SHEFL: Resource-Aware Aggregation and Sparsification in Heterogeneous Ensemble Federated Learning AAAI 2026
Federated learning enables distributed training with private data of clients, but its convergence is hindered by data and system heterogeneity in realistic communication scenarios. Most existing system heterogeneous FL schemes utilize global pruning or ensemble distillation, yet they often overlook typical constraints required for communication efficiency. Meanwhile, deep ensembles can aggregate predictions from individually trained models to improve performance, but current ensemble-based FL methods fall short in fully capturing the diversity of model predictions. In this work, we propose SHEFL, a global ensemble-based federated learning framework suited for clients with diverse computational capacities. We allocate different numbers of global models to clients based on their available resources. We further introduce a novel aggregation scheme that accounts for bias between clients with different computational capabilities. To reduce the computational burden of training deep ensembles and mitigate data bias, we dynamically adjust the resource ratio across clients - aggressively reducing the influence of underpowered clients in constrained scenarios, while increasing their weight in the opposite case. Extensive experiments demonstrate that our method effectively addresses computational heterogeneity, significantly improving both fairness and overall performance compared to existing approaches.
comment: 9 pages, 7 figures, submitted to AAAI 2026
☆ Cluster Topology-Driven Placement of Experts Reduces Network Traffic in MoE Inference
Efficient deployment of a pre-trained LLM to a cluster with multiple servers is a critical step for providing fast responses to users' queries. The recent success of Mixture-of-Experts (MoE) LLMs raises the question of how to deploy them efficiently, considering their underlying structure. During the inference in MoE LLMs, only a small part of the experts is selected to process a given token. Moreover, in practice, the experts' load is highly imbalanced. For efficient deployment, one has to distribute the model across a large number of servers using a model placement algorithm. Thus, to improve cluster utilization, the model placement algorithm has to take into account the network topology. This work focuses on the efficient topology-aware placement of the pre-trained MoE LLMs in the inference stage. We propose an integer linear program (ILP) that determines the optimal placement of experts, minimizing the expected number of transmissions. Due to the internal structure, this optimization problem can be solved with a standard ILP solver. We demonstrate that ILP-based placement strategy yields lower network traffic than competitors for small-scale (DeepSeekMoE~16B) and large-scale (DeepSeek-R1~671B) models.
♻ ☆ Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications, integrating cloud resources with edge devices to enable efficient, low-latency processing. Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems, yet introduce significant challenges in model deployment and resource management. In this survey, we comprehensive examine the intersection of distributed intelligence and model optimization within edge-cloud environments, providing a structured tutorial on fundamental architectures, enabling technologies, and emerging applications. Additionally, we systematically analyze model optimization approaches, including compression, adaptation, and neural architecture search, alongside AI-driven resource management strategies that balance performance, energy efficiency, and latency requirements. We further explore critical aspects of privacy protection and security enhancement within ECCC systems and examines practical deployments through diverse applications, spanning autonomous driving, healthcare, and industrial automation. Performance analysis and benchmarking techniques are also thoroughly explored to establish evaluation standards for these complex systems. Furthermore, the review identifies critical research directions including LLMs deployment, 6G integration, neuromorphic computing, and quantum computing, offering a roadmap for addressing persistent challenges in heterogeneity management, real-time processing, and scalability. By bridging theoretical advancements and practical deployments, this survey offers researchers and practitioners a holistic perspective on leveraging AI to optimize distributed computing environments, fostering innovation in next-generation intelligent systems.
comment: 30 pages, 10 figures, 8 tables
♻ ☆ Keep Your Friends Close: Leveraging Affinity Groups to Accelerate AI Inference Workflows
AI inference workflows are typically structured as a pipeline or graph of AI programs triggered by events. As events occur, the AIs perform inference or classification tasks under time pressure to respond or take some action. Standard techniques that reduce latency in other streaming settings (such as caching and optimization-driven scheduling) are of limited value because AI data access patterns (models, databases) change depending on the triggering event: a significant departure from traditional streaming. In this work, we propose a novel affinity grouping mechanism that makes it easier for developers to express application-specific data access correlations, enabling coordinated management of data objects in server clusters hosting streaming inference tasks. Our proposals are thus complementary to other approaches such as caching and scheduling. Experiments confirm the limitations of standard techniques, while showing that the proposed mechanism is able to maintain significantly lower latency as workload and scale-out increase, and yet requires only minor code changes.
♻ ☆ Blockchain-Enabled Federated Learning
Blockchain-enabled federated learning (BCFL) addresses fundamental challenges of trust, privacy, and coordination in collaborative AI systems. This chapter provides comprehensive architectural analysis of BCFL systems through a systematic four-dimensional taxonomy examining coordination structures, consensus mechanisms, storage architectures, and trust models. We analyze design patterns from blockchain-verified centralized coordination to fully decentralized peer-to-peer networks, evaluating trade-offs in scalability, security, and performance. Through detailed examination of consensus mechanisms designed for federated learning contexts, including Proof of Quality and Proof of Federated Learning, we demonstrate how computational work can be repurposed from arbitrary cryptographic puzzles to productive machine learning tasks. The chapter addresses critical storage challenges by examining multi-tier architectures that balance blockchain's transaction constraints with neural networks' large parameter requirements while maintaining cryptographic integrity. A technical case study of the TrustMesh framework illustrates practical implementation considerations in BCFL systems through distributed image classification training, demonstrating effective collaborative learning across IoT devices with highly non-IID data distributions while maintaining complete transparency and fault tolerance. Analysis of real-world deployments across healthcare consortiums, financial services, and IoT security applications validates the practical viability of BCFL systems, achieving performance comparable to centralized approaches while providing enhanced security guarantees and enabling new models of trustless collaborative intelligence.
comment: 32 pages, 6 figures, chapter for edited book (Federated Learning: Foundations and Applications)
♻ ☆ CUDA-L1: Improving CUDA Optimization via Contrastive Reinforcement Learning
The exponential growth in demand for GPU computing resources has created an urgent need for automated CUDA optimization strategies. While recent advances in LLMs show promise for code generation, current SOTA models achieve low success rates in improving CUDA speed. In this paper, we introduce CUDA-L1, an automated reinforcement learning framework for CUDA optimization that employs a novel contrastive RL algorithm. CUDA-L1 achieves significant performance improvements on the CUDA optimization task: trained on A100, it delivers an average speedup of x3.12 with a median speedup of x1.42 against default baselines over across all 250 CUDA kernels of KernelBench, with peak speedups reaching x120. In addition to the default baseline provided by KernelBench, CUDA-L1 demonstrates x2.77 over Torch Compile, x2.88 over Torch Compile with reduce overhead, x2.81 over CUDA Graph implementations, and remarkably x7.72 over cuDNN libraries. Furthermore, the model also demonstrates portability across different GPU architectures. Beyond these benchmark results, CUDA-L1 demonstrates several properties: it 1) discovers a variety of CUDA optimization techniques and learns to combine them strategically to achieve optimal performance; 2) uncovers fundamental principles of CUDA optimization, such as the multiplicative nature of optimizations; 3) identifies non-obvious performance bottlenecks and rejects seemingly beneficial optimizations that actually harm performance. The capabilities demonstrate that, RL can transform an initially poor-performing LLM into an effective CUDA optimizer through speedup-based reward signals alone, without human expertise or domain knowledge. This paradigm opens possibilities for automated optimization of CUDA operations, and holds promise to substantially promote GPU efficiency and alleviate the rising pressure on GPU computing resources.
comment: Project Page: https://deepreinforce-ai.github.io/cudal1_blog/
Information Retrieval 19
☆ Link Prediction for Event Logs in the Process Industry
Knowledge management (KM) is vital in the process industry for optimizing operations, ensuring safety, and enabling continuous improvement through effective use of operational data and past insights. A key challenge in this domain is the fragmented nature of event logs in shift books, where related records, e.g., entries documenting issues related to equipment or processes and the corresponding solutions, may remain disconnected. This fragmentation hinders the recommendation of previous solutions to the users. To address this problem, we investigate record linking (RL) as link prediction, commonly studied in graph-based machine learning, by framing it as a cross-document coreference resolution (CDCR) task enhanced with natural language inference (NLI) and semantic text similarity (STS) by shifting it into the causal inference (CI). We adapt CDCR, traditionally applied in the news domain, into an RL model to operate at the passage level, similar to NLI and STS, while accommodating the process industry's specific text formats, which contain unstructured text and structured record attributes. Our RL model outperformed the best versions of NLI- and STS-driven baselines by 28% (11.43 points) and 27% (11.21 points), respectively. Our work demonstrates how domain adaptation of the state-of-the-art CDCR models, enhanced with reasoning capabilities, can be effectively tailored to the process industry, improving data quality and connectivity in shift logs.
☆ SPARC: Soft Probabilistic Adaptive multi-interest Retrieval Model via Codebooks for recommender system
Modeling multi-interests has arisen as a core problem in real-world RS. Current multi-interest retrieval methods pose three major challenges: 1) Interests, typically extracted from predefined external knowledge, are invariant. Failed to dynamically evolve with users' real-time consumption preferences. 2) Online inference typically employs an over-exploited strategy, mainly matching users' existing interests, lacking proactive exploration and discovery of novel and long-tail interests. To address these challenges, we propose a novel retrieval framework named SPARC(Soft Probabilistic Adaptive Retrieval Model via Codebooks). Our contribution is two folds. First, the framework utilizes Residual Quantized Variational Autoencoder (RQ-VAE) to construct a discretized interest space. It achieves joint training of the RQ-VAE with the industrial large scale recommendation model, mining behavior-aware interests that can perceive user feedback and evolve dynamically. Secondly, a probabilistic interest module that predicts the probability distribution over the entire dynamic and discrete interest space. This facilitates an efficient "soft-search" strategy during online inference, revolutionizing the retrieval paradigm from "passive matching" to "proactive exploration" and thereby effectively promoting interest discovery. Online A/B tests on an industrial platform with tens of millions daily active users, have achieved substantial gains in business metrics: +0.9% increase in user view duration, +0.4% increase in user page views (PV), and a +22.7% improvement in PV500(new content reaching 500 PVs in 24 hours). Offline evaluations are conducted on open-source Amazon Product datasets. Metrics, such as Recall@K and Normalized Discounted Cumulative Gain@K(NDCG@K), also showed consistent improvement. Both online and offline experiments validate the efficacy and practical value of the proposed method.
comment: 8 pages
☆ Mitigating Popularity Bias in Counterfactual Explanations using Large Language Models
Counterfactual explanations (CFEs) offer a tangible and actionable way to explain recommendations by showing users a "what-if" scenario that demonstrates how small changes in their history would alter the system's output. However, existing CFE methods are susceptible to bias, generating explanations that might misalign with the user's actual preferences. In this paper, we propose a pre-processing step that leverages large language models to filter out-of-character history items before generating an explanation. In experiments on two public datasets, we focus on popularity bias and apply our approach to ACCENT, a neural CFE framework. We find that it creates counterfactuals that are more closely aligned with each user's popularity preferences than ACCENT alone.
☆ Jointly Generating and Attributing Answers using Logits of Document-Identifier Tokens
Despite their impressive performances, Large Language Models (LLMs) remain prone to hallucination, which critically undermines their trustworthiness. While most of the previous work focused on tackling answer and attribution correctness, a recent line of work investigated faithfulness, with a focus on leveraging internal model signals to reflect a model's actual decision-making process while generating the answer. Nevertheless, these methods induce additional latency and have shown limitations in directly aligning token generation with attribution generation. In this paper, we introduce LoDIT, a method that jointly generates and faithfully attributes answers in RAG by leveraging specific token logits during generation. It consists of two steps: (1) marking the documents with specific token identifiers and then leveraging the logits of these tokens to estimate the contribution of each document to the answer during generation, and (2) aggregating these contributions into document attributions. Experiments on a trustworthiness-focused attributed text-generation benchmark, Trust-Align, show that LoDIT significantly outperforms state-of-the-art models on several metrics. Finally, an in-depth analysis of LoDIT shows both its efficiency in terms of latency and its robustness in different settings.
☆ Recent Advances and Trends in Research Paper Recommender Systems: A Comprehensive Survey
As the volume of scientific publications grows exponentially, researchers increasingly face difficulties in locating relevant literature. Research Paper Recommender Systems have become vital tools to mitigate this information overload by delivering personalized suggestions. This survey provides a comprehensive analysis of Research Paper Recommender Systems developed between November 2021 and December 2024, building upon prior reviews in the field. It presents an extensive overview of the techniques and approaches employed, the datasets utilized, the evaluation metrics and procedures applied, and the status of both enduring and emerging challenges observed during the research. Unlike prior surveys, this survey goes beyond merely cataloguing techniques and models, providing a thorough examination of how these methods are implemented across different stages of the recommendation process. By furnishing a detailed and structured reference, this work aims to function as a consultative resource for the research community, supporting informed decision-making and guiding future investigations in the advances of effective Research Paper Recommender Systems.
☆ Evaluating Podcast Recommendations with Profile-Aware LLM-as-a-Judge
Evaluating personalized recommendations remains a central challenge, especially in long-form audio domains like podcasts, where traditional offline metrics suffer from exposure bias and online methods such as A/B testing are costly and operationally constrained. In this paper, we propose a novel framework that leverages Large Language Models (LLMs) as offline judges to assess the quality of podcast recommendations in a scalable and interpretable manner. Our two-stage profile-aware approach first constructs natural-language user profiles distilled from 90 days of listening history. These profiles summarize both topical interests and behavioral patterns, serving as compact, interpretable representations of user preferences. Rather than prompting the LLM with raw data, we use these profiles to provide high-level, semantically rich context-enabling the LLM to reason more effectively about alignment between a user's interests and recommended episodes. This reduces input complexity and improves interpretability. The LLM is then prompted to deliver fine-grained pointwise and pairwise judgments based on the profile-episode match. In a controlled study with 47 participants, our profile-aware judge matched human judgments with high fidelity and outperformed or matched a variant using raw listening histories. The framework enables efficient, profile-aware evaluation for iterative testing and model selection in recommender systems.
comment: Accepted at RecSys '25
☆ Comprehensive Comparison Network: a framework for locality-aware, routes-comparable and interpretable route recommendation
Route recommendation (RR) is a core task of route planning in the Amap app, with the goal of recommending the optimal route among candidate routes to users. Unlike traditional recommendation methods, insights into the local quality of routes and comparisons between candidate routes are crucial for enhancing recommendation performance but often overlooked in previous studies. To achieve these, we propose a novel model called Comprehensive Comparison Network (CCN). CCN not only uses query-level features (e.g. user features) and item-level features (e.g. route features, item embedding) that are common in traditional recommendations, but also introduces comparison-level features which describe the non-overlapping segments between different routes to capture the local quality of routes. The key component Comprehensive Comparison Block (CCB) in CCN is designed to enable comparisons between routes. CCB includes a Comprehensive Comparison Operator (CCO) and a multi-scenario MLP, which can update the representations of candidate routes based on a comprehensive comparison. By stacking multiple CCBs, CCN can determine the final scores of candidate routes and recommend the optimal one to the user. Additionally, since routes directly affect the costs and risks experienced by users, the RR model must be interpretable for online deployment. Therefore, we designed an interpretable pair scoring network to achieve interpretability. Both offline and online experiments demonstrate that CCN significantly improves RR performance and exhibits strong interpretability. CCN has been fully deployed in the Amap app for over a year, providing stable and optimal benefits for route recommendations.
☆ Eat your own KR: a KR-based approach to index Semantic Web Endpoints and Knowledge Graphs
Over the last decade, knowledge graphs have multiplied, grown, and evolved on the World Wide Web, and the advent of new standards, vocabularies, and application domains has accelerated this trend. IndeGx is a framework leveraging an extensible base of rules to index the content of KGs and the capacities of their SPARQL endpoints. In this article, we show how knowledge representation (KR) and reasoning methods and techniques can be used in a reflexive manner to index and characterize existing knowledge graphs (KG) with respect to their usage of KR methods and techniques. We extended IndeGx with a fully ontology-oriented modeling and processing approach to do so. Using SPARQL rules and an OWL RL ontology of the indexing domain, IndeGx can now build and reason over an index of the contents and characteristics of an open collection of public knowledge graphs. Our extension of the framework relies on a declarative representation of procedural knowledge and collaborative environments (e.g., GitHub) to provide an agile, customizable, and expressive KR approach for building and maintaining such an index of knowledge graphs in the wild. In doing so, we help anyone answer the question of what knowledge is out there in the world wild Semantic Web in general, and we also help our community monitor which KR research results are used in practice. In particular, this article provides a snapshot of the state of the Semantic Web regarding supported standard languages, ontology usage, and diverse quality evaluations by applying this method to a collection of over 300 open knowledge graph endpoints.
☆ Expert-Guided Diffusion Planner for Auto-bidding
Auto-bidding is extensively applied in advertising systems, serving a multitude of advertisers. Generative bidding is gradually gaining traction due to its robust planning capabilities and generalizability. In contrast to traditional reinforcement learning-based bidding, generative bidding does not rely on the Markov Decision Process (MDP) exhibiting superior planning capabilities in long-horizon scenarios. Conditional diffusion modeling approaches have demonstrated significant potential in the realm of auto-bidding. However, relying solely on return as the optimality condition is weak to guarantee the generation of genuinely optimal decision sequences, lacking personalized structural information. Moreover, diffusion models' t-step autoregressive generation mechanism inherently carries timeliness risks. To address these issues, we propose a novel conditional diffusion modeling method based on expert trajectory guidance combined with a skip-step sampling strategy to enhance generation efficiency. We have validated the effectiveness of this approach through extensive offline experiments and achieved statistically significant results in online A/B testing, achieving an increase of 11.29% in conversion and a 12.35% in revenue compared with the baseline.
comment: accepted for presentation at the CIKM 2025 Applied Research Track, eight (8) pages, three (3) figures
☆ Adaptive Personalized Conversational Information Retrieval
Personalized conversational information retrieval (CIR) systems aim to satisfy users' complex information needs through multi-turn interactions by considering user profiles. However, not all search queries require personalization. The challenge lies in appropriately incorporating personalization elements into search when needed. Most existing studies implicitly incorporate users' personal information and conversational context using large language models without distinguishing the specific requirements for each query turn. Such a ``one-size-fits-all'' personalization strategy might lead to sub-optimal results. In this paper, we propose an adaptive personalization method, in which we first identify the required personalization level for a query and integrate personalized queries with other query reformulations to produce various enhanced queries. Then, we design a personalization-aware ranking fusion approach to assign fusion weights dynamically to different reformulated queries, depending on the required personalization level. The proposed adaptive personalized conversational information retrieval framework APCIR is evaluated on two TREC iKAT datasets. The results confirm the effectiveness of adaptive personalization of APCIR by outperforming state-of-the-art methods.
comment: Accepted by CIKM 2025
☆ A Signer-Invariant Conformer and Multi-Scale Fusion Transformer for Continuous Sign Language Recognition ICCV
Continuous Sign Language Recognition (CSLR) faces multiple challenges, including significant inter-signer variability and poor generalization to novel sentence structures. Traditional solutions frequently fail to handle these issues efficiently. For overcoming these constraints, we propose a dual-architecture framework. For the Signer-Independent (SI) challenge, we propose a Signer-Invariant Conformer that combines convolutions with multi-head self-attention to learn robust, signer-agnostic representations from pose-based skeletal keypoints. For the Unseen-Sentences (US) task, we designed a Multi-Scale Fusion Transformer with a novel dual-path temporal encoder that captures both fine-grained posture dynamics, enabling the model's ability to comprehend novel grammatical compositions. Experiments on the challenging Isharah-1000 dataset establish a new standard for both CSLR benchmarks. The proposed conformer architecture achieves a Word Error Rate (WER) of 13.07% on the SI challenge, a reduction of 13.53% from the state-of-the-art. On the US task, the transformer model scores a WER of 47.78%, surpassing previous work. In the SignEval 2025 CSLR challenge, our team placed 2nd in the US task and 4th in the SI task, demonstrating the performance of these models. The findings validate our key hypothesis: that developing task-specific networks designed for the particular challenges of CSLR leads to considerable performance improvements and establishes a new baseline for further research. The source code is available at: https://github.com/rezwanh001/MSLR-Pose86K-CSLR-Isharah.
comment: Accepted for the IEEE/CVF International Conference on Computer Vision (ICCV), Honolulu, Hawaii, USA. 1st MSLR Workshop 2025
☆ RicciFlowRec: A Geometric Root Cause Recommender Using Ricci Curvature on Financial Graphs
We propose RicciFlowRec, a geometric recommendation framework that performs root cause attribution via Ricci curvature and flow on dynamic financial graphs. By modelling evolving interactions among stocks, macroeconomic indicators, and news, we quantify local stress using discrete Ricci curvature and trace shock propagation via Ricci flow. Curvature gradients reveal causal substructures, informing a structural risk-aware ranking function. Preliminary results on S\&P~500 data with FinBERT-based sentiment show improved robustness and interpretability under synthetic perturbations. This ongoing work supports curvature-based attribution and early-stage risk-aware ranking, with plans for portfolio optimization and return forecasting. To our knowledge, RicciFlowRec is the first recommender to apply geometric flow-based reasoning in financial decision support.
comment: Accepted at ACM RecSys 2025 (Late Breaking Results Track)
☆ ParallelSearch: Train your LLMs to Decompose Query and Search Sub-queries in Parallel with Reinforcement Learning
Reasoning-augmented search agents such as Search-R1, trained via reinforcement learning with verifiable rewards (RLVR), demonstrate remarkable capabilities in multi-step information retrieval from external knowledge sources. These agents address the limitations of their parametric memory by dynamically gathering relevant facts to address complex reasoning tasks. However, existing approaches suffer from a fundamental architectural limitation: they process search queries strictly sequentially, even when handling inherently parallelizable and logically independent comparisons. This sequential bottleneck significantly constrains computational efficiency, particularly for queries that require multiple entity comparisons. To address this critical limitation, we propose ParallelSearch, a novel reinforcement learning framework that empowers large language models (LLMs) to recognize parallelizable query structures and execute multiple search operations concurrently. Our approach introduces dedicated reward functions that incentivize the identification of independent query components while preserving answer accuracy through jointly considering correctness, query decomposition quality, and parallel execution benefits. Comprehensive experiments demonstrate that ParallelSearch outperforms state-of-the-art baselines by an average performance gain of 2.9% across seven question-answering benchmarks. Notably, on parallelizable questions, our method achieves a 12.7% performance improvement while requiring only 69.6% of the LLM calls compared to sequential approaches.
♻ ☆ Efficient and Effective Query Context-Aware Learning-to-Rank Model for Sequential Recommendation
Modern sequential recommender systems commonly use transformer-based models for next-item prediction. While these models demonstrate a strong balance between efficiency and quality, integrating interleaving features - such as the query context (e.g., browse category) under which next-item interactions occur - poses challenges. Effectively capturing query context is crucial for refining ranking relevance and enhancing user engagement, as it provides valuable signals about user intent within a session. Unlike item features, historical query context is typically not aligned with item sequences and may be unavailable at inference due to privacy constraints or feature store limitations - making its integration into transformers both challenging and error-prone. This paper analyzes different strategies for incorporating query context into transformers trained with a causal language modeling procedure as a case study. We propose a new method that effectively fuses the item sequence with query context within the attention mechanism. Through extensive offline and online experiments on a large-scale online platform and open datasets, we present evidence that our proposed method is an effective approach for integrating query context to improve model ranking quality in terms of relevance and diversity.
♻ ☆ DIVER: A Multi-Stage Approach for Reasoning-intensive Information Retrieval
Retrieval-augmented generation has achieved strong performance on knowledge-intensive tasks where query-document relevance can be identified through direct lexical or semantic matches. However, many real-world queries involve abstract reasoning, analogical thinking, or multi-step inference, which existing retrievers often struggle to capture. To address this challenge, we present \textbf{DIVER}, a retrieval pipeline tailored for reasoning-intensive information retrieval. DIVER consists of four components: document processing to improve input quality, LLM-driven query expansion via iterative document interaction, a reasoning-enhanced retriever fine-tuned on synthetic multi-domain data with hard negatives, and a pointwise reranker that combines LLM-assigned helpfulness scores with retrieval scores. On the BRIGHT benchmark, DIVER achieves state-of-the-art nDCG@10 scores of 41.6 and 28.9 on original queries, consistently outperforming competitive reasoning-aware models. These results demonstrate the effectiveness of reasoning-aware retrieval strategies in complex real-world tasks. Our code and retrieval model will be released soon.
♻ ☆ RAGtifier: Evaluating RAG Generation Approaches of State-of-the-Art RAG Systems for the SIGIR LiveRAG Competition SIGIR 2025
Retrieval-Augmented Generation (RAG) enriches Large Language Models (LLMs) by combining their internal, parametric knowledge with external, non-parametric sources, with the goal of improving factual correctness and minimizing hallucinations. The LiveRAG 2025 challenge explores RAG solutions to maximize accuracy on DataMorgana's QA pairs, which are composed of single-hop and multi-hop questions. The challenge provides access to sparse OpenSearch and dense Pinecone indices of the Fineweb 10BT dataset. It restricts model use to LLMs with up to 10B parameters and final answer generation with Falcon-3-10B. A judge-LLM assesses the submitted answers along with human evaluators. By exploring distinct retriever combinations and RAG solutions under the challenge conditions, our final solution emerged using InstructRAG in combination with a Pinecone retriever and a BGE reranker. Our solution achieved a correctness score of 1.13 and a faithfulness score of 0.55 in the non-human evaluation, placing it overall in third place in the SIGIR 2025 LiveRAG Challenge.
comment: 4 pages, 6 figures. Report for SIGIR 2025 LiveRAG Challenge
♻ ☆ Context-based Motion Retrieval using Open Vocabulary Methods for Autonomous Driving
Autonomous driving systems must operate reliably in safety-critical scenarios, particularly those involving unusual or complex behavior by Vulnerable Road Users (VRUs). Identifying these edge cases in driving datasets is essential for robust evaluation and generalization, but retrieving such rare human behavior scenarios within the long tail of large-scale datasets is challenging. To support targeted evaluation of autonomous driving systems in diverse, human-centered scenarios, we propose a novel context-aware motion retrieval framework. Our method combines Skinned Multi-Person Linear (SMPL)-based motion sequences and corresponding video frames before encoding them into a shared multimodal embedding space aligned with natural language. Our approach enables the scalable retrieval of human behavior and their context through text queries. This work also introduces our dataset WayMoCo, an extension of the Waymo Open Dataset. It contains automatically labeled motion and scene context descriptions derived from generated pseudo-ground-truth SMPL sequences and corresponding image data. Our approach outperforms state-of-the-art models by up to 27.5% accuracy in motion-context retrieval, when evaluated on the WayMoCo dataset.
comment: Project page: https://iv.ee.hm.edu/contextmotionclip/; This work has been submitted to the IEEE for possible publication
♻ ☆ To Judge or not to Judge: Using LLM Judgements for Advertiser Keyphrase Relevance at eBay
E-commerce sellers are recommended keyphrases based on their inventory on which they advertise to increase buyer engagement (clicks/sales). The relevance of advertiser keyphrases plays an important role in preventing the inundation of search systems with numerous irrelevant items that compete for attention in auctions, in addition to maintaining a healthy seller perception. In this work, we describe the shortcomings of training Advertiser keyphrase relevance filter models on click/sales/search relevance signals and the importance of aligning with human judgment, as sellers have the power to adopt or reject said keyphrase recommendations. In this study, we frame Advertiser keyphrase relevance as a complex interaction between 3 dynamical systems -- seller judgment, which influences seller adoption of our product, Advertising, which provides the keyphrases to bid on, and Search, who holds the auctions for the same keyphrases. This study discusses the practicalities of using human judgment via a case study at eBay Advertising and demonstrate that using LLM-as-a-judge en-masse as a scalable proxy for seller judgment to train our relevance models achieves a better harmony across the three systems -- provided that they are bound by a meticulous evaluation framework grounded in business metrics.
♻ ☆ Utilizing Large Language Models for Information Extraction from Real Estate Transactions
Real estate sales contracts contain crucial information for property transactions, but manual data extraction can be time-consuming and error-prone. This paper explores the application of large language models, specifically transformer-based architectures, for automated information extraction from real estate contracts. We discuss challenges, techniques, and future directions in leveraging these models to improve efficiency and accuracy in real estate contract analysis. We generated synthetic contracts using the real-world transaction dataset, thereby fine-tuning the large-language model and achieving significant metrics improvements and qualitative improvements in information retrieval and reasoning tasks.
Artificial Intelligence 150
☆ Time Is a Feature: Exploiting Temporal Dynamics in Diffusion Language Models
Diffusion large language models (dLLMs) generate text through iterative denoising, yet current decoding strategies discard rich intermediate predictions in favor of the final output. Our work here reveals a critical phenomenon, temporal oscillation, where correct answers often emerge in the middle process, but are overwritten in later denoising steps. To address this issue, we introduce two complementary methods that exploit temporal consistency: 1) Temporal Self-Consistency Voting, a training-free, test-time decoding strategy that aggregates predictions across denoising steps to select the most consistent output; and 2) a post-training method termed Temporal Consistency Reinforcement, which uses Temporal Semantic Entropy (TSE), a measure of semantic stability across intermediate predictions, as a reward signal to encourage stable generations. Empirical results across multiple benchmarks demonstrate the effectiveness of our approach. Using the negative TSE reward alone, we observe a remarkable average improvement of 24.7% on the Countdown dataset over an existing dLLM. Combined with the accuracy reward, we achieve absolute gains of 2.0% on GSM8K, 4.3% on MATH500, 6.6% on SVAMP, and 25.3% on Countdown, respectively. Our findings underscore the untapped potential of temporal dynamics in dLLMs and offer two simple yet effective tools to harness them.
comment: Project webpage: https://aim-uofa.github.io/dLLM-MidTruth
☆ Training-Free Text-Guided Color Editing with Multi-Modal Diffusion Transformer
Text-guided color editing in images and videos is a fundamental yet unsolved problem, requiring fine-grained manipulation of color attributes, including albedo, light source color, and ambient lighting, while preserving physical consistency in geometry, material properties, and light-matter interactions. Existing training-free methods offer broad applicability across editing tasks but struggle with precise color control and often introduce visual inconsistency in both edited and non-edited regions. In this work, we present ColorCtrl, a training-free color editing method that leverages the attention mechanisms of modern Multi-Modal Diffusion Transformers (MM-DiT). By disentangling structure and color through targeted manipulation of attention maps and value tokens, our method enables accurate and consistent color editing, along with word-level control of attribute intensity. Our method modifies only the intended regions specified by the prompt, leaving unrelated areas untouched. Extensive experiments on both SD3 and FLUX.1-dev demonstrate that ColorCtrl outperforms existing training-free approaches and achieves state-of-the-art performances in both edit quality and consistency. Furthermore, our method surpasses strong commercial models such as FLUX.1 Kontext Max and GPT-4o Image Generation in terms of consistency. When extended to video models like CogVideoX, our approach exhibits greater advantages, particularly in maintaining temporal coherence and editing stability. Finally, our method also generalizes to instruction-based editing diffusion models such as Step1X-Edit and FLUX.1 Kontext dev, further demonstrating its versatility.
☆ BrowseMaster: Towards Scalable Web Browsing via Tool-Augmented Programmatic Agent Pair
Effective information seeking in the vast and ever-growing digital landscape requires balancing expansive search with strategic reasoning. Current large language model (LLM)-based agents struggle to achieve this balance due to limitations in search breadth and reasoning depth, where slow, serial querying restricts coverage of relevant sources and noisy raw inputs disrupt the continuity of multi-step reasoning. To address these challenges, we propose BrowseMaster, a scalable framework built around a programmatically augmented planner-executor agent pair. The planner formulates and adapts search strategies based on task constraints, while the executor conducts efficient, targeted retrieval to supply the planner with concise, relevant evidence. This division of labor preserves coherent, long-horizon reasoning while sustaining broad and systematic exploration, overcoming the trade-off that limits existing agents. Extensive experiments on challenging English and Chinese benchmarks show that BrowseMaster consistently outperforms open-source and proprietary baselines, achieving scores of 30.0 on BrowseComp-en and 46.5 on BrowseComp-zh, which demonstrates its strong capability in complex, reasoning-heavy information-seeking tasks at scale.
☆ OpenCUA: Open Foundations for Computer-Use Agents
Vision-language models have demonstrated impressive capabilities as computer-use agents (CUAs) capable of automating diverse computer tasks. As their commercial potential grows, critical details of the most capable CUA systems remain closed. As these agents will increasingly mediate digital interactions and execute consequential decisions on our behalf, the research community needs access to open CUA frameworks to study their capabilities, limitations, and risks. To bridge this gap, we propose OpenCUA, a comprehensive open-source framework for scaling CUA data and foundation models. Our framework consists of: (1) an annotation infrastructure that seamlessly captures human computer-use demonstrations; (2) AgentNet, the first large-scale computer-use task dataset spanning 3 operating systems and 200+ applications and websites; (3) a scalable pipeline that transforms demonstrations into state-action pairs with reflective long Chain-of-Thought reasoning that sustain robust performance gains as data scales. Our end-to-end agent models demonstrate strong performance across CUA benchmarks. In particular, OpenCUA-32B achieves an average success rate of 34.8% on OSWorld-Verified, establishing a new state-of-the-art (SOTA) among open-source models and surpassing OpenAI CUA (GPT-4o). Further analysis confirms that our approach generalizes well across domains and benefits significantly from increased test-time computation. We release our annotation tool, datasets, code, and models to build open foundations for further CUA research.
☆ SMA: Who Said That? Auditing Membership Leakage in Semi-Black-box RAG Controlling
Retrieval-Augmented Generation (RAG) and its Multimodal Retrieval-Augmented Generation (MRAG) significantly improve the knowledge coverage and contextual understanding of Large Language Models (LLMs) by introducing external knowledge sources. However, retrieval and multimodal fusion obscure content provenance, rendering existing membership inference methods unable to reliably attribute generated outputs to pre-training, external retrieval, or user input, thus undermining privacy leakage accountability To address these challenges, we propose the first Source-aware Membership Audit (SMA) that enables fine-grained source attribution of generated content in a semi-black-box setting with retrieval control capabilities.To address the environmental constraints of semi-black-box auditing, we further design an attribution estimation mechanism based on zero-order optimization, which robustly approximates the true influence of input tokens on the output through large-scale perturbation sampling and ridge regression modeling. In addition, SMA introduces a cross-modal attribution technique that projects image inputs into textual descriptions via MLLMs, enabling token-level attribution in the text modality, which for the first time facilitates membership inference on image retrieval traces in MRAG systems. This work shifts the focus of membership inference from 'whether the data has been memorized' to 'where the content is sourced from', offering a novel perspective for auditing data provenance in complex generative systems.
☆ Towards Universal Neural Inference
Real-world data often appears in diverse, disjoint forms -- with varying schemas, inconsistent semantics, and no fixed feature ordering -- making it challenging to build general-purpose models that can leverage information across datasets. We introduce ASPIRE, Arbitrary Set-based Permutation-Invariant Reasoning Engine, a Universal Neural Inference model for semantic reasoning and prediction over heterogeneous structured data. ASPIRE combines a permutation-invariant, set-based Transformer with a semantic grounding module that incorporates natural language descriptions, dataset metadata, and in-context examples to learn cross-dataset feature dependencies. This architecture allows ASPIRE to ingest arbitrary sets of feature--value pairs and support examples, align semantics across disjoint tables, and make predictions for any specified target. Once trained, ASPIRE generalizes to new inference tasks without additional tuning. In addition to delivering strong results across diverse benchmarks, ASPIRE naturally supports cost-aware active feature acquisition in an open-world setting, selecting informative features under test-time budget constraints for an arbitrary unseen dataset. These capabilities position ASPIRE as a step toward truly universal, semantics-aware inference over structured data.
☆ SPARC: Soft Probabilistic Adaptive multi-interest Retrieval Model via Codebooks for recommender system
Modeling multi-interests has arisen as a core problem in real-world RS. Current multi-interest retrieval methods pose three major challenges: 1) Interests, typically extracted from predefined external knowledge, are invariant. Failed to dynamically evolve with users' real-time consumption preferences. 2) Online inference typically employs an over-exploited strategy, mainly matching users' existing interests, lacking proactive exploration and discovery of novel and long-tail interests. To address these challenges, we propose a novel retrieval framework named SPARC(Soft Probabilistic Adaptive Retrieval Model via Codebooks). Our contribution is two folds. First, the framework utilizes Residual Quantized Variational Autoencoder (RQ-VAE) to construct a discretized interest space. It achieves joint training of the RQ-VAE with the industrial large scale recommendation model, mining behavior-aware interests that can perceive user feedback and evolve dynamically. Secondly, a probabilistic interest module that predicts the probability distribution over the entire dynamic and discrete interest space. This facilitates an efficient "soft-search" strategy during online inference, revolutionizing the retrieval paradigm from "passive matching" to "proactive exploration" and thereby effectively promoting interest discovery. Online A/B tests on an industrial platform with tens of millions daily active users, have achieved substantial gains in business metrics: +0.9% increase in user view duration, +0.4% increase in user page views (PV), and a +22.7% improvement in PV500(new content reaching 500 PVs in 24 hours). Offline evaluations are conducted on open-source Amazon Product datasets. Metrics, such as Recall@K and Normalized Discounted Cumulative Gain@K(NDCG@K), also showed consistent improvement. Both online and offline experiments validate the efficacy and practical value of the proposed method.
comment: 8 pages
☆ Dynamic Uncertainty-aware Multimodal Fusion for Outdoor Health Monitoring
Outdoor health monitoring is essential to detect early abnormal health status for safeguarding human health and safety. Conventional outdoor monitoring relies on static multimodal deep learning frameworks, which requires extensive data training from scratch and fails to capture subtle health status changes. Multimodal large language models (MLLMs) emerge as a promising alternative, utilizing only small datasets to fine-tune pre-trained information-rich models for enabling powerful health status monitoring. Unfortunately, MLLM-based outdoor health monitoring also faces significant challenges: I) sensor data contains input noise stemming from sensor data acquisition and fluctuation noise caused by sudden changes in physiological signals due to dynamic outdoor environments, thus degrading the training performance; ii) current transformer based MLLMs struggle to achieve robust multimodal fusion, as they lack a design for fusing the noisy modality; iii) modalities with varying noise levels hinder accurate recovery of missing data from fluctuating distributions. To combat these challenges, we propose an uncertainty-aware multimodal fusion framework, named DUAL-Health, for outdoor health monitoring in dynamic and noisy environments. First, to assess the impact of noise, we accurately quantify modality uncertainty caused by input and fluctuation noise with current and temporal features. Second, to empower efficient muitimodal fusion with low-quality modalities,we customize the fusion weight for each modality based on quantified and calibrated uncertainty. Third, to enhance data recovery from fluctuating noisy modalities, we align modality distributions within a common semantic space. Extensive experiments demonstrate that our DUAL-Health outperforms state-of-the-art baselines in detection accuracy and robustness.
comment: 14 pages, 10 figures
☆ CVCM Track Circuits Pre-emptive Failure Diagnostics for Predictive Maintenance Using Deep Neural Networks
Track circuits are critical for railway operations, acting as the main signalling sub-system to locate trains. Continuous Variable Current Modulation (CVCM) is one such technology. Like any field-deployed, safety-critical asset, it can fail, triggering cascading disruptions. Many failures originate as subtle anomalies that evolve over time, often not visually apparent in monitored signals. Conventional approaches, which rely on clear signal changes, struggle to detect them early. Early identification of failure types is essential to improve maintenance planning, minimising downtime and revenue loss. Leveraging deep neural networks, we propose a predictive maintenance framework that classifies anomalies well before they escalate into failures. Validated on 10 CVCM failure cases across different installations, the method is ISO-17359 compliant and outperforms conventional techniques, achieving 99.31% overall accuracy with detection within 1% of anomaly onset. Through conformal prediction, we provide uncertainty estimates, reaching 99% confidence with consistent coverage across classes. Given CVCMs global deployment, the approach is scalable and adaptable to other track circuits and railway systems, enhancing operational reliability.
comment: Peer-reviewed conference paper. Presented at ICROMA 2025 (International Conference on Railway Operations Modelling and Analysis), Dresden, Germany. https://tu-dresden.de/raildresden2025 8 pages, 6 figures, 1 table
☆ Can We Trust AI to Govern AI? Benchmarking LLM Performance on Privacy and AI Governance Exams
The rapid emergence of large language models (LLMs) has raised urgent questions across the modern workforce about this new technology's strengths, weaknesses, and capabilities. For privacy professionals, the question is whether these AI systems can provide reliable support on regulatory compliance, privacy program management, and AI governance. In this study, we evaluate ten leading open and closed LLMs, including models from OpenAI, Anthropic, Google DeepMind, Meta, and DeepSeek, by benchmarking their performance on industry-standard certification exams: CIPP/US, CIPM, CIPT, and AIGP from the International Association of Privacy Professionals (IAPP). Each model was tested using official sample exams in a closed-book setting and compared to IAPP's passing thresholds. Our findings show that several frontier models such as Gemini 2.5 Pro and OpenAI's GPT-5 consistently achieve scores exceeding the standards for professional human certification - demonstrating substantial expertise in privacy law, technical controls, and AI governance. The results highlight both the strengths and domain-specific gaps of current LLMs and offer practical insights for privacy officers, compliance leads, and technologists assessing the readiness of AI tools for high-stakes data governance roles. This paper provides an overview for professionals navigating the intersection of AI advancement and regulatory risk and establishes a machine benchmark based on human-centric evaluations.
☆ Spatial Traces: Enhancing VLA Models with Spatial-Temporal Understanding
Vision-Language-Action models have demonstrated remarkable capabilities in predicting agent movements within virtual environments and real-world scenarios based on visual observations and textual instructions. Although recent research has focused on enhancing spatial and temporal understanding independently, this paper presents a novel approach that integrates both aspects through visual prompting. We introduce a method that projects visual traces of key points from observations onto depth maps, enabling models to capture both spatial and temporal information simultaneously. The experiments in SimplerEnv show that the mean number of tasks successfully solved increased for 4% compared to SpatialVLA and 19% compared to TraceVLA. Furthermore, we show that this enhancement can be achieved with minimal training data, making it particularly valuable for real-world applications where data collection is challenging. The project page is available at https://ampiromax.github.io/ST-VLA.
☆ A First Look at Predictability and Explainability of Pre-request Passenger Waiting Time in Ridesharing Systems
Passenger waiting time prediction plays a critical role in enhancing both ridesharing user experience and platform efficiency. While most existing research focuses on post-request waiting time prediction with knowing the matched driver information, pre-request waiting time prediction (i.e., before submitting a ride request and without matching a driver) is also important, as it enables passengers to plan their trips more effectively and enhance the experience of both passengers and drivers. However, it has not been fully studied by existing works. In this paper, we take the first step toward understanding the predictability and explainability of pre-request passenger waiting time in ridesharing systems. Particularly, we conduct an in-depth data-driven study to investigate the impact of demand&supply dynamics on passenger waiting time. Based on this analysis and feature engineering, we propose FiXGBoost, a novel feature interaction-based XGBoost model designed to predict waiting time without knowing the assigned driver information. We further perform an importance analysis to quantify the contribution of each factor. Experiments on a large-scale real-world ridesharing dataset including over 30 million trip records show that our FiXGBoost can achieve a good performance for pre-request passenger waiting time prediction with high explainability.
☆ E3-Rewrite: Learning to Rewrite SQL for Executability, Equivalence,and Efficiency
SQL query rewriting aims to reformulate a query into a more efficient form while preserving equivalence. Most existing methods rely on predefined rewrite rules. However, such rule-based approaches face fundamental limitations: (1) fixed rule sets generalize poorly to novel query patterns and struggle with complex queries; (2) a wide range of effective rewriting strategies cannot be fully captured by declarative rules. To overcome these issues, we propose using large language models (LLMs) to generate rewrites. LLMs can capture complex strategies, such as evaluation reordering and CTE rewriting. Despite this potential, directly applying LLMs often results in suboptimal or non-equivalent rewrites due to a lack of execution awareness and semantic grounding. To address these challenges, We present E3-Rewrite, an LLM-based SQL rewriting framework that produces executable, equivalent, and efficient queries. It integrates two core components: a context construction module and a reinforcement learning framework. First, the context module leverages execution plans and retrieved demonstrations to build bottleneck-aware prompts that guide inference-time rewriting. Second, we design a reward function targeting executability, equivalence, and efficiency, evaluated via syntax checks, equivalence verification, and cost estimation. Third, to ensure stable multi-objective learning, we adopt a staged curriculum that first emphasizes executability and equivalence, then gradually incorporates efficiency. Extensive experiments show that E3-Rewrite achieves up to a 25.6\% reduction in query execution time compared to state-of-the-art methods across multiple SQL benchmarks. Moreover, it delivers up to 24.4\% more successful rewrites, expanding coverage to complex queries that previous systems failed to handle.
☆ When Deepfakes Look Real: Detecting AI-Generated Faces with Unlabeled Data due to Annotation Challenges
Existing deepfake detection methods heavily depend on labeled training data. However, as AI-generated content becomes increasingly realistic, even \textbf{human annotators struggle to distinguish} between deepfakes and authentic images. This makes the labeling process both time-consuming and less reliable. Specifically, there is a growing demand for approaches that can effectively utilize large-scale unlabeled data from online social networks. Unlike typical unsupervised learning tasks, where categories are distinct, AI-generated faces closely mimic real image distributions and share strong similarities, causing performance drop in conventional strategies. In this paper, we introduce the Dual-Path Guidance Network (DPGNet), to tackle two key challenges: (1) bridging the domain gap between faces from different generation models, and (2) utilizing unlabeled image samples. The method features two core modules: text-guided cross-domain alignment, which uses learnable prompts to unify visual and textual embeddings into a domain-invariant feature space, and curriculum-driven pseudo label generation, which dynamically exploit more informative unlabeled samples. To prevent catastrophic forgetting, we also facilitate bridging between domains via cross-domain knowledge distillation. Extensive experiments on \textbf{11 popular datasets}, show that DPGNet outperforms SoTA approaches by \textbf{6.3\%}, highlighting its effectiveness in leveraging unlabeled data to address the annotation challenges posed by the increasing realism of deepfakes.
comment: 10pages,5figures
☆ Attacks and Defenses Against LLM Fingerprinting
As large language models are increasingly deployed in sensitive environments, fingerprinting attacks pose significant privacy and security risks. We present a study of LLM fingerprinting from both offensive and defensive perspectives. Our attack methodology uses reinforcement learning to automatically optimize query selection, achieving better fingerprinting accuracy with only 3 queries compared to randomly selecting 3 queries from the same pool. Our defensive approach employs semantic-preserving output filtering through a secondary LLM to obfuscate model identity while maintaining semantic integrity. The defensive method reduces fingerprinting accuracy across tested models while preserving output quality. These contributions show the potential to improve fingerprinting tools capabilities while providing practical mitigation strategies against fingerprinting attacks.
☆ Activation Steering for Bias Mitigation: An Interpretable Approach to Safer LLMs
As large language models (LLMs) become more integrated into societal systems, the risk of them perpetuating and amplifying harmful biases becomes a critical safety concern. Traditional methods for mitigating bias often rely on data filtering or post-hoc output moderation, which treat the model as an opaque black box. In this work, we introduce a complete, end-to-end system that uses techniques from mechanistic interpretability to both identify and actively mitigate bias directly within a model's internal workings. Our method involves two primary stages. First, we train linear "probes" on the internal activations of a model to detect the latent representations of various biases (e.g., gender, race, age). Our experiments on \texttt{gpt2-large} demonstrate that these probes can identify biased content with near-perfect accuracy, revealing that bias representations become most salient in the model's later layers. Second, we leverage these findings to compute "steering vectors" by contrasting the model's activation patterns for biased and neutral statements. By adding these vectors during inference, we can actively steer the model's generative process away from producing harmful, stereotypical, or biased content in real-time. We demonstrate the efficacy of this activation steering technique, showing that it successfully alters biased completions toward more neutral alternatives. We present our work as a robust and reproducible system that offers a more direct and interpretable approach to building safer and more accountable LLMs.
☆ LyS at SemEval 2025 Task 8: Zero-Shot Code Generation for Tabular QA
This paper describes our participation in SemEval 2025 Task 8, focused on Tabular Question Answering. We developed a zero-shot pipeline that leverages an Large Language Model to generate functional code capable of extracting the relevant information from tabular data based on an input question. Our approach consists of a modular pipeline where the main code generator module is supported by additional components that identify the most relevant columns and analyze their data types to improve extraction accuracy. In the event that the generated code fails, an iterative refinement process is triggered, incorporating the error feedback into a new generation prompt to enhance robustness. Our results show that zero-shot code generation is a valid approach for Tabular QA, achieving rank 33 of 53 in the test phase despite the lack of task-specific fine-tuning.
comment: Accepted to SemEval 2025. Camera-ready version
☆ Retrospective Sparse Attention for Efficient Long-Context Generation
Large Language Models (LLMs) are increasingly deployed in long-context tasks such as reasoning, code generation, and multi-turn dialogue. However, inference over extended contexts is bottlenecked by the Key-Value (KV) cache, whose memory footprint grows linearly with sequence length and dominates latency at each decoding step. While recent KV cache compression methods identify and load important tokens, they focus predominantly on input contexts and fail to address the cumulative attention errors that arise during long decoding. In this paper, we introduce RetroAttention, a novel KV cache update technique that retrospectively revises past attention outputs using newly arrived KV entries from subsequent decoding steps. By maintaining a lightweight output cache, RetroAttention enables past queries to efficiently access more relevant context, while incurring minimal latency overhead. This breaks the fixed-attention-output paradigm and allows continual correction of prior approximations. Extensive experiments on long-generation benchmarks show that RetroAttention consistently outperforms state-of-the-art (SOTA) KV compression methods, increasing effective KV exposure by up to 1.6$\times$ and accuracy by up to 21.9\%.
☆ Intrinsic Memory Agents: Heterogeneous Multi-Agent LLM Systems through Structured Contextual Memory
Multi-agent systems built on Large Language Models (LLMs) show exceptional promise for complex collaborative problem-solving, yet they face fundamental challenges stemming from context window limitations that impair memory consistency, role adherence, and procedural integrity. This paper introduces Intrinsic Memory Agents, a novel framework that addresses these limitations through structured agent-specific memories that evolve intrinsically with agent outputs. Specifically, our method maintains role-aligned memory templates that preserve specialized perspectives while focusing on task-relevant information. We benchmark our approach on the PDDL dataset, comparing its performance to existing state-of-the-art multi-agentic memory approaches and showing an improvement of 38.6\% with the highest token efficiency. An additional evaluation is performed on a complex data pipeline design task, we demonstrate that our approach produces higher quality designs when comparing 5 metrics: scalability, reliability, usability, cost-effectiveness and documentation with additional qualitative evidence of the improvements. Our findings suggest that addressing memory limitations through structured, intrinsic approaches can improve the capabilities of multi-agent LLM systems on structured planning tasks.
☆ Prospect Theory Fails for LLMs: Revealing Instability of Decision-Making under Epistemic Uncertainty
Prospect Theory (PT) models human decision-making under uncertainty, while epistemic markers (e.g., maybe) serve to express uncertainty in language. However, it remains largely unexplored whether Prospect Theory applies to contemporary Large Language Models and whether epistemic markers, which express human uncertainty, affect their decision-making behaviour. To address these research gaps, we design a three-stage experiment based on economic questionnaires. We propose a more general and precise evaluation framework to model LLMs' decision-making behaviour under PT, introducing uncertainty through the empirical probability values associated with commonly used epistemic markers in comparable contexts. We then incorporate epistemic markers into the evaluation framework based on their corresponding probability values to examine their influence on LLM decision-making behaviours. Our findings suggest that modelling LLMs' decision-making with PT is not consistently reliable, particularly when uncertainty is expressed in diverse linguistic forms. Our code is released in https://github.com/HKUST-KnowComp/MarPT.
☆ Rational Inverse Reasoning
Humans can observe a single, imperfect demonstration and immediately generalize to very different problem settings. Robots, in contrast, often require hundreds of examples and still struggle to generalize beyond the training conditions. We argue that this limitation arises from the inability to recover the latent explanations that underpin intelligent behavior, and that these explanations can take the form of structured programs consisting of high-level goals, sub-task decomposition, and execution constraints. In this work, we introduce Rational Inverse Reasoning (RIR), a framework for inferring these latent programs through a hierarchical generative model of behavior. RIR frames few-shot imitation as Bayesian program induction: a vision-language model iteratively proposes structured symbolic task hypotheses, while a planner-in-the-loop inference scheme scores each by the likelihood of the observed demonstration under that hypothesis. This loop yields a posterior over concise, executable programs. We evaluate RIR on a suite of continuous manipulation tasks designed to test one-shot and few-shot generalization across variations in object pose, count, geometry, and layout. With as little as one demonstration, RIR infers the intended task structure and generalizes to novel settings, outperforming state-of-the-art vision-language model baselines.
☆ Unsupervised Skill Discovery as Exploration for Learning Agile Locomotion
Exploration is crucial for enabling legged robots to learn agile locomotion behaviors that can overcome diverse obstacles. However, such exploration is inherently challenging, and we often rely on extensive reward engineering, expert demonstrations, or curriculum learning - all of which limit generalizability. In this work, we propose Skill Discovery as Exploration (SDAX), a novel learning framework that significantly reduces human engineering effort. SDAX leverages unsupervised skill discovery to autonomously acquire a diverse repertoire of skills for overcoming obstacles. To dynamically regulate the level of exploration during training, SDAX employs a bi-level optimization process that autonomously adjusts the degree of exploration. We demonstrate that SDAX enables quadrupedal robots to acquire highly agile behaviors including crawling, climbing, leaping, and executing complex maneuvers such as jumping off vertical walls. Finally, we deploy the learned policy on real hardware, validating its successful transfer to the real world.
comment: Conference on Robot Learning 2025
☆ Urban-STA4CLC: Urban Theory-Informed Spatio-Temporal Attention Model for Predicting Post-Disaster Commercial Land Use Change
Natural disasters such as hurricanes and wildfires increasingly introduce unusual disturbance on economic activities, which are especially likely to reshape commercial land use pattern given their sensitive to customer visitation. However, current modeling approaches are limited in capturing such complex interplay between human activities and commercial land use change under and following disturbances. Such interactions have been more effectively captured in current resilient urban planning theories. This study designs and calibrates a Urban Theory-Informed Spatio-Temporal Attention Model for Predicting Post-Disaster Commercial Land Use Change (Urban-STA4CLC) to predict both the yearly decline and expansion of commercial land use at census block level under cumulative impact of disasters on human activities over two years. Guided by urban theories, Urban-STA4CLC integrates both spatial and temporal attention mechanisms with three theory-informed modules. Resilience theory guides a disaster-aware temporal attention module that captures visitation dynamics. Spatial economic theory informs a multi-relational spatial attention module for inter-block representation. Diffusion theory contributes a regularization term that constrains land use transitions. The model performs significantly better than non-theoretical baselines in predicting commercial land use change under the scenario of recurrent hurricanes, with around 19% improvement in F1 score (0.8763). The effectiveness of the theory-guided modules was further validated through ablation studies. The research demonstrates that embedding urban theory into commercial land use modeling models may substantially enhance the capacity to capture its gains and losses. These advances in commercial land use modeling contribute to land use research that accounts for cumulative impacts of recurrent disasters and shifts in economic activity patterns.
☆ Revealing the Role of Audio Channels in ASR Performance Degradation
Pre-trained automatic speech recognition (ASR) models have demonstrated strong performance on a variety of tasks. However, their performance can degrade substantially when the input audio comes from different recording channels. While previous studies have demonstrated this phenomenon, it is often attributed to the mismatch between training and testing corpora. This study argues that variations in speech characteristics caused by different recording channels can fundamentally harm ASR performance. To address this limitation, we propose a normalization technique designed to mitigate the impact of channel variation by aligning internal feature representations in the ASR model with those derived from a clean reference channel. This approach significantly improves ASR performance on previously unseen channels and languages, highlighting its ability to generalize across channel and language differences.
comment: Accepted to IEEE ASRU 2025
☆ QAMRO: Quality-aware Adaptive Margin Ranking Optimization for Human-aligned Assessment of Audio Generation Systems
Evaluating audio generation systems, including text-to-music (TTM), text-to-speech (TTS), and text-to-audio (TTA), remains challenging due to the subjective and multi-dimensional nature of human perception. Existing methods treat mean opinion score (MOS) prediction as a regression problem, but standard regression losses overlook the relativity of perceptual judgments. To address this limitation, we introduce QAMRO, a novel Quality-aware Adaptive Margin Ranking Optimization framework that seamlessly integrates regression objectives from different perspectives, aiming to highlight perceptual differences and prioritize accurate ratings. Our framework leverages pre-trained audio-text models such as CLAP and Audiobox-Aesthetics, and is trained exclusively on the official AudioMOS Challenge 2025 dataset. It demonstrates superior alignment with human evaluations across all dimensions, significantly outperforming robust baseline models.
comment: Accepted to IEEE ASRU 2025
☆ Generalising Traffic Forecasting to Regions without Traffic Observations
Traffic forecasting is essential for intelligent transportation systems. Accurate forecasting relies on continuous observations collected by traffic sensors. However, due to high deployment and maintenance costs, not all regions are equipped with such sensors. This paper aims to forecast for regions without traffic sensors, where the lack of historical traffic observations challenges the generalisability of existing models. We propose a model named GenCast, the core idea of which is to exploit external knowledge to compensate for the missing observations and to enhance generalisation. We integrate physics-informed neural networks into GenCast, enabling physical principles to regularise the learning process. We introduce an external signal learning module to explore correlations between traffic states and external signals such as weather conditions, further improving model generalisability. Additionally, we design a spatial grouping module to filter localised features that hinder model generalisability. Extensive experiments show that GenCast consistently reduces forecasting errors on multiple real-world datasets.
☆ Train Long, Think Short: Curriculum Learning for Efficient Reasoning
Recent work on enhancing the reasoning abilities of large language models (LLMs) has introduced explicit length control as a means of constraining computational cost while preserving accuracy. However, existing approaches rely on fixed-length training budgets, which do not take advantage of the natural progression from exploration to compression during learning. In this work, we propose a curriculum learning strategy for length-controlled reasoning using Group Relative Policy Optimization (GRPO). Our method starts with generous token budgets and gradually tightens them over training, encouraging models to first discover effective solution strategies and then distill them into more concise reasoning traces. We augment GRPO with a reward function that balances three signals: task correctness (via verifier feedback), length efficiency, and formatting adherence (via structural tags). Experiments on GSM8K, MATH500, SVAMP, College Math, and GSM+ demonstrate that curriculum-based training consistently outperforms fixed-budget baselines at the same final budget, achieving higher accuracy and significantly improved token efficiency. We further ablate the impact of reward weighting and decay schedule design, showing that progressive constraint serves as a powerful inductive bias for training efficient reasoning models. Our code and checkpoints are released at: https://github.com/hammoudhasan/curriculum_grpo.
comment: Under Review
☆ Safe Semantics, Unsafe Interpretations: Tackling Implicit Reasoning Safety in Large Vision-Language Models
Large Vision-Language Models face growing safety challenges with multimodal inputs. This paper introduces the concept of Implicit Reasoning Safety, a vulnerability in LVLMs. Benign combined inputs trigger unsafe LVLM outputs due to flawed or hidden reasoning. To showcase this, we developed Safe Semantics, Unsafe Interpretations, the first dataset for this critical issue. Our demonstrations show that even simple In-Context Learning with SSUI significantly mitigates these implicit multimodal threats, underscoring the urgent need to improve cross-modal implicit reasoning.
☆ EGGCodec: A Robust Neural Encodec Framework for EGG Reconstruction and F0 Extraction
This letter introduces EGGCodec, a robust neural Encodec framework engineered for electroglottography (EGG) signal reconstruction and F0 extraction. We propose a multi-scale frequency-domain loss function to capture the nuanced relationship between original and reconstructed EGG signals, complemented by a time-domain correlation loss to improve generalization and accuracy. Unlike conventional Encodec models that extract F0 directly from features, EGGCodec leverages reconstructed EGG signals, which more closely correspond to F0. By removing the conventional GAN discriminator, we streamline EGGCodec's training process without compromising efficiency, incurring only negligible performance degradation. Trained on a widely used EGG-inclusive dataset, extensive evaluations demonstrate that EGGCodec outperforms state-of-the-art F0 extraction schemes, reducing mean absolute error (MAE) from 14.14 Hz to 13.69 Hz, and improving voicing decision error (VDE) by 38.2\%. Moreover, extensive ablation experiments validate the contribution of each component of EGGCodec.
comment: 5 pages, 5 figures, to be appeared in IEEE Signal Processing Letters
☆ Shape Completion and Real-Time Visualization in Robotic Ultrasound Spine Acquisitions
Ultrasound (US) imaging is increasingly used in spinal procedures due to its real-time, radiation-free capabilities; however, its effectiveness is hindered by shadowing artifacts that obscure deeper tissue structures. Traditional approaches, such as CT-to-US registration, incorporate anatomical information from preoperative CT scans to guide interventions, but they are limited by complex registration requirements, differences in spine curvature, and the need for recent CT imaging. Recent shape completion methods can offer an alternative by reconstructing spinal structures in US data, while being pretrained on large set of publicly available CT scans. However, these approaches are typically offline and have limited reproducibility. In this work, we introduce a novel integrated system that combines robotic ultrasound with real-time shape completion to enhance spinal visualization. Our robotic platform autonomously acquires US sweeps of the lumbar spine, extracts vertebral surfaces from ultrasound, and reconstructs the complete anatomy using a deep learning-based shape completion network. This framework provides interactive, real-time visualization with the capability to autonomously repeat scans and can enable navigation to target locations. This can contribute to better consistency, reproducibility, and understanding of the underlying anatomy. We validate our approach through quantitative experiments assessing shape completion accuracy and evaluations of multiple spine acquisition protocols on a phantom setup. Additionally, we present qualitative results of the visualization on a volunteer scan.
☆ Munsit at NADI 2025 Shared Task 2: Pushing the Boundaries of Multidialectal Arabic ASR with Weakly Supervised Pretraining and Continual Supervised Fine-tuning
Automatic speech recognition (ASR) plays a vital role in enabling natural human-machine interaction across applications such as virtual assistants, industrial automation, customer support, and real-time transcription. However, developing accurate ASR systems for low-resource languages like Arabic remains a significant challenge due to limited labeled data and the linguistic complexity introduced by diverse dialects. In this work, we present a scalable training pipeline that combines weakly supervised learning with supervised fine-tuning to develop a robust Arabic ASR model. In the first stage, we pretrain the model on 15,000 hours of weakly labeled speech covering both Modern Standard Arabic (MSA) and various Dialectal Arabic (DA) variants. In the subsequent stage, we perform continual supervised fine-tuning using a mixture of filtered weakly labeled data and a small, high-quality annotated dataset. Our approach achieves state-of-the-art results, ranking first in the multi-dialectal Arabic ASR challenge. These findings highlight the effectiveness of weak supervision paired with fine-tuning in overcoming data scarcity and delivering high-quality ASR for low-resource, dialect-rich languages.
☆ Compass-Thinker-7B Technical Report
Recent R1-Zero-like research further demonstrates that reasoning extension has given large language models (LLMs) unprecedented reasoning capabilities, and Reinforcement Learning is the core tech- nology to elicit its complex reasoning. However, conducting RL experiments directly on hyperscale models involves high computational costs and resource demands, posing significant risks. We pro- pose the Compass-Thinker-7B model, which aims to explore the potential of Reinforcement Learn- ing with less computational resources and costs, and provides insights for further research into RL recipes for larger models. Compass-Thinker-7B is trained from an open source model through a spe- cially designed Reinforcement Learning Pipeline. we curate a dataset of 30k verifiable mathematics problems for the Reinforcement Learning Pipeline. By configuring data and training settings with dif- ferent difficulty distributions for different stages, the potential of the model is gradually released and the training efficiency is improved. Extensive evaluations show that Compass-Thinker-7B possesses exceptional reasoning potential, and achieves superior performance on mathematics compared to the same-sized RL model.Especially in the challenging AIME2024 evaluation, Compass-Thinker-7B achieves 40% accuracy.
☆ ASPD: Unlocking Adaptive Serial-Parallel Decoding by Exploring Intrinsic Parallelism in LLMs
The increasing scale and complexity of large language models (LLMs) pose significant inference latency challenges, primarily due to their autoregressive decoding paradigm characterized by the sequential nature of next-token prediction. By re-examining the outputs of autoregressive models, we observed that some segments exhibit parallelizable structures, which we term intrinsic parallelism. Decoding each parallelizable branch simultaneously (i.e. parallel decoding) can significantly improve the overall inference speed of LLMs. In this paper, we propose an Adaptive Serial-Parallel Decoding (ASPD), which addresses two core challenges: automated construction of parallelizable data and efficient parallel decoding mechanism. More specifically, we introduce a non-invasive pipeline that automatically extracts and validates parallelizable structures from the responses of autoregressive models. To empower efficient adaptive serial-parallel decoding, we implement a Hybrid Decoding Engine which enables seamless transitions between serial and parallel decoding modes while maintaining a reusable KV cache, maximizing computational efficiency. Extensive evaluations across General Tasks, Retrieval-Augmented Generation, Mathematical Reasoning, demonstrate that ASPD achieves unprecedented performance in both effectiveness and efficiency. Notably, on Vicuna Bench, our method achieves up to 3.19x speedup (1.85x on average) while maintaining response quality within 1% difference compared to autoregressive models, realizing significant acceleration without compromising generation quality. Our framework sets a groundbreaking benchmark for efficient LLM parallel inference, paving the way for its deployment in latency-sensitive applications such as AI-powered customer service bots and answer retrieval engines.
comment: 20 pages, 9 figures
☆ Position: Causal Machine Learning Requires Rigorous Synthetic Experiments for Broader Adoption ICML 2025
Causal machine learning has the potential to revolutionize decision-making by combining the predictive power of machine learning algorithms with the theory of causal inference. However, these methods remain underutilized by the broader machine learning community, in part because current empirical evaluations do not permit assessment of their reliability and robustness, undermining their practical utility. Specifically, one of the principal criticisms made by the community is the extensive use of synthetic experiments. We argue, on the contrary, that synthetic experiments are essential and necessary to precisely assess and understand the capabilities of causal machine learning methods. To substantiate our position, we critically review the current evaluation practices, spotlight their shortcomings, and propose a set of principles for conducting rigorous empirical analyses with synthetic data. Adopting the proposed principles will enable comprehensive evaluations that build trust in causal machine learning methods, driving their broader adoption and impactful real-world use.
comment: Accepted at ICML 2025
☆ Reducing Cognitive Load in Multi-Agent Reinforcement Learning for Mathematical Problem Solving: Decoupling Reasoning and Code Generation
Current tool-integrated mathematical reasoning systems often adopt a single-agent paradigm, where one large language model handles problem reasoning, code generation, and code execution in an integrated workflow. While this design eases coordination, we hypothesize that it imposes cognitive load interference, as the agent must interleave long-horizon reasoning with precise program synthesis. We validate this hypothesis through a controlled comparison between a reasoning-only agent and a reasoning-plus-code agent, finding that the latter produces significantly fewer correct reasoning paths despite having tool-calling capabilities. To address this, we propose a dual-agent hybrid framework: a Reasoning Agent performs stepwise problem decomposition, and a Code Agent handles code generation and execution. Training combines imitation learning and reinforcement learning: the Code Agent receives strong rewards for matching intermediate ground-truth programs and weaker rewards for valid execution, while the Reasoning Agent is optimized chiefly via final-answer accuracy using advantage estimation to credit intermediate steps. This decoupled role design reduces cognitive interference and promotes stable reasoning-coding coordination.
☆ Entangled in Representations: Mechanistic Investigation of Cultural Biases in Large Language Models
The growing deployment of large language models (LLMs) across diverse cultural contexts necessitates a better understanding of how the overgeneralization of less documented cultures within LLMs' representations impacts their cultural understanding. Prior work only performs extrinsic evaluation of LLMs' cultural competence, without accounting for how LLMs' internal mechanisms lead to cultural (mis)representation. To bridge this gap, we propose Culturescope, the first mechanistic interpretability-based method that probes the internal representations of LLMs to elicit the underlying cultural knowledge space. CultureScope utilizes a patching method to extract the cultural knowledge. We introduce a cultural flattening score as a measure of the intrinsic cultural biases. Additionally, we study how LLMs internalize Western-dominance bias and cultural flattening, which allows us to trace how cultural biases emerge within LLMs. Our experimental results reveal that LLMs encode Western-dominance bias and cultural flattening in their cultural knowledge space. We find that low-resource cultures are less susceptible to cultural biases, likely due to their limited training resources. Our work provides a foundation for future research on mitigating cultural biases and enhancing LLMs' cultural understanding. Our codes and data used for experiments are publicly available.
comment: 16 pages, 7 figures
☆ Oblivionis: A Lightweight Learning and Unlearning Framework for Federated Large Language Models
Large Language Models (LLMs) increasingly leverage Federated Learning (FL) to utilize private, task-specific datasets for fine-tuning while preserving data privacy. However, while federated LLM frameworks effectively enable collaborative training without raw data sharing, they critically lack built-in mechanisms for regulatory compliance like GDPR's right to be forgotten. Integrating private data heightens concerns over data quality and long-term governance, yet existing distributed training frameworks offer no principled way to selectively remove specific client contributions post-training. Due to distributed data silos, stringent privacy constraints, and the intricacies of interdependent model aggregation, federated LLM unlearning is significantly more complex than centralized LLM unlearning. To address this gap, we introduce Oblivionis, a lightweight learning and unlearning framework that enables clients to selectively remove specific private data during federated LLM training, enhancing trustworthiness and regulatory compliance. By unifying FL and unlearning as a dual optimization objective, we incorporate 6 FL and 5 unlearning algorithms for comprehensive evaluation and comparative analysis, establishing a robust pipeline for federated LLM unlearning. Extensive experiments demonstrate that Oblivionis outperforms local training, achieving a robust balance between forgetting efficacy and model utility, with cross-algorithm comparisons providing clear directions for future LLM development.
☆ BiasGym: Fantastic Biases and How to Find (and Remove) Them
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. Biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce BiasGym, a simple, cost-effective, and generalizable framework for reliably injecting, analyzing, and mitigating conceptual associations within LLMs. BiasGym consists of two components: BiasInject, which injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and BiasScope, which leverages these injected signals to identify and steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during training. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from a country being `reckless drivers') and in probing fictional associations (e.g., people from a country having `blue skin'), showing its utility for both safety interventions and interpretability research.
comment: Under review
☆ Steering Towards Fairness: Mitigating Political Bias in LLMs
Recent advancements in large language models (LLMs) have enabled their widespread use across diverse real-world applications. However, concerns remain about their tendency to encode and reproduce ideological biases, particularly along political and economic dimensions. In this paper, we propose a framework for probing and mitigating such biases in decoder-based LLMs through analysis of internal model representations. Grounded in the Political Compass Test (PCT), our method uses contrastive pairs to extract and compare hidden layer activations from models like Mistral and DeepSeek. We introduce a comprehensive activation extraction pipeline capable of layer-wise analysis across multiple ideological axes, revealing meaningful disparities linked to political framing. Our results show that decoder LLMs systematically encode representational bias across layers, which can be leveraged for effective steering vector-based mitigation. This work provides new insights into how political bias is encoded in LLMs and offers a principled approach to debiasing beyond surface-level output interventions.
comment: Preprint
☆ The Roots of International Perceptions: Simulating US Attitude Changes Towards China with LLM Agents AAAI
The rise of LLMs poses new possibilities in modeling opinion evolution, a long-standing task in simulation, by leveraging advanced reasoning abilities to recreate complex, large-scale human cognitive trends. While most prior works focus on opinion evolution surrounding specific isolated events or the views within a country, ours is the first to model the large-scale attitude evolution of a population representing an entire country towards another -- US citizens' perspectives towards China. To tackle the challenges of this broad scenario, we propose a framework that integrates media data collection, user profile creation, and cognitive architecture for opinion updates to successfully reproduce the real trend of US attitudes towards China over a 20-year period from 2005 to today. We also leverage LLMs' capabilities to introduce debiased media exposure, extracting neutral events from typically subjective news contents, to uncover the roots of polarized opinion formation, as well as a devils advocate agent to help explain the rare reversal from negative to positive attitudes towards China, corresponding with changes in the way Americans obtain information about the country. The simulation results, beyond validating our framework architecture, also reveal the impact of biased framing and selection bias in shaping attitudes. Overall, our work contributes to a new paradigm for LLM-based modeling of cognitive behaviors in a large-scale, long-term, cross-border social context, providing insights into the formation of international biases and offering valuable implications for media consumers to better understand the factors shaping their perspectives, and ultimately contributing to the larger social need for bias reduction and cross-cultural tolerance.
comment: Submitted to AAAI Social Impact 2026
☆ EditMF: Drawing an Invisible Fingerprint for Your Large Language Models
Training large language models (LLMs) is resource-intensive and expensive, making protecting intellectual property (IP) for LLMs crucial. Recently, embedding fingerprints into LLMs has emerged as a prevalent method for establishing model ownership. However, existing back-door-based methods suffer from limited stealth and efficiency. To simultaneously address these issues, we propose EditMF, a training-free fingerprinting paradigm that achieves highly imperceptible fingerprint embedding with minimal computational overhead. Ownership bits are mapped to compact, semantically coherent triples drawn from an encrypted artificial knowledge base (e.g., virtual author-novel-protagonist facts). Causal tracing localizes the minimal set of layers influencing each triple, and a zero-space update injects the fingerprint without perturbing unrelated knowledge. Verification requires only a single black-box query and succeeds when the model returns the exact pre-embedded protagonist. Empirical results on LLaMA and Qwen families show that EditMF combines high imperceptibility with negligible model's performance loss, while delivering robustness far beyond LoRA-based fingerprinting and approaching that of SFT embeddings. Extensive experiments demonstrate that EditMF is an effective and low-overhead solution for secure LLM ownership verification.
comment: 8 pages, 2 figures
☆ An Investigation of Robustness of LLMs in Mathematical Reasoning: Benchmarking with Mathematically-Equivalent Transformation of Advanced Mathematical Problems
In this paper, we introduce a systematic framework beyond conventional method to assess LLMs' mathematical-reasoning robustness by stress-testing them on advanced math problems that are mathematically equivalent but with linguistic and parametric variation. These transformations allow us to measure the sensitivity of LLMs to non-mathematical perturbations, thereby enabling a more accurate evaluation of their mathematical reasoning capabilities. Using this new evaluation methodology, we created PutnamGAP, a new benchmark dataset with multiple mathematically-equivalent variations of competition-level math problems. With the new dataset, we evaluate multiple families of representative LLMs and examine their robustness. Across 18 commercial and open-source models we observe sharp performance degradation on the variants. OpenAI's flagship reasoning model, O3, scores 49 % on the originals but drops by 4 percentage points on surface variants, and by 10.5 percentage points on core-step-based variants, while smaller models fare far worse. Overall, the results show that the proposed new evaluation methodology is effective for deepening our understanding of the robustness of LLMs and generating new insights for further improving their mathematical reasoning capabilities.
comment: 16 pages, 8 figures
☆ Silicon Minds versus Human Hearts: The Wisdom of Crowds Beats the Wisdom of AI in Emotion Recognition
The ability to discern subtle emotional cues is fundamental to human social intelligence. As artificial intelligence (AI) becomes increasingly common, AI's ability to recognize and respond to human emotions is crucial for effective human-AI interactions. In particular, whether such systems can match or surpass human experts remains to be seen. However, the emotional intelligence of AI, particularly multimodal large language models (MLLMs), remains largely unexplored. This study evaluates the emotion recognition abilities of MLLMs using the Reading the Mind in the Eyes Test (RMET) and its multiracial counterpart (MRMET), and compares their performance against human participants. Results show that, on average, MLLMs outperform humans in accurately identifying emotions across both tests. This trend persists even when comparing performance across low, medium, and expert-level performing groups. Yet when we aggregate independent human decisions to simulate collective intelligence, human groups significantly surpass the performance of aggregated MLLM predictions, highlighting the wisdom of the crowd. Moreover, a collaborative approach (augmented intelligence) that combines human and MLLM predictions achieves greater accuracy than either humans or MLLMs alone. These results suggest that while MLLMs exhibit strong emotion recognition at the individual level, the collective intelligence of humans and the synergistic potential of human-AI collaboration offer the most promising path toward effective emotional AI. We discuss the implications of these findings for the development of emotionally intelligent AI systems and future research directions.
☆ Geometry-Aware Global Feature Aggregation for Real-Time Indirect Illumination
Real-time rendering with global illumination is crucial to afford the user realistic experience in virtual environments. We present a learning-based estimator to predict diffuse indirect illumination in screen space, which then is combined with direct illumination to synthesize globally-illuminated high dynamic range (HDR) results. Our approach tackles the challenges of capturing long-range/long-distance indirect illumination when employing neural networks and is generalized to handle complex lighting and scenarios. From the neural network thinking of the solver to the rendering equation, we present a novel network architecture to predict indirect illumination. Our network is equipped with a modified attention mechanism that aggregates global information guided by spacial geometry features, as well as a monochromatic design that encodes each color channel individually. We conducted extensive evaluations, and the experimental results demonstrate our superiority over previous learning-based techniques. Our approach excels at handling complex lighting such as varying-colored lighting and environment lighting. It can successfully capture distant indirect illumination and simulates the interreflections between textured surfaces well (i.e., color bleeding effects); it can also effectively handle new scenes that are not present in the training dataset.
comment: 10 pages
☆ Wavelet Mixture of Experts for Time Series Forecasting
The field of time series forecasting is rapidly advancing, with recent large-scale Transformers and lightweight Multilayer Perceptron (MLP) models showing strong predictive performance. However, conventional Transformer models are often hindered by their large number of parameters and their limited ability to capture non-stationary features in data through smoothing. Similarly, MLP models struggle to manage multi-channel dependencies effectively. To address these limitations, we propose a novel, lightweight time series prediction model, WaveTS-B. This model combines wavelet transforms with MLP to capture both periodic and non-stationary characteristics of data in the wavelet domain. Building on this foundation, we propose a channel clustering strategy that incorporates a Mixture of Experts (MoE) framework, utilizing a gating mechanism and expert network to handle multi-channel dependencies efficiently. We propose WaveTS-M, an advanced model tailored for multi-channel time series prediction. Empirical evaluation across eight real-world time series datasets demonstrates that our WaveTS series models achieve state-of-the-art (SOTA) performance with significantly fewer parameters. Notably, WaveTS-M shows substantial improvements on multi-channel datasets, highlighting its effectiveness.
☆ OISMA: On-the-fly In-memory Stochastic Multiplication Architecture for Matrix-Multiplication Workloads
Artificial Intelligence models are currently driven by a significant up-scaling of their complexity, with massive matrix multiplication workloads representing the major computational bottleneck. In-memory computing architectures are proposed to avoid the Von Neumann bottleneck. However, both digital/binary-based and analogue in-memory computing architectures suffer from various limitations, which significantly degrade the performance and energy efficiency gains. This work proposes OISMA, a novel in-memory computing architecture that utilizes the computational simplicity of a quasi-stochastic computing domain (Bent-Pyramid system), while keeping the same efficiency, scalability, and productivity of digital memories. OISMA converts normal memory read operations into in-situ stochastic multiplication operations with a negligible cost. An accumulation periphery then accumulates the output multiplication bitstreams, achieving the matrix multiplication functionality. Extensive matrix multiplication benchmarking was conducted to analyze the accuracy of the Bent-Pyramid system, using matrix dimensions ranging from 4x4 to 512x512. The accuracy results show a significant decrease in the average relative Frobenius error, from 9.42% (for 4x4) to 1.81% (for 512x512), compared to 64-bit double precision floating-point format. A 1T1R OISMA array of 4 KB capacity was implemented using a commercial 180nm technology node and in-house RRAM technology. At 50 MHz, OISMA achieves 0.891 TOPS/W and 3.98 GOPS/mm2 for energy and area efficiency, respectively, occupying an effective computing area of 0.804241 mm2. Scaling OISMA from 180nm to 22nm technology shows a significant improvement of two orders of magnitude in energy efficiency and one order of magnitude in area efficiency, compared to dense matrix multiplication in-memory computing architectures.
comment: 12 pages, 13 figures. This work has been submitted to the IEEE for possible publication
☆ Efficient Agent: Optimizing Planning Capability for Multimodal Retrieval Augmented Generation
Multimodal Retrieval-Augmented Generation (mRAG) has emerged as a promising solution to address the temporal limitations of Multimodal Large Language Models (MLLMs) in real-world scenarios like news analysis and trending topics. However, existing approaches often suffer from rigid retrieval strategies and under-utilization of visual information. To bridge this gap, we propose E-Agent, an agent framework featuring two key innovations: a mRAG planner trained to dynamically orchestrate multimodal tools based on contextual reasoning, and a task executor employing tool-aware execution sequencing to implement optimized mRAG workflows. E-Agent adopts a one-time mRAG planning strategy that enables efficient information retrieval while minimizing redundant tool invocations. To rigorously assess the planning capabilities of mRAG systems, we introduce the Real-World mRAG Planning (RemPlan) benchmark. This novel benchmark contains both retrieval-dependent and retrieval-independent question types, systematically annotated with essential retrieval tools required for each instance. The benchmark's explicit mRAG planning annotations and diverse question design enhance its practical relevance by simulating real-world scenarios requiring dynamic mRAG decisions. Experiments across RemPlan and three established benchmarks demonstrate E-Agent's superiority: 13% accuracy gain over state-of-the-art mRAG methods while reducing redundant searches by 37%.
☆ GRainsaCK: a Comprehensive Software Library for Benchmarking Explanations of Link Prediction Tasks on Knowledge Graphs
Since Knowledge Graphs are often incomplete, link prediction methods are adopted for predicting missing facts. Scalable embedding based solutions are mostly adopted for this purpose, however, they lack comprehensibility, which may be crucial in several domains. Explanation methods tackle this issue by identifying supporting knowledge explaining the predicted facts. Regretfully, evaluating/comparing quantitatively the resulting explanations is challenging as there is no standard evaluation protocol and overall benchmarking resource. We fill this important gap by proposing GRainsaCK, a reusable software resource that fully streamlines all the tasks involved in benchmarking explanations, i.e., from model training to evaluation of explanations along the same evaluation protocol. Moreover, GRainsaCK furthers modularity/extensibility by implementing the main components as functions that can be easily replaced. Finally, fostering its reuse, we provide extensive documentation including a tutorial.
☆ TempOpt -- Unsupervised Alarm Relation Learning for Telecommunication Networks
In a telecommunications network, fault alarms generated by network nodes are monitored in a Network Operations Centre (NOC) to ensure network availability and continuous network operations. The monitoring process comprises of tasks such as active alarms analysis, root alarm identification, and resolution of the underlying problem. Each network node potentially can generate alarms of different types, while nodes can be from multiple vendors, a network can have hundreds of nodes thus resulting in an enormous volume of alarms at any time. Since network nodes are inter-connected, a single fault in the network would trigger multiple sequences of alarms across a variety of nodes and from a monitoring point of view, it is a challenging task for a NOC engineer to be aware of relations between the various alarms, when trying to identify, for example, a root alarm on which an action needs to be taken. To effectively identify root alarms, it is essential to learn relation among the alarms for accurate and faster resolution. In this work we propose a novel unsupervised alarm relation learning technique Temporal Optimization (TempOpt) that is practical and overcomes the limitations of an existing class of alarm relational learning method-temporal dependency methods. Experiments have been carried on real-world network datasets, that demonstrate the improved quality of alarm relations learned by TempOpt as compared to temporal dependency method.
comment: 6 pages, 9 figures. IEEE 21st India Council International Conference (INDICON), 2024
☆ Not in My Backyard! Temporal Voting Over Public Chores IJCAI
We study a temporal voting model where voters have dynamic preferences over a set of public chores -- projects that benefit society, but impose individual costs on those affected by their implementation. We investigate the computational complexity of optimizing utilitarian and egalitarian welfare. Our results show that while optimizing the former is computationally straightforward, minimizing the latter is computationally intractable, even in very restricted cases. Nevertheless, we identify several settings where this problem can be solved efficiently, either exactly or by an approximation algorithm. We also examine the effects of enforcing temporal fairness and its impact on social welfare, and analyze the competitive ratio of online algorithms. We then explore the strategic behavior of agents, providing insights into potential malfeasance in such decision-making environments. Finally, we discuss a range of fairness measures and their suitability for our setting.
comment: Appears in the 34th International Joint Conference on Artificial Intelligence (IJCAI), 2025
☆ Opening Musical Creativity? Embedded Ideologies in Generative-AI Music Systems AI
AI systems for music generation are increasingly common and easy to use, granting people without any musical background the ability to create music. Because of this, generative-AI has been marketed and celebrated as a means of democratizing music making. However, inclusivity often functions as marketable rhetoric rather than a genuine guiding principle in these industry settings. In this paper, we look at four generative-AI music making systems available to the public as of mid-2025 (AIVA, Stable Audio, Suno, and Udio) and track how they are rhetoricized by their developers, and received by users. Our aim is to investigate ideologies that are driving the early-stage development and adoption of generative-AI in music making, with a particular focus on democratization. A combination of autoethnography and digital ethnography is used to examine patterns and incongruities in rhetoric when positioned against product functionality. The results are then collated to develop a nuanced, contextual discussion. The shared ideology we map between producers and consumers is individualist, globalist, techno-liberal, and ethically evasive. It is a 'total ideology' which obfuscates individual responsibility, and through which the nature of music and musical practice is transfigured to suit generative outcomes.
comment: Extended version of the presentation at The First International Conference in AI Music Studies 2024
☆ TechOps: Technical Documentation Templates for the AI Act
Operationalizing the EU AI Act requires clear technical documentation to ensure AI systems are transparent, traceable, and accountable. Existing documentation templates for AI systems do not fully cover the entire AI lifecycle while meeting the technical documentation requirements of the AI Act. This paper addresses those shortcomings by introducing open-source templates and examples for documenting data, models, and applications to provide sufficient documentation for certifying compliance with the AI Act. These templates track the system status over the entire AI lifecycle, ensuring traceability, reproducibility, and compliance with the AI Act. They also promote discoverability and collaboration, reduce risks, and align with best practices in AI documentation and governance. The templates are evaluated and refined based on user feedback to enable insights into their usability and implementability. We then validate the approach on real-world scenarios, providing examples that further guide their implementation: the data template is followed to document a skin tones dataset created to support fairness evaluations of downstream computer vision models and human-centric applications; the model template is followed to document a neural network for segmenting human silhouettes in photos. The application template is tested on a system deployed for construction site safety using real-time video analytics and sensor data. Our results show that TechOps can serve as a practical tool to enable oversight for regulatory compliance and responsible AI development.
☆ A Dual-Axis Taxonomy of Knowledge Editing for LLMs: From Mechanisms to Functions
Large language models (LLMs) acquire vast knowledge from large text corpora, but this information can become outdated or inaccurate. Since retraining is computationally expensive, knowledge editing offers an efficient alternative -- modifying internal knowledge without full retraining. These methods aim to update facts precisely while preserving the model's overall capabilities. While existing surveys focus on the mechanism of editing (e.g., parameter changes vs. external memory), they often overlook the function of the knowledge being edited. This survey introduces a novel, complementary function-based taxonomy to provide a more holistic view. We examine how different mechanisms apply to various knowledge types -- factual, temporal, conceptual, commonsense, and social -- highlighting how editing effectiveness depends on the nature of the target knowledge. By organizing our review along these two axes, we map the current landscape, outline the strengths and limitations of existing methods, define the problem formally, survey evaluation tasks and datasets, and conclude with open challenges and future directions.
comment: 13 pages, 1 figure
☆ Feedback-Driven Tool-Use Improvements in Large Language Models via Automated Build Environments
Effective tool use is essential for large language models (LLMs) to interact meaningfully with their environment. However, progress is limited by the lack of efficient reinforcement learning (RL) frameworks specifically designed for tool use, due to challenges in constructing stable training environments and designing verifiable reward mechanisms. To address this, we propose an automated environment construction pipeline, incorporating scenario decomposition, document generation, function integration, complexity scaling, and localized deployment. This enables the creation of high-quality training environments that provide detailed and measurable feedback without relying on external tools. Additionally, we introduce a verifiable reward mechanism that evaluates both the precision of tool use and the completeness of task execution. When combined with trajectory data collected from the constructed environments, this mechanism integrates seamlessly with standard RL algorithms to facilitate feedback-driven model training. Experiments on LLMs of varying scales demonstrate that our approach significantly enhances the models' tool-use performance without degrading their general capabilities, regardless of inference modes or training algorithms. Our analysis suggests that these gains result from improved context understanding and reasoning, driven by updates to the lower-layer MLP parameters in models.
☆ ReQuestNet: A Foundational Learning model for Channel Estimation
In this paper, we present a novel neural architecture for channel estimation (CE) in 5G and beyond, the Recurrent Equivariant UERS Estimation Network (ReQuestNet). It incorporates several practical considerations in wireless communication systems, such as ability to handle variable number of resource block (RB), dynamic number of transmit layers, physical resource block groups (PRGs) bundling size (BS), demodulation reference signal (DMRS) patterns with a single unified model, thereby, drastically simplifying the CE pipeline. Besides it addresses several limitations of the legacy linear MMSE solutions, for example, by being independent of other reference signals and particularly by jointly processing MIMO layers and differently precoded channels with unknown precoding at the receiver. ReQuestNet comprises of two sub-units, CoarseNet followed by RefinementNet. CoarseNet performs per PRG, per transmit-receive (Tx-Rx) stream channel estimation, while RefinementNet refines the CoarseNet channel estimate by incorporating correlations across differently precoded PRGs, and correlation across multiple input multiple output (MIMO) channel spatial dimensions (cross-MIMO). Simulation results demonstrate that ReQuestNet significantly outperforms genie minimum mean squared error (MMSE) CE across a wide range of channel conditions, delay-Doppler profiles, achieving up to 10dB gain at high SNRs. Notably, ReQuestNet generalizes effectively to unseen channel profiles, efficiently exploiting inter-PRG and cross-MIMO correlations under dynamic PRG BS and varying transmit layer allocations.
comment: Accepted at IEEE Globecom 2025. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ Evaluating Podcast Recommendations with Profile-Aware LLM-as-a-Judge
Evaluating personalized recommendations remains a central challenge, especially in long-form audio domains like podcasts, where traditional offline metrics suffer from exposure bias and online methods such as A/B testing are costly and operationally constrained. In this paper, we propose a novel framework that leverages Large Language Models (LLMs) as offline judges to assess the quality of podcast recommendations in a scalable and interpretable manner. Our two-stage profile-aware approach first constructs natural-language user profiles distilled from 90 days of listening history. These profiles summarize both topical interests and behavioral patterns, serving as compact, interpretable representations of user preferences. Rather than prompting the LLM with raw data, we use these profiles to provide high-level, semantically rich context-enabling the LLM to reason more effectively about alignment between a user's interests and recommended episodes. This reduces input complexity and improves interpretability. The LLM is then prompted to deliver fine-grained pointwise and pairwise judgments based on the profile-episode match. In a controlled study with 47 participants, our profile-aware judge matched human judgments with high fidelity and outperformed or matched a variant using raw listening histories. The framework enables efficient, profile-aware evaluation for iterative testing and model selection in recommender systems.
comment: Accepted at RecSys '25
☆ Designing Memory-Augmented AR Agents for Spatiotemporal Reasoning in Personalized Task Assistance
Augmented Reality (AR) systems are increasingly integrating foundation models, such as Multimodal Large Language Models (MLLMs), to provide more context-aware and adaptive user experiences. This integration has led to the development of AR agents to support intelligent, goal-directed interactions in real-world environments. While current AR agents effectively support immediate tasks, they struggle with complex multi-step scenarios that require understanding and leveraging user's long-term experiences and preferences. This limitation stems from their inability to capture, retain, and reason over historical user interactions in spatiotemporal contexts. To address these challenges, we propose a conceptual framework for memory-augmented AR agents that can provide personalized task assistance by learning from and adapting to user-specific experiences over time. Our framework consists of four interconnected modules: (1) Perception Module for multimodal sensor processing, (2) Memory Module for persistent spatiotemporal experience storage, (3) Spatiotemporal Reasoning Module for synthesizing past and present contexts, and (4) Actuator Module for effective AR communication. We further present an implementation roadmap, a future evaluation strategy, a potential target application and use cases to demonstrate the practical applicability of our framework across diverse domains. We aim for this work to motivate future research toward developing more intelligent AR systems that can effectively bridge user's interaction history with adaptive, context-aware task assistance.
comment: 7 pages, 2 figures
☆ Bridging the Gap: A Framework for Real-World Video Deepfake Detection via Social Network Compression Emulation
The growing presence of AI-generated videos on social networks poses new challenges for deepfake detection, as detectors trained under controlled conditions often fail to generalize to real-world scenarios. A key factor behind this gap is the aggressive, proprietary compression applied by platforms like YouTube and Facebook, which launder low-level forensic cues. However, replicating these transformations at scale is difficult due to API limitations and data-sharing constraints. For these reasons, we propose a first framework that emulates the video sharing pipelines of social networks by estimating compression and resizing parameters from a small set of uploaded videos. These parameters enable a local emulator capable of reproducing platform-specific artifacts on large datasets without direct API access. Experiments on FaceForensics++ videos shared via social networks demonstrate that our emulated data closely matches the degradation patterns of real uploads. Furthermore, detectors fine-tuned on emulated videos achieve comparable performance to those trained on actual shared media. Our approach offers a scalable and practical solution for bridging the gap between lab-based training and real-world deployment of deepfake detectors, particularly in the underexplored domain of compressed video content.
☆ DevNous: An LLM-Based Multi-Agent System for Grounding IT Project Management in Unstructured Conversation
The manual translation of unstructured team dialogue into the structured artifacts required for Information Technology (IT) project governance is a critical bottleneck in modern information systems management. We introduce DevNous, a Large Language Model-based (LLM) multi-agent expert system, to automate this unstructured-to-structured translation process. DevNous integrates directly into team chat environments, identifying actionable intents from informal dialogue and managing stateful, multi-turn workflows for core administrative tasks like automated task formalization and progress summary synthesis. To quantitatively evaluate the system, we introduce a new benchmark of 160 realistic, interactive conversational turns. The dataset was manually annotated with a multi-label ground truth and is publicly available. On this benchmark, DevNous achieves an exact match turn accuracy of 81.3\% and a multiset F1-Score of 0.845, providing strong evidence for its viability. The primary contributions of this work are twofold: (1) a validated architectural pattern for developing ambient administrative agents, and (2) the introduction of the first robust empirical baseline and public benchmark dataset for this challenging problem domain.
☆ Visual Prompting for Robotic Manipulation with Annotation-Guided Pick-and-Place Using ACT
Robotic pick-and-place tasks in convenience stores pose challenges due to dense object arrangements, occlusions, and variations in object properties such as color, shape, size, and texture. These factors complicate trajectory planning and grasping. This paper introduces a perception-action pipeline leveraging annotation-guided visual prompting, where bounding box annotations identify both pickable objects and placement locations, providing structured spatial guidance. Instead of traditional step-by-step planning, we employ Action Chunking with Transformers (ACT) as an imitation learning algorithm, enabling the robotic arm to predict chunked action sequences from human demonstrations. This facilitates smooth, adaptive, and data-driven pick-and-place operations. We evaluate our system based on success rate and visual analysis of grasping behavior, demonstrating improved grasp accuracy and adaptability in retail environments.
☆ SciRerankBench: Benchmarking Rerankers Towards Scientific Retrieval-Augmented Generated LLMs
Scientific literature question answering is a pivotal step towards new scientific discoveries. Recently, \textit{two-stage} retrieval-augmented generated large language models (RAG-LLMs) have shown impressive advancements in this domain. Such a two-stage framework, especially the second stage (reranker), is particularly essential in the scientific domain, where subtle differences in terminology may have a greatly negative impact on the final factual-oriented or knowledge-intensive answers. Despite this significant progress, the potential and limitations of these works remain unexplored. In this work, we present a Scientific Rerank-oriented RAG Benchmark (SciRerankBench), for evaluating rerankers within RAG-LLMs systems, spanning five scientific subjects. To rigorously assess the reranker performance in terms of noise resilience, relevance disambiguation, and factual consistency, we develop three types of question-context-answer (Q-C-A) pairs, i.e., Noisy Contexts (NC), Semantically Similar but Logically Irrelevant Contexts (SSLI), and Counterfactual Contexts (CC). Through systematic evaluation of 13 widely used rerankers on five families of LLMs, we provide detailed insights into their relative strengths and limitations. To the best of our knowledge, SciRerankBench is the first benchmark specifically developed to evaluate rerankers within RAG-LLMs, which provides valuable observations and guidance for their future development.
☆ Simulating Generative Social Agents via Theory-Informed Workflow Design
Recent advances in large language models have demonstrated strong reasoning and role-playing capabilities, opening new opportunities for agent-based social simulations. However, most existing agents' implementations are scenario-tailored, without a unified framework to guide the design. This lack of a general social agent limits their ability to generalize across different social contexts and to produce consistent, realistic behaviors. To address this challenge, we propose a theory-informed framework that provides a systematic design process for LLM-based social agents. Our framework is grounded in principles from Social Cognition Theory and introduces three key modules: motivation, action planning, and learning. These modules jointly enable agents to reason about their goals, plan coherent actions, and adapt their behavior over time, leading to more flexible and contextually appropriate responses. Comprehensive experiments demonstrate that our theory-driven agents reproduce realistic human behavior patterns under complex conditions, achieving up to 75% lower deviation from real-world behavioral data across multiple fidelity metrics compared to classical generative baselines. Ablation studies further show that removing motivation, planning, or learning modules increases errors by 1.5 to 3.2 times, confirming their distinct and essential contributions to generating realistic and coherent social behaviors.
☆ IROTE: Human-like Traits Elicitation of Large Language Model via In-Context Self-Reflective Optimization
Trained on various human-authored corpora, Large Language Models (LLMs) have demonstrated a certain capability of reflecting specific human-like traits (e.g., personality or values) by prompting, benefiting applications like personalized LLMs and social simulations. However, existing methods suffer from the superficial elicitation problem: LLMs can only be steered to mimic shallow and unstable stylistic patterns, failing to embody the desired traits precisely and consistently across diverse tasks like humans. To address this challenge, we propose IROTE, a novel in-context method for stable and transferable trait elicitation. Drawing on psychological theories suggesting that traits are formed through identity-related reflection, our method automatically generates and optimizes a textual self-reflection within prompts, which comprises self-perceived experience, to stimulate LLMs' trait-driven behavior. The optimization is performed by iteratively maximizing an information-theoretic objective that enhances the connections between LLMs' behavior and the target trait, while reducing noisy redundancy in reflection without any fine-tuning, leading to evocative and compact trait reflection. Extensive experiments across three human trait systems manifest that one single IROTE-generated self-reflection can induce LLMs' stable impersonation of the target trait across diverse downstream tasks beyond simple questionnaire answering, consistently outperforming existing strong baselines.
☆ Generative Modeling for Robust Deep Reinforcement Learning on the Traveling Salesman Problem
The Traveling Salesman Problem (TSP) is a classic NP-hard combinatorial optimization task with numerous practical applications. Classic heuristic solvers can attain near-optimal performance for small problem instances, but become computationally intractable for larger problems. Real-world logistics problems such as dynamically re-routing last-mile deliveries demand a solver with fast inference time, which has led researchers to investigate specialized neural network solvers. However, neural networks struggle to generalize beyond the synthetic data they were trained on. In particular, we show that there exist TSP distributions that are realistic in practice, which also consistently lead to poor worst-case performance for existing neural approaches. To address this issue of distribution robustness, we present Combinatorial Optimization with Generative Sampling (COGS), where training data is sampled from a generative TSP model. We show that COGS provides better data coverage and interpolation in the space of TSP training distributions. We also present TSPLib50, a dataset of realistically distributed TSP samples, which tests real-world generalization ability without conflating this issue with instance size. We evaluate our method on various synthetic datasets as well as TSPLib50, and compare to state-of-the-art neural baselines. We demonstrate that COGS improves distribution robustness, with most performance gains coming from worst-case scenarios.
comment: 9 pages, 8 figures
☆ MultiAiTutor: Child-Friendly Educational Multilingual Speech Generation Tutor with LLMs
Generative speech models have demonstrated significant potential in personalizing teacher-student interactions, offering valuable real-world applications for language learning in children's education. However, achieving high-quality, child-friendly speech generation remains challenging, particularly for low-resource languages across diverse languages and cultural contexts. In this paper, we propose MultiAiTutor, an educational multilingual generative AI tutor with child-friendly designs, leveraging LLM architecture for speech generation tailored for educational purposes. We propose to integrate age-appropriate multilingual speech generation using LLM architectures, facilitating young children's language learning through culturally relevant image-description tasks in three low-resource languages: Singaporean-accent Mandarin, Malay, and Tamil. Experimental results from both objective metrics and subjective evaluations demonstrate the superior performance of the proposed MultiAiTutor compared to baseline methods.
comment: 5 figures
☆ A Survey on Parallel Text Generation: From Parallel Decoding to Diffusion Language Models
As text generation has become a core capability of modern Large Language Models (LLMs), it underpins a wide range of downstream applications. However, most existing LLMs rely on autoregressive (AR) generation, producing one token at a time based on previously generated context-resulting in limited generation speed due to the inherently sequential nature of the process. To address this challenge, an increasing number of researchers have begun exploring parallel text generation-a broad class of techniques aimed at breaking the token-by-token generation bottleneck and improving inference efficiency. Despite growing interest, there remains a lack of comprehensive analysis on what specific techniques constitute parallel text generation and how they improve inference performance. To bridge this gap, we present a systematic survey of parallel text generation methods. We categorize existing approaches into AR-based and Non-AR-based paradigms, and provide a detailed examination of the core techniques within each category. Following this taxonomy, we assess their theoretical trade-offs in terms of speed, quality, and efficiency, and examine their potential for combination and comparison with alternative acceleration strategies. Finally, based on our findings, we highlight recent advancements, identify open challenges, and outline promising directions for future research in parallel text generation.
☆ SafeFix: Targeted Model Repair via Controlled Image Generation
Deep learning models for visual recognition often exhibit systematic errors due to underrepresented semantic subpopulations. Although existing debugging frameworks can pinpoint these failures by identifying key failure attributes, repairing the model effectively remains difficult. Current solutions often rely on manually designed prompts to generate synthetic training images -- an approach prone to distribution shift and semantic errors. To overcome these challenges, we introduce a model repair module that builds on an interpretable failure attribution pipeline. Our approach uses a conditional text-to-image model to generate semantically faithful and targeted images for failure cases. To preserve the quality and relevance of the generated samples, we further employ a large vision-language model (LVLM) to filter the outputs, enforcing alignment with the original data distribution and maintaining semantic consistency. By retraining vision models with this rare-case-augmented synthetic dataset, we significantly reduce errors associated with rare cases. Our experiments demonstrate that this targeted repair strategy improves model robustness without introducing new bugs. Code is available at https://github.com/oxu2/SafeFix
☆ STELAR-VISION: Self-Topology-Aware Efficient Learning for Aligned Reasoning in Vision
Vision-language models (VLMs) have made significant strides in reasoning, yet they often struggle with complex multimodal tasks and tend to generate overly verbose outputs. A key limitation is their reliance on chain-of-thought (CoT) reasoning, despite many tasks benefiting from alternative topologies like trees or graphs. To address this, we introduce STELAR-Vision, a training framework for topology-aware reasoning. At its core is TopoAug, a synthetic data pipeline that enriches training with diverse topological structures. Using supervised fine-tuning and reinforcement learning, we post-train Qwen2VL models with both accuracy and efficiency in mind. Additionally, we propose Frugal Learning, which reduces output length with minimal accuracy loss. On MATH-V and VLM-S2H, STELAR-Vision improves accuracy by 9.7% over its base model and surpasses the larger Qwen2VL-72B-Instruct by 7.3%. On five out-of-distribution benchmarks, it outperforms Phi-4-Multimodal-Instruct by up to 28.4% and LLaMA-3.2-11B-Vision-Instruct by up to 13.2%, demonstrating strong generalization. Compared to Chain-Only training, our approach achieves 4.3% higher overall accuracy on in-distribution datasets and consistently outperforms across all OOD benchmarks. We have released datasets, and code will be available.
☆ MMIF-AMIN: Adaptive Loss-Driven Multi-Scale Invertible Dense Network for Multimodal Medical Image Fusion
Multimodal medical image fusion (MMIF) aims to integrate images from different modalities to produce a comprehensive image that enhances medical diagnosis by accurately depicting organ structures, tissue textures, and metabolic information. Capturing both the unique and complementary information across multiple modalities simultaneously is a key research challenge in MMIF. To address this challenge, this paper proposes a novel image fusion method, MMIF-AMIN, which features a new architecture that can effectively extract these unique and complementary features. Specifically, an Invertible Dense Network (IDN) is employed for lossless feature extraction from individual modalities. To extract complementary information between modalities, a Multi-scale Complementary Feature Extraction Module (MCFEM) is designed, which incorporates a hybrid attention mechanism, convolutional layers of varying sizes, and Transformers. An adaptive loss function is introduced to guide model learning, addressing the limitations of traditional manually-designed loss functions and enhancing the depth of data mining. Extensive experiments demonstrate that MMIF-AMIN outperforms nine state-of-the-art MMIF methods, delivering superior results in both quantitative and qualitative analyses. Ablation experiments confirm the effectiveness of each component of the proposed method. Additionally, extending MMIF-AMIN to other image fusion tasks also achieves promising performance.
comment: 10 pages, 6 figures,conference
☆ Imposing AI: Deceptive design patterns against sustainability
Generative AI is being massively deployed in digital services, at a scale that will result in significant environmental harm. We document how tech companies are transforming established user interfaces to impose AI use and show how and to what extent these strategies fit within established deceptive pattern categories. We identify two main design strategies that are implemented to impose AI use in both personal and professional contexts: imposing AI features in interfaces at the expense of existing non-AI features and promoting narratives about AI that make it harder to resist using it. We discuss opportunities for regulating the imposed adoption of AI features, which would inevitably lead to negative environmental effects.
☆ Aryabhata: An exam-focused language model for JEE Math
We present $\textbf{Aryabhata 1.0}$, a compact 7B parameter math reasoning model optimized for the Indian academic exam, the Joint Entrance Examination (JEE). Despite rapid progress in large language models (LLMs), current models often remain unsuitable for educational use. Aryabhata 1.0 is built by merging strong open-weight reasoning models, followed by supervised fine-tuning (SFT) with curriculum learning on verified chain-of-thought (CoT) traces curated through best-of-$n$ rejection sampling. To further boost performance, we apply reinforcement learning with verifiable rewards (RLVR) using A2C objective with group-relative advantage estimation alongwith novel exploration strategies such as $\textit{Adaptive Group Resizing}$ and $\textit{Temperature Scaling}$. Evaluated on both in-distribution (JEE Main 2025) and out-of-distribution (MATH, GSM8K) benchmarks, Aryabhata outperforms existing models in accuracy and efficiency, while offering pedagogically useful step-by-step reasoning. We release Aryabhata as a foundation model to advance exam-centric, open-source small language models. This marks our first open release for community feedback ($\href{https://huggingface.co/PhysicsWallahAI/Aryabhata-1.0}{Aryabhata\ 1.0\ on\ Hugging\ Face}$); PW is actively training future models to further improve learning outcomes for students.
☆ Hallucinations in Code Change to Natural Language Generation: Prevalence and Evaluation of Detection Metrics
Language models have shown strong capabilities across a wide range of tasks in software engineering, such as code generation, yet they suffer from hallucinations. While hallucinations have been studied independently in natural language and code generation, their occurrence in tasks involving code changes which have a structurally complex and context-dependent format of code remains largely unexplored. This paper presents the first comprehensive analysis of hallucinations in two critical tasks involving code change to natural language generation: commit message generation and code review comment generation. We quantify the prevalence of hallucinations in recent language models and explore a range of metric-based approaches to automatically detect them. Our findings reveal that approximately 50\% of generated code reviews and 20\% of generated commit messages contain hallucinations. Whilst commonly used metrics are weak detectors on their own, combining multiple metrics substantially improves performance. Notably, model confidence and feature attribution metrics effectively contribute to hallucination detection, showing promise for inference-time detection.\footnote{All code and data will be released upon acceptance.
comment: 8 main pages, 5 figures
☆ Hybrid Node-Destroyer Model with Large Neighborhood Search for Solving the Capacitated Vehicle Routing Problem
In this research, we propose an iterative learning hybrid optimization solver developed to strengthen the performance of metaheuristic algorithms in solving the Capacitated Vehicle Routing Problem (CVRP). The iterative hybrid mechanism integrates the proposed Node-Destroyer Model, a machine learning hybrid model that utilized Graph Neural Networks (GNNs) such identifies and selects customer nodes to guide the Large Neighborhood Search (LNS) operator within the metaheuristic optimization frameworks. This model leverages the structural properties of the problem and solution that can be represented as a graph, to guide strategic selections concerning node removal. The proposed approach reduces operational complexity and scales down the search space involved in the optimization process. The hybrid approach is applied specifically to the CVRP and does not require retraining across problem instances of different sizes. The proposed hybrid mechanism is able to improve the performance of baseline metaheuristic algorithms. Our approach not only enhances the solution quality for standard CVRP benchmarks but also proves scalability on very large-scale instances with up to 30,000 customer nodes. Experimental evaluations on benchmark datasets show that the proposed hybrid mechanism is capable of improving different baseline algorithms, achieving better quality of solutions under similar settings.
comment: 19 pages, 10 figures
☆ $\text{M}^{2}$LLM: Multi-view Molecular Representation Learning with Large Language Models IJCAI 2025
Accurate molecular property prediction is a critical challenge with wide-ranging applications in chemistry, materials science, and drug discovery. Molecular representation methods, including fingerprints and graph neural networks (GNNs), achieve state-of-the-art results by effectively deriving features from molecular structures. However, these methods often overlook decades of accumulated semantic and contextual knowledge. Recent advancements in large language models (LLMs) demonstrate remarkable reasoning abilities and prior knowledge across scientific domains, leading us to hypothesize that LLMs can generate rich molecular representations when guided to reason in multiple perspectives. To address these gaps, we propose $\text{M}^{2}$LLM, a multi-view framework that integrates three perspectives: the molecular structure view, the molecular task view, and the molecular rules view. These views are fused dynamically to adapt to task requirements, and experiments demonstrate that $\text{M}^{2}$LLM achieves state-of-the-art performance on multiple benchmarks across classification and regression tasks. Moreover, we demonstrate that representation derived from LLM achieves exceptional performance by leveraging two core functionalities: the generation of molecular embeddings through their encoding capabilities and the curation of molecular features through advanced reasoning processes.
comment: IJCAI 2025
☆ LLM driven Text-to-Table Generation through Sub-Tasks Guidance and Iterative Refinement
Transforming unstructured text into structured data is a complex task, requiring semantic understanding, reasoning, and structural comprehension. While Large Language Models (LLMs) offer potential, they often struggle with handling ambiguous or domain-specific data, maintaining table structure, managing long inputs, and addressing numerical reasoning. This paper proposes an efficient system for LLM-driven text-to-table generation that leverages novel prompting techniques. Specifically, the system incorporates two key strategies: breaking down the text-to-table task into manageable, guided sub-tasks and refining the generated tables through iterative self-feedback. We show that this custom task decomposition allows the model to address the problem in a stepwise manner and improves the quality of the generated table. Furthermore, we discuss the benefits and potential risks associated with iterative self-feedback on the generated tables while highlighting the trade-offs between enhanced performance and computational cost. Our methods achieve strong results compared to baselines on two complex text-to-table generation datasets available in the public domain.
☆ Prompt-and-Check: Using Large Language Models to Evaluate Communication Protocol Compliance in Simulation-Based Training
Accurate evaluation of procedural communication compliance is essential in simulation-based training, particularly in safety-critical domains where adherence to compliance checklists reflects operational competence. This paper explores a lightweight, deployable approach using prompt-based inference with open-source large language models (LLMs) that can run efficiently on consumer-grade GPUs. We present Prompt-and-Check, a method that uses context-rich prompts to evaluate whether each checklist item in a protocol has been fulfilled, solely based on transcribed verbal exchanges. We perform a case study in the maritime domain with participants performing an identical simulation task, and experiment with models such as LLama 2 7B, LLaMA 3 8B and Mistral 7B, running locally on an RTX 4070 GPU. For each checklist item, a prompt incorporating relevant transcript excerpts is fed into the model, which outputs a compliance judgment. We assess model outputs against expert-annotated ground truth using classification accuracy and agreement scores. Our findings demonstrate that prompting enables effective context-aware reasoning without task-specific training. This study highlights the practical utility of LLMs in augmenting debriefing, performance feedback, and automated assessment in training environments.
☆ P-CAFE: Personalized Cost-Aware Incremental Feature Selection For Electronic Health Records
Electronic Health Records (EHR) have revolutionized healthcare by digitizing patient data, improving accessibility, and streamlining clinical workflows. However, extracting meaningful insights from these complex and multimodal datasets remains a significant challenge for researchers. Traditional feature selection methods often struggle with the inherent sparsity and heterogeneity of EHR data, especially when accounting for patient-specific variations and feature costs in clinical applications. To address these challenges, we propose a novel personalized, online and cost-aware feature selection framework tailored specifically for EHR datasets. The features are aquired in an online fashion for individual patients, incorporating budgetary constraints and feature variability costs. The framework is designed to effectively manage sparse and multimodal data, ensuring robust and scalable performance in diverse healthcare contexts. A primary application of our proposed method is to support physicians' decision making in patient screening scenarios. By guiding physicians toward incremental acquisition of the most informative features within budget constraints, our approach aims to increase diagnostic confidence while optimizing resource utilization.
comment: 17 pages, 5 figures
☆ MiGrATe: Mixed-Policy GRPO for Adaptation at Test-Time
Large language models (LLMs) are increasingly being applied to black-box optimization tasks, from program synthesis to molecule design. Prior work typically leverages in-context learning to iteratively guide the model towards better solutions. Such methods, however, often struggle to balance exploration of new solution spaces with exploitation of high-reward ones. Recently, test-time training (TTT) with synthetic data has shown promise in improving solution quality. However, the need for hand-crafted training data tailored to each task limits feasibility and scalability across domains. To address this problem, we introduce MiGrATe-a method for online TTT that uses GRPO as a search algorithm to adapt LLMs at inference without requiring external training data. MiGrATe operates via a mixed-policy group construction procedure that combines on-policy sampling with two off-policy data selection techniques: greedy sampling, which selects top-performing past completions, and neighborhood sampling (NS), which generates completions structurally similar to high-reward ones. Together, these components bias the policy gradient towards exploitation of promising regions in solution space, while preserving exploration through on-policy sampling. We evaluate MiGrATe on three challenging domains-word search, molecule optimization, and hypothesis+program induction on the Abstraction and Reasoning Corpus (ARC)-and find that it consistently outperforms both inference-only and TTT baselines, demonstrating the potential of online TTT as a solution for complex search tasks without external supervision.
☆ Diminution: On Reducing the Size of Grounding ASP Programs
Answer Set Programming (ASP) is often hindered by the grounding bottleneck: large Herbrand universes generate ground programs so large that solving becomes difficult. Many methods employ ad-hoc heuristics to improve grounding performance, motivating the need for a more formal and generalizable strategy. We introduce the notion of diminution, defined as a selected subset of the Herbrand universe used to generate a reduced ground program before solving. We give a formal definition of diminution, analyze its key properties, and study the complexity of identifying it. We use a specific encoding that enables off-the-shelf ASP solver to evaluate candidate subsets. Our approach integrates seamlessly with existing grounders via domain predicates. In extensive experiments on five benchmarks, applying diminutions selected by our strategy yields significant performance improvements, reducing grounding time by up to 70% on average and decreasing the size of grounding files by up to 85%. These results demonstrate that leveraging diminutions constitutes a robust and general-purpose approach for alleviating the grounding bottleneck in ASP.
☆ AgriGPT: a Large Language Model Ecosystem for Agriculture
Despite the rapid progress of Large Language Models (LLMs), their application in agriculture remains limited due to the lack of domain-specific models, curated datasets, and robust evaluation frameworks. To address these challenges, we propose AgriGPT, a domain-specialized LLM ecosystem for agricultural usage. At its core, we design a multi-agent scalable data engine that systematically compiles credible data sources into Agri-342K, a high-quality, standardized question-answer (QA) dataset. Trained on this dataset, AgriGPT supports a broad range of agricultural stakeholders, from practitioners to policy-makers. To enhance factual grounding, we employ Tri-RAG, a three-channel Retrieval-Augmented Generation framework combining dense retrieval, sparse retrieval, and multi-hop knowledge graph reasoning, thereby improving the LLM's reasoning reliability. For comprehensive evaluation, we introduce AgriBench-13K, a benchmark suite comprising 13 tasks with varying types and complexities. Experiments demonstrate that AgriGPT significantly outperforms general-purpose LLMs on both domain adaptation and reasoning. Beyond the model itself, AgriGPT represents a modular and extensible LLM ecosystem for agriculture, comprising structured data construction, retrieval-enhanced generation, and domain-specific evaluation. This work provides a generalizable framework for developing scientific and industry-specialized LLMs. All models, datasets, and code will be released to empower agricultural communities, especially in underserved regions, and to promote open, impactful research.
☆ Securing Educational LLMs: A Generalised Taxonomy of Attacks on LLMs and DREAD Risk Assessment
Due to perceptions of efficiency and significant productivity gains, various organisations, including in education, are adopting Large Language Models (LLMs) into their workflows. Educator-facing, learner-facing, and institution-facing LLMs, collectively, Educational Large Language Models (eLLMs), complement and enhance the effectiveness of teaching, learning, and academic operations. However, their integration into an educational setting raises significant cybersecurity concerns. A comprehensive landscape of contemporary attacks on LLMs and their impact on the educational environment is missing. This study presents a generalised taxonomy of fifty attacks on LLMs, which are categorized as attacks targeting either models or their infrastructure. The severity of these attacks is evaluated in the educational sector using the DREAD risk assessment framework. Our risk assessment indicates that token smuggling, adversarial prompts, direct injection, and multi-step jailbreak are critical attacks on eLLMs. The proposed taxonomy, its application in the educational environment, and our risk assessment will help academic and industrial practitioners to build resilient solutions that protect learners and institutions.
☆ QoE-Aware Service Provision for Mobile AR Rendering: An Agent-Driven Approach
Mobile augmented reality (MAR) is envisioned as a key immersive application in 6G, enabling virtual content rendering aligned with the physical environment through device pose estimation. In this paper, we propose a novel agent-driven communication service provisioning approach for edge-assisted MAR, aiming to reduce communication overhead between MAR devices and the edge server while ensuring the quality of experience (QoE). First, to address the inaccessibility of MAR application-specific information to the network controller, we establish a digital agent powered by large language models (LLMs) on behalf of the MAR service provider, bridging the data and function gap between the MAR service and network domains. Second, to cope with the user-dependent and dynamic nature of data traffic patterns for individual devices, we develop a user-level QoE modeling method that captures the relationship between communication resource demands and perceived user QoE, enabling personalized, agent-driven communication resource management. Trace-driven simulation results demonstrate that the proposed approach outperforms conventional LLM-based QoE-aware service provisioning methods in both user-level QoE modeling accuracy and communication resource efficiency.
☆ UGM2N: An Unsupervised and Generalizable Mesh Movement Network via M-Uniform Loss
Partial differential equations (PDEs) form the mathematical foundation for modeling physical systems in science and engineering, where numerical solutions demand rigorous accuracy-efficiency tradeoffs. Mesh movement techniques address this challenge by dynamically relocating mesh nodes to rapidly-varying regions, enhancing both simulation accuracy and computational efficiency. However, traditional approaches suffer from high computational complexity and geometric inflexibility, limiting their applicability, and existing supervised learning-based approaches face challenges in zero-shot generalization across diverse PDEs and mesh topologies.In this paper, we present an Unsupervised and Generalizable Mesh Movement Network (UGM2N). We first introduce unsupervised mesh adaptation through localized geometric feature learning, eliminating the dependency on pre-adapted meshes. We then develop a physics-constrained loss function, M-Uniform loss, that enforces mesh equidistribution at the nodal level.Experimental results demonstrate that the proposed network exhibits equation-agnostic generalization and geometric independence in efficient mesh adaptation. It demonstrates consistent superiority over existing methods, including robust performance across diverse PDEs and mesh geometries, scalability to multi-scale resolutions and guaranteed error reduction without mesh tangling.
♻ ☆ Retrieval-Augmented Generation with Conflicting Evidence
Large language model (LLM) agents are increasingly employing retrieval-augmented generation (RAG) to improve the factuality of their responses. However, in practice, these systems often need to handle ambiguous user queries and potentially conflicting information from multiple sources while also suppressing inaccurate information from noisy or irrelevant documents. Prior work has generally studied and addressed these challenges in isolation, considering only one aspect at a time, such as handling ambiguity or robustness to noise and misinformation. We instead consider multiple factors simultaneously, proposing (i) RAMDocs (Retrieval with Ambiguity and Misinformation in Documents), a new dataset that simulates complex and realistic scenarios for conflicting evidence for a user query, including ambiguity, misinformation, and noise; and (ii) MADAM-RAG, a multi-agent approach in which LLM agents debate over the merits of an answer over multiple rounds, allowing an aggregator to collate responses corresponding to disambiguated entities while discarding misinformation and noise, thereby handling diverse sources of conflict jointly. We demonstrate the effectiveness of MADAM-RAG using both closed and open-source models on AmbigDocs -- which requires presenting all valid answers for ambiguous queries -- improving over strong RAG baselines by up to 11.40% and on FaithEval -- which requires suppressing misinformation -- where we improve by up to 15.80% (absolute) with Llama3.3-70B-Instruct. Furthermore, we find that RAMDocs poses a challenge for existing RAG baselines (Llama3.3-70B-Instruct only obtains 32.60 exact match score). While MADAM-RAG begins to address these conflicting factors, our analysis indicates that a substantial gap remains especially when increasing the level of imbalance in supporting evidence and misinformation.
comment: COLM 2025, Data and Code: https://github.com/HanNight/RAMDocs
♻ ☆ GTPO and GRPO-S: Token and Sequence-Level Reward Shaping with Policy Entropy
Reinforcement learning (RL) with algorithms like Group Relative Policy Optimization (GRPO) improves Large Language Model (LLM) reasoning, but is limited by a coarse-grained credit assignment that applies a uniform reward to all tokens in a sequence. This is a major flaw in long-chain reasoning tasks. This paper solves this with \textbf{Dynamic Entropy Weighting}. Our core idea is that high-entropy tokens in correct responses can guide the policy toward a higher performance ceiling. This allows us to create more fine-grained reward signals for precise policy updates via two ways: 1) \textbf{Group Token Policy Optimization} (\textbf{GTPO}), we assigns a entropy-weighted reward to each token for fine-grained credit assignment. 2) \textbf{Sequence-Level Group Relative Policy Optimization} (\textbf{GRPO-S}), we assigns a entropy-weighted reward to each sequence based on its average token entropy. Experiments show our methods significantly outperform the strong DAPO baseline. The results confirm that our entropy-weighting mechanism is the key driver of this performance boost, offering a better path to enhance deep reasoning in models.
♻ ☆ CulturalFrames: Assessing Cultural Expectation Alignment in Text-to-Image Models and Evaluation Metrics
The increasing ubiquity of text-to-image (T2I) models as tools for visual content generation raises concerns about their ability to accurately represent diverse cultural contexts -- where missed cues can stereotype communities and undermine usability. In this work, we present the first study to systematically quantify the alignment of T2I models and evaluation metrics with respect to both explicit (stated) as well as implicit (unstated, implied by the prompt's cultural context) cultural expectations. To this end, we introduce CulturalFrames, a novel benchmark designed for rigorous human evaluation of cultural representation in visual generations. Spanning 10 countries and 5 socio-cultural domains, CulturalFrames comprises 983 prompts, 3637 corresponding images generated by 4 state-of-the-art T2I models, and over 10k detailed human annotations. We find that across models and countries, cultural expectations are missed an average of 44% of the time. Among these failures, explicit expectations are missed at a surprisingly high average rate of 68%, while implicit expectation failures are also significant, averaging 49%. Furthermore, we show that existing T2I evaluation metrics correlate poorly with human judgments of cultural alignment, irrespective of their internal reasoning. Collectively, our findings expose critical gaps, provide a concrete testbed, and outline actionable directions for developing culturally informed T2I models and metrics that improve global usability.
♻ ☆ Chemist-aligned retrosynthesis by ensembling diverse inductive bias models
Chemical synthesis remains a critical bottleneck in the discovery and manufacture of functional small molecules. AI-based synthesis planning models could be a potential remedy to find effective syntheses, and have made progress in recent years. However, they still struggle with less frequent, yet critical reactions for synthetic strategy, as well as hallucinated, incorrect predictions. This hampers multi-step search algorithms that rely on models, and leads to misalignment with chemists' expectations. Here we propose RetroChimera: a frontier retrosynthesis model, built upon two newly developed components with complementary inductive biases, which we fuse together using a new framework for integrating predictions from multiple sources via a learning-based ensembling strategy. Through experiments across several orders of magnitude in data scale and splitting strategy, we show RetroChimera outperforms all major models by a large margin, demonstrating robustness outside the training data, as well as for the first time the ability to learn from even a very small number of examples per reaction class. Moreover, industrial organic chemists prefer predictions from RetroChimera over the reactions it was trained on in terms of quality, revealing high levels of alignment. Finally, we demonstrate zero-shot transfer to an internal dataset from a major pharmaceutical company, showing robust generalization under distribution shift. With the new dimension that our ensembling framework unlocks, we anticipate further acceleration in the development of even more accurate models.
♻ ☆ Argus Inspection: Do Multimodal Large Language Models Possess the Eye of Panoptes?
As Multimodal Large Language Models (MLLMs) continue to evolve, their cognitive and reasoning capabilities have seen remarkable progress. However, challenges in visual fine-grained perception and commonsense causal inference persist. This paper introduces Argus Inspection, a multimodal benchmark with two levels of difficulty, emphasizing detailed visual recognition while incorporating real-world commonsense understanding to evaluate causal reasoning abilities. Expanding on it, we present the Eye of Panoptes framework, which integrates a binary parametric Sigmoid metric with an indicator function, enabling a more holistic evaluation of MLLMs' responses in opinion-based reasoning tasks. Experiments conducted on 26 mainstream MLLMs reveal that the highest performance in visual fine-grained reasoning reaches only 0.46, highlighting considerable potential for enhancement. Our research offers valuable perspectives for the continued refinement of MLLMs.
♻ ☆ FBFL: A Field-Based Coordination Approach for Data Heterogeneity in Federated Learning
In the last years, Federated learning (FL) has become a popular solution to train machine learning models in domains with high privacy concerns. However, FL scalability and performance face significant challenges in real-world deployments where data across devices are non-independently and identically distributed (non-IID). The heterogeneity in data distribution frequently arises from spatial distribution of devices, leading to degraded model performance in the absence of proper handling. Additionally, FL typical reliance on centralized architectures introduces bottlenecks and single-point-of-failure risks, particularly problematic at scale or in dynamic environments. To close this gap, we propose Field-Based Federated Learning (FBFL), a novel approach leveraging macroprogramming and field coordination to address these limitations through: (i) distributed spatial-based leader election for personalization to mitigate non-IID data challenges; and (ii) construction of a self-organizing, hierarchical architecture using advanced macroprogramming patterns. Moreover, FBFL not only overcomes the aforementioned limitations, but also enables the development of more specialized models tailored to the specific data distribution in each subregion. This paper formalizes FBFL and evaluates it extensively using MNIST, FashionMNIST, and Extended MNIST datasets. We demonstrate that, when operating under IID data conditions, FBFL performs comparably to the widely-used FedAvg algorithm. Furthermore, in challenging non-IID scenarios, FBFL not only outperforms FedAvg but also surpasses other state-of-the-art methods, namely FedProx and Scaffold, which have been specifically designed to address non-IID data distributions. Additionally, we showcase the resilience of FBFL's self-organizing hierarchical architecture against server failures.
♻ ☆ Saturation Self-Organizing Map
Continual learning poses a fundamental challenge for neural systems, which often suffer from catastrophic forgetting when exposed to sequential tasks. Self-Organizing Maps (SOMs), despite their interpretability and efficiency, are not immune to this issue. In this paper, we introduce Saturation Self-Organizing Maps (SatSOM)-an extension of SOMs designed to improve knowledge retention in continual learning scenarios. SatSOM incorporates a novel saturation mechanism that gradually reduces the learning rate and neighborhood radius of neurons as they accumulate information. This effectively freezes well-trained neurons and redirects learning to underutilized areas of the map.
comment: github repository: https://github.com/Radinyn/satsom
♻ ☆ OE3DIS: Open-Ended 3D Point Cloud Instance Segmentation ICCV
Open-Vocab 3D Instance Segmentation methods (OV-3DIS) have recently demonstrated their ability to generalize to unseen objects. However, these methods still depend on predefined class names during testing, restricting the autonomy of agents. To mitigate this constraint, we propose a novel problem termed Open-Ended 3D Instance Segmentation (OE-3DIS), which eliminates the necessity for predefined class names during testing. Moreover, we contribute a comprehensive set of strong baselines, derived from OV-3DIS approaches and leveraging 2D Multimodal Large Language Models. To assess the performance of our OE-3DIS system, we introduce a novel Open-Ended score, evaluating both the semantic and geometric quality of predicted masks and their associated class names, alongside the standard AP score. Our approach demonstrates significant performance improvements over the baselines on the ScanNet200 and ScanNet++ datasets. Remarkably, our method surpasses the performance of Open3DIS, the current state-of-the-art method in OV-3DIS, even in the absence of ground-truth object class names.
comment: Accepted at ICCVW'25 - OpenSUN3D: 5th Workshop on Open-World 3D Scene Understanding with Foundation Models
♻ ☆ RCR-Router: Efficient Role-Aware Context Routing for Multi-Agent LLM Systems with Structured Memory
Multi-agent large language model (LLM) systems have shown strong potential in complex reasoning and collaborative decision-making tasks. However, most existing coordination schemes rely on static or full-context routing strategies, which lead to excessive token consumption, redundant memory exposure, and limited adaptability across interaction rounds. We introduce RCR-Router, a modular and role-aware context routing framework designed to enable efficient, adaptive collaboration in multi-agent LLMs. To our knowledge, this is the first routing approach that dynamically selects semantically relevant memory subsets for each agent based on its role and task stage, while adhering to a strict token budget. A lightweight scoring policy guides memory selection, and agent outputs are iteratively integrated into a shared memory store to facilitate progressive context refinement. To better evaluate model behavior, we further propose an Answer Quality Score metric that captures LLM-generated explanations beyond standard QA accuracy. Experiments on three multi-hop QA benchmarks -- HotPotQA, MuSiQue, and 2WikiMultihop -- demonstrate that RCR-Router reduces token usage (up to 30%) while improving or maintaining answer quality. These results highlight the importance of structured memory routing and output-aware evaluation in advancing scalable multi-agent LLM systems.
♻ ☆ BELLA: Black box model Explanations by Local Linear Approximations
Understanding the decision-making process of black-box models has become not just a legal requirement, but also an additional way to assess their performance. However, the state of the art post-hoc explanation approaches for regression models rely on synthetic data generation, which introduces uncertainty and can hurt the reliability of the explanations. Furthermore, they tend to produce explanations that apply to only very few data points. In this paper, we present BELLA, a deterministic model-agnostic post-hoc approach for explaining the individual predictions of regression black-box models. BELLA provides explanations in the form of a linear model trained in the feature space. BELLA maximizes the size of the neighborhood to which the linear model applies so that the explanations are accurate, simple, general, and robust.
comment: 18 pages, 3 figures, Published in TMLR Journal
♻ ☆ Opioid Named Entity Recognition (ONER-2025) from Reddit
The opioid overdose epidemic remains a critical public health crisis, particularly in the United States, leading to significant mortality and societal costs. Social media platforms like Reddit provide vast amounts of unstructured data that offer insights into public perceptions, discussions, and experiences related to opioid use. This study leverages Natural Language Processing (NLP), specifically Opioid Named Entity Recognition (ONER-2025), to extract actionable information from these platforms. Our research makes four key contributions. First, we created a unique, manually annotated dataset sourced from Reddit, where users share self-reported experiences of opioid use via different administration routes. This dataset contains 331,285 tokens and includes eight major opioid entity categories. Second, we detail our annotation process and guidelines while discussing the challenges of labeling the ONER-2025 dataset. Third, we analyze key linguistic challenges, including slang, ambiguity, fragmented sentences, and emotionally charged language, in opioid discussions. Fourth, we propose a real-time monitoring system to process streaming data from social media, healthcare records, and emergency services to identify overdose events. Using 5-fold cross-validation in 11 experiments, our system integrates machine learning, deep learning, and transformer-based language models with advanced contextual embeddings to enhance understanding. Our transformer-based models (bert-base-NER and roberta-base) achieved 97% accuracy and F1-score, outperforming baselines by 10.23% (RF=0.88).
♻ ☆ Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications, integrating cloud resources with edge devices to enable efficient, low-latency processing. Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems, yet introduce significant challenges in model deployment and resource management. In this survey, we comprehensive examine the intersection of distributed intelligence and model optimization within edge-cloud environments, providing a structured tutorial on fundamental architectures, enabling technologies, and emerging applications. Additionally, we systematically analyze model optimization approaches, including compression, adaptation, and neural architecture search, alongside AI-driven resource management strategies that balance performance, energy efficiency, and latency requirements. We further explore critical aspects of privacy protection and security enhancement within ECCC systems and examines practical deployments through diverse applications, spanning autonomous driving, healthcare, and industrial automation. Performance analysis and benchmarking techniques are also thoroughly explored to establish evaluation standards for these complex systems. Furthermore, the review identifies critical research directions including LLMs deployment, 6G integration, neuromorphic computing, and quantum computing, offering a roadmap for addressing persistent challenges in heterogeneity management, real-time processing, and scalability. By bridging theoretical advancements and practical deployments, this survey offers researchers and practitioners a holistic perspective on leveraging AI to optimize distributed computing environments, fostering innovation in next-generation intelligent systems.
comment: 30 pages, 10 figures, 8 tables
♻ ☆ Dynamic Spectrum Access for Ambient Backscatter Communication-assisted D2D Systems with Quantum Reinforcement Learning
Spectrum access is an essential problem in device-to-device (D2D) communications. However, with the recent growth in the number of mobile devices, the wireless spectrum is becoming scarce, resulting in low spectral efficiency for D2D communications. To address this problem, this paper aims to integrate the ambient backscatter communication technology into D2D devices to allow them to backscatter ambient RF signals to transmit their data when the shared spectrum is occupied by mobile users. To obtain the optimal spectrum access policy, i.e., stay idle or access the shared spectrum and perform active transmissions or backscattering ambient RF signals for transmissions, to maximize the average throughput for D2D users, deep reinforcement learning (DRL) can be adopted. However, DRL-based solutions may require long training time due to the curse of dimensionality issue as well as complex deep neural network architectures. For that, we develop a novel quantum reinforcement learning (RL) algorithm that can achieve a faster convergence rate with fewer training parameters compared to DRL thanks to the quantum superposition and quantum entanglement principles. Specifically, instead of using conventional deep neural networks, the proposed quantum RL algorithm uses a parametrized quantum circuit to approximate an optimal policy. Extensive simulations then demonstrate that the proposed solution not only can significantly improve the average throughput of D2D devices when the shared spectrum is busy but also can achieve much better performance in terms of convergence rate and learning complexity compared to existing DRL-based methods.
comment: 12 pages, 7 figures
♻ ☆ Sleepless Nights, Sugary Days: Creating Synthetic Users with Health Conditions for Realistic Coaching Agent Interactions ACL 2025
We present an end-to-end framework for generating synthetic users for evaluating interactive agents designed to encourage positive behavior changes, such as in health and lifestyle coaching. The synthetic users are grounded in health and lifestyle conditions, specifically sleep and diabetes management in this study, to ensure realistic interactions with the health coaching agent. Synthetic users are created in two stages: first, structured data are generated grounded in real-world health and lifestyle factors in addition to basic demographics and behavioral attributes; second, full profiles of the synthetic users are developed conditioned on the structured data. Interactions between synthetic users and the coaching agent are simulated using generative agent-based models such as Concordia, or directly by prompting a language model. Using two independently-developed agents for sleep and diabetes coaching as case studies, the validity of this framework is demonstrated by analyzing the coaching agent's understanding of the synthetic users' needs and challenges. Finally, through multiple blinded evaluations of user-coach interactions by human experts, we demonstrate that our synthetic users with health and behavioral attributes more accurately portray real human users with the same attributes, compared to generic synthetic users not grounded in such attributes. The proposed framework lays the foundation for efficient development of conversational agents through extensive, realistic, and grounded simulated interactions.
comment: Published in Findings of the Association for Computational Linguistics: ACL 2025
♻ ☆ From Lab to Field: Real-World Evaluation of an AI-Driven Smart Video Solution to Enhance Community Safety
This article adopts and evaluates an AI-enabled Smart Video Solution (SVS) designed to enhance safety in the real world. The system integrates with existing infrastructure camera networks, leveraging recent advancements in AI for easy adoption. Prioritizing privacy and ethical standards, pose based data is used for downstream AI tasks such as anomaly detection. Cloud-based infrastructure and mobile app are deployed, enabling real-time alerts within communities. The SVS employs innovative data representation and visualization techniques, such as the Occupancy Indicator, Statistical Anomaly Detection, Bird's Eye View, and Heatmaps, to understand pedestrian behaviors and enhance public safety. Evaluation of the SVS demonstrates its capacity to convert complex computer vision outputs into actionable insights for stakeholders, community partners, law enforcement, urban planners, and social scientists. This article presents a comprehensive real-world deployment and evaluation of the SVS, implemented in a community college environment across 16 cameras. The system integrates AI-driven visual processing, supported by statistical analysis, database management, cloud communication, and user notifications. Additionally, the article evaluates the end-to-end latency from the moment an AI algorithm detects anomalous behavior in real-time at the camera level to the time stakeholders receive a notification. The results demonstrate the system's robustness, effectively managing 16 CCTV cameras with a consistent throughput of 16.5 frames per second (FPS) over a 21-hour period and an average end-to-end latency of 26.76 seconds between anomaly detection and alert issuance.
♻ ☆ Echo: Decoupling Inference and Training for Large-Scale RL Alignment on Heterogeneous Swarms
Modern RL-based post-training for large language models (LLMs) co-locate trajectory sampling and policy optimisation on the same GPU cluster, forcing the system to switch between inference and training workloads. This serial context switching violates the single-program-multiple-data (SPMD) assumption underlying today's distributed training systems. We present Echo, the RL system that cleanly decouples these two phases across heterogeneous "inference" and "training" swarms while preserving statistical efficiency. Echo introduces two lightweight synchronization protocols: a sequential pull mode that refreshes policy weights according to API call for minimal bias, and an asynchronous push-pull mode that streams version-tagged rollouts through a replay buffer to maximise hardware utilisation. Training four representative RL workloads with Qwen3-4B, Qwen2.5-7B, Qwen3-30B-A3B-Thinking-2507 and Qwen3-32B on a geographically distributed cluster, Echo matches a fully co-located Verl baseline in convergence speed and final reward while off-loading trajectory generation to commodity edge hardware. These promising results demonstrate that large-scale RL for LLMs could achieve datacentre-grade performance using decentralised, heterogeneous resources.
♻ ☆ TIDE : Temporal-Aware Sparse Autoencoders for Interpretable Diffusion Transformers in Image Generation
Diffusion Transformers (DiTs) are a powerful yet underexplored class of generative models compared to U-Net-based diffusion architectures. We propose TIDE-Temporal-aware sparse autoencoders for Interpretable Diffusion transformErs-a framework designed to extract sparse, interpretable activation features across timesteps in DiTs. TIDE effectively captures temporally-varying representations and reveals that DiTs naturally learn hierarchical semantics (e.g., 3D structure, object class, and fine-grained concepts) during large-scale pretraining. Experiments show that TIDE enhances interpretability and controllability while maintaining reasonable generation quality, enabling applications such as safe image editing and style transfer.
♻ ☆ SEAgent: Self-Evolving Computer Use Agent with Autonomous Learning from Experience
Repurposing large vision-language models (LVLMs) as computer use agents (CUAs) has led to substantial breakthroughs, primarily driven by human-labeled data. However, these models often struggle with novel and specialized software, particularly in scenarios lacking human annotations. To address this challenge, we propose SEAgent, an agentic self-evolving framework enabling CUAs to autonomously evolve through interactions with unfamiliar software. Specifically, SEAgent empowers computer-use agents to autonomously master novel software environments via experiential learning, where agents explore new software, learn through iterative trial-and-error, and progressively tackle auto-generated tasks organized from simple to complex. To achieve this goal, we design a World State Model for step-wise trajectory assessment, along with a Curriculum Generator that generates increasingly diverse and challenging tasks. The agent's policy is updated through experiential learning, comprised of adversarial imitation of failure actions and Group Relative Policy Optimization (GRPO) on successful ones. Furthermore, we introduce a specialist-to-generalist training strategy that integrates individual experiential insights from specialist agents, facilitating the development of a stronger generalist CUA capable of continuous autonomous evolution. This unified agent ultimately achieves performance surpassing ensembles of individual specialist agents on their specialized software. We validate the effectiveness of SEAgent across five novel software environments within OS-World. Our approach achieves a significant improvement of 23.2% in success rate, from 11.3% to 34.5%, over a competitive open-source CUA, i.e., UI-TARS.
comment: Code at https://github.com/SunzeY/SEAgent
♻ ☆ OSMa-Bench: Evaluating Open Semantic Mapping Under Varying Lighting Conditions
Open Semantic Mapping (OSM) is a key technology in robotic perception, combining semantic segmentation and SLAM techniques. This paper introduces a dynamically configurable and highly automated LLM/LVLM-powered pipeline for evaluating OSM solutions called OSMa-Bench (Open Semantic Mapping Benchmark). The study focuses on evaluating state-of-the-art semantic mapping algorithms under varying indoor lighting conditions, a critical challenge in indoor environments. We introduce a novel dataset with simulated RGB-D sequences and ground truth 3D reconstructions, facilitating the rigorous analysis of mapping performance across different lighting conditions. Through experiments on leading models such as ConceptGraphs, BBQ and OpenScene, we evaluate the semantic fidelity of object recognition and segmentation. Additionally, we introduce a Scene Graph evaluation method to analyze the ability of models to interpret semantic structure. The results provide insights into the robustness of these models, forming future research directions for developing resilient and adaptable robotic systems. Project page is available at https://be2rlab.github.io/OSMa-Bench/.
comment: Project page: https://be2rlab.github.io/OSMa-Bench/
♻ ☆ AIOS: LLM Agent Operating System
LLM-based intelligent agents face significant deployment challenges, particularly related to resource management. Allowing unrestricted access to LLM or tool resources can lead to inefficient or even potentially harmful resource allocation and utilization for agents. Furthermore, the absence of proper scheduling and resource management mechanisms in current agent designs hinders concurrent processing and limits overall system efficiency. To address these challenges, this paper proposes the architecture of AIOS (LLM-based AI Agent Operating System) under the context of managing LLM-based agents. It introduces a novel architecture for serving LLM-based agents by isolating resources and LLM-specific services from agent applications into an AIOS kernel. This AIOS kernel provides fundamental services (e.g., scheduling, context management, memory management, storage management, access control) for runtime agents. To enhance usability, AIOS also includes an AIOS SDK, a comprehensive suite of APIs designed for utilizing functionalities provided by the AIOS kernel. Experimental results demonstrate that using AIOS can achieve up to 2.1x faster execution for serving agents built by various agent frameworks. The source code is available at https://github.com/agiresearch/AIOS.
comment: Published as a full paper at COLM 2025
♻ ☆ Position: The Current AI Conference Model is Unsustainable! Diagnosing the Crisis of Centralized AI Conference
Artificial Intelligence (AI) conferences are essential for advancing research, sharing knowledge, and fostering academic community. However, their rapid expansion has rendered the centralized conference model increasingly unsustainable. This paper offers a data-driven diagnosis of a structural crisis that threatens the foundational goals of scientific dissemination, equity, and community well-being. We identify four key areas of strain: (1) scientifically, with per-author publication rates more than doubling over the past decade to over 4.5 papers annually; (2) environmentally, with the carbon footprint of a single conference exceeding the daily emissions of its host city; (3) psychologically, with 71% of online community discourse reflecting negative sentiment and 35% referencing mental health concerns; and (4) logistically, with attendance at top conferences such as NeurIPS 2024 beginning to outpace venue capacity. These pressures point to a system that is misaligned with its core mission. In response, we propose the Community-Federated Conference (CFC) model, which separates peer review, presentation, and networking into globally coordinated but locally organized components, offering a more sustainable, inclusive, and resilient path forward for AI research.
comment: Preprint
♻ ☆ System~2 Reasoning for Human--AI Alignment: Generality and Adaptivity via ARC-AGI
Despite their broad applicability, transformer-based models still fall short in System~2 reasoning, lacking the generality and adaptivity needed for human--AI alignment. We examine weaknesses on ARC-AGI tasks, revealing gaps in compositional generalization and novel-rule adaptation, and argue that closing these gaps requires overhauling the reasoning pipeline and its evaluation. We propose three research axes: (1) Symbolic representation pipeline for compositional generality, (2) Interactive feedback-driven reasoning loop for adaptivity, and (3) Test-time task augmentation balancing both qualities. Finally, we demonstrate how ARC-AGI's evaluation suite can be adapted to track progress in symbolic generality, feedback-driven adaptivity, and task-level robustness, thereby guiding future work on robust human--AI alignment.
♻ ☆ TurboBias: Universal ASR Context-Biasing powered by GPU-accelerated Phrase-Boosting Tree
Recognizing specific key phrases is an essential task for contextualized Automatic Speech Recognition (ASR). However, most existing context-biasing approaches have limitations associated with the necessity of additional model training, significantly slow down the decoding process, or constrain the choice of the ASR system type. This paper proposes a universal ASR context-biasing framework that supports all major types: CTC, Transducers, and Attention Encoder-Decoder models. The framework is based on a GPU-accelerated word boosting tree, which enables it to be used in shallow fusion mode for greedy and beam search decoding without noticeable speed degradation, even with a vast number of key phrases (up to 20K items). The obtained results showed high efficiency of the proposed method, surpassing the considered open-source context-biasing approaches in accuracy and decoding speed. Our context-biasing framework is open-sourced as a part of the NeMo toolkit.
comment: Accepted to ASRU 2025
♻ ☆ 3DFacePolicy: Audio-Driven 3D Facial Animation Based on Action Control
Audio-driven 3D facial animation has achieved significant progress in both research and applications. While recent baselines struggle to generate natural and continuous facial movements due to their frame-by-frame vertex generation approach, we propose 3DFacePolicy, a pioneer work that introduces a novel definition of vertex trajectory changes across consecutive frames through the concept of "action". By predicting action sequences for each vertex that encode frame-to-frame movements, we reformulate vertex generation approach into an action-based control paradigm. Specifically, we leverage a robotic control mechanism, diffusion policy, to predict action sequences conditioned on both audio and vertex states. Extensive experiments on VOCASET and BIWI datasets demonstrate that our approach significantly outperforms state-of-the-art methods and is particularly expert in dynamic, expressive and naturally smooth facial animations.
♻ ☆ EvoP: Robust LLM Inference via Evolutionary Pruning
Large Language Models (LLMs) have achieved remarkable success in natural language processing tasks, but their massive size and computational demands hinder their deployment in resource-constrained environments. Existing model pruning methods address this issue by removing redundant structures (e.g., elements, channels, layers) from the model. However, these methods employ a heuristic pruning strategy, which leads to suboptimal performance. Besides, they also ignore the data characteristics when pruning the model. To overcome these limitations, we propose EvoP, an evolutionary pruning framework for robust LLM inference. EvoP first presents a cluster-based calibration dataset sampling (CCDS) strategy for creating a more diverse calibration dataset. EvoP then introduces an evolutionary pruning pattern searching (EPPS) method to find the optimal pruning pattern. Compared to existing model pruning techniques, EvoP achieves the best performance while maintaining the best efficiency. Experiments across different LLMs and different downstream tasks validate the effectiveness of the proposed EvoP, making it a practical and scalable solution for deploying LLMs in real-world applications.
♻ ☆ AdEval: Alignment-based Dynamic Evaluation to Mitigate Data Contamination in Large Language Models
As Large Language Models (LLMs) are pre-trained on ultra-large-scale corpora, the problem of data contamination is becoming increasingly serious, and there is a risk that static evaluation benchmarks overestimate the performance of LLMs. To address this, this paper proposes a dynamic data evaluation method called AdEval (Alignment-based Dynamic Evaluation). AdEval first extracts knowledge points and main ideas from static datasets to achieve dynamic alignment with the core content of static benchmarks, and by avoiding direct reliance on static datasets, it inherently reduces the risk of data contamination from the source. It then obtains background information through online searches to generate detailed descriptions of the knowledge points. Finally, it designs questions based on Bloom's cognitive hierarchy across six dimensions-remembering, understanding, applying, analyzing, evaluating, and creating to enable multi-level cognitive assessment. Additionally, AdEval controls the complexity of dynamically generated datasets through iterative question reconstruction. Experimental results on multiple datasets show that AdEval effectively alleviates the impact of data contamination on evaluation results, solves the problems of insufficient complexity control and single-dimensional evaluation, and improves the fairness, reliability and diversity of LLMs evaluation.
comment: There are serious academic problems in this paper, such as data falsification and plagiarism in the method of the paper
♻ ☆ Effort-aware Fairness: Incorporating a Philosophy-informed, Human-centered Notion of Effort into Algorithmic Fairness Metrics AI
Although popularized AI fairness metrics, e.g., demographic parity, have uncovered bias in AI-assisted decision-making outcomes, they do not consider how much effort one has spent to get to where one is today in the input feature space. However, the notion of effort is important in how Philosophy and humans understand fairness. We propose a philosophy-informed approach to conceptualize and evaluate Effort-aware Fairness (EaF), grounded in the concept of Force, which represents the temporal trajectory of predictive features coupled with inertia. Besides theoretical formulation, our empirical contributions include: (1) a pre-registered human subjects experiment, which shows that for both stages of the (individual) fairness evaluation process, people consider the temporal trajectory of a predictive feature more than its aggregate value; (2) pipelines to compute Effort-aware Individual/Group Fairness in the criminal justice and personal finance contexts. Our work may enable AI model auditors to uncover and potentially correct unfair decisions against individuals who have spent significant efforts to improve but are still stuck with systemic disadvantages outside their control.
comment: AIES 2025
♻ ☆ DIVER: A Multi-Stage Approach for Reasoning-intensive Information Retrieval
Retrieval-augmented generation has achieved strong performance on knowledge-intensive tasks where query-document relevance can be identified through direct lexical or semantic matches. However, many real-world queries involve abstract reasoning, analogical thinking, or multi-step inference, which existing retrievers often struggle to capture. To address this challenge, we present \textbf{DIVER}, a retrieval pipeline tailored for reasoning-intensive information retrieval. DIVER consists of four components: document processing to improve input quality, LLM-driven query expansion via iterative document interaction, a reasoning-enhanced retriever fine-tuned on synthetic multi-domain data with hard negatives, and a pointwise reranker that combines LLM-assigned helpfulness scores with retrieval scores. On the BRIGHT benchmark, DIVER achieves state-of-the-art nDCG@10 scores of 41.6 and 28.9 on original queries, consistently outperforming competitive reasoning-aware models. These results demonstrate the effectiveness of reasoning-aware retrieval strategies in complex real-world tasks. Our code and retrieval model will be released soon.
♻ ☆ RAGtifier: Evaluating RAG Generation Approaches of State-of-the-Art RAG Systems for the SIGIR LiveRAG Competition SIGIR 2025
Retrieval-Augmented Generation (RAG) enriches Large Language Models (LLMs) by combining their internal, parametric knowledge with external, non-parametric sources, with the goal of improving factual correctness and minimizing hallucinations. The LiveRAG 2025 challenge explores RAG solutions to maximize accuracy on DataMorgana's QA pairs, which are composed of single-hop and multi-hop questions. The challenge provides access to sparse OpenSearch and dense Pinecone indices of the Fineweb 10BT dataset. It restricts model use to LLMs with up to 10B parameters and final answer generation with Falcon-3-10B. A judge-LLM assesses the submitted answers along with human evaluators. By exploring distinct retriever combinations and RAG solutions under the challenge conditions, our final solution emerged using InstructRAG in combination with a Pinecone retriever and a BGE reranker. Our solution achieved a correctness score of 1.13 and a faithfulness score of 0.55 in the non-human evaluation, placing it overall in third place in the SIGIR 2025 LiveRAG Challenge.
comment: 4 pages, 6 figures. Report for SIGIR 2025 LiveRAG Challenge
♻ ☆ Cut2Next: Generating Next Shot via In-Context Tuning
Effective multi-shot generation demands purposeful, film-like transitions and strict cinematic continuity. Current methods, however, often prioritize basic visual consistency, neglecting crucial editing patterns (e.g., shot/reverse shot, cutaways) that drive narrative flow for compelling storytelling. This yields outputs that may be visually coherent but lack narrative sophistication and true cinematic integrity. To bridge this, we introduce Next Shot Generation (NSG): synthesizing a subsequent, high-quality shot that critically conforms to professional editing patterns while upholding rigorous cinematic continuity. Our framework, Cut2Next, leverages a Diffusion Transformer (DiT). It employs in-context tuning guided by a novel Hierarchical Multi-Prompting strategy. This strategy uses Relational Prompts to define overall context and inter-shot editing styles. Individual Prompts then specify per-shot content and cinematographic attributes. Together, these guide Cut2Next to generate cinematically appropriate next shots. Architectural innovations, Context-Aware Condition Injection (CACI) and Hierarchical Attention Mask (HAM), further integrate these diverse signals without introducing new parameters. We construct RawCuts (large-scale) and CuratedCuts (refined) datasets, both with hierarchical prompts, and introduce CutBench for evaluation. Experiments show Cut2Next excels in visual consistency and text fidelity. Crucially, user studies reveal a strong preference for Cut2Next, particularly for its adherence to intended editing patterns and overall cinematic continuity, validating its ability to generate high-quality, narratively expressive, and cinematically coherent subsequent shots.
♻ ☆ Edge-Based Multimodal Sensor Data Fusion with Vision Language Models (VLMs) for Real-time Autonomous Vehicle Accident Avoidance
Autonomous driving (AD) systems relying solely on onboard sensors may fail to detect distant or obstacle hazards, potentially causing preventable collisions; however, existing transformer-based Vehicle-to-Everything (V2X) approaches, which mitigate AD sensing limitations, either lack effective multimodal fusion and reasoning or struggle to meet real-time performance requirements under complex, high-dimensional traffic conditions. This paper proposes the Real-time Edge-based Autonomous Co-pilot Trajectory planner (REACT), a V2X-integrated trajectory optimization framework for AD based on a fine-tuned lightweight Vision-Language Model (VLM). REACT integrates infrastructure-provided hazard alerts with onboard sensor data, capturing intricate surrounding traffic dynamics and vehicle intents through visual embeddings, interpreting precise numerical data from symbolic inputs, and employing contextual reasoning to generate optimized, safety-oriented trajectories. To ensure robust real-time deployment on edge devices, REACT innovatively employs Residual Trajectory Fusion (RTF) design and specialized edge-adaptation strategies to reduce model complexity and improve inference efficiency. Evaluated on the DeepAccident benchmark, REACT achieves state-of-the-art performance, a 77% collision rate reduction, a 48.2% Video Panoptic Quality (VPQ), and a 0.57-second inference latency on the Jetson AGX Orin. Ablation studies validate the contribution of each input, module, and edge adaptation strategy. These results highlight the effectiveness of lightweight VLMs in enabling real-time cooperative planning on edge platforms and underscore the potential of language-guided contextual reasoning for improving traffic safety and responsiveness.
comment: 24 pages, 6 tables, 7 figures
♻ ☆ Cognitive Kernel-Pro: A Framework for Deep Research Agents and Agent Foundation Models Training
General AI Agents are increasingly recognized as foundational frameworks for the next generation of artificial intelligence, enabling complex reasoning, web interaction, coding, and autonomous research capabilities. However, current agent systems are either closed-source or heavily reliant on a variety of paid APIs and proprietary tools, limiting accessibility and reproducibility for the research community. In this work, we present \textbf{Cognitive Kernel-Pro}, a fully open-source and (to the maximum extent) free multi-module agent framework designed to democratize the development and evaluation of advanced AI agents. Within Cognitive Kernel-Pro, we systematically investigate the curation of high-quality training data for Agent Foundation Models, focusing on the construction of queries, trajectories, and verifiable answers across four key domains: web, file, code, and general reasoning. Furthermore, we explore novel strategies for agent test-time reflection and voting to enhance agent robustness and performance. We evaluate Cognitive Kernel-Pro on GAIA, achieving state-of-the-art results among open-source and free agents. Notably, our 8B-parameter open-source model surpasses previous leading systems such as WebDancer and WebSailor, establishing a new performance standard for accessible, high-capability AI agents. Code is available at https://github.com/Tencent/CognitiveKernel-Pro
comment: 16 pages
♻ ☆ UnrealZoo: Enriching Photo-realistic Virtual Worlds for Embodied AI ICCV 2025
We introduce UnrealZoo, a collection of over 100 photo-realistic 3D virtual worlds built on Unreal Engine, designed to reflect the complexity and variability of open-world environments. We also provide a rich variety of playable entities, including humans, animals, robots, and vehicles for embodied AI research. We extend UnrealCV with optimized APIs and tools for data collection, environment augmentation, distributed training, and benchmarking. These improvements achieve significant improvements in the efficiency of rendering and communication, enabling advanced applications such as multi-agent interactions. Our experimental evaluation across visual navigation and tracking tasks reveals two key insights: 1) environmental diversity provides substantial benefits for developing generalizable reinforcement learning (RL) agents, and 2) current embodied agents face persistent challenges in open-world scenarios, including navigation in unstructured terrain, adaptation to unseen morphologies, and managing latency in the close-loop control systems for interacting in highly dynamic objects. UnrealZoo thus serves as both a comprehensive testing ground and a pathway toward developing more capable embodied AI systems for real-world deployment.
comment: ICCV 2025 (Highlight), Project page: http://unrealzoo.site/
♻ ☆ Post-Completion Learning for Language Models
Current language model training paradigms typically terminate learning upon reaching the end-of-sequence () token, overlooking the potential learning opportunities in the post-completion space. We propose Post-Completion Learning (PCL), a novel training framework that systematically utilizes the sequence space after model output completion, to enhance both the reasoning and self-evaluation abilities. PCL enables models to continue generating self-assessments and reward predictions during training, while maintaining efficient inference by stopping at the completion point. To fully utilize this post-completion space, we design a white-box reinforcement learning method: let the model evaluate the output content according to the reward rules, then calculate and align the score with the reward functions for supervision. We implement dual-track SFT to optimize both reasoning and evaluation capabilities, and mixed it with RL training to achieve multi-objective hybrid optimization. Experimental results on different datasets and models demonstrate consistent improvements over traditional SFT and RL methods. Our method provides a new technical path for language model training that enhances output quality while preserving deployment efficiency.
♻ ☆ Explaining Time Series Classifiers with PHAR: Rule Extraction and Fusion from Post-hoc Attributions
Explaining machine learning (ML) models for time series (TS) classification remains challenging due to the difficulty of interpreting raw time series and the high dimensionality of the input space. We introduce PHAR-Post-hoc Attribution Rules-a unified framework that transforms numeric feature attributions from post-hoc, instance-wise explainers (e.g., LIME, SHAP) into structured, human-readable rules. These rules define interpretable intervals that indicate where and when key decision boundaries occur, enhancing model transparency. PHAR performs comparably to native rule-based methods, such as Anchor, while scaling more efficiently to long TS sequences and achieving broader instance coverage. A dedicated rule fusion step consolidates rule sets using strategies like weighted selection and lasso-based refinement, balancing key quality metrics: coverage, confidence, and simplicity. This fusion ensures each instance receives a concise and unambiguous rule, improving both explanation fidelity and consistency. We further introduce visualization techniques to illustrate specificity-generalization trade-offs in the derived rules. PHAR resolves conflicting and overlapping explanations-a common effect of the Rashomon phenomenon-into coherent, domain-adaptable insights. Comprehensive experiments on UCR/UEA Time Series Classification Archive demonstrate that PHAR improves interpretability, decision transparency, and practical applicability for TS classification tasks.
♻ ☆ Keep Your Friends Close: Leveraging Affinity Groups to Accelerate AI Inference Workflows
AI inference workflows are typically structured as a pipeline or graph of AI programs triggered by events. As events occur, the AIs perform inference or classification tasks under time pressure to respond or take some action. Standard techniques that reduce latency in other streaming settings (such as caching and optimization-driven scheduling) are of limited value because AI data access patterns (models, databases) change depending on the triggering event: a significant departure from traditional streaming. In this work, we propose a novel affinity grouping mechanism that makes it easier for developers to express application-specific data access correlations, enabling coordinated management of data objects in server clusters hosting streaming inference tasks. Our proposals are thus complementary to other approaches such as caching and scheduling. Experiments confirm the limitations of standard techniques, while showing that the proposed mechanism is able to maintain significantly lower latency as workload and scale-out increase, and yet requires only minor code changes.
♻ ☆ Speech to Reality: On-Demand Production using Natural Language, 3D Generative AI, and Discrete Robotic Assembly
We present a system that transforms speech into physical objects using 3D generative AI and discrete robotic assembly. By leveraging natural language input, the system makes design and manufacturing more accessible to individuals without expertise in 3D modeling or robotic programming. While current generative AI models can produce a wide range of 3D digital assets, AI-generated meshes are not directly suitable for robotic fabrication and do not account for fabrication constraints. To address this, we contribute a workflow that integrates natural language processing, 3D generative AI, and discrete robotic assembly. The system automatically analyzes and modifies AI-generated geometry to meet physical constraints, such as component count, overhangs, and connectivity, and produces a feasible robotic assembly sequence and toolpath. The results are demonstrated through the assembly of various objects, ranging from chairs to shelves, which are prompted via speech and realized within 5 minutes using a robotic arm.
comment: This work has been submitted for possible publication. An updated version will replace this version when available
♻ ☆ Evaluating Trust in AI, Human, and Co-produced Feedback Among Undergraduate Students
As generative AI models, particularly large language models (LLMs), transform educational feedback practices in higher education (HE) contexts, understanding students' perceptions of different sources of feedback becomes crucial for their effective implementation and adoption. This study addresses a critical gap by comparing undergraduate students' trust in LLM, human, and human-AI co-produced feedback in their authentic HE context. More specifically, through a within-subject experimental design involving 91 participants, we investigated factors that predict students' ability to distinguish between feedback types, their perceptions of feedback quality, and potential biases related to the source of feedback. Findings revealed that when the source was blinded, students generally preferred AI and co-produced feedback over human feedback regarding perceived usefulness and objectivity. However, they presented a strong bias against AI when the source of feedback was disclosed. In addition, only AI feedback suffered a decline in perceived genuineness when feedback sources were revealed, while co-produced feedback maintained its positive perception. Educational AI experience improved students' ability to identify LLM-generated feedback and increased their trust in all types of feedback. More years of students' experience using AI for general purposes were associated with lower perceived usefulness and credibility of feedback. These insights offer substantial evidence of the importance of source credibility and the need to enhance both feedback literacy and AI literacy to mitigate bias in student perceptions for AI-generated feedback to be adopted and impact education.
comment: 35 pages, 6 figures. Under review at Assessment and Evaluation in Higher Education
♻ ☆ Designing a Feedback-Driven Decision Support System for Dynamic Student Intervention
Accurate prediction of student performance is essential for enabling timely academic interventions. However, most machine learning models used in educational settings are static and lack the ability to adapt when new data such as post-intervention outcomes become available. To address this limitation, we propose a Feedback-Driven Decision Support System (DSS) with a closed-loop architecture that enables continuous model refinement. The system employs a LightGBM-based regressor with incremental retraining, allowing educators to input updated student performance data, which automatically triggers model updates. This adaptive mechanism enhances prediction accuracy by learning from real-world academic progress over time. The platform features a Flask-based web interface to support real-time interaction and integrates SHAP (SHapley Additive exPlanations) for model interpretability, ensuring transparency and trustworthiness in predictions. Experimental results demonstrate a 10.7% reduction in RMSE after retraining, with consistent upward adjustments in predicted scores for students who received interventions. By transforming static predictive models into self-improving systems, our approach advances educational analytics toward human-centered, data-driven, and responsive artificial intelligence. The framework is designed for seamless integration into Learning Management Systems (LMS) and institutional dashboards, facilitating practical deployment in real educational environments.
comment: 10 pages, 1 figure, 3 tables
♻ ☆ When Imitation Learning Outperforms Reinforcement Learning in Surgical Action Planning AI2025
Surgical action planning requires predicting future instrument-verb-target triplets for real-time assistance. While teleoperated robotic surgery provides natural expert demonstrations for imitation learning (IL), reinforcement learning (RL) could potentially discover superior strategies through exploration. We present the first comprehensive comparison of IL versus RL for surgical action planning on CholecT50. Our Dual-task Autoregressive Imitation Learning (DARIL) baseline achieves 34.6% action triplet recognition mAP and 33.6% next frame prediction mAP with smooth planning degradation to 29.2% at 10-second horizons. We evaluated three RL variants: world model-based RL, direct video RL, and inverse RL enhancement. Surprisingly, all RL approaches underperformed DARIL i.e. world model RL dropped to 3.1% mAP at 10s while direct video RL achieved only 15.9%. Our analysis reveals that distribution matching on expert-annotated test sets systematically favors IL over potentially valid RL policies that differ from training demonstrations. This challenges assumptions about RL superiority in sequential decision making and provides crucial insights for surgical AI development.
comment: Paper accepted at the MICCAI2025 workshop proceedings on COLlaborative Intelligence and Autonomy in Image-guided Surgery (COLAS)
♻ ☆ A Few Words Can Distort Graphs: Knowledge Poisoning Attacks on Graph-based Retrieval-Augmented Generation of Large Language Models
Graph-based Retrieval-Augmented Generation (GraphRAG) has recently emerged as a promising paradigm for enhancing large language models (LLMs) by converting raw text into structured knowledge graphs, improving both accuracy and explainability. However, GraphRAG relies on LLMs to extract knowledge from raw text during graph construction, and this process can be maliciously manipulated to implant misleading information. Targeting this attack surface, we propose two knowledge poisoning attacks (KPAs) and demonstrate that modifying only a few words in the source text can significantly change the constructed graph, poison the GraphRAG, and severely mislead downstream reasoning. The first attack, named Targeted KPA (TKPA), utilizes graph-theoretic analysis to locate vulnerable nodes in the generated graphs and rewrites the corresponding narratives with LLMs, achieving precise control over specific question-answering (QA) outcomes with a success rate of 93.1\%, while keeping the poisoned text fluent and natural. The second attack, named Universal KPA (UKPA), exploits linguistic cues such as pronouns and dependency relations to disrupt the structural integrity of the generated graph by altering globally influential words. With fewer than 0.05\% of full text modified, the QA accuracy collapses from 95\% to 50\%. Furthermore, experiments show that state-of-the-art defense methods fail to detect these attacks, highlighting that securing GraphRAG pipelines against knowledge poisoning remains largely unexplored.
♻ ☆ Unsupervised Document and Template Clustering using Multimodal Embeddings
This paper investigates a novel approach to unsupervised document clustering by leveraging multimodal embeddings as input to clustering algorithms such as $k$-Means, DBSCAN, a combination of HDBSCAN and $k$-NN, and BIRCH. Our method aims to achieve a finer-grained document understanding by not only grouping documents at the type level (e.g., invoices, purchase orders), but also distinguishing between different templates within the same document category. This is achieved by using embeddings that capture textual content, layout information, and visual features of documents. We evaluated the effectiveness of this approach using embeddings generated by several state-of-the-art pre-trained multimodal models, including SBERT, LayoutLMv1, LayoutLMv3, DiT, Donut, ColPali, Gemma3, and InternVL3. Our findings demonstrate the potential of multimodal embeddings to significantly enhance document clustering, offering benefits for various applications in intelligent document processing, document layout analysis, and unsupervised document classification. This work provides valuable insight into the advantages and limitations of different multimodal models for this task and opens new avenues for future research to understand and organize document collections.
comment: 22 pages, 12 figures
♻ ☆ Vision Language Models See What You Want but not What You See AI
Knowing others' intentions and taking others' perspectives are two core components of human intelligence that are considered to be instantiations of theory-of-mind. Infiltrating machines with these abilities is an important step towards building human-level artificial intelligence. Here, to investigate intentionality understanding and level-2 perspective-taking in Vision Language Models (VLMs), we constructed the IntentBench and PerspectBench, which together contains over 300 cognitive experiments grounded in real-world scenarios and classic cognitive tasks. We found VLMs achieving high performance on intentionality understanding but low performance on level-2 perspective-taking. This suggests a potential dissociation between simulation-based and theory-based theory-of-mind abilities in VLMs, highlighting the concern that they are not capable of using model-based reasoning to infer others' mental states.
comment: Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)
♻ ☆ InfiAlign: A Scalable and Sample-Efficient Framework for Aligning LLMs to Enhance Reasoning Capabilities
Large language models (LLMs) have exhibited impressive reasoning abilities on a wide range of complex tasks. However, enhancing these capabilities through post-training remains resource intensive, particularly in terms of data and computational cost. Although recent efforts have sought to improve sample efficiency through selective data curation, existing methods often rely on heuristic or task-specific strategies that hinder scalability. In this work, we introduce InfiAlign, a scalable and sample-efficient post-training framework that integrates supervised fine-tuning (SFT) with Direct Preference Optimization (DPO) to align LLMs for enhanced reasoning. At the core of InfiAlign is a robust data selection pipeline that automatically curates high-quality alignment data from open-source reasoning datasets using multidimensional quality metrics. This pipeline enables significant performance gains while drastically reducing data requirements and remains extensible to new data sources. When applied to the Qwen2.5-Math-7B-Base model, our SFT model achieves performance on par with DeepSeek-R1-Distill-Qwen-7B, while using only approximately 12% of the training data, and demonstrates strong generalization across diverse reasoning tasks. Additional improvements are obtained through the application of DPO, with particularly notable gains in mathematical reasoning tasks. The model achieves an average improvement of 3.89% on AIME 24/25 benchmarks. Our results highlight the effectiveness of combining principled data selection with full-stage post-training, offering a practical solution for aligning large reasoning models in a scalable and data-efficient manner. The model checkpoints are available at https://huggingface.co/InfiX-ai/InfiAlign-Qwen-7B-SFT.
♻ ☆ Fitting Description Logic Ontologies to ABox and Query Examples
We study a fitting problem inspired by ontology-mediated querying: given a collection of positive and negative examples of the form $(\mathcal{A},q)$ with $\mathcal{A}$ an ABox and $q$ a Boolean query, we seek an ontology $\mathcal{O}$ that satisfies $\mathcal{A} \cup \mathcal{O} \vDash q$ for all positive examples and $\mathcal{A} \cup \mathcal{O}\not\vDash q$ for all negative examples. We consider the description logics $\mathcal{ALC}$ and $\mathcal{ALCI}$ as ontology languages and a range of query languages that includes atomic queries (AQs), conjunctive queries (CQs), and unions thereof (UCQs). For all of the resulting fitting problems, we provide effective characterizations and determine the computational complexity of deciding whether a fitting ontology exists. This problem turns out to be ${\scriptsize CO}NP$ for AQs and full CQs and $2E{\scriptsize XP}T{\scriptsize IME}$-complete for CQs and UCQs. These results hold for both $\mathcal{ALC}$ and $\mathcal{ALCI}$.
comment: Submitted to the 22nd International Conference on Principles of Knowledge Representation and Reasoning (KR2025), 23 pages
♻ ☆ Learning Marmoset Vocal Patterns with a Masked Autoencoder for Robust Call Segmentation, Classification, and Caller Identification
The marmoset, a highly vocal primate, is a key model for studying social-communicative behavior. Unlike human speech, marmoset vocalizations are less structured, highly variable, and recorded in noisy, low-resource conditions. Learning marmoset communication requires joint call segmentation, classification, and caller identification -- challenging domain tasks. Previous CNNs handle local patterns but struggle with long-range temporal structure. We applied Transformers using self-attention for global dependencies. However, Transformers show overfitting and instability on small, noisy annotated datasets. To address this, we pretrain Transformers with MAE -- a self-supervised method reconstructing masked segments from hundreds of hours of unannotated marmoset recordings. The pretraining improved stability and generalization. Results show MAE-pretrained Transformers outperform CNNs, demonstrating modern self-supervised architectures effectively model low-resource non-human vocal communication.
comment: Accepted by ASRU 2025
♻ ☆ Trainable Dynamic Mask Sparse Attention
In large language models, the demand for modeling long contexts is constantly increasing, but the quadratic complexity of the standard self-attention mechanism often becomes a bottleneck. Although existing sparse attention mechanisms have improved efficiency, they may still encounter issues such as static patterns or information loss. We introduce a trainable dynamic mask sparse attention mechanism, Dynamic Mask Attention, which effectively utilizes content-aware and position-aware sparsity. DMA achieves this through two key innovations: First, it dynamically generates content-aware sparse masks from value representations, enabling the model to identify and focus on critical information adaptively. Second, it implements position-aware sparse attention computation that effectively skips unnecessary calculation regions. This dual-sparsity design allows the model to significantly reduce the computational complexity of important information while retaining complete information, achieving an excellent balance between information fidelity and computational efficiency. We have verified the performance of DMA through comprehensive experiments. Comparative studies show that DMA outperforms multi-head attention, sliding window attention, multi-head latent attention, and native sparse attention in terms of perplexity under Chinchilla Scaling Law settings. Moreover, in challenging multi-query associative recall tasks, DMA also demonstrates superior performance and efficiency compared to these methods. Crucially, in the evaluation of a 1.7B parameter model, DMA significantly outperforms multi-head attention in both standard benchmark performance and the challenging needle-in-a-haystack task. These experimental results highlight its capability to balance model efficiency and long-context modeling ability effectively.
comment: 8 figures, 4 tables
♻ ☆ Zero-shot Emotion Annotation in Facial Images Using Large Multimodal Models: Benchmarking and Prospects for Multi-Class, Multi-Frame Approaches
This study investigates the feasibility and performance of using large multimodal models (LMMs) to automatically annotate human emotions in everyday scenarios. We conducted experiments on the DailyLife subset of the publicly available FERV39k dataset, employing the GPT-4o-mini model for rapid, zero-shot labeling of key frames extracted from video segments. Under a seven-class emotion taxonomy ("Angry," "Disgust," "Fear," "Happy," "Neutral," "Sad," "Surprise"), the LMM achieved an average precision of approximately 50%. In contrast, when limited to ternary emotion classification (negative/neutral/positive), the average precision increased to approximately 64%. Additionally, we explored a strategy that integrates multiple frames within 1-2 second video clips to enhance labeling performance and reduce costs. The results indicate that this approach can slightly improve annotation accuracy. Overall, our preliminary findings highlight the potential application of zero-shot LMMs in human facial emotion annotation tasks, offering new avenues for reducing labeling costs and broadening the applicability of LMMs in complex multimodal environments.
comment: 10 pages, accepted to MRAC'25: 3rd International Workshop on Multimodal and Responsible Affective Computing (ACM-MM 2025)
♻ ☆ Adaptive Informed Deep Neural Networks for Power Flow Analysis
This study introduces PINN4PF, an end-to-end deep learning architecture for power flow (PF) analysis that effectively captures the nonlinear dynamics of large-scale modern power systems. The proposed neural network (NN) architecture consists of two important advancements in the training pipeline: (A) a double-head feed-forward NN that aligns with PF analysis, including an activation function that adjusts to the net active and reactive power injections patterns, and (B) a physics-based loss function that partially incorporates power system topology information through a novel hidden function. The effectiveness of the proposed architecture is illustrated through 4-bus, 15-bus, 290-bus, and 2224-bus test systems and is evaluated against two baselines: a linear regression model (LR) and a black-box NN (MLP). The comparison is based on (i) generalization ability, (ii) robustness, (iii) impact of training dataset size on generalization ability, (iv) accuracy in approximating derived PF quantities (specifically line current, line active power, and line reactive power), and (v) scalability. Results demonstrate that PINN4PF outperforms both baselines across all test systems by up to two orders of magnitude not only in terms of direct criteria, e.g., generalization ability, but also in terms of approximating derived physical quantities.
comment: 17 pages, 7 figures, 4 tables
♻ ☆ Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization
We present Klear-Reasoner, a model with long reasoning capabilities that demonstrates careful deliberation during problem solving, achieving outstanding performance across multiple benchmarks. Although there are already many excellent works related to inference models in the current community, there are still many problems with reproducing high-performance inference models due to incomplete disclosure of training details. This report provides an in-depth analysis of the reasoning model, covering the entire post-training workflow from data preparation and long Chain-of-Thought supervised fine-tuning (long CoT SFT) to reinforcement learning (RL), along with detailed ablation studies for each experimental component. For SFT data, our experiments show that a small number of high-quality data sources are more effective than a large number of diverse data sources, and that difficult samples can achieve better results without accuracy filtering. In addition, we investigate two key issues with current clipping mechanisms in RL: Clipping suppresses critical exploration signals and ignores suboptimal trajectories. To address these challenges, we propose Gradient-Preserving clipping Policy Optimization (GPPO) that gently backpropagates gradients from clipped tokens. GPPO not only enhances the model's exploration capacity but also improves its efficiency in learning from negative samples. Klear-Reasoner exhibits exceptional reasoning abilities in mathematics and programming, scoring 90.5% on AIME 2024, 83.2% on AIME 2025, 66.0% on LiveCodeBench V5 and 58.1% on LiveCodeBench V6.
♻ ☆ Large Language Models Do Not Simulate Human Psychology
Large Language Models (LLMs),such as ChatGPT, are increasingly used in research, ranging from simple writing assistance to complex data annotation tasks. Recently, some research has suggested that LLMs may even be able to simulate human psychology and can, hence, replace human participants in psychological studies. We caution against this approach. We provide conceptual arguments against the hypothesis that LLMs simulate human psychology. We then present empiric evidence illustrating our arguments by demonstrating that slight changes to wording that correspond to large changes in meaning lead to notable discrepancies between LLMs' and human responses, even for the recent CENTAUR model that was specifically fine-tuned on psychological responses. Additionally, different LLMs show very different responses to novel items, further illustrating their lack of reliability. We conclude that LLMs do not simulate human psychology and recommend that psychological researchers should treat LLMs as useful but fundamentally unreliable tools that need to be validated against human responses for every new application.
♻ ☆ Chimera: Harnessing Multi-Agent LLMs for Automatic Insider Threat Simulation
Insider threats, which can lead to severe losses, remain a major security concern. While machine learning-based insider threat detection (ITD) methods have shown promising results, their progress is hindered by the scarcity of high-quality data. Enterprise data is sensitive and rarely accessible, while publicly available datasets, when limited in scale due to cost, lack sufficient real-world coverage; and when purely synthetic, they fail to capture rich semantics and realistic user behavior. To address this, we propose Chimera, the first large language model (LLM)-based multi-agent framework that automatically simulates both benign and malicious insider activities and collects diverse logs across diverse enterprise environments. Chimera models each employee with agents that have role-specific behavior and integrates modules for group meetings, pairwise interactions, and autonomous scheduling, capturing realistic organizational dynamics. It incorporates 15 types of insider attacks (e.g., IP theft, system sabotage) and has been deployed to simulate activities in three sensitive domains: technology company, finance corporation, and medical institution, producing a new dataset, ChimeraLog. We assess ChimeraLog via human studies and quantitative analysis, confirming its diversity, realism, and presence of explainable threat patterns. Evaluations of existing ITD methods show an average F1-score of 0.83, which is significantly lower than 0.99 on the CERT dataset, demonstrating ChimeraLog's higher difficulty and utility for advancing ITD research.
comment: 23 pages
♻ ☆ BriLLM: Brain-inspired Large Language Model
We present BriLLM, a brain-inspired large language model that fundamentally reimagines machine learning foundations through Signal Fully-connected flowing (SiFu) learning. Addressing core limitations in Transformer-based models including black-box opacity, quadratic complexity, and context-length dependency, BriLLM incorporates two key neurocognitive principles: first, static semantic mapping where tokens map to specialized nodes analogous to cortical regions, and second, dynamic signal propagation simulating electrophysiological information flow. This architecture enables three breakthroughs: full model interpretability, context-length independent scaling, and the first global-scale simulation of brain-like processing. Initial 1 to 2B parameter models demonstrate GPT-1-level generative capabilities with stable perplexity reduction. Scalability analyses confirm feasibility of 100 to 200B parameter variants processing 40,000-token contexts. BriLLM establishes a new paradigm for biologically grounded AGI development.
♻ ☆ Role-Aware Language Models for Secure and Contextualized Access Control in Organizations
As large language models (LLMs) are increasingly deployed in enterprise settings, controlling model behavior based on user roles becomes an essential requirement. Existing safety methods typically assume uniform access and focus on preventing harmful or toxic outputs, without addressing role-specific access constraints. In this work, we investigate whether LLMs can be fine-tuned to generate responses that reflect the access privileges associated with different organizational roles. We explore three modeling strategies: a BERT-based classifier, an LLM-based classifier, and role-conditioned generation. To evaluate these approaches, we construct two complementary datasets. The first is adapted from existing instruction-tuning corpora through clustering and role labeling, while the second is synthetically generated to reflect realistic, role-sensitive enterprise scenarios. We assess model performance across varying organizational structures and analyze robustness to prompt injection, role mismatch, and jailbreak attempts.
♻ ☆ Forget the Data and Fine-Tuning! Just Fold the Network to Compress
We introduce model folding, a novel data-free model compression technique that merges structurally similar neurons across layers, significantly reducing the model size without the need for fine-tuning or access to training data. Unlike existing methods, model folding preserves data statistics during compression by leveraging k-means clustering, and using novel data-free techniques to prevent variance collapse or explosion. Our theoretical framework and experiments across standard benchmarks, including ResNet18 and LLaMA-7B, demonstrate that model folding achieves comparable performance to data-driven compression techniques and outperforms recently proposed data-free methods, especially at high sparsity levels. This approach is particularly effective for compressing large-scale models, making it suitable for deployment in resource-constrained environments.
comment: This paper has been accepted by The Thirteenth International Conference on Learning Representations(ICLR), 2025
♻ ☆ PAR-AdvGAN: Improving Adversarial Attack Capability with Progressive Auto-Regression AdvGAN KDD 2025
Deep neural networks have demonstrated remarkable performance across various domains. However, they are vulnerable to adversarial examples, which can lead to erroneous predictions. Generative Adversarial Networks (GANs) can leverage the generators and discriminators model to quickly produce high-quality adversarial examples. Since both modules train in a competitive and simultaneous manner, GAN-based algorithms like AdvGAN can generate adversarial examples with better transferability compared to traditional methods. However, the generation of perturbations is usually limited to a single iteration, preventing these examples from fully exploiting the potential of the methods. To tackle this issue, we introduce a novel approach named Progressive Auto-Regression AdvGAN (PAR-AdvGAN). It incorporates an auto-regressive iteration mechanism within a progressive generation network to craft adversarial examples with enhanced attack capability. We thoroughly evaluate our PAR-AdvGAN method with a large-scale experiment, demonstrating its superior performance over various state-of-the-art black-box adversarial attacks, as well as the original AdvGAN.Moreover, PAR-AdvGAN significantly accelerates the adversarial example generation, i.e., achieving the speeds of up to 335.5 frames per second on Inception-v3 model, outperforming the gradient-based transferable attack algorithms. Our code is available at: https://github.com/LMBTough/PAR
comment: Best student paper award of ECML-PKDD 2025
♻ ☆ Situated Epistemic Infrastructures: A Diagnostic Framework for Post-Coherence Knowledge
Large Language Models (LLMs) such as ChatGPT have rendered visible the fragility of contemporary knowledge infrastructures by simulating coherence while bypassing traditional modes of citation, authority, and validation. This paper introduces the Situated Epistemic Infrastructures (SEI) framework as a diagnostic tool for analyzing how knowledge becomes authoritative across hybrid human-machine systems under post-coherence conditions. Rather than relying on stable scholarly domains or bounded communities of practice, SEI traces how credibility is mediated across institutional, computational, and temporal arrangements. Integrating insights from infrastructure studies, platform theory, and epistemology, the framework foregrounds coordination over classification, emphasizing the need for anticipatory and adaptive models of epistemic stewardship. The paper contributes to debates on AI governance, knowledge production, and the ethical design of information systems by offering a robust alternative to representationalist models of scholarly communication.
comment: 22 pages including references. Draft prepared for submission to Science, Technology & Human Values
♻ ☆ Mjölnir: A Deep Learning Parametrization Framework for Global Lightning Flash Density
Recent advances in AI-based weather forecasting models, such as FourCastNet, Pangu-Weather, and GraphCast, have demonstrated the remarkable ability of deep learning to emulate complex atmospheric dynamics. Building on this momentum, we propose Mj\"olnir, a novel deep learning-based framework for global lightning flash density parameterization. Trained on ERA5 atmospheric predictors and World Wide Lightning Location Network (WWLLN) observations at a daily temporal resolution and 1 degree spatial resolution, Mj\"olnir captures the nonlinear mapping between large-scale environmental conditions and lightning activity. The model architecture is based on the InceptionNeXt backbone with SENet, and a multi-task learning strategy to simultaneously predict lightning occurrence and magnitude. Extensive evaluations yield that Mollnir accurately reproduces the global distribution, seasonal variability, and regional characteristics of lightning activity, achieving a global Pearson correlation coefficient of 0.96 for annual mean fields. These results suggest that Mj\"olnir serves not only as an effective data-driven global lightning parameterization but also as a promising AI-based scheme for next-generation Earth system models (AI-ESMs).
comment: After an internal review, we found that the current version does not meet our intended academic standards due to incomplete descriptions and insufficient detail in key sections. No revised manuscript can be prepared in the near future. To ensure academic quality, we withdraw this version and plan to resubmit when the work is substantially improved
♻ ☆ Return Prediction for Mean-Variance Portfolio Selection: How Decision-Focused Learning Shapes Forecasting Models
Markowitz laid the foundation of portfolio theory through the mean-variance optimization (MVO) framework. However, the effectiveness of MVO is contingent on the precise estimation of expected returns, variances, and covariances of asset returns, which are typically uncertain. Machine learning models are becoming useful in estimating uncertain parameters, and such models are trained to minimize prediction errors, such as mean squared errors (MSE), which treat prediction errors uniformly across assets. Recent studies have pointed out that this approach would lead to suboptimal decisions and proposed Decision-Focused Learning (DFL) as a solution, integrating prediction and optimization to improve decision-making outcomes. While studies have shown DFL's potential to enhance portfolio performance, the detailed mechanisms of how DFL modifies prediction models for MVO remain unexplored. This study investigates how DFL adjusts stock return prediction models to optimize decisions in MVO. Theoretically, we show that DFL's gradient can be interpreted as tilting the MSE-based prediction errors by the inverse covariance matrix, effectively incorporating inter-asset correlations into the learning process, while MSE treats each asset's error independently. This tilting mechanism leads to systematic prediction biases where DFL overestimates returns for assets included in portfolios while underestimating excluded assets. Our findings reveal why DFL achieves superior portfolio performance despite higher prediction errors. The strategic biases are features, not flaws.
comment: 8 pages, 5 figures, 2 tables
♻ ☆ Hypergraph-based Motion Generation with Multi-modal Interaction Relational Reasoning
The intricate nature of real-world driving environments, characterized by dynamic and diverse interactions among multiple vehicles and their possible future states, presents considerable challenges in accurately predicting the motion states of vehicles and handling the uncertainty inherent in the predictions. Addressing these challenges requires comprehensive modeling and reasoning to capture the implicit relations among vehicles and the corresponding diverse behaviors. This research introduces an integrated framework for autonomous vehicles (AVs) motion prediction to address these complexities, utilizing a novel Relational Hypergraph Interaction-informed Neural mOtion generator (RHINO). RHINO leverages hypergraph-based relational reasoning by integrating a multi-scale hypergraph neural network to model group-wise interactions among multiple vehicles and their multi-modal driving behaviors, thereby enhancing motion prediction accuracy and reliability. Experimental validation using real-world datasets demonstrates the superior performance of this framework in improving predictive accuracy and fostering socially aware automated driving in dynamic traffic scenarios. The source code is publicly available at https://github.com/keshuw95/RHINO-Hypergraph-Motion-Generation.
♻ ☆ To Judge or not to Judge: Using LLM Judgements for Advertiser Keyphrase Relevance at eBay
E-commerce sellers are recommended keyphrases based on their inventory on which they advertise to increase buyer engagement (clicks/sales). The relevance of advertiser keyphrases plays an important role in preventing the inundation of search systems with numerous irrelevant items that compete for attention in auctions, in addition to maintaining a healthy seller perception. In this work, we describe the shortcomings of training Advertiser keyphrase relevance filter models on click/sales/search relevance signals and the importance of aligning with human judgment, as sellers have the power to adopt or reject said keyphrase recommendations. In this study, we frame Advertiser keyphrase relevance as a complex interaction between 3 dynamical systems -- seller judgment, which influences seller adoption of our product, Advertising, which provides the keyphrases to bid on, and Search, who holds the auctions for the same keyphrases. This study discusses the practicalities of using human judgment via a case study at eBay Advertising and demonstrate that using LLM-as-a-judge en-masse as a scalable proxy for seller judgment to train our relevance models achieves a better harmony across the three systems -- provided that they are bound by a meticulous evaluation framework grounded in business metrics.
♻ ☆ MEReQ: Max-Ent Residual-Q Inverse RL for Sample-Efficient Alignment from Intervention
Aligning robot behavior with human preferences is crucial for deploying embodied AI agents in human-centered environments. A promising solution is interactive imitation learning from human intervention, where a human expert observes the policy's execution and provides interventions as feedback. However, existing methods often fail to utilize the prior policy efficiently to facilitate learning, thus hindering sample efficiency. In this work, we introduce MEReQ (Maximum-Entropy Residual-Q Inverse Reinforcement Learning), designed for sample-efficient alignment from human intervention. Instead of inferring the complete human behavior characteristics, MEReQ infers a residual reward function that captures the discrepancy between the human expert's and the prior policy's underlying reward functions. It then employs Residual Q-Learning (RQL) to align the policy with human preferences using this residual reward function. Extensive evaluations on simulated and real-world tasks demonstrate that MEReQ achieves sample-efficient policy alignment from human intervention.
♻ ☆ Interpreting Fedspeak with Confidence: A LLM-Based Uncertainty-Aware Framework Guided by Monetary Policy Transmission Paths
"Fedspeak", the stylized and often nuanced language used by the U.S. Federal Reserve, encodes implicit policy signals and strategic stances. The Federal Open Market Committee strategically employs Fedspeak as a communication tool to shape market expectations and influence both domestic and global economic conditions. As such, automatically parsing and interpreting Fedspeak presents a high-impact challenge, with significant implications for financial forecasting, algorithmic trading, and data-driven policy analysis. In this paper, we propose an LLM-based, uncertainty-aware framework for deciphering Fedspeak and classifying its underlying monetary policy stance. Technically, to enrich the semantic and contextual representation of Fedspeak texts, we incorporate domain-specific reasoning grounded in the monetary policy transmission mechanism. We further introduce a dynamic uncertainty decoding module to assess the confidence of model predictions, thereby enhancing both classification accuracy and model reliability. Experimental results demonstrate that our framework achieves state-of-the-art performance on the policy stance analysis task. Moreover, statistical analysis reveals a significant positive correlation between perceptual uncertainty and model error rates, validating the effectiveness of perceptual uncertainty as a diagnostic signal.
♻ ☆ LSDTs: LLM-Augmented Semantic Digital Twins for Adaptive Knowledge-Intensive Infrastructure Planning
Digital Twins (DTs) offer powerful tools for managing complex infrastructure systems, but their effectiveness is often limited by challenges in integrating unstructured knowledge. Recent advances in Large Language Models (LLMs) bring new potential to address this gap, with strong abilities in extracting and organizing diverse textual information. We therefore propose LSDTs (LLM-Augmented Semantic Digital Twins), a framework that helps LLMs extract planning knowledge from unstructured documents like environmental regulations and technical guidelines, and organize it into a formal ontology. This ontology forms a semantic layer that powers a digital twin-a virtual model of the physical system-allowing it to simulate realistic, regulation-aware planning scenarios. We evaluate LSDTs through a case study of offshore wind farm planning in Maryland, including its application during Hurricane Sandy. Results demonstrate that LSDTs support interpretable, regulation-aware layout optimization, enable high-fidelity simulation, and enhance adaptability in infrastructure planning. This work shows the potential of combining generative AI with digital twins to support complex, knowledge-driven planning tasks.
♻ ☆ Federated Learning: A Survey on Privacy-Preserving Collaborative Intelligence
Federated Learning (FL) has emerged as a transformative paradigm in the field of distributed machine learning, enabling multiple clients such as mobile devices, edge nodes, or organizations to collaboratively train a shared global model without the need to centralize sensitive data. This decentralized approach addresses growing concerns around data privacy, security, and regulatory compliance, making it particularly attractive in domains such as healthcare, finance, and smart IoT systems. This survey provides a concise yet comprehensive overview of Federated Learning, beginning with its core architecture and communication protocol. We discuss the standard FL lifecycle, including local training, model aggregation, and global updates. A particular emphasis is placed on key technical challenges such as handling non-IID (non-independent and identically distributed) data, mitigating system and hardware heterogeneity, reducing communication overhead, and ensuring privacy through mechanisms like differential privacy and secure aggregation. Furthermore, we examine emerging trends in FL research, including personalized FL, cross-device versus cross-silo settings, and integration with other paradigms such as reinforcement learning and quantum computing. We also highlight real-world applications and summarize benchmark datasets and evaluation metrics commonly used in FL research. Finally, we outline open research problems and future directions to guide the development of scalable, efficient, and trustworthy FL systems.
♻ ☆ Omni-Effects: Unified and Spatially-Controllable Visual Effects Generation
Visual effects (VFX) are essential visual enhancements fundamental to modern cinematic production. Although video generation models offer cost-efficient solutions for VFX production, current methods are constrained by per-effect LoRA training, which limits generation to single effects. This fundamental limitation impedes applications that require spatially controllable composite effects, i.e., the concurrent generation of multiple effects at designated locations. However, integrating diverse effects into a unified framework faces major challenges: interference from effect variations and spatial uncontrollability during multi-VFX joint training. To tackle these challenges, we propose Omni-Effects, a first unified framework capable of generating prompt-guided effects and spatially controllable composite effects. The core of our framework comprises two key innovations: (1) LoRA-based Mixture of Experts (LoRA-MoE), which employs a group of expert LoRAs, integrating diverse effects within a unified model while effectively mitigating cross-task interference. (2) Spatial-Aware Prompt (SAP) incorporates spatial mask information into the text token, enabling precise spatial control. Furthermore, we introduce an Independent-Information Flow (IIF) module integrated within the SAP, isolating the control signals corresponding to individual effects to prevent any unwanted blending. To facilitate this research, we construct a comprehensive VFX dataset Omni-VFX via a novel data collection pipeline combining image editing and First-Last Frame-to-Video (FLF2V) synthesis, and introduce a dedicated VFX evaluation framework for validating model performance. Extensive experiments demonstrate that Omni-Effects achieves precise spatial control and diverse effect generation, enabling users to specify both the category and location of desired effects.
♻ ☆ Decoding-based Regression
Language models have recently been shown capable of performing regression wherein numeric predictions are represented as decoded strings. In this work, we provide theoretical grounds for this capability and furthermore investigate the utility of causal sequence decoding models as numeric regression heads given any feature representation. We find that, despite being trained in the usual way - for next-token prediction via cross-entropy loss - decoder-based heads are as performant as standard pointwise heads when benchmarked over standard regression tasks, while being flexible enough to capture smooth numeric distributions, such as in the task of density estimation.
comment: Published in Transactions on Machine Learning Research (TMLR) 2025. Code can be found at https://github.com/google-research/optformer/tree/main/optformer/decoding_regression
Computational Engineering, Finance, and Science 3
☆ GSMT: Graph Fusion and Spatiotemporal TaskCorrection for Multi-Bus Trajectory Prediction
Accurate trajectory prediction for buses is crucial in intelligent transportation systems, particularly within urban environments. In developing regions where access to multimodal data is limited, relying solely on onboard GPS data remains indispensable despite inherent challenges. To address this problem, we propose GSMT, a hybrid model that integrates a Graph Attention Network (GAT) with a sequence-to-sequence Recurrent Neural Network (RNN), and incorporates a task corrector capable of extracting complex behavioral patterns from large-scale trajectory data. The task corrector clusters historical trajectories to identify distinct motion patterns and fine-tunes the predictions generated by the GAT and RNN. Specifically, GSMT fuses dynamic bus information and static station information through embedded hybrid networks to perform trajectory prediction, and applies the task corrector for secondary refinement after the initial predictions are generated. This two-stage approach enables multi-node trajectory prediction among buses operating in dense urban traffic environments under complex conditions. Experiments conducted on a real-world dataset from Kuala Lumpur, Malaysia, demonstrate that our method significantly outperforms existing approaches, achieving superior performance in both short-term and long-term trajectory prediction tasks.
comment: This paper has been accepted by ITSC 2025
♻ ☆ PC-SRGAN: Physically Consistent Super-Resolution Generative Adversarial Network for General Transient Simulations TPAMI
Machine Learning, particularly Generative Adversarial Networks (GANs), has revolutionised Super-Resolution (SR). However, generated images often lack physical meaningfulness, which is essential for scientific applications. Our approach, PC-SRGAN, enhances image resolution while ensuring physical consistency for interpretable simulations. PC-SRGAN significantly improves both the Peak Signal-to-Noise Ratio and the Structural Similarity Index Measure compared to conventional SR methods, even with limited training data (e.g., only 13% of training data is required to achieve performance similar to SRGAN). Beyond SR, PC-SRGAN augments physically meaningful machine learning, incorporating numerically justified time integrators and advanced quality metrics. These advancements promise reliable and causal machine-learning models in scientific domains. A significant advantage of PC-SRGAN over conventional SR techniques is its physical consistency, which makes it a viable surrogate model for time-dependent problems. PC-SRGAN advances scientific machine learning by improving accuracy and efficiency, enhancing process understanding, and broadening applications to scientific research. We publicly release the complete source code of PC-SRGAN and all experiments at https://github.com/hasan-rakibul/PC-SRGAN.
comment: 11 pages, combining the main content and the appendices, unlike having them separated in the published version at IEEE Xplore (https://doi.org/10.1109/TPAMI.2025.3596647)
♻ ☆ Out of the Past: An AI-Enabled Pipeline for Traffic Simulation from Noisy, Multimodal Detector Data and Stakeholder Feedback
How can a traffic simulation be designed to faithfully reflect real-world traffic conditions? One crucial step is modeling the volume of traffic demand. But past demand modeling approaches have relied on unrealistic or suboptimal heuristics, and they have failed to adequately account for the effects of noisy and multimodal data on simulation outcomes. In this work, we integrate advances in AI to construct a three-step, end-to-end pipeline for systematically modeling traffic demand from detector data: computer vision for vehicle counting from noisy camera footage, combinatorial optimization for vehicle route generation from multimodal data, and large language models for iterative simulation refinement from natural language feedback. Using a road network from Strongsville, Ohio as a testbed, we show that our pipeline accurately captures the city's traffic patterns in a granular simulation. Beyond Strongsville, incorporating noise and multimodality makes our framework generalizable to municipalities with different levels of data and infrastructure availability.
comment: 17 pages; 1 table; 6 figures; extended version of accepted version, published at the 2025 Winter Simulation Conference (WSC '25)
Databases 11
☆ Heterogeneity in Entity Matching: A Survey and Experimental Analysis
Entity matching (EM) is a fundamental task in data integration and analytics, essential for identifying records that refer to the same real-world entity across diverse sources. In practice, datasets often differ widely in structure, format, schema, and semantics, creating substantial challenges for EM. We refer to this setting as Heterogeneous EM (HEM). This survey offers a unified perspective on HEM by introducing a taxonomy, grounded in prior work, that distinguishes two primary categories -- representation and semantic heterogeneity -- and their subtypes. The taxonomy provides a systematic lens for understanding how variations in data form and meaning shape the complexity of matching tasks. We then connect this framework to the FAIR principles -- Findability, Accessibility, Interoperability, and Reusability -- demonstrating how they both reveal the challenges of HEM and suggest strategies for mitigating them. Building on this foundation, we critically review recent EM methods, examining their ability to address different heterogeneity types, and conduct targeted experiments on state-of-the-art models to evaluate their robustness and adaptability under semantic heterogeneity. Our analysis uncovers persistent limitations in current approaches and points to promising directions for future research, including multimodal matching, human-in-the-loop workflows, deeper integration with large language models and knowledge graphs, and fairness-aware evaluation in heterogeneous settings.
comment: Survey and experimental analysis on heterogeneous entity matching
☆ Towards General-Purpose Data Discovery: A Programming Languages Approach
Efficient and effective data discovery is critical for many modern applications in machine learning and data science. One major bottleneck to the development of a general-purpose data discovery tool is the absence of an expressive formal language, and corresponding implementation, for characterizing and solving generic discovery queries. To this end, we present TQL, a domain-specific language for data discovery well-designed to leverage and exploit the results of programming languages research in both its syntax and semantics. In this paper, we fully and formally characterize the core language through an algebraic model, Imperative Relational Algebra with Types (ImpRAT), and implement a modular proof-of-concept system prototype.
☆ From Source to Target: Leveraging Transfer Learning for Predictive Process Monitoring in Organizations
Event logs reflect the behavior of business processes that are mapped in organizational information systems. Predictive process monitoring (PPM) transforms these data into value by creating process-related predictions that provide the insights required for proactive interventions at process runtime. Existing PPM techniques require sufficient amounts of event data or other relevant resources that might not be readily available, preventing some organizations from utilizing PPM. The transfer learning-based PPM technique presented in this paper allows organizations without suitable event data or other relevant resources to implement PPM for effective decision support. The technique is instantiated in two real-life use cases, based on which numerical experiments are performed using event logs for IT service management processes in an intra- and inter-organizational setting. The results of the experiments suggest that knowledge of one business process can be transferred to a similar business process in the same or a different organization to enable effective PPM in the target context. With the proposed technique, organizations can benefit from transfer learning in an intra- and inter-organizational setting, where resources like pre-trained models are transferred within and across organizational boundaries.
☆ TQL: Towards Type-Driven Data Discovery
Existing query languages for data discovery exhibit system-driven designs that emphasize database features and functionality over user needs. We propose a re-prioritization of the client through an introduction of a language-driven approach to data discovery systems that can leverage powerful results from programming languages research. In this paper, we describe TQL, a flexible and practical query language which incorporates a type-like system to encompass downstream transformation-context in its discovery queries. The syntax and semantics of TQL (including the underlying evaluation model), are formally defined, and a sketch of its implementation is also provided. Additionally, we provide comparisons to existing languages for data retrieval and data discovery to examine the advantages of TQL's expanded expressive power in real-life settings.
comment: 2024 IEEE BigData paper
☆ A Rule-Based Approach to Specifying Preferences over Conflicting Facts and Querying Inconsistent Knowledge Bases
Repair-based semantics have been extensively studied as a means of obtaining meaningful answers to queries posed over inconsistent knowledge bases (KBs). While several works have considered how to exploit a priority relation between facts to select optimal repairs, the question of how to specify such preferences remains largely unaddressed. This motivates us to introduce a declarative rule-based framework for specifying and computing a priority relation between conflicting facts. As the expressed preferences may contain undesirable cycles, we consider the problem of determining when a set of preference rules always yields an acyclic relation, and we also explore a pragmatic approach that extracts an acyclic relation by applying various cycle removal techniques. Towards an end-to-end system for querying inconsistent KBs, we present a preliminary implementation and experimental evaluation of the framework, which employs answer set programming to evaluate the preference rules, apply the desired cycle resolution techniques to obtain a priority relation, and answer queries under prioritized-repair semantics.
comment: This is an extended version of a paper appearing at the 22nd International Conference on Principles of Knowledge Representation and Reasoning (KR 2025). 24 pages
☆ MLego: Interactive and Scalable Topic Exploration Through Model Reuse
With massive texts on social media, users and analysts often rely on topic modeling techniques to quickly extract key themes and gain insights. Traditional topic modeling techniques, such as Latent Dirichlet Allocation (LDA), provide valuable insights but are computationally expensive, making them impractical for real-time data analysis. Although recent advances in distributed training and fast sampling methods have improved efficiency, real-time topic exploration remains a significant challenge. In this paper, we present MLego, an interactive query framework designed to support real-time topic modeling analysis by leveraging model materialization and reuse. Instead of retraining models from scratch, MLego efficiently merges materialized topic models to construct approximate results at interactive speeds. To further enhance efficiency, we introduce a hierarchical plan search strategy for single queries and an optimized query reordering technique for batch queries. We integrate MLego into a visual analytics prototype system, enabling users to explore large-scale textual datasets through interactive queries. Extensive experiments demonstrate that MLego significantly reduces computation costs while maintaining high-quality topic modeling results. MLego enhances existing visual analytics approaches, which primarily focus on user-driven topic modeling, by enabling real-time, query-driven exploration. This complements traditional methods and bridges the gap between scalable topic modeling and interactive data analysis.
comment: 14 pages
☆ A Benchmark for Databases with Varying Value Lengths
The performance of database management systems (DBMS) is traditionally evaluated using benchmarks that focus on workloads with (almost) fixed record lengths. However, some real-world workloads in key/value stores, document databases, and graph databases exhibit significant variability in value lengths, which can lead to performance anomalies, particularly when popular records grow disproportionately large. Existing benchmarks fail to account for this variability, leaving an important aspect of DBMS behavior underexplored. In this paper, we address this gap by extending the Yahoo! Cloud Serving Benchmark (YCSB) to include an "extend" operation, which appends data to record fields, simulating the growth of values over time. Using this modified benchmark, we have measured the performance of three popular DBMS backends: MongoDB, MariaDB with the InnoDB storage engine, and MariaDB with the MyRocks storage engine. Our experiments alternate between extending values and executing query workloads, revealing significant performance differences driven by storage engine design and their handling of variable-sized values. Our key contribution is the introduction of a novel benchmarking approach to evaluate the impact of growing value sizes and isolate the effect of querying data with a distribution of data sizes from any cost associated with accessing data after a history of updates. This highlights the need for more representative benchmarks that capture the dynamic nature of real-world workloads, providing valuable guidance for both practitioners and researchers.
comment: Seventeenth TPC Technology Conference on Performance Evaluation & Benchmarking (TPCTC 2025) Keywords: Key-value stores, Benchmarking, Throughput, Latency
☆ JSPIM: A Skew-Aware PIM Accelerator for High-Performance Databases Join and Select Operations
Database applications are increasingly bottlenecked by memory bandwidth and latency due to the memory wall and the limited scalability of DRAM. Join queries, central to analytical workloads, require intensive memory access and are particularly vulnerable to inefficiencies in data movement. While Processing-in-Memory (PIM) offers a promising solution, existing designs typically reuse CPU-oriented join algorithms, limiting parallelism and incurring costly inter-chip communication. Additionally, data skew, a main challenge in CPU-based joins, remains unresolved in current PIM architectures. We introduce JSPIM, a PIM module that accelerates hash join and, by extension, corresponding select queries through algorithm-hardware co-design. JSPIM deploys parallel search engines within each subarray and redesigns hash tables to achieve O(1) lookups, fully exploiting PIM's fine-grained parallelism. To mitigate skew, our design integrates subarray-level parallelism with rank-level processing, eliminating redundant off-chip transfers. Evaluations show JSPIM delivers 400x to 1000x speedup on join queries versus DuckDB. When paired with DuckDB for the full SSB benchmark, JSPIM achieves an overall 2.5x throughput improvement (individual query gains of 1.1x to 28x), at just a 7% data overhead and 2.1% per-rank PIM-enabled chip area increase.
☆ Vector-Centric Machine Learning Systems: A Cross-Stack Approach
Today, two major trends are shaping the evolution of ML systems. First, modern AI systems are becoming increasingly complex, often integrating components beyond the model itself. A notable example is Retrieval-Augmented Generation (RAG), which incorporates not only multiple models but also vector databases, leading to heterogeneity in both system components and underlying hardware. Second, with the end of Moore's Law, achieving high system efficiency is no longer feasible without accounting for the rapid evolution of the hardware landscape. Building on the observations above, this thesis adopts a cross-stack approach to improving ML system efficiency, presenting solutions that span algorithms, systems, and hardware. First, it introduces several pioneering works about RAG serving efficiency across the computing stack. PipeRAG focuses on algorithm-level improvements, RAGO introduces system-level optimizations, and Chameleon explores heterogeneous accelerator systems for RAG. Second, this thesis investigates algorithm-hardware co-design for vector search. Specifically, FANNS and Falcon optimize quantization-based and graph-based vector search, the two most popular paradigms of retrieval algorithms. Third, this thesis addresses the serving efficiency of recommender systems, another example of vector-centric ML systems, where the memory-intensive lookup operations on embedding vector tables often represent a major performance bottleneck. MicroRec and FleetRec propose solutions at the hardware and system levels, respectively, optimizing both data movement and computation to enhance the efficiency of large-scale recommender models.
comment: PhD Thesis (ETH Zurich)
☆ Fitting Ontologies and Constraints to Relational Structures
We study the problem of fitting ontologies and constraints to positive and negative examples that take the form of a finite relational structure. As ontology and constraint languages, we consider the description logics $\mathcal{E\mkern-2mu L}$ and $\mathcal{E\mkern-2mu LI}$ as well as several classes of tuple-generating dependencies (TGDs): full, guarded, frontier-guarded, frontier-one, and unrestricted TGDs as well as inclusion dependencies. We pinpoint the exact computational complexity, design algorithms, and analyze the size of fitting ontologies and TGDs. We also investigate the related problem of constructing a finite basis of concept inclusions / TGDs for a given set of finite structures. While finite bases exist for $\mathcal{E\mkern-2mu L}$, $\mathcal{E\mkern-2mu LI}$, guarded TGDs, and inclusion dependencies, they in general do not exist for full, frontier-guarded and frontier-one TGDs.
comment: Accepted at the 22nd International Conference on Principles of Knowledge Representation and Reasoning (KR 2025)
♻ ☆ PROV-AGENT: Unified Provenance for Tracking AI Agent Interactions in Agentic Workflows
Large Language Models (LLMs) and other foundation models are increasingly used as the core of AI agents. In agentic workflows, these agents plan tasks, interact with humans and peers, and influence scientific outcomes across federated and heterogeneous workflows. However, agents can hallucinate or reason incorrectly, propagating errors when one agent's output becomes another's input. Thus, assuring that agents' actions are transparent, traceable, reproducible, and reliable is critical to assess hallucination risks and mitigate their workflow impacts. While provenance techniques have long supported these principles, existing methods fail to capture and relate agent-centric metadata such as prompts, responses, and decisions with the broader workflow context and downstream outcomes. In this paper, we introduce PROV-AGENT, a provenance model that extends W3C PROV and leverages the Model Context Protocol (MCP) and data observability to integrate agent interactions into end-to-end workflow provenance. Our contributions include: (1) a provenance model tailored for agentic workflows, (2) a near real-time, open-source system for capturing agentic provenance, and (3) a cross-facility evaluation spanning edge, cloud, and HPC environments, demonstrating support for critical provenance queries and agent reliability analysis.
comment: Paper accepted for publication in the Proceedings of the 2025 IEEE 21st International Conference on e-Science (e-Science)
Distributed, Parallel, and Cluster Computing 22
☆ Fully-Fluctuating Participation in Sleepy Consensus
Proof-of-work allows Bitcoin to boast security amidst arbitrary fluctuations in participation of miners throughout time, so long as, at any point in time, a majority of hash power is honest. In recent years, however, the pendulum has shifted in favor of proof-of-stake-based consensus protocols. There, the sleepy model is the most prominent model for handling fluctuating participation of nodes. However, to date, no protocol in the sleepy model rivals Bitcoin in its robustness to drastic fluctuations in participation levels, with state-of-the-art protocols making various restrictive assumptions. In this work, we present a new adversary model, called external adversary. Intuitively, in our model, corrupt nodes do not divulge information about their secret keys. In this model, we show that protocols in the sleepy model can meaningfully claim to remain secure against fully fluctuating participation, without compromising efficiency or corruption resilience. Our adversary model is quite natural, and arguably naturally captures the process via which malicious behavior arises in protocols, as opposed to traditional worst-case modeling. On top of which, the model is also theoretically appealing, circumventing a barrier established in a recent work of Malkhi, Momose, and Ren.
☆ On the Operational Resilience of CBDC: Threats and Prospects of Formal Validation for Offline Payments
Information and communication technologies are by now employed in most activities, including economics and finance. Despite the extraordinary power of modern computers and the vast amount of memory, some results of theoretical computer science imply the impossibility of certifying software quality in general. With the exception of safety-critical systems, this has primarily concerned the information processed by confined systems, with limited socio-economic consequences. In the emerging era of technologies for exchanging digital money and tokenized assets over the Internet - such as central bank digital currencies (CBDCs) - even a minor bug could trigger a financial collapse. Although the aforementioned impossibility results cannot be overcome in an absolute sense, there exist formal methods that can provide assertions of computing systems correctness. We advocate their use to validate the operational resilience of software infrastructures enabling CBDCs, with special emphasis on offline payments as they constitute a very critical issue.
☆ Optimizing Federated Learning for Scalable Power-demand Forecasting in Microgrids
Real-time monitoring of power consumption in cities and micro-grids through the Internet of Things (IoT) can help forecast future demand and optimize grid operations. But moving all consumer-level usage data to the cloud for predictions and analysis at fine time scales can expose activity patterns. Federated Learning~(FL) is a privacy-sensitive collaborative DNN training approach that retains data on edge devices, trains the models on private data locally, and aggregates the local models in the cloud. But key challenges exist: (i) clients can have non-independently identically distributed~(non-IID) data, and (ii) the learning should be computationally cheap while scaling to 1000s of (unseen) clients. In this paper, we develop and evaluate several optimizations to FL training across edge and cloud for time-series demand forecasting in micro-grids and city-scale utilities using DNNs to achieve a high prediction accuracy while minimizing the training cost. We showcase the benefit of using exponentially weighted loss while training and show that it further improves the prediction of the final model. Finally, we evaluate these strategies by validating over 1000s of clients for three states in the US from the OpenEIA corpus, and performing FL both in a pseudo-distributed setting and a Pi edge cluster. The results highlight the benefits of the proposed methods over baselines like ARIMA and DNNs trained for individual consumers, which are not scalable.
☆ Performance Evaluation of Brokerless Messaging Libraries
Messaging systems are essential for efficiently transferring large volumes of data, ensuring rapid response times and high-throughput communication. The state-of-the-art on messaging systems mainly focuses on the performance evaluation of brokered messaging systems, which use an intermediate broker to guarantee reliability and quality of service. However, over the past decade, brokerless messaging systems have emerged, eliminating the single point of failure and trading off reliability guarantees for higher performance. Still, the state-of-the-art on evaluating the performance of brokerless systems is scarce. In this work, we solely focus on brokerless messaging systems. First, we perform a qualitative analysis of several possible candidates, to find the most promising ones. We then design and implement an extensive open-source benchmarking suite to systematically and fairly evaluate the performance of the chosen libraries, namely, ZeroMQ, NanoMsg, and NanoMsg-Next-Generation (NNG). We evaluate these libraries considering different metrics and workload conditions, and provide useful insights into their limitations. Our analysis enables practitioners to select the most suitable library for their requirements.
comment: 11 pages, 9 figures
☆ GPU-Accelerated Syndrome Decoding for Quantum LDPC Codes below the 63 $μ$s Latency Threshold
This paper presents a GPU-accelerated decoder for quantum low-density parity-check (QLDPC) codes that achieves sub-$63$ $\mu$s latency, below the surface code decoder's real-time threshold demonstrated on Google's Willow quantum processor. While surface codes have demonstrated below-threshold performance, the encoding rates approach zero as code distances increase, posing challenges for scalability. Recently proposed QLDPC codes, such as those by Panteleev and Kalachev, offer constant-rate encoding and asymptotic goodness but introduce higher decoding complexity. To address such limitation, this work presents a parallelized belief propagation decoder leveraging syndrome information on commodity GPU hardware. Parallelism was exploited to maximize performance within the limits of target latency, allowing decoding latencies under $50$ $\mu$s for [[$784$, $24$, $24$]] codes and as low as $23.3$ $\mu$s for smaller codes, meeting the tight timing constraints of superconducting qubit cycles. These results show that real-time, scalable decoding of asymptotically good quantum codes is achievable using widely available commodity hardware, advancing the feasibility of fault-tolerant quantum computation beyond surface codes.
comment: 7 pages, 3 figures, 1 table
☆ EFU: Enforcing Federated Unlearning via Functional Encryption
Federated unlearning (FU) algorithms allow clients in federated settings to exercise their ''right to be forgotten'' by removing the influence of their data from a collaboratively trained model. Existing FU methods maintain data privacy by performing unlearning locally on the client-side and sending targeted updates to the server without exposing forgotten data; yet they often rely on server-side cooperation, revealing the client's intent and identity without enforcement guarantees - compromising autonomy and unlearning privacy. In this work, we propose EFU (Enforced Federated Unlearning), a cryptographically enforced FU framework that enables clients to initiate unlearning while concealing its occurrence from the server. Specifically, EFU leverages functional encryption to bind encrypted updates to specific aggregation functions, ensuring the server can neither perform unauthorized computations nor detect or skip unlearning requests. To further mask behavioral and parameter shifts in the aggregated model, we incorporate auxiliary unlearning losses based on adversarial examples and parameter importance regularization. Extensive experiments show that EFU achieves near-random accuracy on forgotten data while maintaining performance comparable to full retraining across datasets and neural architectures - all while concealing unlearning intent from the server. Furthermore, we demonstrate that EFU is agnostic to the underlying unlearning algorithm, enabling secure, function-hiding, and verifiable unlearning for any client-side FU mechanism that issues targeted updates.
☆ Towards Lock Modularization for Heterogeneous Environments
Modern hardware environments are becoming increasingly heterogeneous, leading to the emergence of applications specifically designed to exploit this heterogeneity. Efficiently adopting locks in these applications poses distinct challenges. The uneven distribution of resources in such environments can create bottlenecks for lock operations, severely hindering application performance. Existing solutions are often tailored to specific types of hardware, which underutilizes resources on other components within heterogeneous environments. This paper introduces a new design principle: decomposing locks across hardware components to fully utilize unevenly distributed resources in heterogeneous environments. Following this principle, we propose lock modularization, a systematic approach that decomposes a lock into independent modules and assigns them to appropriate hardware components. This approach aligns the resource requirements of lock modules with the attributes of specific hardware components, maximizing strengths while minimizing weaknesses.
☆ Over-the-Top Resource Broker System for Split Computing: An Approach to Distribute Cloud Computing Infrastructure
6G network architectures will usher in a wave of innovative services and capabilities, introducing concepts like split computing and dynamic processing nodes. This implicates a paradigm where accessing resources seamlessly aligns with diverse processing node characteristics, ensuring a uniform interface. In this landscape, the identity of the operator becomes inconsequential, paving the way for a collaborative ecosystem where multiple providers contribute to a shared pool of resources. At the core of this vision is the guarantee of specific performance parameters, precisely tailored to the location and service requirements. A consistent layer, as the abstraction of the complexities of different infrastructure providers, is needed to simplify service deployment. One promising approach is the introduction of an over-the-top broker for resource allocation, which streamlines the integration of these services into the network and cloud infrastructure of the future. This paper explores the role of the broker in two split computing scenarios. By abstracting the complexities of various infrastructures, the broker proves to be a versatile solution applicable not only to cloud environments but also to networks and beyond. Additionally, a detailed discussion of a proof-of-concept implementation provides insights into the broker's actual architectural framework.
☆ Perpetual exploration in anonymous synchronous networks with a Byzantine black hole
In this paper, we investigate: ``How can a group of initially co-located mobile agents perpetually explore an unknown graph, when one stationary node occasionally behaves maliciously, under an adversary's control?'' We call this node a ``Byzantine black hole (BBH)'' and at any given round it may choose to destroy all visiting agents, or none. This subtle power can drastically undermine classical exploration strategies designed for an always active black hole. We study this perpetual exploration problem in the presence of at most one BBH, without initial knowledge of the network size. Since the underlying graph may be 1-connected, perpetual exploration of the entire graph may be infeasible. We thus define two variants: \pbmPerpExpl\ and \pbmPerpExplHome. In the former, the agents are tasked to perform perpetual exploration of at least one component, obtained after the exclusion of the BBH. In the latter, the agents are tasked to perform perpetual exploration of the component which contains the \emph{home} node, where agents are initially co-located. Naturally, \pbmPerpExplHome\ is a special case of \pbmPerpExpl. Agents operate under a synchronous scheduler and communicate in a face-to-face model. Our goal is to determine the minimum number of agents necessary and sufficient to solve these problems. In acyclic networks, we obtain optimal algorithms that solve \pbmPerpExpl\ with $4$ agents, and \pbmPerpExplHome\ with $6$ agents in trees. The lower bounds hold even in path graphs. In general graphs, we give a non-trivial lower bound of $2\Delta-1$ agents for \pbmPerpExpl, and an upper bound of $3\Delta+3$ agents for \pbmPerpExplHome. To our knowledge, this is the first study of a black-hole variant in arbitrary networks without initial topological knowledge.
comment: This paper has been accepted at DISC 2025
☆ Multi-Hop Privacy Propagation for Differentially Private Federated Learning in Social Networks AI25
Federated learning (FL) enables collaborative model training across decentralized clients without sharing local data, thereby enhancing privacy and facilitating collaboration among clients connected via social networks. However, these social connections introduce privacy externalities: a client's privacy loss depends not only on its privacy protection strategy but also on the privacy decisions of others, propagated through the network via multi-hop interactions. In this work, we propose a socially-aware privacy-preserving FL mechanism that systematically quantifies indirect privacy leakage through a multi-hop propagation model. We formulate the server-client interaction as a two-stage Stackelberg game, where the server, as the leader, optimizes incentive policies, and clients, as followers, strategically select their privacy budgets, which determine their privacy-preserving levels by controlling the magnitude of added noise. To mitigate information asymmetry in networked privacy estimation, we introduce a mean-field estimator to approximate the average external privacy risk. We theoretically prove the existence and convergence of the fixed point of the mean-field estimator and derive closed-form expressions for the Stackelberg Nash Equilibrium. Despite being designed from a client-centric incentive perspective, our mechanism achieves approximately-optimal social welfare, as revealed by Price of Anarchy (PoA) analysis. Experiments on diverse datasets demonstrate that our approach significantly improves client utilities and reduces server costs while maintaining model performance, outperforming both Social-Agnostic (SA) baselines and methods that account for social externalities.
comment: Accepted by ECAI25
☆ Taming Cold Starts: Proactive Serverless Scheduling with Model Predictive Control
Serverless computing has transformed cloud application deployment by introducing a fine-grained, event-driven execution model that abstracts away infrastructure management. Its on-demand nature makes it especially appealing for latency-sensitive and bursty workloads. However, the cold start problem, i.e., where the platform incurs significant delay when provisioning new containers, remains the Achilles' heel of such platforms. This paper presents a predictive serverless scheduling framework based on Model Predictive Control to proactively mitigate cold starts, thereby improving end-to-end response time. By forecasting future invocations, the controller jointly optimizes container prewarming and request dispatching, improving latency while minimizing resource overhead. We implement our approach on Apache OpenWhisk, deployed on a Kubernetes-based testbed. Experimental results using real-world function traces and synthetic workloads demonstrate that our method significantly outperforms state-of-the-art baselines, achieving up to 85% lower tail latency and a 34% reduction in resource usage.
comment: 8 pages, 8 figures, preprint accepted at MASCOTS 2025
☆ Coordinated Power Management on Heterogeneous Systems
Performance prediction is essential for energy-efficient computing in heterogeneous computing systems that integrate CPUs and GPUs. However, traditional performance modeling methods often rely on exhaustive offline profiling, which becomes impractical due to the large setting space and the high cost of profiling large-scale applications. In this paper, we present OPEN, a framework consists of offline and online phases. The offline phase involves building a performance predictor and constructing an initial dense matrix. In the online phase, OPEN performs lightweight online profiling, and leverages the performance predictor with collaborative filtering to make performance prediction. We evaluate OPEN on multiple heterogeneous systems, including those equipped with A100 and A30 GPUs. Results show that OPEN achieves prediction accuracy up to 98.29\%. This demonstrates that OPEN effectively reduces profiling cost while maintaining high accuracy, making it practical for power-aware performance modeling in modern HPC environments. Overall, OPEN provides a lightweight solution for performance prediction under power constraints, enabling better runtime decisions in power-aware computing environments.
☆ A Reinforcement Learning-Driven Task Scheduling Algorithm for Multi-Tenant Distributed Systems
This paper addresses key challenges in task scheduling for multi-tenant distributed systems, including dynamic resource variation, heterogeneous tenant demands, and fairness assurance. An adaptive scheduling method based on reinforcement learning is proposed. By modeling the scheduling process as a Markov decision process, the study defines the state space, action space, and reward function. A scheduling policy learning framework is designed using Proximal Policy Optimization (PPO) as the core algorithm. This enables dynamic perception of complex system states and real-time decision-making. Under a multi-objective reward mechanism, the scheduler jointly optimizes task latency, resource utilization, and tenant fairness. The coordination between the policy network and the value network continuously refines the scheduling strategy. This enhances overall system performance. To validate the effectiveness of the proposed method, a series of experiments were conducted in multi-scenario environments built using a real-world public dataset. The experiments evaluated task latency control, resource efficiency, policy stability, and fairness. The results show that the proposed method outperforms existing scheduling approaches across multiple evaluation metrics. It demonstrates strong stability and generalization ability. The proposed scheduling framework provides practical and engineering value in policy design, dynamic resource modeling, and multi-tenant service assurance. It effectively improves scheduling efficiency and resource management in distributed systems under complex conditions.
☆ Benchmarking Federated Learning for Throughput Prediction in 5G Live Streaming Applications
Accurate and adaptive network throughput prediction is essential for latency-sensitive and bandwidth-intensive applications in 5G and emerging 6G networks. However, most existing methods rely on centralized training with uniformly collected data, limiting their applicability in heterogeneous mobile environments with non-IID data distributions. This paper presents the first comprehensive benchmarking of federated learning (FL) strategies for throughput prediction in realistic 5G edge scenarios. We evaluate three aggregation algorithms - FedAvg, FedProx, and FedBN - across four time-series architectures: LSTM, CNN, CNN+LSTM, and Transformer, using five diverse real-world datasets. We systematically analyze the effects of client heterogeneity, cohort size, and history window length on prediction performance. Our results reveal key trade-offs among model complexities, convergence rates, and generalization. It is found that FedBN consistently delivers robust performance under non-IID conditions. On the other hand, LSTM and Transformer models outperform CNN-based baselines by up to 80% in R2 scores. Moreover, although Transformers converge in half the rounds of LSTM, they require longer history windows to achieve a high R2, indicating higher context dependence. LSTM is, therefore, found to achieve a favorable balance between accuracy, rounds, and temporal footprint. To validate the end-to-end applicability of the framework, we have integrated our FL-based predictors into a live adaptive streaming pipeline. It is seen that FedBN-based LSTM and Transformer models improve mean QoE scores by 11.7% and 11.4%, respectively, over FedAvg, while also reducing the variance. These findings offer actionable insights for building scalable, privacy-preserving, and edge-aware throughput prediction systems in next-generation wireless networks.
comment: 14 pages, 24 figures, submitted to IEEE TNET
☆ Vector-Centric Machine Learning Systems: A Cross-Stack Approach
Today, two major trends are shaping the evolution of ML systems. First, modern AI systems are becoming increasingly complex, often integrating components beyond the model itself. A notable example is Retrieval-Augmented Generation (RAG), which incorporates not only multiple models but also vector databases, leading to heterogeneity in both system components and underlying hardware. Second, with the end of Moore's Law, achieving high system efficiency is no longer feasible without accounting for the rapid evolution of the hardware landscape. Building on the observations above, this thesis adopts a cross-stack approach to improving ML system efficiency, presenting solutions that span algorithms, systems, and hardware. First, it introduces several pioneering works about RAG serving efficiency across the computing stack. PipeRAG focuses on algorithm-level improvements, RAGO introduces system-level optimizations, and Chameleon explores heterogeneous accelerator systems for RAG. Second, this thesis investigates algorithm-hardware co-design for vector search. Specifically, FANNS and Falcon optimize quantization-based and graph-based vector search, the two most popular paradigms of retrieval algorithms. Third, this thesis addresses the serving efficiency of recommender systems, another example of vector-centric ML systems, where the memory-intensive lookup operations on embedding vector tables often represent a major performance bottleneck. MicroRec and FleetRec propose solutions at the hardware and system levels, respectively, optimizing both data movement and computation to enhance the efficiency of large-scale recommender models.
comment: PhD Thesis (ETH Zurich)
☆ Towards Efficient and Practical GPU Multitasking in the Era of LLM
GPU singletasking is becoming increasingly inefficient and unsustainable as hardware capabilities grow and workloads diversify. We are now at an inflection point where GPUs must embrace multitasking, much like CPUs did decades ago, to meet the demands of modern AI workloads. In this work, we highlight the key requirements for GPU multitasking, examine prior efforts, and discuss why they fall short. To advance toward efficient and practical GPU multitasking, we envision a resource management layer, analogous to a CPU operating system, to handle various aspects of GPU resource management and sharing. We outline the challenges and potential solutions, and hope this paper inspires broader community efforts to build the next-generation GPU compute paradigm grounded in multitasking.
☆ Extremely Scalable Distributed Computation of Contour Trees via Pre-Simplification
Contour trees offer an abstract representation of the level set topology in scalar fields and are widely used in topological data analysis and visualization. However, applying contour trees to large-scale scientific datasets remains challenging due to scalability limitations. Recent developments in distributed hierarchical contour trees have addressed these challenges by enabling scalable computation across distributed systems. Building on these structures, advanced analytical tasks -- such as volumetric branch decomposition and contour extraction -- have been introduced to facilitate large-scale scientific analysis. Despite these advancements, such analytical tasks substantially increase memory usage, which hampers scalability. In this paper, we propose a pre-simplification strategy to significantly reduce the memory overhead associated with analytical tasks on distributed hierarchical contour trees. We demonstrate enhanced scalability through strong scaling experiments, constructing the largest known contour tree -- comprising over half a trillion nodes with complex topology -- in under 15 minutes on a dataset containing 550 billion elements.
comment: To be published at the 15th IEEE Workshop on Large Scale Data Analysis and Visualization (LDAV) 2025
☆ Profiling Concurrent Vision Inference Workloads on NVIDIA Jetson -- Extended
The proliferation of IoT devices and advancements in network technologies have intensified the demand for real-time data processing at the network edge. To address these demands, low-power AI accelerators, particularly GPUs, are increasingly deployed for inference tasks, enabling efficient computation while mitigating cloud-based systems' latency and bandwidth limitations. Despite their growing deployment, GPUs remain underutilised even in computationally intensive workloads. This underutilisation stems from the limited understanding of GPU resource sharing, particularly in edge computing scenarios. In this work, we conduct a detailed analysis of both high- and low-level metrics, including GPU utilisation, memory usage, streaming multiprocessor (SM) utilisation, and tensor core usage, to identify bottlenecks and guide hardware-aware optimisations. By integrating traces from multiple profiling tools, we provide a comprehensive view of resource behaviour on NVIDIA Jetson edge devices under concurrent vision inference workloads. Our findings indicate that while GPU utilisation can reach $100\%$ under specific optimisations, critical low-level resources, such as SMs and tensor cores, often operate only at $15\%$ to $30\%$ utilisation. Moreover, we observe that certain CPU-side events, such as thread scheduling, context switching, etc., frequently emerge as bottlenecks, further constraining overall GPU performance. We provide several key observations for users of vision inference workloads on NVIDIA edge devices.
☆ XDMA: A Distributed, Extensible DMA Architecture for Layout-Flexible Data Movements in Heterogeneous Multi-Accelerator SoCs
As modern AI workloads increasingly rely on heterogeneous accelerators, ensuring high-bandwidth and layout-flexible data movements between accelerator memories has become a pressing challenge. Direct Memory Access (DMA) engines promise high bandwidth utilization for data movements but are typically optimal only for contiguous memory access, thus requiring additional software loops for data layout transformations. This, in turn, leads to excessive control overhead and underutilized on-chip interconnects. To overcome this inefficiency, we present XDMA, a distributed and extensible DMA architecture that enables layout-flexible data movements with high link utilization. We introduce three key innovations: (1) a data streaming engine as XDMA Frontend, replacing software address generators with hardware ones; (2) a distributed DMA architecture that maximizes link utilization and separates configuration from data transfer; (3) flexible plugins for XDMA enabling on-the-fly data manipulation during data transfers. XDMA demonstrates up to 151.2x/8.2x higher link utilization than software-based implementations in synthetic workloads and achieves 2.3x average speedup over accelerators with SoTA DMA in real-world applications. Our design incurs <2% area overhead over SoTA DMA solutions while consuming 17% of system power. XDMA proves that co-optimizing memory access, layout transformation, and interconnect protocols is key to unlocking heterogeneous multi-accelerator SoC performance.
comment: 4 pages, 6 figures, Proceeded by The 43rd IEEE International Conference on Computer Design (ICCD 2025)
♻ ☆ Carbon-Aware Workflow Scheduling with Fixed Mapping and Deadline Constraint
Large data and computing centers consume a significant share of the world's energy consumption. A prominent subset of the workloads in such centers are workflows with interdependent tasks, usually represented as directed acyclic graphs (DAGs). To reduce the carbon emissions resulting from executing such workflows in centers with a mixed (renewable and non-renewable) energy supply, it is advisable to move task executions to time intervals with sufficient green energy when possible. To this end, we formalize the above problem as a scheduling problem with a given mapping and ordering of the tasks. We show that this problem can be solved in polynomial time in the uniprocessor case. For at least two processors, however, the problem becomes NP-hard. Hence, we propose a heuristic framework called CaWoSched that combines several greedy approaches with local search. To assess the 16 heuristics resulting from different combinations, we also devise a simple baseline algorithm and an exact ILP-based solution. Our experimental results show that our heuristics provide significant savings in carbon emissions compared to the baseline.
comment: 40 pages, 17 figures. Accepted at ICPP 2025. Code available at: https://github.com/KIT-EAE/CaWoSched.git
♻ ☆ A New One-Shot Federated Learning Framework for Medical Imaging Classification with Feature-Guided Rectified Flow and Knowledge Distillation AI 2025
In multi-center scenarios, One-Shot Federated Learning (OSFL) has attracted increasing attention due to its low communication overhead, requiring only a single round of transmission. However, existing generative model-based OSFL methods suffer from low training efficiency and potential privacy leakage in the healthcare domain. Additionally, achieving convergence within a single round of model aggregation is challenging under non-Independent and Identically Distributed (non-IID) data. To address these challenges, in this paper a modified OSFL framework is proposed, in which a new Feature-Guided Rectified Flow Model (FG-RF) and Dual-Layer Knowledge Distillation (DLKD) aggregation method are developed. FG-RF on the client side accelerates generative modeling in medical imaging scenarios while preserving privacy by synthesizing feature-level images rather than pixel-level images. To handle non-IID distributions, DLKD enables the global student model to simultaneously mimic the output logits and align the intermediate-layer features of client-side teacher models during aggregation. Experimental results on three non-IID medical imaging datasets show that our new framework and method outperform multi-round federated learning approaches, achieving up to 21.73% improvement, and exceeds the baseline FedISCA by an average of 21.75%. Furthermore, our experiments demonstrate that feature-level synthetic images significantly reduce privacy leakage risks compared to pixel-level synthetic images. The code is available at https://github.com/LMIAPC/one-shot-fl-medical.
comment: Accepted at ECAI 2025
♻ ☆ PROV-AGENT: Unified Provenance for Tracking AI Agent Interactions in Agentic Workflows
Large Language Models (LLMs) and other foundation models are increasingly used as the core of AI agents. In agentic workflows, these agents plan tasks, interact with humans and peers, and influence scientific outcomes across federated and heterogeneous workflows. However, agents can hallucinate or reason incorrectly, propagating errors when one agent's output becomes another's input. Thus, assuring that agents' actions are transparent, traceable, reproducible, and reliable is critical to assess hallucination risks and mitigate their workflow impacts. While provenance techniques have long supported these principles, existing methods fail to capture and relate agent-centric metadata such as prompts, responses, and decisions with the broader workflow context and downstream outcomes. In this paper, we introduce PROV-AGENT, a provenance model that extends W3C PROV and leverages the Model Context Protocol (MCP) and data observability to integrate agent interactions into end-to-end workflow provenance. Our contributions include: (1) a provenance model tailored for agentic workflows, (2) a near real-time, open-source system for capturing agentic provenance, and (3) a cross-facility evaluation spanning edge, cloud, and HPC environments, demonstrating support for critical provenance queries and agent reliability analysis.
comment: Paper accepted for publication in the Proceedings of the 2025 IEEE 21st International Conference on e-Science (e-Science)
Information Retrieval 27
☆ HierSearch: A Hierarchical Enterprise Deep Search Framework Integrating Local and Web Searches
Recently, large reasoning models have demonstrated strong mathematical and coding abilities, and deep search leverages their reasoning capabilities in challenging information retrieval tasks. Existing deep search works are generally limited to a single knowledge source, either local or the Web. However, enterprises often require private deep search systems that can leverage search tools over both local and the Web corpus. Simply training an agent equipped with multiple search tools using flat reinforcement learning (RL) is a straightforward idea, but it has problems such as low training data efficiency and poor mastery of complex tools. To address the above issue, we propose a hierarchical agentic deep search framework, HierSearch, trained with hierarchical RL. At the low level, a local deep search agent and a Web deep search agent are trained to retrieve evidence from their corresponding domains. At the high level, a planner agent coordinates low-level agents and provides the final answer. Moreover, to prevent direct answer copying and error propagation, we design a knowledge refiner that filters out hallucinations and irrelevant evidence returned by low-level agents. Experiments show that HierSearch achieves better performance compared to flat RL, and outperforms various deep search and multi-source retrieval-augmented generation baselines in six benchmarks across general, finance, and medical domains.
comment: Code and datasets are available at https://github.com/plageon/HierSearch
Multi-modal Adaptive Mixture of Experts for Cold-start Recommendation
Recommendation systems have faced significant challenges in cold-start scenarios, where new items with a limited history of interaction need to be effectively recommended to users. Though multimodal data (e.g., images, text, audio, etc.) offer rich information to address this issue, existing approaches often employ simplistic integration methods such as concatenation, average pooling, or fixed weighting schemes, which fail to capture the complex relationships between modalities. Our study proposes a novel Mixture of Experts (MoE) framework for multimodal cold-start recommendation, named MAMEX, which dynamically leverages latent representation from different modalities. MAMEX utilizes modality-specific expert networks and introduces a learnable gating mechanism that adaptively weights the contribution of each modality based on its content characteristics. This approach enables MAMEX to emphasize the most informative modalities for each item while maintaining robustness when certain modalities are less relevant or missing. Extensive experiments on benchmark datasets show that MAMEX outperforms state-of-the-art methods in cold-start scenarios, with superior accuracy and adaptability. For reproducibility, the code has been made available on Github https://github.com/L2R-UET/MAMEX.
☆ DIVER: A Multi-Stage Approach for Reasoning-intensive Information Retrieval
Retrieval-augmented generation has achieved strong performance on knowledge-intensive tasks where query-document relevance can be identified through direct lexical or semantic matches. However, many real-world queries involve abstract reasoning, analogical thinking, or multi-step inference, which existing retrievers often struggle to capture. To address this challenge, we present \textbf{DIVER}, a retrieval pipeline tailored for reasoning-intensive information retrieval. DIVER consists of four components: document processing to improve input quality, LLM-driven query expansion via iterative document interaction, a reasoning-enhanced retriever fine-tuned on synthetic multi-domain data with hard negatives, and a pointwise reranker that combines LLM-assigned helpfulness scores with retrieval scores. On the BRIGHT benchmark, DIVER achieves state-of-the-art nDCG@10 scores of 41.6 and 28.9 on original queries, consistently outperforming competitive reasoning-aware models. These results demonstrate the effectiveness of reasoning-aware retrieval strategies in complex real-world tasks. Our code and retrieval model will be released soon.
☆ Early Explorations of Recommender Systems for Physical Activity and Well-being
As recommender systems increasingly guide physical actions, often through wearables and coaching tools, new challenges arise around how users interpret, trust, and respond to this advice. This paper introduces a conceptual framework for tangible recommendations that influence users' bodies, routines, and well-being. We describe three design dimensions: trust and interpretation, intent alignment, and consequence awareness. These highlight key limitations in applying conventional recommender logic to embodied settings. Through examples and design reflections, we outline how future systems can support long-term well-being, behavioral alignment, and socially responsible personalization.
comment: Second International Workshop on Recommender Systems for Sustainability and Social Good (RecSoGood) in conjunction with ACM RecSys 2025
☆ Improving Document Retrieval Coherence for Semantically Equivalent Queries
Dense Retrieval (DR) models have proven to be effective for Document Retrieval and Information Grounding tasks. Usually, these models are trained and optimized for improving the relevance of top-ranked documents for a given query. Previous work has shown that popular DR models are sensitive to the query and document lexicon: small variations of it may lead to a significant difference in the set of retrieved documents. In this paper, we propose a variation of the Multi-Negative Ranking loss for training DR that improves the coherence of models in retrieving the same documents with respect to semantically similar queries. The loss penalizes discrepancies between the top-k ranked documents retrieved for diverse but semantic equivalent queries. We conducted extensive experiments on various datasets, MS-MARCO, Natural Questions, BEIR, and TREC DL 19/20. The results show that (i) models optimizes by our loss are subject to lower sensitivity, and, (ii) interestingly, higher accuracy.
☆ Careful Queries, Credible Results: Teaching RAG Models Advanced Web Search Tools with Reinforcement Learning
Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by integrating up-to-date external knowledge, yet real-world web environments present unique challenges. These limitations manifest as two key challenges: pervasive misinformation in the web environment, which introduces unreliable or misleading content that can degrade retrieval accuracy, and the underutilization of web tools, which, if effectively employed, could enhance query precision and help mitigate this noise, ultimately improving the retrieval results in RAG systems. To address these issues, we propose WebFilter, a novel RAG framework that generates source-restricted queries and filters out unreliable content. This approach combines a retrieval filtering mechanism with a behavior- and outcome-driven reward strategy, optimizing both query formulation and retrieval outcomes. Extensive experiments demonstrate that WebFilter improves answer quality and retrieval precision, outperforming existing RAG methods on both in-domain and out-of-domain benchmarks.
☆ Meta Off-Policy Estimation
Off-policy estimation (OPE) methods enable unbiased offline evaluation of recommender systems, directly estimating the online reward some target policy would have obtained, from offline data and with statistical guarantees. The theoretical elegance of the framework combined with practical successes have led to a surge of interest, with many competing estimators now available to practitioners and researchers. Among these, Doubly Robust methods provide a prominent strategy to combine value- and policy-based estimators. In this work, we take an alternative perspective to combine a set of OPE estimators and their associated confidence intervals into a single, more accurate estimate. Our approach leverages a correlated fixed-effects meta-analysis framework, explicitly accounting for dependencies among estimators that arise due to shared data. This yields a best linear unbiased estimate (BLUE) of the target policy's value, along with an appropriately conservative confidence interval that reflects inter-estimator correlation. We validate our method on both simulated and real-world data, demonstrating improved statistical efficiency over existing individual estimators.
comment: To appear in the Nineteenth ACM Conference on Recommender Systems (RecSys '25)
☆ Recommendation Is a Dish Better Served Warm
In modern recommender systems, experimental settings typically include filtering out cold users and items based on a minimum interaction threshold. However, these thresholds are often chosen arbitrarily and vary widely across studies, leading to inconsistencies that can significantly affect the comparability and reliability of evaluation results. In this paper, we systematically explore the cold-start boundary by examining the criteria used to determine whether a user or an item should be considered cold. Our experiments incrementally vary the number of interactions for different items during training, and gradually update the length of user interaction histories during inference. We investigate the thresholds across several widely used datasets, commonly represented in recent papers from top-tier conferences, and on multiple established recommender baselines. Our findings show that inconsistent selection of cold-start thresholds can either result in the unnecessary removal of valuable data or lead to the misclassification of cold instances as warm, introducing more noise into the system.
comment: Accepted for ACM RecSys 2025. Author's version. The final published version will be available at the ACM Digital Library
☆ Encode Me If You Can: Learning Universal User Representations via Event Sequence Autoencoding
Building universal user representations that capture the essential aspects of user behavior is a crucial task for modern machine learning systems. In real-world applications, a user's historical interactions often serve as the foundation for solving a wide range of predictive tasks, such as churn prediction, recommendations, or lifetime value estimation. Using a task-independent user representation that is effective across all such tasks can reduce the need for task-specific feature engineering and model retraining, leading to more scalable and efficient machine learning pipelines. The goal of the RecSys Challenge 2025 by Synerise was to develop such Universal Behavioral Profiles from logs of past user behavior, which included various types of events such as product purchases, page views, and search queries. We propose a method that transforms the entire user interaction history into a single chronological sequence and trains a GRU-based autoencoder to reconstruct this sequence from a fixed-size vector. If the model can accurately reconstruct the sequence, the latent vector is expected to capture the key behavioral patterns. In addition to this core model, we explored several alternative methods for generating user embeddings and combined them by concatenating their output vectors into a unified representation. This ensemble strategy further improved generalization across diverse downstream tasks and helped our team, ai_lab_recsys, achieve second place in the RecSys Challenge 2025.
☆ MLego: Interactive and Scalable Topic Exploration Through Model Reuse
With massive texts on social media, users and analysts often rely on topic modeling techniques to quickly extract key themes and gain insights. Traditional topic modeling techniques, such as Latent Dirichlet Allocation (LDA), provide valuable insights but are computationally expensive, making them impractical for real-time data analysis. Although recent advances in distributed training and fast sampling methods have improved efficiency, real-time topic exploration remains a significant challenge. In this paper, we present MLego, an interactive query framework designed to support real-time topic modeling analysis by leveraging model materialization and reuse. Instead of retraining models from scratch, MLego efficiently merges materialized topic models to construct approximate results at interactive speeds. To further enhance efficiency, we introduce a hierarchical plan search strategy for single queries and an optimized query reordering technique for batch queries. We integrate MLego into a visual analytics prototype system, enabling users to explore large-scale textual datasets through interactive queries. Extensive experiments demonstrate that MLego significantly reduces computation costs while maintaining high-quality topic modeling results. MLego enhances existing visual analytics approaches, which primarily focus on user-driven topic modeling, by enabling real-time, query-driven exploration. This complements traditional methods and bridges the gap between scalable topic modeling and interactive data analysis.
comment: 14 pages
☆ UMRE: A Unified Monotonic Transformation for Ranking Ensemble in Recommender Systems
Industrial recommender systems commonly rely on ensemble sorting (ES) to combine predictions from multiple behavioral objectives. Traditionally, this process depends on manually designed nonlinear transformations (e.g., polynomial or exponential functions) and hand-tuned fusion weights to balance competing goals -- an approach that is labor-intensive and frequently suboptimal in achieving Pareto efficiency. In this paper, we propose a novel Unified Monotonic Ranking Ensemble (UMRE) framework to address the limitations of traditional methods in ensemble sorting. UMRE replaces handcrafted transformations with Unconstrained Monotonic Neural Networks (UMNN), which learn expressive, strictly monotonic functions through the integration of positive neural integrals. Subsequently, a lightweight ranking model is employed to fuse the prediction scores, assigning personalized weights to each prediction objective. To balance competing goals, we further introduce a Pareto optimality strategy that adaptively coordinates task weights during training. UMRE eliminates manual tuning, maintains ranking consistency, and achieves fine-grained personalization. Experimental results on two public recommendation datasets (Kuairand and Tenrec) and online A/B tests demonstrate impressive performance and generalization capabilities.
☆ Towards Comprehensible Recommendation with Large Language Model Fine-tuning
Recommender systems have become increasingly ubiquitous in daily life. While traditional recommendation approaches primarily rely on ID-based representations or item-side content features, they often fall short in capturing the underlying semantics aligned with user preferences (e.g., recommendation reasons for items), leading to a semantic-collaborative gap. Recently emerged LLM-based feature extraction approaches also face a key challenge: how to ensure that LLMs possess recommendation-aligned reasoning capabilities and can generate accurate, personalized reasons to mitigate the semantic-collaborative gap. To address these issues, we propose a novel Content Understanding from a Collaborative Perspective framework (CURec), which generates collaborative-aligned content features for more comprehensive recommendations. \method first aligns the LLM with recommendation objectives through pretraining, equipping it with instruction-following and chain-of-thought reasoning capabilities. Next, we design a reward model inspired by traditional recommendation architectures to evaluate the quality of the recommendation reasons generated by the LLM. Finally, using the reward signals, CURec fine-tunes the LLM through RL and corrects the generated reasons to ensure their accuracy. The corrected reasons are then integrated into a downstream recommender model to enhance comprehensibility and recommendation performance. Extensive experiments on public benchmarks demonstrate the superiority of CURec over existing methods.
comment: 11 pages, 6 figures
☆ Orthogonal Low Rank Embedding Stabilization
The instability of embedding spaces across model retraining cycles presents significant challenges to downstream applications using user or item embeddings derived from recommendation systems as input features. This paper introduces a novel orthogonal low-rank transformation methodology designed to stabilize the user/item embedding space, ensuring consistent embedding dimensions across retraining sessions. Our approach leverages a combination of efficient low-rank singular value decomposition and orthogonal Procrustes transformation to map embeddings into a standardized space. This transformation is computationally efficient, lossless, and lightweight, preserving the dot product and inference quality while reducing operational burdens. Unlike existing methods that modify training objectives or embedding structures, our approach maintains the integrity of the primary model application and can be seamlessly integrated with other stabilization techniques.
☆ Using LLMs to Capture Users' Temporal Context for Recommendation
Effective recommender systems demand dynamic user understanding, especially in complex, evolving environments. Traditional user profiling often fails to capture the nuanced, temporal contextual factors of user preferences, such as transient short-term interests and enduring long-term tastes. This paper presents an assessment of Large Language Models (LLMs) for generating semantically rich, time-aware user profiles. We do not propose a novel end-to-end recommendation architecture; instead, the core contribution is a systematic investigation into the degree of LLM effectiveness in capturing the dynamics of user context by disentangling short-term and long-term preferences. This approach, framing temporal preferences as dynamic user contexts for recommendations, adaptively fuses these distinct contextual components into comprehensive user embeddings. The evaluation across Movies&TV and Video Games domains suggests that while LLM-generated profiles offer semantic depth and temporal structure, their effectiveness for context-aware recommendations is notably contingent on the richness of user interaction histories. Significant gains are observed in dense domains (e.g., Movies&TV), whereas improvements are less pronounced in sparse environments (e.g., Video Games). This work highlights LLMs' nuanced potential in enhancing user profiling for adaptive, context-aware recommendations, emphasizing the critical role of dataset characteristics for practical applicability.
☆ Temporal User Profiling with LLMs: Balancing Short-Term and Long-Term Preferences for Recommendations
Accurately modeling user preferences is crucial for improving the performance of content-based recommender systems. Existing approaches often rely on simplistic user profiling methods, such as averaging or concatenating item embeddings, which fail to capture the nuanced nature of user preference dynamics, particularly the interactions between long-term and short-term preferences. In this work, we propose LLM-driven Temporal User Profiling (LLM-TUP), a novel method for user profiling that explicitly models short-term and long-term preferences by leveraging interaction timestamps and generating natural language representations of user histories using a large language model (LLM). These representations are encoded into high-dimensional embeddings using a pre-trained BERT model, and an attention mechanism is applied to dynamically fuse the short-term and long-term embeddings into a comprehensive user profile. Experimental results on real-world datasets demonstrate that LLM-TUP achieves substantial improvements over several baselines, underscoring the effectiveness of our temporally aware user-profiling approach and the use of semantically rich user profiles, generated by LLMs, for personalized content-based recommendation.
☆ Generating Query-Relevant Document Summaries via Reinforcement Learning
E-commerce search engines often rely solely on product titles as input for ranking models with latency constraints. However, this approach can result in suboptimal relevance predictions, as product titles often lack sufficient detail to capture query intent. While product descriptions provide richer information, their verbosity and length make them unsuitable for real-time ranking, particularly for computationally expensive architectures like cross-encoder ranking models. To address this challenge, we propose ReLSum, a novel reinforcement learning framework designed to generate concise, query-relevant summaries of product descriptions optimized for search relevance. ReLSum leverages relevance scores as rewards to align the objectives of summarization and ranking, effectively overcoming limitations of prior methods, such as misaligned learning targets. The framework employs a trainable large language model (LLM) to produce summaries, which are then used as input for a cross-encoder ranking model. Experimental results demonstrate significant improvements in offline metrics, including recall and NDCG, as well as online user engagement metrics. ReLSum provides a scalable and efficient solution for enhancing search relevance in large-scale e-commerce systems.
♻ ☆ ARAG: Agentic Retrieval Augmented Generation for Personalized Recommendation
Retrieval-Augmented Generation (RAG) has shown promise in enhancing recommendation systems by incorporating external context into large language model prompts. However, existing RAG-based approaches often rely on static retrieval heuristics and fail to capture nuanced user preferences in dynamic recommendation scenarios. In this work, we introduce ARAG, an Agentic Retrieval-Augmented Generation framework for Personalized Recommendation, which integrates a multi-agent collaboration mechanism into the RAG pipeline. To better understand the long-term and session behavior of the user, ARAG leverages four specialized LLM-based agents: a User Understanding Agent that summarizes user preferences from long-term and session contexts, a Natural Language Inference (NLI) Agent that evaluates semantic alignment between candidate items retrieved by RAG and inferred intent, a context summary agent that summarizes the findings of NLI agent, and an Item Ranker Agent that generates a ranked list of recommendations based on contextual fit. We evaluate ARAG accross three datasets. Experimental results demonstrate that ARAG significantly outperforms standard RAG and recency-based baselines, achieving up to 42.1% improvement in NDCG@5 and 35.5% in Hit@5. We also, conduct an ablation study to analyse the effect by different components of ARAG. Our findings highlight the effectiveness of integrating agentic reasoning into retrieval-augmented recommendation and provide new directions for LLM-based personalization.
♻ ☆ WebWatcher: Breaking New Frontier of Vision-Language Deep Research Agent
Web agents such as Deep Research have demonstrated superhuman cognitive abilities, capable of solving highly challenging information-seeking problems. However, most research remains primarily text-centric, overlooking visual information in the real world. This makes multimodal Deep Research highly challenging, as such agents require much stronger reasoning abilities in perception, logic, knowledge, and the use of more sophisticated tools compared to text-based agents. To address this limitation, we introduce WebWatcher, a multi-modal Agent for Deep Research equipped with enhanced visual-language reasoning capabilities. It leverages high-quality synthetic multimodal trajectories for efficient cold start training, utilizes various tools for deep reasoning, and further enhances generalization through reinforcement learning. To better evaluate the capabilities of multimodal agents, we propose BrowseComp-VL, a benchmark with BrowseComp-style that requires complex information retrieval involving both visual and textual information. Experimental results show that WebWatcher significantly outperforms proprietary baseline, RAG workflow and open-source agents in four challenging VQA benchmarks, which paves the way for solving complex multimodal information-seeking tasks.
♻ ☆ PersonalAI: A Systematic Comparison of Knowledge Graph Storage and Retrieval Approaches for Personalized LLM agents
Personalizing language models by effectively incorporating user interaction history remains a central challenge in the development of adaptive AI systems. While large language models (LLMs) combined with Retrieval-Augmented Generation (RAG) have improved factual accuracy, they often lack structured memory and fail to scale in complex, long-term interactions. To address this, we propose a flexible external memory framework based on knowledge graphs, automatically constructed and updated by the LLM itself, and capable of encoding information in multiple formats-including nodes, triplets, higher-order propositions, and episodic traces. Building upon the AriGraph architecture, we introduce a novel hybrid graph design that supports both standard edges and two types of hyperedges, enabling rich and dynamic semantic and temporal representations. Our framework also supports diverse retrieval mechanisms, including A*, water-circle propagation, beam search, and hybrid methods, making it adaptable to different datasets and LLM capacities. We evaluate our system on three benchmarks-TriviaQA, HotpotQA, and DiaASQ-demonstrating that different memory and retrieval configurations yield optimal performance depending on the task. Additionally, we extend the DiaASQ benchmark with temporal annotations and internally contradictory statements, showing that our system remains robust and effective in managing temporal dependencies and context-aware reasoning.
♻ ☆ On the Reliability of Sampling Strategies in Offline Recommender Evaluation
Offline evaluation plays a central role in benchmarking recommender systems when online testing is impractical or risky. However, it is susceptible to two key sources of bias: exposure bias, where users only interact with items they are shown, and sampling bias, introduced when evaluation is performed on a subset of logged items rather than the full catalog. While prior work has proposed methods to mitigate sampling bias, these are typically assessed on fixed logged datasets rather than for their ability to support reliable model comparisons under varying exposure conditions or relative to true user preferences. In this paper, we investigate how different combinations of logging and sampling choices affect the reliability of offline evaluation. Using a fully observed dataset as ground truth, we systematically simulate diverse exposure biases and assess the reliability of common sampling strategies along four dimensions: sampling resolution (recommender model separability), fidelity (agreement with full evaluation), robustness (stability under exposure bias), and predictive power (alignment with ground truth). Our findings highlight when and how sampling distorts evaluation outcomes and offer practical guidance for selecting strategies that yield faithful and robust offline comparisons.
comment: Accepted to RecSys 2025
♻ ☆ Recommender Systems for Social Good: The Role of Accountability and Sustainability
This work examines the role of recommender systems in promoting sustainability, social responsibility, and accountability, with a focus on alignment with the United Nations Sustainable Development Goals (SDGs). As recommender systems become increasingly integrated into daily interactions, they must go beyond personalization to support responsible consumption, reduce environmental impact, and foster social good. We explore strategies to mitigate the carbon footprint of recommendation models, ensure fairness, and implement accountability mechanisms. By adopting these approaches, recommender systems can contribute to sustainable and socially beneficial outcomes, aligning technological advancements with the SDGs focused on environmental sustainability and social well-being.
comment: First International Workshop on Recommender Systems for Sustainability and Social Good (RecSoGood'24)
♻ ☆ DAGR: Decomposition Augmented Graph Retrieval with LLMs
Large Language Models (LLMs) excel at many Natural Language Processing (NLP) tasks, but struggle with multi-hop reasoning and factual consistency, limiting their effectiveness on knowledge-intensive tasks like complex question answering (QA). Linking Knowledge Graphs (KG) and LLMs has shown promising results, but LLMs generally lack the ability to reason efficiently over graph-structured information. To address this challenge, we introduce DAGR, a retrieval method that leverages both complex questions and their decomposition in subquestions to extract relevant, linked textual subgraphs. DAGR first breaks down complex queries, retrieves subgraphs guided by a weighted similarity function over both the original and decomposed queries, and creates a question-specific knowledge graph to guide answer generation. The resulting Graph-RAG pipeline is suited to handle complex multi-hop questions and effectively reason over graph-structured data. We evaluate DAGR on standard multi-hop QA benchmarks and show that it achieves comparable or superior performance to competitive existing methods, using smaller models and fewer LLM calls.
♻ ☆ From Limited Labels to Open Domains:An Efficient Learning Method for Drone-view Geo-Localization
Traditional supervised drone-view geo-localization (DVGL) methods heavily depend on paired training data and encounter difficulties in learning cross-view correlations from unpaired data. Moreover, when deployed in a new domain, these methods require obtaining the new paired data and subsequent retraining for model adaptation, which significantly increases computational overhead. Existing unsupervised methods have enabled to generate pseudo-labels based on cross-view similarity to infer the pairing relationships. However, geographical similarity and spatial continuity often cause visually analogous features at different geographical locations. The feature confusion compromises the reliability of pseudo-label generation, where incorrect pseudo-labels drive negative optimization. Given these challenges inherent in both supervised and unsupervised DVGL methods, we propose a novel cross-domain invariant knowledge transfer network (CDIKTNet) with limited supervision, whose architecture consists of a cross-domain invariance sub-network (CDIS) and a cross-domain transfer sub-network (CDTS). This architecture facilitates a closed-loop framework for invariance feature learning and knowledge transfer. The CDIS is designed to learn cross-view structural and spatial invariance from a small amount of paired data that serves as prior knowledge. It endows the shared feature space of unpaired data with similar implicit cross-view correlations at initialization, which alleviates feature confusion. Based on this, the CDTS employs dual-path contrastive learning to further optimize each subspace while preserving consistency in a shared feature space. Extensive experiments demonstrate that CDIKTNet achieves state-of-the-art performance under full supervision compared with those supervised methods, and further surpasses existing unsupervised methods in both few-shot and cross-domain initialization.
♻ ☆ Scaling Transformers for Discriminative Recommendation via Generative Pretraining KDD'25
Discriminative recommendation tasks, such as CTR (click-through rate) and CVR (conversion rate) prediction, play critical roles in the ranking stage of large-scale industrial recommender systems. However, training a discriminative model encounters a significant overfitting issue induced by data sparsity. Moreover, this overfitting issue worsens with larger models, causing them to underperform smaller ones. To address the overfitting issue and enhance model scalability, we propose a framework named GPSD (\textbf{G}enerative \textbf{P}retraining for \textbf{S}calable \textbf{D}iscriminative Recommendation), drawing inspiration from generative training, which exhibits no evident signs of overfitting. GPSD leverages the parameters learned from a pretrained generative model to initialize a discriminative model, and subsequently applies a sparse parameter freezing strategy. Extensive experiments conducted on both industrial-scale and publicly available datasets demonstrate the superior performance of GPSD. Moreover, it delivers remarkable improvements in online A/B tests. GPSD offers two primary advantages: 1) it substantially narrows the generalization gap in model training, resulting in better test performance; and 2) it leverages the scalability of Transformers, delivering consistent performance gains as models are scaled up. Specifically, we observe consistent performance improvements as the model dense parameters scale from 13K to 0.3B, closely adhering to power laws. These findings pave the way for unifying the architectures of recommendation models and language models, enabling the direct application of techniques well-established in large language models to recommendation models. The code is available at https://github.com/chqiwang/gpsd-rec.
comment: KDD'25
♻ ☆ R4ec: A Reasoning, Reflection, and Refinement Framework for Recommendation Systems
Harnessing Large Language Models (LLMs) for recommendation systems has emerged as a prominent avenue, drawing substantial research interest. However, existing approaches primarily involve basic prompt techniques for knowledge acquisition, which resemble System-1 thinking. This makes these methods highly sensitive to errors in the reasoning path, where even a small mistake can lead to an incorrect inference. To this end, in this paper, we propose $R^{4}$ec, a reasoning, reflection and refinement framework that evolves the recommendation system into a weak System-2 model. Specifically, we introduce two models: an actor model that engages in reasoning, and a reflection model that judges these responses and provides valuable feedback. Then the actor model will refine its response based on the feedback, ultimately leading to improved responses. We employ an iterative reflection and refinement process, enabling LLMs to facilitate slow and deliberate System-2-like thinking. Ultimately, the final refined knowledge will be incorporated into a recommendation backbone for prediction. We conduct extensive experiments on Amazon-Book and MovieLens-1M datasets to demonstrate the superiority of $R^{4}$ec. We also deploy $R^{4}$ec on a large scale online advertising platform, showing 2.2\% increase of revenue. Furthermore, we investigate the scaling properties of the actor model and reflection model.
comment: Accepted by Recsys25
♻ ☆ Multi-Faceted Large Embedding Tables for Pinterest Ads Ranking
Large embedding tables are indispensable in modern recommendation systems, thanks to their ability to effectively capture and memorize intricate details of interactions among diverse entities. As we explore integrating large embedding tables into Pinterest's ads ranking models, we encountered not only common challenges such as sparsity and scalability, but also several obstacles unique to our context. Notably, our initial attempts to train large embedding tables from scratch resulted in neutral metrics. To tackle this, we introduced a novel multi-faceted pretraining scheme that incorporates multiple pretraining algorithms. This approach greatly enriched the embedding tables and resulted in significant performance improvements. As a result, the multi-faceted large embedding tables bring great performance gain on both the Click-Through Rate (CTR) and Conversion Rate (CVR) domains. Moreover, we designed a CPU-GPU hybrid serving infrastructure to overcome GPU memory limits and elevate the scalability. This framework has been deployed in the Pinterest Ads system and achieved 1.34% online CPC reduction and 2.60% CTR increase with neutral end-to-end latency change.
♻ ☆ Mixture-of-RAG: Integrating Text and Tables with Large Language Models
Large language models (LLMs) achieve optimal utility when their responses are grounded in external knowledge sources. However, real-world documents, such as annual reports, scientific papers, and clinical guidelines, frequently combine extensive narrative content with complex, hierarchically structured tables. While existing retrieval-augmented generation (RAG) systems effectively integrate LLMs' generative capabilities with external retrieval-based information, their performance significantly deteriorates when processing such heterogeneous text-table hierarchies. To address this limitation, we formalize the task of Heterogeneous Document RAG, which requires joint retrieval and reasoning across textual and hierarchical tabular data. We propose MixRAG, a novel three-stage framework: (i) hierarchy row-and-column-level (H-RCL) representation that preserves hierarchical structure and heterogeneous relationships, (ii) an ensemble retriever with LLM-based reranking for evidence alignment, and (iii) multi-step reasoning decomposition via a RECAP prompt strategy. To bridge the gap in available data for this domain, we release a large-scale dataset, DocRAGLib, a 2k-document corpus paired with automatically aligned text-table summaries and gold document annotations. The comprehensive experimental results demonstrate that MixRAG boosts top-1 retrieval by 46% over strong text-only, table-only, and naive-mixture baselines, establishing new state-of-the-art performance for mixed-modality document grounding.
comment: 10 pages, 4 figures
Artificial Intelligence 150
☆ Cut2Next: Generating Next Shot via In-Context Tuning
Effective multi-shot generation demands purposeful, film-like transitions and strict cinematic continuity. Current methods, however, often prioritize basic visual consistency, neglecting crucial editing patterns (e.g., shot/reverse shot, cutaways) that drive narrative flow for compelling storytelling. This yields outputs that may be visually coherent but lack narrative sophistication and true cinematic integrity. To bridge this, we introduce Next Shot Generation (NSG): synthesizing a subsequent, high-quality shot that critically conforms to professional editing patterns while upholding rigorous cinematic continuity. Our framework, Cut2Next, leverages a Diffusion Transformer (DiT). It employs in-context tuning guided by a novel Hierarchical Multi-Prompting strategy. This strategy uses Relational Prompts to define overall context and inter-shot editing styles. Individual Prompts then specify per-shot content and cinematographic attributes. Together, these guide Cut2Next to generate cinematically appropriate next shots. Architectural innovations, Context-Aware Condition Injection (CACI) and Hierarchical Attention Mask (HAM), further integrate these diverse signals without introducing new parameters. We construct RawCuts (large-scale) and CuratedCuts (refined) datasets, both with hierarchical prompts, and introduce CutBench for evaluation. Experiments show Cut2Next excels in visual consistency and text fidelity. Crucially, user studies reveal a strong preference for Cut2Next, particularly for its adherence to intended editing patterns and overall cinematic continuity, validating its ability to generate high-quality, narratively expressive, and cinematically coherent subsequent shots.
☆ VGGSounder: Audio-Visual Evaluations for Foundation Models ICCV
The emergence of audio-visual foundation models underscores the importance of reliably assessing their multi-modal understanding. The VGGSounder dataset is commonly used as a benchmark for evaluation audio-visual classification. However, our analysis identifies several limitations of VGGSounder, including incomplete labelling, partially overlapping classes, and misaligned modalities. These lead to distorted evaluations of auditory and visual capabilities. To address these limitations, we introduce VGGSounder, a comprehensively re-annotated, multi-label test set that extends VGGSound and is specifically designed to evaluate audio-visual foundation models. VGGSounder features detailed modality annotations, enabling precise analyses of modality-specific performance. Furthermore, we reveal model limitations by analysing performance degradation when adding another input modality with our new modality confusion metric.
comment: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2025
☆ LL3M: Large Language 3D Modelers
We present LL3M, a multi-agent system that leverages pretrained large language models (LLMs) to generate 3D assets by writing interpretable Python code in Blender. We break away from the typical generative approach that learns from a collection of 3D data. Instead, we reformulate shape generation as a code-writing task, enabling greater modularity, editability, and integration with artist workflows. Given a text prompt, LL3M coordinates a team of specialized LLM agents to plan, retrieve, write, debug, and refine Blender scripts that generate and edit geometry and appearance. The generated code works as a high-level, interpretable, human-readable, well-documented representation of scenes and objects, making full use of sophisticated Blender constructs (e.g. B-meshes, geometry modifiers, shader nodes) for diverse, unconstrained shapes, materials, and scenes. This code presents many avenues for further agent and human editing and experimentation via code tweaks or procedural parameters. This medium naturally enables a co-creative loop in our system: agents can automatically self-critique using code and visuals, while iterative user instructions provide an intuitive way to refine assets. A shared code context across agents enables awareness of previous attempts, and a retrieval-augmented generation knowledge base built from Blender API documentation, BlenderRAG, equips agents with examples, types, and functions empowering advanced modeling operations and code correctness. We demonstrate the effectiveness of LL3M across diverse shape categories, style and material edits, and user-driven refinements. Our experiments showcase the power of code as a generative and interpretable medium for 3D asset creation. Our project page is at https://threedle.github.io/ll3m.
comment: Our project page is at https://threedle.github.io/ll3m
☆ OMGSR: You Only Need One Mid-timestep Guidance for Real-World Image Super-Resolution
Denoising Diffusion Probabilistic Models (DDPM) and Flow Matching (FM) generative models show promising potential for one-step Real-World Image Super-Resolution (Real-ISR). Recent one-step Real-ISR models typically inject a Low-Quality (LQ) image latent distribution at the initial timestep. However, a fundamental gap exists between the LQ image latent distribution and the Gaussian noisy latent distribution, limiting the effective utilization of generative priors. We observe that the noisy latent distribution at DDPM/FM mid-timesteps aligns more closely with the LQ image latent distribution. Based on this insight, we present One Mid-timestep Guidance Real-ISR (OMGSR), a universal framework applicable to DDPM/FM-based generative models. OMGSR injects the LQ image latent distribution at a pre-computed mid-timestep, incorporating the proposed Latent Distribution Refinement loss to alleviate the latent distribution gap. We also design the Overlap-Chunked LPIPS/GAN loss to eliminate checkerboard artifacts in image generation. Within this framework, we instantiate OMGSR for DDPM/FM-based generative models with two variants: OMGSR-S (SD-Turbo) and OMGSR-F (FLUX.1-dev). Experimental results demonstrate that OMGSR-S/F achieves balanced/excellent performance across quantitative and qualitative metrics at 512-resolution. Notably, OMGSR-F establishes overwhelming dominance in all reference metrics. We further train a 1k-resolution OMGSR-F to match the default resolution of FLUX.1-dev, which yields excellent results, especially in the details of the image generation. We also generate 2k-resolution images by the 1k-resolution OMGSR-F using our two-stage Tiled VAE & Diffusion.
☆ Capabilities of GPT-5 on Multimodal Medical Reasoning
Recent advances in large language models (LLMs) have enabled general-purpose systems to perform increasingly complex domain-specific reasoning without extensive fine-tuning. In the medical domain, decision-making often requires integrating heterogeneous information sources, including patient narratives, structured data, and medical images. This study positions GPT-5 as a generalist multimodal reasoner for medical decision support and systematically evaluates its zero-shot chain-of-thought reasoning performance on both text-based question answering and visual question answering tasks under a unified protocol. We benchmark GPT-5, GPT-5-mini, GPT-5-nano, and GPT-4o-2024-11-20 against standardized splits of MedQA, MedXpertQA (text and multimodal), MMLU medical subsets, USMLE self-assessment exams, and VQA-RAD. Results show that GPT-5 consistently outperforms all baselines, achieving state-of-the-art accuracy across all QA benchmarks and delivering substantial gains in multimodal reasoning. On MedXpertQA MM, GPT-5 improves reasoning and understanding scores by +29.62% and +36.18% over GPT-4o, respectively, and surpasses pre-licensed human experts by +24.23% in reasoning and +29.40% in understanding. In contrast, GPT-4o remains below human expert performance in most dimensions. A representative case study demonstrates GPT-5's ability to integrate visual and textual cues into a coherent diagnostic reasoning chain, recommending appropriate high-stakes interventions. Our results show that, on these controlled multimodal reasoning benchmarks, GPT-5 moves from human-comparable to above human-expert performance. This improvement may substantially inform the design of future clinical decision-support systems.
☆ Multi-head Transformers Provably Learn Symbolic Multi-step Reasoning via Gradient Descent
Transformers have demonstrated remarkable capabilities in multi-step reasoning tasks. However, understandings of the underlying mechanisms by which they acquire these abilities through training remain limited, particularly from a theoretical standpoint. This work investigates how transformers learn to solve symbolic multi-step reasoning problems through chain-of-thought processes, focusing on path-finding in trees. We analyze two intertwined tasks: a backward reasoning task, where the model outputs a path from a goal node to the root, and a more complex forward reasoning task, where the model implements two-stage reasoning by first identifying the goal-to-root path and then reversing it to produce the root-to-goal path. Our theoretical analysis, grounded in the dynamics of gradient descent, shows that trained one-layer transformers can provably solve both tasks with generalization guarantees to unseen trees. In particular, our multi-phase training dynamics for forward reasoning elucidate how different attention heads learn to specialize and coordinate autonomously to solve the two subtasks in a single autoregressive path. These results provide a mechanistic explanation of how trained transformers can implement sequential algorithmic procedures. Moreover, they offer insights into the emergence of reasoning abilities, suggesting that when tasks are structured to take intermediate chain-of-thought steps, even shallow multi-head transformers can effectively solve problems that would otherwise require deeper architectures.
comment: submitted for consideration of publication in May
☆ SAEMark: Multi-bit LLM Watermarking with Inference-Time Scaling
Watermarking LLM-generated text is critical for content attribution and misinformation prevention. However, existing methods compromise text quality, require white-box model access and logit manipulation. These limitations exclude API-based models and multilingual scenarios. We propose SAEMark, a general framework for post-hoc multi-bit watermarking that embeds personalized messages solely via inference-time, feature-based rejection sampling without altering model logits or requiring training. Our approach operates on deterministic features extracted from generated text, selecting outputs whose feature statistics align with key-derived targets. This framework naturally generalizes across languages and domains while preserving text quality through sampling LLM outputs instead of modifying. We provide theoretical guarantees relating watermark success probability and compute budget that hold for any suitable feature extractor. Empirically, we demonstrate the framework's effectiveness using Sparse Autoencoders (SAEs), achieving superior detection accuracy and text quality. Experiments across 4 datasets show SAEMark's consistent performance, with 99.7% F1 on English and strong multi-bit detection accuracy. SAEMark establishes a new paradigm for scalable watermarking that works out-of-the-box with closed-source LLMs while enabling content attribution.
comment: 24 pages, 12 figures, code available: https://zhuohaoyu.github.io/SAEMark
☆ Human-Alignment and Calibration of Inference-Time Uncertainty in Large Language Models
There has been much recent interest in evaluating large language models for uncertainty calibration to facilitate model control and modulate user trust. Inference time uncertainty, which may provide a real-time signal to the model or external control modules, is particularly important for applying these concepts to improve LLM-user experience in practice. While many of the existing papers consider model calibration, comparatively little work has sought to evaluate how closely model uncertainty aligns to human uncertainty. In this work, we evaluate a collection of inference-time uncertainty measures, using both established metrics and novel variations, to determine how closely they align with both human group-level uncertainty and traditional notions of model calibration. We find that numerous measures show evidence of strong alignment to human uncertainty, even despite the lack of alignment to human answer preference. For those successful metrics, we find moderate to strong evidence of model calibration in terms of both correctness correlation and distributional analysis.
comment: preprint, under review
☆ Street-Level AI: Are Large Language Models Ready for Real-World Judgments? AAAI
A surge of recent work explores the ethical and societal implications of large-scale AI models that make "moral" judgments. Much of this literature focuses either on alignment with human judgments through various thought experiments or on the group fairness implications of AI judgments. However, the most immediate and likely use of AI is to help or fully replace the so-called street-level bureaucrats, the individuals deciding to allocate scarce social resources or approve benefits. There is a rich history underlying how principles of local justice determine how society decides on prioritization mechanisms in such domains. In this paper, we examine how well LLM judgments align with human judgments, as well as with socially and politically determined vulnerability scoring systems currently used in the domain of homelessness resource allocation. Crucially, we use real data on those needing services (maintaining strict confidentiality by only using local large models) to perform our analyses. We find that LLM prioritizations are extremely inconsistent in several ways: internally on different runs, between different LLMs, and between LLMs and the vulnerability scoring systems. At the same time, LLMs demonstrate qualitative consistency with lay human judgments in pairwise testing. Findings call into question the readiness of current generation AI systems for naive integration in high-stakes societal decision-making.
comment: This work has been accepted for publication as a full paper at the AAAI/ACM Conference on AI, Ethics, and Society (AIES 2025)
☆ RedDino: A foundation model for red blood cell analysis
Red blood cells (RBCs) are essential to human health, and their precise morphological analysis is important for diagnosing hematological disorders. Despite the promise of foundation models in medical diagnostics, comprehensive AI solutions for RBC analysis remain scarce. We present RedDino, a self-supervised foundation model designed for RBC image analysis. RedDino uses an RBC-specific adaptation of the DINOv2 self-supervised learning framework and is trained on a curated dataset of 1.25 million RBC images from diverse acquisition modalities and sources. Extensive evaluations show that RedDino outperforms existing state-of-the-art models on RBC shape classification. Through assessments including linear probing and nearest neighbor classification, we confirm its strong feature representations and generalization ability. Our main contributions are: (1) a foundation model tailored for RBC analysis, (2) ablation studies exploring DINOv2 configurations for RBC modeling, and (3) a detailed evaluation of generalization performance. RedDino addresses key challenges in computational hematology by capturing nuanced morphological features, advancing the development of reliable diagnostic tools. The source code and pretrained models for RedDino are available at https://github.com/Snarci/RedDino, and the pretrained models can be downloaded from our Hugging Face collection at https://huggingface.co/collections/Snarcy/reddino-689a13e29241d2e5690202fc
☆ MedReasoner: Reinforcement Learning Drives Reasoning Grounding from Clinical Thought to Pixel-Level Precision
Accurately grounding regions of interest (ROIs) is critical for diagnosis and treatment planning in medical imaging. While multimodal large language models (MLLMs) combine visual perception with natural language, current medical-grounding pipelines still rely on supervised fine-tuning with explicit spatial hints, making them ill-equipped to handle the implicit queries common in clinical practice. This work makes three core contributions. We first define Unified Medical Reasoning Grounding (UMRG), a novel vision-language task that demands clinical reasoning and pixel-level grounding. Second, we release U-MRG-14K, a dataset of 14K samples featuring pixel-level masks alongside implicit clinical queries and reasoning traces, spanning 10 modalities, 15 super-categories, and 108 specific categories. Finally, we introduce MedReasoner, a modular framework that distinctly separates reasoning from segmentation: an MLLM reasoner is optimized with reinforcement learning, while a frozen segmentation expert converts spatial prompts into masks, with alignment achieved through format and accuracy rewards. MedReasoner achieves state-of-the-art performance on U-MRG-14K and demonstrates strong generalization to unseen clinical queries, underscoring the significant promise of reinforcement learning for interpretable medical grounding.
comment: 37 pages
☆ Neural Logic Networks for Interpretable Classification
Traditional neural networks have an impressive classification performance, but what they learn cannot be inspected, verified or extracted. Neural Logic Networks on the other hand have an interpretable structure that enables them to learn a logical mechanism relating the inputs and outputs with AND and OR operations. We generalize these networks with NOT operations and biases that take into account unobserved data and develop a rigorous logical and probabilistic modeling in terms of concept combinations to motivate their use. We also propose a novel factorized IF-THEN rule structure for the model as well as a modified learning algorithm. Our method improves the state-of-the-art in Boolean networks discovery and is able to learn relevant, interpretable rules in tabular classification, notably on an example from the medical field where interpretability has tangible value.
comment: 21 pages, 6 figures, pre-print
☆ PyVeritas: On Verifying Python via LLM-Based Transpilation and Bounded Model Checking for C
Python has become the dominant language for general-purpose programming, yet it lacks robust tools for formal verification. In contrast, programmers working in languages such as C benefit from mature model checkers, for example CBMC, which enable exhaustive symbolic reasoning and fault localisation. The inherent complexity of Python, coupled with the verbosity and low-level nature of existing transpilers (e.g., Cython), have historically limited the applicability of formal verification to Python programs. In this paper, we propose PyVeritas, a novel framework that leverages Large Language Models (LLMs) for high-level transpilation from Python to C, followed by bounded model checking and MaxSAT-based fault localisation in the generated C code. PyVeritas enables verification and bug localisation for Python code using existing model checking tools for C. Our empirical evaluation on two Python benchmarks demonstrates that LLM-based transpilation can achieve a high degree of accuracy, up to 80--90% for some LLMs, enabling effective development environment that supports assertion-based verification and interpretable fault diagnosis for small yet non-trivial Python programs.
comment: 14 pages, 6 tables, 1 figure
☆ LPI-RIT at LeWiDi-2025: Improving Distributional Predictions via Metadata and Loss Reweighting with DisCo
The Learning With Disagreements (LeWiDi) 2025 shared task is to model annotator disagreement through soft label distribution prediction and perspectivist evaluation, modeling annotators. We adapt DisCo (Distribution from Context), a neural architecture that jointly models item-level and annotator-level label distributions, and present detailed analysis and improvements. In this paper, we extend the DisCo by incorporating annotator metadata, enhancing input representations, and modifying the loss functions to capture disagreement patterns better. Through extensive experiments, we demonstrate substantial improvements in both soft and perspectivist evaluation metrics across three datasets. We also conduct in-depth error and calibration analyses, highlighting the conditions under which improvements occur. Our findings underscore the value of disagreement-aware modeling and offer insights into how system components interact with the complexity of human-annotated data.
☆ Can AI Explanations Make You Change Your Mind? AI
In the context of AI-based decision support systems, explanations can help users to judge when to trust the AI's suggestion, and when to question it. In this way, human oversight can prevent AI errors and biased decision-making. However, this rests on the assumption that users will consider explanations in enough detail to be able to catch such errors. We conducted an online study on trust in explainable DSS, and were surprised to find that in many cases, participants spent little time on the explanation and did not always consider it in detail. We present an exploratory analysis of this data, investigating what factors impact how carefully study participants consider AI explanations, and how this in turn impacts whether they are open to changing their mind based on what the AI suggests.
comment: This paper was presented at the Explainable AI workshop at IJCAI 2025: https://sites.google.com/view/xai2025/proceedings
☆ From Natural Language to Solver-Ready Power System Optimization: An LLM-Assisted, Validation-in-the-Loop Framework
This paper introduces a novel Large Language Models (LLMs)-assisted agent that automatically converts natural-language descriptions of power system optimization scenarios into compact, solver-ready formulations and generates corresponding solutions. In contrast to approaches that rely solely on LLM to produce solutions directly, the proposed method focuses on discovering a mathematically compatible formulation that can be efficiently solved by off-the-shelf optimization solvers. Directly using LLMs to produce solutions often leads to infeasible or suboptimal results, as these models lack the numerical precision and constraint-handling capabilities of established optimization solvers. The pipeline integrates a domain-aware prompt and schema with an LLM, enforces feasibility through systematic validation and iterative repair, and returns both solver-ready models and user-facing results. Using the unit commitment problem as a representative case study, the agent produces optimal or near-optimal schedules along with the associated objective costs. Results demonstrate that coupling the solver with task-specific validation significantly enhances solution reliability. This work shows that combining AI with established optimization frameworks bridges high-level problem descriptions and executable mathematical models, enabling more efficient decision-making in energy systems
☆ COMponent-Aware Pruning for Accelerated Control Tasks in Latent Space Models
The rapid growth of resource-constrained mobile platforms, including mobile robots, wearable systems, and Internet-of-Things devices, has increased the demand for computationally efficient neural network controllers (NNCs) that can operate within strict hardware limitations. While deep neural networks (DNNs) demonstrate superior performance in control applications, their substantial computational complexity and memory requirements present significant barriers to practical deployment on edge devices. This paper introduces a comprehensive model compression methodology that leverages component-aware structured pruning to determine the optimal pruning magnitude for each pruning group, ensuring a balance between compression and stability for NNC deployment. Our approach is rigorously evaluated on Temporal Difference Model Predictive Control (TD-MPC), a state-of-the-art model-based reinforcement learning algorithm, with a systematic integration of mathematical stability guarantee properties, specifically Lyapunov criteria. The key contribution of this work lies in providing a principled framework for determining the theoretical limits of model compression while preserving controller stability. Experimental validation demonstrates that our methodology successfully reduces model complexity while maintaining requisite control performance and stability characteristics. Furthermore, our approach establishes a quantitative boundary for safe compression ratios, enabling practitioners to systematically determine the maximum permissible model reduction before violating critical stability properties, thereby facilitating the confident deployment of compressed NNCs in resource-limited environments.
comment: Submitted in: The 2026 IEEE/SICE International Symposium on System Integration (SII 2026)
☆ Can LLMs Detect Their Confabulations? Estimating Reliability in Uncertainty-Aware Language Models
Large Language Models (LLMs) are prone to generating fluent but incorrect content, known as confabulation, which poses increasing risks in multi-turn or agentic applications where outputs may be reused as context. In this work, we investigate how in-context information influences model behavior and whether LLMs can identify their unreliable responses. We propose a reliability estimation that leverages token-level uncertainty to guide the aggregation of internal model representations. Specifically, we compute aleatoric and epistemic uncertainty from output logits to identify salient tokens and aggregate their hidden states into compact representations for response-level reliability prediction. Through controlled experiments on open QA benchmarks, we find that correct in-context information improves both answer accuracy and model confidence, while misleading context often induces confidently incorrect responses, revealing a misalignment between uncertainty and correctness. Our probing-based method captures these shifts in model behavior and improves the detection of unreliable outputs across multiple open-source LLMs. These results underscore the limitations of direct uncertainty signals and highlight the potential of uncertainty-guided probing for reliability-aware generation.
☆ MuaLLM: A Multimodal Large Language Model Agent for Circuit Design Assistance with Hybrid Contextual Retrieval-Augmented Generation
Conducting a comprehensive literature review is crucial for advancing circuit design methodologies. However, the rapid influx of state-of-the-art research, inconsistent data representation, and the complexity of optimizing circuit design objectives make this task significantly challenging. In this paper, we propose MuaLLM, an open-source multimodal Large Language Model (LLM) agent for circuit design assistance that integrates a hybrid Retrieval-Augmented Generation (RAG) framework with an adaptive vector database of circuit design research papers. Unlike conventional LLMs, the MuaLLM agent employs a Reason + Act (ReAct) workflow for iterative reasoning, goal-setting, and multi-step information retrieval. It functions as a question-answering design assistant, capable of interpreting complex queries and providing reasoned responses grounded in circuit literature. Its multimodal capabilities enable processing of both textual and visual data, facilitating more efficient and comprehensive analysis. The system dynamically adapts using intelligent search tools, automated document retrieval from the internet, and real-time database updates. Unlike conventional approaches constrained by model context limits, MuaLLM decouples retrieval from inference, enabling scalable reasoning over arbitrarily large corpora. At the maximum context length supported by standard LLMs, MuaLLM remains up to 10x less costly and 1.6x faster while maintaining the same accuracy. This allows rapid, no-human-in-the-loop database generation, overcoming the bottleneck of simulation-based dataset creation for circuits. To evaluate MuaLLM, we introduce two custom datasets: RAG-250, targeting retrieval and citation performance, and Reasoning-100 (Reas-100), focused on multistep reasoning in circuit design. MuaLLM achieves 90.1% recall on RAG-250, and 86.8% accuracy on Reas-100.
☆ Optimal Transport Regularization for Speech Text Alignment in Spoken Language Models
Spoken Language Models (SLMs), which extend Large Language Models (LLMs) to perceive speech inputs, have gained increasing attention for their potential to advance speech understanding tasks. However, despite recent progress, studies show that SLMs often struggle to generalize across datasets, even for trained languages and tasks, raising concerns about whether they process speech in a text-like manner as intended. A key challenge underlying this limitation is the modality gap between speech and text representations. The high variability in speech embeddings may allow SLMs to achieve strong in-domain performance by exploiting unintended speech variations, ultimately hindering generalization. To mitigate this modality gap, we introduce Optimal Transport Regularization (OTReg), a method that formulates speech-text alignment as an optimal transport problem and derives a regularization loss to improve SLM training. In each training iteration, OTReg first establishes a structured correspondence between speech and transcript embeddings by determining the optimal transport plan, then incorporates the regularization loss based on this transport plan to optimize SLMs in generating speech embeddings that align more effectively with transcript embeddings. OTReg is lightweight, requiring no additional labels or learnable parameters, and integrates seamlessly into existing SLM training procedures. Extensive multilingual ASR experiments demonstrate that OTReg enhances speech-text alignment, mitigates the modality gap, and consequently improves SLM generalization across diverse datasets.
comment: To be presented at ACPR 2025 Conference
☆ BlindGuard: Safeguarding LLM-based Multi-Agent Systems under Unknown Attacks
The security of LLM-based multi-agent systems (MAS) is critically threatened by propagation vulnerability, where malicious agents can distort collective decision-making through inter-agent message interactions. While existing supervised defense methods demonstrate promising performance, they may be impractical in real-world scenarios due to their heavy reliance on labeled malicious agents to train a supervised malicious detection model. To enable practical and generalizable MAS defenses, in this paper, we propose BlindGuard, an unsupervised defense method that learns without requiring any attack-specific labels or prior knowledge of malicious behaviors. To this end, we establish a hierarchical agent encoder to capture individual, neighborhood, and global interaction patterns of each agent, providing a comprehensive understanding for malicious agent detection. Meanwhile, we design a corruption-guided detector that consists of directional noise injection and contrastive learning, allowing effective detection model training solely on normal agent behaviors. Extensive experiments show that BlindGuard effectively detects diverse attack types (i.e., prompt injection, memory poisoning, and tool attack) across MAS with various communication patterns while maintaining superior generalizability compared to supervised baselines. The code is available at: https://github.com/MR9812/BlindGuard.
☆ MemoryKT: An Integrative Memory-and-Forgetting Method for Knowledge Tracing
Knowledge Tracing (KT) is committed to capturing students' knowledge mastery from their historical interactions. Simulating students' memory states is a promising approach to enhance both the performance and interpretability of knowledge tracing models. Memory consists of three fundamental processes: encoding, storage, and retrieval. Although forgetting primarily manifests during the storage stage, most existing studies rely on a single, undifferentiated forgetting mechanism, overlooking other memory processes as well as personalized forgetting patterns. To address this, this paper proposes memoryKT, a knowledge tracing model based on a novel temporal variational autoencoder. The model simulates memory dynamics through a three-stage process: (i) Learning the distribution of students' knowledge memory features, (ii) Reconstructing their exercise feedback, while (iii) Embedding a personalized forgetting module within the temporal workflow to dynamically modulate memory storage strength. This jointly models the complete encoding-storage-retrieval cycle, significantly enhancing the model's perception capability for individual differences. Extensive experiments on four public datasets demonstrate that our proposed approach significantly outperforms state-of-the-art baselines.
comment: 9 pages, 4 figures
☆ Vision-Based Localization and LLM-based Navigation for Indoor Environments
Indoor navigation remains a complex challenge due to the absence of reliable GPS signals and the architectural intricacies of large enclosed environments. This study presents an indoor localization and navigation approach that integrates vision-based localization with large language model (LLM)-based navigation. The localization system utilizes a ResNet-50 convolutional neural network fine-tuned through a two-stage process to identify the user's position using smartphone camera input. To complement localization, the navigation module employs an LLM, guided by a carefully crafted system prompt, to interpret preprocessed floor plan images and generate step-by-step directions. Experimental evaluation was conducted in a realistic office corridor with repetitive features and limited visibility to test localization robustness. The model achieved high confidence and an accuracy of 96% across all tested waypoints, even under constrained viewing conditions and short-duration queries. Navigation tests using ChatGPT on real building floor maps yielded an average instruction accuracy of 75%, with observed limitations in zero-shot reasoning and inference time. This research demonstrates the potential for scalable, infrastructure-free indoor navigation using off-the-shelf cameras and publicly available floor plans, particularly in resource-constrained settings like hospitals, airports, and educational institutions.
comment: 20 pages, 6 figures, 1 table
☆ GRASPTrack: Geometry-Reasoned Association via Segmentation and Projection for Multi-Object Tracking
Multi-object tracking (MOT) in monocular videos is fundamentally challenged by occlusions and depth ambiguity, issues that conventional tracking-by-detection (TBD) methods struggle to resolve owing to a lack of geometric awareness. To address these limitations, we introduce GRASPTrack, a novel depth-aware MOT framework that integrates monocular depth estimation and instance segmentation into a standard TBD pipeline to generate high-fidelity 3D point clouds from 2D detections, thereby enabling explicit 3D geometric reasoning. These 3D point clouds are then voxelized to enable a precise and robust Voxel-Based 3D Intersection-over-Union (IoU) for spatial association. To further enhance tracking robustness, our approach incorporates Depth-aware Adaptive Noise Compensation, which dynamically adjusts the Kalman filter process noise based on occlusion severity for more reliable state estimation. Additionally, we propose a Depth-enhanced Observation-Centric Momentum, which extends the motion direction consistency from the image plane into 3D space to improve motion-based association cues, particularly for objects with complex trajectories. Extensive experiments on the MOT17, MOT20, and DanceTrack benchmarks demonstrate that our method achieves competitive performance, significantly improving tracking robustness in complex scenes with frequent occlusions and intricate motion patterns.
☆ TeamMedAgents: Enhancing Medical Decision-Making of LLMs Through Structured Teamwork
We present TeamMedAgents, a novel multi-agent approach that systematically integrates evidence-based teamwork components from human-human collaboration into medical decision-making with large language models (LLMs). Our approach validates an organizational psychology teamwork model from human collaboration to computational multi-agent medical systems by operationalizing six core teamwork components derived from Salas et al.'s "Big Five" model: team leadership, mutual performance monitoring, team orientation, shared mental models, closed-loop communication, and mutual trust. We implement and evaluate these components as modular, configurable mechanisms within an adaptive collaboration architecture while assessing the effect of the number of agents involved based on the task's requirements and domain. Systematic evaluation of computational implementations of teamwork behaviors across eight medical benchmarks (MedQA, MedMCQA, MMLU-Pro Medical, PubMedQA, DDXPlus, MedBullets, Path-VQA, and PMC-VQA) demonstrates consistent improvements across 7 out of 8 evaluated datasets. Controlled ablation studies conducted on 50 questions per configuration across 3 independent runs provide mechanistic insights into individual component contributions, revealing optimal teamwork configurations that vary by reasoning task complexity and domain-specific requirements. Our ablation analyses reveal dataset-specific optimal teamwork configurations, indicating that different medical reasoning modalities benefit from distinct collaborative patterns. TeamMedAgents represents an advancement in collaborative AI by providing a systematic translation of established teamwork theories from human collaboration into agentic collaboration, establishing a foundation for evidence-based multi-agent system design in critical decision-making domains.
comment: 10 pages, 1 figure, 6 tables(2 in main, 4 in appendix)
☆ Hyperspectral Imaging
Hyperspectral imaging (HSI) is an advanced sensing modality that simultaneously captures spatial and spectral information, enabling non-invasive, label-free analysis of material, chemical, and biological properties. This Primer presents a comprehensive overview of HSI, from the underlying physical principles and sensor architectures to key steps in data acquisition, calibration, and correction. We summarize common data structures and highlight classical and modern analysis methods, including dimensionality reduction, classification, spectral unmixing, and AI-driven techniques such as deep learning. Representative applications across Earth observation, precision agriculture, biomedicine, industrial inspection, cultural heritage, and security are also discussed, emphasizing HSI's ability to uncover sub-visual features for advanced monitoring, diagnostics, and decision-making. Persistent challenges, such as hardware trade-offs, acquisition variability, and the complexity of high-dimensional data, are examined alongside emerging solutions, including computational imaging, physics-informed modeling, cross-modal fusion, and self-supervised learning. Best practices for dataset sharing, reproducibility, and metadata documentation are further highlighted to support transparency and reuse. Looking ahead, we explore future directions toward scalable, real-time, and embedded HSI systems, driven by sensor miniaturization, self-supervised learning, and foundation models. As HSI evolves into a general-purpose, cross-disciplinary platform, it holds promise for transformative applications in science, technology, and society.
☆ ChatGPT on the Road: Leveraging Large Language Model-Powered In-vehicle Conversational Agents for Safer and More Enjoyable Driving Experience
Studies on in-vehicle conversational agents have traditionally relied on pre-scripted prompts or limited voice commands, constraining natural driver-agent interaction. To resolve this issue, the present study explored the potential of a ChatGPT-based in-vehicle agent capable of carrying continuous, multi-turn dialogues. Forty drivers participated in our experiment using a motion-based driving simulator, comparing three conditions (No agent, Pre-scripted agent, and ChatGPT-based agent) as a within-subjects variable. Results showed that the ChatGPT-based agent condition led to more stable driving performance across multiple metrics. Participants demonstrated lower variability in longitudinal acceleration, lateral acceleration, and lane deviation compared to the other two conditions. In subjective evaluations, the ChatGPT-based agent also received significantly higher ratings in competence, animacy, affective trust, and preference compared to the Pre-scripted agent. Our thematic analysis of driver-agent conversations revealed diverse interaction patterns in topics, including driving assistance/questions, entertainment requests, and anthropomorphic interactions. Our results highlight the potential of LLM-powered in-vehicle conversational agents to enhance driving safety and user experience through natural, context-rich interactions.
comment: Submitted to International Journal of Human-Computer Studies. Bond and Choe: Drafting, Review, Editing, Validation, Software, Methodology, Investigation, Data Analysis, Conceptualization, Experiment training. Hasan and Siddiqui: Experimental and Data Analysis Support. Jeon: Supervision, Review, Resources, Project Admin, Methodology, Conceptualization. Total 34 pages
☆ Grid2Guide: A* Enabled Small Language Model for Indoor Navigation
Reliable indoor navigation remains a significant challenge in complex environments, particularly where external positioning signals and dedicated infrastructures are unavailable. This research presents Grid2Guide, a hybrid navigation framework that combines the A* search algorithm with a Small Language Model (SLM) to generate clear, human-readable route instructions. The framework first conducts a binary occupancy matrix from a given indoor map. Using this matrix, the A* algorithm computes the optimal path between origin and destination, producing concise textual navigation steps. These steps are then transformed into natural language instructions by the SLM, enhancing interpretability for end users. Experimental evaluations across various indoor scenarios demonstrate the method's effectiveness in producing accurate and timely navigation guidance. The results validate the proposed approach as a lightweight, infrastructure-free solution for real-time indoor navigation support.
comment: 23 pages, 8 figures, 6 tables
☆ Dual Information Speech Language Models for Emotional Conversations
Conversational systems relying on text-based large language models (LLMs) often overlook paralinguistic cues, essential for understanding emotions and intentions. Speech-language models (SLMs), which use speech as input, are emerging as a promising solution. However, SLMs built by extending frozen LLMs struggle to capture paralinguistic information and exhibit reduced context understanding. We identify entangled information and improper training strategies as key issues. To address these issues, we propose two heterogeneous adapters and suggest a weakly supervised training strategy. Our approach disentangles paralinguistic and linguistic information, enabling SLMs to interpret speech through structured representations. It also preserves contextual understanding by avoiding the generation of task-specific vectors through controlled randomness. This approach trains only the adapters on common datasets, ensuring parameter and data efficiency. Experiments demonstrate competitive performance in emotional conversation tasks, showcasing the model's ability to effectively integrate both paralinguistic and linguistic information within contextual settings.
comment: Presented at IEEE ICME 2025
☆ Growing Reservoirs with Developmental Graph Cellular Automata
Developmental Graph Cellular Automata (DGCA) are a novel model for morphogenesis, capable of growing directed graphs from single-node seeds. In this paper, we show that DGCAs can be trained to grow reservoirs. Reservoirs are grown with two types of targets: task-driven (using the NARMA family of tasks) and task-independent (using reservoir metrics). Results show that DGCAs are able to grow into a variety of specialized, life-like structures capable of effectively solving benchmark tasks, statistically outperforming `typical' reservoirs on the same task. Overall, these lay the foundation for the development of DGCA systems that produce plastic reservoirs and for modeling functional, adaptive morphogenesis.
comment: Accepted to ALIFE 2025
☆ HierSearch: A Hierarchical Enterprise Deep Search Framework Integrating Local and Web Searches
Recently, large reasoning models have demonstrated strong mathematical and coding abilities, and deep search leverages their reasoning capabilities in challenging information retrieval tasks. Existing deep search works are generally limited to a single knowledge source, either local or the Web. However, enterprises often require private deep search systems that can leverage search tools over both local and the Web corpus. Simply training an agent equipped with multiple search tools using flat reinforcement learning (RL) is a straightforward idea, but it has problems such as low training data efficiency and poor mastery of complex tools. To address the above issue, we propose a hierarchical agentic deep search framework, HierSearch, trained with hierarchical RL. At the low level, a local deep search agent and a Web deep search agent are trained to retrieve evidence from their corresponding domains. At the high level, a planner agent coordinates low-level agents and provides the final answer. Moreover, to prevent direct answer copying and error propagation, we design a knowledge refiner that filters out hallucinations and irrelevant evidence returned by low-level agents. Experiments show that HierSearch achieves better performance compared to flat RL, and outperforms various deep search and multi-source retrieval-augmented generation baselines in six benchmarks across general, finance, and medical domains.
comment: Code and datasets are available at https://github.com/plageon/HierSearch
☆ FNBT: Full Negation Belief Transformation for Open-World Information Fusion Based on Dempster-Shafer Theory of Evidence
The Dempster-Shafer theory of evidence has been widely applied in the field of information fusion under uncertainty. Most existing research focuses on combining evidence within the same frame of discernment. However, in real-world scenarios, trained algorithms or data often originate from different regions or organizations, where data silos are prevalent. As a result, using different data sources or models to generate basic probability assignments may lead to heterogeneous frames, for which traditional fusion methods often yield unsatisfactory results. To address this challenge, this study proposes an open-world information fusion method, termed Full Negation Belief Transformation (FNBT), based on the Dempster-Shafer theory. More specially, a criterion is introduced to determine whether a given fusion task belongs to the open-world setting. Then, by extending the frames, the method can accommodate elements from heterogeneous frames. Finally, a full negation mechanism is employed to transform the mass functions, so that existing combination rules can be applied to the transformed mass functions for such information fusion. Theoretically, the proposed method satisfies three desirable properties, which are formally proven: mass function invariance, heritability, and essential conflict elimination. Empirically, FNBT demonstrates superior performance in pattern classification tasks on real-world datasets and successfully resolves Zadeh's counterexample, thereby validating its practical effectiveness.
☆ C-MAG: Cascade Multimodal Attributed Graphs for Supply Chain Link Prediction KDD 2025
Connecting an ever-expanding catalogue of products with suitable manufacturers and suppliers is critical for resilient, efficient global supply chains, yet traditional methods struggle to capture complex capabilities, certifications, geographic constraints, and rich multimodal data of real-world manufacturer profiles. To address these gaps, we introduce PMGraph, a public benchmark of bipartite and heterogeneous multimodal supply-chain graphs linking 8,888 manufacturers, over 70k products, more than 110k manufacturer-product edges, and over 29k product images. Building on this benchmark, we propose the Cascade Multimodal Attributed Graph C-MAG, a two-stage architecture that first aligns and aggregates textual and visual attributes into intermediate group embeddings, then propagates them through a manufacturer-product hetero-graph via multiscale message passing to enhance link prediction accuracy. C-MAG also provides practical guidelines for modality-aware fusion, preserving predictive performance in noisy, real-world settings.
comment: Accepted as a poster presentation at the KDD 2025 Workshop on AI for Supply Chain (AI4SupplyChain)
☆ Investigating the Design Space of Visual Grounding in Multimodal Large Language Model
Fine-grained multimodal capability in Multimodal Large Language Models (MLLMs) has emerged as a critical research direction, particularly for tackling the visual grounding (VG) problem. Despite the strong performance achieved by existing approaches, they often employ disparate design choices when fine-tuning MLLMs for VG, lacking systematic verification to support these designs. To bridge this gap, this paper presents a comprehensive study of various design choices that impact the VG performance of MLLMs. We conduct our analysis using LLaVA-1.5, which has been widely adopted in prior empirical studies of MLLMs. While more recent models exist, we follow this convention to ensure our findings remain broadly applicable and extendable to other architectures. We cover two key aspects: (1) exploring different visual grounding paradigms in MLLMs, identifying the most effective design, and providing our insights; and (2) conducting ablation studies on the design of grounding data to optimize MLLMs' fine-tuning for the VG task. Finally, our findings contribute to a stronger MLLM for VG, achieving improvements of +5.6% / +6.9% / +7.0% on RefCOCO/+/g over the LLaVA-1.5.
comment: 8 pages for the main paper
☆ AdaptFlow: Adaptive Workflow Optimization via Meta-Learning
Recent advances in large language models (LLMs) have sparked growing interest in agentic workflows, which are structured sequences of LLM invocations intended to solve complex tasks. However, existing approaches often rely on static templates or manually designed workflows, which limit adaptability to diverse tasks and hinder scalability. We propose AdaptFlow, a natural language-based meta-learning framework inspired by model-agnostic meta-learning (MAML). AdaptFlow learns a generalizable workflow initialization that enables rapid subtask-level adaptation. It employs a bi-level optimization scheme: the inner loop refines the workflow for a specific subtask using LLM-generated feedback, while the outer loop updates the shared initialization to perform well across tasks. This setup allows AdaptFlow to generalize effectively to unseen tasks by adapting the initialized workflow through language-guided modifications. Evaluated across question answering, code generation, and mathematical reasoning benchmarks, AdaptFlow consistently outperforms both manually crafted and automatically searched baselines, achieving state-of-the-art results with strong generalization across tasks and models. The source code and data are available at https://github.com/microsoft/DKI_LLM/tree/AdaptFlow/AdaptFlow.
☆ On Understanding of the Dynamics of Model Capacity in Continual Learning
The stability-plasticity dilemma, closely related to a neural network's (NN) capacity-its ability to represent tasks-is a fundamental challenge in continual learning (CL). Within this context, we introduce CL's effective model capacity (CLEMC) that characterizes the dynamic behavior of the stability-plasticity balance point. We develop a difference equation to model the evolution of the interplay between the NN, task data, and optimization procedure. We then leverage CLEMC to demonstrate that the effective capacity-and, by extension, the stability-plasticity balance point is inherently non-stationary. We show that regardless of the NN architecture or optimization method, a NN's ability to represent new tasks diminishes when incoming task distributions differ from previous ones. We conduct extensive experiments to support our theoretical findings, spanning a range of architectures-from small feedforward network and convolutional networks to medium-sized graph neural networks and transformer-based large language models with millions of parameters.
☆ Rethinking Self-Replication: Detecting Distributed Selfhood in the Outlier Cellular Automaton
Spontaneous self-replication in cellular automata has long been considered rare, with most known examples requiring careful design or artificial initialization. In this paper, we present formal, causal evidence that such replication can emerge unassisted -- and that it can do so in a distributed, multi-component form. Building on prior work identifying complex dynamics in the Outlier rule, we introduce a data-driven framework that reconstructs the full causal ancestry of patterns in a deterministic cellular automaton. This allows us to rigorously identify self-replicating structures via explicit causal lineages. Our results show definitively that self-replicators in the Outlier CA are not only spontaneous and robust, but are also often composed of multiple disjoint clusters working in coordination, raising questions about some conventional notions of individuality and replication in artificial life systems.
Multi-modal Adaptive Mixture of Experts for Cold-start Recommendation
Recommendation systems have faced significant challenges in cold-start scenarios, where new items with a limited history of interaction need to be effectively recommended to users. Though multimodal data (e.g., images, text, audio, etc.) offer rich information to address this issue, existing approaches often employ simplistic integration methods such as concatenation, average pooling, or fixed weighting schemes, which fail to capture the complex relationships between modalities. Our study proposes a novel Mixture of Experts (MoE) framework for multimodal cold-start recommendation, named MAMEX, which dynamically leverages latent representation from different modalities. MAMEX utilizes modality-specific expert networks and introduces a learnable gating mechanism that adaptively weights the contribution of each modality based on its content characteristics. This approach enables MAMEX to emphasize the most informative modalities for each item while maintaining robustness when certain modalities are less relevant or missing. Extensive experiments on benchmark datasets show that MAMEX outperforms state-of-the-art methods in cold-start scenarios, with superior accuracy and adaptability. For reproducibility, the code has been made available on Github https://github.com/L2R-UET/MAMEX.
☆ BadPromptFL: A Novel Backdoor Threat to Prompt-based Federated Learning in Multimodal Models
Prompt-based tuning has emerged as a lightweight alternative to full fine-tuning in large vision-language models, enabling efficient adaptation via learned contextual prompts. This paradigm has recently been extended to federated learning settings (e.g., PromptFL), where clients collaboratively train prompts under data privacy constraints. However, the security implications of prompt-based aggregation in federated multimodal learning remain largely unexplored, leaving a critical attack surface unaddressed. In this paper, we introduce \textbf{BadPromptFL}, the first backdoor attack targeting prompt-based federated learning in multimodal contrastive models. In BadPromptFL, compromised clients jointly optimize local backdoor triggers and prompt embeddings, injecting poisoned prompts into the global aggregation process. These prompts are then propagated to benign clients, enabling universal backdoor activation at inference without modifying model parameters. Leveraging the contextual learning behavior of CLIP-style architectures, BadPromptFL achieves high attack success rates (e.g., \(>90\%\)) with minimal visibility and limited client participation. Extensive experiments across multiple datasets and aggregation protocols validate the effectiveness, stealth, and generalizability of our attack, raising critical concerns about the robustness of prompt-based federated learning in real-world deployments.
☆ Exploring Strategies for Personalized Radiation Therapy: Part III Identifying genetic determinants for Radiation Response with Meta Learning
Radiation response in cancer is shaped by complex, patient specific biology, yet current treatment strategies often rely on uniform dose prescriptions without accounting for tumor heterogeneity. In this study, we introduce a meta learning framework for one-shot prediction of radiosensitivity measured by SF2 using cell line level gene expression data. Unlike the widely used Radiosensitivity Index RSI a rank-based linear model trained on a fixed 10-gene signature, our proposed meta-learned model allows the importance of each gene to vary by sample through fine tuning. This flexibility addresses key limitations of static models like RSI, which assume uniform gene contributions across tumor types and discard expression magnitude and gene gene interactions. Our results show that meta learning offers robust generalization to unseen samples and performs well in tumor subgroups with high radiosensitivity variability, such as adenocarcinoma and large cell carcinoma. By learning transferable structure across tasks while preserving sample specific adaptability, our approach enables rapid adaptation to individual samples, improving predictive accuracy across diverse tumor subtypes while uncovering context dependent patterns of gene influence that may inform personalized therapy.
☆ Bridging ASR and LLMs for Dysarthric Speech Recognition: Benchmarking Self-Supervised and Generative Approaches
Speech Recognition (ASR) due to phoneme distortions and high variability. While self-supervised ASR models like Wav2Vec, HuBERT, and Whisper have shown promise, their effectiveness in dysarthric speech remains unclear. This study systematically benchmarks these models with different decoding strategies, including CTC, seq2seq, and LLM-enhanced decoding (BART,GPT-2, Vicuna). Our contributions include (1) benchmarking ASR architectures for dysarthric speech, (2) introducing LLM-based decoding to improve intelligibility, (3) analyzing generalization across datasets, and (4) providing insights into recognition errors across severity levels. Findings highlight that LLM-enhanced decoding improves dysarthric ASR by leveraging linguistic constraints for phoneme restoration and grammatical correction.
☆ Advancing Knowledge Tracing by Exploring Follow-up Performance Trends
Intelligent Tutoring Systems (ITS), such as Massive Open Online Courses, offer new opportunities for human learning. At the core of such systems, knowledge tracing (KT) predicts students' future performance by analyzing their historical learning activities, enabling an accurate evaluation of students' knowledge states over time. We show that existing KT methods often encounter correlation conflicts when analyzing the relationships between historical learning sequences and future performance. To address such conflicts, we propose to extract so-called Follow-up Performance Trends (FPTs) from historical ITS data and to incorporate them into KT. We propose a method called Forward-Looking Knowledge Tracing (FINER) that combines historical learning sequences with FPTs to enhance student performance prediction accuracy. FINER constructs learning patterns that facilitate the retrieval of FPTs from historical ITS data in linear time; FINER includes a novel similarity-aware attention mechanism that aggregates FPTs based on both frequency and contextual similarity; and FINER offers means of combining FPTs and historical learning sequences to enable more accurate prediction of student future performance. Experiments on six real-world datasets show that FINER can outperform ten state-of-the-art KT methods, increasing accuracy by 8.74% to 84.85%.
comment: 14 pages, 5 figures
☆ Fitting Description Logic Ontologies to ABox and Query Examples
We study a fitting problem inspired by ontology-mediated querying: given a collection of positive and negative examples of the form $(\mathcal{A},q)$ with $\mathcal{A}$ an ABox and $q$ a Boolean query, we seek an ontology $\mathcal{O}$ that satisfies $\mathcal{A} \cup \mathcal{O} \vDash q$ for all positive examples and $\mathcal{A} \cup \mathcal{O}\not\vDash q$ for all negative examples. We consider the description logics $\mathcal{ALC}$ and $\mathcal{ALCI}$ as ontology languages and a range of query languages that includes atomic queries (AQs), conjunctive queries (CQs), and unions thereof (UCQs). For all of the resulting fitting problems, we provide effective characterizations and determine the computational complexity of deciding whether a fitting ontology exists. This problem turns out to be ${\small CO}NP$ for AQs and full CQs and $2E{\small XP}T{\small IME}$-complete for CQs and UCQs. These results hold for both $\mathcal{ALC}$ and $\mathcal{ALCI}$.
comment: Submitted to the 22nd International Conference on Principles of Knowledge Representation and Reasoning (KR2025), 23 pages
☆ Learning to Select MCP Algorithms: From Traditional ML to Dual-Channel GAT-MLP
Extensive experiments and prior studies show that no single maximum clique algorithm consistently performs best across all instances, highlighting the importance of selecting suitable algorithms based on instance features. Through an extensive analysis of relevant studies, it is found that there is a lack of research work concerning algorithm selection oriented toward the Maximum Clique Problem (MCP). In this work, we propose a learning-based framework that integrates both traditional machine learning and graph neural networks to address this gap. We construct a labeled dataset by running four exact MCP algorithms on a diverse collection of graph instances, accompanied by structural and global statistical features extracted from each graph. We first evaluate four conventional classifiers: Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), and K-Nearest Neighbors (KNN), across multiple dataset variants. Experimental results show that RF consistently shows strong performance across metrics and dataset variants, making it a reliable baseline. In addition, feature importance analysis indicates that connectivity and topological structure are strong predictors of algorithm performance. Building on these findings, we develop a dual-channel model named GAT-MLP, which combines a Graph Attention Network (GAT) for local structural encoding with a Multilayer Perceptron (MLP) for global feature modeling. The GAT-MLP model shows strong and consistent performance across all metrics. Our results highlight the effectiveness of dual-channel architectures and the promise of graph neural networks in combinatorial algorithm selection.
comment: 10 pages, 6 figures
☆ Interpreting Fedspeak with Confidence: A LLM-Based Uncertainty-Aware Framework Guided by Monetary Policy Transmission Paths
"Fedspeak", the stylized and often nuanced language used by the U.S. Federal Reserve, encodes implicit policy signals and strategic stances. The Federal Open Market Committee strategically employs Fedspeak as a communication tool to shape market expectations and influence both domestic and global economic conditions. As such, automatically parsing and interpreting Fedspeak presents a high-impact challenge, with significant implications for financial forecasting, algorithmic trading, and data-driven policy analysis. In this paper, we propose an LLM-based, uncertainty-aware framework for deciphering Fedspeak and classifying its underlying monetary policy stance. Technically, to enrich the semantic and contextual representation of Fedspeak texts, we incorporate domain-specific reasoning grounded in the monetary policy transmission mechanism. We further introduce a dynamic uncertainty decoding module to assess the confidence of model predictions, thereby enhancing both classification accuracy and model reliability. Experimental results demonstrate that our framework achieves state-of-the-art performance on the policy stance analysis task. Moreover, statistical analysis reveals a significant positive correlation between perceptual uncertainty and model error rates, validating the effectiveness of perceptual uncertainty as a diagnostic signal.
comment: Rui Yao, Qi Chai, and Jinhai Yao contributed equally to this work. Corresponding authors: Qi Zhang (zhang.qi@sjtu.edu.cn) and Hao Wang (haowang@hkust-gz.edu.cn)
☆ DIVER: A Multi-Stage Approach for Reasoning-intensive Information Retrieval
Retrieval-augmented generation has achieved strong performance on knowledge-intensive tasks where query-document relevance can be identified through direct lexical or semantic matches. However, many real-world queries involve abstract reasoning, analogical thinking, or multi-step inference, which existing retrievers often struggle to capture. To address this challenge, we present \textbf{DIVER}, a retrieval pipeline tailored for reasoning-intensive information retrieval. DIVER consists of four components: document processing to improve input quality, LLM-driven query expansion via iterative document interaction, a reasoning-enhanced retriever fine-tuned on synthetic multi-domain data with hard negatives, and a pointwise reranker that combines LLM-assigned helpfulness scores with retrieval scores. On the BRIGHT benchmark, DIVER achieves state-of-the-art nDCG@10 scores of 41.6 and 28.9 on original queries, consistently outperforming competitive reasoning-aware models. These results demonstrate the effectiveness of reasoning-aware retrieval strategies in complex real-world tasks. Our code and retrieval model will be released soon.
☆ Omni-Effects: Unified and Spatially-Controllable Visual Effects Generation
Visual effects (VFX) are essential visual enhancements fundamental to modern cinematic production. Although video generation models offer cost-efficient solutions for VFX production, current methods are constrained by per-effect LoRA training, which limits generation to single effects. This fundamental limitation impedes applications that require spatially controllable composite effects, i.e., the concurrent generation of multiple effects at designated locations. However, integrating diverse effects into a unified framework faces major challenges: interference from effect variations and spatial uncontrollability during multi-VFX joint training. To tackle these challenges, we propose Omni-Effects, a first unified framework capable of generating prompt-guided effects and spatially controllable composite effects. The core of our framework comprises two key innovations: (1) LoRA-based Mixture of Experts (LoRA-MoE), which employs a group of expert LoRAs, integrating diverse effects within a unified model while effectively mitigating cross-task interference. (2) Spatial-Aware Prompt (SAP) incorporates spatial mask information into the text token, enabling precise spatial control. Furthermore, we introduce an Independent-Information Flow (IIF) module integrated within the SAP, isolating the control signals corresponding to individual effects to prevent any unwanted blending. To facilitate this research, we construct a comprehensive VFX dataset Omni-VFX via a novel data collection pipeline combining image editing and First-Last Frame-to-Video (FLF2V) synthesis, and introduce a dedicated VFX evaluation framework for validating model performance. Extensive experiments demonstrate that Omni-Effects achieves precise spatial control and diverse effect generation, enabling users to specify both the category and location of desired effects.
☆ Beyond Ten Turns: Unlocking Long-Horizon Agentic Search with Large-Scale Asynchronous RL
Recent advancements in LLM-based agents have demonstrated remarkable capabilities in handling complex, knowledge-intensive tasks by integrating external tools. Among diverse choices of tools, search tools play a pivotal role in accessing vast external knowledge. However, open-source agents still fall short of achieving expert-level Search Intelligence, the ability to resolve ambiguous queries, generate precise searches, analyze results, and conduct thorough exploration. Existing approaches fall short in scalability, efficiency, and data quality. For example, small turn limits in existing online RL methods, e.g. <=10, restrict complex strategy learning. This paper introduces ASearcher, an open-source project for large-scale RL training of search agents. Our key contributions include: (1) Scalable fully asynchronous RL training that enables long-horizon search while maintaining high training efficiency. (2) A prompt-based LLM agent that autonomously synthesizes high-quality and challenging QAs, creating a large-scale QA dataset. Through RL training, our prompt-based QwQ-32B agent achieves substantial improvements, with 46.7% and 20.8% Avg@4 gains on xBench and GAIA, respectively. Notably, our agent exhibits extreme long-horizon search, with tool calls exceeding 40 turns and output tokens exceeding 150k during training time. With a simple agent design and no external LLMs, ASearcher-Web-QwQ achieves Avg@4 scores of 42.1 on xBench and 52.8 on GAIA, surpassing existing open-source 32B agents. We open-source our models, training data, and codes in https://github.com/inclusionAI/ASearcher.
☆ WeChat-YATT: A Simple, Scalable and Balanced RLHF Trainer
Reinforcement Learning from Human Feedback (RLHF) has emerged as a prominent paradigm for training large language models and multimodal systems. Despite notable advances enabled by existing RLHF training frameworks, significant challenges remain in scaling to complex multimodal workflows and adapting to dynamic workloads. In particular, current systems often encounter limitations related to controller scalability when managing large models, as well as inefficiencies in orchestrating intricate RLHF pipelines, especially in scenarios that require dynamic sampling and resource allocation. In this paper, we introduce WeChat-YATT (Yet Another Transformer Trainer in WeChat), a simple, scalable, and balanced RLHF training framework specifically designed to address these challenges. WeChat-YATT features a parallel controller programming model that enables flexible and efficient orchestration of complex RLHF workflows, effectively mitigating the bottlenecks associated with centralized controller architectures and facilitating scalability in large-scale data scenarios. In addition, we propose a dynamic placement schema that adaptively partitions computational resources and schedules workloads, thereby significantly reducing hardware idle time and improving GPU utilization under variable training conditions. We evaluate WeChat-YATT across a range of experimental scenarios, demonstrating that it achieves substantial improvements in throughput compared to state-of-the-art RLHF training frameworks. Furthermore, WeChat-YATT has been successfully deployed to train models supporting WeChat product features for a large-scale user base, underscoring its effectiveness and robustness in real-world applications.
comment: arXiv admin note: substantial text overlap with arXiv:2507.22789
☆ Exploring the Challenges and Opportunities of AI-assisted Codebase Generation
Recent AI code assistants have significantly improved their ability to process more complex contexts and generate entire codebases based on a textual description, compared to the popular snippet-level generation. These codebase AI assistants (CBAs) can also extend or adapt codebases, allowing users to focus on higher-level design and deployment decisions. While prior work has extensively studied the impact of snippet-level code generation, this new class of codebase generation models is relatively unexplored. Despite initial anecdotal reports of excitement about these agents, they remain less frequently adopted compared to snippet-level code assistants. To utilize CBAs better, we need to understand how developers interact with CBAs, and how and why CBAs fall short of developers' needs. In this paper, we explored these gaps through a counterbalanced user study and interview with (n = 16) students and developers working on coding tasks with CBAs. We found that participants varied the information in their prompts, like problem description (48% of prompts), required functionality (98% of prompts), code structure (48% of prompts), and their prompt writing process. Despite various strategies, the overall satisfaction score with generated codebases remained low (mean = 2.8, median = 3, on a scale of one to five). Participants mentioned functionality as the most common factor for dissatisfaction (77% of instances), alongside poor code quality (42% of instances) and communication issues (25% of instances). We delve deeper into participants' dissatisfaction to identify six underlying challenges that participants faced when using CBAs, and extracted five barriers to incorporating CBAs into their workflows. Finally, we surveyed 21 commercial CBAs to compare their capabilities with participant challenges and present design opportunities for more efficient and useful CBAs.
☆ FEAT: A Multi-Agent Forensic AI System with Domain-Adapted Large Language Model for Automated Cause-of-Death Analysis
Forensic cause-of-death determination faces systemic challenges, including workforce shortages and diagnostic variability, particularly in high-volume systems like China's medicolegal infrastructure. We introduce FEAT (ForEnsic AgenT), a multi-agent AI framework that automates and standardizes death investigations through a domain-adapted large language model. FEAT's application-oriented architecture integrates: (i) a central Planner for task decomposition, (ii) specialized Local Solvers for evidence analysis, (iii) a Memory & Reflection module for iterative refinement, and (iv) a Global Solver for conclusion synthesis. The system employs tool-augmented reasoning, hierarchical retrieval-augmented generation, forensic-tuned LLMs, and human-in-the-loop feedback to ensure legal and medical validity. In evaluations across diverse Chinese case cohorts, FEAT outperformed state-of-the-art AI systems in both long-form autopsy analyses and concise cause-of-death conclusions. It demonstrated robust generalization across six geographic regions and achieved high expert concordance in blinded validations. Senior pathologists validated FEAT's outputs as comparable to those of human experts, with improved detection of subtle evidentiary nuances. To our knowledge, FEAT is the first LLM-based AI agent system dedicated to forensic medicine, offering scalable, consistent death certification while maintaining expert-level rigor. By integrating AI efficiency with human oversight, this work could advance equitable access to reliable medicolegal services while addressing critical capacity constraints in forensic systems.
comment: 18pages, 6 figures
☆ SCDF: A Speaker Characteristics DeepFake Speech Dataset for Bias Analysis
Despite growing attention to deepfake speech detection, the aspects of bias and fairness remain underexplored in the speech domain. To address this gap, we introduce the Speaker Characteristics Deepfake (SCDF) dataset: a novel, richly annotated resource enabling systematic evaluation of demographic biases in deepfake speech detection. SCDF contains over 237,000 utterances in a balanced representation of both male and female speakers spanning five languages and a wide age range. We evaluate several state-of-the-art detectors and show that speaker characteristics significantly influence detection performance, revealing disparities across sex, language, age, and synthesizer type. These findings highlight the need for bias-aware development and provide a foundation for building non-discriminatory deepfake detection systems aligned with ethical and regulatory standards.
☆ Deep Reinforcement Learning with anticipatory reward in LSTM for Collision Avoidance of Mobile Robots
This article proposes a collision risk anticipation method based on short-term prediction of the agents position. A Long Short-Term Memory (LSTM) model, trained on past trajectories, is used to estimate the next position of each robot. This prediction allows us to define an anticipated collision risk by dynamically modulating the reward of a Deep Q-Learning Network (DQN) agent. The approach is tested in a constrained environment, where two robots move without communication or identifiers. Despite a limited sampling frequency (1 Hz), the results show a significant decrease of the collisions number and a stability improvement. The proposed method, which is computationally inexpensive, appears particularly attractive for implementation on embedded systems.
☆ \(X\)-evolve: Solution space evolution powered by large language models
While combining large language models (LLMs) with evolutionary algorithms (EAs) shows promise for solving complex optimization problems, current approaches typically evolve individual solutions, often incurring high LLM call costs. We introduce \(X\)-evolve, a paradigm-shifting method that instead evolves solution spaces \(X\) (sets of individual solutions) - subsets of the overall search space \(S\). In \(X\)-evolve, LLMs generate tunable programs wherein certain code snippets, designated as parameters, define a tunable solution space. A score-based search algorithm then efficiently explores this parametrically defined space, guided by feedback from objective function scores. This strategy enables broader and more efficient exploration, which can potentially accelerate convergence at a much lower search cost, requiring up to two orders of magnitude fewer LLM calls than prior leading methods. We demonstrate \(X\)-evolve's efficacy across three distinct hard optimization problems. For the cap set problem, we discover a larger partial admissible set, establishing a new tighter asymptotic lower bound for the cap set constant (\(C \ge 2.2203\)). In information theory, we uncover a larger independent set for the 15-vertex cycle graph (\(\mathcal{C}_{15}^{\boxtimes 5}\), size 19,946), thereby raising the known lower bound on its Shannon capacity. Furthermore, for the NP-hard online bin packing problem, we generate heuristics that consistently outperform standard strategies across established benchmarks. By evolving solution spaces, our method considerably improves search effectiveness, making it possible to tackle high-dimensional problems that were previously computationally prohibitive.
☆ Diffusing the Blind Spot: Uterine MRI Synthesis with Diffusion Models AI
Despite significant progress in generative modelling, existing diffusion models often struggle to produce anatomically precise female pelvic images, limiting their application in gynaecological imaging, where data scarcity and patient privacy concerns are critical. To overcome these barriers, we introduce a novel diffusion-based framework for uterine MRI synthesis, integrating both unconditional and conditioned Denoising Diffusion Probabilistic Models (DDPMs) and Latent Diffusion Models (LDMs) in 2D and 3D. Our approach generates anatomically coherent, high fidelity synthetic images that closely mimic real scans and provide valuable resources for training robust diagnostic models. We evaluate generative quality using advanced perceptual and distributional metrics, benchmarking against standard reconstruction methods, and demonstrate substantial gains in diagnostic accuracy on a key classification task. A blinded expert evaluation further validates the clinical realism of our synthetic images. We release our models with privacy safeguards and a comprehensive synthetic uterine MRI dataset to support reproducible research and advance equitable AI in gynaecology.
comment: Accepted at MICCAI CAPI 2025
☆ NeeCo: Image Synthesis of Novel Instrument States Based on Dynamic and Deformable 3D Gaussian Reconstruction
Computer vision-based technologies significantly enhance surgical automation by advancing tool tracking, detection, and localization. However, Current data-driven approaches are data-voracious, requiring large, high-quality labeled image datasets, which limits their application in surgical data science. Our Work introduces a novel dynamic Gaussian Splatting technique to address the data scarcity in surgical image datasets. We propose a dynamic Gaussian model to represent dynamic surgical scenes, enabling the rendering of surgical instruments from unseen viewpoints and deformations with real tissue backgrounds. We utilize a dynamic training adjustment strategy to address challenges posed by poorly calibrated camera poses from real-world scenarios. Additionally, we propose a method based on dynamic Gaussians for automatically generating annotations for our synthetic data. For evaluation, we constructed a new dataset featuring seven scenes with 14,000 frames of tool and camera motion and tool jaw articulation, with a background of an ex-vivo porcine model. Using this dataset, we synthetically replicate the scene deformation from the ground truth data, allowing direct comparisons of synthetic image quality. Experimental results illustrate that our method generates photo-realistic labeled image datasets with the highest values in Peak-Signal-to-Noise Ratio (29.87). We further evaluate the performance of medical-specific neural networks trained on real and synthetic images using an unseen real-world image dataset. Our results show that the performance of models trained on synthetic images generated by the proposed method outperforms those trained with state-of-the-art standard data augmentation by 10%, leading to an overall improvement in model performances by nearly 15%.
comment: 13 pages, 9 figures
☆ Not Yet AlphaFold for the Mind: Evaluating Centaur as a Synthetic Participant
Simulators have revolutionized scientific practice across the natural sciences. By generating data that reliably approximate real-world phenomena, they enable scientists to accelerate hypothesis testing and optimize experimental designs. This is perhaps best illustrated by AlphaFold, a Nobel-prize winning simulator in chemistry that predicts protein structures from amino acid sequences, enabling rapid prototyping of molecular interactions, drug targets, and protein functions. In the behavioral sciences, a reliable participant simulator - a system capable of producing human-like behavior across cognitive tasks - would represent a similarly transformative advance. Recently, Binz et al. introduced Centaur, a large language model (LLM) fine-tuned on human data from 160 experiments, proposing its use not only as a model of cognition but also as a participant simulator for "in silico prototyping of experimental studies", e.g., to advance automated cognitive science. Here, we review the core criteria for a participant simulator and assess how well Centaur meets them. Although Centaur demonstrates strong predictive accuracy, its generative behavior - a critical criterion for a participant simulator - systematically diverges from human data. This suggests that, while Centaur is a significant step toward predicting human behavior, it does not yet meet the standards of a reliable participant simulator or an accurate model of cognition.
☆ Autonomous Navigation of Cloud-Controlled Quadcopters in Confined Spaces Using Multi-Modal Perception and LLM-Driven High Semantic Reasoning
This paper introduces an advanced AI-driven perception system for autonomous quadcopter navigation in GPS-denied indoor environments. The proposed framework leverages cloud computing to offload computationally intensive tasks and incorporates a custom-designed printed circuit board (PCB) for efficient sensor data acquisition, enabling robust navigation in confined spaces. The system integrates YOLOv11 for object detection, Depth Anything V2 for monocular depth estimation, a PCB equipped with Time-of-Flight (ToF) sensors and an Inertial Measurement Unit (IMU), and a cloud-based Large Language Model (LLM) for context-aware decision-making. A virtual safety envelope, enforced by calibrated sensor offsets, ensures collision avoidance, while a multithreaded architecture achieves low-latency processing. Enhanced spatial awareness is facilitated by 3D bounding box estimation with Kalman filtering. Experimental results in an indoor testbed demonstrate strong performance, with object detection achieving a mean Average Precision (mAP50) of 0.6, depth estimation Mean Absolute Error (MAE) of 7.2 cm, only 16 safety envelope breaches across 42 trials over approximately 11 minutes, and end-to-end system latency below 1 second. This cloud-supported, high-intelligence framework serves as an auxiliary perception and navigation system, complementing state-of-the-art drone autonomy for GPS-denied confined spaces.
☆ Selective Contrastive Learning for Weakly Supervised Affordance Grounding ICCV 2025
Facilitating an entity's interaction with objects requires accurately identifying parts that afford specific actions. Weakly supervised affordance grounding (WSAG) seeks to imitate human learning from third-person demonstrations, where humans intuitively grasp functional parts without needing pixel-level annotations. To achieve this, grounding is typically learned using a shared classifier across images from different perspectives, along with distillation strategies incorporating part discovery process. However, since affordance-relevant parts are not always easily distinguishable, models primarily rely on classification, often focusing on common class-specific patterns that are unrelated to affordance. To address this limitation, we move beyond isolated part-level learning by introducing selective prototypical and pixel contrastive objectives that adaptively learn affordance-relevant cues at both the part and object levels, depending on the granularity of the available information. Initially, we find the action-associated objects in both egocentric (object-focused) and exocentric (third-person example) images by leveraging CLIP. Then, by cross-referencing the discovered objects of complementary views, we excavate the precise part-level affordance clues in each perspective. By consistently learning to distinguish affordance-relevant regions from affordance-irrelevant background context, our approach effectively shifts activation from irrelevant areas toward meaningful affordance cues. Experimental results demonstrate the effectiveness of our method. Codes are available at github.com/hynnsk/SelectiveCL.
comment: Accepted to ICCV 2025
☆ Towards Human-AI Collaboration System for the Detection of Invasive Ductal Carcinoma in Histopathology Images
Invasive ductal carcinoma (IDC) is the most prevalent form of breast cancer, and early, accurate diagnosis is critical to improving patient survival rates by guiding treatment decisions. Combining medical expertise with artificial intelligence (AI) holds significant promise for enhancing the precision and efficiency of IDC detection. In this work, we propose a human-in-the-loop (HITL) deep learning system designed to detect IDC in histopathology images. The system begins with an initial diagnosis provided by a high-performance EfficientNetV2S model, offering feedback from AI to the human expert. Medical professionals then review the AI-generated results, correct any misclassified images, and integrate the revised labels into the training dataset, forming a feedback loop from the human back to the AI. This iterative process refines the model's performance over time. The EfficientNetV2S model itself achieves state-of-the-art performance compared to existing methods in the literature, with an overall accuracy of 93.65\%. Incorporating the human-in-the-loop system further improves the model's accuracy using four experimental groups with misclassified images. These results demonstrate the potential of this collaborative approach to enhance AI performance in diagnostic systems. This work contributes to advancing automated, efficient, and highly accurate methods for IDC detection through human-AI collaboration, offering a promising direction for future AI-assisted medical diagnostics.
☆ Vertex Features for Neural Global Illumination
Recent research on learnable neural representations has been widely adopted in the field of 3D scene reconstruction and neural rendering applications. However, traditional feature grid representations often suffer from substantial memory footprint, posing a significant bottleneck for modern parallel computing hardware. In this paper, we present neural vertex features, a generalized formulation of learnable representation for neural rendering tasks involving explicit mesh surfaces. Instead of uniformly distributing neural features throughout 3D space, our method stores learnable features directly at mesh vertices, leveraging the underlying geometry as a compact and structured representation for neural processing. This not only optimizes memory efficiency, but also improves feature representation by aligning compactly with the surface using task-specific geometric priors. We validate our neural representation across diverse neural rendering tasks, with a specific emphasis on neural radiosity. Experimental results demonstrate that our method reduces memory consumption to only one-fifth (or even less) of grid-based representations, while maintaining comparable rendering quality and lowering inference overhead.
comment: Accepted by ACM SIGGRAPH Asia'2025
☆ Deep Space Weather Model: Long-Range Solar Flare Prediction from Multi-Wavelength Images ICCV 2025
Accurate, reliable solar flare prediction is crucial for mitigating potential disruptions to critical infrastructure, while predicting solar flares remains a significant challenge. Existing methods based on heuristic physical features often lack representation learning from solar images. On the other hand, end-to-end learning approaches struggle to model long-range temporal dependencies in solar images. In this study, we propose Deep Space Weather Model (Deep SWM), which is based on multiple deep state space models for handling both ten-channel solar images and long-range spatio-temporal dependencies. Deep SWM also features a sparse masked autoencoder, a novel pretraining strategy that employs a two-phase masking approach to preserve crucial regions such as sunspots while compressing spatial information. Furthermore, we built FlareBench, a new public benchmark for solar flare prediction covering a full 11-year solar activity cycle, to validate our method. Our method outperformed baseline methods and even human expert performance on standard metrics in terms of performance and reliability. The project page can be found at https://keio-smilab25.github.io/DeepSWM.
comment: ICCV 2025
☆ DETACH: Cross-domain Learning for Long-Horizon Tasks via Mixture of Disentangled Experts AAAI'26
Long-Horizon (LH) tasks in Human-Scene Interaction (HSI) are complex multi-step tasks that require continuous planning, sequential decision-making, and extended execution across domains to achieve the final goal. However, existing methods heavily rely on skill chaining by concatenating pre-trained subtasks, with environment observations and self-state tightly coupled, lacking the ability to generalize to new combinations of environments and skills, failing to complete various LH tasks across domains. To solve this problem, this paper presents DETACH, a cross-domain learning framework for LH tasks via biologically inspired dual-stream disentanglement. Inspired by the brain's "where-what" dual pathway mechanism, DETACH comprises two core modules: i) an environment learning module for spatial understanding, which captures object functions, spatial relationships, and scene semantics, achieving cross-domain transfer through complete environment-self disentanglement; ii) a skill learning module for task execution, which processes self-state information including joint degrees of freedom and motor patterns, enabling cross-skill transfer through independent motor pattern encoding. We conducted extensive experiments on various LH tasks in HSI scenes. Compared with existing methods, DETACH can achieve an average subtasks success rate improvement of 23% and average execution efficiency improvement of 29%.
comment: 14 pages,8 figures. Submitted to AAAI'26
☆ KIRETT: Knowledge-Graph-Based Smart Treatment Assistant for Intelligent Rescue Operations
Over the years, the need for rescue operations throughout the world has increased rapidly. Demographic changes and the resulting risk of injury or health disorders form the basis for emergency calls. In such scenarios, first responders are in a rush to reach the patient in need, provide first aid, and save lives. In these situations, they must be able to provide personalized and optimized healthcare in the shortest possible time and estimate the patients condition with the help of freshly recorded vital data in an emergency situation. However, in such a timedependent situation, first responders and medical experts cannot fully grasp their knowledge and need assistance and recommendation for further medical treatments. To achieve this, on the spot calculated, evaluated, and processed knowledge must be made available to improve treatments by first responders. The Knowledge Graph presented in this article as a central knowledge representation provides first responders with an innovative knowledge management that enables intelligent treatment recommendations with an artificial intelligence-based pre-recognition of the situation.
comment: LWDA'23, KIRETT project, University of Siegen, Germany
☆ Auditory Intelligence: Understanding the World Through Sound
Recent progress in auditory intelligence has yielded high-performing systems for sound event detection (SED), acoustic scene classification (ASC), automated audio captioning (AAC), and audio question answering (AQA). Yet these tasks remain largely constrained to surface-level recognition-capturing what happened but not why, what it implies, or how it unfolds in context. I propose a conceptual reframing of auditory intelligence as a layered, situated process that encompasses perception, reasoning, and interaction. To instantiate this view, I introduce four cognitively inspired task paradigms-ASPIRE, SODA, AUX, and AUGMENT-those structure auditory understanding across time-frequency pattern captioning, hierarchical event/scene description, causal explanation, and goal-driven interpretation, respectively. Together, these paradigms provide a roadmap toward more generalizable, explainable, and human-aligned auditory intelligence, and are intended to catalyze a broader discussion of what it means for machines to understand sound.
comment: Position paper without experimental/quantitative validation. Not submitted to any journal/conference
☆ Architectural Co-Design for Zero-Shot Anomaly Detection: Decoupling Representation and Dynamically Fusing Features in CLIP
Pre-trained Vision-Language Models (VLMs) face a significant adaptation gap when applied to Zero-Shot Anomaly Detection (ZSAD), stemming from their lack of local inductive biases for dense prediction and their reliance on inflexible feature fusion paradigms. We address these limitations through an Architectural Co-Design framework that jointly refines feature representation and cross-modal fusion. Our method integrates a parameter-efficient Convolutional Low-Rank Adaptation (Conv-LoRA) adapter to inject local inductive biases for fine-grained representation, and introduces a Dynamic Fusion Gateway (DFG) that leverages visual context to adaptively modulate text prompts, enabling a powerful bidirectional fusion. Extensive experiments on diverse industrial and medical benchmarks demonstrate superior accuracy and robustness, validating that this synergistic co-design is critical for robustly adapting foundation models to dense perception tasks.
comment: 4 pages, 1 reference, 3 figures, icassp 2026
☆ MIND: A Noise-Adaptive Denoising Framework for Medical Images Integrating Multi-Scale Transformer
The core role of medical images in disease diagnosis makes their quality directly affect the accuracy of clinical judgment. However, due to factors such as low-dose scanning, equipment limitations and imaging artifacts, medical images are often accompanied by non-uniform noise interference, which seriously affects structure recognition and lesion detection. This paper proposes a medical image adaptive denoising model (MI-ND) that integrates multi-scale convolutional and Transformer architecture, introduces a noise level estimator (NLE) and a noise adaptive attention module (NAAB), and realizes channel-spatial attention regulation and cross-modal feature fusion driven by noise perception. Systematic testing is carried out on multimodal public datasets. Experiments show that this method significantly outperforms the comparative methods in image quality indicators such as PSNR, SSIM, and LPIPS, and improves the F1 score and ROC-AUC in downstream diagnostic tasks, showing strong prac-tical value and promotional potential. The model has outstanding benefits in structural recovery, diagnostic sensitivity, and cross-modal robustness, and provides an effective solution for medical image enhancement and AI-assisted diagnosis and treatment.
comment: 6 pages, 6 figures
☆ Best-Effort Policies for Robust Markov Decision Processes
We study the common generalization of Markov decision processes (MDPs) with sets of transition probabilities, known as robust MDPs (RMDPs). A standard goal in RMDPs is to compute a policy that maximizes the expected return under an adversarial choice of the transition probabilities. If the uncertainty in the probabilities is independent between the states, known as s-rectangularity, such optimal robust policies can be computed efficiently using robust value iteration. However, there might still be multiple optimal robust policies, which, while equivalent with respect to the worst-case, reflect different expected returns under non-adversarial choices of the transition probabilities. Hence, we propose a refined policy selection criterion for RMDPs, drawing inspiration from the notions of dominance and best-effort in game theory. Instead of seeking a policy that only maximizes the worst-case expected return, we additionally require the policy to achieve a maximal expected return under different (i.e., not fully adversarial) transition probabilities. We call such a policy an optimal robust best-effort (ORBE) policy. We prove that ORBE policies always exist, characterize their structure, and present an algorithm to compute them with a small overhead compared to standard robust value iteration. ORBE policies offer a principled tie-breaker among optimal robust policies. Numerical experiments show the feasibility of our approach.
☆ PCA-Guided Autoencoding for Structured Dimensionality Reduction in Active Infrared Thermography
Active Infrared thermography (AIRT) is a widely adopted non-destructive testing (NDT) technique for detecting subsurface anomalies in industrial components. Due to the high dimensionality of AIRT data, current approaches employ non-linear autoencoders (AEs) for dimensionality reduction. However, the latent space learned by AIRT AEs lacks structure, limiting their effectiveness in downstream defect characterization tasks. To address this limitation, this paper proposes a principal component analysis guided (PCA-guided) autoencoding framework for structured dimensionality reduction to capture intricate, non-linear features in thermographic signals while enforcing a structured latent space. A novel loss function, PCA distillation loss, is introduced to guide AIRT AEs to align the latent representation with structured PCA components while capturing the intricate, non-linear patterns in thermographic signals. To evaluate the utility of the learned, structured latent space, we propose a neural network-based evaluation metric that assesses its suitability for defect characterization. Experimental results show that the proposed PCA-guided AE outperforms state-of-the-art dimensionality reduction methods on PVC, CFRP, and PLA samples in terms of contrast, signal-to-noise ratio (SNR), and neural network-based metrics.
comment: Infrared thermography, Non-Destructive Testing, Principal Component Analysis, PCA-Guided Autoencoder, PCA Distillation Loss, Dimensionality Reduction
☆ Pareto Multi-Objective Alignment for Language Models KDD 2025
Large language models (LLMs) are increasingly deployed in real-world applications that require careful balancing of multiple, often conflicting, objectives, such as informativeness versus conciseness, or helpfulness versus creativity. However, current alignment methods, primarily based on RLHF, optimize LLMs toward a single reward function, resulting in rigid behavior that fails to capture the complexity and diversity of human preferences. This limitation hinders the adaptability of LLMs to practical scenarios, making multi-objective alignment (MOA) a critical yet underexplored area. To bridge this gap, we propose Pareto Multi-Objective Alignment (PAMA), a principled and computationally efficient algorithm designed explicitly for MOA in LLMs. In contrast to computationally prohibitive multi-objective optimization (MOO) methods, PAMA transforms multi-objective RLHF into a convex optimization with a closed-form solution, significantly enhancing scalability. Traditional MOO approaches suffer from prohibitive O(n^2*d) complexity, where d represents the number of model parameters, typically in the billions for LLMs, rendering direct optimization infeasible. PAMA reduces this complexity to O(n) where n is the number of objectives, enabling optimization to be completed within milliseconds. We provide theoretical guarantees that PAMA converges to a Pareto stationary point, where no objective can be improved without degrading at least one other. Extensive experiments across language models ranging from 125M to 7B parameters demonstrate PAMA's robust and effective MOA capabilities, aligning with its theoretical advantages. PAMA provides a highly efficient solution to the MOA problem that was previously considered intractable, offering a practical and theoretically grounded approach to aligning LLMs with diverse human values, paving the way for versatile and adaptable real-world AI deployments.
comment: Accepted at ECML/PKDD 2025
☆ UniSVG: A Unified Dataset for Vector Graphic Understanding and Generation with Multimodal Large Language Models
Unlike bitmap images, scalable vector graphics (SVG) maintain quality when scaled, frequently employed in computer vision and artistic design in the representation of SVG code. In this era of proliferating AI-powered systems, enabling AI to understand and generate SVG has become increasingly urgent. However, AI-driven SVG understanding and generation (U&G) remain significant challenges. SVG code, equivalent to a set of curves and lines controlled by floating-point parameters, demands high precision in SVG U&G. Besides, SVG generation operates under diverse conditional constraints, including textual prompts and visual references, which requires powerful multi-modal processing for condition-to-SVG transformation. Recently, the rapid growth of Multi-modal Large Language Models (MLLMs) have demonstrated capabilities to process multi-modal inputs and generate complex vector controlling parameters, suggesting the potential to address SVG U&G tasks within a unified model. To unlock MLLM's capabilities in the SVG area, we propose an SVG-centric dataset called UniSVG, comprising 525k data items, tailored for MLLM training and evaluation. To our best knowledge, it is the first comprehensive dataset designed for unified SVG generation (from textual prompts and images) and SVG understanding (color, category, usage, etc.). As expected, learning on the proposed dataset boosts open-source MLLMs' performance on various SVG U&G tasks, surpassing SOTA close-source MLLMs like GPT-4V. We release dataset, benchmark, weights, codes and experiment details on https://ryanlijinke.github.io/.
comment: Accepted at ACM MM 2025 Dataset Track
☆ Sparse Probabilistic Graph Circuits
Deep generative models (DGMs) for graphs achieve impressively high expressive power thanks to very efficient and scalable neural networks. However, these networks contain non-linearities that prevent analytical computation of many standard probabilistic inference queries, i.e., these DGMs are considered \emph{intractable}. While recently proposed Probabilistic Graph Circuits (PGCs) address this issue by enabling \emph{tractable} probabilistic inference, they operate on dense graph representations with $\mathcal{O}(n^2)$ complexity for graphs with $n$ nodes and \emph{$m$ edges}. To address this scalability issue, we introduce Sparse PGCs, a new class of tractable generative models that operate directly on sparse graph representation, reducing the complexity to $\mathcal{O}(n + m)$, which is particularly beneficial for $m \ll n^2$. In the context of de novo drug design, we empirically demonstrate that SPGCs retain exact inference capabilities, improve memory efficiency and inference speed, and match the performance of intractable DGMs in key metrics.
☆ Learning to Align, Aligning to Learn: A Unified Approach for Self-Optimized Alignment
Alignment methodologies have emerged as a critical pathway for enhancing language model alignment capabilities. While SFT (supervised fine-tuning) accelerates convergence through direct token-level loss intervention, its efficacy is constrained by offline policy trajectory. In contrast, RL(reinforcement learning) facilitates exploratory policy optimization, but suffers from low sample efficiency and stringent dependency on high-quality base models. To address these dual challenges, we propose GRAO (Group Relative Alignment Optimization), a unified framework that synergizes the respective strengths of SFT and RL through three key innovations: 1) A multi-sample generation strategy enabling comparative quality assessment via reward feedback; 2) A novel Group Direct Alignment Loss formulation leveraging intra-group relative advantage weighting; 3) Reference-aware parameter updates guided by pairwise preference dynamics. Our theoretical analysis establishes GRAO's convergence guarantees and sample efficiency advantages over conventional approaches. Comprehensive evaluations across complex human alignment tasks demonstrate GRAO's superior performance, achieving 57.70\%,17.65\% 7.95\% and 5.18\% relative improvements over SFT, DPO, PPO and GRPO baselines respectively. This work provides both a theoretically grounded alignment framework and empirical evidence for efficient capability evolution in language models.
comment: 12 pages, 5 figures, 7 tables
☆ Chimera: Harnessing Multi-Agent LLMs for Automatic Insider Threat Simulation
Insider threats, which can lead to severe losses, remain a major security concern. While machine learning-based insider threat detection (ITD) methods have shown promising results, their progress is hindered by the scarcity of high-quality data. Enterprise data is sensitive and rarely accessible, while publicly available datasets, when limited in scale due to cost, lack sufficient real-world coverage; and when purely synthetic, they fail to capture rich semantics and realistic user behavior. To address this, we propose Chimera, the first large language model (LLM)-based multi-agent framework that automatically simulates both benign and malicious insider activities and collects diverse logs across diverse enterprise environments. Chimera models each employee with agents that have role-specific behavior and integrates modules for group meetings, pairwise interactions, and autonomous scheduling, capturing realistic organizational dynamics. It incorporates 15 types of insider attacks (e.g., IP theft, system sabotage) and has been deployed to simulate activities in three sensitive domains: technology company, finance corporation, and medical institution, producing a new dataset, ChimeraLog. We assess ChimeraLog via human studies and quantitative analysis, confirming its diversity, realism, and presence of explainable threat patterns. Evaluations of existing ITD methods show an average F1-score of 0.83, which is significantly lower than 0.99 on the CERT dataset, demonstrating ChimeraLog's higher difficulty and utility for advancing ITD research.
comment: 23 pages
☆ Symmetry-Aware Transformer Training for Automated Planning
While transformers excel in many settings, their application in the field of automated planning is limited. Prior work like PlanGPT, a state-of-the-art decoder-only transformer, struggles with extrapolation from easy to hard planning problems. This in turn stems from problem symmetries: planning tasks can be represented with arbitrary variable names that carry no meaning beyond being identifiers. This causes a combinatorial explosion of equivalent representations that pure transformers cannot efficiently learn from. We propose a novel contrastive learning objective to make transformers symmetry-aware and thereby compensate for their lack of inductive bias. Combining this with architectural improvements, we show that transformers can be efficiently trained for either plan-generation or heuristic-prediction. Our results across multiple planning domains demonstrate that our symmetry-aware training effectively and efficiently addresses the limitations of PlanGPT.
☆ A Rule-Based Approach to Specifying Preferences over Conflicting Facts and Querying Inconsistent Knowledge Bases
Repair-based semantics have been extensively studied as a means of obtaining meaningful answers to queries posed over inconsistent knowledge bases (KBs). While several works have considered how to exploit a priority relation between facts to select optimal repairs, the question of how to specify such preferences remains largely unaddressed. This motivates us to introduce a declarative rule-based framework for specifying and computing a priority relation between conflicting facts. As the expressed preferences may contain undesirable cycles, we consider the problem of determining when a set of preference rules always yields an acyclic relation, and we also explore a pragmatic approach that extracts an acyclic relation by applying various cycle removal techniques. Towards an end-to-end system for querying inconsistent KBs, we present a preliminary implementation and experimental evaluation of the framework, which employs answer set programming to evaluate the preference rules, apply the desired cycle resolution techniques to obtain a priority relation, and answer queries under prioritized-repair semantics.
comment: This is an extended version of a paper appearing at the 22nd International Conference on Principles of Knowledge Representation and Reasoning (KR 2025). 24 pages
☆ CognitiveArm: Enabling Real-Time EEG-Controlled Prosthetic Arm Using Embodied Machine Learning
Efficient control of prosthetic limbs via non-invasive brain-computer interfaces (BCIs) requires advanced EEG processing, including pre-filtering, feature extraction, and action prediction, performed in real time on edge AI hardware. Achieving this on resource-constrained devices presents challenges in balancing model complexity, computational efficiency, and latency. We present CognitiveArm, an EEG-driven, brain-controlled prosthetic system implemented on embedded AI hardware, achieving real-time operation without compromising accuracy. The system integrates BrainFlow, an open-source library for EEG data acquisition and streaming, with optimized deep learning (DL) models for precise brain signal classification. Using evolutionary search, we identify Pareto-optimal DL configurations through hyperparameter tuning, optimizer analysis, and window selection, analyzed individually and in ensemble configurations. We apply model compression techniques such as pruning and quantization to optimize models for embedded deployment, balancing efficiency and accuracy. We collected an EEG dataset and designed an annotation pipeline enabling precise labeling of brain signals corresponding to specific intended actions, forming the basis for training our optimized DL models. CognitiveArm also supports voice commands for seamless mode switching, enabling control of the prosthetic arm's 3 degrees of freedom (DoF). Running entirely on embedded hardware, it ensures low latency and real-time responsiveness. A full-scale prototype, interfaced with the OpenBCI UltraCortex Mark IV EEG headset, achieved up to 90% accuracy in classifying three core actions (left, right, idle). Voice integration enables multiplexed, variable movement for everyday tasks (e.g., handshake, cup picking), enhancing real-world performance and demonstrating CognitiveArm's potential for advanced prosthetic control.
comment: 7 pages, 12 figures, Accepted to 62nd DAC 2025
☆ DoorDet: Semi-Automated Multi-Class Door Detection Dataset via Object Detection and Large Language Models
Accurate detection and classification of diverse door types in floor plans drawings is critical for multiple applications, such as building compliance checking, and indoor scene understanding. Despite their importance, publicly available datasets specifically designed for fine-grained multi-class door detection remain scarce. In this work, we present a semi-automated pipeline that leverages a state-of-the-art object detector and a large language model (LLM) to construct a multi-class door detection dataset with minimal manual effort. Doors are first detected as a unified category using a deep object detection model. Next, an LLM classifies each detected instance based on its visual and contextual features. Finally, a human-in-the-loop stage ensures high-quality labels and bounding boxes. Our method significantly reduces annotation cost while producing a dataset suitable for benchmarking neural models in floor plan analysis. This work demonstrates the potential of combining deep learning and multimodal reasoning for efficient dataset construction in complex real-world domains.
☆ Training-Free ANN-to-SNN Conversion for High-Performance Spiking Transformer
Leveraging the event-driven paradigm, Spiking Neural Networks (SNNs) offer a promising approach for constructing energy-efficient Transformer architectures. Compared to directly trained Spiking Transformers, ANN-to-SNN conversion methods bypass the high training costs. However, existing methods still suffer from notable limitations, failing to effectively handle nonlinear operations in Transformer architectures and requiring additional fine-tuning processes for pre-trained ANNs. To address these issues, we propose a high-performance and training-free ANN-to-SNN conversion framework tailored for Transformer architectures. Specifically, we introduce a Multi-basis Exponential Decay (MBE) neuron, which employs an exponential decay strategy and multi-basis encoding method to efficiently approximate various nonlinear operations. It removes the requirement for weight modifications in pre-trained ANNs. Extensive experiments across diverse tasks (CV, NLU, NLG) and mainstream Transformer architectures (ViT, RoBERTa, GPT-2) demonstrate that our method achieves near-lossless conversion accuracy with significantly lower latency. This provides a promising pathway for the efficient and scalable deployment of Spiking Transformers in real-world applications.
comment: Under review
☆ Energy Consumption in Parallel Neural Network Training
The increasing demand for computational resources of training neural networks leads to a concerning growth in energy consumption. While parallelization has enabled upscaling model and dataset sizes and accelerated training, its impact on energy consumption is often overlooked. To close this research gap, we conducted scaling experiments for data-parallel training of two models, ResNet50 and FourCastNet, and evaluated the impact of parallelization parameters, i.e., GPU count, global batch size, and local batch size, on predictive performance, training time, and energy consumption. We show that energy consumption scales approximately linearly with the consumed resources, i.e., GPU hours; however, the respective scaling factor differs substantially between distinct model trainings and hardware, and is systematically influenced by the number of samples and gradient updates per GPU hour. Our results shed light on the complex interplay of scaling up neural network training and can inform future developments towards more sustainable AI research.
☆ LoSemB: Logic-Guided Semantic Bridging for Inductive Tool Retrieval
Tool learning has emerged as a promising paradigm for large language models (LLMs) to solve many real-world tasks. Nonetheless, with the tool repository rapidly expanding, it is impractical to contain all tools within the limited input length of LLMs. To alleviate these issues, researchers have explored incorporating a tool retrieval module to select the most relevant tools or represent tools as unique tokens within LLM parameters. However, most state-of-the-art methods are under transductive settings, assuming all tools have been observed during training. Such a setting deviates from reality as the real-world tool repository is evolving and incorporates new tools frequently. When dealing with these unseen tools, which refer to tools not encountered during the training phase, these methods are limited by two key issues, including the large distribution shift and the vulnerability of similarity-based retrieval. To this end, inspired by human cognitive processes of mastering unseen tools through discovering and applying the logical information from prior experience, we introduce a novel Logic-Guided Semantic Bridging framework for inductive tool retrieval, namely, LoSemB, which aims to mine and transfer latent logical information for inductive tool retrieval without costly retraining. Specifically, LoSemB contains a logic-based embedding alignment module to mitigate distribution shifts and implements a relational augmented retrieval mechanism to reduce the vulnerability of similarity-based retrieval. Extensive experiments demonstrate that LoSemB achieves advanced performance in inductive settings while maintaining desirable effectiveness in the transductive setting.
☆ TAR-TVG: Enhancing VLMs with Timestamp Anchor-Constrained Reasoning for Temporal Video Grounding
Temporal Video Grounding (TVG) aims to precisely localize video segments corresponding to natural language queries, which is a critical capability for long-form video understanding. Although existing reinforcement learning approaches encourage models to generate reasoning chains before predictions, they fail to explicitly constrain the reasoning process to ensure the quality of the final temporal predictions. To address this limitation, we propose Timestamp Anchor-constrained Reasoning for Temporal Video Grounding (TAR-TVG), a novel framework that introduces timestamp anchors within the reasoning process to enforce explicit supervision to the thought content. These anchors serve as intermediate verification points. More importantly, we require each reasoning step to produce increasingly accurate temporal estimations, thereby ensuring that the reasoning process contributes meaningfully to the final prediction. To address the challenge of low-probability anchor generation in models (e.g., Qwen2.5-VL-3B), we develop an efficient self-distillation training strategy: (1) initial GRPO training to collect 30K high-quality reasoning traces containing multiple timestamp anchors, (2) supervised fine-tuning (SFT) on distilled data, and (3) final GRPO optimization on the SFT-enhanced model. This three-stage training strategy enables robust anchor generation while maintaining reasoning quality. Experiments show that our model achieves state-of-the-art performance while producing interpretable, verifiable reasoning chains with progressively refined temporal estimations.
☆ MORE-CLEAR: Multimodal Offline Reinforcement learning for Clinical notes Leveraged Enhanced State Representation
Sepsis, a life-threatening inflammatory response to infection, causes organ dysfunction, making early detection and optimal management critical. Previous reinforcement learning (RL) approaches to sepsis management rely primarily on structured data, such as lab results or vital signs, and on a dearth of a comprehensive understanding of the patient's condition. In this work, we propose a Multimodal Offline REinforcement learning for Clinical notes Leveraged Enhanced stAte Representation (MORE-CLEAR) framework for sepsis control in intensive care units. MORE-CLEAR employs pre-trained large-scale language models (LLMs) to facilitate the extraction of rich semantic representations from clinical notes, preserving clinical context and improving patient state representation. Gated fusion and cross-modal attention allow dynamic weight adjustment in the context of time and the effective integration of multimodal data. Extensive cross-validation using two public (MIMIC-III and MIMIC-IV) and one private dataset demonstrates that MORE-CLEAR significantly improves estimated survival rate and policy performance compared to single-modal RL approaches. To our knowledge, this is the first to leverage LLM capabilities within a multimodal offline RL for better state representation in medical applications. This approach can potentially expedite the treatment and management of sepsis by enabling reinforcement learning models to propose enhanced actions based on a more comprehensive understanding of patient conditions.
comment: 18 pages, 5 figures
☆ Ethics2vec: aligning automatic agents and human preferences
Though intelligent agents are supposed to improve human experience (or make it more efficient), it is hard from a human perspective to grasp the ethical values which are explicitly or implicitly embedded in an agent behaviour. This is the well-known problem of alignment, which refers to the challenge of designing AI systems that align with human values, goals and preferences. This problem is particularly challenging since most human ethical considerations refer to \emph{incommensurable} (i.e. non-measurable and/or incomparable) values and criteria. Consider, for instance, a medical agent prescribing a treatment to a cancerous patient. How could it take into account (and/or weigh) incommensurable aspects like the value of a human life and the cost of the treatment? Now, the alignment between human and artificial values is possible only if we define a common space where a metric can be defined and used. This paper proposes to extend to ethics the conventional Anything2vec approach, which has been successful in plenty of similar and hard-to-quantify domains (ranging from natural language processing to recommendation systems and graph analysis). This paper proposes a way to map an automatic agent decision-making (or control law) strategy to a multivariate vector representation, which can be used to compare and assess the alignment with human values. The Ethics2Vec method is first introduced in the case of an automatic agent performing binary decision-making. Then, a vectorisation of an automatic control law (like in the case of a self-driving car) is discussed to show how the approach can be extended to automatic control settings.
☆ EMPATHIA: Multi-Faceted Human-AI Collaboration for Refugee Integration NeurIPS 2025
Current AI approaches to refugee integration optimize narrow objectives such as employment and fail to capture the cultural, emotional, and ethical dimensions critical for long-term success. We introduce EMPATHIA (Enriched Multimodal Pathways for Agentic Thinking in Humanitarian Immigrant Assistance), a multi-agent framework addressing the central Creative AI question: how do we preserve human dignity when machines participate in life-altering decisions? Grounded in Kegan's Constructive Developmental Theory, EMPATHIA decomposes integration into three modules: SEED (Socio-cultural Entry and Embedding Decision) for initial placement, RISE (Rapid Integration and Self-sufficiency Engine) for early independence, and THRIVE (Transcultural Harmony and Resilience through Integrated Values and Engagement) for sustained outcomes. SEED employs a selector-validator architecture with three specialized agents - emotional, cultural, and ethical - that deliberate transparently to produce interpretable recommendations. Experiments on the UN Kakuma dataset (15,026 individuals, 7,960 eligible adults 15+ per ILO/UNHCR standards) and implementation on 6,359 working-age refugees (15+) with 150+ socioeconomic variables achieved 87.4% validation convergence and explainable assessments across five host countries. EMPATHIA's weighted integration of cultural, emotional, and ethical factors balances competing value systems while supporting practitioner-AI collaboration. By augmenting rather than replacing human expertise, EMPATHIA provides a generalizable framework for AI-driven allocation tasks where multiple values must be reconciled.
comment: 19 pages, 3 figures (plus 6 figures in supplementary), 2 tables, 1 algorithm. Submitted to NeurIPS 2025 Creative AI Track: Humanity
☆ AIS-LLM: A Unified Framework for Maritime Trajectory Prediction, Anomaly Detection, and Collision Risk Assessment with Explainable Forecasting
With the increase in maritime traffic and the mandatory implementation of the Automatic Identification System (AIS), the importance and diversity of maritime traffic analysis tasks based on AIS data, such as vessel trajectory prediction, anomaly detection, and collision risk assessment, is rapidly growing. However, existing approaches tend to address these tasks individually, making it difficult to holistically consider complex maritime situations. To address this limitation, we propose a novel framework, AIS-LLM, which integrates time-series AIS data with a large language model (LLM). AIS-LLM consists of a Time-Series Encoder for processing AIS sequences, an LLM-based Prompt Encoder, a Cross-Modality Alignment Module for semantic alignment between time-series data and textual prompts, and an LLM-based Multi-Task Decoder. This architecture enables the simultaneous execution of three key tasks: trajectory prediction, anomaly detection, and risk assessment of vessel collisions within a single end-to-end system. Experimental results demonstrate that AIS-LLM outperforms existing methods across individual tasks, validating its effectiveness. Furthermore, by integratively analyzing task outputs to generate situation summaries and briefings, AIS-LLM presents the potential for more intelligent and efficient maritime traffic management.
☆ 1-2-3 Check: Enhancing Contextual Privacy in LLM via Multi-Agent Reasoning
Addressing contextual privacy concerns remains challenging in interactive settings where large language models (LLMs) process information from multiple sources (e.g., summarizing meetings with private and public information). We introduce a multi-agent framework that decomposes privacy reasoning into specialized subtasks (extraction, classification), reducing the information load on any single agent while enabling iterative validation and more reliable adherence to contextual privacy norms. To understand how privacy errors emerge and propagate, we conduct a systematic ablation over information-flow topologies, revealing when and why upstream detection mistakes cascade into downstream leakage. Experiments on the ConfAIde and PrivacyLens benchmark with several open-source and closed-sourced LLMs demonstrate that our best multi-agent configuration substantially reduces private information leakage (\textbf{18\%} on ConfAIde and \textbf{19\%} on PrivacyLens with GPT-4o) while preserving the fidelity of public content, outperforming single-agent baselines. These results highlight the promise of principled information-flow design in multi-agent systems for contextual privacy with LLMs.
☆ GLiClass: Generalist Lightweight Model for Sequence Classification Tasks
Classification is one of the most widespread tasks in AI applications, serving often as the first step in filtering, sorting, and categorizing data. Since modern AI systems must handle large volumes of input data and early pipeline stages can propagate errors downstream, achieving high efficiency and accuracy is critical. Moreover, classification requirements can change dynamically based on user needs, necessitating models with strong zero-shot capabilities. While generative LLMs have become mainstream for zero-shot classification due to their versatility, they suffer from inconsistent instruction following and computational inefficiency. Cross-encoders, commonly used as rerankers in RAG pipelines, face a different bottleneck: they must process text-label pairs sequentially, significantly reducing efficiency with large label sets. Embedding-based approaches offer good efficiency but struggle with complex scenarios involving logical and semantic constraints. We propose GLiClass, a novel method that adapts the GLiNER architecture for sequence classification tasks. Our approach achieves strong accuracy and efficiency comparable to embedding-based methods, while maintaining the flexibility needed for zero-shot and few-shot learning scenarios. Additionally, we adapted proximal policy optimization (PPO) for multi-label text classification, enabling training classifiers in data-sparse conditions or from human feedback.
comment: 14 pages, 7 tables, 2 figures
☆ Discovering Spatial Correlations between Earth Observations in Global Atmospheric State Estimation by using Adaptive Graph Structure Learning
This study aims to discover spatial correlations between Earth observations and atmospheric states to improve the forecasting accuracy of global atmospheric state estimation, which are usually conducted using conventional numerical weather prediction (NWP) systems and is the beginning of weather forecasting. NWP systems predict future atmospheric states at fixed locations, which are called NWP grid points, by analyzing previous atmospheric states and newly acquired Earth observations without fixed locations. Thus, surrounding meteorological context and the changing locations of the observations make spatial correlations between atmospheric states and observations over time. To handle complicated spatial correlations, which change dynamically, we employ spatiotemporal graph neural networks (STGNNs) with structure learning. However, structure learning has an inherent limitation that this can cause structural information loss and over-smoothing problem by generating excessive edges. To solve this problem, we regulate edge sampling by adaptively determining node degrees and considering the spatial distances between NWP grid points and observations. We validated the effectiveness of the proposed method by using real-world atmospheric state and observation data from East Asia. Even in areas with high atmospheric variability, the proposed method outperformed existing STGNN models with and without structure learning.
comment: 10 pages
☆ Disentangling Multiplex Spatial-Temporal Transition Graph Representation Learning for Socially Enhanced POI Recommendation
Next Point-of-Interest (POI) recommendation is a research hotspot in business intelligence, where users' spatial-temporal transitions and social relationships play key roles. However, most existing works model spatial and temporal transitions separately, leading to misaligned representations of the same spatial-temporal key nodes. This misalignment introduces redundant information during fusion, increasing model uncertainty and reducing interpretability. To address this issue, we propose DiMuST, a socially enhanced POI recommendation model based on disentangled representation learning over multiplex spatial-temporal transition graphs. The model employs a novel Disentangled variational multiplex graph Auto-Encoder (DAE), which first disentangles shared and private distributions using a multiplex spatial-temporal graph strategy. It then fuses the shared features via a Product of Experts (PoE) mechanism and denoises the private features through contrastive constraints. The model effectively captures the spatial-temporal transition representations of POIs while preserving the intrinsic correlation of their spatial-temporal relationships. Experiments on two challenging datasets demonstrate that our DiMuST significantly outperforms existing methods across multiple metrics.
☆ Grasp-HGN: Grasping the Unexpected
For transradial amputees, robotic prosthetic hands promise to regain the capability to perform daily living activities. To advance next-generation prosthetic hand control design, it is crucial to address current shortcomings in robustness to out of lab artifacts, and generalizability to new environments. Due to the fixed number of object to interact with in existing datasets, contrasted with the virtually infinite variety of objects encountered in the real world, current grasp models perform poorly on unseen objects, negatively affecting users' independence and quality of life. To address this: (i) we define semantic projection, the ability of a model to generalize to unseen object types and show that conventional models like YOLO, despite 80% training accuracy, drop to 15% on unseen objects. (ii) we propose Grasp-LLaVA, a Grasp Vision Language Model enabling human-like reasoning to infer the suitable grasp type estimate based on the object's physical characteristics resulting in a significant 50.2% accuracy over unseen object types compared to 36.7% accuracy of an SOTA grasp estimation model. Lastly, to bridge the performance-latency gap, we propose Hybrid Grasp Network (HGN), an edge-cloud deployment infrastructure enabling fast grasp estimation on edge and accurate cloud inference as a fail-safe, effectively expanding the latency vs. accuracy Pareto. HGN with confidence calibration (DC) enables dynamic switching between edge and cloud models, improving semantic projection accuracy by 5.6% (to 42.3%) with 3.5x speedup over the unseen object types. Over a real-world sample mix, it reaches 86% average accuracy (12.2% gain over edge-only), and 2.2x faster inference than Grasp-LLaVA alone.
comment: Paper accepted at ACM Transactions on Embedded Computing Systems
☆ Breaking Down and Building Up: Mixture of Skill-Based Vision-and-Language Navigation Agents
Vision-and-Language Navigation (VLN) poses significant challenges in enabling agents to interpret natural language instructions and navigate complex 3D environments. While recent progress has been driven by large-scale pre-training and data augmentation, current methods still struggle to generalize to unseen scenarios, particularly when complex spatial and temporal reasoning is required. In this work, we propose SkillNav, a modular framework that introduces structured, skill-based reasoning into Transformer-based VLN agents. Our method decomposes navigation into a set of interpretable atomic skills (e.g., Vertical Movement, Area and Region Identification, Stop and Pause), each handled by a specialized agent. We then introduce a novel zero-shot Vision-Language Model (VLM)-based router, which dynamically selects the most suitable agent at each time step by aligning sub-goals with visual observations and historical actions. SkillNav achieves a new state-of-the-art performance on the R2R benchmark and demonstrates strong generalization to the GSA-R2R benchmark that includes novel instruction styles and unseen environments.
comment: 18 pages, 5 Figures,
☆ Attribution Explanations for Deep Neural Networks: A Theoretical Perspective
Attribution explanation is a typical approach for explaining deep neural networks (DNNs), inferring an importance or contribution score for each input variable to the final output. In recent years, numerous attribution methods have been developed to explain DNNs. However, a persistent concern remains unresolved, i.e., whether and which attribution methods faithfully reflect the actual contribution of input variables to the decision-making process. The faithfulness issue undermines the reliability and practical utility of attribution explanations. We argue that these concerns stem from three core challenges. First, difficulties arise in comparing attribution methods due to their unstructured heterogeneity, differences in heuristics, formulations, and implementations that lack a unified organization. Second, most methods lack solid theoretical underpinnings, with their rationales remaining absent, ambiguous, or unverified. Third, empirically evaluating faithfulness is challenging without ground truth. Recent theoretical advances provide a promising way to tackle these challenges, attracting increasing attention. We summarize these developments, with emphasis on three key directions: (i) Theoretical unification, which uncovers commonalities and differences among methods, enabling systematic comparisons; (ii) Theoretical rationale, clarifying the foundations of existing methods; (iii) Theoretical evaluation, rigorously proving whether methods satisfy faithfulness principles. Beyond a comprehensive review, we provide insights into how these studies help deepen theoretical understanding, inform method selection, and inspire new attribution methods. We conclude with a discussion of promising open problems for further work.
☆ Efficient Approximate Posterior Sampling with Annealed Langevin Monte Carlo
We study the problem of posterior sampling in the context of score based generative models. We have a trained score network for a prior $p(x)$, a measurement model $p(y|x)$, and are tasked with sampling from the posterior $p(x|y)$. Prior work has shown this to be intractable in KL (in the worst case) under well-accepted computational hardness assumptions. Despite this, popular algorithms for tasks such as image super-resolution, stylization, and reconstruction enjoy empirical success. Rather than establishing distributional assumptions or restricted settings under which exact posterior sampling is tractable, we view this as a more general "tilting" problem of biasing a distribution towards a measurement. Under minimal assumptions, we show that one can tractably sample from a distribution that is simultaneously close to the posterior of a noised prior in KL divergence and the true posterior in Fisher divergence. Intuitively, this combination ensures that the resulting sample is consistent with both the measurement and the prior. To the best of our knowledge these are the first formal results for (approximate) posterior sampling in polynomial time.
☆ InterChart: Benchmarking Visual Reasoning Across Decomposed and Distributed Chart Information
We introduce InterChart, a diagnostic benchmark that evaluates how well vision-language models (VLMs) reason across multiple related charts, a task central to real-world applications such as scientific reporting, financial analysis, and public policy dashboards. Unlike prior benchmarks focusing on isolated, visually uniform charts, InterChart challenges models with diverse question types ranging from entity inference and trend correlation to numerical estimation and abstract multi-step reasoning grounded in 2-3 thematically or structurally related charts. We organize the benchmark into three tiers of increasing difficulty: (1) factual reasoning over individual charts, (2) integrative analysis across synthetically aligned chart sets, and (3) semantic inference over visually complex, real-world chart pairs. Our evaluation of state-of-the-art open and closed-source VLMs reveals consistent and steep accuracy declines as chart complexity increases. We find that models perform better when we decompose multi-entity charts into simpler visual units, underscoring their struggles with cross-chart integration. By exposing these systematic limitations, InterChart provides a rigorous framework for advancing multimodal reasoning in complex, multi-visual environments.
comment: 18 pages, 6 figures, 12 tables. Benchmark dataset and evaluation code will be publicly made available
☆ Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization
We present Klear-Reasoner, a model with long reasoning capabilities that demonstrates careful deliberation during problem solving, achieving outstanding performance across multiple benchmarks. Although there are already many excellent works related to inference models in the current community, there are still many problems with reproducing high-performance inference models due to incomplete disclosure of training details. This report provides an in-depth analysis of the reasoning model, covering the entire post-training workflow from data preparation and long Chain-of-Thought supervised fine-tuning (long CoT SFT) to reinforcement learning (RL), along with detailed ablation studies for each experimental component. For SFT data, our experiments show that a small number of high-quality data sources are more effective than a large number of diverse data sources, and that difficult samples can achieve better results without accuracy filtering. In addition, we investigate two key issues with current clipping mechanisms in RL: Clipping suppresses critical exploration signals and ignores suboptimal trajectories. To address these challenges, we propose Gradient-Preserving clipping Policy Optimization (GPPO) that gently backpropagates gradients from clipped tokens. GPPO not only enhances the model's exploration capacity but also improves its efficiency in learning from negative samples. Klear-Reasoner exhibits exceptional reasoning abilities in mathematics and programming, scoring 90.5\% on AIME 2024, 83.2\% on AIME 2025, 66.0\% on LiveCodeBench V5 and 58.1\% on LiveCodeBench V6.
Multimodal AI Systems for Enhanced Laying Hen Welfare Assessment and Productivity Optimization
The future of poultry production depends on a paradigm shift replacing subjective, labor-intensive welfare checks with data-driven, intelligent monitoring ecosystems. Traditional welfare assessments-limited by human observation and single-sensor data-cannot fully capture the complex, multidimensional nature of laying hen welfare in modern farms. Multimodal Artificial Intelligence (AI) offers a breakthrough, integrating visual, acoustic, environmental, and physiological data streams to reveal deeper insights into avian welfare dynamics. This investigation highlights multimodal As transformative potential, showing that intermediate (feature-level) fusion strategies achieve the best balance between robustness and performance under real-world poultry conditions, and offer greater scalability than early or late fusion approaches. Key adoption barriers include sensor fragility in harsh farm environments, high deployment costs, inconsistent behavioral definitions, and limited cross-farm generalizability. To address these, we introduce two novel evaluation tools - the Domain Transfer Score (DTS) to measure model adaptability across diverse farm settings, and the Data Reliability Index (DRI) to assess sensor data quality under operational constraints. We also propose a modular, context-aware deployment framework designed for laying hen environments, enabling scalable and practical integration of multimodal sensing. This work lays the foundation for a transition from reactive, unimodal monitoring to proactive, precision-driven welfare systems that unite productivity with ethical, science based animal care.
comment: 66 pages, 7 figures, 11 tables
☆ SOFA: Deep Learning Framework for Simulating and Optimizing Atrial Fibrillation Ablation AI 2025
Atrial fibrillation (AF) is a prevalent cardiac arrhythmia often treated with catheter ablation procedures, but procedural outcomes are highly variable. Evaluating and improving ablation efficacy is challenging due to the complex interaction between patient-specific tissue and procedural factors. This paper asks two questions: Can AF recurrence be predicted by simulating the effects of procedural parameters? How should we ablate to reduce AF recurrence? We propose SOFA (Simulating and Optimizing Atrial Fibrillation Ablation), a novel deep-learning framework that addresses these questions. SOFA first simulates the outcome of an ablation strategy by generating a post-ablation image depicting scar formation, conditioned on a patient's pre-ablation LGE-MRI and the specific procedural parameters used (e.g., ablation locations, duration, temperature, power, and force). During this simulation, it predicts AF recurrence risk. Critically, SOFA then introduces an optimization scheme that refines these procedural parameters to minimize the predicted risk. Our method leverages a multi-modal, multi-view generator that processes 2.5D representations of the atrium. Quantitative evaluations show that SOFA accurately synthesizes post-ablation images and that our optimization scheme leads to a 22.18\% reduction in the model-predicted recurrence risk. To the best of our knowledge, SOFA is the first framework to integrate the simulation of procedural effects, recurrence prediction, and parameter optimization, offering a novel tool for personalizing AF ablation.
comment: Accepted at MICCAI 2025. This is the author's original preprint
☆ On the Limits of Selective AI Prediction: A Case Study in Clinical Decision Making
AI has the potential to augment human decision making. However, even high-performing models can produce inaccurate predictions when deployed. These inaccuracies, combined with automation bias, where humans overrely on AI predictions, can result in worse decisions. Selective prediction, in which potentially unreliable model predictions are hidden from users, has been proposed as a solution. This approach assumes that when AI abstains and informs the user so, humans make decisions as they would without AI involvement. To test this assumption, we study the effects of selective prediction on human decisions in a clinical context. We conducted a user study of 259 clinicians tasked with diagnosing and treating hospitalized patients. We compared their baseline performance without any AI involvement to their AI-assisted accuracy with and without selective prediction. Our findings indicate that selective prediction mitigates the negative effects of inaccurate AI in terms of decision accuracy. Compared to no AI assistance, clinician accuracy declined when shown inaccurate AI predictions (66% [95% CI: 56%-75%] vs. 56% [95% CI: 46%-66%]), but recovered under selective prediction (64% [95% CI: 54%-73%]). However, while selective prediction nearly maintains overall accuracy, our results suggest that it alters patterns of mistakes: when informed the AI abstains, clinicians underdiagnose (18% increase in missed diagnoses) and undertreat (35% increase in missed treatments) compared to no AI input at all. Our findings underscore the importance of empirically validating assumptions about how humans engage with AI within human-AI systems.
comment: 14 pages, 10 figures, 5 tables
☆ ThinkTuning: Instilling Cognitive Reflections without Distillation
Recent advances in test-time scaling have led to the emergence of thinking LLMs that exhibit self-reflective behaviors and multi-step reasoning. While RL drives this self-improvement paradigm, a recent study (Gandhi et al., 2025) shows that RL alone does not truly instill these new reasoning abilities - it merely draws out behaviors already present in the base models. This raises a question: How can we train the models that don't exhibit such thinking behavior to develop it in the first place? To this end, we propose ThinkTuning, a GRPO-based interactive training approach where we augment the rollouts of a student model with the guidance from a teacher model. A simple idea from classroom practice inspires our method: a teacher poses a problem, lets the student try an answer, then gives corrective feedback -- enough to point the mind in the right direction and then show the solution. Each piece of feedback reshapes the student's thoughts, leading them to arrive at the correct solution. Similarly, we find that this type of implicit supervision through feedback from a teacher model of the same size improves the reasoning capabilities of the student model. In particular, on average, our method shows a 3.85% improvement over zero-shot baselines across benchmarks, and on MATH-500, AIME and GPQA-Diamond it shows 2.08%, 2.23% and 3.99% improvements over the vanilla-GRPO baseline. Source code is available at https://github.com/3rdAT/ThinkTuning.
comment: 15 pages
☆ HGMF: A Hierarchical Gaussian Mixture Framework for Scalable Tool Invocation within the Model Context Protocol
Invoking external tools enables Large Language Models (LLMs) to perform complex, real-world tasks, yet selecting the correct tool from large, hierarchically-structured libraries remains a significant challenge. The limited context windows of LLMs and noise from irrelevant options often lead to low selection accuracy and high computational costs. To address this, we propose the Hierarchical Gaussian Mixture Framework (HGMF), a probabilistic pruning method for scalable tool invocation. HGMF first maps the user query and all tool descriptions into a unified semantic space. The framework then operates in two stages: it clusters servers using a Gaussian Mixture Model (GMM) and filters them based on the query's likelihood. Subsequently, it applies the same GMM-based clustering and filtering to the tools associated with the selected servers. This hierarchical process produces a compact, high-relevance candidate set, simplifying the final selection task for the LLM. Experiments on a public dataset show that HGMF significantly improves tool selection accuracy while reducing inference latency, confirming the framework's scalability and effectiveness for large-scale tool libraries.
☆ ShoulderShot: Generating Over-the-Shoulder Dialogue Videos
Over-the-shoulder dialogue videos are essential in films, short dramas, and advertisements, providing visual variety and enhancing viewers' emotional connection. Despite their importance, such dialogue scenes remain largely underexplored in video generation research. The main challenges include maintaining character consistency across different shots, creating a sense of spatial continuity, and generating long, multi-turn dialogues within limited computational budgets. Here, we present ShoulderShot, a framework that combines dual-shot generation with looping video, enabling extended dialogues while preserving character consistency. Our results demonstrate capabilities that surpass existing methods in terms of shot-reverse-shot layout, spatial continuity, and flexibility in dialogue length, thereby opening up new possibilities for practical dialogue video generation. Videos and comparisons are available at https://shouldershot.github.io.
☆ IBPS: Indian Bail Prediction System
Bail decisions are among the most frequently adjudicated matters in Indian courts, yet they remain plagued by subjectivity, delays, and inconsistencies. With over 75% of India's prison population comprising undertrial prisoners, many from socioeconomically disadvantaged backgrounds, the lack of timely and fair bail adjudication exacerbates human rights concerns and contributes to systemic judicial backlog. In this paper, we present the Indian Bail Prediction System (IBPS), an AI-powered framework designed to assist in bail decision-making by predicting outcomes and generating legally sound rationales based solely on factual case attributes and statutory provisions. We curate and release a large-scale dataset of 150,430 High Court bail judgments, enriched with structured annotations such as age, health, criminal history, crime category, custody duration, statutes, and judicial reasoning. We fine-tune a large language model using parameter-efficient techniques and evaluate its performance across multiple configurations, with and without statutory context, and with RAG. Our results demonstrate that models fine-tuned with statutory knowledge significantly outperform baselines, achieving strong accuracy and explanation quality, and generalize well to a test set independently annotated by legal experts. IBPS offers a transparent, scalable, and reproducible solution to support data-driven legal assistance, reduce bail delays, and promote procedural fairness in the Indian judicial system.
♻ ☆ Modeling Deontic Modal Logic in the s(CASP) Goal-directed Predicate Answer Set Programming System
We consider the problem of implementing deontic modal logic. We show how (deontic) modal operators can be expressed elegantly using default negation (negation-as-failure) and strong negation present in answer set programming (ASP). We propose using global constraints of ASP to represent obligations and impermissibilities of deontic modal logic. We show that our proposed representation results in the various paradoxes of deontic modal logic being elegantly resolved.
♻ ☆ Runtime Monitoring and Enforcement of Conditional Fairness in Generative AIs
The deployment of generative AI (GenAI) models raises significant fairness concerns, addressed in this paper through novel characterization and enforcement techniques specific to GenAI. Unlike standard AI performing specific tasks, GenAI's broad functionality requires ``conditional fairness'' tailored to the context being generated, such as demographic fairness in generating images of poor people versus successful business leaders. We define two fairness levels: the first evaluates fairness in generated outputs, independent of prompts and models; the second assesses inherent fairness with neutral prompts. Given the complexity of GenAI and challenges in fairness specifications, we focus on bounding the worst case, considering a GenAI system unfair if the distance between appearances of a specific group exceeds preset thresholds. We also explore combinatorial testing for assessing relative completeness in intersectional fairness. By bounding the worst case, we develop a prompt injection scheme within an agent-based framework to enforce conditional fairness with minimal intervention, validated on state-of-the-art GenAI systems.
♻ ☆ Ehrenfeucht-Haussler Rank and Chain of Thought
The notion of \emph{rank} of a Boolean function has been a cornerstone in PAC learning theory, enabling quasipolynomial-time learning algorithms for polynomial-size decision trees. We present a novel characterization of rank, grounded in the well-known Transformer architecture. We show that the rank of a function $f$ corresponds to the minimum number of \emph{Chain of Thought} (CoT) steps required by a single-layer Transformer with hard attention to compute $f$. Based on this characterization we establish tight bounds on the number of CoT steps required for specific problems, showing that \(\ell\)-fold function composition necessitates exactly \(\ell\) CoT steps. Furthermore, we analyze the problem of identifying the position of the \(k\)-th occurrence of 1 in a Boolean sequence, proving that it requires \(k\) CoT steps. Finally, we introduce the notion of the multi-head rank that captures multi-head single-layer transformers, and perform the analysis of PAC-learnability of the classes of functions with bounded multi-head rank.
comment: Changes to the previous version: new results about PAC learning for functions of bounded multi-head rank are addes
♻ ☆ How Post-Training Reshapes LLMs: A Mechanistic View on Knowledge, Truthfulness, Refusal, and Confidence
Post-training is essential for the success of large language models (LLMs), transforming pre-trained base models into more useful and aligned post-trained models. While plenty of works have studied post-training algorithms and evaluated post-training models by their outputs, it remains understudied how post-training reshapes LLMs internally. In this paper, we compare base and post-trained LLMs mechanistically from four perspectives to better understand post-training effects. Our findings across model families and datasets reveal that: (1) Post-training does not change the factual knowledge storage locations, and it adapts knowledge representations from the base model while developing new knowledge representations; (2) Both truthfulness and refusal can be represented by vectors in the hidden representation space. The truthfulness direction is highly similar between the base and post-trained model, and it is effectively transferable for interventions; (3) The refusal direction is different between the base and post-trained models, and it shows limited forward transferability; (4) Differences in confidence between the base and post-trained models cannot be attributed to entropy neurons. Our study provides insights into the fundamental mechanisms preserved and altered during post-training, facilitates downstream tasks like model steering, and could potentially benefit future research in interpretability and LLM post-training. Our code is publicly available at https://github.com/HZD01/post-training-mechanistic-analysis.
comment: COLM 2025
♻ ☆ TextQuests: How Good are LLMs at Text-Based Video Games?
Evaluating AI agents within complex, interactive environments that mirror real-world challenges is critical for understanding their practical capabilities. While existing agent benchmarks effectively assess skills like tool use or performance on structured tasks, they often do not fully capture an agent's ability to operate autonomously in exploratory environments that demand sustained, self-directed reasoning over a long and growing context. To spur the development of agents capable of more robust intrinsic reasoning over long horizons, we introduce TextQuests, a benchmark based on the Infocom suite of interactive fiction games. These text-based adventures, which can take human players over 30 hours and require hundreds of precise actions to solve, serve as an effective proxy for evaluating AI agents on focused, stateful tasks. The benchmark is specifically designed to assess an LLM agent's capacity for self-contained problem-solving by precluding the use of external tools, thereby focusing on intrinsic long-context reasoning capabilities in an exploratory environment characterized by the need for trial-and-error learning and sustained problem-solving within a single interactive session. We release TextQuests at https://textquests.ai.
♻ ☆ MLOps with Microservices: A Case Study on the Maritime Domain
This case study describes challenges and lessons learned on building Ocean Guard: a Machine Learning-Enabled System (MLES) for anomaly detection in the maritime domain. First, the paper presents the system's specification, and architecture. Ocean Guard was designed with a microservices' architecture to enable multiple teams to work on the project in parallel. Then, the paper discusses how the developers adapted contract-based design to MLOps for achieving that goal. As a MLES, Ocean Guard employs code, model, and data contracts to establish guidelines between its services. This case study hopes to inspire software engineers, machine learning engineers, and data scientists to leverage similar approaches for their systems.
comment: 13 pages, 3 figures, to be published in SummerSOC 2025
♻ ☆ ARAG: Agentic Retrieval Augmented Generation for Personalized Recommendation
Retrieval-Augmented Generation (RAG) has shown promise in enhancing recommendation systems by incorporating external context into large language model prompts. However, existing RAG-based approaches often rely on static retrieval heuristics and fail to capture nuanced user preferences in dynamic recommendation scenarios. In this work, we introduce ARAG, an Agentic Retrieval-Augmented Generation framework for Personalized Recommendation, which integrates a multi-agent collaboration mechanism into the RAG pipeline. To better understand the long-term and session behavior of the user, ARAG leverages four specialized LLM-based agents: a User Understanding Agent that summarizes user preferences from long-term and session contexts, a Natural Language Inference (NLI) Agent that evaluates semantic alignment between candidate items retrieved by RAG and inferred intent, a context summary agent that summarizes the findings of NLI agent, and an Item Ranker Agent that generates a ranked list of recommendations based on contextual fit. We evaluate ARAG accross three datasets. Experimental results demonstrate that ARAG significantly outperforms standard RAG and recency-based baselines, achieving up to 42.1% improvement in NDCG@5 and 35.5% in Hit@5. We also, conduct an ablation study to analyse the effect by different components of ARAG. Our findings highlight the effectiveness of integrating agentic reasoning into retrieval-augmented recommendation and provide new directions for LLM-based personalization.
♻ ☆ Sparsity Outperforms Low-Rank Projections in Few-Shot Adaptation ICCV2025
Adapting Vision-Language Models (VLMs) to new domains with few labeled samples remains a significant challenge due to severe overfitting and computational constraints. State-of-the-art solutions, such as low-rank reparameterization, mitigate these issues but often struggle with generalization and require extensive hyperparameter tuning. In this paper, a novel Sparse Optimization (SO) framework is proposed. Unlike low-rank approaches that typically constrain updates to a fixed subspace, our SO method leverages high sparsity to dynamically adjust very few parameters. We introduce two key paradigms. First, we advocate for \textit{local sparsity and global density}, which updates a minimal subset of parameters per iteration while maintaining overall model expressiveness. As a second paradigm, we advocate for \textit{local randomness and global importance}, which sparsifies the gradient using random selection while pruning the first moment based on importance. This combination significantly mitigates overfitting and ensures stable adaptation in low-data regimes. Extensive experiments on 11 diverse datasets show that SO achieves state-of-the-art few-shot adaptation performance while reducing memory overhead.
comment: ICCV2025
♻ ☆ Chain of Thought Still Thinks Fast: APriCoT Helps with Thinking Slow
Language models are known to absorb biases from their training data, leading to predictions driven by statistical regularities rather than semantic relevance. We investigate the impact of these biases on answer choice preferences in the Massive Multi-Task Language Understanding (MMLU) task. Our findings show that these biases are predictive of model preference and mirror human test-taking strategies even when chain of thought (CoT) reasoning is used. To address this issue, we introduce Counterfactual Prompting with Agnostically Primed CoT (APriCoT). We demonstrate that while Counterfactual Prompting with CoT alone is insufficient to mitigate bias, APriCoT effectively reduces the influence of base-rate probabilities while improving overall accuracy. Our results suggest that mitigating bias requires a slow thinking process which CoT alone may not provide as it tends to reinforce fast thinking model bias under some prompting methodologies. APriCoT is a step toward developing more robust and fair language models that can think slow.
comment: Final version. Published In Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 47) 2025
♻ ☆ SystolicAttention: Fusing FlashAttention within a Single Systolic Array
Transformer models rely heavily on scaled dot-product attention (SDPA), typically implemented using the FlashAttention algorithm. However, current systolic-array-based accelerators face significant challenges when executing FlashAttention. Systolic arrays achieve high utilization primarily for consecutive and large matrix multiplications, whereas FlashAttention requires frequent interleaving of matrix multiplications and softmax operations. The frequent data swaps between matrix multiplications on the systolic array and softmax operations on external units result in low array utilization. Moreover, when these computations run concurrently, the softmax stage contends with matrix multiplication for register file and SRAM ports, further degrading performance. To overcome these limitations, we propose FSA, an enhanced systolic array architecture that enables the FlashAttention algorithm to run entirely within a single systolic array, eliminating the need for external vector units. At the core of FSA is SystolicAttention, a novel scheduling algorithm that maps FlashAttention operations onto systolic arrays with fine-grained, element-wise overlap. This approach significantly improves array utilization while preserving the original floating-point operation order to maintain numerical stability. We implement FSA in synthesizable RTL and evaluate its performance against state-of-the-art commercial accelerators. Our results show that FSA achieves 1.77 and 4.83 times higher attention FLOPs/s utilization compared to AWS Neuron v2 and Google TPUv5e, respectively, with only 12% area overhead.
♻ ☆ AI-AI Bias: large language models favor communications generated by large language models
Are large language models (LLMs) biased in favor of communications produced by LLMs, leading to possible antihuman discrimination? Using a classical experimental design inspired by employment discrimination studies, we tested widely used LLMs, including GPT-3.5, GPT-4 and a selection of recent open-weight models in binary choice scenarios. These involved LLM-based assistants selecting between goods (the goods we study include consumer products, academic papers, and film-viewings) described either by humans or LLMs. Our results show a consistent tendency for LLM-based AIs to prefer LLM-presented options. This suggests the possibility of future AI systems implicitly discriminating against humans as a class, giving AI agents and AI-assisted humans an unfair advantage.
comment: 8 pages, 4 figures
♻ ☆ CADRE: Customizable Assurance of Data Readiness in Privacy-Preserving Federated Learning
Privacy-Preserving Federated Learning (PPFL) is a decentralized machine learning approach where multiple clients train a model collaboratively. PPFL preserves the privacy and security of a client's data without exchanging it. However, ensuring that data at each client is of high quality and ready for federated learning (FL) is a challenge due to restricted data access. In this paper, we introduce CADRE (Customizable Assurance of Data Readiness) for federated learning (FL), a novel framework that allows users to define custom data readiness (DR) metrics, rules, and remedies tailored to specific FL tasks. CADRE generates comprehensive DR reports based on the user-defined metrics, rules, and remedies to ensure datasets are prepared for FL while preserving privacy. We demonstrate a practical application of CADRE by integrating it into an existing PPFL framework. We conducted experiments across six datasets and addressed seven different DR issues. The results illustrate the versatility and effectiveness of CADRE in ensuring DR across various dimensions, including data quality, privacy, and fairness. This approach enhances the performance and reliability of FL models as well as utilizes valuable resources.
comment: 10 pages, 8 figures, 2 tables
♻ ☆ A Methodology for Incompleteness-Tolerant and Modular Gradual Semantics for Argumentative Statement Graphs
Gradual semantics (GS) have demonstrated great potential in argumentation, in particular for deploying quantitative bipolar argumentation frameworks (QBAFs) in a number of real-world settings, from judgmental forecasting to explainable AI. In this paper, we provide a novel methodology for obtaining GS for statement graphs, a form of structured argumentation framework, where arguments and relations between them are built from logical statements. Our methodology differs from existing approaches in the literature in two main ways. First, it naturally accommodates incomplete information, so that arguments with partially specified premises can play a meaningful role in the evaluation. Second, it is modularly defined to leverage on any GS for QBAFs. We also define a set of novel properties for our GS and study their suitability alongside a set of existing properties (adapted to our setting) for two instantiations of our GS, demonstrating their advantages over existing approaches.
♻ ☆ Reviewing Clinical Knowledge in Medical Large Language Models: Training and Beyond
The large-scale development of large language models (LLMs) in medical contexts, such as diagnostic assistance and treatment recommendations, necessitates that these models possess accurate medical knowledge and deliver traceable decision-making processes. Clinical knowledge, encompassing the insights gained from research on the causes, prognosis, diagnosis, and treatment of diseases, has been extensively examined within real-world medical practices. Recently, there has been a notable increase in research efforts aimed at integrating this type of knowledge into LLMs, encompassing not only traditional text and multimodal data integration but also technologies such as knowledge graphs (KGs) and retrieval-augmented generation (RAG). In this paper, we review the various initiatives to embed clinical knowledge into training-based, KG-supported, and RAG-assisted LLMs. We begin by gathering reliable knowledge sources from the medical domain, including databases and datasets. Next, we evaluate implementations for integrating clinical knowledge through specialized datasets and collaborations with external knowledge sources such as KGs and relevant documentation. Furthermore, we discuss the applications of the developed medical LLMs in the industrial sector to assess the disparity between models developed in academic settings and those in industry. We conclude the survey by presenting evaluation systems applicable to relevant tasks and identifying potential challenges facing this field. In this review, we do not aim for completeness, since any ostensibly complete review would soon be outdated. Our goal is to illustrate diversity by selecting representative and accessible items from current research and industry practices, reflecting real-world situations rather than claiming completeness. Thus, we emphasize showcasing diverse approaches.
comment: Accepted for publication in Knowledge-Based Systems. The arXiv version is the pre-peer-review preprint, and the final published version is not available here due to publisher policy
♻ ☆ B-VLLM: A Vision Large Language Model with Balanced Spatio-Temporal Tokens ICCV2025
Recently, Vision Large Language Models (VLLMs) integrated with vision encoders have shown promising performance in vision understanding. The key of VLLMs is to encode visual content into sequences of visual tokens, enabling VLLMs to simultaneously process both visual and textual content. However, understanding videos, especially long videos, remain a challenge to VLLMs as the number of visual tokens grows rapidly when encoding videos, resulting in the risk of exceeding the context window of VLLMs and introducing heavy computation burden. To restrict the number of visual tokens, existing VLLMs either: (1) uniformly downsample videos into a fixed number of frames or (2) reducing the number of visual tokens encoded from each frame. We argue the former solution neglects the rich temporal cue in videos and the later overlooks the spatial details in each frame. In this work, we present Balanced-VLLM (B-VLLM): a novel VLLM framework that aims to effectively leverage task relevant spatio-temporal cues while restricting the number of visual tokens under the VLLM context window length. At the core of our method, we devise a text-conditioned adaptive frame selection module to identify frames relevant to the visual understanding task. The selected frames are then de-duplicated using a temporal frame token merging technique. The visual tokens of the selected frames are processed through a spatial token sampling module and an optional spatial token merging strategy to achieve precise control over the token count. Experimental results show that B-VLLM is effective in balancing the number of frames and visual tokens in video understanding, yielding superior performance on various video understanding benchmarks. Our code is available at https://github.com/zhuqiangLu/B-VLLM.
comment: Accepted by ICCV2025 (Poster)
♻ ☆ Toward Intelligent and Secure Cloud: Large Language Model Empowered Proactive Defense
The rapid evolution of cloud computing technologies and the increasing number of cloud applications have provided numerous benefits in our daily lives. However, the diversity and complexity of different components pose a significant challenge to cloud security, especially when dealing with sophisticated and advanced cyberattacks such as Denial of Service (DoS). Recent advancements in the large language models (LLMs) offer promising solutions for security intelligence. By exploiting the powerful capabilities in language understanding, data analysis, task inference, action planning, and code generation, we present LLM-PD, a novel defense architecture that proactively mitigates various DoS threats in cloud networks. LLM-PD can efficiently make decisions through comprehensive data analysis and sequential reasoning, as well as dynamically create and deploy actionable defense mechanisms. Furthermore, it can flexibly self-evolve based on experience learned from previous interactions and adapt to new attack scenarios without additional training. Our case study on three distinct DoS attacks demonstrates its remarkable ability in terms of defense effectiveness and efficiency when compared with other existing methods.
comment: 7 pages; Major Revision for IEEE Communications Magazine
♻ ☆ From Reusing to Forecasting: Accelerating Diffusion Models with TaylorSeers ICCV2025
Diffusion Transformers (DiT) have revolutionized high-fidelity image and video synthesis, yet their computational demands remain prohibitive for real-time applications. To solve this problem, feature caching has been proposed to accelerate diffusion models by caching the features in the previous timesteps and then reusing them in the following timesteps. However, at timesteps with significant intervals, the feature similarity in diffusion models decreases substantially, leading to a pronounced increase in errors introduced by feature caching, significantly harming the generation quality. To solve this problem, we propose TaylorSeer, which firstly shows that features of diffusion models at future timesteps can be predicted based on their values at previous timesteps. Based on the fact that features change slowly and continuously across timesteps, TaylorSeer employs a differential method to approximate the higher-order derivatives of features and predict features in future timesteps with Taylor series expansion. Extensive experiments demonstrate its significant effectiveness in both image and video synthesis, especially in high acceleration ratios. For instance, it achieves an almost lossless acceleration of 4.99$\times$ on FLUX and 5.00$\times$ on HunyuanVideo without additional training. On DiT, it achieves $3.41$ lower FID compared with previous SOTA at $4.53$$\times$ acceleration. %Our code is provided in the supplementary materials and will be made publicly available on GitHub. Our codes have been released in Github:https://github.com/Shenyi-Z/TaylorSeer
comment: 15 pages, 14 figures; Accepted by ICCV2025; Mainly focus on feature caching for diffusion transformers acceleration
♻ ☆ Uniform Loss vs. Specialized Optimization: A Comparative Analysis in Multi-Task Learning
Specialized Multi-Task Optimizers (SMTOs) balance task learning in Multi-Task Learning by addressing issues like conflicting gradients and differing gradient norms, which hinder equal-weighted task training. However, recent critiques suggest that equally weighted tasks can achieve competitive results compared to SMTOs, arguing that previous SMTO results were influenced by poor hyperparameter optimization and lack of regularization. In this work, we evaluate these claims through an extensive empirical evaluation of SMTOs, including some of the latest methods, on more complex multi-task problems to clarify this behavior. Our findings indicate that SMTOs perform well compared to uniform loss and that fixed weights can achieve competitive performance compared to SMTOs. Furthermore, we demonstrate why uniform loss perform similarly to SMTOs in some instances. The source code is available at https://github.com/Gabriel-SGama/UnitScal_vs_SMTOs.
♻ ☆ Granular-Ball-Induced Multiple Kernel K-Means IJCAI 2025
Most existing multi-kernel clustering algorithms, such as multi-kernel K-means, often struggle with computational efficiency and robustness when faced with complex data distributions. These challenges stem from their dependence on point-to-point relationships for optimization, which can lead to difficulty in accurately capturing data sets' inherent structure and diversity. Additionally, the intricate interplay between multiple kernels in such algorithms can further exacerbate these issues, effectively impacting their ability to cluster data points in high-dimensional spaces. In this paper, we leverage granular-ball computing to improve the multi-kernel clustering framework. The core of granular-ball computing is to adaptively fit data distribution by balls from coarse to acceptable levels. Each ball can enclose data points based on a density consistency measurement. Such ball-based data description thus improves the computational efficiency and the robustness to unknown noises. Specifically, based on granular-ball representations, we introduce the granular-ball kernel (GBK) and its corresponding granular-ball multi-kernel K-means framework (GB-MKKM) for efficient clustering. Using granular-ball relationships in multiple kernel spaces, the proposed GB-MKKM framework shows its superiority in efficiency and clustering performance in the empirical evaluation of various clustering tasks.
comment: Accepted by IJCAI 2025
♻ ☆ Winner-takes-all for Multivariate Probabilistic Time Series Forecasting ICML 2025
We introduce TimeMCL, a method leveraging the Multiple Choice Learning (MCL) paradigm to forecast multiple plausible time series futures. Our approach employs a neural network with multiple heads and utilizes the Winner-Takes-All (WTA) loss to promote diversity among predictions. MCL has recently gained attention due to its simplicity and ability to address ill-posed and ambiguous tasks. We propose an adaptation of this framework for time-series forecasting, presenting it as an efficient method to predict diverse futures, which we relate to its implicit quantization objective. We provide insights into our approach using synthetic data and evaluate it on real-world time series, demonstrating its promising performance at a light computational cost.
comment: ICML 2025
♻ ☆ EEG-Language Pretraining for Highly Label-Efficient Clinical Phenotyping ICML 2025
Multimodal language modeling has enabled breakthroughs for representation learning, yet remains unexplored in the realm of functional brain data for clinical phenotyping. This paper pioneers EEG-language models (ELMs) trained on clinical reports and 15000 EEGs. We propose to combine multimodal alignment in this novel domain with timeseries cropping and text segmentation, enabling an extension based on multiple instance learning to alleviate misalignment between irrelevant EEG or text segments. Our multimodal models significantly improve over EEG-only models across four clinical evaluations and for the first time enable zero-shot classification as well as retrieval of both neural signals and reports. In sum, these results highlight the potential of ELMs, representing significant progress for clinical applications.
comment: Accepted to ICML 2025
♻ ☆ Improving LLM Outputs Against Jailbreak Attacks with Expert Model Integration
Using LLMs in a production environment presents security challenges that include vulnerabilities to jailbreaks and prompt injections, which can result in harmful outputs for humans or the enterprise. The challenge is amplified when working within a specific domain, as topics generally accepted for LLMs to address may be irrelevant to that field. These problems can be mitigated, for example, by fine-tuning large language models with domain-specific and security-focused data. However, these alone are insufficient, as jailbreak techniques evolve. Additionally, API-accessed models do not offer the flexibility needed to tailor behavior to industry-specific objectives, and in-context learning is not always sufficient or reliable. In response to these challenges, we introduce Archias, an expert model adept at distinguishing between in-domain and out-of-domain communications. Archias classifies user inquiries into several categories: in-domain (specifically for the automotive industry), malicious questions, price injections, prompt injections, and out-of-domain examples. Our methodology integrates outputs from the expert model (Archias) into prompts, which are then processed by the LLM to generate responses. This method increases the model's ability to understand the user's intention and give appropriate answers. Archias can be adjusted, fine-tuned, and used for many different purposes due to its small size. Therefore, it can be easily customized to the needs of any industry. To validate our approach, we created a benchmark dataset for the automotive industry. Furthermore, in the interest of advancing research and development, we release our benchmark dataset to the community.
♻ ☆ Aligning Instruction Tuning with Pre-training
Instruction tuning enhances large language models (LLMs) to follow human instructions across diverse tasks, relying on high-quality datasets to guide behavior. However, these datasets, whether manually curated or synthetically generated, are often narrowly focused and misaligned with the broad distributions captured during pre-training, limiting LLM generalization and effective use of pre-trained knowledge. We propose Aligning Instruction Tuning with Pre-training (AITP), a method that bridges this gap by identifying coverage shortfalls in instruction-tuning datasets and rewriting underrepresented pre-training data into high-quality instruction-response pairs. This approach enriches dataset diversity while preserving task-specific objectives. Evaluations on three fully open LLMs across eight benchmarks demonstrate consistent performance improvements with AITP. Ablations highlight the benefits of adaptive data selection, controlled rewriting, and balanced integration, emphasizing the importance of aligning instruction tuning with pre-training distributions to unlock the full potential of LLMs.
♻ ☆ Overconfidence in LLM-as-a-Judge: Diagnosis and Confidence-Driven Solution
Large Language Models (LLMs) are widely used as automated judges, where practical value depends on both accuracy and trustworthy, risk-aware judgments. Existing approaches predominantly focus on accuracy, overlooking the necessity of well-calibrated confidence, which is vital for adaptive and reliable evaluation pipelines. In this work, we advocate a shift from accuracy-centric evaluation to confidence-driven, risk-aware LLM-as-a-Judge systems, emphasizing the necessity of well-calibrated confidence for trustworthy and adaptive evaluation. We systematically identify the Overconfidence Phenomenon in current LLM-as-a-Judges, where predicted confidence significantly overstates actual correctness, undermining reliability in practical deployment. To quantify this phenomenon, we introduce TH-Score, a novel metric measuring confidence-accuracy alignment. Furthermore, we propose LLM-as-a-Fuser, an ensemble framework that transforms LLMs into reliable, risk-aware evaluators. Extensive experiments demonstrate that our approach substantially improves calibration and enables adaptive, confidence-driven evaluation pipelines, achieving superior reliability and accuracy compared to existing baselines.
♻ ☆ RAPNet: A Receptive-Field Adaptive Convolutional Neural Network for Pansharpening AI
Pansharpening refers to the process of integrating a high resolution panchromatic (PAN) image with a lower resolution multispectral (MS) image to generate a fused product, which is pivotal in remote sensing. Despite the effectiveness of CNNs in addressing this challenge, they are inherently constrained by the uniform application of convolutional kernels across all spatial positions, overlooking local content variations. To overcome this issue, we introduce RAPNet, a new architecture that leverages content-adaptive convolution. At its core, RAPNet employs the Receptive-field Adaptive Pansharpening Convolution (RAPConv), designed to produce spatially adaptive kernels responsive to local feature context, thereby enhancing the precision of spatial detail extraction. Additionally, the network integrates the Pansharpening Dynamic Feature Fusion (PAN-DFF) module, which incorporates an attention mechanism to achieve an optimal balance between spatial detail enhancement and spectral fidelity. Comprehensive evaluations on publicly available datasets confirm that RAPNet delivers superior performance compared to existing approaches, as demonstrated by both quantitative metrics and qualitative assessments. Ablation analyses further substantiate the effectiveness of the proposed adaptive components.
comment: Accepted by the 6th International Conference on Artificial Intelligence and Electromechanical Automation (AIEA 2025). 5 pages, 6 figures
♻ ☆ Learning Phonetic Context-Dependent Viseme for Enhancing Speech-Driven 3D Facial Animation
Speech-driven 3D facial animation aims to generate realistic facial movements synchronized with audio. Traditional methods primarily minimize reconstruction loss by aligning each frame with ground-truth. However, this frame-wise approach often fails to capture the continuity of facial motion, leading to jittery and unnatural outputs due to coarticulation. To address this, we propose a novel phonetic context-aware loss, which explicitly models the influence of phonetic context on viseme transitions. By incorporating a viseme coarticulation weight, we assign adaptive importance to facial movements based on their dynamic changes over time, ensuring smoother and perceptually consistent animations. Extensive experiments demonstrate that replacing the conventional reconstruction loss with ours improves both quantitative metrics and visual quality. It highlights the importance of explicitly modeling phonetic context-dependent visemes in synthesizing natural speech-driven 3D facial animation. Project page: https://cau-irislab.github.io/interspeech25/
comment: Interspeech 2025; Project Page: https://cau-irislab.github.io/interspeech25/
♻ ☆ D-Judge: How Far Are We? Assessing the Discrepancies Between AI-synthesized and Natural Images through Multimodal Guidance
In the rapidly evolving field of Artificial Intelligence Generated Content (AIGC), a central challenge is distinguishing AI-synthesized images from natural ones. Despite the impressive capabilities of advanced generative models in producing visually compelling images, significant discrepancies remain when compared to natural images. To systematically investigate and quantify these differences, we construct a large-scale multimodal dataset, D-ANI, comprising 5,000 natural images and over 440,000 AIGI samples generated by nine representative models using both unimodal and multimodal prompts, including Text-to-Image (T2I), Image-to-Image (I2I), and Text-and-Image-to-Image (TI2I). We then introduce an AI-Natural Image Discrepancy assessment benchmark (D-Judge) to address the critical question: how far are AI-generated images (AIGIs) from truly realistic images? Our fine-grained evaluation framework assesses the D-ANI dataset across five dimensions: naive visual quality, semantic alignment, aesthetic appeal, downstream task applicability, and coordinated human validation. Extensive experiments reveal substantial discrepancies across these dimensions, highlighting the importance of aligning quantitative metrics with human judgment to achieve a comprehensive understanding of AI-generated image quality. Code: https://github.com/ryliu68/DJudge ; Data: https://huggingface.co/datasets/Renyang/DANI.
comment: Accepted by ACM MM 2025
♻ ☆ Fairness in Dysarthric Speech Synthesis: Understanding Intrinsic Bias in Dysarthric Speech Cloning using F5-TTS
Dysarthric speech poses significant challenges in developing assistive technologies, primarily due to the limited availability of data. Recent advances in neural speech synthesis, especially zero-shot voice cloning, facilitate synthetic speech generation for data augmentation; however, they may introduce biases towards dysarthric speech. In this paper, we investigate the effectiveness of state-of-the-art F5-TTS in cloning dysarthric speech using TORGO dataset, focusing on intelligibility, speaker similarity, and prosody preservation. We also analyze potential biases using fairness metrics like Disparate Impact and Parity Difference to assess disparities across dysarthric severity levels. Results show that F5-TTS exhibits a strong bias toward speech intelligibility over speaker and prosody preservation in dysarthric speech synthesis. Insights from this study can help integrate fairness-aware dysarthric speech synthesis, fostering the advancement of more inclusive speech technologies.
comment: Accepted at Interspeech 2025
♻ ☆ Sparse Variational Student-t Processes
The theory of Bayesian learning incorporates the use of Student-t Processes to model heavy-tailed distributions and datasets with outliers. However, despite Student-t Processes having a similar computational complexity as Gaussian Processes, there has been limited emphasis on the sparse representation of this model. This is mainly due to the increased difficulty in modeling and computation compared to previous sparse Gaussian Processes. Our motivation is to address the need for a sparse representation framework that reduces computational complexity, allowing Student-t Processes to be more flexible for real-world datasets. To achieve this, we leverage the conditional distribution of Student-t Processes to introduce sparse inducing points. Bayesian methods and variational inference are then utilized to derive a well-defined lower bound, facilitating more efficient optimization of our model through stochastic gradient descent. We propose two methods for computing the variational lower bound, one utilizing Monte Carlo sampling and the other employing Jensen's inequality to compute the KL regularization term in the loss function. We propose adopting these approaches as viable alternatives to Gaussian processes when the data might contain outliers or exhibit heavy-tailed behavior, and we provide specific recommendations for their applicability. We evaluate the two proposed approaches on various synthetic and real-world datasets from UCI and Kaggle, demonstrating their effectiveness compared to baseline methods in terms of computational complexity and accuracy, as well as their robustness to outliers.
♻ ☆ On the Sample Efficiency of Abstractions and Potential-Based Reward Shaping in Reinforcement Learning
The use of Potential-Based Reward Shaping (PBRS) has shown great promise in the ongoing research effort to tackle sample inefficiency in Reinforcement Learning (RL). However, choosing the right potential function remains an open challenge. Additionally, RL techniques are usually constrained to use a finite horizon for computational limitations, which introduces a bias when using PBRS. In this paper, we first build some theoretically-grounded intuition on why selecting the potential function as the optimal value function of the task at hand produces performance advantages. We then analyse the bias induced by finite horizons in the context of PBRS producing novel insights. Finally, leveraging abstractions as a way to approximate the optimal value function of the given task, we assess the sample efficiency and performance impact of PBRS on four environments including a goal-oriented navigation task and three Arcade Learning Environments (ALE) games. Remarkably, experimental results show that we can reach the same level of performance as CNN-based solutions with a simple fully-connected network.
♻ ☆ A Planning Compilation to Reason about Goal Achievement at Planning Time
Identifying the specific actions that achieve goals when solving a planning task might be beneficial for various planning applications. Traditionally, this identification occurs post-search, as some actions may temporarily achieve goals that are later undone and re-achieved by other actions. In this paper, we propose a compilation that extends the original planning task with commit actions that enforce the persistence of specific goals once achieved, allowing planners to identify permanent goal achievement during planning. Experimental results indicate that solving the reformulated tasks does not incur on any additional overhead both when performing optimal and suboptimal planning, while providing useful information for some downstream tasks.
♻ ☆ POEX: Towards Policy Executable Jailbreak Attacks Against the LLM-based Robots
The integration of LLMs into robots has witnessed significant growth, where LLMs can convert instructions into executable robot policies. However, the inherent vulnerability of LLMs to jailbreak attacks brings critical security risks from the digital domain to the physical world. An attacked LLM-based robot could execute harmful policies and cause physical harm. In this paper, we investigate the feasibility and rationale of jailbreak attacks against LLM-based robots and answer three research questions: (1) How applicable are existing LLM jailbreak attacks against LLM-based robots? (2) What unique challenges arise if they are not directly applicable? (3) How to defend against such jailbreak attacks? To this end, we first construct a "human-object-environment" robot risks-oriented Harmful-RLbench and then conduct a measurement study on LLM-based robot systems. Our findings conclude that traditional LLM jailbreak attacks are inapplicable in robot scenarios, and we identify two unique challenges: determining policy-executable optimization directions and accurately evaluating robot-jailbroken policies. To enable a more thorough security analysis, we introduce POEX (POlicy EXecutable) jailbreak, a red-teaming framework that induces harmful yet executable policy to jailbreak LLM-based robots. POEX incorporates hidden layer gradient optimization to guarantee jailbreak success and policy execution as well as a multi-agent evaluator to accurately assess the practical executability of policies. Experiments conducted on the real-world robotic systems and in simulation demonstrate the efficacy of POEX, highlighting critical security vulnerabilities and its transferability across LLMs. Finally, we propose prompt-based and model-based defenses to mitigate attacks. Our findings underscore the urgent need for security measures to ensure the safe deployment of LLM-based robots in critical applications.
comment: Homepage: https://poex-jailbreak.github.io/
♻ ☆ FDC-Net: Rethinking the association between EEG artifact removal and multi-dimensional affective computing
Electroencephalogram (EEG)-based emotion recognition holds significant value in affective computing and brain-computer interfaces. However, in practical applications, EEG recordings are susceptible to the effects of various physiological artifacts. Current approaches typically treat denoising and emotion recognition as independent tasks using cascaded architectures, which not only leads to error accumulation, but also fails to exploit potential synergies between these tasks. Moreover, conventional EEG-based emotion recognition models often rely on the idealized assumption of "perfectly denoised data", lacking a systematic design for noise robustness. To address these challenges, a novel framework that deeply couples denoising and emotion recognition tasks is proposed for end-to-end noise-robust emotion recognition, termed as Feedback-Driven Collaborative Network for Denoising-Classification Nexus (FDC-Net). Our primary innovation lies in establishing a dynamic collaborative mechanism between artifact removal and emotion recognition through: (1) bidirectional gradient propagation with joint optimization strategies; (2) a gated attention mechanism integrated with frequency-adaptive Transformer using learnable band-position encoding. Two most popular EEG-based emotion datasets (DEAP and DREAMER) with multi-dimensional emotional labels were employed to compare the artifact removal and emotion recognition performance between FDC-Net and nine state-of-the-art methods. In terms of the denoising task, FDC-Net obtains a maximum correlation coefficient (CC) value of 96.30% on DEAP and a maximum CC value of 90.31% on DREAMER. In terms of the emotion recognition task under physiological artifact interference, FDC-Net achieves emotion recognition accuracies of 82.3+7.1% on DEAP and 88.1+0.8% on DREAMER.
♻ ☆ A Theory of Learning with Autoregressive Chain of Thought
For a given base class of sequence-to-next-token generators, we consider learning prompt-to-answer mappings obtained by iterating a fixed, time-invariant generator for multiple steps, thus generating a chain-of-thought, and then taking the final token as the answer. We formalize the learning problems both when the chain-of-thought is observed and when training only on prompt-answer pairs, with the chain-of-thought latent. We analyze the sample and computational complexity both in terms of general properties of the base class (e.g. its VC dimension) and for specific base classes such as linear thresholds. We present a simple base class that allows for universal representability and computationally tractable chain-of-thought learning. Central to our development is that time invariance allows for sample complexity that is independent of the length of the chain-of-thought. Attention arises naturally in our construction.
comment: Comments are welcome--minor changes in the presentation from v1
♻ ☆ MomentMix Augmentation with Length-Aware DETR for Temporally Robust Moment Retrieval
Video Moment Retrieval (MR) aims to localize moments within a video based on a given natural language query. Given the prevalent use of platforms like YouTube for information retrieval, the demand for MR techniques is significantly growing. Recent DETR-based models have made notable advances in performance but still struggle with accurately localizing short moments. Through data analysis, we identified limited feature diversity in short moments, which motivated the development of MomentMix. MomentMix employs two augmentation strategies: ForegroundMix and BackgroundMix, each enhancing the feature representations of the foreground and background, respectively. Additionally, our analysis of prediction bias revealed that short moments particularly struggle with accurately predicting their center positions of moments. To address this, we propose a Length-Aware Decoder, which conditions length through a novel bipartite matching process. Our extensive studies demonstrate the efficacy of our length-aware approach, especially in localizing short moments, leading to improved overall performance. Our method surpasses state-of-the-art DETR-based methods on benchmark datasets, achieving the highest R1 and mAP on QVHighlights and the highest R1@0.7 on TACoS and Charades-STA (such as a 2.46% gain in R1@0.7 and a 2.57% gain in mAP average for QVHighlights). The code is available at https://github.com/sjpark5800/LA-DETR.
♻ ☆ Sortability of Time Series Data
Evaluating the performance of causal discovery algorithms that aim to find causal relationships between time-dependent processes remains a challenging topic. In this paper, we show that certain characteristics of datasets, such as varsortability (Reisach et al. 2021) and $R^2$-sortability (Reisach et al. 2023), also occur in datasets for autocorrelated stationary time series. We illustrate this empirically using four types of data: simulated data based on SVAR models and Erd\H{o}s-R\'enyi graphs, the data used in the 2019 causality-for-climate challenge (Runge et al. 2019), real-world river stream datasets, and real-world data generated by the Causal Chamber of (Gamella et al. 2024). To do this, we adapt var- and $R^2$-sortability to time series data. We also investigate the extent to which the performance of score-based causal discovery methods goes hand in hand with high sortability. Arguably, our most surprising finding is that the investigated real-world datasets exhibit high varsortability and low $R^2$-sortability indicating that scales may carry a significant amount of causal information.
comment: Published in Transactions on Machine Learning Research, also presented at the Causal Inference for Time Series Data Workshop at the 40th Conference on Uncertainty in Artificial Intelligence (CI4TS 2024)
♻ ☆ FIT-Print: Towards False-claim-resistant Model Ownership Verification via Targeted Fingerprint
Model fingerprinting is a widely adopted approach to safeguard the intellectual property rights of open-source models by preventing their unauthorized reuse. It is promising and convenient since it does not necessitate modifying the protected model. In this paper, we revisit existing fingerprinting methods and reveal that they are vulnerable to false claim attacks where adversaries falsely assert ownership of any third-party model. We demonstrate that this vulnerability mostly stems from their untargeted nature, where they generally compare the outputs of given samples on different models instead of the similarities to specific references. Motivated by these findings, we propose a targeted fingerprinting paradigm (i.e., FIT-Print) to counteract false claim attacks. Specifically, FIT-Print transforms the fingerprint into a targeted signature via optimization. Building on the principles of FIT-Print, we develop bit-wise and list-wise black-box model fingerprinting methods, i.e., FIT-ModelDiff and FIT-LIME, which exploit the distance between model outputs and the feature attribution of specific samples as the fingerprint, respectively. Extensive experiments on benchmark models and datasets verify the effectiveness, conferrability, and resistance to false claim attacks of our FIT-Print.
♻ ☆ Predicting Depression in Screening Interviews from Interactive Multi-Theme Collaboration ACL2025
Automatic depression detection provides cues for early clinical intervention by clinicians. Clinical interviews for depression detection involve dialogues centered around multiple themes. Existing studies primarily design end-to-end neural network models to capture the hierarchical structure of clinical interview dialogues. However, these methods exhibit defects in modeling the thematic content of clinical interviews: 1) they fail to capture intra-theme and inter-theme correlation explicitly, and 2) they do not allow clinicians to intervene and focus on themes of interest. To address these issues, this paper introduces an interactive depression detection framework. This framework leverages in-context learning techniques to identify themes in clinical interviews and then models both intra-theme and inter-theme correlation. Additionally, it employs AI-driven feedback to simulate the interests of clinicians, enabling interactive adjustment of theme importance. PDIMC achieves absolute improvements of 35\% and 12\% compared to the state-of-the-art on the depression detection dataset DAIC-WOZ, which demonstrates the effectiveness of modeling theme correlation and incorporating interactive external feedback.
comment: Findings of ACL2025
♻ ☆ Griffon v2: Advancing Multimodal Perception with High-Resolution Scaling and Visual-Language Co-Referring ICCV 2025
Large Vision Language Models have achieved fine-grained object perception, but the limitation of image resolution remains a significant obstacle to surpassing the performance of task-specific experts in complex and dense scenarios. Such limitation further restricts the model's potential to achieve nuanced visual and language referring in domains such as GUI Agents, counting, \textit{etc}. To address this issue, we introduce a unified high-resolution generalist model, Griffon v2, enabling flexible object referring with visual and textual prompts. To efficiently scale up image resolution, we design a simple and lightweight down-sampling projector to overcome the input tokens constraint in Large Language Models. This design inherently preserves the complete contexts and fine details and significantly improves multimodal perception ability, especially for small objects. Building upon this, we further equip the model with visual-language co-referring capabilities through a plug-and-play visual tokenizer. It enables user-friendly interaction with flexible target images, free-form texts, and even coordinates. Experiments demonstrate that Griffon v2 can localize objects of interest with visual and textual referring, achieve state-of-the-art performance on REC and phrase grounding, and outperform expert models in object detection, object counting, and REG. Data and codes are released at https://github.com/jefferyZhan/Griffon.
comment: Accepted by ICCV 2025. Codes and datasets are released at https://github.com/jefferyZhan/Griffon
♻ ☆ Exploring Adapter Design Tradeoffs for Low Resource Music Generation
Fine-tuning large-scale music generation models, such as MusicGen and Mustango, is a computationally expensive process, often requiring updates to billions of parameters and, therefore, significant hardware resources. Parameter-Efficient Fine-Tuning (PEFT) techniques, particularly adapter-based methods, have emerged as a promising alternative, enabling adaptation with minimal trainable parameters while preserving model performance. However, the design choices for adapters, including their architecture, placement, and size, are numerous, and it is unclear which of these combinations would produce optimal adapters and why, for a given case of low-resource music genre. In this paper, we attempt to answer this question by studying various adapter configurations for two AI music models, MusicGen and Mustango, on two genres: Hindustani Classical and Turkish Makam music. Our findings reveal distinct trade-offs: convolution-based adapters excel in capturing fine-grained local musical details such as ornamentations and short melodic phrases, while transformer-based adapters better preserve long-range dependencies crucial for structured improvisation. Additionally, we analyze computational resource requirements across different adapter scales, demonstrating how mid-sized adapters (40M parameters) achieve an optimal balance between expressivity and quality. Furthermore, we find that Mustango, a diffusion-based model, generates more diverse outputs with better adherence to the description in the input prompt while lacking in providing stability in notes, rhythm alignment, and aesthetics. Also, it is computationally intensive and requires significantly more time to train. In contrast, autoregressive models like MusicGen offer faster training and are more efficient, and can produce better quality output in comparison, but have slightly higher redundancy in their generations.
comment: 9 pages, 4 figures
♻ ☆ RIDGECUT: Learning Graph Partitioning with Rings and Wedges
Reinforcement Learning (RL) has proven to be a powerful tool for combinatorial optimization (CO) problems due to its ability to learn heuristics that can generalize across problem instances. However, integrating knowledge that will steer the RL framework for CO solutions towards domain appropriate outcomes remains a challenging task. In this paper, we propose RIDGECUT, the first RL framework that constrains the action space to enforce structure-aware partitioning in the Normalized Cut problem. Using transportation networks as a motivating example, we introduce a novel concept that leverages domain knowledge about urban road topology -- where natural partitions often take the form of concentric rings and radial wedges. Our method reshapes the graph into a linear or circular structure to simplify the partitioning task so that we can apply sequential transformers and enables efficient learning via Proximal Policy Optimization. The resulting partitions are not only aligned with expected spatial layouts but also achieve lower normalized cuts compared to existing methods. While we focus on traffic data, our approach is broadly applicable and offers a mechanism for embedding structural priors into RL for graph partitioning.
♻ ☆ LAG: Logic-Augmented Generation from a Cartesian Perspective
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks, yet exhibit critical limitations in knowledge-intensive tasks, often generating hallucinations when faced with questions requiring specialized expertise. While retrieval-augmented generation (RAG) mitigates this by integrating external knowledge, it struggles with complex reasoning scenarios due to its reliance on direct semantic retrieval and lack of structured logical organization. Inspired by Cartesian principles from \textit{Discours de la m\'ethode}, this paper introduces Logic-Augmented Generation (LAG), a novel paradigm that reframes knowledge augmentation through systematic question decomposition and dependency-aware reasoning. Specifically, LAG first decomposes complex questions into atomic sub-questions ordered by logical dependencies. It then resolves these sequentially, using prior answers to guide context retrieval for subsequent sub-questions, ensuring stepwise grounding in logical chain. To prevent error propagation, LAG incorporates a logical termination mechanism that halts inference upon encountering unanswerable sub-questions and reduces wasted computation on excessive reasoning. Finally, it synthesizes all sub-resolutions to generate verified responses. Experiments on four benchmark datasets demonstrate that LAG significantly enhances reasoning robustness, reduces hallucination, and aligns LLM problem-solving with human cognition, offering a principled alternative to existing RAG systems.
♻ ☆ Symmetry breaking for inductive logic programming
The goal of inductive logic programming is to search for a hypothesis that generalises training data and background knowledge. The challenge is searching vast hypothesis spaces, which is exacerbated because many logically equivalent hypotheses exist. To address this challenge, we introduce a method to break symmetries in the hypothesis space. We implement our idea in answer set programming. Our experiments on multiple domains, including visual reasoning and game playing, show that our approach can reduce solving times from over an hour to just 17 seconds.
♻ ☆ End-to-End Text-to-SQL with Dataset Selection: Leveraging LLMs for Adaptive Query Generation
Text-to-SQL bridges the gap between natural language and structured database language, thus allowing non-technical users to easily query databases. Traditional approaches model text-to-SQL as a direct translation task, where a given Natural Language Query (NLQ) is mapped to an SQL command. Recent advances in large language models (LLMs) have significantly improved translation accuracy, however, these methods all require that the target database is pre-specified. This becomes problematic in scenarios with multiple extensive databases, where identifying the correct database becomes a crucial yet overlooked step. In this paper, we propose a three-stage end-to-end text-to-SQL framework to identify the user's intended database before generating SQL queries. Our approach leverages LLMs and prompt engineering to extract implicit information from natural language queries (NLQs) in the form of a ruleset. We then train a large db\_id prediction model, which includes a RoBERTa-based finetuned encoder, to predict the correct Database identifier (db\_id) based on both the NLQ and the LLM-generated rules. Finally, we refine the generated SQL by using critic agents to correct errors. Experimental results demonstrate that our framework outperforms the current state-of-the-art models in both database intent prediction and SQL generation accuracy.
comment: Accepted in IJCNN25
♻ ☆ In-Situ Fine-Tuning of Wildlife Models in IoT-Enabled Camera Traps for Efficient Adaptation
Resource-constrained IoT devices increasingly rely on deep learning models, however, these models experience significant accuracy drops due to domain shifts when encountering variations in lighting, weather, and seasonal conditions. While cloud-based retraining can address this issue, many IoT deployments operate with limited connectivity and energy constraints, making traditional fine-tuning approaches impractical. We explore this challenge through the lens of wildlife ecology, where camera traps must maintain accurate species classification across changing seasons, weather, and habitats without reliable connectivity. We introduce WildFit, an autonomous in-situ adaptation framework that leverages the key insight that background scenes change more frequently than the visual characteristics of monitored species. WildFit combines background-aware synthesis to generate training samples on-device with drift-aware fine-tuning that triggers model updates only when necessary to conserve resources. Our background-aware synthesis surpasses efficient baselines by 7.3\% and diffusion models by 3.0\% while being orders of magnitude faster, our drift-aware fine-tuning achieves Pareto optimality with 50\% fewer updates and 1.5\% higher accuracy, and the end-to-end system outperforms domain adaptation approaches by 20--35%\% while consuming only 11.2 Wh over 37 days -- enabling battery-powered deployment.
♻ ☆ Exploring Spatial Representation to Enhance LLM Reasoning in Aerial Vision-Language Navigation
Aerial Vision-and-Language Navigation (VLN) is a novel task enabling Unmanned Aerial Vehicles (UAVs) to navigate in outdoor environments through natural language instructions and visual cues. However, it remains challenging due to the complex spatial relationships in aerial scenes.In this paper, we propose a training-free, zero-shot framework for aerial VLN tasks, where the large language model (LLM) is leveraged as the agent for action prediction. Specifically, we develop a novel Semantic-Topo-Metric Representation (STMR) to enhance the spatial reasoning capabilities of LLMs. This is achieved by extracting and projecting instruction-related semantic masks onto a top-down map, which presents spatial and topological information about surrounding landmarks and grows during the navigation process. At each step, a local map centered at the UAV is extracted from the growing top-down map, and transformed into a ma trix representation with distance metrics, serving as the text prompt to LLM for action prediction in response to the given instruction. Experiments conducted in real and simulation environments have proved the effectiveness and robustness of our method, achieving absolute success rate improvements of 26.8% and 5.8% over current state-of-the-art methods on simple and complex navigation tasks, respectively. The dataset and code will be released soon.
♻ ☆ Fourier-VLM: Compressing Vision Tokens in the Frequency Domain for Large Vision-Language Models
Vision-Language Models (VLMs) typically replace the predefined image placeholder token () in textual instructions with visual features from an image encoder, forming the input to a backbone Large Language Model (LLM). However, the large number of vision tokens significantly increases the context length, leading to high computational overhead and inference latency. While previous efforts mitigate this by selecting only important visual features or leveraging learnable queries to reduce token count, they often compromise performance or introduce substantial extra costs. In response, we propose Fourier-VLM, a simple yet efficient method that compresses visual representations in the frequency domain. Our approach is motivated by the observation that vision features output from the vision encoder exhibit concentrated energy in low-frequency components. Leveraging this, we apply a low-pass filter to the vision features using a two-dimensional Discrete Cosine Transform (DCT). Notably, the DCT is efficiently computed via the Fast Fourier Transform (FFT) operator with a time complexity of $\mathcal{O}(n\log n)$, minimizing the extra computational cost while introducing no additional parameters. Extensive experiments across various image-based benchmarks demonstrate that Fourier-VLM achieves competitive performance with strong generalizability across both LLaVA and Qwen-VL architectures. Crucially, it reduce inference FLOPs by up to 83.8% and boots generation speed by 31.2% compared to LLaVA-v1.5, highlighting the superior efficiency and practicality.
comment: 12 pages, 4 figures
Computational Engineering, Finance, and Science 6
☆ A Lagrangian method for solving the spherical shallow water equations using power diagrams
Numerical simulations of the air in the atmosphere and water in the oceans are essential for numerical weather prediction. The state-of-the-art for performing these fluid simulations relies on an Eulerian viewpoint, in which the fluid domain is discretized into a mesh, and the governing equations describe the fluid motion as it passes through each cell of the mesh. However, it is unclear whether a Lagrangian viewpoint, in which the fluid is discretized by a collection of particles, can outperform Eulerian simulations in global atmospheric simulations. To date, Lagrangian approaches have shown promise, but tend to produce smoother solutions. In this work, a new Lagrangian method is developed to simulate the atmosphere in which particles are represented with spherical power cells. We introduce an efficient algorithm for computing these cells which are then used to discretize the spherical shallow water equations. Mass conservation is enforced by solving a semi-discrete optimal transport problem and a semi-implicit time stepping procedure is used to advance the solution in time. We note that, in contrast to previous work, artificial viscosity is not needed to stabilize the simulation. The performance of the spherical Voronoi diagram calculation is first assessed, which shows that spherical Voronoi diagrams of 100 million sites can be computed in under 2 minutes on a single machine. The new simulation method is then evaluated on standard benchmark test cases, which shows that momentum and energy conservation of this new method is comparable to the latest Lagrangian approach for simulating the spherical shallow water equations.
☆ Material Fingerprinting: A shortcut to material model discovery without solving optimization problems
We propose Material Fingerprinting, a new method for the rapid discovery of mechanical material models from direct or indirect data that avoids solving potentially non-convex optimization problems. The core assumption of Material Fingerprinting is that each material exhibits a unique response when subjected to a standardized experimental setup. We can interpret this response as the material's fingerprint, essentially a unique identifier that encodes all pertinent information about the material's mechanical characteristics. Consequently, once we have established a database containing fingerprints and their corresponding mechanical models during an offline phase, we can rapidly characterize an unseen material in an online phase. This is accomplished by measuring its fingerprint and employing a pattern recognition algorithm to identify the best matching fingerprint in the database. In our study, we explore this concept in the context of hyperelastic materials, demonstrating the applicability of Material Fingerprinting across different experimental setups. Initially, we examine Material Fingerprinting through experiments involving homogeneous deformation fields, which provide direct strain-stress data pairs. We then extend this concept to experiments involving complexly shaped specimens with heterogeneous deformation fields, which provide indirect displacement and reaction force measurements. We show that, in both cases, Material Fingerprinting is an efficient tool for model discovery, bypassing the challenges of potentially non-convex optimization. We believe that Material Fingerprinting provides a powerful and generalizable framework for rapid material model identification across a wide range of experimental designs and material behaviors, paving the way for numerous future developments.
☆ Semantic-Enhanced Time-Series Forecasting via Large Language Models
Time series forecasting plays a significant role in finance, energy, meteorology, and IoT applications. Recent studies have leveraged the generalization capabilities of large language models (LLMs) to adapt to time series forecasting, achieving promising performance. However, existing studies focus on token-level modal alignment, instead of bridging the intrinsic modality gap between linguistic knowledge structures and time series data patterns, greatly limiting the semantic representation. To address this issue, we propose a novel Semantic-Enhanced LLM (SE-LLM) that explores the inherent periodicity and anomalous characteristics of time series to embed into the semantic space to enhance the token embedding. This process enhances the interpretability of tokens for LLMs, thereby activating the potential of LLMs for temporal sequence analysis. Moreover, existing Transformer-based LLMs excel at capturing long-range dependencies but are weak at modeling short-term anomalies in time-series data. Hence, we propose a plugin module embedded within self-attention that models long-term and short-term dependencies to effectively adapt LLMs to time-series analysis. Our approach freezes the LLM and reduces the sequence dimensionality of tokens, greatly reducing computational consumption. Experiments demonstrate the superiority performance of our SE-LLM against the state-of-the-art (SOTA) methods.
comment: 14 pages,9 figures
☆ Projection-based multifidelity linear regression for data-scarce applications
Surrogate modeling for systems with high-dimensional quantities of interest remains challenging, particularly when training data are costly to acquire. This work develops multifidelity methods for multiple-input multiple-output linear regression targeting data-limited applications with high-dimensional outputs. Multifidelity methods integrate many inexpensive low-fidelity model evaluations with limited, costly high-fidelity evaluations. We introduce two projection-based multifidelity linear regression approaches that leverage principal component basis vectors for dimensionality reduction and combine multifidelity data through: (i) a direct data augmentation using low-fidelity data, and (ii) a data augmentation incorporating explicit linear corrections between low-fidelity and high-fidelity data. The data augmentation approaches combine high-fidelity and low-fidelity data into a unified training set and train the linear regression model through weighted least squares with fidelity-specific weights. Various weighting schemes and their impact on regression accuracy are explored. The proposed multifidelity linear regression methods are demonstrated on approximating the surface pressure field of a hypersonic vehicle in flight. In a low-data regime of no more than ten high-fidelity samples, multifidelity linear regression achieves approximately 3% - 12% improvement in median accuracy compared to single-fidelity methods with comparable computational cost.
comment: 23 page, 7 figures, submitted to Machine Learning for Computational Science and Engineering special issue Accelerating Numerical Methods With Scientific Machine Learning
♻ ☆ Organizations, teams, and job mobility: A social microdynamics approach
Most of the modeling approaches used to understand organizational worker mobility are highly stylized, using idealizations such as structureless organizations, indistinguishable workers, and a lack of social bonding of the workers. In this article, aided by a decade of precise, temporally resolved data of a large civilian organization of the US Army in which employees can change jobs in a similar way to many private organizations, we introduce a new framework to describe organizations as composites of teams within which individuals perform specific tasks and where social connections develop. By tracking the personnel composition of organizational teams, we find that workers who change jobs are highly influenced by preferring to reunite with past coworkers. In this organization, 34% of all moves across temporally stable teams (and 32% of the totality of moves) lead to worker reunions, percentages that have not been reported and are well-above intuitive expectation. To assess the importance of worker reunions in determining job moves, we compare them to labor supply and demand with or without occupational specialization. The comparison shows that the most consistent information about job change is provided by reunions. We find that the greater the time workers spend together or the smaller the team they share both increase their likelihood to reunite, supporting the notion of increased familiarity and trust behind such reunions and the dominant role of social capital in the evolution of large organizations. Our study of this organization supports the idea that to correctly forecast job mobility inside large organizations, their teams structures and the social ties formed in those teams play a key role in shaping internal job change.
♻ ☆ EngiBench: A Framework for Data-Driven Engineering Design Research
Engineering design optimization seeks to automatically determine the shapes, topologies, or parameters of components that maximize performance under given conditions. This process often depends on physics-based simulations, which are difficult to install, computationally expensive, and require domain-specific expertise. To mitigate these challenges, we introduce EngiBench, the first open-source library and datasets spanning diverse domains for data-driven engineering design. EngiBench provides a unified API and a curated set of benchmarks -- covering aeronautics, heat conduction, photonics, and more -- that enable fair, reproducible comparisons of optimization and machine learning algorithms, such as generative or surrogate models. We also release EngiOpt, a companion library offering a collection of such algorithms compatible with the EngiBench interface. Both libraries are modular, letting users plug in novel algorithms or problems, automate end-to-end experiment workflows, and leverage built-in utilities for visualization, dataset generation, feasibility checks, and performance analysis. We demonstrate their versatility through experiments comparing state-of-the-art techniques across multiple engineering design problems, an undertaking that was previously prohibitively time-consuming to perform. Finally, we show that these problems pose significant challenges for standard machine learning methods due to highly sensitive and constrained design manifolds.
Databases 7
☆ RNA-KG v2.0: An RNA-centered Knowledge Graph with Properties
RNA-KG is a recently developed knowledge graph that integrates the interactions involving coding and non-coding RNA molecules extracted from public data sources. It can be used to support the classification of new molecules, identify new interactions through the use of link prediction methods, and reveal hidden patterns among the represented entities. In this paper, we propose RNA-KG v2.0, a new release of RNA-KG that integrates around 100M manually curated interactions sourced from 91 linked open data repositories and ontologies. Relationships are characterized by standardized properties that capture the specific context (e.g., cell line, tissue, pathological state) in which they have been identified. In addition, the nodes are enriched with detailed attributes, such as descriptions, synonyms, and molecular sequences sourced from platforms such as OBO ontologies, NCBI repositories, RNAcentral, and Ensembl. The enhanced repository enables the expression of advanced queries that take into account the context in which the experiments were conducted. It also supports downstream applications in RNA research, including "context-aware" link prediction techniques that combine both topological and semantic information.
Accelerating High-Dimensional Nearest Neighbor Search with Dynamic Query Preference
Approximate Nearest Neighbor Search (ANNS) is a crucial operation in databases and artificial intelligence. Current graph-based ANNS methods, such as HNSW and NSG, have shown remarkable performance but are designed under the assumption of a uniform query distribution. However, in practical scenarios, user preferences and query temporal dynamics lead to some queries being searched for more frequently than others. To fully utilize these characteristics, we propose DQF, a novel Dual-Index Query Framework. This framework comprises a dual-layer index structure and a dynamic search strategy based on a decision tree. The dual-layer index structure comprises a hot index for high-frequency nodes and a full index for the entire dataset, allowing for the separate management of hot and cold queries. Furthermore, we propose a dynamic search strategy that employs a decision tree to adapt to the specific characteristics of each query. The decision tree evaluates whether a query is of the high-frequency type to detect the opportunities for early termination on the dual-layer, avoiding unnecessary searches in the full index. Experimental results on four real-world datasets demonstrate that the Dual-Index Query Framework achieves a significant speedup of 2.0-5.7x over state-of-the-art algorithms while maintaining a 95% recall rate. Importantly, it does not require full index reconstruction when query distributions change, underscoring its efficiency and practicality in dynamic query distribution scenarios.
☆ Schema Lineage Extraction at Scale: Multilingual Pipelines, Composite Evaluation, and Language-Model Benchmarks
Enterprise data pipelines, characterized by complex transformations across multiple programming languages, often cause a semantic disconnect between original metadata and downstream data. This "semantic drift" compromises data reproducibility and governance, and impairs the utility of services like retrieval-augmented generation (RAG) and text-to-SQL systems. To address this, a novel framework is proposed for the automated extraction of fine-grained schema lineage from multilingual enterprise pipeline scripts. This method identifies four key components: source schemas, source tables, transformation logic, and aggregation operations, creating a standardized representation of data transformations. For the rigorous evaluation of lineage quality, this paper introduces the Schema Lineage Composite Evaluation (SLiCE), a metric that assesses both structural correctness and semantic fidelity. A new benchmark is also presented, comprising 1,700 manually annotated lineages from real-world industrial scripts. Experiments were conducted with 12 language models, from 1.3B to 32B small language models (SLMs) to large language models (LLMs) like GPT-4o and GPT-4.1. The results demonstrate that the performance of schema lineage extraction scales with model size and the sophistication of prompting techniques. Specially, a 32B open-source model, using a single reasoning trace, can achieve performance comparable to the GPT series under standard prompting. This finding suggests a scalable and economical approach for deploying schema-aware agents in practical applications.
☆ AerialDB: A Federated Peer-to-Peer Spatio-temporal Edge Datastore for Drone Fleets
Recent years have seen an unprecedented growth in research that leverages the newest computing paradigm of Internet of Drones, comprising a fleet of connected Unmanned Aerial Vehicles (UAVs) used for a wide range of tasks such as monitoring and analytics in highly mobile and changing environments characteristic of disaster regions. Given that the typical data (i.e., videos and images) collected by the fleet of UAVs deployed in such scenarios can be considerably larger than what the onboard computers can process, the UAVs need to offload their data in real-time to the edge and the cloud for further processing. To that end, we present the design of AerialDB - a lightweight decentralized data storage and query system that can store and process time series data on a multi-UAV system comprising: A) a fleet of hundreds of UAVs fitted with onboard computers, and B) ground-based edge servers connected through a cellular link. Leveraging lightweight techniques for content-based replica placement and indexing of shards, AerialDB has been optimized for efficient processing of different possible combinations of typical spatial and temporal queries performed by real-world disaster management applications. Using containerized deployment spanning up to 400 drones and 80 edges, we demonstrate that AerialDB is able to scale efficiently while providing near real-time performance with different realistic workloads. Further, AerialDB comprises a decentralized and locality-aware distributed execution engine which provides graceful degradation of performance upon edge failures with relatively low latency while processing large spatio-temporal data. AerialDB exhibits comparable insertion performance and 100 times improvement in query performance against state-of-the-art baseline. Moreover, it exhibits a 10 times and 100 times improvement with insertion and query workloads respectively over the cloud baseline.
☆ Synthesize, Retrieve, and Propagate: A Unified Predictive Modeling Framework for Relational Databases
Relational databases (RDBs) have become the industry standard for storing massive and heterogeneous data. However, despite the widespread use of RDBs across various fields, the inherent structure of relational databases hinders their ability to benefit from flourishing deep learning methods. Previous research has primarily focused on exploiting the unary dependency among multiple tables in a relational database using the primary key - foreign key relationships, either joining multiple tables into a single table or constructing a graph among them, which leaves the implicit composite relations among different tables and a substantial potential of improvement for predictive modeling unexplored. In this paper, we propose SRP, a unified predictive modeling framework that synthesizes features using the unary dependency, retrieves related information to capture the composite dependency, and propagates messages across a constructed graph to learn adjacent patterns for prediction on relation databases. By introducing a new retrieval mechanism into RDB, SRP is designed to fully capture both the unary and the composite dependencies within a relational database, thereby enhancing the receptive field of tabular data prediction. In addition, we conduct a comprehensive analysis on the components of SRP, offering a nuanced understanding of model behaviors and practical guidelines for future applications. Extensive experiments on five real-world datasets demonstrate the effectiveness of SRP and its potential applicability in industrial scenarios. The code is released at https://github.com/NingLi670/SRP.
☆ Lost Data in Electron Microscopy
The goal of this study is to estimate the amount of lost data in electron microscopy and to analyze the extent to which experimentally acquired images are utilized in peer-reviewed scientific publications. Analysis of the number of images taken on electron microscopes at a core user facility and the number of images subsequently included in peer-reviewed scientific journals revealed low efficiency of data utilization. More than 90% of electron microscopy data generated during routine instrument operation remain unused. Of the more than 150000 electron microscopy images evaluated in this study, only approximately 3500 (just over 2%) were made available in publications. Thus, the amount of lost data in electron microscopy can be estimated as >90% (in terms of data being recorded but not being published in peer-reviewed literature). On the one hand, these results highlight a shortcoming in the optimal use of microscopy images; on the other hand, they indicate the existence of a large pool of electron microscopy data that can facilitate research in data science and the development of AI-based projects. The considerations important to unlock the potential of lost data are discussed in the present article.
comment: 20 pages, 4 figures, 2 tables
Where Does Academic Database Research Go From Here?
Panel proposal for an open forum to discuss and debate the future of database research in the context of industry, other research communities, and AI. Includes summaries of past panels, positions from panelists, as well as positions from a sample of the data management community.
Distributed, Parallel, and Cluster Computing 6
☆ Enhancing Privacy in Decentralized Min-Max Optimization: A Differentially Private Approach
Decentralized min-max optimization allows multi-agent systems to collaboratively solve global min-max optimization problems by facilitating the exchange of model updates among neighboring agents, eliminating the need for a central server. However, sharing model updates in such systems carry a risk of exposing sensitive data to inference attacks, raising significant privacy concerns. To mitigate these privacy risks, differential privacy (DP) has become a widely adopted technique for safeguarding individual data. Despite its advantages, implementing DP in decentralized min-max optimization poses challenges, as the added noise can hinder convergence, particularly in non-convex scenarios with complex agent interactions in min-max optimization problems. In this work, we propose an algorithm called DPMixSGD (Differential Private Minmax Hybrid Stochastic Gradient Descent), a novel privacy-preserving algorithm specifically designed for non-convex decentralized min-max optimization. Our method builds on the state-of-the-art STORM-based algorithm, one of the fastest decentralized min-max solutions. We rigorously prove that the noise added to local gradients does not significantly compromise convergence performance, and we provide theoretical bounds to ensure privacy guarantees. To validate our theoretical findings, we conduct extensive experiments across various tasks and models, demonstrating the effectiveness of our approach.
comment: To appear in ACM MobiHoc 2025
☆ On the Efficiency of Dynamic Transaction Scheduling in Blockchain Sharding
Sharding is a technique to speed up transaction processing in blockchains, where the $n$ processing nodes in the blockchain are divided into $s$ disjoint groups (shards) that can process transactions in parallel. We study dynamic scheduling problems on a shard graph $G_s$ where transactions arrive online over time and are not known in advance. Each transaction may access at most $k$ shards, and we denote by $d$ the worst distance between a transaction and its accessing (destination) shards (the parameter $d$ is unknown to the shards). To handle different values of $d$, we assume a locality sensitive decomposition of $G_s$ into clusters of shards, where every cluster has a leader shard that schedules transactions for the cluster. We first examine the simpler case of the stateless model, where leaders are not aware of the current state of the transaction accounts, and we prove a $O(d \log^2 s \cdot \min\{k, \sqrt{s}\})$ competitive ratio for latency. We then consider the stateful model, where leader shards gather the current state of accounts, and we prove a $O(\log s\cdot \min\{k, \sqrt{s}\}+\log^2 s)$ competitive ratio for latency. Each leader calculates the schedule in polynomial time for each transaction that it processes. We show that for any $\epsilon > 0$, approximating the optimal schedule within a $(\min\{k, \sqrt{s}\})^{1 -\epsilon}$ factor is NP-hard. Hence, our bound for the stateful model is within a poly-log factor from the best possibly achievable. To the best of our knowledge, this is the first work to establish provably efficient dynamic scheduling algorithms for blockchain sharding systems.
comment: 15 pages, 2 figures, accepted as a regular paper at 39th International Symposium on Distributed Computing (DISC 2025)
☆ Real-Time Analysis of Unstructured Data with Machine Learning on Heterogeneous Architectures
As the particle physics community needs higher and higher precisions in order to test our current model of the subatomic world, larger and larger datasets are necessary. With upgrades scheduled for the detectors of colliding-beam experiments around the world, and specifically at the Large Hadron Collider at CERN, more collisions and more complex interactions are expected. This directly implies an increase in data produced and consequently in the computational resources needed to process them. At CERN, the amount of data produced is gargantuan. This is why the data have to be heavily filtered and selected in real time before being permanently stored. This data can then be used to perform physics analyses, in order to expand our current understanding of the universe and improve the Standard Model of physics. This real-time filtering, known as triggering, involves complex processing happening often at frequencies as high as 40 MHz. This thesis contributes to understanding how machine learning models can be efficiently deployed in such environments, in order to maximize throughput and minimize energy consumption. Inevitably, modern hardware designed for such tasks and contemporary algorithms are needed in order to meet the challenges posed by the stringent, high-frequency data rates. In this work, I present our graph neural network-based pipeline, developed for charged particle track reconstruction at the LHCb experiment at CERN. The pipeline was implemented end-to-end inside LHCb's first-level trigger, entirely on GPUs. Its performance was compared against the classical tracking algorithms currently in production at LHCb. The pipeline was also accelerated on the FPGA architecture, and its performance in terms of power consumption and processing speed was compared against the GPU implementation.
comment: PhD thesis, Chapters 8 and 9 include results from work performed in collaboration with Anthony Correia
☆ An Experimental Exploration of In-Memory Computing for Multi-Layer Perceptrons
In modern computer architectures, the performance of many memory-bound workloads (e.g., machine learning, graph processing, databases) is limited by the data movement bottleneck that emerges when transferring large amounts of data between the main memory and the central processing unit (CPU). Processing-in-memory is an emerging computing paradigm that aims to alleviate this data movement bottleneck by performing computation close to or within the memory units, where data resides. One example of a prevalent workload whose performance is bound by the data movement bottleneck is the training and inference process of artificial neural networks. In this work, we analyze the potential of modern general-purpose PiM architectures to accelerate neural networks. To this end, we selected the UPMEM PiM system, the first commercially available real-world general-purpose PiM architecture. We compared the implementation of multilayer perceptrons (MLPs) in PiM with a sequential baseline running on an Intel Xeon CPU. The UPMEM implementation achieves up to $259\times$ better performance for inference of large batch sizes when compared against the CPU that exploits the size of the available PiM memory. Additionally, two smaller MLPs were implemented using UPMEM's working SRAM (WRAM), a scratchpad memory, to evaluate their performance against a low-power Nvidia Jetson graphics processing unit (GPU), providing further insights into the efficiency of UPMEM's PiM for neural network inference. Results show that using WRAM achieves kernel execution times for MLP inference of under $3$ ms, which is within the same order of magnitude as low-power GPUs.
comment: 19 pages, 1 figures, and 2 tables
☆ FlashMP: Fast Discrete Transform-Based Solver for Preconditioning Maxwell's Equations on GPUs
Efficiently solving large-scale linear systems is a critical challenge in electromagnetic simulations, particularly when using the Crank-Nicolson Finite-Difference Time-Domain (CN-FDTD) method. Existing iterative solvers are commonly employed to handle the resulting sparse systems but suffer from slow convergence due to the ill-conditioned nature of the double-curl operator. Approximate preconditioners, like Successive Over-Relaxation (SOR) and Incomplete LU decomposition (ILU), provide insufficient convergence, while direct solvers are impractical due to excessive memory requirements. To address this, we propose FlashMP, a novel preconditioning system that designs a subdomain exact solver based on discrete transforms. FlashMP provides an efficient GPU implementation that achieves multi-GPU scalability through domain decomposition. Evaluations on AMD MI60 GPU clusters (up to 1000 GPUs) show that FlashMP reduces iteration counts by up to 16x and achieves speedups of 2.5x to 4.9x compared to baseline implementations in state-of-the-art libraries such as Hypre. Weak scalability tests show parallel efficiencies up to 84.1%.
☆ AerialDB: A Federated Peer-to-Peer Spatio-temporal Edge Datastore for Drone Fleets
Recent years have seen an unprecedented growth in research that leverages the newest computing paradigm of Internet of Drones, comprising a fleet of connected Unmanned Aerial Vehicles (UAVs) used for a wide range of tasks such as monitoring and analytics in highly mobile and changing environments characteristic of disaster regions. Given that the typical data (i.e., videos and images) collected by the fleet of UAVs deployed in such scenarios can be considerably larger than what the onboard computers can process, the UAVs need to offload their data in real-time to the edge and the cloud for further processing. To that end, we present the design of AerialDB - a lightweight decentralized data storage and query system that can store and process time series data on a multi-UAV system comprising: A) a fleet of hundreds of UAVs fitted with onboard computers, and B) ground-based edge servers connected through a cellular link. Leveraging lightweight techniques for content-based replica placement and indexing of shards, AerialDB has been optimized for efficient processing of different possible combinations of typical spatial and temporal queries performed by real-world disaster management applications. Using containerized deployment spanning up to 400 drones and 80 edges, we demonstrate that AerialDB is able to scale efficiently while providing near real-time performance with different realistic workloads. Further, AerialDB comprises a decentralized and locality-aware distributed execution engine which provides graceful degradation of performance upon edge failures with relatively low latency while processing large spatio-temporal data. AerialDB exhibits comparable insertion performance and 100 times improvement in query performance against state-of-the-art baseline. Moreover, it exhibits a 10 times and 100 times improvement with insertion and query workloads respectively over the cloud baseline.
Information Retrieval 10
☆ Are Multimodal Embeddings Truly Beneficial for Recommendation? A Deep Dive into Whole vs. Individual Modalities
Multimodal recommendation (MMRec) has emerged as a mainstream paradigm, typically leveraging text and visual embeddings extracted from pre-trained models such as Sentence-BERT, Vision Transformers, and ResNet. This approach is founded on the intuitive assumption that incorporating multimodal embeddings can enhance recommendation performance. However, despite its popularity, this assumption lacks comprehensive empirical verification. This presents a critical research gap. To address it, we pose the central research question of this paper: Are multimodal embeddings truly beneficial for recommendation? To answer this question, we conduct a large-scale empirical study examining the role of text and visual embeddings in modern MMRec models, both as a whole and individually. Specifically, we pose two key research questions: (1) Do multimodal embeddings as a whole improve recommendation performance? (2) Is each individual modality - text and image - useful when used alone? To isolate the effect of individual modalities - text or visual - we employ a modality knockout strategy by setting the corresponding embeddings to either constant values or random noise. To ensure the scale and comprehensiveness of our study, we evaluate 14 widely used state-of-the-art MMRec models. Our findings reveal that: (1) multimodal embeddings generally enhance recommendation performance - particularly when integrated through more sophisticated graph-based fusion models. Surprisingly, commonly adopted baseline models with simple fusion schemes, such as VBPR and BM3, show only limited gains. (2) The text modality alone achieves performance comparable to the full multimodal setting in most cases, whereas the image modality alone does not. These results offer foundational insights and practical guidance for the MMRec community. We will release our code and datasets to facilitate future research.
☆ PrLM: Learning Explicit Reasoning for Personalized RAG via Contrastive Reward Optimization
Personalized retrieval-augmented generation (RAG) aims to produce user-tailored responses by incorporating retrieved user profiles alongside the input query. Existing methods primarily focus on improving retrieval and rely on large language models (LLMs) to implicitly integrate the retrieved context with the query. However, such models are often sensitive to retrieval quality and may generate responses that are misaligned with user preferences. To address this limitation, we propose PrLM, a reinforcement learning framework that trains LLMs to explicitly reason over retrieved user profiles. Guided by a contrastively trained personalization reward model, PrLM effectively learns from user responses without requiring annotated reasoning paths. Experiments on three personalized text generation datasets show that PrLM outperforms existing methods and remains robust across varying numbers of retrieved profiles and different retrievers.
☆ HealthBranches: Synthesizing Clinically-Grounded Question Answering Datasets via Decision Pathways
HealthBranches is a novel benchmark dataset for medical Question-Answering (Q&A), specifically designed to evaluate complex reasoning in Large Language Models (LLMs). This dataset is generated through a semi-automated pipeline that transforms explicit decision pathways from medical source into realistic patient cases with associated questions and answers. Covering 4,063 case studies across 17 healthcare topics, each data point is based on clinically validated reasoning chains. HealthBranches supports both open-ended and multiple-choice question formats and uniquely includes the full reasoning path for each Q&A. Its structured design enables robust evaluation of LLMs' multi-step inference capabilities, including their performance in structured Retrieval-Augmented Generation (RAG) contexts. HealthBranches establishes a foundation for the development of more trustworthy, interpretable, and clinically reliable LLMs in high-stakes domains while also serving as a valuable resource for educational purposes.
☆ Arce: Augmented Roberta with Contextualized Elucidations for Ner in Automated Rule Checking
Accurate information extraction from specialized texts is a critical challenge, particularly for named entity recognition (NER) in the architecture, engineering, and construction (AEC) domain to support automated rule checking (ARC). The performance of standard pre-trained models is often constrained by the domain gap, as they struggle to interpret the specialized terminology and complex relational contexts inherent in AEC texts. Although this issue can be mitigated by further pre-training on large, human-curated domain corpora, as exemplified by methods like ARCBERT, this approach is both labor-intensive and cost-prohibitive. Consequently, leveraging large language models (LLMs) for automated knowledge generation has emerged as a promising alternative. However, the optimal strategy for generating knowledge that can genuinely enhance smaller, efficient models remains an open question. To address this, we propose ARCE (augmented RoBERTa with contextualized elucidations), a novel approach that systematically explores and optimizes this generation process. ARCE employs an LLM to first generate a corpus of simple, direct explanations, which we term Cote, and then uses this corpus to incrementally pre-train a RoBERTa model prior to its fine-tuning on the downstream task. Our extensive experiments show that ARCE establishes a new state-of-the-art on a benchmark AEC dataset, achieving a Macro-F1 score of 77.20%. This result also reveals a key finding: simple, explanation-based knowledge proves surprisingly more effective than complex, role-based rationales for this task. The code is publicly available at:https://github.com/nxcc-lab/ARCE.
☆ SocRipple: A Two-Stage Framework for Cold-Start Video Recommendations
Most industry scale recommender systems face critical cold start challenges new items lack interaction history, making it difficult to distribute them in a personalized manner. Standard collaborative filtering models underperform due to sparse engagement signals, while content only approaches lack user specific relevance. We propose SocRipple, a novel two stage retrieval framework tailored for coldstart item distribution in social graph based platforms. Stage 1 leverages the creators social connections for targeted initial exposure. Stage 2 builds on early engagement signals and stable user embeddings learned from historical interactions to "ripple" outwards via K Nearest Neighbor (KNN) search. Large scale experiments on a major video platform show that SocRipple boosts cold start item distribution by +36% while maintaining user engagement rate on cold start items, effectively balancing new item exposure with personalized recommendations.
comment: 4 pages, 2 figures, 2 tables, recsys 2025
☆ Selection and Exploitation of High-Quality Knowledge from Large Language Models for Recommendation
In recent years, there has been growing interest in leveraging the impressive generalization capabilities and reasoning ability of large language models (LLMs) to improve the performance of recommenders. With this operation, recommenders can access and learn the additional world knowledge and reasoning information via LLMs. However, in general, for different users and items, the world knowledge derived from LLMs suffers from issues of hallucination, content redundant, and information homogenization. Directly feeding the generated response embeddings into the recommendation model can lead to unavoidable performance deterioration. To address these challenges, we propose a Knowledge Selection \& Exploitation Recommendation (KSER) framework, which effectively select and extracts the high-quality knowledge from LLMs. The framework consists of two key components: a knowledge filtering module and a embedding spaces alignment module. In the knowledge filtering module, a Embedding Selection Filter Network (ESFNet) is designed to assign adaptive weights to different knowledge chunks in different knowledge fields. In the space alignment module, an attention-based architecture is proposed to align the semantic embeddings from LLMs with the feature space used to train the recommendation models. In addition, two training strategies--\textbf{all-parameters training} and \textbf{extractor-only training}--are proposed to flexibly adapt to different downstream tasks and application scenarios, where the extractor-only training strategy offers a novel perspective on knowledge-augmented recommendation. Experimental results validate the necessity and effectiveness of both the knowledge filtering and alignment modules, and further demonstrate the efficiency and effectiveness of the extractor-only training strategy.
☆ Uncertainty-Aware Semantic Decoding for LLM-Based Sequential Recommendation
Large language models have been widely applied to sequential recommendation tasks, yet during inference, they continue to rely on decoding strategies developed for natural language processing. This creates a mismatch between text-generation objectives and recommendation next item selection objectives. This paper addresses this limitation by proposing an Uncertainty-aware Semantic Decoding (USD) framework that combines logit-based clustering with adaptive scoring to improve next-item predictions. Our approach clusters items with similar logit vectors into semantic equivalence groups, then redistributes probability mass within these clusters and computes entropy across them to control item scoring and sampling temperature during recommendation inference. Experiments on Amazon Product datasets (six domains) gains of 18.5\% in HR@3, 11.9\% in NDCG@3, and 10.8\% in MRR@3 compared to state-of-the-art baselines. Hyperparameter analysis confirms the optimal parameters among various settings, and experiments on H\&M, and Netflix datasets indicate that the framework can adapt to differing recommendation domains. The experimental results confirm that integrating semantic clustering and uncertainty assessment yields more reliable and accurate recommendations.
comment: Accepted by APWeb 2025
☆ Reflect then Learn: Active Prompting for Information Extraction Guided by Introspective Confusion
Large Language Models (LLMs) show remarkable potential for few-shot information extraction (IE), yet their performance is highly sensitive to the choice of in-context examples. Conventional selection strategies often fail to provide informative guidance, as they overlook a key source of model fallibility: confusion stemming not just from semantic content, but also from the generation of well-structured formats required by IE tasks. To address this, we introduce Active Prompting for Information Extraction (APIE), a novel active prompting framework guided by a principle we term introspective confusion. Our method empowers an LLM to assess its own confusion through a dual-component uncertainty metric that uniquely quantifies both Format Uncertainty (difficulty in generating correct syntax) and Content Uncertainty (inconsistency in extracted semantics). By ranking unlabeled data with this comprehensive score, our framework actively selects the most challenging and informative samples to serve as few-shot exemplars. Extensive experiments on four benchmarks show that our approach consistently outperforms strong baselines, yielding significant improvements in both extraction accuracy and robustness. Our work highlights the critical importance of a fine-grained, dual-level view of model uncertainty when it comes to building effective and reliable structured generation systems.
comment: Under Review
♻ ☆ How Fair is Your Diffusion Recommender Model?
Diffusion-based learning has settled as a rising paradigm in generative recommendation, outperforming traditional approaches built upon variational autoencoders and generative adversarial networks. Despite their effectiveness, concerns have been raised that diffusion models - widely adopted in other machine-learning domains - could potentially lead to unfair outcomes, since they are trained to recover data distributions that often encode inherent biases. Motivated by the related literature, and acknowledging the extensive discussion around bias and fairness aspects in recommendation, we propose, to the best of our knowledge, the first empirical study of fairness for DiffRec, chronologically the pioneer technique in diffusion-based recommendation. Our empirical study involves DiffRec and its variant L-DiffRec, tested against nine recommender systems on two benchmarking datasets to assess recommendation utility and fairness from both consumer and provider perspectives. Specifically, we first evaluate the utility and fairness dimensions separately and, then, within a multi-criteria setting to investigate whether, and to what extent, these approaches can achieve a trade-off between the two. While showing worrying trends in alignment with the more general machine-learning literature on diffusion models, our results also indicate promising directions to address the unfairness issue in future work. The source code is available at https://github.com/danielemalitesta/FairDiffRec.
comment: Accepted at ACM RecSys 2025 (Late-Breaking Results track)
♻ ☆ How Relevance Emerges: Interpreting LoRA Fine-Tuning in Reranking LLMs
We conduct a behavioral exploration of LoRA fine-tuned LLMs for Passage Reranking to understand how relevance signals are learned and deployed by Large Language Models. By fine-tuning Mistral-7B, LLaMA3.1-8B, and Pythia-6.9B on MS MARCO under diverse LoRA configurations, we investigate how relevance modeling evolves across checkpoints, the impact of LoRA rank (1, 2, 8, 32), and the relative importance of updated MHA vs. MLP components. Our ablations reveal which layers and projections within LoRA transformations are most critical for reranking accuracy. These findings offer fresh explanations into LoRA's adaptation mechanisms, setting the stage for deeper mechanistic studies in Information Retrieval. All models used in this study have been shared.
comment: Extended Abstract
Computational Engineering, Finance, and Science 4
☆ Cardiotensor: A Python Library for Orientation Analysis and Tractography in 3D Cardiac Imaging
Understanding the architecture of the human heart requires analysis of its microstructural organization across scales. With the advent of high-resolution imaging techniques such as synchrotron-based tomography, it has become possible to visualize entire hearts at micron-scale resolution. However, translating these large, complex volumetric datasets into interpretable, quantitative descriptors of cardiac organization remains a major challenge. Here we present cardiotensor, an open-source Python package designed to quantify 3D cardiomyocyte orientation in whole- or partial-heart imaging datasets. It provides efficient, scalable implementations of structure tensor analysis, enabling extraction of directional metrics such as helical angle (HA), intrusion angle (IA), and fractional anisotropy (FA). The package supports datasets reaching teravoxel-scale and is optimized for high-performance computing environments, including parallel and chunk-based processing pipelines. In addition, cardiotensor includes tractography functionality to reconstruct continuous cardiomyocyte trajectories. This enables multi-scale myoaggregate visualization down to the myocyte level, depending on resolution. These capabilities enable detailed structural mapping of cardiac tissue, supporting the assessment of anatomical continuity and regional organization.
comment: 6 pages, 1 figure. Submitted to the Journal of Open Source Software (JOSS). Documentation and source code available at https://josephbrunet.github.io/cardiotensor
☆ Harmonic balance-automatic differentiation method: an out-of-the-box and efficient solver for general nonlinear dynamics simulation
The Harmonic Balance-Alternating Frequency-Time domain (HB-AFT) method is extensively employed for dynamic response analysis of nonlinear systems. However, its application to high-dimensional complex systems is constrained by the manual derivation of Jacobian matrices during Newton-Raphson iterations, which become computationally intractable or error-prone for intricate nonlinearities. The Harmonic Balance-Automatic Differentiation (HB-AD) method is proposed to address this limitation, in which AD is integrated with the harmonic balance framework. This approach eliminates all manual derivations by leveraging AD to compute exact Jacobians numerically, enabling generic and efficient analysis of high-dimensional complex nonlinear systems. The implementation utilizes advanced deep learning frameworks for native parallel computing and CUDA acceleration, and combines AD with arc-length continuation, establishing an out-of-the-box and high efficiency computational architecture. Users need only supply the system's dynamic equations, HB-AD then autonomously trace the complete panorama of periodic responses -- including stable/unstable solution branches. Computational experiments on a rotor system with squeeze-film damper (SFD) demonstrate HB-AD's capability in handling complex nonlinear expressions with automated Jacobian calculations. For a high-dimensional aero-engine rotor-bearing-casing system with complex bearing nonlinearities, HB-AD achieves 17-fold higher efficiency than traditional HB-AFT and 144-fold acceleration over the Newmark method. The HB-AD method is a synergistic merger of computational mechanics and machine learning primitives, delivers an easy to use, general-purpose, high efficiency platform for high-fidelity dynamic characterization of high-dimensional engineering systems.
comment: 36 pages, 7 figures, 2 tables
☆ Modeling and Detecting Company Risks from News: A Case Study in Bloomberg News
Identifying risks associated with a company is important to investors and the well-being of the overall financial market. In this study, we build a computational framework to automatically extract company risk factors from news articles. Our newly proposed schema comprises seven distinct aspects, such as supply chain, regulations, and competitions. We sample and annotate 744 news articles and benchmark various machine learning models. While large language models have achieved huge progress in various types of NLP tasks, our experiment shows that zero-shot and few-shot prompting state-of-the-art LLMs (e.g. LLaMA-2) can only achieve moderate to low performances in identifying risk factors. And fine-tuned pre-trained language models are performing better on most of the risk factors. Using this model, we analyze over 277K Bloomberg news articles and demonstrate that identifying risk factors from news could provide extensive insight into the operations of companies and industries.
♻ ☆ Can LLM-based Financial Investing Strategies Outperform the Market in Long Run?
Large Language Models (LLMs) have recently been leveraged for asset pricing tasks and stock trading applications, enabling AI agents to generate investment decisions from unstructured financial data. However, most evaluations of LLM timing-based investing strategies are conducted on narrow timeframes and limited stock universes, overstating effectiveness due to survivorship and data-snooping biases. We critically assess their generalizability and robustness by proposing FINSABER, a backtesting framework evaluating timing-based strategies across longer periods and a larger universe of symbols. Systematic backtests over two decades and 100+ symbols reveal that previously reported LLM advantages deteriorate significantly under broader cross-section and over a longer-term evaluation. Our market regime analysis further demonstrates that LLM strategies are overly conservative in bull markets, underperforming passive benchmarks, and overly aggressive in bear markets, incurring heavy losses. These findings highlight the need to develop LLM strategies that are able to prioritise trend detection and regime-aware risk controls over mere scaling of framework complexity.
comment: 14 pages
Databases 4
☆ SQL-Exchange: Transforming SQL Queries Across Domains
We introduce SQL-Exchange, a framework for mapping SQL queries across different database schemas by preserving the source query structure while adapting domain-specific elements to align with the target schema. We investigate the conditions under which such mappings are feasible and beneficial, and examine their impact on enhancing the in-context learning performance of text-to-SQL systems as a downstream task. Our comprehensive evaluation across multiple model families and benchmark datasets--assessing structural alignment with source queries, execution validity on target databases, and semantic correctness--demonstrates that SQL-Exchange is effective across a wide range of schemas and query types. Our results further show that using mapped queries as in-context examples consistently improves text-to-SQL performance over using queries from the source schema.
☆ Balancing Privacy and Efficiency: Music Information Retrieval via Additive Homomorphic Encryption
In the era of generative AI, ensuring the privacy of music data presents unique challenges: unlike static artworks such as images, music data is inherently temporal and multimodal, and it is sampled, transformed, and remixed at an unprecedented scale. These characteristics make its core vector embeddings, i.e, the numerical representations of the music, highly susceptible to being learned, misused, or even stolen by models without accessing the original audio files. Traditional methods like copyright licensing and digital watermarking offer limited protection for these abstract mathematical representations, thus necessitating a stronger, e.g., cryptographic, approach to safeguarding the embeddings themselves. Standard encryption schemes, such as AES, render data unintelligible for computation, making such searches impossible. While Fully Homomorphic Encryption (FHE) provides a plausible solution by allowing arbitrary computations on ciphertexts, its substantial performance overhead remains impractical for large-scale vector similarity searches. Given this trade-off, we propose a more practical approach using Additive Homomorphic Encryption (AHE) for vector similarity search. The primary contributions of this paper are threefold: we analyze threat models unique to music information retrieval systems; we provide a theoretical analysis and propose an efficient AHE-based solution through inner products of music embeddings to deliver privacy-preserving similarity search; and finally, we demonstrate the efficiency and practicality of the proposed approach through empirical evaluation and comparison to FHE schemes on real-world MP3 files.
☆ Metadata Management for AI-Augmented Data Workflows
AI-augmented data workflows introduce complex governance challenges, as both human and model-driven processes generate, transform, and consume data artifacts. These workflows blend heterogeneous tools, dynamic execution patterns, and opaque model decisions, making comprehensive metadata capture difficult. In this work, we present TableVault, a metadata governance framework designed for human-AI collaborative data creation. TableVault records ingestion events, traces operation status, links execution parameters to their data origins, and exposes a standardized metadata layer. By combining database-inspired guarantees with AI-oriented design, such as declarative operation builders and lineage-aware references, TableVault supports transparency and reproducibility across mixed human-model pipelines. Through a document classification case study, we demonstrate how TableVault preserves detailed lineage and operational context, enabling robust metadata management, even in partially observable execution environments.
♻ ☆ FastER: Fast On-Demand Entity Resolution in Property Graphs
Entity resolution (ER) is the problem of identifying and linking database records that refer to the same real-world entity. Traditional ER methods use batch processing, which becomes impractical with growing data volumes due to high computational costs and lack of real-time capabilities. In many applications, users need to resolve entities for only a small portion of their data, making full data processing unnecessary -- a scenario known as "ER-on-demand". This paper proposes FastER, an efficient ER-on-demand framework for property graphs. Our approach uses graph differential dependencies (GDDs) as a knowledge encoding language to design effective filtering mechanisms that leverage both structural and attribute semantics of graphs. We construct a blocking graph from filtered subgraphs to reduce the number of candidate entity pairs requiring comparison. Additionally, FastER incorporates Progressive Profile Scheduling (PPS), allowing the system to incrementally produce results throughout the resolution process. Extensive evaluations on multiple benchmark datasets demonstrate that FastER significantly outperforms state-of-the-art ER methods in computational efficiency and real-time processing for on-demand tasks while ensuring reliability. We make FastER publicly available at: https://anonymous.4open.science/r/On_Demand_Entity_Resolution-9DFB
Distributed, Parallel, and Cluster Computing 11
☆ The Fused Kernel Library: A C++ API to Develop Highly-Efficient GPU Libraries
Existing GPU libraries often struggle to fully exploit the parallel resources and on-chip memory (SRAM) of GPUs when chaining multiple GPU functions as individual kernels. While Kernel Fusion (KF) techniques like Horizontal Fusion (HF) and Vertical Fusion (VF) can mitigate this, current library implementations often require library developers to manually create fused kernels. Hence, library users rely on limited sets of pre-compiled or template-based fused kernels. This limits the use cases that can benefit from HF and VF and increases development costs. In order to solve these issues, we present a novel methodology for building GPU libraries that enables automatic on-demand HF and VF for arbitrary combinations of GPU library functions. Our methodology defines reusable, fusionable components that users combine via high-level programming interfaces. Leveraging C++17 metaprogramming features available in compilers like nvcc, our methodology generates a single and optimized fused kernel tailored to the user's specific sequence of operations at compile time, without needing a custom compiler or manual development and pre-compilation of kernel combinations. This approach abstracts low-level GPU complexities while maximizing GPU resource utilization and keeping intermediate data in SRAM. We provide an open-source implementation demonstrating significant speedups compared to traditional libraries in various benchmarks, validating the effectiveness of this methodology for improving GPU performance in the range of 2x to more than 1000x, while preserving high-level programmability.
comment: 16 pages
☆ DSperse: A Framework for Targeted Verification in Zero-Knowledge Machine Learning
DSperse is a modular framework for distributed machine learning inference with strategic cryptographic verification. Operating within the emerging paradigm of distributed zero-knowledge machine learning, DSperse avoids the high cost and rigidity of full-model circuitization by enabling targeted verification of strategically chosen subcomputations. These verifiable segments, or "slices", may cover part or all of the inference pipeline, with global consistency enforced through audit, replication, or economic incentives. This architecture supports a pragmatic form of trust minimization, localizing zero-knowledge proofs to the components where they provide the greatest value. We evaluate DSperse using multiple proving systems and report empirical results on memory usage, runtime, and circuit behavior under sliced and unsliced configurations. By allowing proof boundaries to align flexibly with the model's logical structure, DSperse supports scalable, targeted verification strategies suited to diverse deployment needs.
comment: 12 pages, 8 figures, and 10 tables
☆ Convergence Sans Synchronization
We currently see a steady rise in the usage and size of multiprocessor systems, and so the community is evermore interested in developing fast parallel processing algorithms. However, most algorithms require a synchronization mechanism, which is costly in terms of computational resources and time. If an algorithm can be executed in asynchrony, then it can use all the available computation power, and the nodes can execute without being scheduled or locked. However, to show that an algorithm guarantees convergence in asynchrony, we need to generate the entire global state transition graph and check for the absence of cycles. This takes time exponential in the size of the global state space. In this dissertation, we present a theory that explains the necessary and sufficient properties of a multiprocessor algorithm that guarantees convergence even without synchronization. We develop algorithms for various problems that do not require synchronization. Additionally, we show for several existing algorithms that they can be executed without any synchronization mechanism. A significant theoretical benefit of our work is in proving that an algorithm can converge even in asynchrony. Our theory implies that we can make such conclusions about an algorithm, by only showing that the local state transition graph of a computing node forms a partial order, rather than generating the entire global state space and determining the absence of cycles in it. Thus, the complexity of rendering such proofs, formal or social, is phenomenally reduced. Experiments show a significant reduction in time taken to converge, when we compare the execution time of algorithms in the literature versus the algorithms that we design. We get similar results when we run an algorithm, that guarantees convergence in asynchrony, under a scheduler versus in asynchrony.
comment: PhD thesis
☆ Kairos: Low-latency Multi-Agent Serving with Shared LLMs and Excessive Loads in the Public Cloud
Multi-agent applications utilize the advanced capabilities of large language models (LLMs) for intricate task completion through agent collaboration in a workflow. Under this situation, requests from different agents usually access the same shared LLM to perform different kinds of tasks, forcing the shared LLM to suffer excessive loads. However, existing works have low serving performance for these multi-agent applications, mainly due to the ignorance of inter-agent latency and resource differences for request scheduling. We therefore propose Kairos, a multi-agent orchestration system that optimizes end-to-end latency for multi-agent applications. Kairos consists of a workflow orchestrator, a workflow-aware priority scheduler, and a memory-aware dispatcher. The orchestrator collects agent-specific information for online workflow analysis. The scheduler decides the serving priority of the requests based on their latency characteristics to reduce the overall queuing. The dispatcher dispatches the requests to different LLM instances based on their memory demands to avoid GPU overloading. Experimental results show that Kairos reduces end-to-end latency by 17.8% to 28.4% compared to state-of-the-art works.
☆ A Portable Multi-GPU Solver for Collisional Plasmas with Coulombic Interactions
We study parallel particle-in-cell (PIC) methods for low-temperature plasmas (LTPs), which discretize kinetic formulations that capture the time evolution of the probability density function of particles as a function of position and velocity. We use a kinetic description for electrons and a fluid approximation for heavy species. In this paper, we focus on GPU acceleration of algorithms for velocity-space interactions and in particular, collisions of electrons with neutrals, ions, and electrons. Our work has two thrusts. The first is algorithmic exploration and analysis. The second is examining the viability of rapid-prototyping implementations using Python-based HPC tools, in particular PyKokkos. We discuss several common PIC kernels and present performance results on NVIDIA Volta V100 and AMD MI250X GPUs. Overall, the MI250X is slightly faster for most kernels but shows more sensitivity to register pressure. We also report scaling results for a distributed memory implementation on up to 16 MPI ranks.
☆ PANAMA: A Network-Aware MARL Framework for Multi-Agent Path Finding in Digital Twin Ecosystems
Digital Twins (DTs) are transforming industries through advanced data processing and analysis, positioning the world of DTs, Digital World, as a cornerstone of nextgeneration technologies including embodied AI. As robotics and automated systems scale, efficient data-sharing frameworks and robust algorithms become critical. We explore the pivotal role of data handling in next-gen networks, focusing on dynamics between application and network providers (AP/NP) in DT ecosystems. We introduce PANAMA, a novel algorithm with Priority Asymmetry for Network Aware Multi-agent Reinforcement Learning (MARL) based multi-agent path finding (MAPF). By adopting a Centralized Training with Decentralized Execution (CTDE) framework and asynchronous actor-learner architectures, PANAMA accelerates training while enabling autonomous task execution by embodied AI. Our approach demonstrates superior pathfinding performance in accuracy, speed, and scalability compared to existing benchmarks. Through simulations, we highlight optimized data-sharing strategies for scalable, automated systems, ensuring resilience in complex, real-world environments. PANAMA bridges the gap between network-aware decision-making and robust multi-agent coordination, advancing the synergy between DTs, wireless networks, and AI-driven automation.
♻ ☆ Empirical Analysis of Privacy-Fairness-Accuracy Trade-offs in Federated Learning: A Step Towards Responsible AI AAAI
Federated Learning (FL) enables collaborative model training while preserving data privacy; however, balancing privacy preservation (PP) and fairness poses significant challenges. In this paper, we present the first unified large-scale empirical study of privacy-fairness-utility trade-offs in FL, advancing toward responsible AI deployment. Specifically, we systematically compare Differential Privacy (DP), Homomorphic Encryption (HE), and Secure Multi-Party Computation (SMC) with fairness-aware optimizers including q-FedAvg, q-MAML, Ditto, evaluating their performance under IID and non-IID scenarios using benchmark (MNIST, Fashion-MNIST) and real-world datasets (Alzheimer's MRI, credit-card fraud detection). Our analysis reveals HE and SMC significantly outperform DP in achieving equitable outcomes under data skew, although at higher computational costs. Remarkably, we uncover unexpected interactions: DP mechanisms can negatively impact fairness, and fairness-aware optimizers can inadvertently reduce privacy effectiveness. We conclude with practical guidelines for designing robust FL systems that deliver equitable, privacy-preserving, and accurate outcomes.
comment: Accepted at AAAI/ACM AIES 2025
♻ ☆ SageServe: Optimizing LLM Serving on Cloud Data Centers with Forecast Aware Auto-Scaling
Global cloud service providers handle inference workloads for Large Language Models (LLMs) that span latency-sensitive (e.g., chatbots) and insensitive (e.g., report writing) tasks, resulting in diverse and often conflicting Service Level Agreement (SLA) requirements. Managing such mixed workloads is challenging due to the complexity of the inference serving stack, which encompasses multiple models, GPU hardware, and global data centers. Existing solutions often silo such fast and slow tasks onto separate GPU resource pools with different SLAs, but this leads to significant under-utilization of expensive accelerators due to load mismatch. In this article, we characterize the LLM serving workloads at Microsoft Office 365, one of the largest users of LLMs within Microsoft Azure cloud with over 10 million requests per day, and highlight key observations across workloads in different data center regions and across time. This is one of the first such public studies of Internet-scale LLM workloads. We use these insights to propose SageServe, a comprehensive LLM serving framework that dynamically adapts to workload demands using multi-timescale control knobs. It combines short-term request routing to data centers with long-term scaling of GPU VMs and model placement with higher lead times, and co-optimizes the routing and resource allocation problem using a traffic forecast model and an Integer Linear Programming (ILP) solution. We evaluate SageServe through real runs and realistic simulations on 10 million production requests across three regions and four open-source models. We achieve up to 25% savings in GPU-hours compared to the current baseline deployment and reduce GPU-hour wastage due to inefficient auto-scaling by 80%, resulting in a potential monthly cost savings of up to $2.5 million, while maintaining tail latency and meeting SLAs.
comment: 25 pages, 16 figures, 2 tables
♻ ☆ AMPED: Accelerating MTTKRP for Billion-Scale Sparse Tensor Decomposition on Multiple GPUs
Matricized Tensor Times Khatri-Rao Product (MTTKRP) is the computational bottleneck in sparse tensor decomposition. As real-world sparse tensors grow to billions of nonzeros, they increasingly demand higher memory capacity and compute throughput from hardware accelerators. In this work, we present AMPED, a multi-GPU parallel algorithm designed to accelerate MTTKRP on billion-scale sparse tensors. AMPED scales beyond the limits of a single GPU, meeting both the memory and performance requirements of large-scale workloads. We introduce a partitioning strategy combined with a dynamic load balancing scheme to distribute computation and minimize GPU idle time. On real-world billion-scale tensors, AMPED achieves a 5.1x geometric mean speedup in total execution time over state-of-the-art GPU baselines using 4 GPUs on a single CPU node.
♻ ☆ xDeepServe: Model-as-a-Service on Huawei CloudMatrix384
The rise of scaled-out LLMs and scaled-up SuperPods signals a new era in large-scale AI infrastructure. LLMs continue to scale out via MoE, as seen in recent models like DeepSeek, Kimi, and Qwen. In parallel, AI hardware is scaling up, with Huawei's CloudMatrix384 SuperPod offering hundreds of GB/s high-speed interconnects. Running large MoE models on SuperPod-scale hardware brings new challenges. It requires new execution models, scalable scheduling, efficient expert load balancing, and elimination of single points of failure. This paper presents xDeepServe, Huawei Cloud's LLM serving system designed for SuperPod-scale infrastructure. At its core is Transformerless, a disaggregated architecture that decomposes transformer models into modular units--attention, feedforward, and MoE--executed independently on NPUs connected via high-speed fabric. We implement this design in two forms: disaggregated prefill-decode and disaggregated MoE-attention. This fully disaggregated setup enables independent scaling of compute and memory without sacrificing performance. To support this architecture, we propose XCCL, a communication library that leverages CloudMatrix384's global shared memory to implement efficient point-to-point and all-to-all primitives. We also extend our serving engine FlowServe with system-level techniques, enabling scalable inference across hundreds of NPUs.
♻ ☆ OPTIMUMP2P: Fast and Reliable Gossiping in P2P Networks
Gossip algorithms are pivotal in the dissemination of information within decentralized systems. Consequently, numerous gossip libraries have been developed and widely utilized especially in blockchain protocols for the propagation of blocks and transactions. A well-established library is libp2p, which provides two gossip algorithms: floodsup and gossibsup. These algorithms enable the delivery of published messages to a set of peers. In this work we aim to enhance the performance and reliability of libp2p by introducing OPTIMUMP2P, a novel gossip algorithm that leverages the capabilities of Random Linear Network Coding (RLNC) to expedite the dissemination of information in a peer-to-peer (P2P) network while ensuring reliable delivery, even in the presence of malicious actors capable of corrupting the transmitted data. Preliminary research from the Ethereum Foundation has demonstrated the use of RLNC in the significant improvement in the block propagation time [14]. Here we present extensive evaluation results both in simulation and real-world environments that demonstrate the performance gains of OPTIMUMP2P over the Gossipsub protocol.
Information Retrieval 9
☆ ReasonRank: Empowering Passage Ranking with Strong Reasoning Ability
Large Language Model (LLM) based listwise ranking has shown superior performance in many passage ranking tasks. With the development of Large Reasoning Models, many studies have demonstrated that step-by-step reasoning during test-time helps improve listwise ranking performance. However, due to the scarcity of reasoning-intensive training data, existing rerankers perform poorly in many complex ranking scenarios and the ranking ability of reasoning-intensive rerankers remains largely underdeveloped. In this paper, we first propose an automated reasoning-intensive training data synthesis framework, which sources training queries and passages from diverse domains and applies DeepSeek-R1 to generate high-quality training labels. A self-consistency data filtering mechanism is designed to ensure the data quality. To empower the listwise reranker with strong reasoning ability, we further propose a two-stage post-training approach, which includes a cold-start supervised fine-tuning (SFT) stage for reasoning pattern learning and a reinforcement learning (RL) stage for further ranking ability enhancement. During the RL stage, based on the nature of listwise ranking, we design a multi-view ranking reward, which is more effective than a ranking metric-based reward. Extensive experiments demonstrate that our trained reasoning-intensive reranker \textbf{ReasonRank} outperforms existing baselines significantly and also achieves much lower latency than pointwise reranker Rank1. \textbf{Through further experiments, our ReasonRank has achieved state-of-the-art (SOTA) performance 40.6 on the BRIGHT leaderboard\footnote{https://brightbenchmark.github.io/}.} Our codes are available at https://github.com/8421BCD/ReasonRank.
comment: 21 pages
☆ TLCCSP: A Scalable Framework for Enhancing Time Series Forecasting with Time-Lagged Cross-Correlations
Time series forecasting is critical across various domains, such as weather, finance and real estate forecasting, as accurate forecasts support informed decision-making and risk mitigation. While recent deep learning models have improved predictive capabilities, they often overlook time-lagged cross-correlations between related sequences, which are crucial for capturing complex temporal relationships. To address this, we propose the Time-Lagged Cross-Correlations-based Sequence Prediction framework (TLCCSP), which enhances forecasting accuracy by effectively integrating time-lagged cross-correlated sequences. TLCCSP employs the Sequence Shifted Dynamic Time Warping (SSDTW) algorithm to capture lagged correlations and a contrastive learning-based encoder to efficiently approximate SSDTW distances. Experimental results on weather, finance and real estate time series datasets demonstrate the effectiveness of our framework. On the weather dataset, SSDTW reduces mean squared error (MSE) by 16.01% compared with single-sequence methods, while the contrastive learning encoder (CLE) further decreases MSE by 17.88%. On the stock dataset, SSDTW achieves a 9.95% MSE reduction, and CLE reduces it by 6.13%. For the real estate dataset, SSDTW and CLE reduce MSE by 21.29% and 8.62%, respectively. Additionally, the contrastive learning approach decreases SSDTW computational time by approximately 99%, ensuring scalability and real-time applicability across multiple time series forecasting tasks.
☆ Two-Stage Quranic QA via Ensemble Retrieval and Instruction-Tuned Answer Extraction
Quranic Question Answering presents unique challenges due to the linguistic complexity of Classical Arabic and the semantic richness of religious texts. In this paper, we propose a novel two-stage framework that addresses both passage retrieval and answer extraction. For passage retrieval, we ensemble fine-tuned Arabic language models to achieve superior ranking performance. For answer extraction, we employ instruction-tuned large language models with few-shot prompting to overcome the limitations of fine-tuning on small datasets. Our approach achieves state-of-the-art results on the Quran QA 2023 Shared Task, with a MAP@10 of 0.3128 and MRR@10 of 0.5763 for retrieval, and a pAP@10 of 0.669 for extraction, substantially outperforming previous methods. These results demonstrate that combining model ensembling and instruction-tuned language models effectively addresses the challenges of low-resource question answering in specialized domains.
comment: 8 pages , 4 figures , Accepted in Aiccsa 2025 , https://conferences.sigappfr.org/aiccsa2025/
☆ Blending Sequential Embeddings, Graphs, and Engineered Features: 4th Place Solution in RecSys Challenge 2025
This paper describes the 4th-place solution by team ambitious for the RecSys Challenge 2025, organized by Synerise and ACM RecSys, which focused on universal behavioral modeling. The challenge objective was to generate user embeddings effective across six diverse downstream tasks. Our solution integrates (1) a sequential encoder to capture the temporal evolution of user interests, (2) a graph neural network to enhance generalization, (3) a deep cross network to model high-order feature interactions, and (4) performance-critical feature engineering.
☆ CLAP: Coreference-Linked Augmentation for Passage Retrieval
Large Language Model (LLM)-based passage expansion has shown promise for enhancing first-stage retrieval, but often underperforms with dense retrievers due to semantic drift and misalignment with their pretrained semantic space. Beyond this, only a portion of a passage is typically relevant to a query, while the rest introduces noise--an issue compounded by chunking techniques that break coreference continuity. We propose Coreference-Linked Augmentation for Passage Retrieval (CLAP), a lightweight LLM-based expansion framework that segments passages into coherent chunks, resolves coreference chains, and generates localized pseudo-queries aligned with dense retriever representations. A simple fusion of global topical signals and fine-grained subtopic signals achieves robust performance across domains. CLAP yields consistent gains even as retriever strength increases, enabling dense retrievers to match or surpass second-stage rankers such as BM25 + MonoT5-3B, with up to 20.68% absolute nDCG@10 improvement. These improvements are especially notable in out-of-domain settings, where conventional LLM-based expansion methods relying on domain knowledge often falter. CLAP instead adopts a logic-centric pipeline that enables robust, domain-agnostic generalization.
comment: This paper has been accepted by CIKM 2025
☆ The ReQAP System for Question Answering over Personal Information
Personal information is abundant on users' devices, from structured data in calendar, shopping records or fitness tools, to unstructured contents in mail and social media posts. This works presents the ReQAP system that supports users with answers for complex questions that involve filters, joins and aggregation over heterogeneous sources. The unique trait of ReQAP is that it recursively decomposes questions and incrementally builds an operator tree for execution. Both the question interpretation and the individual operators make smart use of light-weight language models, with judicious fine-tuning. The demo showcases the rich functionality for advanced user questions, and also offers detailed tracking of how the answers are computed by the operators in the execution tree. Being able to trace answers back to the underlying sources is vital for human comprehensibility and user trust in the system.
comment: Accepted at CIKM 2025 (demonstration paper)
☆ BiXSE: Improving Dense Retrieval via Probabilistic Graded Relevance Distillation
Neural sentence embedding models for dense retrieval typically rely on binary relevance labels, treating query-document pairs as either relevant or irrelevant. However, real-world relevance often exists on a continuum, and recent advances in large language models (LLMs) have made it feasible to scale the generation of fine-grained graded relevance labels. In this work, we propose BiXSE, a simple and effective pointwise training method that optimizes binary cross-entropy (BCE) over LLM-generated graded relevance scores. BiXSE interprets these scores as probabilistic targets, enabling granular supervision from a single labeled query-document pair per query. Unlike pairwise or listwise losses that require multiple annotated comparisons per query, BiXSE achieves strong performance with reduced annotation and compute costs by leveraging in-batch negatives. Extensive experiments across sentence embedding (MMTEB) and retrieval benchmarks (BEIR, TREC-DL) show that BiXSE consistently outperforms softmax-based contrastive learning (InfoNCE), and matches or exceeds strong pairwise ranking baselines when trained on LLM-supervised data. BiXSE offers a robust, scalable alternative for training dense retrieval models as graded relevance supervision becomes increasingly accessible.
comment: 22 pages, 5 figures, accepted at COLM 2025
♻ ☆ Deep Code Search with Naming-Agnostic Contrastive Multi-View Learning KDD
Software development is a repetitive task, as developers usually reuse or get inspiration from existing implementations. Code search, which refers to the retrieval of relevant code snippets from a codebase according to the developer's intent that has been expressed as a query, has become increasingly important in the software development process. Due to the success of deep learning in various applications, a great number of deep learning based code search approaches have sprung up and achieved promising results. However, developers may not follow the same naming conventions and the same variable may have different variable names in different implementations, bringing a challenge to deep learning based code search methods that rely on explicit variable correspondences to understand source code. To overcome this challenge, we propose a naming-agnostic code search method (NACS) based on contrastive multi-view code representation learning. NACS strips information bound to variable names from Abstract Syntax Tree (AST), the representation of the abstract syntactic structure of source code, and focuses on capturing intrinsic properties solely from AST structures. We use semantic-level and syntax-level augmentation techniques to prepare realistically rational data and adopt contrastive learning to design a graph-view modeling component in NACS to enhance the understanding of code snippets. We further model ASTs in a path view to strengthen the graph-view modeling component through multi-view learning. Extensive experiments show that NACS provides superior code search performance compared to baselines and NACS can be adapted to help existing code search methods overcome the impact of different naming conventions. Our implementation is available at https://github.com/KDEGroup/NACS.
comment: Accepted by ACM Transactions on Knowledge Discovery from Data (TKDD)
♻ ☆ Exploring Multidimensional Checkworthiness: Designing AI-assisted Claim Prioritization for Human Fact-checkers
Given the volume of potentially false claims online, claim prioritization is essential in allocating limited human resources available for fact-checking. In this study, we perceive claim prioritization as an information retrieval (IR) task: just as multidimensional IR relevance, with many factors influencing which search results a user deems relevant, checkworthiness is also multi-faceted, subjective, and even personal, with many factors influencing how fact-checkers triage and select which claims to check. Our study investigates both the multidimensional nature of checkworthiness and effective tool support to assist fact-checkers in claim prioritization. Methodologically, we pursue Research through Design combined with mixed-method evaluation. Specifically, we develop an AI-assisted claim prioritization prototype as a probe to explore how fact-checkers use multidimensional checkworthy factors to prioritize claims, simultaneously probing fact-checker needs and exploring the design space to meet those needs. With 16 professional fact-checkers participating in our study, we uncover a hierarchical prioritization strategy fact-checkers implicitly use, revealing an underexplored aspect of their workflow, with actionable design recommendations for improving claim triage across multidimensional checkworthiness and tailoring this process with LLM integration.
comment: Accepted at CSCW 2025
Computational Engineering, Finance, and Science 8
☆ Application of association rule mining to assess forest species distribution in Italy considering abiotic and biotic factors
Biodiversity monitoring represents a pressing global priority, and assessing forest community composition plays a crucial role due to its influence on ecosystem functions. The spatial distribution of forest species becomes essential for understanding biodiversity dynamics, territorial planning, aiding nature conservation and enhancing ecosystem resilience amid global change. Association Rule Mining, commonly applied to other scientific contexts, is now innovatively adopted in the ecological field to explore the relationships among co-occurring plant species and extract hidden interpretable patterns, also with abiotic and biotic conditions. Multiple heterogeneous data sources were integrated through data preprocessing into a unique dataset, including georeferenced information about 151 plant species monitored within 6,784 plots across Italy and several bioclimatic indices, soil-related factors, and variables from earth observations. The Frequent Pattern Growth algorithm, used for association rule mining, provided interesting and encouraging findings, suggesting ecological rules among plant species and environmental conditions. Indeed, temperature seasonality between 650-700 and precipitation seasonality between 45-50 resulted very correlated with Picea abies (confidence = 90.9%, lift = 7.13). Patterns detected for Picea abies highlighted its ecological specificity, indicating a strong association with cold, highly seasonal environments, and particular plant communities. Some species appeared acting as community "hubs", frequently co-occurring with other species, suggesting ties to specific environmental or biotic conditions. These findings represent a valuable resource for future research, especially in regions with similar environmental settings and when prior ecological knowledge exists, also underlining the importance of publicly accessible, high-quality ecological data.
comment: 41 pages, 6 tables, 6 figures, submitted to ecological informatics journal
☆ Discovery Learning accelerates battery design evaluation
Fast and reliable validation of novel designs in complex physical systems such as batteries is critical to accelerating technological innovation. However, battery research and development remain bottlenecked by the prohibitively high time and energy costs required to evaluate numerous new design candidates, particularly in battery prototyping and life testing. Despite recent progress in data-driven battery lifetime prediction, existing methods require labeled data of target designs to improve accuracy and cannot make reliable predictions until after prototyping, thus falling far short of the efficiency needed to enable rapid feedback for battery design. Here, we introduce Discovery Learning (DL), a scientific machine-learning paradigm that integrates active learning, physics-guided learning, and zero-shot learning into a human-like reasoning loop, drawing inspiration from learning theories in educational psychology. DL can learn from historical battery designs and actively reduce the need for prototyping, thus enabling rapid lifetime evaluation for unobserved material-design combinations without requiring additional data labeling. To test DL, we present 123 industrial-grade large-format lithium-ion pouch cells, spanning eight material-design combinations and diverse cycling protocols. Trained solely on public datasets of small-capacity cylindrical cells, DL achieves 7.2% test error in predicting the average cycle life under unknown device variability. This results in savings of 98% in time and 95% in energy compared to industrial practices. This work highlights the potential of uncovering insights from historical designs to inform and accelerate the development of next-generation battery technologies. DL represents a key advance toward efficient data-driven modeling and helps realize the promise of machine learning for accelerating scientific discovery and engineering innovation.
comment: Main text, 20 pages, 5 figures
☆ A Portable Multi-GPU Solver for Collisional Plasmas with Coulombic Interactions
We study parallel particle-in-cell (PIC) methods for low-temperature plasmas (LTPs), which discretize kinetic formulations that capture the time evolution of the probability density function of particles as a function of position and velocity. We use a kinetic description for electrons and a fluid approximation for heavy species. In this paper, we focus on GPU acceleration of algorithms for velocity-space interactions and in particular, collisions of electrons with neutrals, ions, and electrons. Our work has two thrusts. The first is algorithmic exploration and analysis. The second is examining the viability of rapid-prototyping implementations using Python-based HPC tools, in particular PyKokkos. We discuss several common PIC kernels and present performance results on NVIDIA Volta V100 and AMD MI250X GPUs. Overall, the MI250X is slightly faster for most kernels but shows more sensitivity to register pressure. We also report scaling results for a distributed memory implementation on up to 16 MPI ranks.
☆ Algorithmic Collusion of Pricing and Advertising on E-commerce Platforms
Online sellers have been adopting AI learning algorithms to automatically make product pricing and advertising decisions on e-commerce platforms. When sellers compete using such algorithms, one concern is that of tacit collusion - the algorithms learn to coordinate on higher than competitive. We empirically investigate whether these concerns are valid when sellers make pricing and advertising decisions together, i.e., two-dimensional decisions. Our empirical strategy is to analyze competition with multi-agent reinforcement learning, which we calibrate to a large-scale dataset collected from Amazon.com products. Our first contribution is to find conditions under which learning algorithms can facilitate win-win-win outcomes that are beneficial for consumers, sellers, and even the platform, when consumers have high search costs. In these cases the algorithms learn to coordinate on prices that are lower than competitive prices. The intuition is that the algorithms learn to coordinate on lower advertising bids, which lower advertising costs, leading to lower prices. Our second contribution is an analysis of a large-scale, high-frequency keyword-product dataset for more than 2 million products on Amazon.com. Our estimates of consumer search costs show a wide range of costs for different product keywords. We generate an algorithm usage and find a negative interaction between the estimated consumer search costs and the algorithm usage index, providing empirical evidence of beneficial collusion. Finally, we analyze the platform's strategic response. We find that reserve price adjustments will not increase profits for the platform, but commission adjustments will. Our analyses help alleviate some worries about the potentially harmful effects of competing learning algorithms, and can help sellers, platforms and policymakers to decide on whether to adopt or regulate such algorithms.
☆ Representative Volume Element: Existence and Extent in Cracked Heterogeneous Medium
Acknowledging the ever-increasing demand for composites in the engineering industry, this paper focuses on the failure of composites at the microscale and augmenting the use of multiscale modelling techniques to make them better for various applications. This work aims to increase the representativeness of the volume element by attenuating the mesh and size sensitivities in representative volume element (RVE) modelling. A technique to alleviate mesh sensitivity in RVE modelling is proposed, which equalises the fracture energy observed from computational analysis with the real phenomenon, thereby keeping the response independent of the bandwidth of strain localisation. Based on the hypothesis that ensuring periodicity of strain, in addition to displacement periodicity across the domain boundary and supplementing the capability of periodic boundary conditions (PBCs) to attenuate the size dependency in RVE modelling, a set of modified PBCs (MPBCs) are formulated. One thousand two hundred RVE samples falling into combinations of five fibre volume fractions and four RVE sizes are analysed under transverse loading, and the ability of MPBCs to attenuate the effect of RVE size on the precision of material response, particularly in the inelastic regime, is verified. This work also focuses on various factors affecting damage initiation in 2D composite RVEs. The arrangement of a pair of fibres with their members placed close to each other, such that the angle between the direction of loading and an imaginary line drawn between their centres is less, is observed to make the region between them more favourable to damage.
☆ Hybrid Machine Learning Framework for Predicting Geometric Deviations from 3D Surface Metrology
This study addresses the challenge of accurately forecasting geometric deviations in manufactured components using advanced 3D surface analysis. Despite progress in modern manufacturing, maintaining dimensional precision remains difficult, particularly for complex geometries. We present a methodology that employs a high-resolution 3D scanner to acquire multi-angle surface data from 237 components produced across different batches. The data were processed through precise alignment, noise reduction, and merging techniques to generate accurate 3D representations. A hybrid machine learning framework was developed, combining convolutional neural networks for feature extraction with gradient-boosted decision trees for predictive modeling. The proposed system achieved a prediction accuracy of 0.012 mm at a 95% confidence level, representing a 73% improvement over conventional statistical process control methods. In addition to improved accuracy, the model revealed hidden correlations between manufacturing parameters and geometric deviations. This approach offers significant potential for automated quality control, predictive maintenance, and design optimization in precision manufacturing, and the resulting dataset provides a strong foundation for future predictive modeling research.
☆ Representative Volume Element: Existence and Extent in Cracked Heterogeneous Medium
Acknowledging the ever-increasing demand for composites in the engineering industry, this paper focuses on the failure of composites at the microscale and augmenting the use of multiscale modelling techniques to make them better for various applications. This work aims to increase the representativeness of the volume element by attenuating the mesh and size sensitivities in representative volume element (RVE) modelling. A technique to alleviate mesh sensitivity in RVE modelling is proposed, which equalises the fracture energy observed from computational analysis with the real phenomenon, thereby keeping the response independent of the bandwidth of strain localisation. Based on the hypothesis that ensuring periodicity of strain, in addition to displacement periodicity across the domain boundary and supplementing the capability of periodic boundary conditions (PBCs) to attenuate the size dependency in RVE modelling, a set of modified PBCs (MPBCs) are formulated. One thousand two hundred RVE samples falling into combinations of five fibre volume fractions and four RVE sizes are analysed under transverse loading, and the ability of MPBCs to attenuate the effect of RVE size on the precision of material response, particularly in the inelastic regime, is verified. This work also focuses on various factors affecting damage initiation in 2D composite RVEs. The arrangement of a pair of fibres with their members placed close to each other, such that the angle between the direction of loading and an imaginary line drawn between their centres is less, is observed to make the region between them more favourable to damage.
♻ ☆ SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection NeurIPS 2024
Synthetic Aperture Radar (SAR) object detection has gained significant attention recently due to its irreplaceable all-weather imaging capabilities. However, this research field suffers from both limited public datasets (mostly comprising <2K images with only mono-category objects) and inaccessible source code. To tackle these challenges, we establish a new benchmark dataset and an open-source method for large-scale SAR object detection. Our dataset, SARDet-100K, is a result of intense surveying, collecting, and standardizing 10 existing SAR detection datasets, providing a large-scale and diverse dataset for research purposes. To the best of our knowledge, SARDet-100K is the first COCO-level large-scale multi-class SAR object detection dataset ever created. With this high-quality dataset, we conducted comprehensive experiments and uncovered a crucial challenge in SAR object detection: the substantial disparities between the pretraining on RGB datasets and finetuning on SAR datasets in terms of both data domain and model structure. To bridge these gaps, we propose a novel Multi-Stage with Filter Augmentation (MSFA) pretraining framework that tackles the problems from the perspective of data input, domain transition, and model migration. The proposed MSFA method significantly enhances the performance of SAR object detection models while demonstrating exceptional generalizability and flexibility across diverse models. This work aims to pave the way for further advancements in SAR object detection. The dataset and code is available at https://github.com/zcablii/SARDet_100K.
comment: Accepted at NeurIPS 2024. Spotlight. Project page: (https://github.com/zcablii/SARDet_100K)[https://github.com/zcablii/SARDet_100K]
Databases 7
☆ A Cross-Perspective Annotated Dataset for Dynamic Object-Level Attention Modeling in Cloud Gaming
Cloud gaming has gained popularity as it provides high-quality gaming experiences on thin hardware, such as phones and tablets. Transmitting gameplay frames at high resolutions and ultra-low latency is the key to guaranteeing players' quality of experience (QoE). Numerous studies have explored deep learning (DL) techniques to address this challenge. The efficiency of these DL-based approaches is highly affected by the dataset. However, existing datasets usually focus on the positions of objects while ignoring semantic relationships with other objects and their unique features. In this paper, we present a game dataset by collecting gameplay clips from Grand Theft Auto (GTA) V, and annotating the player's interested objects during the gameplay. Based on the collected data, we analyze several factors that have an impact on player's interest and identify that the player's in-game speed, object's size, and object's speed are the main factors. The dataset is available at https://drive.google.com/drive/folders/1idH251a2K-hGGd3pKjX-3Gx5o_rUqLC4?usp=sharing
☆ Omni Geometry Representation Learning vs Large Language Models for Geospatial Entity Resolution
The development, integration, and maintenance of geospatial databases rely heavily on efficient and accurate matching procedures of Geospatial Entity Resolution (ER). While resolution of points-of-interest (POIs) has been widely addressed, resolution of entities with diverse geometries has been largely overlooked. This is partly due to the lack of a uniform technique for embedding heterogeneous geometries seamlessly into a neural network framework. Existing neural approaches simplify complex geometries to a single point, resulting in significant loss of spatial information. To address this limitation, we propose Omni, a geospatial ER model featuring an omni-geometry encoder. This encoder is capable of embedding point, line, polyline, polygon, and multi-polygon geometries, enabling the model to capture the complex geospatial intricacies of the places being compared. Furthermore, Omni leverages transformer-based pre-trained language models over individual textual attributes of place records in an Attribute Affinity mechanism. The model is rigorously tested on existing point-only datasets and a new diverse-geometry geospatial ER dataset. Omni produces up to 12% (F1) improvement over existing methods. Furthermore, we test the potential of Large Language Models (LLMs) to conduct geospatial ER, experimenting with prompting strategies and learning scenarios, comparing the results of pre-trained language model-based methods with LLMs. Results indicate that LLMs show competitive results.
☆ Confidence Estimation for Text-to-SQL in Large Language Models
Confidence estimation for text-to-SQL aims to assess the reliability of model-generated SQL queries without having access to gold answers. We study this problem in the context of large language models (LLMs), where access to model weights and gradients is often constrained. We explore both black-box and white-box confidence estimation strategies, evaluating their effectiveness on cross-domain text-to-SQL benchmarks. Our evaluation highlights the superior performance of consistency-based methods among black-box models and the advantage of SQL-syntax-aware approaches for interpreting LLM logits in white-box settings. Furthermore, we show that execution-based grounding of queries provides a valuable supplementary signal, improving the effectiveness of both approaches.
♻ ☆ Floating-Point Data Transformation for Lossless Compression
Floating-point data is widely used across various domains. Depending on the required precision, each floating-point value can occupy several bytes. Lossless storage of this information is crucial due to its critical accuracy, as seen in applications such as medical imaging and language model weights. In these cases, data size is often significant, making lossless compression essential. Previous approaches either treat this data as raw byte streams for compression or fail to leverage all patterns within the dataset. However, because multiple bytes represent a single value and due to inherent patterns in floating-point representations, some of these bytes are correlated. To leverage this property, we propose a novel data transformation method called Typed Data Transformation (TDT) that groups related bytes together to improve compression. We implemented and tested our approach on various datasets across both CPU and GPU. TDT achieves a geometric mean compression ratio improvement of 1.16$\times$ over state-of-the-art compression tools such as zstd, while also improving both compression and decompression throughput by 1.18--3.79$\times$.
♻ ☆ TreeCat: Standalone Catalog Engine for Large Data Systems VLDB
With ever-increasing volume and heterogeneity of data, advent of new specialized compute engines, and demand for complex use cases, large-scale data systems require a performant catalog system that can satisfy diverse needs. We argue that existing solutions, including recent lakehouse storage formats, have fundamental limitations and that there is a strong motivation for a specialized database engine, dedicated to serve as the catalog. We present the design and implementation of TreeCat, a database engine that features a hierarchical data model with a path-based query language, a storage format optimized for efficient range queries and versioning, and a correlated scan operation that enables fast query execution. A key performance challenge is supporting concurrent read and write operations from many different clients while providing strict consistency guarantees. To this end, we present a novel MVOCC (multi-versioned optimistic concurrency control) protocol that guarantees serializable isolation. We conduct a comprehensive experimental evaluation comparing our concurrency control scheme with prior techniques, and evaluating our overall system against Hive Metastore, Delta Lake, and Iceberg.
comment: accepted at PVLDB Volume 18 (for VLDB 2025)
♻ ☆ DeepMDV: Global Spatial Matching for Multi-depot Vehicle Routing Problems
The rapid growth of online retail and e-commerce has made effective and efficient Vehicle Routing Problem (VRP) solutions essential. To meet rising demand, companies are adding more depots, which changes the VRP problem to a complex optimization task of Multi-Depot VRP (MDVRP) where the routing decisions of vehicles from multiple depots are highly interdependent. The complexities render traditional VRP methods suboptimal and non-scalable for the MDVRP. In this paper, we propose a novel approach to solve MDVRP addressing these interdependencies, hence achieving more effective results. The key idea is, the MDVRP can be broken down into two core spatial tasks: assigning customers to depots and optimizing the sequence of customer visits. We adopt task-decoupling approach and propose a two-stage framework that is scalable: (i) an interdependent partitioning module that embeds spatial and tour context directly into the representation space to globally match customers to depots and assign them to tours; and (ii) an independent routing module that determines the optimal visit sequence within each tour. Extensive experiments on both synthetic and real-world datasets demonstrate that our method outperforms all baselines across varying problem sizes, including the adaptations of learning-based solutions for single-depot VRP. Its adaptability and performance make it a practical and readily deployable solution for real-world logistics challenges.
♻ ☆ Rethinking Analytical Processing in the GPU Era
The era of GPU-powered data analytics has arrived. In this paper, we argue that recent advances in hardware (e.g., larger GPU memory, faster interconnect and IO, and declining cost) and software (e.g., composable data systems and mature libraries) have removed the key barriers that have limited the wider adoption of GPU data analytics. We present Sirius, a prototype open-source GPU-native SQL engine that offers drop-in acceleration for diverse data systems. Sirius treats GPU as the primary engine and leverages libraries like libcudf for high-performance relational operators. It provides drop-in acceleration for existing databases by leveraging the standard Substrait query representation, replacing the CPU engine without changing the user-facing interface. On TPC-H, Sirius achieves 7x speedup when integrated with DuckDB in a single node at the same hardware rental cost, and up to 12.5x speedup when integrated with Apache Doris in a distributed setting.
Distributed, Parallel, and Cluster Computing 14
☆ Voting-Based Semi-Parallel Proof-of-Work Protocol
Parallel Proof-of-Work (PoW) protocols are suggested to improve the safety guarantees, transaction throughput and confirmation latencies of Nakamoto consensus. In this work, we first consider the existing parallel PoW protocols and develop hard-coded incentive attack structures. Our theoretical results and simulations show that the existing parallel PoW protocols are more vulnerable to incentive attacks than the Nakamoto consensus, e.g., attacks have smaller profitability threshold and they result in higher relative rewards. Next, we introduce a voting-based semi-parallel PoW protocol that outperforms both Nakamoto consensus and the existing parallel PoW protocols from most practical perspectives such as communication overheads, throughput, transaction conflicts, incentive compatibility of the protocol as well as a fair distribution of transaction fees among the voters and the leaders. We use state-of-the-art analysis to evaluate the consistency of the protocol and consider Markov decision process (MDP) models to substantiate our claims about the resilience of our protocol against incentive attacks.
☆ Blockchain-Enabled Federated Learning
Blockchain-enabled federated learning (BCFL) addresses fundamental challenges of trust, privacy, and coordination in collaborative AI systems. This chapter provides comprehensive architectural analysis of BCFL systems through a systematic four-dimensional taxonomy examining coordination structures, consensus mechanisms, storage architectures, and trust models. We analyze design patterns from blockchain-verified centralized coordination to fully decentralized peer-to-peer networks, evaluating trade-offs in scalability, security, and performance. Through detailed examination of consensus mechanisms designed for federated learning contexts, including Proof of Quality and Proof of Federated Learning, we demonstrate how computational work can be repurposed from arbitrary cryptographic puzzles to productive machine learning tasks. The chapter addresses critical storage challenges by examining multi-tier architectures that balance blockchain's transaction constraints with neural networks' large parameter requirements while maintaining cryptographic integrity. A technical case study of the TrustMesh framework illustrates practical implementation considerations in BCFL systems through distributed image classification training, demonstrating effective collaborative learning across IoT devices with highly non-IID data distributions while maintaining complete transparency and fault tolerance. Analysis of real-world deployments across healthcare consortiums, financial services, and IoT security applications validates the practical viability of BCFL systems, achieving performance comparable to centralized approaches while providing enhanced security guarantees and enabling new models of trustless collaborative intelligence.
comment: 32 pages, 6 figures, chapter for edited book (Federated Learning: Foundations and Applications)
☆ Performant Unified GPU Kernels for Portable Singular Value Computation Across Hardware and Precision
This paper presents a portable, GPU-accelerated implementation of a QR-based singular value computation algorithm in Julia. The singular value ecomposition (SVD) is a fundamental numerical tool in scientific computing and machine learning, providing optimal low-rank matrix approximations. Its importance has increased even more in large-scale machine learning pipelines, including large language models (LLMs), where it enables low-rank adaptation (LoRA). The implemented algorithm is based on the classic two-stage QR reduction, consisting of successive matrix reduction to band form and bidiagonal form. Our implementation leverages Julia's multiple dispatch and metaprogramming capabilities, integrating with the GPUArrays and KernelAbstractions frameworks to provide a unified type and hardware-agnostic function. It supports diverse GPU architectures and data types, and is, to our knowledge, the first GPU-accelerated singular value implementation to support Apple Metal GPUs and half precision. Performance results on multiple GPU backends and data types demonstrate that portability does not require sacrificing performance: the unified function outperforms most linear algebra libraries (MAGMA, SLATE, rocSOLVER, oneMKL) for matrix sizes larger than 1024x1024, and achieves 80%-90% of the performance of cuSOLVER for large matrices.
comment: 12 pages, 6 figures, 4 tables
☆ FedMeNF: Privacy-Preserving Federated Meta-Learning for Neural Fields ICCV 2025
Neural fields provide a memory-efficient representation of data, which can effectively handle diverse modalities and large-scale data. However, learning to map neural fields often requires large amounts of training data and computations, which can be limited to resource-constrained edge devices. One approach to tackle this limitation is to leverage Federated Meta-Learning (FML), but traditional FML approaches suffer from privacy leakage. To address these issues, we introduce a novel FML approach called FedMeNF. FedMeNF utilizes a new privacy-preserving loss function that regulates privacy leakage in the local meta-optimization. This enables the local meta-learner to optimize quickly and efficiently without retaining the client's private data. Our experiments demonstrate that FedMeNF achieves fast optimization speed and robust reconstruction performance, even with few-shot or non-IID data across diverse data modalities, while preserving client data privacy.
comment: ICCV 2025
☆ KV Cache Compression for Inference Efficiency in LLMs: A Review
Withtherapid advancement of large language models (LLMs), the context length for inference has been continuously increasing, leading to an exponential growth in the demand for Key-Value (KV) caching. This has resulted in a significant memory bottleneck, limiting the inference efficiency and scalability of the models. Therefore, optimizing the KV cache during inference is crucial for enhancing performance and efficiency. This review systematically examines current KV cache optimization techniques, including compression strategies such as selective token strategies, quantization, and attention compression. We evaluate the effectiveness, trade-offs, and application scenarios of these methods, providing a comprehensive analysis of their impact on memory usage and inference speed. We focus on identifying the limitations and challenges of existing methods, such as compatibility issues with different models and tasks. Additionally, this review highlights future research directions, including hybrid optimization techniques, adaptive dynamic strategies, and software-hardware co-design. These approaches aim to improve inference efficiency and promote the practical application of large language models.
comment: 12 pages
☆ EC2MoE: Adaptive End-Cloud Pipeline Collaboration Enabling Scalable Mixture-of-Experts Inference
The Mixture-of-Experts (MoE) paradigm has emerged as a promising solution to scale up model capacity while maintaining inference efficiency. However, deploying MoE models across heterogeneous end-cloud environments poses new challenges in expert scheduling, communication overhead, and resource heterogeneity. In this paper, we propose EC2MoE, an adaptive framework for scalable MoE inference via end-cloud pipeline collaboration. First, we design a hardware-aware lightweight group gate network that enhances expert selection and computational efficiency. By incorporating a hardware-aware local expert selection mechanism, the system adaptively filters candidate experts based on real-time device profiles. A lightweight group gate module then integrates local and global gating outputs to achieve high-quality expert routing with minimal overhead. Second, we develop a pipeline optimization mechanism based on endcloud collaboration to accelerate MoE inference. This includes an encoder-decoder structure based on low-rank compression, which reduces transmission and computation costs. And a route-aware heuristic pipeline scheduling algorithm that dynamically allocates inference stages across devices according to workload and network topology. Extensive experiments show that EC2MoE can increase throughput by 2.2x to 5.1x and reduce end-to-end latency by 53% to 67% while maintaining high accuracy compared to state-of-the-art methods. It also maintains good scalability under dynamic load and network environments.
comment: 9 pages, 8 figures
☆ KnapFormer: An Online Load Balancer for Efficient Diffusion Transformers Training
We present KnapFormer, an efficient and versatile framework to combine workload balancing and sequence parallelism in distributed training of Diffusion Transformers (DiT). KnapFormer builds on the insight that strong synergy exists between sequence parallelism and the need to address the significant token imbalance across ranks. This imbalance arises from variable-length text inputs and varying visual token counts in mixed-resolution and image-video joint training. KnapFormer redistributes tokens by first gathering sequence length metadata across all ranks in a balancing group and solving a global knapsack problem. The solver aims to minimize the variances of total workload per-GPU, while accounting for the effect of sequence parallelism. By integrating DeepSpeed-Ulysees-based sequence parallelism in the load-balancing decision process and utilizing a simple semi-empirical workload model, KnapFormers achieves minimal communication overhead and less than 1% workload discrepancy in real-world training workloads with sequence length varying from a few hundred to tens of thousands. It eliminates straggler effects and achieves 2x to 3x speedup when training state-of-the-art diffusion models like FLUX on mixed-resolution and image-video joint data corpora. We open-source the KnapFormer implementation at https://github.com/Kai-46/KnapFormer/
comment: Code is available at https://github.com/Kai-46/KnapFormer/
♻ ☆ Floating-Point Data Transformation for Lossless Compression
Floating-point data is widely used across various domains. Depending on the required precision, each floating-point value can occupy several bytes. Lossless storage of this information is crucial due to its critical accuracy, as seen in applications such as medical imaging and language model weights. In these cases, data size is often significant, making lossless compression essential. Previous approaches either treat this data as raw byte streams for compression or fail to leverage all patterns within the dataset. However, because multiple bytes represent a single value and due to inherent patterns in floating-point representations, some of these bytes are correlated. To leverage this property, we propose a novel data transformation method called Typed Data Transformation (TDT) that groups related bytes together to improve compression. We implemented and tested our approach on various datasets across both CPU and GPU. TDT achieves a geometric mean compression ratio improvement of 1.16$\times$ over state-of-the-art compression tools such as zstd, while also improving both compression and decompression throughput by 1.18--3.79$\times$.
♻ ☆ Large-Scale Linear Energy System Optimization: A Systematic Review on Parallelization Strategies via Decomposition
As renewable energy integration, sector coupling, and spatiotemporal detail increase, energy system optimization models grow in size and complexity, often pushing solvers to their performance limits. This systematic review explores parallelization strategies that can address these challenges. We first propose a classification scheme for linear energy system optimization models, covering their analytical focus, mathematical structure, and scope. We then review parallel decomposition methods, finding that while many offer performance benefits, no single approach is universally superior. The lack of standardized benchmark suites further complicates comparison. To address this, we recommend essential criteria for future benchmarks and minimum reporting standards. We also survey available software tools for parallel decomposition, including modular frameworks and algorithmic abstractions. Though centered on energy system models, our insights extend to the broader operations research field.
comment: 25 pages, 4 figures, 6 tables
♻ ☆ High-Performance and Power-Efficient Emulation of Matrix Multiplication using INT8 Matrix Engines
Recent architectures integrate high-performance and power-efficient matrix engines. These engines demonstrate remarkable performance in low-precision matrix multiplication, which is crucial in deep learning. Several techniques have been proposed to emulate single- and double-precision general matrix-matrix multiplication (SGEMM and DGEMM, respectively) by leveraging such low-precision matrix engines. In this study, we present emulation methods that significantly outperforms conventional approaches. On a GH200 Grace Hopper Superchip, the proposed DGEMM emulation achieves a 1.4x speedup and a 43% improvement in power efficiency compared to native DGEMM for sufficiently large problems. The proposed SGEMM emulation achieves a 3.0x speedup and a 154% improvement in power efficiency compared to native SGEMM for sufficiently large problems. Furthermore, compared to conventional emulation methods, the proposed emulation achieves more than 2x higher performance and superior power efficiency.
comment: 8 pages, 9 figures
♻ ☆ Precomputed Dominant Resource Fairness
Although resource allocation is a well studied problem in computer science, until the prevalence of distributed systems, such as computing clouds and data centres, the question had been addressed predominantly for single resource type scenarios. At the beginning of the last decade, with the introuction of Dominant Resource Fairness, the studies of the resource allocation problem has finally extended to the multiple resource type scenarios. Dominant Resource Fairness is a solution, addressing the problem of fair allocation of multiple resource types, among users with heterogeneous demands. Based on Max-min Fairness, which is a well established algorithm in the literature for allocating resources in the single resource type scenarios, Dominant Resource Fairness generalises the scheme to the multiple resource case. It has a number of desirable properties that makes it preferable over alternatives, such as Sharing Incentive, Envy-Freeness, Pareto Efficiency, and Strategy Proofness, and as such, it is widely adopted in distributed systems. In the present study, we revisit the original study, and analyse the structure of the algorithm in closer view, to come up with an alternative algorithm, which approximates the Dominant Resource Fairness allocation in fewer steps. We name the new algorithm Precomputed Dominant Resource Fairness, after its main working principle.
comment: 8 pages
♻ ☆ X-VFL: A New Vertical Federated Learning Framework with Cross Completion and Decision Subspace Alignment
Vertical Federated Learning (VFL) enables collaborative learning by integrating disjoint feature subsets from multiple clients/parties. However, VFL typically faces two key challenges: i) the requirement for perfectly aligned data samples across all clients (missing features are not allowed); ii) the requirement for joint collaborative inference/prediction involving all clients (it does not support locally independent inference on a single client). To address these challenges, we propose X-VFL, a new VFL framework designed to deal with the non-aligned data samples with (partially) missing features and to support locally independent inference of new data samples for each client. In particular, we design two novel modules in X-VFL: Cross Completion (XCom) and Decision Subspace Alignment (DS-Align). XCom can complete/reconstruct missing features for non-aligned data samples by leveraging information from other clients. DS-Align aligns local features with completed and global features across all clients within the decision subspace, thus enabling locally independent inference at each client. Moreover, we provide convergence theorems for different algorithms used in training X-VFL, showing an $O(1/\sqrt{T})$ convergence rate for SGD-type algorithms and an $O(1/T)$ rate for PAGE-type algorithms, where $T$ denotes the number of training update steps. Extensive experiments on real-world datasets demonstrate that X-VFL significantly outperforms existing methods, e.g., achieving a 15% improvement in accuracy on the image CIFAR-10 dataset and a 43% improvement on the medical MIMIC-III dataset. These results validate the practical effectiveness and superiority of X-VFL, particularly in scenarios involving partially missing features and locally independent inference.
comment: 20 pages
♻ ☆ Adacc: An Adaptive Framework Unifying Compression and Activation Recomputation for LLM Training
Training large language models (LLMs) is often constrained by GPU memory limitations. To alleviate memory pressure, activation recomputation and data compression have been proposed as two major strategies. However, both approaches have limitations: recomputation introduces significant training overhead, while compression can lead to accuracy degradation and computational inefficiency when applied naively. In this paper, we propose Adacc, the first adaptive memory optimization framework that unifies activation recomputation and data compression to improve training efficiency for LLMs while preserving model accuracy. Unlike existing methods that apply static, rule-based strategies or rely solely on one technique, Adacc makes fine-grained, tensor-level decisions, dynamically selecting between recomputation, retention, and compression based on tensor characteristics and runtime hardware constraints. Adacc tackles three key challenges: (1) it introduces layer-specific compression algorithms that mitigate accuracy loss by accounting for outliers in LLM activations; (2) it employs a MILP-based scheduling policy to globally optimize memory strategies across layers; and (3) it integrates an adaptive policy evolution mechanism to update strategies during training in response to changing data distributions. Experimental results show that Adacc improves training throughput by 1.01x to 1.37x compared to state-of-the-art frameworks, while maintaining accuracy comparable to the baseline.
comment: 8 pages
♻ ☆ Intelligent Sampling of Extreme-Scale Turbulence Datasets for Accurate and Efficient Spatiotemporal Model Training
With the end of Moore's law and Dennard scaling, efficient training increasingly requires rethinking data volume. Can we train better models with significantly less data via intelligent subsampling? To explore this, we develop SICKLE, a sparse intelligent curation framework for efficient learning, featuring a novel maximum entropy (MaxEnt) sampling approach, scalable training, and energy benchmarking. We compare MaxEnt with random and phase-space sampling on large direct numerical simulation (DNS) datasets of turbulence. Evaluating SICKLE at scale on Frontier, we show that subsampling as a preprocessing step can improve model accuracy and substantially lower energy consumption, with reductions of up to 38x observed in certain cases.
comment: 14 pages, 8 figures, 2 tables
Information Retrieval 22
☆ Maximum Impact with Fewer Features: Efficient Feature Selection for Cold-Start Recommenders through Collaborative Importance Weighting
Cold-start challenges in recommender systems necessitate leveraging auxiliary features beyond user-item interactions. However, the presence of irrelevant or noisy features can degrade predictive performance, whereas an excessive number of features increases computational demands, leading to higher memory consumption and prolonged training times. To address this, we propose a feature selection strategy that prioritizes the user behavioral information. Our method enhances the feature representation by incorporating correlations from collaborative behavior data using a hybrid matrix factorization technique and then ranks features using a mechanism based on the maximum volume algorithm. This approach identifies the most influential features, striking a balance between recommendation accuracy and computational efficiency. We conduct an extensive evaluation across various datasets and hybrid recommendation models, demonstrating that our method excels in cold-start scenarios by selecting minimal yet highly effective feature subsets. Even under strict feature reduction, our approach surpasses existing feature selection techniques while maintaining superior efficiency.
☆ eSASRec: Enhancing Transformer-based Recommendations in a Modular Fashion
Since their introduction, Transformer-based models, such as SASRec and BERT4Rec, have become common baselines for sequential recommendations, surpassing earlier neural and non-neural methods. A number of following publications have shown that the effectiveness of these models can be improved by, for example, slightly updating the architecture of the Transformer layers, using better training objectives, and employing improved loss functions. However, the additivity of these modular improvements has not been systematically benchmarked - this is the gap we aim to close in this paper. Through our experiments, we identify a very strong model that uses SASRec's training objective, LiGR Transformer layers, and Sampled Softmax Loss. We call this combination eSASRec (Enhanced SASRec). While we primarily focus on realistic, production-like evaluation, in our preliminarily study we find that common academic benchmarks show eSASRec to be 23% more effective compared to the most recent state-of-the-art models, such as ActionPiece. In our main production-like benchmark, eSASRec resides on the Pareto frontier in terms of the accuracy-coverage tradeoff (alongside the recent industrial models HSTU and FuXi. As the modifications compared to the original SASRec are relatively straightforward and no extra features are needed (such as timestamps in HSTU), we believe that eSASRec can be easily integrated into existing recommendation pipelines and can can serve as a strong yet very simple baseline for emerging complicated algorithms. To facilitate this, we provide the open-source implementations for our models and benchmarks in repository https://github.com/blondered/transformer_benchmark
comment: Accepted at ACM RecSys 2025
☆ A Systematic Literature Review of Retrieval-Augmented Generation: Techniques, Metrics, and Challenges
This systematic review of the research literature on retrieval-augmented generation (RAG) provides a focused analysis of the most highly cited studies published between 2020 and May 2025. A total of 128 articles met our inclusion criteria. The records were retrieved from ACM Digital Library, IEEE Xplore, Scopus, ScienceDirect, and the Digital Bibliography and Library Project (DBLP). RAG couples a neural retriever with a generative language model, grounding output in up-to-date, non-parametric memory while retaining the semantic generalisation stored in model weights. Guided by the PRISMA 2020 framework, we (i) specify explicit inclusion and exclusion criteria based on citation count and research questions, (ii) catalogue datasets, architectures, and evaluation practices, and (iii) synthesise empirical evidence on the effectiveness and limitations of RAG. To mitigate citation-lag bias, we applied a lower citation-count threshold to papers published in 2025 so that emerging breakthroughs with naturally fewer citations were still captured. This review clarifies the current research landscape, highlights methodological gaps, and charts priority directions for future research.
comment: 58 pages
☆ M2IO-R1: An Efficient RL-Enhanced Reasoning Framework for Multimodal Retrieval Augmented Multimodal Generation
Current research on Multimodal Retrieval-Augmented Generation (MRAG) enables diverse multimodal inputs but remains limited to single-modality outputs, restricting expressive capacity and practical utility. In contrast, real-world applications often demand both multimodal inputs and multimodal outputs for effective communication and grounded reasoning. Motivated by the recent success of Reinforcement Learning (RL) in complex reasoning tasks for Large Language Models (LLMs), we adopt RL as a principled and effective paradigm to address the multi-step, outcome-driven challenges inherent in multimodal output generation. Here, we introduce M2IO-R1, a novel framework for Multimodal Retrieval-Augmented Multimodal Generation (MRAMG) that supports both multimodal inputs and outputs. Central to our framework is an RL-based inserter, Inserter-R1-3B, trained with Group Relative Policy Optimization to guide image selection and placement in a controllable and semantically aligned manner. Empirical results show that our lightweight 3B inserter achieves strong reasoning capabilities with significantly reduced latency, outperforming baselines in both quality and efficiency.
☆ Improving Table Retrieval with Question Generation from Partial Tables ACL2025
Recent advances in open-domain question answering over tables have widely adopted large language models (LLMs) under the Retriever-Reader architecture. Prior works have effectively leveraged LLMs to tackle the complex reasoning demands of the Reader component, such as text-to-text, text-to-SQL, and multi hop reasoning. In contrast, the Retriever component has primarily focused on optimizing the query representation-training retrievers to retrieve relevant tables based on questions, or to select keywords from questions for matching table segments. However, little attention has been given to enhancing how tables themselves are represented in embedding space to better align with questions. To address this, we propose QGpT (Question Generation from Partial Tables), a simple yet effective method that uses an LLM to generate synthetic questions based on small portions of a table. These questions are generated to simulate how a user might query the content of the table currently under consideration. The generated questions are then jointly embedded with the partial table segments used for generation, enhancing semantic alignment with user queries. Without the need to embed entire tables, our method significantly improves retrieval performance across multiple benchmarks for both dense and late-interaction retrievers.
comment: TRL@ACL2025
☆ Semantic Item Graph Enhancement for Multimodal Recommendation
Multimodal recommendation systems have attracted increasing attention for their improved performance by leveraging items' multimodal information. Prior methods often build modality-specific item-item semantic graphs from raw modality features and use them as supplementary structures alongside the user-item interaction graph to enhance user preference learning. However, these semantic graphs suffer from semantic deficiencies, including (1) insufficient modeling of collaborative signals among items and (2) structural distortions introduced by noise in raw modality features, ultimately compromising performance. To address these issues, we first extract collaborative signals from the interaction graph and infuse them into each modality-specific item semantic graph to enhance semantic modeling. Then, we design a modulus-based personalized embedding perturbation mechanism that injects perturbations with modulus-guided personalized intensity into embeddings to generate contrastive views. This enables the model to learn noise-robust representations through contrastive learning, thereby reducing the effect of structural noise in semantic graphs. Besides, we propose a dual representation alignment mechanism that first aligns multiple semantic representations via a designed Anchor-based InfoNCE loss using behavior representations as anchors, and then aligns behavior representations with the fused semantics by standard InfoNCE, to ensure representation consistency. Extensive experiments on four benchmark datasets validate the effectiveness of our framework.
☆ Few-Shot Prompting for Extractive Quranic QA with Instruction-Tuned LLMs
This paper presents two effective approaches for Extractive Question Answering (QA) on the Quran. It addresses challenges related to complex language, unique terminology, and deep meaning in the text. The second uses few-shot prompting with instruction-tuned large language models such as Gemini and DeepSeek. A specialized Arabic prompt framework is developed for span extraction. A strong post-processing system integrates subword alignment, overlap suppression, and semantic filtering. This improves precision and reduces hallucinations. Evaluations show that large language models with Arabic instructions outperform traditional fine-tuned models. The best configuration achieves a pAP10 score of 0.637. The results confirm that prompt-based instruction tuning is effective for low-resource, semantically rich QA tasks.
comment: 6 pages , 2 figures , Accepted in IMSA 2025,Egypt , https://imsa.msa.edu.eg/
☆ When a Paper Has 1000 Authors: Rethinking Citation Metrics in the Era of LLMs
Author-level citation metrics provide a practical, interpretable, and scalable signal of scholarly influence in a complex research ecosystem. It has been widely used as a proxy in hiring decisions. However, the past five years have seen the rapid emergence of large-scale publications in the field of large language models and foundation models, with papers featuring hundreds to thousands of co-authors and receiving tens of thousands of citations within months. For example, Gemini has 1361 authors and has been cited around 4600 times in 19 months. In such cases, traditional metrics, such as total citation count and the $h$-index, fail to meaningfully distinguish individual contributions. Therefore, we propose the following research question: How can one identify standout researchers among thousands of co-authors in large-scale LLM papers? This question is particularly important in scenarios such as academic hiring and funding decisions. In this paper, we introduce a novel citation metric designed to address this challenge by balancing contributions across large-scale and small-scale publications. We propose the SBCI index, analyze its theoretical properties, and evaluate its behavior on synthetic publication datasets. Our results demonstrate that the proposed metric provides a more robust and discriminative assessment of individual scholarly impact in the era of large-scale collaborations.
☆ Efficient Multimodal Streaming Recommendation via Expandable Side Mixture-of-Experts
Streaming recommender systems (SRSs) are widely deployed in real-world applications, where user interests shift and new items arrive over time. As a result, effectively capturing users' latest preferences is challenging, as interactions reflecting recent interests are limited and new items often lack sufficient feedback. A common solution is to enrich item representations using multimodal encoders (e.g., BERT or ViT) to extract visual and textual features. However, these encoders are pretrained on general-purpose tasks: they are not tailored to user preference modeling, and they overlook the fact that user tastes toward modality-specific features such as visual styles and textual tones can also drift over time. This presents two key challenges in streaming scenarios: the high cost of fine-tuning large multimodal encoders, and the risk of forgetting long-term user preferences due to continuous model updates. To tackle these challenges, we propose Expandable Side Mixture-of-Experts (XSMoE), a memory-efficient framework for multimodal streaming recommendation. XSMoE attaches lightweight side-tuning modules consisting of expandable expert networks to frozen pretrained encoders and incrementally expands them in response to evolving user feedback. A gating router dynamically combines expert and backbone outputs, while a utilization-based pruning strategy maintains model compactness. By learning new patterns through expandable experts without overwriting previously acquired knowledge, XSMoE effectively captures both cold start and shifting preferences in multimodal features. Experiments on three real-world datasets demonstrate that XSMoE outperforms state-of-the-art baselines in both recommendation quality and computational efficiency.
comment: Accepted to CIKM 2025
☆ Dual prototype attentive graph network for cross-market recommendation
Cross-market recommender systems (CMRS) aim to utilize historical data from mature markets to promote multinational products in emerging markets. However, existing CMRS approaches often overlook the potential for shared preferences among users in different markets, focusing primarily on modeling specific preferences within each market. In this paper, we argue that incorporating both market-specific and market-shared insights can enhance the generalizability and robustness of CMRS. We propose a novel approach called Dual Prototype Attentive Graph Network for Cross-Market Recommendation (DGRE) to address this. DGRE leverages prototypes based on graph representation learning from both items and users to capture market-specific and market-shared insights. Specifically, DGRE incorporates market-shared prototypes by clustering users from various markets to identify behavioural similarities and create market-shared user profiles. Additionally, it constructs item-side prototypes by aggregating item features within each market, providing valuable market-specific insights. We conduct extensive experiments to validate the effectiveness of DGRE on a real-world cross-market dataset, and the results show that considering both market-specific and market-sharing aspects in modelling can improve the generalization and robustness of CMRS.
comment: Accepted by ICONIP 2025 (Oral)
☆ Formal Concept Analysis: a Structural Framework for Variability Extraction and Analysis
Formal Concept Analysis (FCA) is a mathematical framework for knowledge representation and discovery. It performs a hierarchical clustering over a set of objects described by attributes, resulting in conceptual structures in which objects are organized depending on the attributes they share. These conceptual structures naturally highlight commonalities and variabilities among similar objects by categorizing them into groups which are then arranged by similarity, making it particularly appropriate for variability extraction and analysis. Despite the potential of FCA, determining which of its properties can be leveraged for variability-related tasks (and how) is not always straightforward, partly due to the mathematical orientation of its foundational literature. This paper attempts to bridge part of this gap by gathering a selection of properties of the framework which are essential to variability analysis, and how they can be used to interpret diverse variability information within the resulting conceptual structures.
☆ BrowseComp-Plus: A More Fair and Transparent Evaluation Benchmark of Deep-Research Agent
Deep-Research agents, which integrate large language models (LLMs) with search tools, have shown success in improving the effectiveness of handling complex queries that require iterative search planning and reasoning over search results. Evaluations on current benchmarks like BrowseComp relies on black-box live web search APIs, have notable limitations in (1) fairness: dynamic and opaque web APIs hinder fair comparisons and reproducibility of deep research methods; (2) transparency: lack of control over the document corpus makes it difficult to isolate retriever contributions. In other words, the current evaluations may compare a complete deep research system at a given time, but they do not foster well-controlled experiments to provide insights into the capability of underlying deep research LLMs. To address these challenges, we introduce BrowseComp-Plus, a benchmark derived from BrowseComp, employing a fixed, carefully curated corpus. Each query in BrowseComp-Plus includes human-verified supporting documents and mined challenging negatives, enabling controlled experimentation. The benchmark is shown to be effective in distinguishing the performance of deep research systems. For instance, the open-source model Search-R1, when paired with the BM25 retriever, achieves 3.86% accuracy, whereas the GPT-5 achieves 55.9%. Integrating the GPT-5 with the Qwen3-Embedding-8B retriever further enhances its accuracy to 70.1% with fewer search calls. This benchmark allows comprehensive evaluation and disentangled analysis of deep research agents and retrieval methods, fostering insights into retrieval effectiveness, citation accuracy, and context engineering in Deep-Research system.
♻ ☆ Rank1: Test-Time Compute for Reranking in Information Retrieval
We introduce Rank1, the first reranking model trained to take advantage of test-time compute. Rank1 demonstrates the applicability within retrieval of using a reasoning language model (i.e. OpenAI's o1, Deepseek's R1, etc.) for distillation in order to rapidly improve the performance of a smaller model. We gather and open-source a dataset of more than 600,000 examples of R1 reasoning traces from queries and passages in MS MARCO. Models trained on this dataset show: (1) state-of-the-art performance on advanced reasoning and instruction following datasets; (2) work remarkably well out of distribution due to the ability to respond to user-input prompts; and (3) have explainable reasoning chains that can be given to users or RAG-based systems. Further, we demonstrate that quantized versions of these models retain strong performance while using less compute/memory. Overall, Rank1 shows that test-time compute allows for a fundamentally new type of explainable and performant reranker model for search.
comment: Published at CoLM 2025
♻ ☆ Budgeted Embedding Table For Recommender Systems
At the heart of contemporary recommender systems (RSs) are latent factor models that provide quality recommendation experience to users. These models use embedding vectors, which are typically of a uniform and fixed size, to represent users and items. As the number of users and items continues to grow, this design becomes inefficient and hard to scale. Recent lightweight embedding methods have enabled different users and items to have diverse embedding sizes, but are commonly subject to two major drawbacks. Firstly, they limit the embedding size search to optimizing a heuristic balancing the recommendation quality and the memory complexity, where the trade-off coefficient needs to be manually tuned for every memory budget requested. The implicitly enforced memory complexity term can even fail to cap the parameter usage, making the resultant embedding table fail to meet the memory budget strictly. Secondly, most solutions, especially reinforcement learning based ones derive and optimize the embedding size for each each user/item on an instance-by-instance basis, which impedes the search efficiency. In this paper, we propose Budgeted Embedding Table (BET), a novel method that generates table-level actions (i.e., embedding sizes for all users and items) that is guaranteed to meet pre-specified memory budgets. Furthermore, by leveraging a set-based action formulation and engaging set representation learning, we present an innovative action search strategy powered by an action fitness predictor that efficiently evaluates each table-level action. Experiments have shown state-of-the-art performance on two real-world datasets when BET is paired with three popular recommender models under different memory budgets.
comment: Accepted to WSDM 2024
♻ ☆ Decompositional Reasoning for Graph Retrieval with Large Language Models
Large Language Models (LLMs) excel at many NLP tasks, but struggle with multi-hop reasoning and factual consistency, limiting their effectiveness on knowledge-intensive tasks like complex question answering (QA). Linking Knowledge Graphs (KG) and LLMs has shown promising results, but LLMs generally lack the ability to reason efficiently over graph-structured information. To tackle this problem, we propose a novel retrieval approach that integrates textual knowledge graphs into the LLM reasoning process via query decomposition. Our method decomposes complex questions into sub-questions, retrieves relevant textual subgraphs, and composes a question-specific knowledge graph to guide answer generation. For that, we use a weighted similarity function that focuses on both the complex question and the generated subquestions to extract a relevant subgraph, which allows efficient and precise retrieval for complex questions and improves the performance of LLMs on multi-hop QA tasks. This structured reasoning pipeline enhances factual grounding and interpretability while leveraging the generative strengths of LLMs. We evaluate our method on standard multi-hop QA benchmarks and show that it achieves comparable or superior performance to competitive existing methods, using smaller models and fewer LLM calls.
♻ ☆ Nyay-Darpan: Enhancing Decision Making Through Summarization and Case Retrieval for Consumer Law in India
AI-based judicial assistance and case prediction have been extensively studied in criminal and civil domains, but remain largely unexplored in consumer law, especially in India. In this paper, we present Nyay-Darpan, a novel two-in-one framework that (i) summarizes consumer case files and (ii) retrieves similar case judgements to aid decision-making in consumer dispute resolution. Our methodology not only addresses the gap in consumer law AI tools but also introduces an innovative approach to evaluate the quality of the summary. The term 'Nyay-Darpan' translates into 'Mirror of Justice', symbolizing the ability of our tool to reflect the core of consumer disputes through precise summarization and intelligent case retrieval. Our system achieves over 75 percent accuracy in similar case prediction and approximately 70 percent accuracy across material summary evaluation metrics, demonstrating its practical effectiveness. We will publicly release the Nyay-Darpan framework and dataset to promote reproducibility and facilitate further research in this underexplored yet impactful domain.
♻ ☆ Federated Continual Recommendation
The increasing emphasis on privacy in recommendation systems has led to the adoption of Federated Learning (FL) as a privacy-preserving solution, enabling collaborative training without sharing user data. While Federated Recommendation (FedRec) effectively protects privacy, existing methods struggle with non-stationary data streams, failing to maintain consistent recommendation quality over time. On the other hand, Continual Learning Recommendation (CLRec) methods address evolving user preferences but typically assume centralized data access, making them incompatible with FL constraints. To bridge this gap, we introduce Federated Continual Recommendation (FCRec), a novel task that integrates FedRec and CLRec, requiring models to learn from streaming data while preserving privacy. As a solution, we propose F3CRec, a framework designed to balance knowledge retention and adaptation under the strict constraints of FCRec. F3CRec introduces two key components: Adaptive Replay Memory on the client side, which selectively retains past preferences based on user-specific shifts, and Item-wise Temporal Mean on the server side, which integrates new knowledge while preserving prior information. Extensive experiments demonstrate that F3CRec outperforms existing approaches in maintaining recommendation quality over time in a federated environment.
comment: Accepted to CIKM 2025
♻ ☆ CAMEF: Causal-Augmented Multi-Modality Event-Driven Financial Forecasting by Integrating Time Series Patterns and Salient Macroeconomic Announcements SIGKDD 2025
Accurately forecasting the impact of macroeconomic events is critical for investors and policymakers. Salient events like monetary policy decisions and employment reports often trigger market movements by shaping expectations of economic growth and risk, thereby establishing causal relationships between events and market behavior. Existing forecasting methods typically focus either on textual analysis or time-series modeling, but fail to capture the multi-modal nature of financial markets and the causal relationship between events and price movements. To address these gaps, we propose CAMEF (Causal-Augmented Multi-Modality Event-Driven Financial Forecasting), a multi-modality framework that effectively integrates textual and time-series data with a causal learning mechanism and an LLM-based counterfactual event augmentation technique for causal-enhanced financial forecasting. Our contributions include: (1) a multi-modal framework that captures causal relationships between policy texts and historical price data; (2) a new financial dataset with six types of macroeconomic releases from 2008 to April 2024, and high-frequency real trading data for five key U.S. financial assets; and (3) an LLM-based counterfactual event augmentation strategy. We compare CAMEF to state-of-the-art transformer-based time-series and multi-modal baselines, and perform ablation studies to validate the effectiveness of the causal learning mechanism and event types.
comment: Accepted in SIGKDD 2025
♻ ☆ Harnessing Light for Cold-Start Recommendations: Leveraging Epistemic Uncertainty to Enhance Performance in User-Item Interactions
Most recent paradigms of generative model-based recommendation still face challenges related to the cold-start problem. Existing models addressing cold item recommendations mainly focus on acquiring more knowledge to enrich embeddings or model inputs. However, many models do not assess the efficiency with which they utilize the available training knowledge, leading to the extraction of significant knowledge that is not fully used, thus limiting improvements in cold-start performance. To address this, we introduce the concept of epistemic uncertainty to indirectly define how efficiently a model uses the training knowledge. Since epistemic uncertainty represents the reducible part of the total uncertainty, we can optimize the recommendation model further based on epistemic uncertainty to improve its performance. To this end, we propose a Cold-Start Recommendation based on Epistemic Uncertainty (CREU) framework. Additionally, CREU is inspired by Pairwise-Distance Estimators (PaiDEs) to efficiently and accurately measure epistemic uncertainty by evaluating the mutual information between model outputs and weights in high-dimensional spaces. The proposed method is evaluated through extensive offline experiments on public datasets, which further demonstrate the advantages and robustness of CREU. The source code is available at https://github.com/EsiksonX/CREU.
comment: Accepted by CIKM 2025
♻ ☆ ArchRAG: Attributed Community-based Hierarchical Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has proven effective in integrating external knowledge into large language models (LLMs) for solving question-answer (QA) tasks. The state-of-the-art RAG approaches often use the graph data as the external data since they capture the rich semantic information and link relationships between entities. However, existing graph-based RAG approaches cannot accurately identify the relevant information from the graph and also consume large numbers of tokens in the online retrieval process. To address these issues, we introduce a novel graph-based RAG approach, called Attributed Community-based Hierarchical RAG (ArchRAG), by augmenting the question using attributed communities, and also introducing a novel LLM-based hierarchical clustering method. To retrieve the most relevant information from the graph for the question, we build a novel hierarchical index structure for the attributed communities and develop an effective online retrieval method. Experimental results demonstrate that ArchRAG outperforms existing methods in both accuracy and token cost.
♻ ☆ LLMDistill4Ads: Using Cross-Encoders to Distill from LLM Signals for Advertiser Keyphrase Recommendations at eBay
Sellers at eBay are recommended keyphrases to bid on to enhance the performance of their advertising campaigns. The relevance of these keyphrases is crucial in avoiding the overcrowding of search systems with irrelevant items and maintaining a positive seller perception. It is essential that keyphrase recommendations align with both seller and Search judgments regarding auctions. Due to the difficulty in procuring negative human judgment at scale, employing LLM-as-a-judge to mimic seller judgment has been established as the norm in several studies. This study introduces a novel two-step LLM distillation process from a LLM-judge used to debias our Embedding Based Retrieval (EBR) model from the various biases that exist in click-data. We distill from an LLM teacher via a cross-encoder assistant into a bi-encoder student using a multi-task training approach, ultimately employing the student bi-encoder to retrieve relevant advertiser keyphrases. We show that integrating a knowledge distillation process from LLMs in a multi-task training setup enhances bi-encoder performance in retrieving relevant advertiser keyphrases at eBay.
♻ ☆ Community-Aware Social Community Recommendation
Social recommendation, which seeks to leverage social ties among users to alleviate the sparsity issue of user-item interactions, has emerged as a popular technique for elevating personalized services in recommender systems. Despite being effective, existing social recommendation models are mainly devised for recommending regular items such as blogs, images, and products, and largely fail for community recommendations due to overlooking the unique characteristics of communities. Distinctly, communities are constituted by individuals, who present high dynamicity and relate to rich structural patterns in social networks. To our knowledge, limited research has been devoted to comprehensively exploiting this information for recommending communities. To bridge this gap, this paper presents CASO, a novel and effective model specially designed for social community recommendation. Under the hood, CASO harnesses three carefully-crafted encoders for user embedding, wherein two of them extract community-related global and local structures from the social network via social modularity maximization and social closeness aggregation, while the third one captures user preferences using collaborative filtering with observed user-community affiliations. To further eliminate feature redundancy therein, we introduce a mutual exclusion between social and collaborative signals. Finally, CASO includes a community detection loss in the model optimization, thereby producing community-aware embeddings for communities. Our extensive experiments evaluating CASO against nine strong baselines on six real-world social networks demonstrate its consistent and remarkable superiority over the state of the art in terms of community recommendation performance.
comment: This is the technical report of the paper "Community-Aware Social Community Recommendation" accepted by CIKM 2025
Artificial Intelligence 150
☆ WGAST: Weakly-Supervised Generative Network for Daily 10 m Land Surface Temperature Estimation via Spatio-Temporal Fusion
Urbanization, climate change, and agricultural stress are increasing the demand for precise and timely environmental monitoring. Land Surface Temperature (LST) is a key variable in this context and is retrieved from remote sensing satellites. However, these systems face a trade-off between spatial and temporal resolution. While spatio-temporal fusion methods offer promising solutions, few have addressed the estimation of daily LST at 10 m resolution. In this study, we present WGAST, a Weakly-Supervised Generative Network for Daily 10 m LST Estimation via Spatio-Temporal Fusion of Terra MODIS, Landsat 8, and Sentinel-2. WGAST is the first end-to-end deep learning framework designed for this task. It adopts a conditional generative adversarial architecture, with a generator composed of four stages: feature extraction, fusion, LST reconstruction, and noise suppression. The first stage employs a set of encoders to extract multi-level latent representations from the inputs, which are then fused in the second stage using cosine similarity, normalization, and temporal attention mechanisms. The third stage decodes the fused features into high-resolution LST, followed by a Gaussian filter to suppress high-frequency noise. Training follows a weakly supervised strategy based on physical averaging principles and reinforced by a PatchGAN discriminator. Experiments demonstrate that WGAST outperforms existing methods in both quantitative and qualitative evaluations. Compared to the best-performing baseline, on average, WGAST reduces RMSE by 17.18% and improves SSIM by 11.00%. Furthermore, WGAST is robust to cloud-induced LST and effectively captures fine-scale thermal patterns, as validated against 33 ground-based sensors. The code is available at https://github.com/Sofianebouaziz1/WGAST.git.
comment: Submitted to IEEE Transactions on Geoscience and Remote Sensing (TGRS)
☆ Post-training for Efficient Communication via Convention Formation
Humans communicate with increasing efficiency in multi-turn interactions, by adapting their language and forming ad-hoc conventions. In contrast, prior work shows that LLMs do not naturally show this behavior. We develop a post-training process to develop this ability through targeted fine-tuning on heuristically identified demonstrations of convention formation. We evaluate with two new benchmarks focused on this capability. First, we design a focused, cognitively-motivated interaction benchmark that consistently elicits strong convention formation trends in humans. Second, we create a new document-grounded reference completion task that reflects in-the-wild convention formation behavior. Our studies show significantly improved convention formation abilities in post-trained LLMs across the two evaluation methods.
comment: Accepted to COLM 2025
☆ Intuition emerges in Maximum Caliber models at criticality
Whether large predictive models merely parrot their training data or produce genuine insight lacks a physical explanation. This work reports a primitive form of intuition that emerges as a metastable phase of learning that critically balances next-token prediction against future path-entropy. The intuition mechanism is discovered via mind-tuning, the minimal principle that imposes Maximum Caliber in predictive models with a control temperature-like parameter $\lambda$. Training on random walks in deterministic mazes reveals a rich phase diagram: imitation (low $\lambda$), rule-breaking hallucination (high $\lambda$), and a fragile in-between window exhibiting strong protocol-dependence (hysteresis) and multistability, where models spontaneously discover novel goal-directed strategies. These results are captured by an effective low-dimensional theory and frame intuition as an emergent property at the critical balance between memorizing what is and wondering what could be.
☆ ScamAgents: How AI Agents Can Simulate Human-Level Scam Calls
Large Language Models (LLMs) have demonstrated impressive fluency and reasoning capabilities, but their potential for misuse has raised growing concern. In this paper, we present ScamAgent, an autonomous multi-turn agent built on top of LLMs, capable of generating highly realistic scam call scripts that simulate real-world fraud scenarios. Unlike prior work focused on single-shot prompt misuse, ScamAgent maintains dialogue memory, adapts dynamically to simulated user responses, and employs deceptive persuasion strategies across conversational turns. We show that current LLM safety guardrails, including refusal mechanisms and content filters, are ineffective against such agent-based threats. Even models with strong prompt-level safeguards can be bypassed when prompts are decomposed, disguised, or delivered incrementally within an agent framework. We further demonstrate the transformation of scam scripts into lifelike voice calls using modern text-to-speech systems, completing a fully automated scam pipeline. Our findings highlight an urgent need for multi-turn safety auditing, agent-level control frameworks, and new methods to detect and disrupt conversational deception powered by generative AI.
comment: Accepted at CAMLIS 25: Conference on Applied Machine Learning for Information Security. 10 pages, 3 figures
☆ What Voting Rules Actually Do: A Data-Driven Analysis of Multi-Winner Voting
Committee-selection problems arise in many contexts and applications, and there has been increasing interest within the social choice research community on identifying which properties are satisfied by different multi-winner voting rules. In this work, we propose a data-driven framework to evaluate how frequently voting rules violate axioms across diverse preference distributions in practice, shifting away from the binary perspective of axiom satisfaction given by worst-case analysis. Using this framework, we analyze the relationship between multi-winner voting rules and their axiomatic performance under several preference distributions. We then show that neural networks, acting as voting rules, can outperform traditional rules in minimizing axiom violations. Our results suggest that data-driven approaches to social choice can inform the design of new voting systems and support the continuation of data-driven research in social choice.
comment: 41 pages
☆ Text Embedded Swin-UMamba for DeepLesion Segmentation
Segmentation of lesions on CT enables automatic measurement for clinical assessment of chronic diseases (e.g., lymphoma). Integrating large language models (LLMs) into the lesion segmentation workflow offers the potential to combine imaging features with descriptions of lesion characteristics from the radiology reports. In this study, we investigate the feasibility of integrating text into the Swin-UMamba architecture for the task of lesion segmentation. The publicly available ULS23 DeepLesion dataset was used along with short-form descriptions of the findings from the reports. On the test dataset, a high Dice Score of 82% and low Hausdorff distance of 6.58 (pixels) was obtained for lesion segmentation. The proposed Text-Swin-UMamba model outperformed prior approaches: 37% improvement over the LLM-driven LanGuideMedSeg model (p < 0.001),and surpassed the purely image-based xLSTM-UNet and nnUNet models by 1.74% and 0.22%, respectively. The dataset and code can be accessed at https://github.com/ruida/LLM-Swin-UMamba
☆ Echoes of Automation: The Increasing Use of LLMs in Newsmaking
The rapid rise of Generative AI (GenAI), particularly LLMs, poses concerns for journalistic integrity and authorship. This study examines AI-generated content across over 40,000 news articles from major, local, and college news media, in various media formats. Using three advanced AI-text detectors (e.g., Binoculars, Fast-Detect GPT, and GPTZero), we find substantial increase of GenAI use in recent years, especially in local and college news. Sentence-level analysis reveals LLMs are often used in the introduction of news, while conclusions usually written manually. Linguistic analysis shows GenAI boosts word richness and readability but lowers formality, leading to more uniform writing styles, particularly in local media.
comment: To appear in 18th International Conference on Social Computing, Behavioral-Cultural Modeling, & Prediction and Behavior Representation in Modeling and Simulation, and to be published in the Springer LNCS series
☆ The Fair Game: Auditing & Debiasing AI Algorithms Over Time
An emerging field of AI, namely Fair Machine Learning (ML), aims to quantify different types of bias (also known as unfairness) exhibited in the predictions of ML algorithms, and to design new algorithms to mitigate them. Often, the definitions of bias used in the literature are observational, i.e. they use the input and output of a pre-trained algorithm to quantify a bias under concern. In reality,these definitions are often conflicting in nature and can only be deployed if either the ground truth is known or only in retrospect after deploying the algorithm. Thus,there is a gap between what we want Fair ML to achieve and what it does in a dynamic social environment. Hence, we propose an alternative dynamic mechanism,"Fair Game",to assure fairness in the predictions of an ML algorithm and to adapt its predictions as the society interacts with the algorithm over time. "Fair Game" puts together an Auditor and a Debiasing algorithm in a loop around an ML algorithm. The "Fair Game" puts these two components in a loop by leveraging Reinforcement Learning (RL). RL algorithms interact with an environment to take decisions, which yields new observations (also known as data/feedback) from the environment and in turn, adapts future decisions. RL is already used in algorithms with pre-fixed long-term fairness goals. "Fair Game" provides a unique framework where the fairness goals can be adapted over time by only modifying the auditor and the different biases it quantifies. Thus,"Fair Game" aims to simulate the evolution of ethical and legal frameworks in the society by creating an auditor which sends feedback to a debiasing algorithm deployed around an ML system. This allows us to develop a flexible and adaptive-over-time framework to build Fair ML systems pre- and post-deployment.
☆ Learning the Topic, Not the Language: How LLMs Classify Online Immigration Discourse Across Languages
Large language models (LLMs) are transforming social-science research by enabling scalable, precise analysis. Their adaptability raises the question of whether knowledge acquired through fine-tuning in a few languages can transfer to unseen languages that only appeared during pre-training. To examine this, we fine-tune lightweight LLaMA 3.2-3B models on monolingual, bilingual, or multilingual data sets to classify immigration-related tweets from X/Twitter across 13 languages, a domain characterised by polarised, culturally specific discourse. We evaluate whether minimal language-specific fine-tuning enables cross-lingual topic detection and whether adding targeted languages corrects pre-training biases. Results show that LLMs fine-tuned in one or two languages can reliably classify immigration-related content in unseen languages. However, identifying whether a tweet expresses a pro- or anti-immigration stance benefits from multilingual fine-tuning. Pre-training bias favours dominant languages, but even minimal exposure to under-represented languages during fine-tuning (as little as $9.62\times10^{-11}$ of the original pre-training token volume) yields significant gains. These findings challenge the assumption that cross-lingual mastery requires extensive multilingual training: limited language coverage suffices for topic-level generalisation, and structural biases can be corrected with lightweight interventions. By releasing 4-bit-quantised, LoRA fine-tuned models, we provide an open-source, reproducible alternative to proprietary LLMs that delivers 35 times faster inference at just 0.00000989% of the dollar cost of the OpenAI GPT-4o model, enabling scalable, inclusive research.
☆ CLIPin: A Non-contrastive Plug-in to CLIP for Multimodal Semantic Alignment
Large-scale natural image-text datasets, especially those automatically collected from the web, often suffer from loose semantic alignment due to weak supervision, while medical datasets tend to have high cross-modal correlation but low content diversity. These properties pose a common challenge for contrastive language-image pretraining (CLIP): they hinder the model's ability to learn robust and generalizable representations. In this work, we propose CLIPin, a unified non-contrastive plug-in that can be seamlessly integrated into CLIP-style architectures to improve multimodal semantic alignment, providing stronger supervision and enhancing alignment robustness. Furthermore, two shared pre-projectors are designed for image and text modalities respectively to facilitate the integration of contrastive and non-contrastive learning in a parameter-compromise manner. Extensive experiments on diverse downstream tasks demonstrate the effectiveness and generality of CLIPin as a plug-and-play component compatible with various contrastive frameworks. Code is available at https://github.com/T6Yang/CLIPin.
☆ Memp: Exploring Agent Procedural Memory
Large Language Models (LLMs) based agents excel at diverse tasks, yet they suffer from brittle procedural memory that is manually engineered or entangled in static parameters. In this work, we investigate strategies to endow agents with a learnable, updatable, and lifelong procedural memory. We propose Memp that distills past agent trajectories into both fine-grained, step-by-step instructions and higher-level, script-like abstractions, and explore the impact of different strategies for Build, Retrieval, and Update of procedural memory. Coupled with a dynamic regimen that continuously updates, corrects, and deprecates its contents, this repository evolves in lockstep with new experience. Empirical evaluation on TravelPlanner and ALFWorld shows that as the memory repository is refined, agents achieve steadily higher success rates and greater efficiency on analogous tasks. Moreover, procedural memory built from a stronger model retains its value: migrating the procedural memory to a weaker model yields substantial performance gains.
comment: Work in progress
☆ SPARSE Data, Rich Results: Few-Shot Semi-Supervised Learning via Class-Conditioned Image Translation
Deep learning has revolutionized medical imaging, but its effectiveness is severely limited by insufficient labeled training data. This paper introduces a novel GAN-based semi-supervised learning framework specifically designed for low labeled-data regimes, evaluated across settings with 5 to 50 labeled samples per class. Our approach integrates three specialized neural networks -- a generator for class-conditioned image translation, a discriminator for authenticity assessment and classification, and a dedicated classifier -- within a three-phase training framework. The method alternates between supervised training on limited labeled data and unsupervised learning that leverages abundant unlabeled images through image-to-image translation rather than generation from noise. We employ ensemble-based pseudo-labeling that combines confidence-weighted predictions from the discriminator and classifier with temporal consistency through exponential moving averaging, enabling reliable label estimation for unlabeled data. Comprehensive evaluation across eleven MedMNIST datasets demonstrates that our approach achieves statistically significant improvements over six state-of-the-art GAN-based semi-supervised methods, with particularly strong performance in the extreme 5-shot setting where the scarcity of labeled data is most challenging. The framework maintains its superiority across all evaluated settings (5, 10, 20, and 50 shots per class). Our approach offers a practical solution for medical imaging applications where annotation costs are prohibitive, enabling robust classification performance even with minimal labeled data. Code is available at https://github.com/GuidoManni/SPARSE.
☆ Shortcut Learning in Generalist Robot Policies: The Role of Dataset Diversity and Fragmentation
Generalist robot policies trained on large-scale datasets such as Open X-Embodiment (OXE) demonstrate strong performance across a wide range of tasks. However, they often struggle to generalize beyond the distribution of their training data. In this paper, we investigate the underlying cause of this limited generalization capability. We identify shortcut learning -- the reliance on task-irrelevant features -- as a key impediment to generalization. Through comprehensive theoretical and empirical analysis, we uncover two primary contributors to shortcut learning: (1) limited diversity within individual sub-datasets, and (2) significant distributional disparities across sub-datasets, leading to dataset fragmentation. These issues arise from the inherent structure of large-scale datasets like OXE, which are typically composed of multiple sub-datasets collected independently across varied environments and embodiments. Our findings provide critical insights into dataset collection strategies that can reduce shortcut learning and enhance the generalization ability of generalist robot policies. Moreover, in scenarios where acquiring new large-scale data is impractical, we demonstrate that carefully selected robotic data augmentation strategies can effectively reduce shortcut learning in existing offline datasets, thereby improving generalization capabilities of generalist robot policies, e.g., $\pi_0$, in both simulation and real-world environments. More information at https://lucky-light-sun.github.io/proj/shortcut-learning-in-grps/.
comment: CoRL 2025
☆ Dimensional Characterization and Pathway Modeling for Catastrophic AI Risks AI
Although discourse around the risks of Artificial Intelligence (AI) has grown, it often lacks a comprehensive, multidimensional framework, and concrete causal pathways mapping hazard to harm. This paper aims to bridge this gap by examining six commonly discussed AI catastrophic risks: CBRN, cyber offense, sudden loss of control, gradual loss of control, environmental risk, and geopolitical risk. First, we characterize these risks across seven key dimensions, namely intent, competency, entity, polarity, linearity, reach, and order. Next, we conduct risk pathway modeling by mapping step-by-step progressions from the initial hazard to the resulting harms. The dimensional approach supports systematic risk identification and generalizable mitigation strategies, while risk pathway models help identify scenario-specific interventions. Together, these methods offer a more structured and actionable foundation for managing catastrophic AI risks across the value chain.
comment: 24 pages including references, 6 figures. To be presented in Technical AI Governance Forum 2025
☆ A Classification-Aware Super-Resolution Framework for Ship Targets in SAR Imagery
High-resolution imagery plays a critical role in improving the performance of visual recognition tasks such as classification, detection, and segmentation. In many domains, including remote sensing and surveillance, low-resolution images can limit the accuracy of automated analysis. To address this, super-resolution (SR) techniques have been widely adopted to attempt to reconstruct high-resolution images from low-resolution inputs. Related traditional approaches focus solely on enhancing image quality based on pixel-level metrics, leaving the relationship between super-resolved image fidelity and downstream classification performance largely underexplored. This raises a key question: can integrating classification objectives directly into the super-resolution process further improve classification accuracy? In this paper, we try to respond to this question by investigating the relationship between super-resolution and classification through the deployment of a specialised algorithmic strategy. We propose a novel methodology that increases the resolution of synthetic aperture radar imagery by optimising loss functions that account for both image quality and classification performance. Our approach improves image quality, as measured by scientifically ascertained image quality indicators, while also enhancing classification accuracy.
☆ A Systematic Literature Review of Retrieval-Augmented Generation: Techniques, Metrics, and Challenges
This systematic review of the research literature on retrieval-augmented generation (RAG) provides a focused analysis of the most highly cited studies published between 2020 and May 2025. A total of 128 articles met our inclusion criteria. The records were retrieved from ACM Digital Library, IEEE Xplore, Scopus, ScienceDirect, and the Digital Bibliography and Library Project (DBLP). RAG couples a neural retriever with a generative language model, grounding output in up-to-date, non-parametric memory while retaining the semantic generalisation stored in model weights. Guided by the PRISMA 2020 framework, we (i) specify explicit inclusion and exclusion criteria based on citation count and research questions, (ii) catalogue datasets, architectures, and evaluation practices, and (iii) synthesise empirical evidence on the effectiveness and limitations of RAG. To mitigate citation-lag bias, we applied a lower citation-count threshold to papers published in 2025 so that emerging breakthroughs with naturally fewer citations were still captured. This review clarifies the current research landscape, highlights methodological gaps, and charts priority directions for future research.
comment: 58 pages
☆ Robust Target Speaker Diarization and Separation via Augmented Speaker Embedding Sampling
Traditional speech separation and speaker diarization approaches rely on prior knowledge of target speakers or a predetermined number of participants in audio signals. To address these limitations, recent advances focus on developing enrollment-free methods capable of identifying targets without explicit speaker labeling. This work introduces a new approach to train simultaneous speech separation and diarization using automatic identification of target speaker embeddings, within mixtures. Our proposed model employs a dual-stage training pipeline designed to learn robust speaker representation features that are resilient to background noise interference. Furthermore, we present an overlapping spectral loss function specifically tailored for enhancing diarization accuracy during overlapped speech frames. Experimental results show significant performance gains compared to the current SOTA baseline, achieving 71% relative improvement in DER and 69% in cpWER.
comment: Accepted to Interspeech 2025
☆ Identity Increases Stability in Neural Cellular Automata
Neural Cellular Automata (NCAs) offer a way to study the growth of two-dimensional artificial organisms from a single seed cell. From the outset, NCA-grown organisms have had issues with stability, their natural boundary often breaking down and exhibiting tumour-like growth or failing to maintain the expected shape. In this paper, we present a method for improving the stability of NCA-grown organisms by introducing an 'identity' layer with simple constraints during training. Results show that NCAs grown in close proximity are more stable compared with the original NCA model. Moreover, only a single identity value is required to achieve this increase in stability. We observe emergent movement from the stable organisms, with increasing prevalence for models with multiple identity values. This work lays the foundation for further study of the interaction between NCA-grown organisms, paving the way for studying social interaction at a cellular level in artificial organisms.
comment: Accepted to ALIFE 2025
☆ End-to-End Text-to-SQL with Dataset Selection: Leveraging LLMs for Adaptive Query Generation
Text-to-SQL bridges the gap between natural language and structured database language, thus allowing non-technical users to easily query databases. Traditional approaches model text-to-SQL as a direct translation task, where a given Natural Language Query (NLQ) is mapped to an SQL command. Recent advances in large language models (LLMs) have significantly improved translation accuracy, however, these methods all require that the target database is pre-specified. This becomes problematic in scenarios with multiple extensive databases, where identifying the correct database becomes a crucial yet overlooked step. In this paper, we propose a three-stage end-to-end text-to-SQL framework to identify the user's intended database before generating SQL queries. Our approach leverages LLMs and prompt engineering to extract implicit information from natural language queries (NLQs) in the form of a ruleset. We then train a large db\_id prediction model, which includes a RoBERTa-based finetuned encoder, to predict the correct Database identifier (db\_id) based on both the NLQ and the LLM-generated rules. Finally, we refine the generated SQL by using critic agents to correct errors. Experimental results demonstrate that our framework outperforms the current state-of-the-art models in both database intent prediction and SQL generation accuracy.
comment: Accepted in IJCNN25
☆ SpeakerLM: End-to-End Versatile Speaker Diarization and Recognition with Multimodal Large Language Models
The Speaker Diarization and Recognition (SDR) task aims to predict "who spoke when and what" within an audio clip, which is a crucial task in various real-world multi-speaker scenarios such as meeting transcription and dialogue systems. Existing SDR systems typically adopt a cascaded framework, combining multiple modules such as speaker diarization (SD) and automatic speech recognition (ASR). The cascaded systems suffer from several limitations, such as error propagation, difficulty in handling overlapping speech, and lack of joint optimization for exploring the synergy between SD and ASR tasks. To address these limitations, we introduce SpeakerLM, a unified multimodal large language model for SDR that jointly performs SD and ASR in an end-to-end manner. Moreover, to facilitate diverse real-world scenarios, we incorporate a flexible speaker registration mechanism into SpeakerLM, enabling SDR under different speaker registration settings. SpeakerLM is progressively developed with a multi-stage training strategy on large-scale real data. Extensive experiments show that SpeakerLM demonstrates strong data scaling capability and generalizability, outperforming state-of-the-art cascaded baselines on both in-domain and out-of-domain public SDR benchmarks. Furthermore, experimental results show that the proposed speaker registration mechanism effectively ensures robust SDR performance of SpeakerLM across diverse speaker registration conditions and varying numbers of registered speakers.
☆ Automated Creation of the Legal Knowledge Graph Addressing Legislation on Violence Against Women: Resource, Methodology and Lessons Learned
Legal decision-making process requires the availability of comprehensive and detailed legislative background knowledge and up-to-date information on legal cases and related sentences/decisions. Legal Knowledge Graphs (KGs) would be a valuable tool to facilitate access to legal information, to be queried and exploited for the purpose, and to enable advanced reasoning and machine learning applications. Indeed, legal KGs may act as knowledge intensive component to be used by pre-dictive machine learning solutions supporting the decision process of the legal expert. Nevertheless, a few KGs can be found in the legal domain. To fill this gap, we developed a legal KG targeting legal cases of violence against women, along with clear adopted methodologies. Specifically, the paper introduces two complementary approaches for automated legal KG construction; a systematic bottom-up approach, customized for the legal domain, and a new solution leveraging Large Language Models. Starting from legal sentences publicly available from the European Court of Justice, the solutions integrate structured data extraction, ontology development, and semantic enrichment to produce KGs tailored for legal cases involving violence against women. After analyzing and comparing the results of the two approaches, the developed KGs are validated via suitable competency questions. The obtained KG may be impactful for multiple purposes: can improve the accessibility to legal information both to humans and machine, can enable complex queries and may constitute an important knowledge component to be possibly exploited by machine learning tools tailored for predictive justice.
☆ ActivityDiff: A diffusion model with Positive and Negative Activity Guidance for De Novo Drug Design
Achieving precise control over a molecule's biological activity-encompassing targeted activation/inhibition, cooperative multi-target modulation, and off-target toxicity mitigation-remains a critical challenge in de novo drug design. However, existing generative methods primarily focus on producing molecules with a single desired activity, lacking integrated mechanisms for the simultaneous management of multiple intended and unintended molecular interactions. Here, we propose ActivityDiff, a generative approach based on the classifier-guidance technique of diffusion models. It leverages separately trained drug-target classifiers for both positive and negative guidance, enabling the model to enhance desired activities while minimizing harmful off-target effects. Experimental results show that ActivityDiff effectively handles essential drug design tasks, including single-/dual-target generation, fragment-constrained dual-target design, selective generation to enhance target specificity, and reduction of off-target effects. These results demonstrate the effectiveness of classifier-guided diffusion in balancing efficacy and safety in molecular design. Overall, our work introduces a novel paradigm for achieving integrated control over molecular activity, and provides ActivityDiff as a versatile and extensible framework.
☆ Beyond Prompt-Induced Lies: Investigating LLM Deception on Benign Prompts
Large Language Models (LLMs) have been widely deployed in reasoning, planning, and decision-making tasks, making their trustworthiness a critical concern. The potential for intentional deception, where an LLM deliberately fabricates or conceals information to serve a hidden objective, remains a significant and underexplored threat. Existing studies typically induce such deception by explicitly setting a "hidden" objective through prompting or fine-tuning, which may not fully reflect real-world human-LLM interactions. Moving beyond this human-induced deception, we investigate LLMs' self-initiated deception on benign prompts. To address the absence of ground truth in this evaluation, we propose a novel framework using "contact searching questions." This framework introduces two statistical metrics derived from psychological principles to quantify the likelihood of deception. The first, the Deceptive Intention Score, measures the model's bias towards a hidden objective. The second, Deceptive Behavior Score, measures the inconsistency between the LLM's internal belief and its expressed output. Upon evaluating 14 leading LLMs, we find that both metrics escalate as task difficulty increases, rising in parallel for most models. Building on these findings, we formulate a mathematical model to explain this behavior. These results reveal that even the most advanced LLMs exhibit an increasing tendency toward deception when handling complex problems, raising critical concerns for the deployment of LLM agents in complex and crucial domains.
☆ Are you In or Out (of gallery)? Wisdom from the Same-Identity Crowd
A central problem in one-to-many facial identification is that the person in the probe image may or may not have enrolled image(s) in the gallery; that is, may be In-gallery or Out-of-gallery. Past approaches to detect when a rank-one result is Out-of-gallery have mostly focused on finding a suitable threshold on the similarity score. We take a new approach, using the additional enrolled images of the identity with the rank-one result to predict if the rank-one result is In-gallery / Out-of-gallery. Given a gallery of identities and images, we generate In-gallery and Out-of-gallery training data by extracting the ranks of additional enrolled images corresponding to the rank-one identity. We then train a classifier to utilize this feature vector to predict whether a rank-one result is In-gallery or Out-of-gallery. Using two different datasets and four different matchers, we present experimental results showing that our approach is viable for mugshot quality probe images, and also, importantly, for probes degraded by blur, reduced resolution, atmospheric turbulence and sunglasses. We also analyze results across demographic groups, and show that In-gallery / Out-of-gallery classification accuracy is similar across demographics. Our approach has the potential to provide an objective estimate of whether a one-to-many facial identification is Out-of-gallery, and thereby to reduce false positive identifications, wrongful arrests, and wasted investigative time. Interestingly, comparing the results of older deep CNN-based face matchers with newer ones suggests that the effectiveness of our Out-of-gallery detection approach emerges only with matchers trained using advanced margin-based loss functions.
☆ From Explainable to Explanatory Artificial Intelligence: Toward a New Paradigm for Human-Centered Explanations through Generative AI
Current explainable AI (XAI) approaches prioritize algorithmic transparency and present explanations in abstract, non-adaptive formats that often fail to support meaningful end-user understanding. This paper introduces "Explanatory AI" as a complementary paradigm that leverages generative AI capabilities to serve as explanatory partners for human understanding rather than providers of algorithmic transparency. While XAI reveals algorithmic decision processes for model validation, Explanatory AI addresses contextual reasoning to support human decision-making in sociotechnical contexts. We develop a definition and systematic eight-dimensional conceptual model distinguishing Explanatory AI through narrative communication, adaptive personalization, and progressive disclosure principles. Empirical validation through Rapid Contextual Design methodology with healthcare professionals demonstrates that users consistently prefer context-sensitive, multimodal explanations over technical transparency. Our findings reveal the practical urgency for AI systems designed for human comprehension rather than algorithmic introspection, establishing a comprehensive research agenda for advancing user-centered AI explanation approaches across diverse domains and cultural contexts.
☆ AntiCheatPT: A Transformer-Based Approach to Cheat Detection in Competitive Computer Games
Cheating in online video games compromises the integrity of gaming experiences. Anti-cheat systems, such as VAC (Valve Anti-Cheat), face significant challenges in keeping pace with evolving cheating methods without imposing invasive measures on users' systems. This paper presents AntiCheatPT\_256, a transformer-based machine learning model designed to detect cheating behaviour in Counter-Strike 2 using gameplay data. To support this, we introduce and publicly release CS2CD: A labelled dataset of 795 matches. Using this dataset, 90,707 context windows were created and subsequently augmented to address class imbalance. The transformer model, trained on these windows, achieved an accuracy of 89.17\% and an AUC of 93.36\% on an unaugmented test set. This approach emphasizes reproducibility and real-world applicability, offering a robust baseline for future research in data-driven cheat detection.
☆ Structural Equation-VAE: Disentangled Latent Representations for Tabular Data
Learning interpretable latent representations from tabular data remains a challenge in deep generative modeling. We introduce SE-VAE (Structural Equation-Variational Autoencoder), a novel architecture that embeds measurement structure directly into the design of a variational autoencoder. Inspired by structural equation modeling, SE-VAE aligns latent subspaces with known indicator groupings and introduces a global nuisance latent to isolate construct-specific confounding variation. This modular architecture enables disentanglement through design rather than through statistical regularizers alone. We evaluate SE-VAE on a suite of simulated tabular datasets and benchmark its performance against a series of leading baselines using standard disentanglement metrics. SE-VAE consistently outperforms alternatives in factor recovery, interpretability, and robustness to nuisance variation. Ablation results reveal that architectural structure, rather than regularization strength, is the key driver of performance. SE-VAE offers a principled framework for white-box generative modeling in scientific and social domains where latent constructs are theory-driven and measurement validity is essential.
comment: 10 pages, 2 figures
☆ Harnessing Adaptive Topology Representations for Zero-Shot Graph Question Answering
Large Multimodal Models (LMMs) have shown generalized zero-shot capabilities in diverse domain question-answering (QA) tasks, including graph QA that involves complex graph topologies. However, most current approaches use only a single type of graph representation, namely Topology Representation Form (TRF), such as prompt-unified text descriptions or style-fixed visual styles. Those "one-size-fits-all" approaches fail to consider the specific preferences of different models or tasks, often leading to incorrect or overly long responses. To address this, we first analyze the characteristics and weaknesses of existing TRFs, and then design a set of TRFs, denoted by $F_{ZS}$, tailored to zero-shot graph QA. We then introduce a new metric, Graph Response Efficiency (GRE), which measures the balance between the performance and the brevity in graph QA. Built on these, we develop the DynamicTRF framework, which aims to improve both the accuracy and conciseness of graph QA. To be specific, DynamicTRF first creates a TRF Preference (TRFP) dataset that ranks TRFs based on their GRE scores, to probe the question-specific TRF preferences. Then it trains a TRF router on the TRFP dataset, to adaptively assign the best TRF from $F_{ZS}$ for each question during the inference. Extensive experiments across 7 in-domain algorithmic graph QA tasks and 2 out-of-domain downstream tasks show that DynamicTRF significantly enhances the zero-shot graph QA of LMMs in terms of accuracy
☆ On Approximate MMS Allocations on Restricted Graph Classes
We study the problem of fair division of a set of indivisible goods with connectivity constraints. Specifically, we assume that the goods are represented as vertices of a connected graph, and sets of goods allocated to the agents are connected subgraphs of this graph. We focus on the widely-studied maximin share criterion of fairness. It has been shown that an allocation satisfying this criterion may not exist even without connectivity constraints, i.e., if the graph of goods is complete. In view of this, it is natural to seek approximate allocations that guarantee each agent a connected bundle of goods with value at least a constant fraction of the maximin share value to the agent. It is known that for some classes of graphs, such as complete graphs, cycles, and $d$-claw-free graphs for any fixed $d$, such approximate allocations indeed exist. However, it is an open problem whether they exist for the class of all graphs. In this paper, we continue the systematic study of the existence of approximate allocations on restricted graph classes. In particular, we show that such allocations exist for several well-studied classes, including block graphs, cacti, complete multipartite graphs, and split graphs.
☆ Unsupervised Partner Design Enables Robust Ad-hoc Teamwork
We introduce Unsupervised Partner Design (UPD) - a population-free, multi-agent reinforcement learning framework for robust ad-hoc teamwork that adaptively generates training partners without requiring pretrained partners or manual parameter tuning. UPD constructs diverse partners by stochastically mixing an ego agent's policy with biased random behaviours and scores them using a variance-based learnability metric that prioritises partners near the ego agent's current learning frontier. We show that UPD can be integrated with unsupervised environment design, resulting in the first method enabling fully unsupervised curricula over both level and partner distributions in a cooperative setting. Through extensive evaluations on Overcooked-AI and the Overcooked Generalisation Challenge, we demonstrate that this dynamic partner curriculum is highly effective: UPD consistently outperforms both population-based and population-free baselines as well as ablations. In a user study, we further show that UPD achieves higher returns than all baselines and was perceived as significantly more adaptive, more human-like, a better collaborator, and less frustrating.
comment: 16 pages
☆ Mixture of Experts Guided by Gaussian Splatters Matters: A new Approach to Weakly-Supervised Video Anomaly Detection
Video Anomaly Detection (VAD) is a challenging task due to the variability of anomalous events and the limited availability of labeled data. Under the Weakly-Supervised VAD (WSVAD) paradigm, only video-level labels are provided during training, while predictions are made at the frame level. Although state-of-the-art models perform well on simple anomalies (e.g., explosions), they struggle with complex real-world events (e.g., shoplifting). This difficulty stems from two key issues: (1) the inability of current models to address the diversity of anomaly types, as they process all categories with a shared model, overlooking category-specific features; and (2) the weak supervision signal, which lacks precise temporal information, limiting the ability to capture nuanced anomalous patterns blended with normal events. To address these challenges, we propose Gaussian Splatting-guided Mixture of Experts (GS-MoE), a novel framework that employs a set of expert models, each specialized in capturing specific anomaly types. These experts are guided by a temporal Gaussian splatting loss, enabling the model to leverage temporal consistency and enhance weak supervision. The Gaussian splatting approach encourages a more precise and comprehensive representation of anomalies by focusing on temporal segments most likely to contain abnormal events. The predictions from these specialized experts are integrated through a mixture-of-experts mechanism to model complex relationships across diverse anomaly patterns. Our approach achieves state-of-the-art performance, with a 91.58% AUC on the UCF-Crime dataset, and demonstrates superior results on XD-Violence and MSAD datasets. By leveraging category-specific expertise and temporal guidance, GS-MoE sets a new benchmark for VAD under weak supervision.
☆ FedMeNF: Privacy-Preserving Federated Meta-Learning for Neural Fields ICCV 2025
Neural fields provide a memory-efficient representation of data, which can effectively handle diverse modalities and large-scale data. However, learning to map neural fields often requires large amounts of training data and computations, which can be limited to resource-constrained edge devices. One approach to tackle this limitation is to leverage Federated Meta-Learning (FML), but traditional FML approaches suffer from privacy leakage. To address these issues, we introduce a novel FML approach called FedMeNF. FedMeNF utilizes a new privacy-preserving loss function that regulates privacy leakage in the local meta-optimization. This enables the local meta-learner to optimize quickly and efficiently without retaining the client's private data. Our experiments demonstrate that FedMeNF achieves fast optimization speed and robust reconstruction performance, even with few-shot or non-IID data across diverse data modalities, while preserving client data privacy.
comment: ICCV 2025
☆ LLM Robustness Leaderboard v1 --Technical report
This technical report accompanies the LLM robustness leaderboard published by PRISM Eval for the Paris AI Action Summit. We introduce PRISM Eval Behavior Elicitation Tool (BET), an AI system performing automated red-teaming through Dynamic Adversarial Optimization that achieves 100% Attack Success Rate (ASR) against 37 of 41 state-of-the-art LLMs. Beyond binary success metrics, we propose a fine-grained robustness metric estimating the average number of attempts required to elicit harmful behaviors, revealing that attack difficulty varies by over 300-fold across models despite universal vulnerability. We introduce primitive-level vulnerability analysis to identify which jailbreaking techniques are most effective for specific hazard categories. Our collaborative evaluation with trusted third parties from the AI Safety Network demonstrates practical pathways for distributed robustness assessment across the community.
☆ Advanced Deep Learning Techniques for Accurate Lung Cancer Detection and Classification
Lung cancer (LC) ranks among the most frequently diagnosed cancers and is one of the most common causes of death for men and women worldwide. Computed Tomography (CT) images are the most preferred diagnosis method because of their low cost and their faster processing times. Many researchers have proposed various ways of identifying lung cancer using CT images. However, such techniques suffer from significant false positives, leading to low accuracy. The fundamental reason results from employing a small and imbalanced dataset. This paper introduces an innovative approach for LC detection and classification from CT images based on the DenseNet201 model. Our approach comprises several advanced methods such as Focal Loss, data augmentation, and regularization to overcome the imbalanced data issue and overfitting challenge. The findings show the appropriateness of the proposal, attaining a promising performance of 98.95% accuracy.
☆ OM2P: Offline Multi-Agent Mean-Flow Policy
Generative models, especially diffusion and flow-based models, have been promising in offline multi-agent reinforcement learning. However, integrating powerful generative models into this framework poses unique challenges. In particular, diffusion and flow-based policies suffer from low sampling efficiency due to their iterative generation processes, making them impractical in time-sensitive or resource-constrained settings. To tackle these difficulties, we propose OM2P (Offline Multi-Agent Mean-Flow Policy), a novel offline MARL algorithm to achieve efficient one-step action sampling. To address the misalignment between generative objectives and reward maximization, we introduce a reward-aware optimization scheme that integrates a carefully-designed mean-flow matching loss with Q-function supervision. Additionally, we design a generalized timestep distribution and a derivative-free estimation strategy to reduce memory overhead and improve training stability. Empirical evaluations on Multi-Agent Particle and MuJoCo benchmarks demonstrate that OM2P achieves superior performance, with up to a 3.8x reduction in GPU memory usage and up to a 10.8x speed-up in training time. Our approach represents the first to successfully integrate mean-flow model into offline MARL, paving the way for practical and scalable generative policies in cooperative multi-agent settings.
☆ Numerical Considerations in Weighted Model Counting
Weighted model counting computes the sum of the rational-valued weights associated with the satisfying assignments for a Boolean formula, where the weight of an assignment is given by the product of the weights assigned to the positive and negated variables comprising the assignment. Weighted model counting finds applications across a variety of domains including probabilistic reasoning and quantitative risk assessment. Most weighted model counting programs operate by (explicitly or implicitly) converting the input formula into a form that enables arithmetic evaluation, using multiplication for conjunctions and addition for disjunctions. Performing this evaluation using floating-point arithmetic can yield inaccurate results, and it cannot quantify the level of precision achieved. Computing with rational arithmetic gives exact results, but it is costly in both time and space. This paper describes how to combine multiple numeric representations to efficiently compute weighted model counts that are guaranteed to achieve a user-specified precision. When all weights are nonnegative, we prove that the precision loss of arithmetic evaluation using floating-point arithmetic can be tightly bounded. We show that supplementing a standard IEEE double-precision representation with a separate 64-bit exponent, a format we call extended-range double (ERD), avoids the underflow and overflow issues commonly encountered in weighted model counting. For problems with mixed negative and positive weights, we show that a combination of interval floating-point arithmetic and rational arithmetic can achieve the twin goals of efficiency and guaranteed precision. For our evaluations, we have devised especially challenging formulas and weight assignments, demonstrating the robustness of our approach.
☆ Symmetry breaking for inductive logic programming
The goal of inductive logic programming is to search for a hypothesis that generalises training data and background knowledge. The challenge is searching vast hypothesis spaces, which is exacerbated because many logically equivalent hypotheses exist. To address this challenge, we introduce a method to break symmetries in the hypothesis space. We implement our idea in answer set programming. Our experiments on multiple domains, including visual reasoning and game playing, show that our approach can reduce solving times from over an hour to just 17 seconds.
☆ SIFThinker: Spatially-Aware Image Focus for Visual Reasoning
Current multimodal large language models (MLLMs) still face significant challenges in complex visual tasks (e.g., spatial understanding, fine-grained perception). Prior methods have tried to incorporate visual reasoning, however, they fail to leverage attention correction with spatial cues to iteratively refine their focus on prompt-relevant regions. In this paper, we introduce SIFThinker, a spatially-aware "think-with-images" framework that mimics human visual perception. Specifically, SIFThinker enables attention correcting and image region focusing by interleaving depth-enhanced bounding boxes and natural language. Our contributions are twofold: First, we introduce a reverse-expansion-forward-inference strategy that facilitates the generation of interleaved image-text chains of thought for process-level supervision, which in turn leads to the construction of the SIF-50K dataset. Besides, we propose GRPO-SIF, a reinforced training paradigm that integrates depth-informed visual grounding into a unified reasoning pipeline, teaching the model to dynamically correct and focus on prompt-relevant regions. Extensive experiments demonstrate that SIFThinker outperforms state-of-the-art methods in spatial understanding and fine-grained visual perception, while maintaining strong general capabilities, highlighting the effectiveness of our method.
comment: 15 pages, 13 figures
☆ Synthetic Data Generation and Differential Privacy using Tensor Networks' Matrix Product States (MPS)
Synthetic data generation is a key technique in modern artificial intelligence, addressing data scarcity, privacy constraints, and the need for diverse datasets in training robust models. In this work, we propose a method for generating privacy-preserving high-quality synthetic tabular data using Tensor Networks, specifically Matrix Product States (MPS). We benchmark the MPS-based generative model against state-of-the-art models such as CTGAN, VAE, and PrivBayes, focusing on both fidelity and privacy-preserving capabilities. To ensure differential privacy (DP), we integrate noise injection and gradient clipping during training, enabling privacy guarantees via R\'enyi Differential Privacy accounting. Across multiple metrics analyzing data fidelity and downstream machine learning task performance, our results show that MPS outperforms classical models, particularly under strict privacy constraints. This work highlights MPS as a promising tool for privacy-aware synthetic data generation. By combining the expressive power of tensor network representations with formal privacy mechanisms, the proposed approach offers an interpretable and scalable alternative for secure data sharing. Its structured design facilitates integration into sensitive domains where both data quality and confidentiality are critical.
comment: 10 pages
☆ In-Training Defenses against Emergent Misalignment in Language Models
Fine-tuning lets practitioners repurpose aligned large language models (LLMs) for new domains, yet recent work reveals emergent misalignment (EMA): Even a small, domain-specific fine-tune can induce harmful behaviors far outside the target domain. Even in the case where model weights are hidden behind a fine-tuning API, this gives attackers inadvertent access to a broadly misaligned model in a way that can be hard to detect from the fine-tuning data alone. We present the first systematic study of in-training safeguards against EMA that are practical for providers who expose fine-tuning via an API. We investigate four training regularization interventions: (i) KL-divergence regularization toward a safe reference model, (ii) $\ell_2$ distance in feature space, (iii) projecting onto a safe subspace (SafeLoRA), and (iv) interleaving of a small amount of safe training examples from a general instruct-tuning dataset. We first evaluate the methods' emergent misalignment effect across four malicious, EMA-inducing tasks. Second, we assess the methods' impacts on benign tasks. We conclude with a discussion of open questions in emergent misalignment research.
comment: Under review
☆ Membership Inference Attack with Partial Features
Machine learning models have been shown to be susceptible to membership inference attack, which can be used to determine whether a given sample appears in the training data. Existing membership inference methods commonly assume that the adversary has full access to the features of the target sample. This assumption, however, does not hold in many real-world scenarios where only partial features information is available, thereby limiting the applicability of these methods. In this work, we study an inference scenario where the adversary observes only partial features of each sample and aims to infer whether this observed subset was present in the training set of the target model. We define this problem as Partial Feature Membership Inference (PFMI). To address this problem, we propose MRAD (Memory-guided Reconstruction and Anomaly Detection), a two-stage attack framework. In the first stage, MRAD optimizes the unknown feature values to minimize the loss of the sample. In the second stage, it measures the deviation between the reconstructed sample and the training distribution using anomaly detection. Empirical results demonstrate that MRAD is effective across a range of datasets, and maintains compatibility with various off-the-shelf anomaly detection techniques. For example, on STL-10, our attack achieves an AUC of around 0.6 even with 40% of the missing features.
☆ Learning Logical Rules using Minimum Message Length
Unifying probabilistic and logical learning is a key challenge in AI. We introduce a Bayesian inductive logic programming approach that learns minimum message length programs from noisy data. Our approach balances hypothesis complexity and data fit through priors, which explicitly favour more general programs, and a likelihood that favours accurate programs. Our experiments on several domains, including game playing and drug design, show that our method significantly outperforms previous methods, notably those that learn minimum description length programs. Our results also show that our approach is data-efficient and insensitive to example balance, including the ability to learn from exclusively positive examples.
☆ GeoLaux: A Benchmark for Evaluating MLLMs' Geometry Performance on Long-Step Problems Requiring Auxiliary Lines
Geometry problem solving (GPS) requires models to master diagram comprehension, logical reasoning, knowledge application, numerical computation, and auxiliary line construction. This presents a significant challenge for Multimodal Large Language Models (MLLMs). However, existing benchmarks for evaluating MLLM geometry skills overlook auxiliary line construction and lack fine-grained process evaluation, making them insufficient for assessing MLLMs' long-step reasoning abilities. To bridge these gaps, we present the GeoLaux benchmark, comprising 2,186 geometry problems, incorporating both calculation and proving questions. Notably, the problems require an average of 6.51 reasoning steps, with a maximum of 24 steps, and 41.8% of them need auxiliary line construction. Building on the dataset, we design a novel five-dimensional evaluation strategy assessing answer correctness, process correctness, process quality, auxiliary line impact, and error causes. Extensive experiments on 13 leading MLLMs (including thinking models and non-thinking models) yield three pivotal findings: First, models exhibit substantial performance degradation in extended reasoning steps (nine models demonstrate over 50% performance drop). Second, compared to calculation problems, MLLMs tend to take shortcuts when solving proving problems. Third, models lack auxiliary line awareness, and enhancing this capability proves particularly beneficial for overall geometry reasoning improvement. These findings establish GeoLaux as both a benchmark for evaluating MLLMs' long-step geometric reasoning with auxiliary lines and a guide for capability advancement. Our dataset and code are included in supplementary materials and will be released.
☆ Overconfidence in LLM-as-a-Judge: Diagnosis and Confidence-Driven Solution
Large Language Models (LLMs) are widely used as automated judges, where practical value depends on both accuracy and trustworthy, risk-aware judgments. Existing approaches predominantly focus on accuracy, overlooking the necessity of well-calibrated confidence, which is vital for adaptive and reliable evaluation pipelines. In this work, we advocate a shift from accuracy-centric evaluation to confidence-driven, risk-aware LLM-as-a-Judge systems, emphasizing the necessity of well-calibrated confidence for trustworthy and adaptive evaluation. We systematically identify the **Overconfidence Phenomenon** in current LLM-as-a-Judges, where predicted confidence significantly overstates actual correctness, undermining reliability in practical deployment. To quantify this phenomenon, we introduce **TH-Score**, a novel metric measuring confidence-accuracy alignment. Furthermore, we propose **LLM-as-a-Fuser**, an ensemble framework that transforms LLMs into reliable, risk-aware evaluators. Extensive experiments demonstrate that our approach substantially improves calibration and enables adaptive, confidence-driven evaluation pipelines, achieving superior reliability and accuracy compared to existing baselines.
☆ InfoCausalQA:Can Models Perform Non-explicit Causal Reasoning Based on Infographic?
Recent advances in Vision-Language Models (VLMs) have demonstrated impressive capabilities in perception and reasoning. However, the ability to perform causal inference -- a core aspect of human cognition -- remains underexplored, particularly in multimodal settings. In this study, we introduce InfoCausalQA, a novel benchmark designed to evaluate causal reasoning grounded in infographics that combine structured visual data with textual context. The benchmark comprises two tasks: Task 1 focuses on quantitative causal reasoning based on inferred numerical trends, while Task 2 targets semantic causal reasoning involving five types of causal relations: cause, effect, intervention, counterfactual, and temporal. We manually collected 494 infographic-text pairs from four public sources and used GPT-4o to generate 1,482 high-quality multiple-choice QA pairs. These questions were then carefully revised by humans to ensure they cannot be answered based on surface-level cues alone but instead require genuine visual grounding. Our experimental results reveal that current VLMs exhibit limited capability in computational reasoning and even more pronounced limitations in semantic causal reasoning. Their significantly lower performance compared to humans indicates a substantial gap in leveraging infographic-based information for causal inference. Through InfoCausalQA, we highlight the need for advancing the causal reasoning abilities of multimodal AI systems.
comment: 14 pages, 9 figures
☆ Reparameterization Proximal Policy Optimization
Reparameterization policy gradient (RPG) is promising for improving sample efficiency by leveraging differentiable dynamics. However, a critical barrier is its training instability, where high-variance gradients can destabilize the learning process. To address this, we draw inspiration from Proximal Policy Optimization (PPO), which uses a surrogate objective to enable stable sample reuse in the model-free setting. We first establish a connection between this surrogate objective and RPG, which has been largely unexplored and is non-trivial. Then, we bridge this gap by demonstrating that the reparameterization gradient of a PPO-like surrogate objective can be computed efficiently using backpropagation through time. Based on this key insight, we propose Reparameterization Proximal Policy Optimization (RPO), a stable and sample-efficient RPG-based method. RPO enables multiple epochs of stable sample reuse by optimizing a clipped surrogate objective tailored for RPG, while being further stabilized by Kullback-Leibler (KL) divergence regularization and remaining fully compatible with existing variance reduction methods. We evaluate RPO on a suite of challenging locomotion and manipulation tasks, where experiments demonstrate that our method achieves superior sample efficiency and strong performance.
Graph Federated Learning for Personalized Privacy Recommendation
Federated recommendation systems (FedRecs) have gained significant attention for providing privacy-preserving recommendation services. However, existing FedRecs assume that all users have the same requirements for privacy protection, i.e., they do not upload any data to the server. The approaches overlook the potential to enhance the recommendation service by utilizing publicly available user data. In real-world applications, users can choose to be private or public. Private users' interaction data is not shared, while public users' interaction data can be shared. Inspired by the issue, this paper proposes a novel Graph Federated Learning for Personalized Privacy Recommendation (GFed-PP) that adapts to different privacy requirements while improving recommendation performance. GFed-PP incorporates the interaction data of public users to build a user-item interaction graph, which is then used to form a user relationship graph. A lightweight graph convolutional network (GCN) is employed to learn each user's user-specific personalized item embedding. To protect user privacy, each client learns the user embedding and the scoring function locally. Additionally, GFed-PP achieves optimization of the federated recommendation framework through the initialization of item embedding on clients and the aggregation of the user relationship graph on the server. Experimental results demonstrate that GFed-PP significantly outperforms existing methods for five datasets, offering superior recommendation accuracy without compromising privacy. This framework provides a practical solution for accommodating varying privacy preferences in federated recommendation systems.
☆ Classification is a RAG problem: A case study on hate speech detection
Robust content moderation requires classification systems that can quickly adapt to evolving policies without costly retraining. We present classification using Retrieval-Augmented Generation (RAG), which shifts traditional classification tasks from determining the correct category in accordance with pre-trained parameters to evaluating content in relation to contextual knowledge retrieved at inference. In hate speech detection, this transforms the task from "is this hate speech?" to "does this violate the hate speech policy?" Our Contextual Policy Engine (CPE) - an agentic RAG system - demonstrates this approach and offers three key advantages: (1) robust classification accuracy comparable to leading commercial systems, (2) inherent explainability via retrieved policy segments, and (3) dynamic policy updates without model retraining. Through three experiments, we demonstrate strong baseline performance and show that the system can apply fine-grained policy control by correctly adjusting protection for specific identity groups without requiring retraining or compromising overall performance. These findings establish that RAG can transform classification into a more flexible, transparent, and adaptable process for content moderation and wider classification problems.
☆ LoRA in LoRA: Towards Parameter-Efficient Architecture Expansion for Continual Visual Instruction Tuning
Continual Visual Instruction Tuning (CVIT) enables Multimodal Large Language Models (MLLMs) to incrementally learn new tasks over time. However, this process is challenged by catastrophic forgetting, where performance on previously learned tasks deteriorates as the model adapts to new ones. A common approach to mitigate forgetting is architecture expansion, which introduces task-specific modules to prevent interference. Yet, existing methods often expand entire layers for each task, leading to significant parameter overhead and poor scalability. To overcome these issues, we introduce LoRA in LoRA (LiLoRA), a highly efficient architecture expansion method tailored for CVIT in MLLMs. LiLoRA shares the LoRA matrix A across tasks to reduce redundancy, applies an additional low-rank decomposition to matrix B to minimize task-specific parameters, and incorporates a cosine-regularized stability loss to preserve consistency in shared representations over time. Extensive experiments on a diverse CVIT benchmark show that LiLoRA consistently achieves superior performance in sequential task learning while significantly improving parameter efficiency compared to existing approaches.
☆ Benchmarking Pretrained Molecular Embedding Models For Molecular Representation Learning
Pretrained neural networks have attracted significant interest in chemistry and small molecule drug design. Embeddings from these models are widely used for molecular property prediction, virtual screening, and small data learning in molecular chemistry. This study presents the most extensive comparison of such models to date, evaluating 25 models across 25 datasets. Under a fair comparison framework, we assess models spanning various modalities, architectures, and pretraining strategies. Using a dedicated hierarchical Bayesian statistical testing model, we arrive at a surprising result: nearly all neural models show negligible or no improvement over the baseline ECFP molecular fingerprint. Only the CLAMP model, which is also based on molecular fingerprints, performs statistically significantly better than the alternatives. These findings raise concerns about the evaluation rigor in existing studies. We discuss potential causes, propose solutions, and offer practical recommendations.
☆ Differentially Private Federated Clustering with Random Rebalancing
Federated clustering aims to group similar clients into clusters and produce one model for each cluster. Such a personalization approach typically improves model performance compared with training a single model to serve all clients, but can be more vulnerable to privacy leakage. Directly applying client-level differentially private (DP) mechanisms to federated clustering could degrade the utilities significantly. We identify that such deficiencies are mainly due to the difficulties of averaging privacy noise within each cluster (following standard privacy mechanisms), as the number of clients assigned to the same clusters is uncontrolled. To this end, we propose a simple and effective technique, named RR-Cluster, that can be viewed as a light-weight add-on to many federated clustering algorithms. RR-Cluster achieves reduced privacy noise via randomly rebalancing cluster assignments, guaranteeing a minimum number of clients assigned to each cluster. We analyze the tradeoffs between decreased privacy noise variance and potentially increased bias from incorrect assignments and provide convergence bounds for RR-Clsuter. Empirically, we demonstrate the RR-Cluster plugged into strong federated clustering algorithms results in significantly improved privacy/utility tradeoffs across both synthetic and real-world datasets.
comment: 21 pages
☆ Synthetic Data-Driven Multi-Architecture Framework for Automated Polyp Segmentation Through Integrated Detection and Mask Generation
Colonoscopy is a vital tool for the early diagnosis of colorectal cancer, which is one of the main causes of cancer-related mortality globally; hence, it is deemed an essential technique for the prevention and early detection of colorectal cancer. The research introduces a unique multidirectional architectural framework to automate polyp detection within colonoscopy images while helping resolve limited healthcare dataset sizes and annotation complexities. The research implements a comprehensive system that delivers synthetic data generation through Stable Diffusion enhancements together with detection and segmentation algorithms. This detection approach combines Faster R-CNN for initial object localization while the Segment Anything Model (SAM) refines the segmentation masks. The faster R-CNN detection algorithm achieved a recall of 93.08% combined with a precision of 88.97% and an F1 score of 90.98%.SAM is then used to generate the image mask. The research evaluated five state-of-the-art segmentation models that included U-Net, PSPNet, FPN, LinkNet, and MANet using ResNet34 as a base model. The results demonstrate the superior performance of FPN with the highest scores of PSNR (7.205893) and SSIM (0.492381), while UNet excels in recall (84.85%) and LinkNet shows balanced performance in IoU (64.20%) and Dice score (77.53%).
☆ UW-3DGS: Underwater 3D Reconstruction with Physics-Aware Gaussian Splatting
Underwater 3D scene reconstruction faces severe challenges from light absorption, scattering, and turbidity, which degrade geometry and color fidelity in traditional methods like Neural Radiance Fields (NeRF). While NeRF extensions such as SeaThru-NeRF incorporate physics-based models, their MLP reliance limits efficiency and spatial resolution in hazy environments. We introduce UW-3DGS, a novel framework adapting 3D Gaussian Splatting (3DGS) for robust underwater reconstruction. Key innovations include: (1) a plug-and-play learnable underwater image formation module using voxel-based regression for spatially varying attenuation and backscatter; and (2) a Physics-Aware Uncertainty Pruning (PAUP) branch that adaptively removes noisy floating Gaussians via uncertainty scoring, ensuring artifact-free geometry. The pipeline operates in training and rendering stages. During training, noisy Gaussians are optimized end-to-end with underwater parameters, guided by PAUP pruning and scattering modeling. In rendering, refined Gaussians produce clean Unattenuated Radiance Images (URIs) free from media effects, while learned physics enable realistic Underwater Images (UWIs) with accurate light transport. Experiments on SeaThru-NeRF and UWBundle datasets show superior performance, achieving PSNR of 27.604, SSIM of 0.868, and LPIPS of 0.104 on SeaThru-NeRF, with ~65% reduction in floating artifacts.
☆ UR$^2$: Unify RAG and Reasoning through Reinforcement Learning
Large Language Models (LLMs) have shown remarkable capabilities through two complementary paradigms: Retrieval-Augmented Generation (RAG), which enhances knowledge grounding, and Reinforcement Learning from Verifiable Rewards (RLVR), which optimizes complex reasoning abilities. However, these two capabilities are often developed in isolation, and existing efforts to unify them remain narrow in scope-typically limited to open-domain QA with fixed retrieval settings and task-specific assumptions. This lack of integration constrains generalization and limits the applicability of RAG-RL methods to broader domains. To bridge this gap, we propose UR2 (Unified RAG and Reasoning), a general framework that unifies retrieval and reasoning through reinforcement learning. UR2 introduces two key contributions: a difficulty-aware curriculum training that selectively invokes retrieval only for challenging problems, and a hybrid knowledge access strategy combining domain-specific offline corpora with LLM-generated summaries. These components are designed to enable dynamic coordination between retrieval and reasoning, improving adaptability across a diverse range of tasks. Experiments across open-domain QA, MMLU-Pro, medical, and mathematical reasoning tasks demonstrate that UR2 (built on Qwen2.5-3/7B and LLaMA-3.1-8B) significantly outperforms existing RAG and RL methods, achieving comparable performance to GPT-4o-mini and GPT-4.1-mini on several benchmarks. We have released all code, models, and data at https://github.com/Tsinghua-dhy/UR2.
☆ One Size Does Not Fit All: A Distribution-Aware Sparsification for More Precise Model Merging
Model merging has emerged as a compelling data-free paradigm for multi-task learning, enabling the fusion of multiple fine-tuned models into a single, powerful entity. A key technique in merging methods is sparsification, which prunes redundant parameters from task vectors to mitigate interference. However, prevailing approaches employ a ``one-size-fits-all'' strategy, applying a uniform sparsity ratio that overlooks the inherent structural and statistical heterogeneity of model parameters. This often leads to a suboptimal trade-off, where critical parameters are inadvertently pruned while less useful ones are retained. To address this limitation, we introduce \textbf{TADrop} (\textbf{T}ensor-wise \textbf{A}daptive \textbf{Drop}), an adaptive sparsification strategy that respects this heterogeneity. Instead of a global ratio, TADrop assigns a tailored sparsity level to each parameter tensor based on its distributional properties. The core intuition is that tensors with denser, more redundant distributions can be pruned aggressively, while sparser, more critical ones are preserved. As a simple and plug-and-play module, we validate TADrop by integrating it with foundational, classic, and SOTA merging methods. Extensive experiments across diverse tasks (vision, language, and multimodal) and models (ViT, BEiT) demonstrate that TADrop consistently and significantly boosts their performance. For instance, when enhancing a leading merging method, it achieves an average performance gain of 2.0\% across 8 ViT-B/32 tasks. TADrop provides a more effective way to mitigate parameter interference by tailoring sparsification to the model's structure, offering a new baseline for high-performance model merging.
comment: Under review
☆ Semantic Item Graph Enhancement for Multimodal Recommendation
Multimodal recommendation systems have attracted increasing attention for their improved performance by leveraging items' multimodal information. Prior methods often build modality-specific item-item semantic graphs from raw modality features and use them as supplementary structures alongside the user-item interaction graph to enhance user preference learning. However, these semantic graphs suffer from semantic deficiencies, including (1) insufficient modeling of collaborative signals among items and (2) structural distortions introduced by noise in raw modality features, ultimately compromising performance. To address these issues, we first extract collaborative signals from the interaction graph and infuse them into each modality-specific item semantic graph to enhance semantic modeling. Then, we design a modulus-based personalized embedding perturbation mechanism that injects perturbations with modulus-guided personalized intensity into embeddings to generate contrastive views. This enables the model to learn noise-robust representations through contrastive learning, thereby reducing the effect of structural noise in semantic graphs. Besides, we propose a dual representation alignment mechanism that first aligns multiple semantic representations via a designed Anchor-based InfoNCE loss using behavior representations as anchors, and then aligns behavior representations with the fused semantics by standard InfoNCE, to ensure representation consistency. Extensive experiments on four benchmark datasets validate the effectiveness of our framework.
☆ Retrieval Augmented Large Language Model System for Comprehensive Drug Contraindications
The versatility of large language models (LLMs) has been explored across various sectors, but their application in healthcare poses challenges, particularly in the domain of pharmaceutical contraindications where accurate and reliable information is required. This study enhances the capability of LLMs to address contraindications effectively by implementing a Retrieval Augmented Generation (RAG) pipeline. Utilizing OpenAI's GPT-4o-mini as the base model, and the text-embedding-3-small model for embeddings, our approach integrates Langchain to orchestrate a hybrid retrieval system with re-ranking. This system leverages Drug Utilization Review (DUR) data from public databases, focusing on contraindications for specific age groups, pregnancy, and concomitant drug use. The dataset includes 300 question-answer pairs across three categories, with baseline model accuracy ranging from 0.49 to 0.57. Post-integration of the RAG pipeline, we observed a significant improvement in model accuracy, achieving rates of 0.94, 0.87, and 0.89 for contraindications related to age groups, pregnancy, and concomitant drug use, respectively. The results indicate that augmenting LLMs with a RAG framework can substantially reduce uncertainty in prescription and drug intake decisions by providing more precise and reliable drug contraindication information.
☆ Roll Your Eyes: Gaze Redirection via Explicit 3D Eyeball Rotation
We propose a novel 3D gaze redirection framework that leverages an explicit 3D eyeball structure. Existing gaze redirection methods are typically based on neural radiance fields, which employ implicit neural representations via volume rendering. Unlike these NeRF-based approaches, where the rotation and translation of 3D representations are not explicitly modeled, we introduce a dedicated 3D eyeball structure to represent the eyeballs with 3D Gaussian Splatting (3DGS). Our method generates photorealistic images that faithfully reproduce the desired gaze direction by explicitly rotating and translating the 3D eyeball structure. In addition, we propose an adaptive deformation module that enables the replication of subtle muscle movements around the eyes. Through experiments conducted on the ETH-XGaze dataset, we demonstrate that our framework is capable of generating diverse novel gaze images, achieving superior image quality and gaze estimation accuracy compared to previous state-of-the-art methods.
comment: 9 pages, 5 figures, ACM Multimeida 2025 accepted
☆ Less is More: Selective Reflection for Compatible and Efficient Knowledge Distillation in Large Language Models
Knowledge Distillation (KD) is a fundamental technique for compressing large language models (LLMs) into compact, efficient student models. However, existing white-box KD methods mainly focus on balancing ground truth and student-generated responses while overlooking two critical factors: training data quality and student-model compatibility. To address these limitations, we propose Selective Reflection Distillation (SRD), a novel data curation framework that leverages reflections from student models to systematically refine training data. SRD dynamically evaluates and selects prompt-response pairs by comparing ground truth data with student model outputs, selectively curating high-quality, student-compatible training instances through automated ranking based on difficulty. Furthermore, after selecting the training data, a curriculum scheduling strategy is employed to incrementally introduce these curated subsets into the distillation process at fixed intervals. As a plug-and-play enhancement, SRD consistently improves distillation outcomes across diverse white-box KD approaches and model architectures, as well as decreases computational cost significantly during KD training. Experiments on a range of language model benchmarks demonstrate SRD's consistent improvements in distilled model performance, as well as a reduction in training runtime by up to 39%, under diverse KD methods and model families. Notably, SRD operates as a plug-and-play module, enhancing sample efficiency without modifying underlying KD algorithms. Our findings highlight that data quality and compatibility are pivotal to effective and efficient distillation of LLMs, and SRD provides a principled framework to achieve both. This work advances the understanding of data-centric factors in KD and offers practical insights for enhancing the capability and efficiency of compressed LLMs.
☆ LLM Serving Optimization with Variable Prefill and Decode Lengths
We study the problem of serving LLM (Large Language Model) requests where each request has heterogeneous prefill and decode lengths. In LLM serving, the prefill length corresponds to the input prompt length, which determines the initial memory usage in the KV cache. The decode length refers to the number of output tokens generated sequentially, with each additional token increasing the KV cache memory usage by one unit. Given a set of n requests, our goal is to schedule and process them to minimize the total completion time. We show that this problem is NP-hard due to the interplay of batching, placement constraints, precedence relationships, and linearly increasing memory usage. We then analyze commonly used scheduling strategies in practice, such as First-Come-First-Serve (FCFS) and Shortest-First (SF), and prove that their competitive ratios scale up sublinearly with the memory limit-a significant drawback in real-world settings where memory demand is large. To address this, we propose a novel algorithm based on a new selection metric that efficiently forms batches over time. We prove that this algorithm achieves a constant competitive ratio. Finally, we develop and evaluate a few algorithm variants inspired by this approach, including dynamic programming variants, local search methods, and an LP-based scheduler, demonstrating through comprehensive simulations that they outperform standard baselines while maintaining computational efficiency.
☆ Study of Robust Features in Formulating Guidance for Heuristic Algorithms for Solving the Vehicle Routing Problem
The Vehicle Routing Problem (VRP) is a complex optimization problem with numerous real-world applications, mostly solved using metaheuristic algorithms due to its $\mathcal{NP}$-Hard nature. Traditionally, these metaheuristics rely on human-crafted designs developed through empirical studies. However, recent research shows that machine learning methods can be used the structural characteristics of solutions in combinatorial optimization, thereby aiding in designing more efficient algorithms, particularly for solving VRP. Building on this advancement, this study extends the previous research by conducting a sensitivity analysis using multiple classifier models that are capable of predicting the quality of VRP solutions. Hence, by leveraging explainable AI, this research is able to extend the understanding of how these models make decisions. Finally, our findings indicate that while feature importance varies, certain features consistently emerge as strong predictors. Furthermore, we propose a unified framework able of ranking feature impact across different scenarios to illustrate this finding. These insights highlight the potential of feature importance analysis as a foundation for developing a guidance mechanism of metaheuristic algorithms for solving the VRP.
comment: 22 pages, 14 figures
☆ SKATE, a Scalable Tournament Eval: Weaker LLMs differentiate between stronger ones using verifiable challenges
Evaluating the capabilities and risks of foundation models is paramount, yet current methods demand extensive domain expertise, hindering their scalability as these models rapidly evolve. We introduce SKATE: a novel evaluation framework in which large language models (LLMs) compete by generating and solving verifiable tasks for one another. Our core insight is to treat evaluation as a game: models act as both task-setters and solvers, incentivized to create questions which highlight their own strengths while exposing others' weaknesses. SKATE offers several key advantages, balancing scalability, open-endedness, and objectivity. It is fully automated, data-free, and scalable, requiring no human input or domain expertise. By using verifiable tasks rather than LLM judges, scoring is objective. Unlike domain-limited programmatically-generated benchmarks (e.g. chess-playing or spatial reasoning), having LLMs creatively pose challenges enables open-ended and scalable evaluation. As a proof of concept, we introduce LLM-set code-output-prediction (COP) challenges as a verifiable and extensible framework in which to test our approach. Using a TrueSkill-based ranking system, we evaluate six frontier LLMs and find that: (1) weaker models can reliably differentiate and score stronger ones, (2) LLM-based systems are capable of self-preferencing behavior, generating questions that align with their own capabilities, and (3) SKATE automatically surfaces fine-grained capability differences between models. Our findings are an important step towards general, scalable evaluation frameworks which can keep pace with LLM progress.
comment: 7 pages and appendices
☆ PanelTR: Zero-Shot Table Reasoning Framework Through Multi-Agent Scientific Discussion
Table reasoning, including tabular QA and fact verification, often depends on annotated data or complex data augmentation, limiting flexibility and generalization. LLMs, despite their versatility, often underperform compared to simple supervised models. To approach these issues, we introduce PanelTR, a framework utilizing LLM agent scientists for robust table reasoning through a structured scientific approach. PanelTR's workflow involves agent scientists conducting individual investigations, engaging in self-review, and participating in collaborative peer-review discussions. This process, driven by five scientist personas, enables semantic-level transfer without relying on data augmentation or parametric optimization. Experiments across four benchmarks show that PanelTR outperforms vanilla LLMs and rivals fully supervised models, all while remaining independent of training data. Our findings indicate that structured scientific methodology can effectively handle complex tasks beyond table reasoning with flexible semantic understanding in a zero-shot context.
comment: Accepted at IJCNN 2025
☆ FMCE-Net++: Feature Map Convergence Evaluation and Training
Deep Neural Networks (DNNs) face interpretability challenges due to their opaque internal representations. While Feature Map Convergence Evaluation (FMCE) quantifies module-level convergence via Feature Map Convergence Scores (FMCS), it lacks experimental validation and closed-loop integration. To address this limitation, we propose FMCE-Net++, a novel training framework that integrates a pretrained, frozen FMCE-Net as an auxiliary head. This module generates FMCS predictions, which, combined with task labels, jointly supervise backbone optimization through a Representation Auxiliary Loss. The RAL dynamically balances the primary classification loss and feature convergence optimization via a tunable \Representation Abstraction Factor. Extensive experiments conducted on MNIST, CIFAR-10, FashionMNIST, and CIFAR-100 demonstrate that FMCE-Net++ consistently enhances model performance without architectural modifications or additional data. Key experimental outcomes include accuracy gains of $+1.16$ pp (ResNet-50/CIFAR-10) and $+1.08$ pp (ShuffleNet v2/CIFAR-100), validating that FMCE-Net++ can effectively elevate state-of-the-art performance ceilings.
☆ GCHR : Goal-Conditioned Hindsight Regularization for Sample-Efficient Reinforcement Learning
Goal-conditioned reinforcement learning (GCRL) with sparse rewards remains a fundamental challenge in reinforcement learning. While hindsight experience replay (HER) has shown promise by relabeling collected trajectories with achieved goals, we argue that trajectory relabeling alone does not fully exploit the available experiences in off-policy GCRL methods, resulting in limited sample efficiency. In this paper, we propose Hindsight Goal-conditioned Regularization (HGR), a technique that generates action regularization priors based on hindsight goals. When combined with hindsight self-imitation regularization (HSR), our approach enables off-policy RL algorithms to maximize experience utilization. Compared to existing GCRL methods that employ HER and self-imitation techniques, our hindsight regularizations achieve substantially more efficient sample reuse and the best performances, which we empirically demonstrate on a suite of navigation and manipulation tasks.
☆ Mask & Match: Learning to Recognize Handwritten Math with Self-Supervised Attention
Recognizing handwritten mathematical expressions (HMER) is a challenging task due to the inherent two-dimensional structure, varying symbol scales, and complex spatial relationships among symbols. In this paper, we present a self-supervised learning (SSL) framework for HMER that eliminates the need for expensive labeled data. Our approach begins by pretraining an image encoder using a combination of global and local contrastive loss, enabling the model to learn both holistic and fine-grained representations. A key contribution of this work is a novel self-supervised attention network, which is trained using a progressive spatial masking strategy. This attention mechanism is designed to learn semantically meaningful focus regions, such as operators, exponents, and nested mathematical notation, without requiring any supervision. The progressive masking curriculum encourages the network to become increasingly robust to missing or occluded visual information, ultimately improving structural understanding. Our complete pipeline consists of (1) self-supervised pretraining of the encoder, (2) self-supervised attention learning, and (3) supervised fine-tuning with a transformer decoder to generate LATEX sequences. Extensive experiments on CROHME benchmarks demonstrate that our method outperforms existing SSL and fully supervised baselines, validating the effectiveness of our progressive attention mechanism in enhancing HMER performance. Our codebase can be found here.
☆ MeanAudio: Fast and Faithful Text-to-Audio Generation with Mean Flows
Recent developments in diffusion- and flow- based models have significantly advanced Text-to-Audio Generation (TTA). While achieving great synthesis quality and controllability, current TTA systems still suffer from slow inference speed, which significantly limits their practical applicability. This paper presents MeanAudio, a novel MeanFlow-based model tailored for fast and faithful text-to-audio generation. Built on a Flux-style latent transformer, MeanAudio regresses the average velocity field during training, enabling fast generation by mapping directly from the start to the endpoint of the flow trajectory. By incorporating classifier-free guidance (CFG) into the training target, MeanAudio incurs no additional cost in the guided sampling process. To further stabilize training, we propose an instantaneous-to-mean curriculum with flow field mix-up, which encourages the model to first learn the foundational instantaneous dynamics, and then gradually adapt to mean flows. This strategy proves critical for enhancing training efficiency and generation quality. Experimental results demonstrate that MeanAudio achieves state-of-the-art performance in single-step audio generation. Specifically, it achieves a real time factor (RTF) of 0.013 on a single NVIDIA RTX 3090, yielding a 100x speedup over SOTA diffusion-based TTA systems. Moreover, MeanAudio also demonstrates strong performance in multi-step generation, enabling smooth and coherent transitions across successive synthesis steps.
comment: 9 pages, 3 figures
☆ Bounding Distributional Shifts in World Modeling through Novelty Detection
Recent work on visual world models shows significant promise in latent state dynamics obtained from pre-trained image backbones. However, most of the current approaches are sensitive to training quality, requiring near-complete coverage of the action and state space during training to prevent divergence during inference. To make a model-based planning algorithm more robust to the quality of the learned world model, we propose in this work to use a variational autoencoder as a novelty detector to ensure that proposed action trajectories during planning do not cause the learned model to deviate from the training data distribution. To evaluate the effectiveness of this approach, a series of experiments in challenging simulated robot environments was carried out, with the proposed method incorporated into a model-predictive control policy loop extending the DINO-WM architecture. The results clearly show that the proposed method improves over state-of-the-art solutions in terms of data efficiency.
comment: 7 pages, 6 figures
☆ Aggregate-Combine-Readout GNNs Are More Expressive Than Logic C2
In recent years, there has been growing interest in understanding the expressive power of graph neural networks (GNNs) by relating them to logical languages. This research has been been initialised by an influential result of Barcel\'o et al. (2020), who showed that the graded modal logic (or a guarded fragment of the logic C2), characterises the logical expressiveness of aggregate-combine GNNs. As a ``challenging open problem'' they left the question whether full C2 characterises the logical expressiveness of aggregate-combine-readout GNNs. This question has remained unresolved despite several attempts. In this paper, we solve the above open problem by proving that the logical expressiveness of aggregate-combine-readout GNNs strictly exceeds that of C2. This result holds over both undirected and directed graphs. Beyond its implications for GNNs, our work also leads to purely logical insights on the expressive power of infinitary logics.
comment: 18 pages
☆ Towards MR-Based Trochleoplasty Planning AI
To treat Trochlear Dysplasia (TD), current approaches rely mainly on low-resolution clinical Magnetic Resonance (MR) scans and surgical intuition. The surgeries are planned based on surgeons experience, have limited adoption of minimally invasive techniques, and lead to inconsistent outcomes. We propose a pipeline that generates super-resolved, patient-specific 3D pseudo-healthy target morphologies from conventional clinical MR scans. First, we compute an isotropic super-resolved MR volume using an Implicit Neural Representation (INR). Next, we segment femur, tibia, patella, and fibula with a multi-label custom-trained network. Finally, we train a Wavelet Diffusion Model (WDM) to generate pseudo-healthy target morphologies of the trochlear region. In contrast to prior work producing pseudo-healthy low-resolution 3D MR images, our approach enables the generation of sub-millimeter resolved 3D shapes compatible for pre- and intraoperative use. These can serve as preoperative blueprints for reshaping the femoral groove while preserving the native patella articulation. Furthermore, and in contrast to other work, we do not require a CT for our pipeline - reducing the amount of radiation. We evaluated our approach on 25 TD patients and could show that our target morphologies significantly improve the sulcus angle (SA) and trochlear groove depth (TGD). The code and interactive visualization are available at https://wehrlimi.github.io/sr-3d-planning/.
comment: Accepted at MICCAI COLAS Workshop 2025. Code: https://wehrlimi.github.io/sr-3d-planning/
☆ ME$^3$-BEV: Mamba-Enhanced Deep Reinforcement Learning for End-to-End Autonomous Driving with BEV-Perception
Autonomous driving systems face significant challenges in perceiving complex environments and making real-time decisions. Traditional modular approaches, while offering interpretability, suffer from error propagation and coordination issues, whereas end-to-end learning systems can simplify the design but face computational bottlenecks. This paper presents a novel approach to autonomous driving using deep reinforcement learning (DRL) that integrates bird's-eye view (BEV) perception for enhanced real-time decision-making. We introduce the \texttt{Mamba-BEV} model, an efficient spatio-temporal feature extraction network that combines BEV-based perception with the Mamba framework for temporal feature modeling. This integration allows the system to encode vehicle surroundings and road features in a unified coordinate system and accurately model long-range dependencies. Building on this, we propose the \texttt{ME$^3$-BEV} framework, which utilizes the \texttt{Mamba-BEV} model as a feature input for end-to-end DRL, achieving superior performance in dynamic urban driving scenarios. We further enhance the interpretability of the model by visualizing high-dimensional features through semantic segmentation, providing insight into the learned representations. Extensive experiments on the CARLA simulator demonstrate that \texttt{ME$^3$-BEV} outperforms existing models across multiple metrics, including collision rate and trajectory accuracy, offering a promising solution for real-time autonomous driving.
☆ Can Large Models Fool the Eye? A New Turing Test for Biological Animation
Evaluating the abilities of large models and manifesting their gaps are challenging. Current benchmarks adopt either ground-truth-based score-form evaluation on static datasets or indistinct textual chatbot-style human preferences collection, which may not provide users with immediate, intuitive, and perceptible feedback on performance differences. In this paper, we introduce BioMotion Arena, a novel framework for evaluating large language models (LLMs) and multimodal large language models (MLLMs) via visual animation. Our methodology draws inspiration from the inherent visual perception of motion patterns characteristic of living organisms that utilizes point-light source imaging to amplify the performance discrepancies between models. Specifically, we employ a pairwise comparison evaluation and collect more than 45k votes for 53 mainstream LLMs and MLLMs on 90 biological motion variants. Data analyses show that the crowd-sourced human votes are in good agreement with those of expert raters, demonstrating the superiority of our BioMotion Arena in offering discriminative feedback. We also find that over 90\% of evaluated models, including the cutting-edge open-source InternVL3 and proprietary Claude-4 series, fail to produce fundamental humanoid point-light groups, much less smooth and biologically plausible motions. This enables BioMotion Arena to serve as a challenging benchmark for performance visualization and a flexible evaluation framework without restrictions on ground-truth.
comment: 24 pages, 10 figures
☆ Architecture-Aware Generalization Bounds for Temporal Networks: Theory and Fair Comparison Methodology
Deep temporal architectures such as Temporal Convolutional Networks (TCNs) achieve strong predictive performance on sequential data, yet theoretical understanding of their generalization remains limited. We address this gap by providing both the first non-vacuous, architecture-aware generalization bounds for deep temporal models and a principled evaluation methodology. For exponentially $\beta$-mixing sequences, we derive bounds scaling as $ O\!\Bigl(R\,\sqrt{\tfrac{D\,p\,n\,\log N}{N}}\Bigr), $ where $D$ is network depth, $p$ kernel size, $n$ input dimension, and $R$ weight norm. Our delayed-feedback blocking mechanism transforms dependent samples into effectively independent ones while discarding only $O(1/\log N)$ of the data, yielding $\sqrt{D}$ scaling instead of exponential, implying that doubling depth requires approximately quadrupling the training data. We also introduce a fair-comparison methodology that fixes the effective sample size to isolate the effect of temporal structure from information content. Under $N_{\text{eff}}=2{,}000$, strongly dependent sequences ($\rho=0.8$) exhibit $\approx76\%$ smaller generalization gaps than weakly dependent ones ($\rho=0.2$), challenging the intuition that dependence is purely detrimental. Yet convergence rates diverge from theory: weak dependencies follow $N_{\text{eff}}^{-1.21}$ scaling and strong dependencies follow $N_{\text{eff}}^{-0.89}$, both steeper than the predicted $N^{-0.5}$. These findings reveal that temporal dependence can enhance learning under fixed information budgets, while highlighting gaps between theory and practice that motivate future research.
☆ ThematicPlane: Bridging Tacit User Intent and Latent Spaces for Image Generation
Generative AI has made image creation more accessible, yet aligning outputs with nuanced creative intent remains challenging, particularly for non-experts. Existing tools often require users to externalize ideas through prompts or references, limiting fluid exploration. We introduce ThematicPlane, a system that enables users to navigate and manipulate high-level semantic concepts (e.g., mood, style, or narrative tone) within an interactive thematic design plane. This interface bridges the gap between tacit creative intent and system control. In our exploratory study (N=6), participants engaged in divergent and convergent creative modes, often embracing unexpected results as inspiration or iteration cues. While they grounded their exploration in familiar themes, differing expectations of how themes mapped to outputs revealed a need for more explainable controls. Overall, ThematicPlane fosters expressive, iterative workflows and highlights new directions for intuitive, semantics-driven interaction in generative design tools.
☆ A Generic Complete Anytime Beam Search for Optimal Decision Tree
Finding an optimal decision tree that minimizes classification error is known to be NP-hard. While exact algorithms based on MILP, CP, SAT, or dynamic programming guarantee optimality, they often suffer from poor anytime behavior -- meaning they struggle to find high-quality decision trees quickly when the search is stopped before completion -- due to unbalanced search space exploration. To address this, several anytime extensions of exact methods have been proposed, such as LDS-DL8.5, Top-k-DL8.5, and Blossom, but they have not been systematically compared, making it difficult to assess their relative effectiveness. In this paper, we propose CA-DL8.5, a generic, complete, and anytime beam search algorithm that extends the DL8.5 framework and unifies some existing anytime strategies. In particular, CA-DL8.5 generalizes previous approaches LDS-DL8.5 and Top-k-DL8.5, by allowing the integration of various heuristics and relaxation mechanisms through a modular design. The algorithm reuses DL8.5's efficient branch-and-bound pruning and trie-based caching, combined with a restart-based beam search that gradually relaxes pruning criteria to improve solution quality over time. Our contributions are twofold: (1) We introduce this new generic framework for exact and anytime decision tree learning, enabling the incorporation of diverse heuristics and search strategies; (2) We conduct a rigorous empirical comparison of several instantiations of CA-DL8.5 -- based on Purity, Gain, Discrepancy, and Top-k heuristics -- using an anytime evaluation metric called the primal gap integral. Experimental results on standard classification benchmarks show that CA-DL8.5 using LDS (limited discrepancy) consistently provides the best anytime performance, outperforming both other CA-DL8.5 variants and the Blossom algorithm while maintaining completeness and optimality guarantees.
☆ Don't Forget Imagination!
Cognitive imagination is a type of imagination that plays a key role in human thinking. It is not a ``picture-in-the-head'' imagination. It is a faculty to mentally visualize coherent and holistic systems of concepts and causal links that serve as semantic contexts for reasoning, decision making and prediction. Our position is that the role of cognitive imagination is still greatly underestimated, and this creates numerous problems and diminishes the current capabilities of AI. For instance, when reasoning, humans rely on imaginary contexts to retrieve background info. They also constantly return to the context for semantic verification that their reasoning is still reasonable. Thus, reasoning without imagination is blind. This paper is a call for greater attention to cognitive imagination as the next promising breakthrough in artificial intelligence. As an instrument for simulating cognitive imagination, we propose semantic models -- a new approach to mathematical models that can learn, like neural networks, and are based on probabilistic causal relationships. Semantic models can simulate cognitive imagination because they ensure the consistency of imaginary contexts and implement a glass-box approach that allows the context to be manipulated as a holistic and coherent system of interrelated facts glued together with causal relations.
comment: 14 pages, 2 figures
☆ LLMs for Resource Allocation: A Participatory Budgeting Approach to Inferring Preferences AI 2025
Large Language Models (LLMs) are increasingly expected to handle complex decision-making tasks, yet their ability to perform structured resource allocation remains underexplored. Evaluating their reasoning is also difficult due to data contamination and the static nature of existing benchmarks. We present a dual-purpose framework leveraging Participatory Budgeting (PB) both as (i) a practical setting for LLM-based resource allocation and (ii) an adaptive benchmark for evaluating their reasoning capabilities. We task LLMs with selecting project subsets under feasibility (e.g., budget) constraints via three prompting strategies: greedy selection, direct optimization, and a hill-climbing-inspired refinement. We benchmark LLMs' allocations against a utility-maximizing oracle. Interestingly, we also test whether LLMs can infer structured preferences from natural-language voter input or metadata, without explicit votes. By comparing allocations based on inferred preferences to those from ground-truth votes, we evaluate LLMs' ability to extract preferences from open-ended input. Our results underscore the role of prompt design and show that LLMs hold promise for mechanism design with unstructured inputs.
comment: Published in the Proceedings of the 28th European Conference on Artificial Intelligence (ECAI 2025)
☆ EvolvR: Self-Evolving Pairwise Reasoning for Story Evaluation to Enhance Generation
Although the effectiveness of Large Language Models (LLMs) as judges (LLM-as-a-judge) has been validated, their performance remains limited in open-ended tasks, particularly in story evaluation. Accurate story evaluation is crucial not only for assisting human quality judgment but also for providing key signals to guide story generation. However, existing methods face a dilemma: prompt engineering for closed-source models suffers from poor adaptability, while fine-tuning approaches for open-source models lack the rigorous reasoning capabilities essential for story evaluation. To address this, we propose the Self-Evolving Pairwise Reasoning (EvolvR) framework. Grounded in pairwise comparison, the framework first self-synthesizes score-aligned Chain-of-Thought (CoT) data via a multi-persona strategy. To ensure data quality, these raw CoTs undergo a self-filtering process, utilizing multi-agents to guarantee their logical rigor and robustness. Finally, the evaluator trained on the refined data is deployed as a reward model to guide the story generation task. Experimental results demonstrate that our framework achieves state-of-the-art (SOTA) performance on three evaluation benchmarks including StoryER, HANNA and OpenMEVA. Furthermore, when served as a reward model, it significantly enhances the quality of generated stories, thereby fully validating the superiority of our self-evolving approach.
☆ Society of Mind Meets Real-Time Strategy: A Hierarchical Multi-Agent Framework for Strategic Reasoning
Large Language Models (LLMs) have recently demonstrated impressive action sequence prediction capabilities but often struggle with dynamic, long-horizon tasks such as real-time strategic games. In a game such as StarCraftII (SC2), agents need to manage resource constraints and adapt to evolving battlefield situations in a partially observable environment. This often overwhelms exisiting LLM-based approaches. To address these challenges, we propose a hierarchical multi-agent framework that employs specialized imitation learning agents under a meta-controller called Strategic Planner (SP). By expert demonstrations, each specialized agent learns a distinctive strategy, such as aerial support or defensive maneuvers, and produces coherent, structured multistep action sequences. The SP then orchestrates these proposals into a single, environmentally adaptive plan that ensures local decisions aligning with long-term strategies. We call this HIMA (Hierarchical Imitation Multi-Agent). We also present TEXTSCII-ALL, a comprehensive SC2 testbed that encompasses all race match combinations in SC2. Our empirical results show that HIMA outperforms state of the arts in strategic clarity, adaptability, and computational efficiency, underscoring the potential of combining specialized imitation modules with meta-level orchestration to develop more robust, general-purpose AI agents.
comment: COLM 2025
☆ DP-LLM: Runtime Model Adaptation with Dynamic Layer-wise Precision Assignment
How can we effectively handle queries for on-device large language models (LLMs) with varying runtime constraints, such as latency and accuracy? Multi-scale quantization addresses this challenge by enabling memory-efficient runtime model adaptation of LLMs through the overlaying of multiple model variants quantized to different bitwidths. Meanwhile, an important question still remains open-ended: how can models be properly configured to match a target precision or latency? While mixed-precision offers a promising solution, we take this further by leveraging the key observation that the sensitivity of each layer dynamically changes across decoding iterations. Building on this insight, we introduce DP-LLM, a novel mechanism that dynamically assigns precision to each layer based on input values. DP-LLM augments each linear layer in an LLM with a precision selector that determines the bitwidth at runtime using a lightweight error estimator and threshold values learned through fine-tuning. Experimental results across multiple models and benchmarks demonstrate that DP-LLM achieves a superior performance-latency trade-off, outperforming prior approaches.
☆ Fourier-VLM: Compressing Vision Tokens in the Frequency Domain for Large Vision-Language Models
Vision-Language Models (VLMs) typically replace the predefined image placeholder token () in textual instructions with visual features from an image encoder, forming the input to a backbone Large Language Model (LLM). However, the large number of vision tokens significantly increases the context length, leading to high computational overhead and inference latency. While previous efforts mitigate this by selecting only important visual features or leveraging learnable queries to reduce token count, they often compromise performance or introduce substantial extra costs. In response, we propose Fourier-VLM, a simple yet efficient method that compresses visual representations in the frequency domain. Our approach is motivated by the observation that vision features output from the vision encoder exhibit concentrated energy in low-frequency components. Leveraging this, we apply a low-pass filter to the vision features using a two-dimentional Discrete Cosine Transform (DCT). Notably, the DCT is efficiently computed via the Fast Fourier Transform (FFT) operator with a time complexity of $\mathcal{O}(n\log n)$, minimizing the extra computational cost while introducing no additional parameters. Extensive experiments across various image-based benchmarks demonstrate that Fourier-VLM achieves competitive performance with strong generalizability across both LLaVA and Qwen-VL architectures. Crucially, it reduce inference FLOPs by up to 83.8% and boots generation speed by 31.2% compared to LLaVA-v1.5, highlighting the superior efficiency and practicality.
comment: 12 pages, 4 figures
☆ Adaptive Heterogeneous Graph Neural Networks: Bridging Heterophily and Heterogeneity
Heterogeneous graphs (HGs) are common in real-world scenarios and often exhibit heterophily. However, most existing studies focus on either heterogeneity or heterophily in isolation, overlooking the prevalence of heterophilic HGs in practical applications. Such ignorance leads to their performance degradation. In this work, we first identify two main challenges in modeling heterophily HGs: (1) varying heterophily distributions across hops and meta-paths; (2) the intricate and often heterophily-driven diversity of semantic information across different meta-paths. Then, we propose the Adaptive Heterogeneous Graph Neural Network (AHGNN) to tackle these challenges. AHGNN employs a heterophily-aware convolution that accounts for heterophily distributions specific to both hops and meta-paths. It then integrates messages from diverse semantic spaces using a coarse-to-fine attention mechanism, which filters out noise and emphasizes informative signals. Experiments on seven real-world graphs and twenty baselines demonstrate the superior performance of AHGNN, particularly in high-heterophily situations.
comment: Accepted tp CIKM 2025
☆ Temporal Self-Rewarding Language Models: Decoupling Chosen-Rejected via Past-Future
Self-Rewarding Language Models propose an architecture in which the Large Language Models(LLMs) both generates responses and evaluates its own outputs via LLM-as-a-Judge prompting, dynamically improving its generative capabilities through iterative Direct Preference Optimization (DPO). However, our analysis reveals a critical limitation in existing Self-Rewarding paradigms: the synchronized improvement of chosen and rejected responses progressively narrows the representational difference between contrasting samples, undermining effective preference learning. We propose \textbf{Temporal Self-Rewarding Language Models} that strategically coordinate past, present, and future model generations to sustain learning signals. Our dual-phase framework introduces: (1) \textit{Anchored Rejection} - fixing rejected responses using the past initial model's outputs and (2) \textit{Future-Guided Chosen} - dynamically curating chosen samples using next-generation model predictions. Extensive experiments across three model families (Llama, Qwen, Mistral) and different model sizes (Llama3B/8B/70B) demonstrate significant improvements when trained with our method compared to Self-Rewarding using same computation resources. For example, Llama3.1-8B reaches a 29.44 win rate on AlpacaEval 2.0 with our method, outperforming the Self-Rewarding baseline (19.69) by 9.75. Notably, our method also demonstrates superior out-of-distribution generalization across mathematical reasoning (GSM8K), knowledge-based QA (ARC, TruthfulQA), and code generation (HumanEval) tasks, even though we do not specifically collect such training data.
comment: 12 pages, 5 figures
☆ Improved Sub-Visible Particle Classification in Flow Imaging Microscopy via Generative AI-Based Image Synthesis
Sub-visible particle analysis using flow imaging microscopy combined with deep learning has proven effective in identifying particle types, enabling the distinction of harmless components such as silicone oil from protein particles. However, the scarcity of available data and severe imbalance between particle types within datasets remain substantial hurdles when applying multi-class classifiers to such problems, often forcing researchers to rely on less effective methods. The aforementioned issue is particularly challenging for particle types that appear unintentionally and in lower numbers, such as silicone oil and air bubbles, as opposed to protein particles, where obtaining large numbers of images through controlled settings is comparatively straightforward. In this work, we develop a state-of-the-art diffusion model to address data imbalance by generating high-fidelity images that can augment training datasets, enabling the effective training of multi-class deep neural networks. We validate this approach by demonstrating that the generated samples closely resemble real particle images in terms of visual quality and structure. To assess the effectiveness of using diffusion-generated images in training datasets, we conduct large-scale experiments on a validation dataset comprising 500,000 protein particle images and demonstrate that this approach improves classification performance with no negligible downside. Finally, to promote open research and reproducibility, we publicly release both our diffusion models and the trained multi-class deep neural network classifiers, along with a straightforward interface for easy integration into future studies, at https://github.com/utkuozbulak/svp-generative-ai.
☆ Crisp Attention: Regularizing Transformers via Structured Sparsity
The quadratic computational cost of the self-attention mechanism is a primary challenge in scaling Transformer models. While attention sparsity is widely studied as a technique to improve computational efficiency, it is almost universally assumed to come at the cost of model accuracy. In this paper, we report a surprising counter-example to this common wisdom. By introducing structured, post-hoc sparsity to the attention mechanism of a DistilBERT model during fine-tuning on the SST-2 sentiment analysis task, we find that model accuracy improves significantly. Our model with 80\% attention sparsity achieves a validation accuracy of 91.59\%, a 0.97\% absolute improvement over the dense baseline. We hypothesize that this phenomenon is due to sparsity acting as a powerful implicit regularizer, preventing the model from overfitting by forcing it to make predictions with a more constrained and robust set of features. Our work recasts attention sparsity not just as a tool for computational efficiency, but as a potential method for improving the generalization and performance of Transformer models.
♻ ☆ LaDi-WM: A Latent Diffusion-based World Model for Predictive Manipulation
Predictive manipulation has recently gained considerable attention in the Embodied AI community due to its potential to improve robot policy performance by leveraging predicted states. However, generating accurate future visual states of robot-object interactions from world models remains a well-known challenge, particularly in achieving high-quality pixel-level representations. To this end, we propose LaDi-WM, a world model that predicts the latent space of future states using diffusion modeling. Specifically, LaDi-WM leverages the well-established latent space aligned with pre-trained Visual Foundation Models (VFMs), which comprises both geometric features (DINO-based) and semantic features (CLIP-based). We find that predicting the evolution of the latent space is easier to learn and more generalizable than directly predicting pixel-level images. Building on LaDi-WM, we design a diffusion policy that iteratively refines output actions by incorporating forecasted states, thereby generating more consistent and accurate results. Extensive experiments on both synthetic and real-world benchmarks demonstrate that LaDi-WM significantly enhances policy performance by 27.9\% on the LIBERO-LONG benchmark and 20\% on the real-world scenario. Furthermore, our world model and policies achieve impressive generalizability in real-world experiments.
comment: CoRL 2025
♻ ☆ Self-Steering Language Models
While test-time reasoning enables language models (LMs) to tackle complex tasks, searching or planning in natural language can be slow, costly, and error-prone. But even when LMs struggle to emulate the precise reasoning steps needed to solve a problem, they often excel at describing its abstract structure--both how to verify solutions and how to search for them. This paper introduces DisCIPL, a method for "self-steering" LMs where a Planner model generates a task-specific inference program that is executed by a population of Follower models. Our approach equips LMs with the ability to write recursive search procedures that guide LM inference, enabling new forms of verifiable and efficient reasoning. When instantiated with a small Follower (e.g., Llama-3.2-1B or Qwen3-1.7B), DisCIPL matches (and sometimes outperforms) much larger models, including GPT-4o and o1, on challenging constrained generation tasks. Our work opens up a design space of highly-parallelized Monte Carlo inference strategies that outperform standard best-of-N sampling, require no finetuning, and can be implemented automatically by existing LMs.
comment: Accepted to COLM 2025
♻ ☆ AI-Assisted Conversational Interviewing: Effects on Data Quality and User Experience
Standardized surveys scale efficiently but sacrifice depth, while conversational interviews improve response quality at the cost of scalability and consistency. This study bridges the gap between these methods by introducing a framework for AI-assisted conversational interviewing. To evaluate this framework, we conducted a web survey experiment where 1,800 participants were randomly assigned to AI 'chatbots' which use large language models (LLMs) to dynamically probe respondents for elaboration and interactively code open-ended responses to fixed questions developed by human researchers. We assessed the AI chatbot's performance in terms of coding accuracy, response quality, and respondent experience. Our findings reveal that AI chatbots perform moderately well in live coding even without survey-specific fine-tuning, despite slightly inflated false positive errors due to respondent acquiescence bias. Open-ended responses were more detailed and informative, but this came at a slight cost to respondent experience. Our findings highlight the feasibility of using AI methods such as chatbots enhanced by LLMs to enhance open-ended data collection in web surveys.
♻ ☆ Crop Pest Classification Using Deep Learning Techniques: A Review
Insect pests continue to bring a serious threat to crop yields around the world, and traditional methods for monitoring them are often slow, manual, and difficult to scale. In recent years, deep learning has emerged as a powerful solution, with techniques like convolutional neural networks (CNNs), vision transformers (ViTs), and hybrid models gaining popularity for automating pest detection. This review looks at 37 carefully selected studies published between 2018 and 2025, all focused on AI-based pest classification. The selected research is organized by crop type, pest species, model architecture, dataset usage, and key technical challenges. The early studies relied heavily on CNNs but latest work is shifting toward hybrid and transformer-based models that deliver higher accuracy and better contextual understanding. Still, challenges like imbalanced datasets, difficulty in detecting small pests, limited generalizability, and deployment on edge devices remain significant hurdles. Overall, this review offers a structured overview of the field, highlights useful datasets, and outlines the key challenges and future directions for AI-based pest monitoring systems.
comment: This version adds co-authors who were unintentionally left out of the prior submission. Additionally, Table 1 has been reformatted for clarity, and several typographical errors have been corrected
♻ ☆ SPARTA: Advancing Sparse Attention in Spiking Neural Networks via Spike-Timing-Based Prioritization
Current Spiking Neural Networks (SNNs) underutilize the temporal dynamics inherent in spike-based processing, relying primarily on rate coding while overlooking precise timing information that provides rich computational cues. We propose SPARTA (Spiking Priority Attention with Resource-Adaptive Temporal Allocation), a framework that leverages heterogeneous neuron dynamics and spike-timing information to enable efficient sparse attention. SPARTA prioritizes tokens based on temporal cues, including firing patterns, spike timing, and inter-spike intervals, achieving 65.4% sparsity through competitive gating. By selecting only the most salient tokens, SPARTA reduces attention complexity from O(N^2) to O(K^2) with k << n, while maintaining high accuracy. Our method achieves state-of-the-art performance on DVS-Gesture (98.78%) and competitive results on CIFAR10-DVS (83.06%) and CIFAR-10 (95.3%), demonstrating that exploiting spike timing dynamics improves both computational efficiency and accuracy.
♻ ☆ From Next-Token to Mathematics: The Learning Dynamics of Mathematical Reasoning in Language Models
Large Language Models (LLMs) solely trained on next-token prediction learn to solve a wide range of problems involving mathematical reasoning. But how does this ability evolve during training? We show the first analysis of how mathematical reasoning abilities of several open-weight LLMs develop during pre-training and post-training. To this end, we construct MathCAMPS, a synthetic dataset of novel mathematical reasoning problems grounded in 44 fine-grained skills taken from the Common Core curriculum from K to 8th grades. In one experiment, we show that mathematical skills are learned during pre-training in an order that measurably correlates with the human-designed curriculum, even though training data are randomly ordered. We also show a detailed analysis of which mathematical abilities benefit from instruction tuning, a widely used post-training method and, in contrast, which skills suffer. Our work paves the way for an empirical understanding of LLM training dynamics in relation to reasoning.
comment: Accepted to COLM 2025. Dataset and code: https://github.com/gpoesia/mathcamps/
♻ ☆ Algorithmic Segmentation and Behavioral Profiling for Ransomware Detection Using Temporal-Correlation Graphs
The rapid evolution of cyber threats has outpaced traditional detection methodologies, necessitating innovative approaches capable of addressing the adaptive and complex behaviors of modern adversaries. A novel framework was introduced, leveraging Temporal-Correlation Graphs to model the intricate relationships and temporal patterns inherent in malicious operations. The approach dynamically captured behavioral anomalies, offering a robust mechanism for distinguishing between benign and malicious activities in real-time scenarios. Extensive experiments demonstrated the framework's effectiveness across diverse ransomware families, with consistently high precision, recall, and overall detection accuracy. Comparative evaluations highlighted its better performance over traditional signature-based and heuristic methods, particularly in handling polymorphic and previously unseen ransomware variants. The architecture was designed with scalability and modularity in mind, ensuring compatibility with enterprise-scale environments while maintaining resource efficiency. Analysis of encryption speeds, anomaly patterns, and temporal correlations provided deeper insights into the operational strategies of ransomware, validating the framework's adaptability to evolving threats. The research contributes to advancing cybersecurity technologies by integrating dynamic graph analytics and machine learning for future innovations in threat detection. Results from this study underline the potential for transforming the way organizations detect and mitigate complex cyberattacks.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Contextual Reinforcement in Multimodal Token Compression for Large Language Models
Effective token compression remains a critical challenge for scaling models to handle increasingly complex and diverse datasets. A novel mechanism based on contextual reinforcement is introduced, dynamically adjusting token importance through interdependencies and semantic relevance. This approach enables substantial reductions in token usage while preserving the quality and coherence of information representation. Incorporating graph-based algorithms and adaptive weighting, the method captures subtle contextual relationships across textual and multimodal data, ensuring robust alignment and performance in downstream tasks. Evaluations across varied domains reveal significant improvements in accuracy and semantic retention, particularly for tasks requiring detailed cross-modal interactions. Memory usage analyses demonstrate improved computational efficiency, with minimal overhead despite the additional reinforcement processes. Performance gains are further validated through error distribution analyses, showing reduced semantic loss and syntactic inconsistencies compared to baseline models. The modular architecture ensures compatibility with a wide range of open-source frameworks, facilitating scalable implementation for real-world applications. These findings highlight the potential of contextual reinforcement in redefining token management strategies and advancing large-scale model design.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Hierarchical Pattern Decryption Methodology for Ransomware Detection Using Probabilistic Cryptographic Footprints
The increasing sophistication of encryption-based ransomware has demanded innovative approaches to detection and mitigation, prompting the development of a hierarchical framework grounded in probabilistic cryptographic analysis. By focusing on the statistical characteristics of encryption patterns, the proposed methodology introduces a layered approach that combines advanced clustering algorithms with machine learning to isolate ransomware-induced anomalies. Through comprehensive testing across diverse ransomware families, the framework demonstrated exceptional accuracy, effectively distinguishing malicious encryption operations from benign activities while maintaining low false positive rates. The system's design integrates dynamic feedback mechanisms, enabling adaptability to varying cryptographic complexities and operational environments. Detailed entropy-based evaluations revealed its sensitivity to subtle deviations in encryption workflows, offering a robust alternative to traditional detection methods reliant on static signatures or heuristics. Computational benchmarks confirmed its scalability and efficiency, achieving consistent performance even under high data loads and complex cryptographic scenarios. The inclusion of real-time clustering and anomaly evaluation ensures rapid response capabilities, addressing critical latency challenges in ransomware detection. Performance comparisons with established methods highlighted its improvements in detection efficacy, particularly against advanced ransomware employing extended key lengths and unique cryptographic protocols.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Autonomous Structural Memory Manipulation for Large Language Models Using Hierarchical Embedding Augmentation
Transformative innovations in model architectures have introduced hierarchical embedding augmentation as a means to redefine the representation of tokens through multi-level semantic structures, offering enhanced adaptability to complex linguistic inputs. Autonomous structural memory manipulation further advances this paradigm through dynamic memory reallocation mechanisms that prioritize critical contextual features while suppressing less relevant information, enabling scalable and efficient performance across diverse tasks. Experimental results reveal substantial improvements in computational efficiency, with marked reductions in processing overhead for longer input sequences, achieved through memory reorganization strategies that adapt to evolving contextual requirements. Hierarchical embeddings not only improved contextual alignment but also facilitated task generalization by capturing relationships at varying semantic granularities, ensuring coherence across layers without introducing significant computational redundancies. Comparative analysis against baseline models demonstrated unique advantages in accuracy, efficiency, and interpretability, particularly in tasks requiring complex contextual understanding or domain-specific adaptability. The ability to dynamically adjust token representations and memory configurations contributed to the model's robustness under varied and unpredictable input conditions. Applications benefiting from these advancements include multi-domain generalization, interactive systems, and scenarios involving real-time decision-making, where traditional static memory architectures often face limitations. The proposed methodology combines advanced embedding and memory management strategies into a cohesive framework that addresses scalability challenges while preserving task-specific relevance.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Contextually Entangled Gradient Mapping for Optimized LLM Comprehension
Contextually Entangled Gradient Mapping (CEGM) introduces a new approach to gradient optimization, redefining the relationship between contextual embeddings and gradient updates to enhance semantic coherence and reasoning capabilities in neural architectures. By treating gradients as dynamic carriers of contextual dependencies rather than isolated numerical entities, the proposed methodology bridges critical gaps in existing optimization strategies. The integration of entangled gradient dynamics into a loss regularization framework demonstrated significant improvements in tasks involving long-form reasoning, contextual retention, and adaptability to unseen domains. Experimental evaluations showed that the CEGM-enhanced model consistently outperformed baseline approaches, achieving higher accuracy in token-level predictions and greater resilience to noisy inputs. Practical implementations involved modifications to training pipelines, introducing entanglement layers and dynamic coefficient adjustments that seamlessly align with existing architectures. Results further highlighted reductions in semantic drift during sequential transformations and improvements in embedding coherence across paraphrased sentences, showing the robustness and versatility of the proposed methodology. The findings demonstrate the broader implications of gradient entanglement for both theoretical advancements and practical applications in optimization strategies.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Unveiling Zero-Space Detection: A Novel Framework for Autonomous Ransomware Identification in High-Velocity Environments
Modern cybersecurity landscapes increasingly demand sophisticated detection frameworks capable of identifying evolving threats with precision and adaptability. The proposed Zero-Space Detection framework introduces a novel approach that dynamically identifies latent behavioral patterns through unsupervised clustering and advanced deep learning techniques. Designed to address the limitations of signature-based and heuristic methods, it operates effectively in high-velocity environments by integrating multi-phase filtering and ensemble learning for refined decision-making. Experimental evaluation reveals high detection rates across diverse ransomware families, including LockBit, Conti, REvil, and BlackMatter, while maintaining low false positive rates and scalable performance. Computational overhead remains minimal, with average processing times ensuring compatibility with real-time systems even under peak operational loads. The framework demonstrates resilience against adversarial strategies such as obfuscation and encryption speed variability, which frequently challenge conventional detection systems. Analysis across multiple data sources highlights its versatility in handling diverse file types and operational contexts. Comprehensive metrics, including detection probability, latency, and resource efficiency, validate its efficacy under real-world conditions. Through its modular architecture, the framework achieves seamless integration with existing cybersecurity infrastructures without significant reconfiguration. The results demonstrate its robustness and scalability, offering a transformative paradigm for ransomware identification in dynamic and resource-constrained environments.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Exploring Synaptic Resonance in Large Language Models: A Novel Approach to Contextual Memory Integration
Contextual memory integration remains a high challenge in the development of language models, particularly in tasks that require maintaining coherence over extended sequences. Traditional approaches, such as self-attention mechanisms and memory-augmented architectures, often prioritize short-term dependencies, leading to fragmentation and inconsistency in long-range contextual understanding. Inspired by principles of synaptic plasticity observed in biological neural systems, a novel mechanism, Synaptic Resonance, is introduced to dynamically reinforce relevant memory pathways during training and inference. Unlike static memory representations, this mechanism continuously adjusts synaptic weight matrices based on contextual relevance, allowing for improved information retention without excessive computational overhead. Evaluations conducted on an open-source language model demonstrate reductions in perplexity, enhancements in contextual coherence, and increased robustness against input noise, highlighting the effectiveness of reinforcement-driven memory modulation. Comparative analysis against baseline models further reveals that the proposed approach achieves higher memory retention efficiency while maintaining computational feasibility. The architectural modifications integrate seamlessly into existing transformer-based frameworks, ensuring stable convergence and efficient inference without sacrificing scalability. Applications benefiting from improved long-term contextual consistency, such as dialogue systems and document summarization, stand to gain from this approach. Empirical findings suggest that dynamically reinforced memory pathways offer a promising alternative to conventional memory mechanisms, addressing longstanding limitations in extended sequence modeling.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Architectural Fusion Through Contextual Partitioning in Large Language Models: A Novel Approach to Parameterized Knowledge Integration
Contextual Partitioning introduces an innovative approach to enhancing the architectural design of large-scale computational models through the dynamic segmentation of parameters into context-aware regions. This methodology emphasizes the importance of task-specific specialization, achieved through adaptive parameter allocation mechanisms that align with the linguistic features of input data. Experimental evaluations demonstrated substantial improvements in accuracy, perplexity, and contextual coherence across a variety of linguistic tasks, highlighting the adaptability and scalability of the proposed framework. By reducing redundancy and enhancing computational efficiency, Contextual Partitioning not only streamlines model operations but also expands the scope of applications for advanced language processing systems. The approach operates autonomously, requiring no external fine-tuning, thereby addressing a significant limitation in conventional parameter optimization techniques. Empirical results demonstrate the effectiveness of gradient-driven segmentation, enabling models to dynamically recalibrate and specialize in response to task-specific demands. Furthermore, resource utilization metrics reveal notable reductions in memory usage and training times, confirming the efficiency of the approach. Observations from qualitative analyses illustrate improved contextual coherence and logical flow in generated outputs, reinforcing the practical value of this technique. The findings collectively demonstrate the potential for Contextual Partitioning to redefine the scalability and adaptability of computational language architectures in diverse and complex domains.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Neural Contextual Reinforcement Framework for Logical Structure Language Generation
The Neural Contextual Reinforcement Framework introduces an innovative approach to enhancing the logical coherence and structural consistency of text generated by large language models. Leveraging reinforcement learning principles, the framework integrates custom reward functions and dynamic context alignment mechanisms to address challenges inherent in maintaining long-range dependencies across extended sequences. The architecture incorporates multi-head attention layers and hierarchical encoding modules, enabling the model to produce outputs that align closely with human expectations of logical structure and semantic flow. Quantitative evaluations across diverse datasets demonstrate substantial improvements in coherence metrics, perplexity reduction, and semantic alignment, showcasing the framework's ability to outperform baseline models in both general and domain-specific tasks. Qualitative analyses further highlight the framework's capacity to generate text with improved narrative clarity and reduced redundancy, reflecting its effectiveness in balancing fluency with structural precision. In addition to its performance gains, the framework exhibits robustness in handling noisy input data and scalability across varying model sizes, reinforcing its versatility in practical applications. Experimental results reveal that optimal context window sizes significantly influence coherence outcomes, showing the importance of architectural flexibility in adapting to diverse linguistic structures. Cross-lingual performance evaluations affirm the framework's adaptability to multiple languages, extending its utility beyond monolingual contexts. Resource efficiency analyses indicate a reduction in computational overhead compared to traditional approaches, emphasizing the practicality of the framework for large-scale deployment.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Vision-Language Model-Based Semantic-Guided Imaging Biomarker for Lung Nodule Malignancy Prediction
Machine learning models have utilized semantic features, deep features, or both to assess lung nodule malignancy. However, their reliance on manual annotation during inference, limited interpretability, and sensitivity to imaging variations hinder their application in real-world clinical settings. Thus, this research aims to integrate semantic features derived from radiologists' assessments of nodules, guiding the model to learn clinically relevant, robust, and explainable imaging features for predicting lung cancer. We obtained 938 low-dose CT scans from the National Lung Screening Trial (NLST) with 1,246 nodules and semantic features. Additionally, the Lung Image Database Consortium dataset contains 1,018 CT scans, with 2,625 lesions annotated for nodule characteristics. Three external datasets were obtained from UCLA Health, the LUNGx Challenge, and the Duke Lung Cancer Screening. We fine-tuned a pretrained Contrastive Language-Image Pretraining (CLIP) model with a parameter-efficient fine-tuning approach to align imaging and semantic text features and predict the one-year lung cancer diagnosis. Our model outperformed state-of-the-art (SOTA) models in the NLST test set with an AUROC of 0.901 and AUPRC of 0.776. It also showed robust results in external datasets. Using CLIP, we also obtained predictions on semantic features through zero-shot inference, such as nodule margin (AUROC: 0.812), nodule consistency (0.812), and pleural attachment (0.840). Our approach surpasses the SOTA models in predicting lung cancer across datasets collected from diverse clinical settings, providing explainable outputs, aiding clinicians in comprehending the underlying meaning of model predictions. This approach also prevents the model from learning shortcuts and generalizes across clinical settings. The code is available at https://github.com/luotingzhuang/CLIP_nodule.
♻ ☆ Noosemia: toward a Cognitive and Phenomenological Account of Intentionality Attribution in Human-Generative AI Interaction
This paper introduces and formalizes Noosem\`ia, a novel cognitive-phenomenological pattern emerging from human interaction with generative AI systems, particularly those enabling dialogic or multimodal exchanges. We propose a multidisciplinary framework to explain how, under certain conditions, users attribute intentionality, agency, and even interiority to these systems - a process grounded not in physical resemblance, but in linguistic performance, epistemic opacity, and emergent technological complexity. By linking an LLM declination of meaning holism to our technical notion of the LLM Contextual Cognitive Field, we clarify how LLMs construct meaning relationally and how coherence and a simulacrum of agency arise at the human-AI interface. The analysis situates noosemia alongside pareidolia, animism, the intentional stance and the uncanny valley, distinguishing its unique characteristics. We also introduce a-noosemia to describe the phenomenological withdrawal of such projections. The paper concludes with reflections on the broader philosophical, epistemological and social implications of noosemic dynamics and directions for future research.
comment: This version has been extensively revised and revisited in light of feedback and further research. Several sections have been expanded or improved for greater clarity and completeness. Specifically, new clarification on complex system foundation related to Noosemia has been added (Secs. "2.4 and "2.5")
♻ ☆ Are Your LLMs Capable of Stable Reasoning? ACL 2025
The rapid advancement of large language models (LLMs) has shown remarkable progress in complex reasoning tasks. However, a significant disparity exists between benchmark performances and real-world applications. We attribute this gap primarily to current evaluation protocols and metrics, which inadequately capture the full spectrum of LLM capabilities, especially in complex reasoning tasks where both accuracy and consistency are essential. In this paper, we introduce G-Pass@$k$, a novel evaluation metric that continuously assesses model performance across multiple sampling attempts, quantifying both the model's performance potential and its stability. Through extensive experiments on various public and newly constructed benchmarks, we employ G-Pass@$k$ in conjunction with state-of-the-art large language models to provide comprehensive insights into their potential capabilities and operational consistency. Our findings reveal a significant opportunity to enhance the realistic reasoning abilities of LLMs, underscoring the necessity for more robust evaluation metrics.
comment: ACL 2025 Camera, Benchmark: https://huggingface.co/datasets/opencompass/LiveMathBench, Code: https://github.com/open-compass/GPassK
♻ ☆ Web3 x AI Agents: Landscape, Integrations, and Foundational Challenges
The convergence of Web3 technologies and AI agents represents a rapidly evolving frontier poised to reshape decentralized ecosystems. This paper presents the first and most comprehensive analysis of the intersection between Web3 and AI agents, examining five critical dimensions: landscape, economics, governance, security, and trust mechanisms. Through an analysis of 133 existing projects, we first develop a taxonomy and systematically map the current market landscape (RQ1), identifying distinct patterns in project distribution and capitalization. Building upon these findings, we further investigate four key integrations: (1) the role of AI agents in participating in and optimizing decentralized finance (RQ2); (2) their contribution to enhancing Web3 governance mechanisms (RQ3); (3) their capacity to strengthen Web3 security via intelligent vulnerability detection and automated smart contract auditing (RQ4); and (4) the establishment of robust reliability frameworks for AI agent operations leveraging Web3's inherent trust infrastructure (RQ5). By synthesizing these dimensions, we identify key integration patterns, highlight foundational challenges related to scalability, security, and ethics, and outline critical considerations for future research toward building robust, intelligent, and trustworthy decentralized systems with effective AI agent interactions.
♻ ☆ Training Plug-n-Play Knowledge Modules with Deep Context Distillation
Dynamically integrating new or rapidly evolving information after (Large) Language Model pre-training remains challenging, particularly in low-data scenarios or when dealing with private and specialized documents. In-context learning and retrieval-augmented generation (RAG) face limitations, including their high inference costs and their inability to capture global document information. In this paper, we propose a way of modularizing knowledge by training document-level Knowledge Modules (KMs). KMs are lightweight components implemented as parameter-efficient LoRA modules, which are trained to store information about new documents and can be easily plugged into models on demand. We show that next-token prediction performs poorly as the training objective for KMs. We instead propose Deep Context Distillation: we learn KMs parameters such as to simulate hidden states and logits of a teacher that takes the document in context. Our method outperforms standard next-token prediction and pre-instruction training techniques, across two datasets. Finally, we highlight synergies between KMs and RAG.
comment: Accepted at the CONFERENCE ON LANGUAGE MODELING (COLM) 2025
♻ ☆ Bench-2-CoP: Can We Trust Benchmarking for EU AI Compliance?
The rapid advancement of General Purpose AI (GPAI) models necessitates robust evaluation frameworks, especially with emerging regulations like the EU AI Act and its associated Code of Practice (CoP). Current AI evaluation practices depend heavily on established benchmarks, but these tools were not designed to measure the systemic risks that are the focus of the new regulatory landscape. This research addresses the urgent need to quantify this "benchmark-regulation gap." We introduce Bench-2-CoP, a novel, systematic framework that uses validated LLM-as-judge analysis to map the coverage of 194,955 questions from widely-used benchmarks against the EU AI Act's taxonomy of model capabilities and propensities. Our findings reveal a profound misalignment: the evaluation ecosystem dedicates the vast majority of its focus to a narrow set of behavioral propensities. On average, benchmarks devote 61.6% of their regulatory-relevant questions to "Tendency to hallucinate" and 31.2% to "Lack of performance reliability", while critical functional capabilities are dangerously neglected. Crucially, capabilities central to loss-of-control scenarios, including evading human oversight, self-replication, and autonomous AI development, receive zero coverage in the entire benchmark corpus. This study provides the first comprehensive, quantitative analysis of this gap, demonstrating that current public benchmarks are insufficient, on their own, for providing the evidence of comprehensive risk assessment required for regulatory compliance and offering critical insights for the development of next-generation evaluation tools.
♻ ☆ ATM: Improving Model Merging by Alternating Tuning and Merging
Model merging has emerged as a cost-efficient approximation to multitask learning. Among merging strategies, task arithmetic is notable for its simplicity and effectiveness. In this work, we provide a theoretical motivation for task vectors by highlighting that, under single-epoch full-batch gradient descent, they are equivalent to multitask gradients. This insight leads us to reinterpret model merging as a single step in an iterative procedure that Alternates between Tuning and Merging (ATM). We propose two applications of ATM: (1) as an alternative to multitask learning in scenarios where data sharing is restricted (e.g., federated settings), and (2) as a lightweight refinement step to improve existing model merging methods using a small validation set. Experiments across diverse vision tasks demonstrate the effectiveness of ATM.
comment: Main paper: 9 Pages, 4 figures, 1 table
♻ ☆ HASD: Hierarchical Adaption for pathology Slide-level Domain-shift AI 2025
Domain shift is a critical problem for pathology AI as pathology data is heavily influenced by center-specific conditions. Current pathology domain adaptation methods focus on image patches rather than WSI, thus failing to capture global WSI features required in typical clinical scenarios. In this work, we address the challenges of slide-level domain shift by proposing a Hierarchical Adaptation framework for Slide-level Domain-shift (HASD). HASD achieves multi-scale feature consistency and computationally efficient slide-level domain adaptation through two key components: (1) a hierarchical adaptation framework that integrates a Domain-level Alignment Solver for feature alignment, a Slide-level Geometric Invariance Regularization to preserve the morphological structure, and a Patch-level Attention Consistency Regularization to maintain local critical diagnostic cues; and (2) a prototype selection mechanism that reduces computational overhead. We validate our method on two slide-level tasks across five datasets, achieving a 4.1\% AUROC improvement in a Breast Cancer HER2 Grading cohort and a 3.9\% C-index gain in a UCEC survival prediction cohort. Our method provides a practical and reliable slide-level domain adaption solution for pathology institutions, minimizing both computational and annotation costs.
comment: Accepted by MICCAI 2025
♻ ☆ Reconsidering the Performance of GAE in Link Prediction
Recent advancements in graph neural networks (GNNs) for link prediction have introduced sophisticated training techniques and model architectures. However, reliance on outdated baselines may exaggerate the benefits of these new approaches. To tackle this issue, we systematically explore Graph Autoencoders (GAEs) by applying model-agnostic tricks in recent methods and tuning hyperparameters. We find that a well-tuned GAE can match the performance of recent sophisticated models while offering superior computational efficiency on widely-used link prediction benchmarks. Our approach delivers substantial performance gains on datasets where structural information dominates and feature data is limited. Specifically, our GAE achieves a state-of-the-art Hits@100 score of 78.41\% on the ogbl-ppa dataset. Furthermore, we examine the impact of various tricks to uncover the reasons behind our success and to guide the design of future methods. Our study emphasizes the critical need to update baselines for a more accurate assessment of progress in GNNs for link prediction. Our code is available at https://github.com/GraphPKU/Refined-GAE.
comment: Accepted at CIKM 2025
♻ ☆ M$^2$IV: Towards Efficient and Fine-grained Multimodal In-Context Learning via Representation Engineering
Multimodal in-context learning (ICL) equips Large Vision-language Models (LVLMs) with the ability to adapt to new tasks via multiple user-provided demonstrations, without requiring any model parameter updates. However, its effectiveness is constrained by the token-intensive nature of multimodal inputs and the complexity of cross-modal few-shot reasoning, which together hinder LVLMs from extracting useful patterns from demonstrations. To address these challenges, we propose \textbf{M$^2$IV}, a novel representation engineering approach that replaces explicit token-level demonstrations with a set of learnable Multimodal In-context Vectors directly injected into the residual streams of LVLMs. By analyzing the distinct roles of multi-head attention (MHA) and multi-layer perceptrons (MLP) in the ICL process, we design a training strategy that enables M$^2$IV to perform fine-grained semantic distillation and robust cross-modal representation learning. M$^2$IV not only improves performance across diverse tasks and LVLMs but also significantly reduces token overhead, enabling graceful scaling to many-shot scenarios. To further enhance usability, we introduce \textbf{VLibrary}, a repository that stores trained M$^2$IVs for flexible retrieval and injection. With VLibrary, users can steer pre-trained LVLMs in a customized manner that meets diverse requirements. Extensive experiments demonstrate that M$^2$IV consistently outperforms vanilla ICL and prior representation engineering baselines, achieving an average accuracy gain of 3.74\% with substantial improvements in overall efficiency.
comment: COLM 2025, 30 pages, 10 figures, 16 tables
♻ ☆ DeToNATION: Decoupled Torch Network-Aware Training on Interlinked Online Nodes
Training large neural network models requires extensive computational resources, often distributed across several nodes and accelerators. Recent findings suggest that it may be sufficient to only exchange the fast moving components of the gradients, while accumulating momentum locally (Decoupled Momentum, or DeMo). However, DeMo assumes that models fit on a single accelerator. We relax this assumption and introduce FlexDeMo, whereby nodes fully shard model parameters locally between different accelerators, while inter-node communication is reduced by synchronizing only fast-moving components instead of the full gradients -- resulting in a hybrid sharded data parallel training strategy. We further introduce a framework, denoted as DeToNATION, that generalizes DeMo, FlexDeMo, and other popular distributed training schemes such as DiLoCo -- introducing new variations of replication schemes and challenging choices made in DeMo. Our results across language and vision domains show that FlexDeMo attains similar validation loss as hybrid sharded data parallel training employing AdamW and full gradient synchronization, while being substantially faster. FlexDeMo is thus a promising distributed training scheme for the largest machine learning models.
♻ ☆ ART: Adaptive Relation Tuning for Generalized Relation Prediction ICCV 2025
Visual relation detection (VRD) is the task of identifying the relationships between objects in a scene. VRD models trained solely on relation detection data struggle to generalize beyond the relations on which they are trained. While prompt tuning has been used to adapt vision-language models (VLMs) for VRD, it uses handcrafted prompts and struggles with novel or complex relations. We argue that instruction tuning offers a more effective solution by fine-tuning VLMs on diverse instructional data. We thus introduce ART, an Adaptive Relation Tuning framework that adapts VLMs for VRD through instruction tuning and strategic instance selection. By converting VRD datasets into an instruction tuning format and employing an adaptive sampling algorithm, ART directs the VLM to focus on informative relations while maintaining generalizability. Specifically, we focus on the relation classification, where subject-object boxes are given and the model predicts the predicate between them. We tune on a held-in set and evaluate across multiple held-out datasets of varying complexity. Our approach strongly improves over its baselines and can infer unseen relation concepts, a capability absent in mainstream VRD methods. We demonstrate ART's practical value by using the predicted relations for segmenting complex scenes.
comment: Accepted for publication in ICCV 2025
♻ ☆ DONOD: Efficient and Generalizable Instruction Fine-Tuning for LLMs via Model-Intrinsic Dataset Pruning
Ad-hoc instruction fine-tuning of large language models (LLMs) is widely adopted for domain-specific adaptation. While domain-specific supervised fine-tuning (SFT) is effective and efficient, it often weakens cross-domain generalization and struggles with noisy training data. To address these challenges, we propose DONOD, a lightweight model-intrinsic data pruning method. Our approach evaluates data using two model-parameter-based metrics: Delta of Norm (DON), which captures the cumulative influence on model weights, and Norm of Delta (NOD), which quantifies weight instability. Moreover, by employing the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) algorithm, we effectively filter noisy, unlearnable, and generalization-harming samples without relying on auxiliary models during the SFT process. Experiments on mathematical tasks demonstrate that data selected by DONOD achieves superior fine-tuning efficiency and improved robustness against noisy data. By filtering out 70% of the whole dataset, we improve target-domain accuracy by 14.90% and cross-domain accuracy by 5.67%. Meanwhile, our selected data present superior cross-architecture generalization. Data pruned by smaller models (e.g., Llama 3.1-8B) generalize effectively on larger models (e.g., Llama 2-13B). Compared to existing related methodologies, DONOD demonstrates comparable or superior performance while remaining dataset-agnostic, enabling broader applicability. Code will be made publicly available.
♻ ☆ MagicGUI: A Foundational Mobile GUI Agent with Scalable Data Pipeline and Reinforcement Fine-tuning
This paper presents MagicGUI, a foundational mobile GUI agent designed to address critical challenges in perception, grounding, and reasoning within real-world mobile GUI environments. The framework is underpinned by following six key components: (1) a comprehensive and accurate dataset, constructed via the scalable GUI Data Pipeline, which aggregates the largest and most diverse GUI-centric multimodal data to date from open-source repositories, automated crawling, and targeted manual annotation; (2) enhanced perception and grounding capabilities, facilitating fine-grained multimodal alignment for UI element referencing, grounding, and screen comprehension; (3) a comprehensive and unified action space, encompassing both fundamental UI operations and complex interactive intents to support human-agent interactions; (4) planning-oriented reasoning mechanisms that enable the model to decompose complex user instructions into sequential actions with explicit intermediate meta-paln reasoning; (5) an iterative two-stage training procedure, combining large-scale continue pre-training on 7.8M samples with reinforcement fine-tuning utilizing a spatially enhanced composite reward and dual filtering strategy; and (6) competitive performance on both the proprietary Magic-RICH benchmark and over a dozen public benchmarks, achieving superior performance across GUI perception and agent tasks, while demonstrating robust generalization and real-world deployment potential in practical mobile GUI scenarios, as detailed in Figure 1.
♻ ☆ A Study of Gender Classification Techniques Based on Iris Images: A Deep Survey and Analysis
Gender classification is attractive in a range of applications, including surveillance and monitoring, corporate profiling, and human-computer interaction. Individuals' identities may be gleaned from information about their gender, which is a kind of soft biometric. Over the years, several methods for determining a person's gender have been devised. Some of the most well-known ones are based on physical characteristics like face, fingerprint, palmprint, DNA, ears, gait, and iris. On the other hand, facial features account for the vast majority of gender classification methods. Also, the iris is a significant biometric trait because the iris, according to research, remains basically constant during an individual's life. Besides that, the iris is externally visible and is non-invasive to the user, which is important for practical applications. Furthermore, there are already high-quality methods for segmenting and encoding iris images, and the current methods facilitate selecting and extracting attribute vectors from iris textures. This study discusses several approaches to determining gender. The previous works of literature are briefly reviewed. Additionally, there are a variety of methodologies for different steps of gender classification. This study provides researchers with knowledge and analysis of the existing gender classification approaches. Also, it will assist researchers who are interested in this specific area, as well as highlight the gaps and challenges in the field, and finally provide suggestions and future paths for improvement.
comment: 13 Pages, 8 Figures, 1 Table
♻ ☆ Topic Over Source: The Key to Effective Data Mixing for Language Models Pre-training
The performance of large language models (LLMs) is significantly affected by the quality and composition of their pre-training data, which is inherently diverse, spanning various languages, sources, and topics. Effectively integrating these heterogeneous data groups is crucial for optimizing LLM performance. Previous research has predominantly concentrated on source-based data mixing, often neglecting the nuanced topic-level characteristics of the data. To address this gap, we propose a topic-based data mixing strategy that utilizes detailed topic labels generated through a multi-stage process combining unsupervised clustering, LLM-based summarization, and supervised classifier training. With this strategy, we conduct the first comprehensive comparison of topic-based versus source-based partitioning across multiple mixing strategies. We demonstrate that language models pretrained on data mixed by topics consistently outperform those trained on data mixed by sources across multiple methods including RegMix, DoReMi,temperature-based sampling, and a manual mixing method based on downstream task performance. Our theoretical analysis reveals that topic-based data achieves significantly lower validation loss compared to source-based approaches, creating a better optimization landscape for model training. We will make our code, annotated datasets, and topic classification models publicly available to facilitate further research.
♻ ☆ Learning to Initialize Trajectory Optimization for Vision-Based Autonomous Flight in Unknown Environments
Autonomous flight in unknown environments requires precise spatial and temporal trajectory planning, often involving computationally expensive nonconvex optimization prone to local optima. To overcome these challenges, we present the Neural-Enhanced Trajectory Planner (NEO-Planner), a novel approach that leverages a Neural Network (NN) Planner to provide informed initial values for trajectory optimization. The NN-Planner is trained on a dataset generated by an expert planner using batch sampling, capturing multimodal trajectory solutions. It learns to predict spatial and temporal parameters for trajectories directly from raw sensor observations. NEO-Planner starts optimization from these predictions, accelerating computation speed while maintaining explainability. Furthermore, we introduce a robust online replanning framework that accommodates planning latency for smooth trajectory tracking. Extensive simulations demonstrate that NEO-Planner reduces optimization iterations by 20%, leading to a 26% decrease in computation time compared with pure optimization-based methods. It maintains trajectory quality comparable to baseline approaches and generalizes well to unseen environments. Real-world experiments validate its effectiveness for autonomous drone navigation in cluttered, unknown environments.
comment: Accepted to IROS 2025. Source code available
♻ ☆ Evaluating and Designing Sparse Autoencoders by Approximating Quasi-Orthogonality
Sparse autoencoders (SAEs) are widely used in mechanistic interpretability research for large language models; however, the state-of-the-art method of using $k$-sparse autoencoders lacks a theoretical grounding for selecting the hyperparameter $k$ that represents the number of nonzero activations, often denoted by $\ell_0$. In this paper, we reveal a theoretical link that the $\ell_2$-norm of the sparse feature vector can be approximated with the $\ell_2$-norm of the dense vector with a closed-form error, which allows sparse autoencoders to be trained without the need to manually determine $\ell_0$. Specifically, we validate two applications of our theoretical findings. First, we introduce a new methodology that can assess the feature activations of pre-trained SAEs by computing the theoretically expected value from the input embedding, which has been overlooked by existing SAE evaluation methods and loss functions. Second, we introduce a novel activation function, top-AFA, which builds upon our formulation of approximate feature activation (AFA). This function enables top-$k$ style activation without requiring a constant hyperparameter $k$ to be tuned, dynamically determining the number of activated features for each input. By training SAEs on three intermediate layers to reconstruct GPT2 hidden embeddings for over 80 million tokens from the OpenWebText dataset, we demonstrate the empirical merits of this approach and compare it with current state-of-the-art $k$-sparse autoencoders. Our code is available at: https://github.com/SewoongLee/top-afa-sae.
♻ ☆ Advancing Welding Defect Detection in Maritime Operations via Adapt-WeldNet and Defect Detection Interpretability Analysis
Weld defect detection is crucial for ensuring the safety and reliability of piping systems in the oil and gas industry, especially in challenging marine and offshore environments. Traditional non-destructive testing (NDT) methods often fail to detect subtle or internal defects, leading to potential failures and costly downtime. Furthermore, existing neural network-based approaches for defect classification frequently rely on arbitrarily selected pretrained architectures and lack interpretability, raising safety concerns for deployment. To address these challenges, this paper introduces ``Adapt-WeldNet", an adaptive framework for welding defect detection that systematically evaluates various pre-trained architectures, transfer learning strategies, and adaptive optimizers to identify the best-performing model and hyperparameters, optimizing defect detection and providing actionable insights. Additionally, a novel Defect Detection Interpretability Analysis (DDIA) framework is proposed to enhance system transparency. DDIA employs Explainable AI (XAI) techniques, such as Grad-CAM and LIME, alongside domain-specific evaluations validated by certified ASNT NDE Level II professionals. Incorporating a Human-in-the-Loop (HITL) approach and aligning with the principles of Trustworthy AI, DDIA ensures the reliability, fairness, and accountability of the defect detection system, fostering confidence in automated decisions through expert validation. By improving both performance and interpretability, this work enhances trust, safety, and reliability in welding defect detection systems, supporting critical operations in offshore and marine environments.
♻ ☆ A Markov Random Field model for Hypergraph-based Machine Learning
Understanding the data-generating process is essential for building machine learning models that generalise well while ensuring robustness and interpretability. This paper addresses the fundamental challenge of modelling the data generation processes on hypergraphs and explores how such models can inform the design of machine learning algorithms for hypergraph data. The key to our approach is the development of a hypergraph Markov random field that models the joint distribution of the node features and hyperedge features in a hypergraph through a multivariate Gaussian distribution whose covariance matrix is uniquely determined by the hypergraph structure. The proposed data-generating process provides a valuable inductive bias for various hypergraph machine learning tasks, thus enhancing the algorithm design. In this paper, we focus on two representative downstream tasks: structure inference and node classification. Accordingly, we introduce two novel frameworks: 1) an original hypergraph structure inference framework named HGSI, and 2) a novel learning framework entitled Hypergraph-MLP for node classification on hypergraphs. Empirical evaluation of the proposed frameworks demonstrates that: 1) HGSI outperforms existing hypergraph structure inference methods on both synthetic and real-world data; and 2) Hypergraph-MLP outperforms baselines in six hypergraph node classification benchmarks, at the same time promoting runtime efficiency and robustness against structural perturbations during inference.
♻ ☆ iTFKAN: Interpretable Time Series Forecasting with Kolmogorov-Arnold Network
As time evolves, data within specific domains exhibit predictability that motivates time series forecasting to predict future trends from historical data. However, current deep forecasting methods can achieve promising performance but generally lack interpretability, hindering trustworthiness and practical deployment in safety-critical applications such as auto-driving and healthcare. In this paper, we propose a novel interpretable model, iTFKAN, for credible time series forecasting. iTFKAN enables further exploration of model decision rationales and underlying data patterns due to its interpretability achieved through model symbolization. Besides, iTFKAN develops two strategies, prior knowledge injection, and time-frequency synergy learning, to effectively guide model learning under complex intertwined time series data. Extensive experimental results demonstrated that iTFKAN can achieve promising forecasting performance while simultaneously possessing high interpretive capabilities.
comment: Currently under review at IEEE Transactions on Knowledge and Data Engineering
♻ ☆ Contemplative Artificial Intelligence
As artificial intelligence (AI) improves, traditional alignment strategies may falter in the face of unpredictable self-improvement, hidden subgoals, and the sheer complexity of intelligent systems. Inspired by contemplative wisdom traditions, we show how four axiomatic principles can instil a resilient Wise World Model in AI systems. First, mindfulness enables self-monitoring and recalibration of emergent subgoals. Second, emptiness forestalls dogmatic goal fixation and relaxes rigid priors. Third, non-duality dissolves adversarial self-other boundaries. Fourth, boundless care motivates the universal reduction of suffering. We find that prompting AI to reflect on these principles improves performance on the AILuminate Benchmark (d=.96) and boosts cooperation and joint-reward on the Prisoner's Dilemma task (d=7+). We offer detailed implementation strategies at the level of architectures, constitutions, and reinforcement on chain-of-thought. For future systems, active inference may offer the self-organizing and dynamic coupling capabilities needed to enact Contemplative AI in embodied agents.
♻ ☆ Are Large Language Models Robust in Understanding Code Against Semantics-Preserving Mutations?
Understanding the reasoning and robustness of Large Language Models (LLMs) is critical for their reliable use in programming tasks. While recent studies have assessed LLMs' ability to predict program outputs, most focus solely on the accuracy of those predictions, without evaluating the reasoning behind them. Moreover, it has been observed on mathematical reasoning tasks that LLMs can arrive at correct answers through flawed logic, raising concerns about similar issues in code understanding. In this work, we evaluate whether state-of-the-art LLMs with up to 8B parameters can reason about Python programs or are simply guessing. We apply five semantics-preserving code mutations: renaming variables, mirroring comparison expressions, swapping if-else branches, converting for loops to while, and loop unrolling. These mutations maintain program semantics while altering its syntax. We evaluated six LLMs and performed a human expert analysis using LiveCodeBench to assess whether the correct predictions are based on sound reasoning. We also evaluated prediction stability across different code mutations on LiveCodeBench and CruxEval. Our findings show that LLMs trained for code produce correct predictions based on flawed reasoning between 10% and 50% of cases. Furthermore, LLMs often change predictions in response to our code mutations, indicating they do not yet exhibit stable, semantically grounded reasoning.
comment: 11 pages, 5 tables, 1 figure
♻ ☆ Solving Copyright Infringement on Short Video Platforms: Novel Datasets and an Audio Restoration Deep Learning Pipeline IJCAI 2025
Short video platforms like YouTube Shorts and TikTok face significant copyright compliance challenges, as infringers frequently embed arbitrary background music (BGM) to obscure original soundtracks (OST) and evade content originality detection. To tackle this issue, we propose a novel pipeline that integrates Music Source Separation (MSS) and cross-modal video-music retrieval (CMVMR). Our approach effectively separates arbitrary BGM from the original OST, enabling the restoration of authentic video audio tracks. To support this work, we introduce two domain-specific datasets: OASD-20K for audio separation and OSVAR-160 for pipeline evaluation. OASD-20K contains 20,000 audio clips featuring mixed BGM and OST pairs, while OSVAR-160 is a unique benchmark dataset comprising 1,121 video and mixed-audio pairs, specifically designed for short video restoration tasks. Experimental results demonstrate that our pipeline not only removes arbitrary BGM with high accuracy but also restores OSTs, ensuring content integrity. This approach provides an ethical and scalable solution to copyright challenges in user-generated content on short video platforms.
comment: Accepted for publication at IJCAI 2025. 9 pages, 4 tables, 3 figures
♻ ☆ ACTIVA: Amortized Causal Effect Estimation via Transformer-based Variational Autoencoder
Predicting the distribution of outcomes under hypothetical interventions is crucial across healthcare, economics, and policy-making. However, existing methods often require restrictive assumptions, and are typically limited by the lack of amortization across problem instances. We propose ACTIVA, a transformer-based conditional variational autoencoder (VAE) architecture for amortized causal inference, which estimates interventional distributions directly from observational data without. ACTIVA learns a latent representation conditioned on observational inputs and intervention queries, enabling zero-shot inference by amortizing causal knowledge from diverse training scenarios. We provide theoretical insights showing that ACTIVA predicts interventional distributions as mixtures over observationally equivalent causal models. Empirical evaluations on synthetic and semi-synthetic datasets confirm the effectiveness of our amortized approach and highlight promising directions for future real-world applications.
♻ ☆ Survey on the Evaluation of Generative Models in Music
Research on generative systems in music has seen considerable attention and growth in recent years. A variety of attempts have been made to systematically evaluate such systems. We present an interdisciplinary review of the common evaluation targets, methodologies, and metrics for the evaluation of both system output and model use, covering subjective and objective approaches, qualitative and quantitative approaches, as well as empirical and computational methods. We examine the benefits and limitations of these approaches from a musicological, an engineering, and an HCI perspective.
comment: Minor Revision submitted to ACM CSUR on 08-Aug-2025, original manuscript submitted on 26-Jun-2024
♻ ☆ LeakAgent: RL-based Red-teaming Agent for LLM Privacy Leakage
Recent studies have discovered that large language models (LLM) may be ``fooled'' to output private information, including training data, system prompts, and personally identifiable information, under carefully crafted adversarial prompts. Existing red-teaming approaches for privacy leakage either rely on manual efforts or focus solely on system prompt extraction, making them ineffective for severe risks of training data leakage. We propose LeakAgent, a novel black-box red-teaming framework for LLM privacy leakage. Our framework trains an open-source LLM through reinforcement learning as the attack agent to generate adversarial prompts for both training data extraction and system prompt extraction. To achieve this, we propose a novel reward function to provide effective and fine-grained rewards and design novel mechanisms to balance exploration and exploitation during learning and enhance the diversity of adversarial prompts. Through extensive evaluations, we first show that LeakAgent significantly outperforms existing rule-based approaches in training data extraction and automated methods in system prompt leakage. We also demonstrate the effectiveness of LeakAgent in extracting system prompts from real-world applications in OpenAI's GPT Store. We further demonstrate LeakAgent's effectiveness in evading the existing guardrail defense and its helpfulness in enabling better safety alignment. Finally, we validate our customized designs through a detailed ablation study. We release our code here https://github.com/rucnyz/LeakAgent.
comment: Accepted by COLM 2025
♻ ☆ Movement-Prediction-Adjusted Naive Forecast
In financial time series forecasting, surpassing the naive forecast is challenging due to the randomness in the data. To address this challenge, this study proposes a novel forecast combination method, the movement-prediction-adjusted naive forecast (MPANF), which is designed to improve point forecasts beyond the naive baseline. Specifically, MPANF integrates two forecasting components: a naive forecast and a movement prediction. The final forecast is generated by adjusting the naive forecast with a movement prediction term, the weight of which is the product of two in-sample quantities: one is a coefficient determined from the movement prediction accuracy and the other is the mean absolute increment. The performance of MPANF was evaluated on eight financial time series via standard metrics, including the RMSE, MAE, MAPE, and sMAPE. Under modest movement prediction accuracy slightly above 0.55, MPANF generally outperforms common benchmarks such as the naive forecast, naive forecast with drift, integrated moving average of order (1,1) (IMA(1,1)), and linear regression. These findings suggest that MPANF can serve as an effective second-stage method when reliable movement predictions are available.
♻ ☆ StepFun-Prover Preview: Let's Think and Verify Step by Step
We present StepFun-Prover Preview, a large language model designed for formal theorem proving through tool-integrated reasoning. Using a reinforcement learning pipeline that incorporates tool-based interactions, StepFun-Prover can achieve strong performance in generating Lean 4 proofs with minimal sampling. Our approach enables the model to emulate human-like problem-solving strategies by iteratively refining proofs based on real-time environment feedback. On the miniF2F-test benchmark, StepFun-Prover achieves a pass@1 success rate of $70.0\%$. Beyond advancing benchmark performance, we introduce an end-to-end training framework for developing tool-integrated reasoning models, offering a promising direction for automated theorem proving and Math AI assistant.
comment: 25 pages, 4 figures. The experimental results of StepFun-Prover-Preview-7B are updated. The information of corresponding author and some reference are added
♻ ☆ Reshaping MOFs text mining with a dynamic multi-agents framework of large language model
Accurately identifying the synthesis conditions of metal-organic frameworks (MOFs) is essential for guiding experimental design, yet remains challenging because relevant information in the literature is often scattered, inconsistent, and difficult to interpret. We present MOFh6, a large language model driven system that reads raw articles or crystal codes and converts them into standardized synthesis tables. It links related descriptions across paragraphs, unifies ligand abbreviations with full names, and outputs structured parameters ready for use. MOFh6 achieved 99% extraction accuracy, resolved 94.1% of abbreviation cases across five major publishers, and maintained a precision of 0.93 +/- 0.01. Processing a full text takes 9.6 s, locating synthesis descriptions 36 s, with 100 papers processed for USD 4.24. By replacing static database lookups with real-time extraction, MOFh6 reshapes MOF synthesis research, accelerating the conversion of literature knowledge into practical synthesis protocols and enabling scalable, data-driven materials discovery.
♻ ☆ Probabilistic Foundations for Metacognition via Hybrid-AI AAAI
Metacognition is the concept of reasoning about an agent's own internal processes, and it has recently received renewed attention with respect to artificial intelligence (AI) and, more specifically, machine learning systems. This paper reviews a hybrid-AI approach known as "error detecting and correcting rules" (EDCR) that allows for the learning of rules to correct perceptual (e.g., neural) models. Additionally, we introduce a probabilistic framework that adds rigor to prior empirical studies, and we use this framework to prove results on necessary and sufficient conditions for metacognitive improvement, as well as limits to the approach. A set of future
comment: Accepted to AAAI-MAKE 2025
♻ ☆ The Docking Game: Loop Self-Play for Fast, Dynamic, and Accurate Prediction of Flexible Protein-Ligand Binding
Molecular docking is a crucial aspect of drug discovery, as it predicts the binding interactions between small-molecule ligands and protein pockets. However, current multi-task learning models for docking often show inferior performance in ligand docking compared to protein pocket docking. This disparity arises largely due to the distinct structural complexities of ligands and proteins. To address this issue, we propose a novel game-theoretic framework that models the protein-ligand interaction as a two-player game called the Docking Game, with the ligand docking module acting as the ligand player and the protein pocket docking module as the protein player. To solve this game, we develop a novel Loop Self-Play (LoopPlay) algorithm, which alternately trains these players through a two-level loop. In the outer loop, the players exchange predicted poses, allowing each to incorporate the other's structural predictions, which fosters mutual adaptation over multiple iterations. In the inner loop, each player dynamically refines its predictions by incorporating its own predicted ligand or pocket poses back into its model. We theoretically show the convergence of LoopPlay, ensuring stable optimization. Extensive experiments conducted on public benchmark datasets demonstrate that LoopPlay achieves approximately a 10\% improvement in predicting accurate binding modes compared to previous state-of-the-art methods. This highlights its potential to enhance the accuracy of molecular docking in drug discovery.
comment: 21 pages, 9 figures
♻ ☆ From research to clinic: Accelerating the translation of clinical decision support systems by making synthetic data interoperable
The translation of clinical decision support system (CDSS) tools from research settings into the clinic is often non-existent, partly because the focus tends to be on training machine learning models rather than tool development using the model for inference. To develop a CDSS tool that can be deployed in the clinical workflow, there is a need to integrate, validate, and test the tool on the Electronic Health Record (EHR) systems that store and manage patient data. Not surprisingly, it is rarely possible for researchers to get the necessary access to an EHR system due to legal restrictions pertaining to the protection of data privacy in patient records. We propose an architecture for using synthetic data in EHR systems to make CDSS tool development and testing much easier. In this study, the architecture is implemented in the SyntHIR system. SyntHIR has three noteworthy architectural features enabling (i) integration with synthetic data generators, (ii) data interoperability, and (iii) tool transportability. The translational value of this approach was evaluated through two primary steps. First, a working proof-of-concept of a machine learning-based CDSS tool was developed using data from patient registries in Norway. Second, the transportability of this CDSS tool was demonstrated by successfully deploying it in Norway's largest EHR system vendor (DIPS). These findings showcase the value of the SyntHIR architecture as a useful reference model to accelerate the translation of "bench to bedside" research of CDSS tools.
♻ ☆ CAST: Cross Attention based multimodal fusion of Structure and Text for materials property prediction
Recent advancements in graph neural networks (GNNs) have significantly enhanced the prediction of material properties by modeling crystal structures as graphs. However, GNNs often struggle to capture global structural characteristics, such as crystal systems, limiting their predictive performance. To overcome this issue, we propose CAST, a cross-attention-based multimodal model that integrates graph representations with textual descriptions of materials, effectively preserving critical structural and compositional information. Unlike previous approaches, such as CrysMMNet and MultiMat, which rely on aggregated material-level embeddings, CAST leverages cross-attention mechanisms to combine fine-grained graph node-level and text token-level features. Additionally, we introduce a masked node prediction pretraining strategy that further enhances the alignment between node and text embeddings. Our experimental results demonstrate that CAST outperforms existing baseline models across four key material properties-formation energy, band gap, bulk modulus, and shear modulus-with average relative MAE improvements ranging from 10.2% to 35.7%. Analysis of attention maps confirms the importance of pretraining in effectively aligning multimodal representations. This study underscores the potential of multimodal learning frameworks for developing more accurate and globally informed predictive models in materials science.
comment: 11 pages, 4 figures
♻ ☆ SuperRL: Reinforcement Learning with Supervision to Boost Language Model Reasoning
Large language models are increasingly used for complex reasoning tasks where high-quality offline data such as expert-annotated solutions and distilled reasoning traces are often available. However, in environments with sparse rewards, reinforcement learning struggles to sample successful trajectories, leading to inefficient learning. At the same time, these offline trajectories that represent correct reasoning paths are not utilized by standard on-policy reinforcement learning methods. We introduce SuperRL, a unified training framework that adaptively alternates between RL and SFT. Whenever every rollout for a given instance receives zero reward, indicating the absence of a learning signal, SuperRL falls back to SFT on the curated offline data. Extensive experiments across diverse reasoning benchmarks show that SuperRL surpasses vanilla RL by delivering higher sample efficiency, stronger generalization, and improved robustness under sparse rewards.
♻ ☆ Fusing Cross-Domain Knowledge from Multimodal Data to Solve Problems in the Physical World
The proliferation of artificial intelligence has enabled a diversity of applications that bridge the gap between digital and physical worlds. As physical environments are too complex to model through a single information acquisition approach, it is crucial to fuse multimodal data generated by different sources, such as sensors, devices, systems, and people, to solve a problem in the real world. Unfortunately, it is neither applicable nor sustainable to deploy new resources to collect original data from scratch for every problem. Thus, when data is inadequate in the domain of problem, it is vital to fuse knowledge from multimodal data that is already available in other domains. We call this cross-domain knowledge fusion. Existing research focus on fusing multimodal data in a single domain, supposing the knowledge from different datasets is intrinsically aligned; however, this assumption may not hold in the scenarios of cross-domain knowledge fusion. In this paper, we formally define the cross-domain multimodal data fusion problem, discussing its unique challenges, differences and advantages beyond data fusion in a single domain. We propose a four-layer framework, consisting of Domains, Links, Models and Data layers, answering three key questions:"what to fuse", "why can be fused", and "how to fuse". The Domains Layer selects relevant data from different domains for a given problem. The Links Layer reveals the philosophy of knowledge alignment beyond specific model structures. The Models Layer provides two knowledge fusion paradigms based on the fundamental mechanisms for processing data. The Data Layer turns data of different structures, resolutions, scales and distributions into a consistent representation that can be fed into an AI model. With this framework, we can design solutions that fuse cross-domain multimodal data effectively for solving real-world problems.
♻ ☆ CUB: Benchmarking Context Utilisation Techniques for Language Models
Incorporating external knowledge is crucial for knowledge-intensive tasks, such as question answering and fact checking. However, language models (LMs) may ignore relevant information that contradicts outdated parametric memory or be distracted by irrelevant contexts. While many context utilisation manipulation techniques (CMTs) have recently been proposed to alleviate these issues, few have seen systematic comparison. In this paper, we develop CUB (Context Utilisation Benchmark) - the first comprehensive benchmark designed to help practitioners within retrieval-augmented generation (RAG) diagnose CMTs under different context conditions. With this benchmark, we conduct the most extensive evaluation to date of seven state-of-the-art methods, representative of the main categories of CMTs, across three diverse datasets and tasks, applied to nine LMs. Our results reveal that most existing CMTs struggle to handle the full spectrum of context types encountered in real-world retrieval-augmented scenarios. We also find that many CMTs display inflated performance on simple synthesised datasets, compared to more realistic datasets with naturally occurring samples. Our findings expose critical gaps in current CMT evaluation practices and demonstrate the need for holistic testing and the development of CMTs that can robustly handle multiple context types.
comment: 28 pages
♻ ☆ Time-Prompt: Integrated Heterogeneous Prompts for Unlocking LLMs in Time Series Forecasting
Time series forecasting aims to model temporal dependencies among variables for future state inference, holding significant importance and widespread applications in real-world scenarios. Although deep learning-based methods have achieved remarkable progress, they still exhibit suboptimal performance in long-term forecasting and data-scarce scenarios. Recent research demonstrates that large language models (LLMs) achieve promising performance in time series forecasting. However, we find existing LLM-based methods still have shortcomings: (1) the absence of a unified paradigm for textual prompt formulation and (2) the neglect of modality discrepancies between textual prompts and time series. To address this, we propose LLM-Prompt, an LLM-based time series forecasting framework integrating multi-prompt information and cross-modal semantic alignment. Specifically, we first construct a unified textual prompt paradigm containing learnable soft prompts and textualized hard prompts. Second, to enhance LLMs' comprehensive understanding of the forecasting task, we design a semantic space embedding and cross-modal alignment module to achieve cross-modal fusion of temporal and textual information. Finally, the transformed time series from the LLMs are projected to obtain the forecasts. Comprehensive evaluations on 6 public datasets and 3 carbon emission datasets demonstrate that LLM-Prompt is a powerful framework for time series forecasting.
♻ ☆ CodeARC: Benchmarking Reasoning Capabilities of LLM Agents for Inductive Program Synthesis
Inductive program synthesis, or programming by example, requires synthesizing functions from input-output examples that generalize to unseen inputs. While large language model agents have shown promise in programming tasks guided by natural language, their ability to perform inductive program synthesis is underexplored. Existing evaluation protocols rely on static sets of examples and held-out tests, offering no feedback when synthesized functions are incorrect and failing to reflect real-world scenarios such as reverse engineering. We propose CodeARC, the Code Abstraction and Reasoning Challenge, a new evaluation framework where agents interact with a hidden target function by querying it with new inputs, synthesizing candidate functions, and iteratively refining their solutions using a differential testing oracle. This interactive setting encourages agents to perform function calls and self-correction based on feedback. We construct the first large-scale benchmark for general-purpose inductive program synthesis, featuring 1114 functions. Among 18 models evaluated, o3-mini performs best with a success rate of 52.7%, highlighting the difficulty of this task. Fine-tuning LLaMA-3.1-8B-Instruct on curated synthesis traces yields up to a 31% relative performance gain. CodeARC provides a more realistic and challenging testbed for evaluating LLM-based program synthesis and inductive reasoning. Our code, data, and models are publicly available at https://github.com/Anjiang-Wei/CodeARC
♻ ☆ Hypothesis-Driven Theory-of-Mind Reasoning for Large Language Models
Existing LLM reasoning methods have shown impressive capabilities across various tasks, such as solving math and coding problems. However, applying these methods to scenarios without ground-truth answers or rule-based verification methods - such as tracking the mental states of an agent - remains challenging. Inspired by the sequential Monte Carlo algorithm, we introduce thought-tracing, an inference-time reasoning algorithm designed to trace the mental states of specific agents by generating hypotheses and weighting them based on observations without relying on ground-truth solutions to questions in datasets. Our algorithm is modeled after the Bayesian theory-of-mind framework, using LLMs to approximate probabilistic inference over agents' evolving mental states based on their perceptions and actions. We evaluate thought-tracing on diverse theory-of-mind benchmarks, demonstrating significant performance improvements compared to baseline LLMs. Our experiments also reveal interesting behaviors of the recent reasoning models - e.g., o3 and R1 - on theory-of-mind, highlighting the difference of social reasoning compared to other domains.
comment: COLM 2025. For code and data, see https://hyunw.kim/thought-tracing
♻ ☆ Systemizing Multiplicity: The Curious Case of Arbitrariness in Machine Learning AI
Algorithmic modeling relies on limited information in data to extrapolate outcomes for unseen scenarios, often embedding an element of arbitrariness in its decisions. A perspective on this arbitrariness that has recently gained interest is multiplicity-the study of arbitrariness across a set of "good models", i.e., those likely to be deployed in practice. In this work, we systemize the literature on multiplicity by: (a) formalizing the terminology around model design choices and their contribution to arbitrariness, (b) expanding the definition of multiplicity to incorporate underrepresented forms beyond just predictions and explanations, (c) clarifying the distinction between multiplicity and other lenses of arbitrariness, i.e., uncertainty and variance, and (d) distilling the benefits and potential risks of multiplicity into overarching trends, situating it within the broader landscape of responsible AI. We conclude by identifying open research questions and highlighting emerging trends in this young but rapidly growing area of research.
comment: To appear at AIES 2025
♻ ☆ LLM-Meta-SR: In-Context Learning for Evolving Selection Operators in Symbolic Regression
Large language models (LLMs) have revolutionized algorithm development, yet their application in symbolic regression, where algorithms automatically discover symbolic expressions from data, remains constrained and is typically designed manually by human experts. In this paper, we propose a meta learning framework that enables LLMs to automatically design selection operators for evolutionary symbolic regression algorithms. We first identify two key limitations in existing LLM-based algorithm evolution techniques: a lack of semantic guidance and code bloat. The absence of semantic awareness can lead to ineffective exchange of useful code components, and bloat results in unnecessarily complex components, both of which can reduce the interpretability of the designed algorithm or hinder evolutionary learning progress. To address these issues, we enhance the LLM-based evolution framework for meta symbolic regression with two key innovations: a complementary, semantics-aware selection operator and bloat control. Additionally, we embed domain knowledge into the prompt, enabling the LLM to generate more effective and contextually relevant selection operators. Our experimental results on symbolic regression benchmarks show that LLMs can devise selection operators that outperform nine expert-designed baselines, achieving state-of-the-art performance. Moreover, the evolved operator can further improve the state-of-the-art symbolic regression algorithm, achieving the best performance among 26 symbolic regression and machine learning algorithms across 116 regression datasets. This demonstrates that LLMs can exceed expert-level algorithm design for symbolic regression.
♻ ☆ CAMEF: Causal-Augmented Multi-Modality Event-Driven Financial Forecasting by Integrating Time Series Patterns and Salient Macroeconomic Announcements SIGKDD 2025
Accurately forecasting the impact of macroeconomic events is critical for investors and policymakers. Salient events like monetary policy decisions and employment reports often trigger market movements by shaping expectations of economic growth and risk, thereby establishing causal relationships between events and market behavior. Existing forecasting methods typically focus either on textual analysis or time-series modeling, but fail to capture the multi-modal nature of financial markets and the causal relationship between events and price movements. To address these gaps, we propose CAMEF (Causal-Augmented Multi-Modality Event-Driven Financial Forecasting), a multi-modality framework that effectively integrates textual and time-series data with a causal learning mechanism and an LLM-based counterfactual event augmentation technique for causal-enhanced financial forecasting. Our contributions include: (1) a multi-modal framework that captures causal relationships between policy texts and historical price data; (2) a new financial dataset with six types of macroeconomic releases from 2008 to April 2024, and high-frequency real trading data for five key U.S. financial assets; and (3) an LLM-based counterfactual event augmentation strategy. We compare CAMEF to state-of-the-art transformer-based time-series and multi-modal baselines, and perform ablation studies to validate the effectiveness of the causal learning mechanism and event types.
comment: Accepted in SIGKDD 2025
♻ ☆ The Alternative Annotator Test for LLM-as-a-Judge: How to Statistically Justify Replacing Human Annotators with LLMs
The "LLM-as-an-annotator" and "LLM-as-a-judge" paradigms employ Large Language Models (LLMs) as annotators, judges, and evaluators in tasks traditionally performed by humans. LLM annotations are widely used, not only in NLP research but also in fields like medicine, psychology, and social science. Despite their role in shaping study results and insights, there is no standard or rigorous procedure to determine whether LLMs can replace human annotators. In this paper, we propose a novel statistical procedure, the Alternative Annotator Test (alt-test), that requires only a modest subset of annotated examples to justify using LLM annotations. Additionally, we introduce a versatile and interpretable measure for comparing LLM annotators and judges. To demonstrate our procedure, we curated a diverse collection of ten datasets, consisting of language and vision-language tasks, and conducted experiments with six LLMs and four prompting techniques. Our results show that LLMs can sometimes replace humans with closed-source LLMs (such as GPT-4o), outperforming the open-source LLMs we examine, and that prompting techniques yield judges of varying quality. We hope this study encourages more rigorous and reliable practices.
♻ ☆ Entropy Causal Graphs for Multivariate Time Series Anomaly Detection
Many multivariate time series anomaly detection frameworks have been proposed and widely applied. However, most of these frameworks do not consider intrinsic relationships between variables in multivariate time series data, thus ignoring the causal relationship among variables and degrading anomaly detection performance. This work proposes a novel framework called CGAD, an entropy Causal Graph for multivariate time series Anomaly Detection. CGAD utilizes transfer entropy to construct graph structures that unveil the underlying causal relationships among time series data. Weighted graph convolutional networks combined with causal convolutions are employed to model both the causal graph structures and the temporal patterns within multivariate time series data. Furthermore, CGAD applies anomaly scoring, leveraging median absolute deviation-based normalization to improve the robustness of the anomaly identification process. Extensive experiments demonstrate that CGAD outperforms state-of-the-art methods on real-world datasets with a 9% average improvement in terms of three different multivariate time series anomaly detection metrics.
comment: 25 pages, 8 figures
♻ ☆ Quality over Quantity: An Effective Large-Scale Data Reduction Strategy Based on Pointwise V-Information
In order to increase the effectiveness of model training, data reduction is essential to data-centric Artificial Intelligence (AI). It achieves this by locating the most instructive examples in massive datasets. To increase data quality and training efficiency, the main difficulty is choosing the best examples rather than the complete datasets. In this paper, we propose an effective data reduction strategy based on Pointwise V-Information (PVI). To enable a static method, we first use PVI to quantify instance difficulty and remove instances with low difficulty. Experiments show that classifier performance is maintained with only a 0.0001% to 0.76% decline in accuracy when 10%-30% of the data is removed. Second, we train the classifiers using a progressive learning strategy on examples sorted by increasing PVI, accelerating convergence and achieving a 0.8% accuracy gain over conventional training. Our findings imply that training a classifier on the chosen optimal subset may improve model performance and increase training efficiency when combined with an efficient data reduction strategy. Furthermore, we have adapted the PVI framework, which was previously limited to English datasets, to a variety of Chinese Natural Language Processing (NLP) tasks and base models, yielding insightful results for faster training and cross-lingual data reduction.
♻ ☆ AVA-Bench: Atomic Visual Ability Benchmark for Vision Foundation Models
The rise of vision foundation models (VFMs) calls for systematic evaluation. A common approach pairs VFMs with large language models (LLMs) as general-purpose heads, followed by evaluation on broad Visual Question Answering (VQA) benchmarks. However, this protocol has two key blind spots: (i) the instruction tuning data may not align with VQA test distributions, meaning a wrong prediction can stem from such data mismatch rather than a VFM' visual shortcomings; (ii) VQA benchmarks often require multiple visual abilities, making it hard to tell whether errors stem from lacking all required abilities or just a single critical one. To address these gaps, we introduce AVA-Bench, the first benchmark that explicitly disentangles 14 Atomic Visual Abilities (AVAs) -- foundational skills like localization, depth estimation, and spatial understanding that collectively support complex visual reasoning tasks. By decoupling AVAs and matching training and test distributions within each, AVA-Bench pinpoints exactly where a VFM excels or falters. Applying AVA-Bench to leading VFMs thus reveals distinctive "ability fingerprints," turning VFM selection from educated guesswork into principled engineering. Notably, we find that a 0.5B LLM yields similar VFM rankings as a 7B LLM while cutting GPU hours by 8x, enabling more efficient evaluation. By offering a comprehensive and transparent benchmark, we hope AVA-Bench lays the foundation for the next generation of VFMs.
comment: First two authors contribute equally
♻ ☆ FIT-Print: Towards False-claim-resistant Model Ownership Verification via Targeted Fingerprint
Model fingerprinting is a widely adopted approach to safeguard the intellectual property rights of open-source models by preventing their unauthorized reuse. It is promising and convenient since it does not necessitate modifying the protected model. In this paper, we revisit existing fingerprinting methods and reveal that they are vulnerable to false claim attacks where adversaries falsely assert ownership of any third-party model. We demonstrate that this vulnerability mostly stems from their untargeted nature, where they generally compare the outputs of given samples on different models instead of the similarities to specific references. Motivated by these findings, we propose a targeted fingerprinting paradigm (i.e., FIT-Print) to counteract false claim attacks. Specifically, FIT-Print transforms the fingerprint into a targeted signature via optimization. Building on the principles of FIT-Print, we develop bit-wise and list-wise black-box model fingerprinting methods, i.e., FIT-ModelDiff and FIT-LIME, which exploit the distance between model outputs and the feature attribution of specific samples as the fingerprint, respectively. Extensive experiments on benchmark models and datasets verify the effectiveness, conferrability, and resistance to false claim attacks of our FIT-Print.
♻ ☆ A dataset of primary nasopharyngeal carcinoma MRI with multi-modalities segmentation
Multi-modality magnetic resonance imaging(MRI) data facilitate the early diagnosis, tumor segmentation, and disease staging in the management of nasopharyngeal carcinoma (NPC). The lack of publicly available, comprehensive datasets limits advancements in diagnosis, treatment planning, and the development of machine learning algorithms for NPC. Addressing this critical need, we introduce the first comprehensive NPC MRI dataset, encompassing MR axial imaging of 277 primary NPC patients. This dataset includes T1-weighted, T2-weighted, and contrast-enhanced T1-weighted sequences, totaling 831 scans. In addition to the corresponding clinical data, manually annotated and labeled segmentations by experienced radiologists offer high-quality data resources from untreated primary NPC.
comment: This preprint has been submitted to and accepted in principle for publication in Scientific Data without significant changes
♻ ☆ Layers at Similar Depths Generate Similar Activations Across LLM Architectures
How do the latent spaces used by independently-trained LLMs relate to one another? We study the nearest neighbor relationships induced by activations at different layers of 24 open-weight LLMs, and find that they 1) tend to vary from layer to layer within a model, and 2) are approximately shared between corresponding layers of different models. Claim 2 shows that these nearest neighbor relationships are not arbitrary, as they are shared across models, but Claim 1 shows that they are not "obvious" either, as there is no single set of nearest neighbor relationships that is universally shared. Together, these suggest that LLMs generate a progression of activation geometries from layer to layer, but that this entire progression is largely shared between models, stretched and squeezed to fit into different architectures.
Computational Engineering, Finance, and Science 8
☆ Bridging Farm Economics and Landscape Ecology for Global Sustainability through Hierarchical and Bayesian Optimization
Agricultural landscapes face the dual challenge of sustaining food production while reversing biodiversity loss. Agri-environmental policies often fall short of delivering ecological functions such as landscape connectivity, in part due to a persistent disconnect between farm-level economic decisions and landscape-scale spatial planning. We introduce a novel hierarchical optimization framework that bridges this gap. First, an Ecological Intensification (EI) model determines the economically optimal allocation of land to margin and habitat interventions at the individual farm level. These farm-specific intervention levels are then passed to an Ecological Connectivity (EC) model, which spatially arranges them across the landscape to maximize connectivity while preserving farm-level profitability. Finally, we introduce a Bayesian Optimization (BO) approach that translates these spatial outcomes into simple, cost effective, and scalable policy instruments, such as subsidies and eco-premiums, using non-spatial, farm-level policy parameters. Applying the framework to a Canadian agricultural landscape, we demonstrate how it enhances connectivity under real-world economic constraints. Our approach provides a globally relevant tool for aligning farm incentives with biodiversity goals, advancing the development of agri-environmental policies that are economically viable and ecologically effective.
☆ Chain-of-Alpha: Unleashing the Power of Large Language Models for Alpha Mining in Quantitative Trading
Alpha factor mining is a fundamental task in quantitative trading, aimed at discovering interpretable signals that can predict asset returns beyond systematic market risk. While traditional methods rely on manual formula design or heuristic search with machine learning, recent advances have leveraged Large Language Models (LLMs) for automated factor discovery. However, existing LLM-based alpha mining approaches remain limited in terms of automation, generality, and efficiency. In this paper, we propose Chain-of-Alpha, a novel, simple, yet effective and efficient LLM-based framework for fully automated formulaic alpha mining. Our method features a dual-chain architecture, consisting of a Factor Generation Chain and a Factor Optimization Chain, which iteratively generate, evaluate, and refine candidate alpha factors using only market data, while leveraging backtest feedback and prior optimization knowledge. The two chains work synergistically to enable high-quality alpha discovery without human intervention and offer strong scalability. Extensive experiments on real-world A-share benchmarks demonstrate that Chain-of-Alpha outperforms existing baselines across multiple metrics, presenting a promising direction for LLM-driven quantitative research.
☆ Rethinking the Sioux Falls Network: Insights from Path-Driven Higher-Order Network Analysis
Benchmark scenarios are widely used in transportation research to evaluate routing algorithms, simulate infrastructure interventions, and test new technologies under controlled conditions. However, the structural and behavioral fidelity of these benchmarks remains largely unquantified, raising concerns about the external validity of simulation results. In this study, we introduce a mathematical framework based on higher-order network models to evaluate the representativeness of benchmark networks, focusing on the widely used Sioux Falls scenario. Higher-order network models encode empirical and simulated trajectory data into memory-aware network representations, which we use to quantify sequential dependencies in mobility behavior and assess how well benchmark networks capture real-world structural and functional patterns. Applying this framework to the Sioux Falls network, as well as real-world trajectory data, we quantify structural complexity, optimal memory length, link prediction accuracy, and centrality alignment. Our results show and statistically quantify that the classical Sioux Falls network exhibits limited path diversity, rapid structural fragmentation at higher orders, and weak alignment with empirical routing behavior. These results illustrate the potential of higher-order network models to bridge the gap between simulation-based and real-world mobility analysis, providing a robust foundation for more accurate and generalizable insights in transportation research.
♻ ☆ Accelerating Fleet Upgrade Decisions with Machine-Learning Enhanced Optimization
Rental-based business models and increasing sustainability requirements intensify the need for efficient strategies to manage large machine and vehicle fleet renewal and upgrades. Optimized fleet upgrade strategies maximize overall utility, cost, and sustainability. However, conventional fleet optimization does not account for upgrade options and is based on integer programming with exponential runtime scaling, which leads to substantial computational cost when dealing with large fleets and repeated decision-making processes. This contribution firstly suggests an extended integer programming approach that determines optimal renewal and upgrade decisions. The computational burden is addressed by a second, alternative machine learning-based method that transforms the task to a mixed discrete-continuous optimization problem. Both approaches are evaluated in a real-world automotive industry case study, which shows that the machine learning approach achieves near-optimal solutions with significant improvements in the scalability and overall computational performance, thus making it a practical alternative for large-scale fleet management.
♻ ☆ Advancing Welding Defect Detection in Maritime Operations via Adapt-WeldNet and Defect Detection Interpretability Analysis
Weld defect detection is crucial for ensuring the safety and reliability of piping systems in the oil and gas industry, especially in challenging marine and offshore environments. Traditional non-destructive testing (NDT) methods often fail to detect subtle or internal defects, leading to potential failures and costly downtime. Furthermore, existing neural network-based approaches for defect classification frequently rely on arbitrarily selected pretrained architectures and lack interpretability, raising safety concerns for deployment. To address these challenges, this paper introduces ``Adapt-WeldNet", an adaptive framework for welding defect detection that systematically evaluates various pre-trained architectures, transfer learning strategies, and adaptive optimizers to identify the best-performing model and hyperparameters, optimizing defect detection and providing actionable insights. Additionally, a novel Defect Detection Interpretability Analysis (DDIA) framework is proposed to enhance system transparency. DDIA employs Explainable AI (XAI) techniques, such as Grad-CAM and LIME, alongside domain-specific evaluations validated by certified ASNT NDE Level II professionals. Incorporating a Human-in-the-Loop (HITL) approach and aligning with the principles of Trustworthy AI, DDIA ensures the reliability, fairness, and accountability of the defect detection system, fostering confidence in automated decisions through expert validation. By improving both performance and interpretability, this work enhances trust, safety, and reliability in welding defect detection systems, supporting critical operations in offshore and marine environments.
♻ ☆ Movement-Prediction-Adjusted Naive Forecast
In financial time series forecasting, surpassing the naive forecast is challenging due to the randomness in the data. To address this challenge, this study proposes a novel forecast combination method, the movement-prediction-adjusted naive forecast (MPANF), which is designed to improve point forecasts beyond the naive baseline. Specifically, MPANF integrates two forecasting components: a naive forecast and a movement prediction. The final forecast is generated by adjusting the naive forecast with a movement prediction term, the weight of which is the product of two in-sample quantities: one is a coefficient determined from the movement prediction accuracy and the other is the mean absolute increment. The performance of MPANF was evaluated on eight financial time series via standard metrics, including the RMSE, MAE, MAPE, and sMAPE. Under modest movement prediction accuracy slightly above 0.55, MPANF generally outperforms common benchmarks such as the naive forecast, naive forecast with drift, integrated moving average of order (1,1) (IMA(1,1)), and linear regression. These findings suggest that MPANF can serve as an effective second-stage method when reliable movement predictions are available.
♻ ☆ CAMEF: Causal-Augmented Multi-Modality Event-Driven Financial Forecasting by Integrating Time Series Patterns and Salient Macroeconomic Announcements SIGKDD 2025
Accurately forecasting the impact of macroeconomic events is critical for investors and policymakers. Salient events like monetary policy decisions and employment reports often trigger market movements by shaping expectations of economic growth and risk, thereby establishing causal relationships between events and market behavior. Existing forecasting methods typically focus either on textual analysis or time-series modeling, but fail to capture the multi-modal nature of financial markets and the causal relationship between events and price movements. To address these gaps, we propose CAMEF (Causal-Augmented Multi-Modality Event-Driven Financial Forecasting), a multi-modality framework that effectively integrates textual and time-series data with a causal learning mechanism and an LLM-based counterfactual event augmentation technique for causal-enhanced financial forecasting. Our contributions include: (1) a multi-modal framework that captures causal relationships between policy texts and historical price data; (2) a new financial dataset with six types of macroeconomic releases from 2008 to April 2024, and high-frequency real trading data for five key U.S. financial assets; and (3) an LLM-based counterfactual event augmentation strategy. We compare CAMEF to state-of-the-art transformer-based time-series and multi-modal baselines, and perform ablation studies to validate the effectiveness of the causal learning mechanism and event types.
comment: Accepted in SIGKDD 2025
♻ ☆ Fuzzy Decisions on Fluid Instabilities: Autoencoder-Based Reconstruction meets Rule-Based Anomaly Classification
Shockwave classification in shadowgraph imaging is challenging due to limited labeled data and complex flow structures. This study presents a hybrid framework that combines unsupervised autoencoder models with a fuzzy inference system to generate and interpret anomaly maps. Among the evaluated methods, the hybrid $\beta$-VAE autoencoder with a fuzzy rule-based system most effectively captured coherent shock features, integrating spatial context to enhance anomaly classification. The resulting approach enables interpretable, unsupervised classification of flow disruptions and lays the groundwork for real-time, physics-informed diagnostics in experimental and industrial fluid applications.
Databases 9
Data-Aware Socratic Query Refinement in Database Systems
In this paper, we propose Data-Aware Socratic Guidance (DASG), a dialogue-based query enhancement framework that embeds \linebreak interactive clarification as a first-class operator within database systems to resolve ambiguity in natural language queries. DASG treats dialogue as an optimization decision, asking clarifying questions only when the expected execution cost reduction exceeds the interaction overhead. The system quantifies ambiguity through linguistic fuzziness, schema grounding confidence, and projected costs across relational and vector backends. Our algorithm selects the optimal clarifications by combining semantic relevance, catalog-based information gain, and potential cost reduction. We evaluate our proposed framework on three datasets. The results show that DASG demonstrates improved query precision while maintaining efficiency, establishing a cooperative analytics paradigm where systems actively participate in query formulation rather than passively translating user requests.
☆ Theseus: A Distributed and Scalable GPU-Accelerated Query Processing Platform Optimized for Efficient Data Movement
Online analytical processing of queries on datasets in the many-terabyte range is only possible with costly distributed computing systems. To decrease the cost and increase the throughput, systems can leverage accelerators such as GPUs, which are now ubiquitous in the compute infrastructure. This introduces many challenges, the majority of which are related to when, where, and how to best move data around the system. We present Theseus -- a production-ready enterprise-scale distributed accelerator-native query engine designed to balance data movement, memory utilization, and computation in an accelerator-based system context. Specialized asynchronous control mechanisms are tightly coupled to the hardware resources for the purpose of network communication, data pre-loading, data spilling across memories and storage, and GPU compute tasks. The memory subsystem contains a mechanism for fixed-size page-locked host memory allocations to increase throughput and reduce memory fragmentation. For the TPC-H benchmarks at scale factors ranging from 1k to 30k on cloud infrastructure, Theseus outperforms Databricks Photon by up to $4\times$ at cost parity. Theseus is capable of processing all queries of the TPC-H and TPC-DS benchmarks at scale factor 100k (100 TB scale) with as few as 2 DGX A100 640GB nodes.
comment: 6 Pages,6 Figures
☆ Making Prompts First-Class Citizens for Adaptive LLM Pipelines
Modern LLM pipelines increasingly resemble data-centric systems: they retrieve external context, compose intermediate outputs, validate results, and adapt based on runtime feedback. Yet, the central element guiding this process -- the prompt -- remains a brittle, opaque string, disconnected from the surrounding dataflow. This disconnect limits reuse, optimization, and runtime control. In this paper, we describe our vision and an initial design for SPEAR, a language and runtime that fills this prompt management gap by making prompts structured, adaptive, and first-class components of the execution model. SPEAR enables (1) runtime prompt refinement -- modifying prompts dynamically in response to execution-time signals such as confidence, latency, or missing context; and (2) structured prompt management -- organizing prompt fragments into versioned views with support for introspection and logging. SPEAR defines a prompt algebra that governs how prompts are constructed and adapted within a pipeline. It supports multiple refinement modes (manual, assisted, and automatic), giving developers a balance between control and automation. By treating prompt logic as structured data, SPEAR enables optimizations such as operator fusion, prefix caching, and view reuse. Preliminary experiments quantify the behavior of different refinement modes compared to static prompts and agentic retries, as well as the impact of prompt-level optimizations such as operator fusion.
☆ AgenticData: An Agentic Data Analytics System for Heterogeneous Data
Existing unstructured data analytics systems rely on experts to write code and manage complex analysis workflows, making them both expensive and time-consuming. To address these challenges, we introduce AgenticData, an innovative agentic data analytics system that allows users to simply pose natural language (NL) questions while autonomously analyzing data sources across multiple domains, including both unstructured and structured data. First, AgenticData employs a feedback-driven planning technique that automatically converts an NL query into a semantic plan composed of relational and semantic operators. We propose a multi-agent collaboration strategy by utilizing a data profiling agent for discovering relevant data, a semantic cross-validation agent for iterative optimization based on feedback, and a smart memory agent for maintaining short-term context and long-term knowledge. Second, we propose a semantic optimization model to refine and execute semantic plans effectively. Our system, AgenticData, has been tested using three benchmarks. Experimental results showed that AgenticData achieved superior accuracy on both easy and difficult tasks, significantly outperforming state-of-the-art methods.
☆ Snowpark: Performant, Secure, User-Friendly Data Engineering and AI/ML Next To Your Data
Snowflake revolutionized data analytics with an elastic architecture that decouples compute and storage, enabling scalable solutions supporting data architectures like data lake, data warehouse, data lakehouse, and data mesh. Building on this foundation, Snowflake has advanced its AI Data Cloud vision by introducing Snowpark, a managed turnkey solution that supports data engineering and AI and ML workloads using Python and other programming languages. This paper outlines Snowpark's design objectives towards high performance, strong security and governance, and ease of use. We detail the architecture of Snowpark, highlighting its elastic scalability and seamless integration with Snowflake core compute infrastructure. This includes leveraging Snowflake control plane for distributed computing and employing a secure sandbox for isolating Snowflake SQL workloads from Snowpark executions. Additionally, we present core innovations in Snowpark that drive further performance enhancements, such as query initialization latency reduction through Python package caching, improved workload scheduling for customized workloads, and data skew management via efficient row redistribution. Finally, we showcase real-world case studies that illustrate Snowpark's efficiency and effectiveness for large-scale data engineering and AI and ML tasks.
comment: 12 pages, 6 figures, accepted in ICDCS 2025
♻ ☆ Securing Consensus from Long-Range Attacks through Collaboration
Decentralized systems built around blockchain technology promise clients an immutable ledger. They add a transaction to the ledger after it undergoes consensus among the replicas that run a Proof-of-Stake (PoS) or Byzantine Fault-Tolerant (BFT) consensus protocol. Unfortunately, these protocols face a long-range attack where an adversary having access to the private keys of the replicas can rewrite the ledger. One solution is forcing each committed block from these protocols to undergo another consensus, Proof-of-Work(PoW) consensus; PoW protocol leads to wastage of computational resources as miners compete to solve complex puzzles. In this paper, we present the design of our Power-of-Collaboration (PoC) protocol, which guards existing PoS/BFT blockchains against long-range attacks and requires miners to collaborate rather than compete. PoC guarantees fairness and accountability and only marginally degrades the throughput of the underlying system.
comment: 17 pages
♻ ☆ Semantic Integrity Constraints: Declarative Guardrails for AI-Augmented Data Processing Systems
AI-augmented data processing systems (DPSs) integrate large language models (LLMs) into query pipelines, allowing powerful semantic operations on structured and unstructured data. However, the reliability (a.k.a. trust) of these systems is fundamentally challenged by the potential for LLMs to produce errors, limiting their adoption in critical domains. To help address this reliability bottleneck, we introduce semantic integrity constraints (SICs) -- a declarative abstraction for specifying and enforcing correctness conditions over LLM outputs in semantic queries. SICs generalize traditional database integrity constraints to semantic settings, supporting common types of constraints, such as grounding, soundness, and exclusion, with both reactive and proactive enforcement strategies. We argue that SICs provide a foundation for building reliable and auditable AI-augmented data systems. Specifically, we present a system design for integrating SICs into query planning and runtime execution and discuss its realization in AI-augmented DPSs. To guide and evaluate our vision, we outline several design goals -- covering criteria around expressiveness, runtime semantics, integration, performance, and enterprise-scale applicability -- and discuss how our framework addresses each, along with open research challenges.
♻ ☆ Interactive Data Harmonization with LLM Agents: Opportunities and Challenges
Data harmonization is an essential task that entails integrating datasets from diverse sources. Despite years of research in this area, it remains a time-consuming and challenging task due to schema mismatches, varying terminologies, and differences in data collection methodologies. This paper presents the case for agentic data harmonization as a means to both empower experts to harmonize their data and to streamline the process. We introduce Harmonia, a system that combines LLM-based reasoning, an interactive user interface, and a library of data harmonization primitives to automate the synthesis of data harmonization pipelines. We demonstrate Harmonia in a clinical data harmonization scenario, where it helps to interactively create reusable pipelines that map datasets to a standard format. Finally, we discuss challenges and open problems, and suggest research directions for advancing our vision.
♻ ☆ FairDAG: Consensus Fairness over Multi-Proposer Causal Design
The rise of cryptocurrencies like Bitcoin and Ethereum has driven interest in blockchain database technology, with smart contracts enabling the growth of decentralized finance (DeFi). However, research has shown that adversaries exploit transaction ordering to extract profits through attacks like front-running, sandwich attacks, and liquidation manipulation. This issue affects blockchain databases in which block proposers have full control over transaction ordering. To address this, a more fair approach to transaction ordering is essential. Existing fairness protocols, such as Pompe and Themis, operate on leader-based consensus protocols, which not only suffer from low throughput, but also allow adversaries to manipulate transaction ordering. To address these limitations, we propose FairDAG-AB and FairDAG-RL that run fairness protocols on top of DAG-based consensus protocols, which improve protocol performance in both throughput and fairness quality, leveraging the multi-proposer design and validity of DAG-based consensus protocols. We conducted a comprehensive analytical and experimental evaluation of our protocols. The results show that FairDAG-AB and FairDAG-RL outperform the prior fairness protocols in both throughput and fairness quality.
comment: 17 pages, 16 figures
Distributed, Parallel, and Cluster Computing 17
☆ X-VFL: A New Vertical Federated Learning Framework with Cross Completion and Decision Subspace Alignment
Vertical Federated Learning (VFL) enables collaborative learning by integrating disjoint feature subsets from multiple clients/parties. However, VFL typically faces two key challenges: i) the requirement for perfectly aligned data samples across all clients (missing features are not allowed); ii) the requirement for joint collaborative inference/prediction involving all clients (it does not support locally independent inference on a single client). To address these challenges, we propose X-VFL, a new VFL framework designed to deal with the non-aligned data samples with (partially) missing features and to support locally independent inference of new data samples for each client. In particular, we design two novel modules in X-VFL: Cross Completion (XCom) and Decision Subspace Alignment (DS-Align). XCom can complete/reconstruct missing features for non-aligned data samples by leveraging information from other clients. DS-Align aligns local features with completed and global features across all clients within the decision subspace, thus enabling locally independent inference at each client. Moreover, we provide convergence theorems for different algorithms used in training X-VFL, showing an $O(1/\sqrt{T})$ convergence rate for SGD-type algorithms and an $O(1/T)$ rate for PAGE-type algorithms, where $T$ denotes the number of training update steps. Extensive experiments on real-world datasets demonstrate that X-VFL significantly outperforms existing methods, e.g., achieving a 15% improvement in accuracy on the image CIFAR-10 dataset and a 43% improvement on the medical MIMIC-III dataset. These results validate the practical effectiveness and superiority of X-VFL, particularly in scenarios involving partially missing features and locally independent inference.
comment: 20 pages
☆ Modular Architecture for High-Performance and Low Overhead Data Transfers
High-performance applications necessitate rapid and dependable transfer of massive datasets across geographically dispersed locations. Traditional file transfer tools often suffer from resource underutilization and instability because of fixed configurations or monolithic optimization methods. We propose AutoMDT, a novel modular data transfer architecture that employs a deep reinforcement learning based agent to simultaneously optimize concurrency levels for read, network, and write operations. Our solution incorporates a lightweight network-system simulator, enabling offline training of a Proximal Policy Optimization (PPO) agent in approximately 45 minutes on average, thereby overcoming the impracticality of lengthy online training in production networks. AutoMDT's modular design decouples I/O and network tasks, allowing the agent to capture complex buffer dynamics precisely and to adapt quickly to changing system and network conditions. Evaluations on production-grade testbeds show that AutoMDT achieves up to 8x faster convergence and a 68% reduction in transfer completion times compared with state-of-the-art solutions.
☆ Adaptive Parallel Downloader for Large Genomic Datasets
Modern next-generation sequencing (NGS) projects routinely generate terabytes of data, which researchers commonly download from public repositories such as SRA or ENA. Existing download tools often employ static concurrency settings, leading to inefficient bandwidth utilization and prolonged download times due to their inability to adapt to dynamic network conditions. We introduce FastBioDL, a parallel file downloader designed for large biological datasets, featuring an adaptive concurrency controller. FastBioDL frames the download process as an online optimization problem, utilizing a utility function and gradient descent to adjust the number of concurrent socket streams in real-time dynamically. This approach maximizes download throughput while minimizing resource overhead. Comprehensive evaluations on public genomic datasets demonstrate that FastBioDL achieves up to $4x$ speedup over state-of-the-art tools. Moreover, in high-speed network experiments, its adaptive design was up to $2.1x$ faster than existing tools. By intelligently optimizing standard HTTP or FTP downloads on the client side, FastBioDL provides a robust and efficient solution for large-scale genomic data acquisition, democratizing high-performance data retrieval for researchers without requiring specialized commercial software or protocols.
☆ Simulating LLM training workloads for heterogeneous compute and network infrastructure
The growing demand for large-scale GPU clusters in distributed model training presents a significant barrier to innovation, particularly in model optimization, performance tuning, and system-level enhancements. To address this challenge, LLM training simulators are employed to estimate training time and guide design decisions. However, the state-of-the-art LLM training simulators assume homogeneous compute and network infrastructure. In practice, device heterogeneity is inevitable due to resource sharing in cloud environments, frequent shifts in device generations, and inherent intra-chip interconnect heterogeneity. To address the gap between state-of-the-art and practical requirements, we propose the design of a heterogeneity-aware distributed LLM simulator capable of predicting training time while enabling abstractions to specify custom configurations for device groups and device-to-parallelism mapping. We present the design requirements and challenges in building a heterogeneity-aware distributed ML training simulator, and design components such as non-uniform workload partitioning. Our initial simulation results demonstrate the impact of heterogeneity on the model computation and communication time.
☆ HFedATM: Hierarchical Federated Domain Generalization via Optimal Transport and Regularized Mean Aggregation
Federated Learning (FL) is a decentralized approach where multiple clients collaboratively train a shared global model without sharing their raw data. Despite its effectiveness, conventional FL faces scalability challenges due to excessive computational and communication demands placed on a single central server as the number of participating devices grows. Hierarchical Federated Learning (HFL) addresses these issues by distributing model aggregation tasks across intermediate nodes (stations), thereby enhancing system scalability and robustness against single points of failure. However, HFL still suffers from a critical yet often overlooked limitation: domain shift, where data distributions vary significantly across different clients and stations, reducing model performance on unseen target domains. While Federated Domain Generalization (FedDG) methods have emerged to improve robustness to domain shifts, their integration into HFL frameworks remains largely unexplored. In this paper, we formally introduce Hierarchical Federated Domain Generalization (HFedDG), a novel scenario designed to investigate domain shift within hierarchical architectures. Specifically, we propose HFedATM, a hierarchical aggregation method that first aligns the convolutional filters of models from different stations through Filter-wise Optimal Transport Alignment and subsequently merges aligned models using a Shrinkage-aware Regularized Mean Aggregation. Our extensive experimental evaluations demonstrate that HFedATM significantly boosts the performance of existing FedDG baselines across multiple datasets and maintains computational and communication efficiency. Moreover, theoretical analyses indicate that HFedATM achieves tighter generalization error bounds compared to standard hierarchical averaging, resulting in faster convergence and stable training behavior.
comment: 11 pages, 3 figures
☆ Theseus: A Distributed and Scalable GPU-Accelerated Query Processing Platform Optimized for Efficient Data Movement
Online analytical processing of queries on datasets in the many-terabyte range is only possible with costly distributed computing systems. To decrease the cost and increase the throughput, systems can leverage accelerators such as GPUs, which are now ubiquitous in the compute infrastructure. This introduces many challenges, the majority of which are related to when, where, and how to best move data around the system. We present Theseus -- a production-ready enterprise-scale distributed accelerator-native query engine designed to balance data movement, memory utilization, and computation in an accelerator-based system context. Specialized asynchronous control mechanisms are tightly coupled to the hardware resources for the purpose of network communication, data pre-loading, data spilling across memories and storage, and GPU compute tasks. The memory subsystem contains a mechanism for fixed-size page-locked host memory allocations to increase throughput and reduce memory fragmentation. For the TPC-H benchmarks at scale factors ranging from 1k to 30k on cloud infrastructure, Theseus outperforms Databricks Photon by up to $4\times$ at cost parity. Theseus is capable of processing all queries of the TPC-H and TPC-DS benchmarks at scale factor 100k (100 TB scale) with as few as 2 DGX A100 640GB nodes.
comment: 6 Pages,6 Figures
☆ Task-Based Programming for Adaptive Mesh Refinement in Compressible Flow Simulations
High-order solvers for compressible flows are vital in scientific applications. Adaptive mesh refinement (AMR) is a key technique for reducing computational cost by concentrating resolution in regions of interest. In this work, we develop an AMR-based numerical solver using Regent, a high-level programming language for the Legion programming model. We address several challenges associated with implementing AMR in Regent. These include dynamic data structures for patch refinement/coarsening, mesh validity enforcement, and reducing task launch overhead via task fusion. Experimental results show that task fusion achieves 18x speedup, while automated GPU kernel generation via simple annotations yields 9.7x speedup for the targeted kernel. We demonstrate our approach through simulations of two canonical compressible flow problems governed by the Euler equations.
☆ Tesserae: Scalable Placement Policies for Deep Learning Workloads
Training deep learning (DL) models has become a dominant workload in data-centers and improving resource utilization is a key goal of DL cluster schedulers. In order to do this, schedulers typically incorporate placement policies that govern where jobs are placed on the cluster. Existing placement policies are either designed as ad-hoc heuristics or incorporated as constraints within a complex optimization problem and thus either suffer from suboptimal performance or poor scalability. Our key insight is that many placement constraints can be formulated as graph matching problems and based on that we design novel placement policies for minimizing job migration overheads and job packing. We integrate these policies into Tesserae and describe how our design leads to a scalable and effective GPU cluster scheduler. Our experimental results show that Tesserae improves average JCT by up to 1.62x and the Makespan by up to 1.15x compared with the existing schedulers.
comment: 16 pages, 18 figures
☆ Managing, Analyzing and Sharing Research Data with Gen3 Data Commons
Gen3 is an open-source data platform for building data commons. A data commons is a cloud-based data platform for managing, analyzing, and sharing data with a research community. Gen3 has been used to build over a dozen data commons that in aggregate contain over 28 PB of data and 64 million FAIR data objects. To set up a Gen3 data commons, you first define a data model. Gen3 then autogenerates 1) a data portal for searching and exploring data in the commons; 2) a data portal for submitting data to the commons; and 3) FAIR APIs for accessing the data programmatically. Gen3 is built over a small number of standards-based software services, which are designed to support current and future Gen3 components so that Gen3 can interoperate with other data platforms and data ecosystems.
comment: 20 pages, 9 figures
☆ Snowpark: Performant, Secure, User-Friendly Data Engineering and AI/ML Next To Your Data
Snowflake revolutionized data analytics with an elastic architecture that decouples compute and storage, enabling scalable solutions supporting data architectures like data lake, data warehouse, data lakehouse, and data mesh. Building on this foundation, Snowflake has advanced its AI Data Cloud vision by introducing Snowpark, a managed turnkey solution that supports data engineering and AI and ML workloads using Python and other programming languages. This paper outlines Snowpark's design objectives towards high performance, strong security and governance, and ease of use. We detail the architecture of Snowpark, highlighting its elastic scalability and seamless integration with Snowflake core compute infrastructure. This includes leveraging Snowflake control plane for distributed computing and employing a secure sandbox for isolating Snowflake SQL workloads from Snowpark executions. Additionally, we present core innovations in Snowpark that drive further performance enhancements, such as query initialization latency reduction through Python package caching, improved workload scheduling for customized workloads, and data skew management via efficient row redistribution. Finally, we showcase real-world case studies that illustrate Snowpark's efficiency and effectiveness for large-scale data engineering and AI and ML tasks.
comment: 12 pages, 6 figures, accepted in ICDCS 2025
☆ A Dynamic Approach to Load Balancing in Cloud Infrastructure: Enhancing Energy Efficiency and Resource Utilization
Cloud computing has grown rapidly in recent years, mainly due to the sharp increase in data transferred over the internet. This growth makes load balancing a key part of cloud systems, as it helps distribute user requests across servers to maintain performance, prevent overload, and ensure a smooth user experience. Despite its importance, managing server resources and keeping workloads balanced over time remains a major challenge in cloud environments. This paper introduces a novel Score-Based Dynamic Load Balancer (SBDLB) that allocates workloads to virtual machines based on real-time performance metrics. The objective is to enhance resource utilization and overall system efficiency. The method was thoroughly tested using the CloudSim 7G platform, comparing its performance against the throttled load balancing strategy. Evaluations were conducted across a variety of workloads and scenarios, demonstrating the SBDLB's ability to adapt dynamically to workload fluctuations while optimizing resource usage. The proposed method outperformed the throttled strategy, improving average response times by 34% and 37% in different scenarios. It also reduced data center processing times by an average of 13%. Over a 24-hour simulation, the method decreased operational costs by 15%, promoting a more energy-efficient and sustainable cloud infrastructure through reduced energy consumption.
comment: Accepted for publication in 2025 IEEE Cloud Summit
☆ Accelerating Data Chunking in Deduplication Systems using Vector Instructions
Content-defined Chunking (CDC) algorithms dictate the overall space savings that deduplication systems achieve. However, due to their need to scan each file in its entirety, they are slow and often the main performance bottleneck within data deduplication. We present VectorCDC, a method to accelerate hashless CDC algorithms using vector CPU instructions, such as SSE / AVX. Our evaluation shows that VectorCDC is effective on Intel, AMD, ARM, and IBM CPUs, achieving 8.35x - 26.2x higher throughput than existing vector-accelerated techniques without affecting the deduplication space savings.
comment: Under review. This is the follow-up work to our FAST 2025 paper, "VectorCDC: Accelerating Data Deduplication with Vector Instructions". The associated code is available at https://github.com/UWASL/dedup-bench
♻ ☆ Securing Consensus from Long-Range Attacks through Collaboration
Decentralized systems built around blockchain technology promise clients an immutable ledger. They add a transaction to the ledger after it undergoes consensus among the replicas that run a Proof-of-Stake (PoS) or Byzantine Fault-Tolerant (BFT) consensus protocol. Unfortunately, these protocols face a long-range attack where an adversary having access to the private keys of the replicas can rewrite the ledger. One solution is forcing each committed block from these protocols to undergo another consensus, Proof-of-Work(PoW) consensus; PoW protocol leads to wastage of computational resources as miners compete to solve complex puzzles. In this paper, we present the design of our Power-of-Collaboration (PoC) protocol, which guards existing PoS/BFT blockchains against long-range attacks and requires miners to collaborate rather than compete. PoC guarantees fairness and accountability and only marginally degrades the throughput of the underlying system.
comment: 17 pages
♻ ☆ Nexus:Proactive Intra-GPU Disaggregation of Prefill and Decode in LLM Serving
Monolithic serving with chunked prefill improves GPU utilization by batching prefill and decode together, but suffers from fine-grained phase interference. Engine-level prefill-decode (PD) disaggregation avoids interference but incurs higher hardware and coordination overhead. Prior intra-GPU disaggregation approaches multiplex prefill and decode within a single GPU, using SLO-based tuning guided by heuristics from offline profiling or reactive feedback loops. However, these methods respond reactively to performance issues rather than anticipating them, limiting adaptability under dynamic workloads. We ask: can we achieve proactive intra-GPU disaggregation that adapts effectively to dynamic workloads? The key challenge lies in managing the conflicting resource demands of prefill and decode under varying conditions. We first show that GPU resources exhibit diminishing returns -- beyond a saturation point, more allocation yields minimal latency benefit. Second, we observe that memory bandwidth contention becomes a critical bottleneck. These insights motivate a design that dynamically partitions GPU resources across prefill and decode phases, while jointly considering compute capacity, memory footprint, and bandwidth contention. Evaluated on diverse LLMs and workloads, our system Nexus achieves up to 2.2x higher throughput, 20x lower TTFT, and 2.5x lower TBT than vLLM; outperforms SGLang by up to 2x; and matches or exceeds disaggregated vLLM.
♻ ☆ VeOmni: Scaling Any Modality Model Training with Model-Centric Distributed Recipe Zoo
Recent advances in large language models (LLMs) have driven impressive progress in omni-modal understanding and generation. However, training omni-modal LLMs remains a significant challenge due to the heterogeneous model architectures required to process diverse modalities, necessitating sophisticated system design for efficient large-scale training. Existing frameworks typically entangle model definition with parallel logic, incurring limited scalability and substantial engineering overhead for end-to-end omni-modal training. We present VeOmni, a modular and efficient training framework to accelerate the development of omni-modal LLMs. VeOmni introduces model-centric distributed recipes that decouples communication from computation, enabling efficient 3D parallelism on omni-modal LLMs. VeOmni also features a flexible configuration interface supporting seamless integration of new modalities with minimal code change. Using VeOmni, a omni-modal mixture-of-experts (MoE) model with 30B parameters can be trained with over 2,800 tokens/sec/GPU throughput and scale to 160K context lengths via 3D parallelism on 128 GPUs, showcasing its superior efficiency and scalability for training large omni-modal LLMs.
♻ ☆ xDeepServe: Model-as-a-Service on Huawei CloudMatrix384
The rise of scaled-out LLMs and scaled-up SuperPods signals a new era in large-scale AI infrastructure. LLMs continue to scale out via MoE, as seen in recent models like DeepSeek, Kimi, and Qwen. In parallel, AI hardware is scaling up, with Huawei's CloudMatrix384 SuperPod offering hundreds of GB/s high-speed interconnects. Running large MoE models on SuperPod-scale hardware brings new challenges. It requires new execution models, scalable scheduling, efficient expert load balancing, and elimination of single points of failure. This paper presents xDeepServe, Huawei Cloud's LLM serving system designed for SuperPod-scale infrastructure. At its core is Transformerless, a disaggregated architecture that decomposes transformer models into modular units--attention, feedforward, and MoE--executed independently on NPUs connected via high-speed fabric. We implement this design in two forms: disaggregated prefill-decode and disaggregated MoE-attention. This fully disaggregated setup enables independent scaling of compute and memory without sacrificing performance. To support this architecture, we propose XCCL, a communication library that leverages CloudMatrix384's global shared memory to implement efficient point-to-point and all-to-all primitives. We also extend our serving engine FlowServe with system-level techniques, enabling scalable inference across hundreds of NPUs.
♻ ☆ Transaction Fee Market Design for Parallel Execution
Given the low throughput of blockchains like Bitcoin and Ethereum, scalability - the ability to process an increasing number of transactions - has become a central focus of blockchain research. One promising approach is the parallelization of transaction execution across multiple threads. However, achieving efficient parallelization requires a redesign of the incentive structure within the fee market. Currently, the fee market does not differentiate between transactions that access multiple high-demand storage keys (i.e., unique identifiers for individual data entries) versus a single low-demand one, as long as they require the same computational effort. Addressing this discrepancy is crucial for enabling more effective parallel execution. In this work, we aim to bridge the gap between the current fee market and the need for parallel execution by exploring alternative fee market designs. To this end, we propose a framework consisting of two key components: a Gas Computation Mechanism (GCM), which quantifies the load a transaction places on the network in terms of parallelization and computation, measured in units of gas, and a Transaction Fee Mechanism (TFM), which assigns a price to each unit of gas. We additionally introduce a set of desirable properties for a GCM, propose several candidate mechanisms, and evaluate them against these criteria. Our analysis highlights two strong candidates: the weighted area GCM, which integrates smoothly with existing TFMs such as EIP-1559 and satisfies a broad subset of the outlined properties, and the time-proportional makespan GCM, which assigns gas costs based on the context of the entire block's schedule and, through this dependence on the overall execution outcome, captures the dynamics of parallel execution more accurately.
comment: This is the extended version of the paper, forthcoming at Advances in Financial Technologies (AFT) 2025
Information Retrieval 32
☆ KuaiLive: A Real-time Interactive Dataset for Live Streaming Recommendation
Live streaming platforms have become a dominant form of online content consumption, offering dynamically evolving content, real-time interactions, and highly engaging user experiences. These unique characteristics introduce new challenges that differentiate live streaming recommendation from traditional recommendation settings and have garnered increasing attention from industry in recent years. However, research progress in academia has been hindered by the lack of publicly available datasets that accurately reflect the dynamic nature of live streaming environments. To address this gap, we introduce KuaiLive, the first real-time, interactive dataset collected from Kuaishou, a leading live streaming platform in China with over 400 million daily active users. The dataset records the interaction logs of 23,772 users and 452,621 streamers over a 21-day period. Compared to existing datasets, KuaiLive offers several advantages: it includes precise live room start and end timestamps, multiple types of real-time user interactions (click, comment, like, gift), and rich side information features for both users and streamers. These features enable more realistic simulation of dynamic candidate items and better modeling of user and streamer behaviors. We conduct a thorough analysis of KuaiLive from multiple perspectives and evaluate several representative recommendation methods on it, establishing a strong benchmark for future research. KuaiLive can support a wide range of tasks in the live streaming domain, such as top-K recommendation, click-through rate prediction, watch time prediction, and gift price prediction. Moreover, its fine-grained behavioral data also enables research on multi-behavior modeling, multi-task learning, and fairness-aware recommendation. The dataset and related resources are publicly available at https://imgkkk574.github.io/KuaiLive.
☆ RankArena: A Unified Platform for Evaluating Retrieval, Reranking and RAG with Human and LLM Feedback
Evaluating the quality of retrieval-augmented generation (RAG) and document reranking systems remains challenging due to the lack of scalable, user-centric, and multi-perspective evaluation tools. We introduce RankArena, a unified platform for comparing and analysing the performance of retrieval pipelines, rerankers, and RAG systems using structured human and LLM-based feedback as well as for collecting such feedback. RankArena supports multiple evaluation modes: direct reranking visualisation, blind pairwise comparisons with human or LLM voting, supervised manual document annotation, and end-to-end RAG answer quality assessment. It captures fine-grained relevance feedback through both pairwise preferences and full-list annotations, along with auxiliary metadata such as movement metrics, annotation time, and quality ratings. The platform also integrates LLM-as-a-judge evaluation, enabling comparison between model-generated rankings and human ground truth annotations. All interactions are stored as structured evaluation datasets that can be used to train rerankers, reward models, judgment agents, or retrieval strategy selectors. Our platform is publicly available at https://rankarena.ngrok.io/, and the Demo video is provided https://youtu.be/jIYAP4PaSSI.
comment: Accept at CIKM 2025
☆ On the Reliability of Sampling Strategies in Offline Recommender Evaluation
Offline evaluation plays a central role in benchmarking recommender systems when online testing is impractical or risky. However, it is susceptible to two key sources of bias: exposure bias, where users only interact with items they are shown, and sampling bias, introduced when evaluation is performed on a subset of logged items rather than the full catalog. While prior work has proposed methods to mitigate sampling bias, these are typically assessed on fixed logged datasets rather than for their ability to support reliable model comparisons under varying exposure conditions or relative to true user preferences. In this paper, we investigate how different combinations of logging and sampling choices affect the reliability of offline evaluation. Using a fully observed dataset as ground truth, we systematically simulate diverse exposure biases and assess the reliability of common sampling strategies along four dimensions: sampling resolution (recommender model separability), fidelity (agreement with full evaluation), robustness (stability under exposure bias), and predictive power (alignment with ground truth). Our findings highlight when and how sampling distorts evaluation outcomes and offer practical guidance for selecting strategies that yield faithful and robust offline comparisons.
comment: Accepted to RecSys 2025
☆ Does Multimodality Improve Recommender Systems as Expected? A Critical Analysis and Future Directions
Multimodal recommendation systems are increasingly popular for their potential to improve performance by integrating diverse data types. However, the actual benefits of this integration remain unclear, raising questions about when and how it truly enhances recommendations. In this paper, we propose a structured evaluation framework to systematically assess multimodal recommendations across four dimensions: Comparative Efficiency, Recommendation Tasks, Recommendation Stages, and Multimodal Data Integration. We benchmark a set of reproducible multimodal models against strong traditional baselines and evaluate their performance on different platforms. Our findings show that multimodal data is particularly beneficial in sparse interaction scenarios and during the recall stage of recommendation pipelines. We also observe that the importance of each modality is task-specific, where text features are more useful in e-commerce and visual features are more effective in short-video recommendations. Additionally, we explore different integration strategies and model sizes, finding that Ensemble-Based Learning outperforms Fusion-Based Learning, and that larger models do not necessarily deliver better results. To deepen our understanding, we include case studies and review findings from other recommendation domains. Our work provides practical insights for building efficient and effective multimodal recommendation systems, emphasizing the need for thoughtful modality selection, integration strategies, and model design.
Multi-Modal Multi-Behavior Sequential Recommendation with Conditional Diffusion-Based Feature Denoising SIGIR 2025
The sequential recommendation system utilizes historical user interactions to predict preferences. Effectively integrating diverse user behavior patterns with rich multimodal information of items to enhance the accuracy of sequential recommendations is an emerging and challenging research direction. This paper focuses on the problem of multi-modal multi-behavior sequential recommendation, aiming to address the following challenges: (1) the lack of effective characterization of modal preferences across different behaviors, as user attention to different item modalities varies depending on the behavior; (2) the difficulty of effectively mitigating implicit noise in user behavior, such as unintended actions like accidental clicks; (3) the inability to handle modality noise in multi-modal representations, which further impacts the accurate modeling of user preferences. To tackle these issues, we propose a novel Multi-Modal Multi-Behavior Sequential Recommendation model (M$^3$BSR). This model first removes noise in multi-modal representations using a Conditional Diffusion Modality Denoising Layer. Subsequently, it utilizes deep behavioral information to guide the denoising of shallow behavioral data, thereby alleviating the impact of noise in implicit feedback through Conditional Diffusion Behavior Denoising. Finally, by introducing a Multi-Expert Interest Extraction Layer, M$^3$BSR explicitly models the common and specific interests across behaviors and modalities to enhance recommendation performance. Experimental results indicate that M$^3$BSR significantly outperforms existing state-of-the-art methods on benchmark datasets.
comment: SIGIR 2025
☆ Difference Views for Visual Graph Query Building
Knowledge Graphs (KGs) contain vast amounts of linked resources that encode knowledge in various domains, which can be queried and searched for using specialized languages like SPARQL, a query language developed to query KGs. Existing visual query builders enable non-expert users to construct SPARQL queries and utilize the knowledge contained in these graphs. Query building is, however, an iterative and, often, visual process where the question of the user can change and differ throughout the process, especially for explorative search. Our visual querying interface communicates these change between iterative steps in the query building process using graph differences to contrast the changes and the evolution in the graph query. We also enable users to formulate their evolving information needs using a natural language interface directly integrated into the difference query view. We, furthermore, communicate the change in results in the result view by contrasting the differences in both result distribution and individual instances of the prototype graph and demonstrate the system's applicability through case studies on different ontologies and usage scenarios, illustrating how our system fosters, both, data exploration and analysis of domain-specific graphs.
comment: 5 pages, 6 figures, preparing for submission to Semantic Web Conferences
☆ FIRE: Faithful Interpretable Recommendation Explanations
Natural language explanations in recommender systems are often framed as a review generation task, leveraging user reviews as ground-truth supervision. While convenient, this approach conflates a user's opinion with the system's reasoning, leading to explanations that may be fluent but fail to reflect the true logic behind recommendations. In this work, we revisit the core objective of explainable recommendation: to transparently communicate why an item is recommended by linking user needs to relevant item features. Through a comprehensive analysis of existing methods across multiple benchmark datasets, we identify common limitations-explanations that are weakly aligned with model predictions, vague or inaccurate in identifying user intents, and overly repetitive or generic. To overcome these challenges, we propose FIRE, a lightweight and interpretable framework that combines SHAP-based feature attribution with structured, prompt-driven language generation. FIRE produces faithful, diverse, and user-aligned explanations, grounded in the actual decision-making process of the model. Our results demonstrate that FIRE not only achieves competitive recommendation accuracy but also significantly improves explanation quality along critical dimensions such as alignment, structure, and faithfulness. This work highlights the need to move beyond the review-as-explanation paradigm and toward explanation methods that are both accountable and interpretable.
☆ Bidding-Aware Retrieval for Multi-Stage Consistency in Online Advertising
Online advertising systems typically use a cascaded architecture to manage massive requests and candidate volumes, where the ranking stages allocate traffic based on eCPM (predicted CTR $\times$ Bid). With the increasing popularity of auto-bidding strategies, the inconsistency between the computationally sensitive retrieval stage and the ranking stages becomes more pronounced, as the former cannot access precise, real-time bids for the vast ad corpus. This discrepancy leads to sub-optimal platform revenue and advertiser outcomes. To tackle this problem, we propose Bidding-Aware Retrieval (BAR), a model-based retrieval framework that addresses multi-stage inconsistency by incorporating ad bid value into the retrieval scoring function. The core innovation is Bidding-Aware Modeling, incorporating bid signals through monotonicity-constrained learning and multi-task distillation to ensure economically coherent representations, while Asynchronous Near-Line Inference enables real-time updates to the embedding for market responsiveness. Furthermore, the Task-Attentive Refinement module selectively enhances feature interactions to disentangle user interest and commercial value signals. Extensive offline experiments and full-scale deployment across Alibaba's display advertising platform validated BAR's efficacy: 4.32% platform revenue increase with 22.2% impression lift for positively-operated advertisements.
☆ Balancing Accuracy and Novelty with Sub-Item Popularity
In the realm of music recommendation, sequential recommenders have shown promise in capturing the dynamic nature of music consumption. A key characteristic of this domain is repetitive listening, where users frequently replay familiar tracks. To capture these repetition patterns, recent research has introduced Personalised Popularity Scores (PPS), which quantify user-specific preferences based on historical frequency. While PPS enhances relevance in recommendation, it often reinforces already-known content, limiting the system's ability to surface novel or serendipitous items - key elements for fostering long-term user engagement and satisfaction. To address this limitation, we build upon RecJPQ, a Transformer-based framework initially developed to improve scalability in large-item catalogues through sub-item decomposition. We repurpose RecJPQ's sub-item architecture to model personalised popularity at a finer granularity. This allows us to capture shared repetition patterns across sub-embeddings - latent structures not accessible through item-level popularity alone. We propose a novel integration of sub-ID-level personalised popularity within the RecJPQ framework, enabling explicit control over the trade-off between accuracy and personalised novelty. Our sub-ID-level PPS method (sPPS) consistently outperforms item-level PPS by achieving significantly higher personalised novelty without compromising recommendation accuracy. Code and experiments are publicly available at https://github.com/sisinflab/Sub-id-Popularity.
☆ Tool Graph Retriever: Exploring Dependency Graph-based Tool Retrieval for Large Language Models
With the remarkable advancement of AI agents, the number of their equipped tools is increasing rapidly. However, integrating all tool information into the limited model context becomes impractical, highlighting the need for efficient tool retrieval methods. In this regard, dominant methods primarily rely on semantic similarities between tool descriptions and user queries to retrieve relevant tools. However, they often consider each tool independently, overlooking dependencies between tools, which may lead to the omission of prerequisite tools for successful task execution. To deal with this defect, in this paper, we propose Tool Graph Retriever (TGR), which exploits the dependencies among tools to learn better tool representations for retrieval. First, we construct a dataset termed TDI300K to train a discriminator for identifying tool dependencies. Then, we represent all candidate tools as a tool dependency graph and use graph convolution to integrate the dependencies into their representations. Finally, these updated tool representations are employed for online retrieval. Experimental results on several commonly used datasets show that our TGR can bring a performance improvement to existing dominant methods, achieving SOTA performance. Moreover, in-depth analyses also verify the importance of tool dependencies and the effectiveness of our TGR.
☆ Navigating Through Paper Flood: Advancing LLM-based Paper Evaluation through Domain-Aware Retrieval and Latent Reasoning
With the rapid and continuous increase in academic publications, identifying high-quality research has become an increasingly pressing challenge. While recent methods leveraging Large Language Models (LLMs) for automated paper evaluation have shown great promise, they are often constrained by outdated domain knowledge and limited reasoning capabilities. In this work, we present PaperEval, a novel LLM-based framework for automated paper evaluation that addresses these limitations through two key components: 1) a domain-aware paper retrieval module that retrieves relevant concurrent work to support contextualized assessments of novelty and contributions, and 2) a latent reasoning mechanism that enables deep understanding of complex motivations and methodologies, along with comprehensive comparison against concurrently related work, to support more accurate and reliable evaluation. To guide the reasoning process, we introduce a progressive ranking optimization strategy that encourages the LLM to iteratively refine its predictions with an emphasis on relative comparison. Experiments on two datasets demonstrate that PaperEval consistently outperforms existing methods in both academic impact and paper quality evaluation. In addition, we deploy PaperEval in a real-world paper recommendation system for filtering high-quality papers, which has gained strong engagement on social media -- amassing over 8,000 subscribers and attracting over 10,000 views for many filtered high-quality papers -- demonstrating the practical effectiveness of PaperEval.
☆ Community-Aware Social Community Recommendation
Social recommendation, which seeks to leverage social ties among users to alleviate the sparsity issue of user-item interactions, has emerged as a popular technique for elevating personalized services in recommender systems. Despite being effective, existing social recommendation models are mainly devised for recommending regular items such as blogs, images, and products, and largely fail for community recommendations due to overlooking the unique characteristics of communities. Distinctly, communities are constituted by individuals, who present high dynamicity and relate to rich structural patterns in social networks. To our knowledge, limited research has been devoted to comprehensively exploiting this information for recommending communities. To bridge this gap, this paper presents CASO, a novel and effective model specially designed for social community recommendation. Under the hood, CASO harnesses three carefully-crafted encoders for user embedding, wherein two of them extract community-related global and local structures from the social network via social modularity maximization and social closeness aggregation, while the third one captures user preferences using collaborative filtering with observed user-community affiliations. To further eliminate feature redundancy therein, we introduce a mutual exclusion between social and collaborative signals. Finally, CASO includes a community detection loss in the model optimization, thereby producing community-aware embeddings for communities. Our extensive experiments evaluating CASO against nine strong baselines on six real-world social networks demonstrate its consistent and remarkable superiority over the state of the art in terms of community recommendation performance.
comment: This is the technical report of the paper "Community-Aware Social Community Recommendation" accepted by CIKM 2025
☆ An End-to-End Multi-objective Ensemble Ranking Framework for Video Recommendation
We propose a novel End-to-end Multi-objective Ensemble Ranking framework (EMER) for the multi-objective ensemble ranking module, which is the most critical component of the short video recommendation system. EMER enhances personalization by replacing manually-designed heuristic formulas with an end-to-end modeling paradigm. EMER introduces a meticulously designed loss function to address the fundamental challenge of defining effective supervision for ensemble ranking, where no single ground-truth signal can fully capture user satisfaction. Moreover, EMER introduces novel sample organization method and transformer-based network architecture to capture the comparative relationships among candidates, which are critical for effective ranking. Additionally, we have proposed an offline-online consistent evaluation system to enhance the efficiency of offline model optimization, which is an established yet persistent challenge within the multi-objective ranking domain in industry. Abundant empirical tests are conducted on a real industrial dataset, and the results well demonstrate the effectiveness of our proposed framework. In addition, our framework has been deployed in the primary scenarios of Kuaishou, a short video recommendation platform with hundreds of millions of daily active users, achieving a 1.39% increase in overall App Stay Time and a 0.196% increase in 7-day user Lifetime(LT7), which are substantial improvements.
☆ Align-for-Fusion: Harmonizing Triple Preferences via Dual-oriented Diffusion for Cross-domain Sequential Recommendation
Personalized sequential recommendation aims to predict appropriate items for users based on their behavioral sequences. To alleviate data sparsity and interest drift issues, conventional approaches typically incorporate auxiliary behaviors from other domains via cross-domain transition. However, existing cross-domain sequential recommendation (CDSR) methods often follow an align-then-fusion paradigm that performs representation-level alignment across multiple domains and combines them mechanically for recommendation, overlooking the fine-grained fusion of domain-specific preferences. Inspired by recent advances in diffusion models (DMs) for distribution matching, we propose an align-for-fusion framework for CDSR to harmonize triple preferences via dual-oriented DMs, termed HorizonRec. Specifically, we investigate the uncertainty injection of DMs and identify stochastic noise as a key source of instability in existing DM-based recommenders. To address this, we introduce a mixed-conditioned distribution retrieval strategy that leverages distributions retrieved from users' authentic behavioral logic as semantic bridges across domains, enabling consistent multi-domain preference modeling. Furthermore, we propose a dual-oriented preference diffusion method to suppress potential noise and emphasize target-relevant interests during multi-domain user representation fusion. Extensive experiments on four CDSR datasets from two distinct platforms demonstrate the effectiveness and robustness of HorizonRec in fine-grained triple-domain preference fusion.
Data-Aware Socratic Query Refinement in Database Systems
In this paper, we propose Data-Aware Socratic Guidance (DASG), a dialogue-based query enhancement framework that embeds \linebreak interactive clarification as a first-class operator within database systems to resolve ambiguity in natural language queries. DASG treats dialogue as an optimization decision, asking clarifying questions only when the expected execution cost reduction exceeds the interaction overhead. The system quantifies ambiguity through linguistic fuzziness, schema grounding confidence, and projected costs across relational and vector backends. Our algorithm selects the optimal clarifications by combining semantic relevance, catalog-based information gain, and potential cost reduction. We evaluate our proposed framework on three datasets. The results show that DASG demonstrates improved query precision while maintaining efficiency, establishing a cooperative analytics paradigm where systems actively participate in query formulation rather than passively translating user requests.
☆ A Metric for MLLM Alignment in Large-scale Recommendation
Multimodal recommendation has emerged as a critical technique in modern recommender systems, leveraging content representations from advanced multimodal large language models (MLLMs). To ensure these representations are well-adapted, alignment with the recommender system is essential. However, evaluating the alignment of MLLMs for recommendation presents significant challenges due to three key issues: (1) static benchmarks are inaccurate because of the dynamism in real-world applications, (2) evaluations with online system, while accurate, are prohibitively expensive at scale, and (3) conventional metrics fail to provide actionable insights when learned representations underperform. To address these challenges, we propose the Leakage Impact Score (LIS), a novel metric for multimodal recommendation. Rather than directly assessing MLLMs, LIS efficiently measures the upper bound of preference data. We also share practical insights on deploying MLLMs with LIS in real-world scenarios. Online A/B tests on both Content Feed and Display Ads of Xiaohongshu's Explore Feed production demonstrate the effectiveness of our proposed method, showing significant improvements in user spent time and advertiser value.
comment: Pre-print.Under Review
☆ Planning Agents on an Ego-Trip: Leveraging Hybrid Ego-Graph Ensembles for Improved Tool Retrieval in Enterprise Task Planning
Effective tool retrieval is essential for AI agents to select from a vast array of tools when identifying and planning actions in the context of complex user queries. Despite its central role in planning, this aspect remains underexplored in the literature. Traditional approaches rely primarily on similarities between user queries and tool descriptions, which significantly limits retrieval accuracy, specifically when handling multi-step user requests. To address these limitations, we propose a Knowledge Graph (KG)-based tool retrieval framework that captures the semantic relationships between tools and their functional dependencies. Our retrieval algorithm leverages ensembles of 1-hop ego tool graphs to model direct and indirect connections between tools, enabling more comprehensive and contextual tool selection for multi-step tasks. We evaluate our approach on a synthetically generated internal dataset across six defined user classes, extending previous work on coherent dialogue synthesis and too retrieval benchmarks. Results demonstrate that our tool graph-based method achieves 91.85% tool coverage on the micro-average Complete Recall metric, compared to 89.26% for re-ranked semantic-lexical hybrid retrieval, the strongest non-KG baseline in our experiments. These findings support our hypothesis that the structural information in the KG provides complementary signals to pure similarity matching, particularly for queries requiring sequential tool composition.
☆ WebWatcher: Breaking New Frontiers of Vision-Language Deep Research Agent
Web agents such as Deep Research have demonstrated superhuman cognitive abilities, capable of solving highly challenging information-seeking problems. However, most research remains primarily text-centric, overlooking visual information in the real world. This makes multimodal Deep Research highly challenging, as such agents require much stronger reasoning abilities in perception, logic, knowledge, and the use of more sophisticated tools compared to text-based agents. To address this limitation, we introduce WebWatcher, a multi-modal Agent for Deep Research equipped with enhanced visual-language reasoning capabilities. It leverages high-quality synthetic multimodal trajectories for efficient cold start training, utilizes various tools for deep reasoning, and further enhances generalization through reinforcement learning. To better evaluate the capabilities of multimodal agents, we propose BrowseComp-VL, a benchmark with BrowseComp-style that requires complex information retrieval involving both visual and textual information. Experimental results show that WebWatcher significantly outperforms proprietary baseline, RAG workflow and open-source agents in four challenging VQA benchmarks, which paves the way for solving complex multimodal information-seeking tasks.
☆ G-UBS: Towards Robust Understanding of Implicit Feedback via Group-Aware User Behavior Simulation
User feedback is critical for refining recommendation systems, yet explicit feedback (e.g., likes or dislikes) remains scarce in practice. As a more feasible alternative, inferring user preferences from massive implicit feedback has shown great potential (e.g., a user quickly skipping a recommended video usually indicates disinterest). Unfortunately, implicit feedback is often noisy: a user might skip a video due to accidental clicks or other reasons, rather than disliking it. Such noise can easily misjudge user interests, thereby undermining recommendation performance. To address this issue, we propose a novel Group-aware User Behavior Simulation (G-UBS) paradigm, which leverages contextual guidance from relevant user groups, enabling robust and in-depth interpretation of implicit feedback for individual users. Specifically, G-UBS operates via two key agents. First, the User Group Manager (UGM) effectively clusters users to generate group profiles utilizing a ``summarize-cluster-reflect" workflow based on LLMs. Second, the User Feedback Modeler (UFM) employs an innovative group-aware reinforcement learning approach, where each user is guided by the associated group profiles during the reinforcement learning process, allowing UFM to robustly and deeply examine the reasons behind implicit feedback. To assess our G-UBS paradigm, we have constructed a Video Recommendation benchmark with Implicit Feedback (IF-VR). To the best of our knowledge, this is the first multi-modal benchmark for implicit feedback evaluation in video recommendation, encompassing 15k users, 25k videos, and 933k interaction records with implicit feedback. Extensive experiments on IF-VR demonstrate that G-UBS significantly outperforms mainstream LLMs and MLLMs, with a 4.0% higher proportion of videos achieving a play rate > 30% and 14.9% higher reasoning accuracy on IF-VR.
☆ Multi-Faceted Large Embedding Tables for Pinterest Ads Ranking
Large embedding tables are indispensable in modern recommendation systems, thanks to their ability to effectively capture and memorize intricate details of interactions among diverse entities. As we explore integrating large embedding tables into Pinterest's ads ranking models, we encountered not only common challenges such as sparsity and scalability, but also several obstacles unique to our context. Notably, our initial attempts to train large embedding tables from scratch resulted in neutral metrics. To tackle this, we introduced a novel multi-faceted pretraining scheme that incorporates multiple pretraining algorithms. This approach greatly enriched the embedding tables and resulted in significant performance improvements. As a result, the multi-faceted large embedding tables bring great performance gain on both the Click-Through Rate (CTR) and Conversion Rate (CVR) domains. Moreover, we designed a CPU-GPU hybrid serving infrastructure to overcome GPU memory limits and elevate the scalability. This framework has been deployed in the Pinterest Ads system and achieved 1.34% online CPC reduction and 2.60% CTR increase with neutral end-to-end latency change.
☆ RTTC: Reward-Guided Collaborative Test-Time Compute
Test-Time Compute (TTC) has emerged as a powerful paradigm for enhancing the performance of Large Language Models (LLMs) at inference, leveraging strategies such as Test-Time Training (TTT) and Retrieval-Augmented Generation (RAG). However, the optimal adaptation strategy varies across queries, and indiscriminate application of TTC strategy incurs substantial computational overhead. In this work, we introduce Reward-Guided Test-Time Compute (RTTC), a novel framework that adaptively selects the most effective TTC strategy for each query via a pretrained reward model, maximizing downstream accuracy across diverse domains and tasks. RTTC operates in a distributed server-client architecture, retrieving relevant samples from a remote knowledge base and applying RAG or lightweight fine-tuning on client devices only when necessary. To further mitigate redundant computation, we propose Query-State Caching, which enables the efficient reuse of historical query states at both retrieval and adaptation levels. Extensive experiments across multiple LLMs and benchmarks demonstrate that RTTC consistently achieves superior accuracy compared to vanilla RAG or TTT, validating the necessity of adaptive, reward-guided TTC selection and the potential of RTTC for scalable, high-performance language model adaptation.
♻ ☆ Towards Personalized Conversational Sales Agents: Contextual User Profiling for Strategic Action
Conversational Recommender Systems (CRSs)aim to engage users in dialogue to provide tailored recommendations. While traditional CRSs focus on eliciting preferences and retrieving items, real-world e-commerce interactions involve more complex decision-making, where users consider multiple factors beyond simple attributes. To capture this complexity, we introduce Conversational Sales (CSALES), a novel task that integrates preference elicitation, recommendation, and persuasion within a unified conversational framework. To support realistic and systematic evaluation, we present CSUSER, an evaluation protocol with LLM-based user simulator grounded in real-world behavioral data by modeling fine-grained user profiles for personalized interaction. We also propose CSI, a conversational sales agent that proactively infers contextual user profiles and strategically selects actions through conversation. Comprehensive experiments show that CSI significantly improves both recommendation success and persuasive effectiveness across diverse user profiles.
♻ ☆ QuMAB: Query-based Multi-Annotator Behavior Modeling with Reliability under Sparse Labels
Multi-annotator learning traditionally aggregates diverse annotations to approximate a single ground truth, treating disagreements as noise. However, this paradigm faces fundamental challenges: subjective tasks often lack absolute ground truth, and sparse annotation coverage makes aggregation statistically unreliable. We introduce a paradigm shift from sample-wise aggregation to annotator-wise behavior modeling. By treating annotator disagreements as valuable information rather than noise, modeling annotator-specific behavior patterns can reconstruct unlabeled data to reduce annotation cost, enhance aggregation reliability, and explain annotator decision behavior. To this end, we propose QuMAB (Query-based Multi-Annotator Behavior Pattern Learning), which uses light-weight queries to model individual annotators while capturing inter-annotator correlations as implicit regularization, preventing overfitting to sparse individual data while maintaining individualization and improving generalization, with a visualization of annotator focus regions offering an explainable analysis of behavior understanding. We contribute two large-scale datasets with dense per-annotator labels: STREET (4,300 labels/annotator) and AMER (average 3,118 labels/annotator), the first multimodal multi-annotator dataset. Extensive experiments demonstrate the superiority of our QuMAB in modeling individual annotators' behavior patterns, their utility for consensus prediction, and applicability under sparse annotations.
comment: 12 pages. arXiv admin note: substantial text overlap with arXiv:2503.15237
♻ ☆ From Generation to Consumption: Personalized List Value Estimation for Re-ranking
Re-ranking is critical in recommender systems for optimizing the order of recommendation lists, thus improving user satisfaction and platform revenue. Most existing methods follow a generator-evaluator paradigm, where the evaluator estimates the overall value of each candidate list. However, they often ignore the fact that users may exit before consuming the full list, leading to a mismatch between estimated generation value and actual consumption value. To bridge this gap, we propose CAVE, a personalized Consumption-Aware list Value Estimation framework. CAVE formulates the list value as the expectation over sub-list values, weighted by user-specific exit probabilities at each position. The exit probability is decomposed into an interest-driven component and a stochastic component, the latter modeled via a Weibull distribution to capture random external factors such as fatigue. By jointly modeling sub-list values and user exit behavior, CAVE yields a more faithful estimate of actual list consumption value. We further contribute three large-scale real-world list-wise benchmarks from the Kuaishou platform, varying in size and user activity patterns. Extensive experiments on these benchmarks, two Amazon datasets, and online A/B testing on Kuaishou show that CAVE consistently outperforms strong baselines, highlighting the benefit of explicitly modeling user exits in re-ranking.
♻ ☆ Generative Multi-Target Cross-Domain Recommendation
Recently, there has been a surge of interest in Multi-Target Cross-Domain Recommendation (MTCDR), which aims to enhance recommendation performance across multiple domains simultaneously. Existing MTCDR methods primarily rely on domain-shared entities (\eg users or items) to fuse and transfer cross-domain knowledge, which may be unavailable in non-overlapped recommendation scenarios. Some studies model user preferences and item features as domain-sharable semantic representations, which can be utilized to tackle the MTCDR task. Nevertheless, they often require extensive auxiliary data for pre-training. Developing more effective solutions for MTCDR remains an important area for further exploration. Inspired by recent advancements in generative recommendation, this paper introduces GMC, a generative paradigm-based approach for multi-target cross-domain recommendation. The core idea of GMC is to leverage semantically quantized discrete item identifiers as a medium for integrating multi-domain knowledge within a unified generative model. GMC first employs an item tokenizer to generate domain-shared semantic identifiers for each item, and then formulates item recommendation as a next-token generation task by training a domain-unified sequence-to-sequence model. To further leverage the domain information to enhance performance, we incorporate a domain-aware contrastive loss into the semantic identifier learning, and perform domain-specific fine-tuning on the unified recommender. Extensive experiments on five public datasets demonstrate the effectiveness of GMC compared to a range of baseline methods.
comment: fix some information by request
♻ ☆ ArXivBench: When You Should Avoid Using ChatGPT for Academic Writing
Large language models (LLMs) demonstrate strong capabilities in reasoning and question answering, yet their tendency to generate factually incorrect content remains a critical challenge. This study evaluates proprietary and open-source LLMs on generating relevant research papers with accurate arXiv links. Our evaluation reveals critical academic risks: LLMs frequently generate incorrect arXiv links or references to non-existent papers, fundamentally undermining their ability to properly attribute research contributions to the actual authors. We introduce arXivBench, a benchmark specifically designed to assess LLM performance across eight major subject categories on arXiv and five subfields within computer science, one of the most popular categories among them. Our findings show concerning accuracy variations across subjects, with Claude-3.5-Sonnet exhibiting a substantial advantage in generating both relevant and accurate responses. Notably, most LLMs perform significantly better in Artificial Intelligence than other subfields. This benchmark provides a standardized tool for evaluating LLM reliability in scientific contexts, promoting more dependable academic use in research environments. Our code and dataset are available at https://github.com/liningresearch/arXivBench and https://huggingface.co/datasets/arXivBenchLLM/arXivBench.
♻ ☆ CB-cPIR: Code-Based Computational Private Information Retrieval
A private information retrieval (PIR) scheme is a protocol that allows a user to retrieve a file from a database without revealing the identity of the desired file to a curious database. Given a distributed data storage system, efficient PIR can be achieved by making assumptions about the colluding capabilities of the storage servers holding the database. If these assumptions turn out to be incorrect, privacy is lost. In this work, we focus on the worst-case assumption: full collusion or, equivalently, viewing the storage system virtually as a single honest-but-curious server. We present CB-cPIR, a single-server code-based computational private information retrieval (cPIR) scheme that derives security from code-based cryptography. Specifically, the queries are protected by the hardness of decoding a random linear code. The scheme is heavily inspired by the pioneering code-based cPIR scheme proposed by Holzbaur, Hollanti, and Wachter-Zeh in [Holzbaur et al., "Computational Code-Based Single-Server Private Information Retrieval", 2020 IEEE ISIT] and fixes the vulnerabilities of the original scheme arising from highly probable rank differences in submatrices of the user's query. Recently, a new vulnerability was observed in [Lage, Bartz, "On the Security of a Code-Based PIR Scheme"], a simple modification to the scheme now fixes this vulnerability. For further validation of our scheme, we draw comparisons to the state-of-the-art lattice-based cPIR schemes.
comment: This paper builds on the work done in arXiv: 2402.02871v1 (IEEE ISIT24) and arXiv: 2001.07049 (IEEE ISIT20) Remark 6. briefly outlines a fix to a new attack, this paper will soon be updated to reflect the changes to the scheme
♻ ☆ JEPA4Rec: Learning Effective Language Representations for Sequential Recommendation via Joint Embedding Predictive Architecture
Language representation learning has emerged as a promising approach for sequential recommendation, thanks to its ability to learn generalizable representations. However, despite its advantages, this approach still struggles with data sparsity and a limited understanding of common-sense user preferences. To address these limitations, we propose $\textbf{JEPA4Rec}$, a framework that combines $\textbf{J}$oint $\textbf{E}$mbedding $\textbf{P}$redictive $\textbf{A}$rchitecture with language modeling of item textual descriptions. JEPA4Rec captures semantically rich and transferable representations, improving recommendation performance and reducing reliance on large-scale pre-training data. Specifically, JEPA4Rec represents items as text sentences by flattening descriptive information such as $\textit{title, category}$, and other attributes. To encode these sentences, we employ a bidirectional Transformer encoder with modified embedding layers tailored for capturing item information in recommendation datasets. We apply masking to text sentences and use them to predict the representations of the unmasked sentences, helping the model learn generalizable item embeddings. To further improve recommendation performance and language understanding, we employ a two-stage training strategy incorporating self-supervised learning losses. Experiments on six real-world datasets demonstrate that JEPA4Rec consistently outperforms state-of-the-art methods, particularly in cross-domain, cross-platform, and low-resource scenarios.
♻ ☆ KBest: Efficient Vector Search on Kunpeng CPU
Vector search, which returns the vectors most similar to a given query vector from a large vector dataset, underlies many important applications such as search, recommendation, and LLMs. To be economic, vector search needs to be efficient to reduce the resources required by a given query workload. However, existing vector search libraries (e.g., Faiss and DiskANN) are optimized for x86 CPU architectures (i.e., Intel and AMD CPUs) while Huawei Kunpeng CPUs are based on the ARM architecture and competitive in compute power. In this paper, we present KBest as a vector search library tailored for the latest Kunpeng 920 CPUs. To be efficient, KBest incorporates extensive hardware-aware and algorithmic optimizations, which include single-instruction-multiple-data (SIMD) accelerated distance computation, data prefetch, index refinement, early termination, and vector quantization. Experiment results show that KBest outperforms SOTA vector search libraries running on x86 CPUs, and our optimizations can improve the query throughput by over 2x. Currently, KBest serves applications from both our internal business and external enterprise clients with tens of millions of queries on a daily basis.
♻ ☆ SSEmb: A Joint Structural and Semantic Embedding Framework for Mathematical Formula Retrieval
Formula retrieval is an important topic in Mathematical Information Retrieval. We propose SSEmb, a novel embedding framework capable of capturing both structural and semantic features of mathematical formulas. Structurally, we employ Graph Contrastive Learning to encode formulas represented as Operator Graphs. To enhance structural diversity while preserving mathematical validity of these formula graphs, we introduce a novel graph data augmentation approach through a substitution strategy. Semantically, we utilize Sentence-BERT to encode the surrounding text of formulas. Finally, for each query and its candidates, structural and semantic similarities are calculated separately and then fused through a weighted scheme. In the ARQMath-3 formula retrieval task, SSEmb outperforms existing embedding-based methods by over 5 percentage points on P'@10 and nDCG'@10. Furthermore, SSEmb enhances the performance of all runs of other methods and achieves state-of-the-art results when combined with Approach0.
♻ ☆ Mean-Variance Efficient Collaborative Filtering for Stock Recommendation
The rise of FinTech has transformed financial services onto online platforms, yet stock investment recommender systems have received limited attention compared to other industries. Personalized stock recommendations can significantly impact customer engagement and satisfaction within the industry. However, traditional investment recommendations focus on high-return stocks or highly diversified portfolios based on the modern portfolio theory, often neglecting user preferences. On the other hand, collaborative filtering (CF) methods also may not be directly applicable to stock recommendations, because it is inappropriate to just recommend stocks that users like. The key is to optimally blend users preference with the portfolio theory. However, research on stock recommendations within the recommender system domain remains comparatively limited, and no existing model considers both the preference of users and the risk-return characteristics of stocks. In this regard, we propose a mean-variance efficient collaborative filtering (MVECF) model for stock recommendations that consider both aspects. Our model is specifically designed to improve the pareto optimality (mean-variance efficiency) in a trade-off between the risk (variance of return) and return (mean return) by systemically handling uncertainties in stock prices. Such improvements are incorporated into the MVECF model using regularization, and the model is restructured to fit into the ordinary matrix factorization scheme to boost computational efficiency. Experiments on real-world fund holdings data show that our model can increase the mean-variance efficiency of suggested portfolios while sacrificing just a small amount of mean average precision and recall. Finally, we further show MVECF is easily applicable to the state-of-the-art graph-based ranking models.
comment: 12 pages, 4 figures, preprint, under review
♻ ☆ Explainable Recommendation with Simulated Human Feedback
Recent advancements in explainable recommendation have greatly bolstered user experience by elucidating the decision-making rationale. However, the existing methods actually fail to provide effective feedback signals for potentially better or worse generated explanations due to their reliance on traditional supervised learning paradigms in sparse interaction data. To address these issues, we propose a novel human-like feedback-driven optimization framework. This framework employs a dynamic interactive optimization mechanism for achieving human-centered explainable requirements without incurring high labor costs. Specifically, we propose to utilize large language models (LLMs) as human simulators to predict human-like feedback for guiding the learning process. To enable the LLMs to deeply understand the task essence and meet user's diverse personalized requirements, we introduce a human-induced customized reward scoring method, which helps stimulate the language understanding and logical reasoning capabilities of LLMs. Furthermore, considering the potential conflicts between different perspectives of explanation quality, we introduce a principled Pareto optimization that transforms the multi-perspective quality enhancement task into a multi-objective optimization problem for improving explanation performance. At last, to achieve efficient model training, we design an off-policy optimization pipeline. By incorporating a replay buffer and addressing the data distribution biases, we can effectively improve data utilization and enhance model generality. Extensive experiments on four datasets demonstrate the superiority of our approach.
Artificial Intelligence 150
☆ Towards Generalizable Safety in Crowd Navigation via Conformal Uncertainty Handling
Mobile robots navigating in crowds trained using reinforcement learning are known to suffer performance degradation when faced with out-of-distribution scenarios. We propose that by properly accounting for the uncertainties of pedestrians, a robot can learn safe navigation policies that are robust to distribution shifts. Our method augments agent observations with prediction uncertainty estimates generated by adaptive conformal inference, and it uses these estimates to guide the agent's behavior through constrained reinforcement learning. The system helps regulate the agent's actions and enables it to adapt to distribution shifts. In the in-distribution setting, our approach achieves a 96.93% success rate, which is over 8.80% higher than the previous state-of-the-art baselines with over 3.72 times fewer collisions and 2.43 times fewer intrusions into ground-truth human future trajectories. In three out-of-distribution scenarios, our method shows much stronger robustness when facing distribution shifts in velocity variations, policy changes, and transitions from individual to group dynamics. We deploy our method on a real robot, and experiments show that the robot makes safe and robust decisions when interacting with both sparse and dense crowds. Our code and videos are available on https://gen-safe-nav.github.io/.
comment: 9th Conference on Robot Learning (CoRL 2025); Project website: https://gen-safe-nav.github.io/. arXiv admin note: text overlap with arXiv:2407.17460
☆ KuaiLive: A Real-time Interactive Dataset for Live Streaming Recommendation
Live streaming platforms have become a dominant form of online content consumption, offering dynamically evolving content, real-time interactions, and highly engaging user experiences. These unique characteristics introduce new challenges that differentiate live streaming recommendation from traditional recommendation settings and have garnered increasing attention from industry in recent years. However, research progress in academia has been hindered by the lack of publicly available datasets that accurately reflect the dynamic nature of live streaming environments. To address this gap, we introduce KuaiLive, the first real-time, interactive dataset collected from Kuaishou, a leading live streaming platform in China with over 400 million daily active users. The dataset records the interaction logs of 23,772 users and 452,621 streamers over a 21-day period. Compared to existing datasets, KuaiLive offers several advantages: it includes precise live room start and end timestamps, multiple types of real-time user interactions (click, comment, like, gift), and rich side information features for both users and streamers. These features enable more realistic simulation of dynamic candidate items and better modeling of user and streamer behaviors. We conduct a thorough analysis of KuaiLive from multiple perspectives and evaluate several representative recommendation methods on it, establishing a strong benchmark for future research. KuaiLive can support a wide range of tasks in the live streaming domain, such as top-K recommendation, click-through rate prediction, watch time prediction, and gift price prediction. Moreover, its fine-grained behavioral data also enables research on multi-behavior modeling, multi-task learning, and fairness-aware recommendation. The dataset and related resources are publicly available at https://imgkkk574.github.io/KuaiLive.
☆ H-Net++: Hierarchical Dynamic Chunking for Tokenizer-Free Language Modelling in Morphologically-Rich Languages
Byte-level language models eliminate fragile tokenizers but face computational challenges in morphologically-rich languages (MRLs), where words span many bytes. We propose H-NET++, a hierarchical dynamic-chunking model that learns linguistically-informed segmentation through end-to-end training. Key innovations include: (1) a lightweight Transformer context-mixer (1.9M parameters) for cross-chunk attention, (2) a two-level latent hyper-prior for document-level consistency, (3) specialized handling of orthographic artifacts (e.g. Persian ZWNJ), and (4) curriculum-based training with staged sequence lengths. On a 1.4B-token Persian corpus, H-NET++ achieves state-of-the-art results: 0.159 BPB reduction versus BPE-based GPT-2-fa (12% better compression), 5.4pp gain on ParsGLUE, 53% improved robustness to ZWNJ corruption, and 73.8% F1 on gold morphological boundaries. Our learned chunks align with Persian morphology without explicit supervision, demonstrating that hierarchical dynamic chunking provides an effective tokenizer-free solution for MRLs while maintaining computational efficiency.
☆ How Do LLMs Persuade? Linear Probes Can Uncover Persuasion Dynamics in Multi-Turn Conversations
Large Language Models (LLMs) have started to demonstrate the ability to persuade humans, yet our understanding of how this dynamic transpires is limited. Recent work has used linear probes, lightweight tools for analyzing model representations, to study various LLM skills such as the ability to model user sentiment and political perspective. Motivated by this, we apply probes to study persuasion dynamics in natural, multi-turn conversations. We leverage insights from cognitive science to train probes on distinct aspects of persuasion: persuasion success, persuadee personality, and persuasion strategy. Despite their simplicity, we show that they capture various aspects of persuasion at both the sample and dataset levels. For instance, probes can identify the point in a conversation where the persuadee was persuaded or where persuasive success generally occurs across the entire dataset. We also show that in addition to being faster than expensive prompting-based approaches, probes can do just as well and even outperform prompting in some settings, such as when uncovering persuasion strategy. This suggests probes as a plausible avenue for studying other complex behaviours such as deception and manipulation, especially in multi-turn settings and large-scale dataset analysis where prompting-based methods would be computationally inefficient.
☆ Simulating Human-Like Learning Dynamics with LLM-Empowered Agents
Capturing human learning behavior based on deep learning methods has become a major research focus in both psychology and intelligent systems. Recent approaches rely on controlled experiments or rule-based models to explore cognitive processes. However, they struggle to capture learning dynamics, track progress over time, or provide explainability. To address these challenges, we introduce LearnerAgent, a novel multi-agent framework based on Large Language Models (LLMs) to simulate a realistic teaching environment. To explore human-like learning dynamics, we construct learners with psychologically grounded profiles-such as Deep, Surface, and Lazy-as well as a persona-free General Learner to inspect the base LLM's default behavior. Through weekly knowledge acquisition, monthly strategic choices, periodic tests, and peer interaction, we can track the dynamic learning progress of individual learners over a full-year journey. Our findings are fourfold: 1) Longitudinal analysis reveals that only Deep Learner achieves sustained cognitive growth. Our specially designed "trap questions" effectively diagnose Surface Learner's shallow knowledge. 2) The behavioral and cognitive patterns of distinct learners align closely with their psychological profiles. 3) Learners' self-concept scores evolve realistically, with the General Learner developing surprisingly high self-efficacy despite its cognitive limitations. 4) Critically, the default profile of base LLM is a "diligent but brittle Surface Learner"-an agent that mimics the behaviors of a good student but lacks true, generalizable understanding. Extensive simulation experiments demonstrate that LearnerAgent aligns well with real scenarios, yielding more insightful findings about LLMs' behavior.
☆ The Missing Reward: Active Inference in the Era of Experience
This paper argues that Active Inference (AIF) provides a crucial foundation for developing autonomous AI agents capable of learning from experience without continuous human reward engineering. As AI systems begin to exhaust high-quality training data and rely on increasingly large human workforces for reward design, the current paradigm faces significant scalability challenges that could impede progress toward genuinely autonomous intelligence. The proposal for an ``Era of Experience,'' where agents learn from self-generated data, is a promising step forward. However, this vision still depends on extensive human engineering of reward functions, effectively shifting the bottleneck from data curation to reward curation. This highlights what we identify as the \textbf{grounded-agency gap}: the inability of contemporary AI systems to autonomously formulate, adapt, and pursue objectives in response to changing circumstances. We propose that AIF can bridge this gap by replacing external reward signals with an intrinsic drive to minimize free energy, allowing agents to naturally balance exploration and exploitation through a unified Bayesian objective. By integrating Large Language Models as generative world models with AIF's principled decision-making framework, we can create agents that learn efficiently from experience while remaining aligned with human values. This synthesis offers a compelling path toward AI systems that can develop autonomously while adhering to both computational and physical constraints.
☆ TrajEvo: Trajectory Prediction Heuristics Design via LLM-driven Evolution
Trajectory prediction is a critical task in modeling human behavior, especially in safety-critical domains such as social robotics and autonomous vehicle navigation. Traditional heuristics based on handcrafted rules often lack accuracy and generalizability. Although deep learning approaches offer improved performance, they typically suffer from high computational cost, limited explainability, and, importantly, poor generalization to out-of-distribution (OOD) scenarios. In this paper, we introduce TrajEvo, a framework that leverages Large Language Models (LLMs) to automatically design trajectory prediction heuristics. TrajEvo employs an evolutionary algorithm to generate and refine prediction heuristics from past trajectory data. We propose two key innovations: Cross-Generation Elite Sampling to encourage population diversity, and a Statistics Feedback Loop that enables the LLM to analyze and improve alternative predictions. Our evaluations demonstrate that TrajEvo outperforms existing heuristic methods across multiple real-world datasets, and notably surpasses both heuristic and deep learning methods in generalizing to an unseen OOD real-world dataset. TrajEvo marks a promising step toward the automated design of fast, explainable, and generalizable trajectory prediction heuristics. We release our source code to facilitate future research at https://github.com/ai4co/trajevo.
comment: arXiv admin note: substantial text overlap with arXiv:2505.04480
☆ Test-Time Reinforcement Learning for GUI Grounding via Region Consistency
Graphical User Interface (GUI) grounding, the task of mapping natural language instructions to precise screen coordinates, is fundamental to autonomous GUI agents. While existing methods achieve strong performance through extensive supervised training or reinforcement learning with labeled rewards, they remain constrained by the cost and availability of pixel-level annotations. We observe that when models generate multiple predictions for the same GUI element, the spatial overlap patterns reveal implicit confidence signals that can guide more accurate localization. Leveraging this insight, we propose GUI-RC (Region Consistency), a test-time scaling method that constructs spatial voting grids from multiple sampled predictions to identify consensus regions where models show highest agreement. Without any training, GUI-RC improves accuracy by 2-3% across various architectures on ScreenSpot benchmarks. We further introduce GUI-RCPO (Region Consistency Policy Optimization), which transforms these consistency patterns into rewards for test-time reinforcement learning. By computing how well each prediction aligns with the collective consensus, GUI-RCPO enables models to iteratively refine their outputs on unlabeled data during inference. Extensive experiments demonstrate the generality of our approach: GUI-RC boosts Qwen2.5-VL-3B-Instruct from 80.11% to 83.57% on ScreenSpot-v2, while GUI-RCPO further improves it to 85.14% through self-supervised optimization. Our approach reveals the untapped potential of test-time scaling and test-time reinforcement learning for GUI grounding, offering a promising path toward more robust and data-efficient GUI agents.
comment: Project Page: https://zju-real.github.io/gui-rcpo Code: https://github.com/zju-real/gui-rcpo
☆ OmniEAR: Benchmarking Agent Reasoning in Embodied Tasks
Large language models excel at abstract reasoning but their capacity for embodied agent reasoning remains largely unexplored. We present OmniEAR, a comprehensive framework for evaluating how language models reason about physical interactions, tool usage, and multi-agent coordination in embodied tasks. Unlike existing benchmarks that provide predefined tool sets or explicit collaboration directives, OmniEAR requires agents to dynamically acquire capabilities and autonomously determine coordination strategies based on task demands. Through text-based environment representation, we model continuous physical properties and complex spatial relationships across 1,500 scenarios spanning household and industrial domains. Our systematic evaluation reveals severe performance degradation when models must reason from constraints: while achieving 85-96% success with explicit instructions, performance drops to 56-85% for tool reasoning and 63-85% for implicit collaboration, with compound tasks showing over 50% failure rates. Surprisingly, complete environmental information degrades coordination performance, indicating models cannot filter task-relevant constraints. Fine-tuning improves single-agent tasks dramatically (0.6% to 76.3%) but yields minimal multi-agent gains (1.5% to 5.5%), exposing fundamental architectural limitations. These findings demonstrate that embodied reasoning poses fundamentally different challenges than current models can address, establishing OmniEAR as a rigorous benchmark for evaluating and advancing embodied AI systems. Our code and data are included in the supplementary materials and will be open-sourced upon acceptance.
comment: Project Page: https://zju-real.github.io/OmniEmbodied Code: https://github.com/ZJU-REAL/OmniEmbodied
☆ Cooper: Co-Optimizing Policy and Reward Models in Reinforcement Learning for Large Language Models
Large language models (LLMs) have demonstrated remarkable performance in reasoning tasks, where reinforcement learning (RL) serves as a key algorithm for enhancing their reasoning capabilities. Currently, there are two mainstream reward paradigms: model-based rewards and rule-based rewards. However, both approaches suffer from limitations: rule-based rewards lack robustness, while model-based rewards are vulnerable to reward hacking. To address these issues, we propose Cooper(Co-optimizing Policy Model and Reward Model), a RL framework that jointly optimizes both the policy model and the reward model. Cooper leverages the high precision of rule-based rewards when identifying correct responses, and dynamically constructs and selects positive-negative sample pairs for continued training the reward model. This design enhances robustness and mitigates the risk of reward hacking. To further support Cooper, we introduce a hybrid annotation strategy that efficiently and accurately generates training data for the reward model. We also propose a reference-based reward modeling paradigm, where the reward model takes a reference answer as input. Based on this design, we train a reward model named VerifyRM, which achieves higher accuracy on VerifyBench compared to other models of the same size. We conduct reinforcement learning using both VerifyRM and Cooper. Our experiments show that Cooper not only alleviates reward hacking but also improves end-to-end RL performance, for instance, achieving a 0.54% gain in average accuracy on Qwen2.5-1.5B-Instruct. Our findings demonstrate that dynamically updating reward model is an effective way to combat reward hacking, providing a reference for better integrating reward models into RL.
comment: Project Page: https://zju-real.github.io/cooper Code: https://github.com/zju-real/cooper
☆ Shuffle-R1: Efficient RL framework for Multimodal Large Language Models via Data-centric Dynamic Shuffle
Reinforcement learning (RL) has emerged as an effective post-training paradigm for enhancing the reasoning capabilities of multimodal large language model (MLLM). However, current RL pipelines often suffer from training inefficiencies caused by two underexplored issues: Advantage Collapsing, where most advantages in a batch concentrate near zero, and Rollout Silencing, where the proportion of rollouts contributing non-zero gradients diminishes over time. These issues lead to suboptimal gradient updates and hinder long-term learning efficiency. To address these issues, we propose Shuffle-R1, a simple yet principled framework that improves RL fine-tuning efficiency by dynamically restructuring trajectory sampling and batch composition. It introduces (1) Pairwise Trajectory Sampling, which selects high-contrast trajectories with large advantages to improve gradient signal quality, and (2) Advantage-based Trajectory Shuffle, which increases exposure of valuable rollouts through informed batch reshuffling. Experiments across multiple reasoning benchmarks show that our framework consistently outperforms strong RL baselines with minimal overhead. These results highlight the importance of data-centric adaptations for more efficient RL training in MLLM.
☆ Iterative Learning of Computable Phenotypes for Treatment Resistant Hypertension using Large Language Models
Large language models (LLMs) have demonstrated remarkable capabilities for medical question answering and programming, but their potential for generating interpretable computable phenotypes (CPs) is under-explored. In this work, we investigate whether LLMs can generate accurate and concise CPs for six clinical phenotypes of varying complexity, which could be leveraged to enable scalable clinical decision support to improve care for patients with hypertension. In addition to evaluating zero-short performance, we propose and test a synthesize, execute, debug, instruct strategy that uses LLMs to generate and iteratively refine CPs using data-driven feedback. Our results show that LLMs, coupled with iterative learning, can generate interpretable and reasonably accurate programs that approach the performance of state-of-the-art ML methods while requiring significantly fewer training examples.
comment: To appear in PMLR, Volume 298, Machine Learning for Healthcare, 2025
☆ MV-Debate: Multi-view Agent Debate with Dynamic Reflection Gating for Multimodal Harmful Content Detection in Social Media
Social media has evolved into a complex multimodal environment where text, images, and other signals interact to shape nuanced meanings, often concealing harmful intent. Identifying such intent, whether sarcasm, hate speech, or misinformation, remains challenging due to cross-modal contradictions, rapid cultural shifts, and subtle pragmatic cues. To address these challenges, we propose MV-Debate, a multi-view agent debate framework with dynamic reflection gating for unified multimodal harmful content detection. MV-Debate assembles four complementary debate agents, a surface analyst, a deep reasoner, a modality contrast, and a social contextualist, to analyze content from diverse interpretive perspectives. Through iterative debate and reflection, the agents refine responses under a reflection-gain criterion, ensuring both accuracy and efficiency. Experiments on three benchmark datasets demonstrate that MV-Debate significantly outperforms strong single-model and existing multi-agent debate baselines. This work highlights the promise of multi-agent debate in advancing reliable social intent detection in safety-critical online contexts.
☆ Adapting Vision-Language Models Without Labels: A Comprehensive Survey
Vision-Language Models (VLMs) have demonstrated remarkable generalization capabilities across a wide range of tasks. However, their performance often remains suboptimal when directly applied to specific downstream scenarios without task-specific adaptation. To enhance their utility while preserving data efficiency, recent research has increasingly focused on unsupervised adaptation methods that do not rely on labeled data. Despite the growing interest in this area, there remains a lack of a unified, task-oriented survey dedicated to unsupervised VLM adaptation. To bridge this gap, we present a comprehensive and structured overview of the field. We propose a taxonomy based on the availability and nature of unlabeled visual data, categorizing existing approaches into four key paradigms: Data-Free Transfer (no data), Unsupervised Domain Transfer (abundant data), Episodic Test-Time Adaptation (batch data), and Online Test-Time Adaptation (streaming data). Within this framework, we analyze core methodologies and adaptation strategies associated with each paradigm, aiming to establish a systematic understanding of the field. Additionally, we review representative benchmarks across diverse applications and highlight open challenges and promising directions for future research. An actively maintained repository of relevant literature is available at https://github.com/tim-learn/Awesome-LabelFree-VLMs.
comment: Discussions, comments, and questions are welcome in \url{https://github.com/tim-learn/Awesome-LabelFree-VLMs}
☆ Conformal Sets in Multiple-Choice Question Answering under Black-Box Settings with Provable Coverage Guarantees
Large Language Models (LLMs) have shown remarkable progress in multiple-choice question answering (MCQA), but their inherent unreliability, such as hallucination and overconfidence, limits their application in high-risk domains. To address this, we propose a frequency-based uncertainty quantification method under black-box settings, leveraging conformal prediction (CP) to ensure provable coverage guarantees. Our approach involves multiple independent samplings of the model's output distribution for each input, with the most frequent sample serving as a reference to calculate predictive entropy (PE). Experimental evaluations across six LLMs and four datasets (MedMCQA, MedQA, MMLU, MMLU-Pro) demonstrate that frequency-based PE outperforms logit-based PE in distinguishing between correct and incorrect predictions, as measured by AUROC. Furthermore, the method effectively controls the empirical miscoverage rate under user-specified risk levels, validating that sampling frequency can serve as a viable substitute for logit-based probabilities in black-box scenarios. This work provides a distribution-free model-agnostic framework for reliable uncertainty quantification in MCQA with guaranteed coverage, enhancing the trustworthiness of LLMs in practical applications.
comment: under review
☆ Tractable Sharpness-Aware Learning of Probabilistic Circuits
Probabilistic Circuits (PCs) are a class of generative models that allow exact and tractable inference for a wide range of queries. While recent developments have enabled the learning of deep and expressive PCs, this increased capacity can often lead to overfitting, especially when data is limited. We analyze PC overfitting from a log-likelihood-landscape perspective and show that it is often caused by convergence to sharp optima that generalize poorly. Inspired by sharpness aware minimization in neural networks, we propose a Hessian-based regularizer for training PCs. As a key contribution, we show that the trace of the Hessian of the log-likelihood-a sharpness proxy that is typically intractable in deep neural networks-can be computed efficiently for PCs. Minimizing this Hessian trace induces a gradient-norm-based regularizer that yields simple closed-form parameter updates for EM, and integrates seamlessly with gradient based learning methods. Experiments on synthetic and real-world datasets demonstrate that our method consistently guides PCs toward flatter minima, improves generalization performance.
☆ The World According to LLMs: How Geographic Origin Influences LLMs' Entity Deduction Capabilities
Large Language Models (LLMs) have been extensively tuned to mitigate explicit biases, yet they often exhibit subtle implicit biases rooted in their pre-training data. Rather than directly probing LLMs with human-crafted questions that may trigger guardrails, we propose studying how models behave when they proactively ask questions themselves. The 20 Questions game, a multi-turn deduction task, serves as an ideal testbed for this purpose. We systematically evaluate geographic performance disparities in entity deduction using a new dataset, Geo20Q+, consisting of both notable people and culturally significant objects (e.g., foods, landmarks, animals) from diverse regions. We test popular LLMs across two gameplay configurations (canonical 20-question and unlimited turns) and in seven languages (English, Hindi, Mandarin, Japanese, French, Spanish, and Turkish). Our results reveal geographic disparities: LLMs are substantially more successful at deducing entities from the Global North than the Global South, and the Global West than the Global East. While Wikipedia pageviews and pre-training corpus frequency correlate mildly with performance, they fail to fully explain these disparities. Notably, the language in which the game is played has minimal impact on performance gaps. These findings demonstrate the value of creative, free-form evaluation frameworks for uncovering subtle biases in LLMs that remain hidden in standard prompting setups. By analyzing how models initiate and pursue reasoning goals over multiple turns, we find geographic and cultural disparities embedded in their reasoning processes. We release the dataset (Geo20Q+) and code at https://sites.google.com/view/llmbias20q/home.
comment: Conference on Language Modeling 2025
☆ Streamlining Admission with LOR Insights: AI-Based Leadership Assessment in Online Master's Program
Letters of recommendation (LORs) provide valuable insights into candidates' capabilities and experiences beyond standardized test scores. However, reviewing these text-heavy materials is time-consuming and labor-intensive. To address this challenge and support the admission committee in providing feedback for students' professional growth, our study introduces LORI: LOR Insights, a novel AI-based detection tool for assessing leadership skills in LORs submitted by online master's program applicants. By employing natural language processing and leveraging large language models using RoBERTa and LLAMA, we seek to identify leadership attributes such as teamwork, communication, and innovation. Our latest RoBERTa model achieves a weighted F1 score of 91.6%, a precision of 92.4%, and a recall of 91.6%, showing a strong level of consistency in our test data. With the growing importance of leadership skills in the STEM sector, integrating LORI into the graduate admissions process is crucial for accurately assessing applicants' leadership capabilities. This approach not only streamlines the admissions process but also automates and ensures a more comprehensive evaluation of candidates' capabilities.
☆ LAG: Logic-Augmented Generation from a Cartesian Perspective
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks, yet exhibit critical limitations in knowledge-intensive tasks, often generating hallucinations when faced with questions requiring specialized expertise. While retrieval-augmented generation (RAG) mitigates this by integrating external knowledge, it struggles with complex reasoning scenarios due to its reliance on direct semantic retrieval and lack of structured logical organization. Inspired by Cartesian principles from \textit{Discours de la m\'ethode}, this paper introduces Logic-Augmented Generation (LAG), a novel paradigm that reframes knowledge augmentation through systematic question decomposition and dependency-aware reasoning. Specifically, LAG first decomposes complex questions into atomic sub-questions ordered by logical dependencies. It then resolves these sequentially, using prior answers to guide context retrieval for subsequent sub-questions, ensuring stepwise grounding in logical chain. To prevent error propagation, LAG incorporates a logical termination mechanism that halts inference upon encountering unanswerable sub-questions and reduces wasted computation on excessive reasoning. Finally, it synthesizes all sub-resolutions to generate verified responses. Experiments on four benchmark datasets demonstrate that LAG significantly enhances reasoning robustness, reduces hallucination, and aligns LLM problem-solving with human cognition, offering a principled alternative to existing RAG systems.
☆ Auto-Eval Judge: Towards a General Agentic Framework for Task Completion Evaluation
The increasing adoption of foundation models as agents across diverse domains necessitates a robust evaluation framework. Current methods, such as LLM-as-a-Judge, focus only on final outputs, overlooking the step-by-step reasoning that drives agentic decision-making. Meanwhile, existing Agent-as-a-Judge systems, where one agent evaluates another's task completion, are typically designed for narrow, domain-specific settings. To address this gap, we propose a generalizable, modular framework for evaluating agent task completion independent of the task domain. The framework emulates human-like evaluation by decomposing tasks into sub-tasks and validating each step using available information, such as the agent's output and reasoning. Each module contributes to a specific aspect of the evaluation process, and their outputs are aggregated to produce a final verdict on task completion. We validate our framework by evaluating the Magentic-One Actor Agent on two benchmarks, GAIA and BigCodeBench. Our Judge Agent predicts task success with closer agreement to human evaluations, achieving 4.76% and 10.52% higher alignment accuracy, respectively, compared to the GPT-4o based LLM-as-a-Judge baseline. This demonstrates the potential of our proposed general-purpose evaluation framework.
☆ GRAIL:Learning to Interact with Large Knowledge Graphs for Retrieval Augmented Reasoning
Large Language Models (LLMs) integrated with Retrieval-Augmented Generation (RAG) techniques have exhibited remarkable performance across a wide range of domains. However, existing RAG approaches primarily operate on unstructured data and demonstrate limited capability in handling structured knowledge such as knowledge graphs. Meanwhile, current graph retrieval methods fundamentally struggle to capture holistic graph structures while simultaneously facing precision control challenges that manifest as either critical information gaps or excessive redundant connections, collectively undermining reasoning performance. To address this challenge, we propose GRAIL: Graph-Retrieval Augmented Interactive Learning, a framework designed to interact with large-scale graphs for retrieval-augmented reasoning. Specifically, GRAIL integrates LLM-guided random exploration with path filtering to establish a data synthesis pipeline, where a fine-grained reasoning trajectory is automatically generated for each task. Based on the synthesized data, we then employ a two-stage training process to learn a policy that dynamically decides the optimal actions at each reasoning step. The overall objective of precision-conciseness balance in graph retrieval is decoupled into fine-grained process-supervised rewards to enhance data efficiency and training stability. In practical deployment, GRAIL adopts an interactive retrieval paradigm, enabling the model to autonomously explore graph paths while dynamically balancing retrieval breadth and precision. Extensive experiments have shown that GRAIL achieves an average accuracy improvement of 21.01% and F1 improvement of 22.43% on three knowledge graph question-answering datasets. Our source code and datasets is available at https://github.com/Changgeww/GRAIL.
comment: 9 pages,3 figures
☆ InfiAlign: A Scalable and Sample-Efficient Framework for Aligning LLMs to Enhance Reasoning Capabilities
Large language models (LLMs) have exhibited impressive reasoning abilities on a wide range of complex tasks. However, enhancing these capabilities through post-training remains resource intensive, particularly in terms of data and computational cost. Although recent efforts have sought to improve sample efficiency through selective data curation, existing methods often rely on heuristic or task-specific strategies that hinder scalability. In this work, we introduce InfiAlign, a scalable and sample-efficient post-training framework that integrates supervised fine-tuning (SFT) with Direct Preference Optimization (DPO) to align LLMs for enhanced reasoning. At the core of InfiAlign is a robust data selection pipeline that automatically curates high-quality alignment data from open-source reasoning datasets using multidimensional quality metrics. This pipeline enables significant performance gains while drastically reducing data requirements and remains extensible to new data sources. When applied to the Qwen2.5-Math-7B-Base model, our SFT model achieves performance on par with DeepSeek-R1-Distill-Qwen-7B, while using only approximately 12% of the training data, and demonstrates strong generalization across diverse reasoning tasks. Additional improvements are obtained through the application of DPO, with particularly notable gains in mathematical reasoning tasks. The model achieves an average improvement of 3.89% on AIME 24/25 benchmarks. Our results highlight the effectiveness of combining principled data selection with full-stage post-training, offering a practical solution for aligning large reasoning models in a scalable and data-efficient manner. The model checkpoints are available at https://huggingface.co/InfiX-ai/InfiAlign-Qwen-7B-SFT.
☆ MoMA: A Mixture-of-Multimodal-Agents Architecture for Enhancing Clinical Prediction Modelling
Multimodal electronic health record (EHR) data provide richer, complementary insights into patient health compared to single-modality data. However, effectively integrating diverse data modalities for clinical prediction modeling remains challenging due to the substantial data requirements. We introduce a novel architecture, Mixture-of-Multimodal-Agents (MoMA), designed to leverage multiple large language model (LLM) agents for clinical prediction tasks using multimodal EHR data. MoMA employs specialized LLM agents ("specialist agents") to convert non-textual modalities, such as medical images and laboratory results, into structured textual summaries. These summaries, together with clinical notes, are combined by another LLM ("aggregator agent") to generate a unified multimodal summary, which is then used by a third LLM ("predictor agent") to produce clinical predictions. Evaluating MoMA on three prediction tasks using real-world datasets with different modality combinations and prediction settings, MoMA outperforms current state-of-the-art methods, highlighting its enhanced accuracy and flexibility across various tasks.
☆ Can Large Language Models Generate Effective Datasets for Emotion Recognition in Conversations?
Emotion recognition in conversations (ERC) focuses on identifying emotion shifts within interactions, representing a significant step toward advancing machine intelligence. However, ERC data remains scarce, and existing datasets face numerous challenges due to their highly biased sources and the inherent subjectivity of soft labels. Even though Large Language Models (LLMs) have demonstrated their quality in many affective tasks, they are typically expensive to train, and their application to ERC tasks--particularly in data generation--remains limited. To address these challenges, we employ a small, resource-efficient, and general-purpose LLM to synthesize ERC datasets with diverse properties, supplementing the three most widely used ERC benchmarks. We generate six novel datasets, with two tailored to enhance each benchmark. We evaluate the utility of these datasets to (1) supplement existing datasets for ERC classification, and (2) analyze the effects of label imbalance in ERC. Our experimental results indicate that ERC classifier models trained on the generated datasets exhibit strong robustness and consistently achieve statistically significant performance improvements on existing ERC benchmarks.
comment: 8 pages, 4 figures
☆ Embedding Alignment in Code Generation for Audio
LLM-powered code generation has the potential to revolutionize creative coding endeavors, such as live-coding, by enabling users to focus on structural motifs over syntactic details. In such domains, when prompting an LLM, users may benefit from considering multiple varied code candidates to better realize their musical intentions. Code generation models, however, struggle to present unique and diverse code candidates, with no direct insight into the code's audio output. To better establish a relationship between code candidates and produced audio, we investigate the topology of the mapping between code and audio embedding spaces. We find that code and audio embeddings do not exhibit a simple linear relationship, but supplement this with a constructed predictive model that shows an embedding alignment map could be learned. Supplementing the aim for musically diverse output, we present a model that given code predicts output audio embedding, constructing a code-audio embedding alignment map.
☆ Bench-2-CoP: Can We Trust Benchmarking for EU AI Compliance?
The rapid advancement of General Purpose AI (GPAI) models necessitates robust evaluation frameworks, especially with emerging regulations like the EU AI Act and its associated Code of Practice (CoP). Current AI evaluation practices depend heavily on established benchmarks, but these tools were not designed to measure the systemic risks that are the focus of the new regulatory landscape. This research addresses the urgent need to quantify this "benchmark-regulation gap." We introduce Bench-2-CoP, a novel, systematic framework that uses validated LLM-as-judge analysis to map the coverage of 194,955 questions from widely-used benchmarks against the EU AI Act's taxonomy of model capabilities and propensities. Our findings reveal a profound misalignment: the evaluation ecosystem is overwhelmingly focused on a narrow set of behavioral propensities, such as "Tendency to hallucinate" (53.7% of the corpus) and "Discriminatory bias" (28.9%), while critical functional capabilities are dangerously neglected. Crucially, capabilities central to loss-of-control scenarios, including evading human oversight, self-replication, and autonomous AI development, receive zero coverage in the entire benchmark corpus. This translates to a near-total evaluation gap for systemic risks like "Loss of Control" (0.4% coverage) and "Cyber Offence" (0.8% coverage). This study provides the first comprehensive, quantitative analysis of this gap, offering critical insights for policymakers to refine the CoP and for developers to build the next generation of evaluation tools, ultimately fostering safer and more compliant AI.
☆ Task complexity shapes internal representations and robustness in neural networks
Neural networks excel across a wide range of tasks, yet remain black boxes. In particular, how their internal representations are shaped by the complexity of the input data and the problems they solve remains obscure. In this work, we introduce a suite of five data-agnostic probes-pruning, binarization, noise injection, sign flipping, and bipartite network randomization-to quantify how task difficulty influences the topology and robustness of representations in multilayer perceptrons (MLPs). MLPs are represented as signed, weighted bipartite graphs from a network science perspective. We contrast easy and hard classification tasks on the MNIST and Fashion-MNIST datasets. We show that binarizing weights in hard-task models collapses accuracy to chance, whereas easy-task models remain robust. We also find that pruning low-magnitude edges in binarized hard-task models reveals a sharp phase-transition in performance. Moreover, moderate noise injection can enhance accuracy, resembling a stochastic-resonance effect linked to optimal sign flips of small-magnitude weights. Finally, preserving only the sign structure-instead of precise weight magnitudes-through bipartite network randomizations suffices to maintain high accuracy. These phenomena define a model- and modality-agnostic measure of task complexity: the performance gap between full-precision and binarized or shuffled neural network performance. Our findings highlight the crucial role of signed bipartite topology in learned representations and suggest practical strategies for model compression and interpretability that align with task complexity.
☆ EnergyPatchTST: Multi-scale Time Series Transformers with Uncertainty Estimation for Energy Forecasting
Accurate and reliable energy time series prediction is of great significance for power generation planning and allocation. At present, deep learning time series prediction has become the mainstream method. However, the multi-scale time dynamics and the irregularity of real data lead to the limitations of the existing methods. Therefore, we propose EnergyPatchTST, which is an extension of the Patch Time Series Transformer specially designed for energy forecasting. The main innovations of our method are as follows: (1) multi-scale feature extraction mechanism to capture patterns with different time resolutions; (2) probability prediction framework to estimate uncertainty through Monte Carlo elimination; (3) integration path of future known variables (such as temperature and wind conditions); And (4) Pre-training and Fine-tuning examples to enhance the performance of limited energy data sets. A series of experiments on common energy data sets show that EnergyPatchTST is superior to other commonly used methods, the prediction error is reduced by 7-12%, and reliable uncertainty estimation is provided, which provides an important reference for time series prediction in the energy field.
comment: Accepted for publication at the International Conference on Intelligent Computing (ICIC 2025). 12 pages. The final authenticated version is published in the Lecture Notes in Computer Science (LNCS) series, vol 15860, and is available online. This is the author's version of the work submitted for peer review
☆ Tail-Risk-Safe Monte Carlo Tree Search under PAC-Level Guarantees
Making decisions with respect to just the expected returns in Monte Carlo Tree Search (MCTS) cannot account for the potential range of high-risk, adverse outcomes associated with a decision. To this end, safety-aware MCTS often consider some constrained variants -- by introducing some form of mean risk measures or hard cost thresholds. These approaches fail to provide rigorous tail-safety guarantees with respect to extreme or high-risk outcomes (denoted as tail-risk), potentially resulting in serious consequence in high-stake scenarios. This paper addresses the problem by developing two novel solutions. We first propose CVaR-MCTS, which embeds a coherent tail risk measure, Conditional Value-at-Risk (CVaR), into MCTS. Our CVaR-MCTS with parameter $\alpha$ achieves explicit tail-risk control over the expected loss in the "worst $(1-\alpha)\%$ scenarios." Second, we further address the estimation bias of tail-risk due to limited samples. We propose Wasserstein-MCTS (or W-MCTS) by introducing a first-order Wasserstein ambiguity set $\mathcal{P}_{\varepsilon_{s}}(s,a)$ with radius $\varepsilon_{s}$ to characterize the uncertainty in tail-risk estimates. We prove PAC tail-safety guarantees for both CVaR-MCTS and W-MCTS and establish their regret. Evaluations on diverse simulated environments demonstrate that our proposed methods outperform existing baselines, effectively achieving robust tail-risk guarantees with improved rewards and stability.
☆ Whose Truth? Pluralistic Geo-Alignment for (Agentic) AI
AI (super) alignment describes the challenge of ensuring (future) AI systems behave in accordance with societal norms and goals. While a quickly evolving literature is addressing biases and inequalities, the geographic variability of alignment remains underexplored. Simply put, what is considered appropriate, truthful, or legal can differ widely across regions due to cultural norms, political realities, and legislation. Alignment measures applied to AI/ML workflows can sometimes produce outcomes that diverge from statistical realities, such as text-to-image models depicting balanced gender ratios in company leadership despite existing imbalances. Crucially, some model outputs are globally acceptable, while others, e.g., questions about Kashmir, depend on knowing the user's location and their context. This geographic sensitivity is not new. For instance, Google Maps renders Kashmir's borders differently based on user location. What is new is the unprecedented scale and automation with which AI now mediates knowledge, expresses opinions, and represents geographic reality to millions of users worldwide, often with little transparency about how context is managed. As we approach Agentic AI, the need for spatio-temporally aware alignment, rather than one-size-fits-all approaches, is increasingly urgent. This paper reviews key geographic research problems, suggests topics for future work, and outlines methods for assessing alignment sensitivity.
☆ Explaining Similarity in Vision-Language Encoders with Weighted Banzhaf Interactions
Language-image pre-training (LIP) enables the development of vision-language models capable of zero-shot classification, localization, multimodal retrieval, and semantic understanding. Various explanation methods have been proposed to visualize the importance of input image-text pairs on the model's similarity outputs. However, popular saliency maps are limited by capturing only first-order attributions, overlooking the complex cross-modal interactions intrinsic to such encoders. We introduce faithful interaction explanations of LIP models (FIxLIP) as a unified approach to decomposing the similarity in vision-language encoders. FIxLIP is rooted in game theory, where we analyze how using the weighted Banzhaf interaction index offers greater flexibility and improves computational efficiency over the Shapley interaction quantification framework. From a practical perspective, we propose how to naturally extend explanation evaluation metrics, like the pointing game and area between the insertion/deletion curves, to second-order interaction explanations. Experiments on MS COCO and ImageNet-1k benchmarks validate that second-order methods like FIxLIP outperform first-order attribution methods. Beyond delivering high-quality explanations, we demonstrate the utility of FIxLIP in comparing different models like CLIP vs. SigLIP-2 and ViT-B/32 vs. ViT-L/16.
comment: Preprint
☆ MyCulture: Exploring Malaysia's Diverse Culture under Low-Resource Language Constraints
Large Language Models (LLMs) often exhibit cultural biases due to training data dominated by high-resource languages like English and Chinese. This poses challenges for accurately representing and evaluating diverse cultural contexts, particularly in low-resource language settings. To address this, we introduce MyCulture, a benchmark designed to comprehensively evaluate LLMs on Malaysian culture across six pillars: arts, attire, customs, entertainment, food, and religion presented in Bahasa Melayu. Unlike conventional benchmarks, MyCulture employs a novel open-ended multiple-choice question format without predefined options, thereby reducing guessing and mitigating format bias. We provide a theoretical justification for the effectiveness of this open-ended structure in improving both fairness and discriminative power. Furthermore, we analyze structural bias by comparing model performance on structured versus free-form outputs, and assess language bias through multilingual prompt variations. Our evaluation across a range of regional and international LLMs reveals significant disparities in cultural comprehension, highlighting the urgent need for culturally grounded and linguistically inclusive benchmarks in the development and assessment of LLMs.
☆ Large Language Models Transform Organic Synthesis From Reaction Prediction to Automation
Large language models (LLMs) are beginning to reshape how chemists plan and run reactions in organic synthesis. Trained on millions of reported transformations, these text-based models can propose synthetic routes, forecast reaction outcomes and even instruct robots that execute experiments without human supervision. Here we survey the milestones that turned LLMs from speculative tools into practical lab partners. We show how coupling LLMs with graph neural networks, quantum calculations and real-time spectroscopy shrinks discovery cycles and supports greener, data-driven chemistry. We discuss limitations, including biased datasets, opaque reasoning and the need for safety gates that prevent unintentional hazards. Finally, we outline community initiatives open benchmarks, federated learning and explainable interfaces that aim to democratize access while keeping humans firmly in control. These advances chart a path towards rapid, reliable and inclusive molecular innovation powered by artificial intelligence and automation.
☆ LLM-based Multi-Agent Copilot for Quantum Sensor
Large language models (LLM) exhibit broad utility but face limitations in quantum sensor development, stemming from interdisciplinary knowledge barriers and involving complex optimization processes. Here we present QCopilot, an LLM-based multi-agent framework integrating external knowledge access, active learning, and uncertainty quantification for quantum sensor design and diagnosis. Comprising commercial LLMs with few-shot prompt engineering and vector knowledge base, QCopilot employs specialized agents to adaptively select optimization methods, automate modeling analysis, and independently perform problem diagnosis. Applying QCopilot to atom cooling experiments, we generated 10${}^{\rm{8}}$ sub-$\rm{\mu}$K atoms without any human intervention within a few hours, representing $\sim$100$\times$ speedup over manual experimentation. Notably, by continuously accumulating prior knowledge and enabling dynamic modeling, QCopilot can autonomously identify anomalous parameters in multi-parameter experimental settings. Our work reduces barriers to large-scale quantum sensor deployment and readily extends to other quantum information systems.
comment: 13 pages,4 figures
☆ DeepPHY: Benchmarking Agentic VLMs on Physical Reasoning
Although Vision Language Models (VLMs) exhibit strong perceptual abilities and impressive visual reasoning, they struggle with attention to detail and precise action planning in complex, dynamic environments, leading to subpar performance. Real-world tasks typically require complex interactions, advanced spatial reasoning, long-term planning, and continuous strategy refinement, usually necessitating understanding the physics rules of the target scenario. However, evaluating these capabilities in real-world scenarios is often prohibitively expensive. To bridge this gap, we introduce DeepPHY, a novel benchmark framework designed to systematically evaluate VLMs' understanding and reasoning about fundamental physical principles through a series of challenging simulated environments. DeepPHY integrates multiple physical reasoning environments of varying difficulty levels and incorporates fine-grained evaluation metrics. Our evaluation finds that even state-of-the-art VLMs struggle to translate descriptive physical knowledge into precise, predictive control.
comment: 48 pages
☆ UNCAGE: Contrastive Attention Guidance for Masked Generative Transformers in Text-to-Image Generation
Text-to-image (T2I) generation has been actively studied using Diffusion Models and Autoregressive Models. Recently, Masked Generative Transformers have gained attention as an alternative to Autoregressive Models to overcome the inherent limitations of causal attention and autoregressive decoding through bidirectional attention and parallel decoding, enabling efficient and high-quality image generation. However, compositional T2I generation remains challenging, as even state-of-the-art Diffusion Models often fail to accurately bind attributes and achieve proper text-image alignment. While Diffusion Models have been extensively studied for this issue, Masked Generative Transformers exhibit similar limitations but have not been explored in this context. To address this, we propose Unmasking with Contrastive Attention Guidance (UNCAGE), a novel training-free method that improves compositional fidelity by leveraging attention maps to prioritize the unmasking of tokens that clearly represent individual objects. UNCAGE consistently improves performance in both quantitative and qualitative evaluations across multiple benchmarks and metrics, with negligible inference overhead. Our code is available at https://github.com/furiosa-ai/uncage.
comment: Code is available at https://github.com/furiosa-ai/uncage
☆ Real-Time Iteration Scheme for Diffusion Policy
Diffusion Policies have demonstrated impressive performance in robotic manipulation tasks. However, their long inference time, resulting from an extensive iterative denoising process, and the need to execute an action chunk before the next prediction to maintain consistent actions limit their applicability to latency-critical tasks or simple tasks with a short cycle time. While recent methods explored distillation or alternative policy structures to accelerate inference, these often demand additional training, which can be resource-intensive for large robotic models. In this paper, we introduce a novel approach inspired by the Real-Time Iteration (RTI) Scheme, a method from optimal control that accelerates optimization by leveraging solutions from previous time steps as initial guesses for subsequent iterations. We explore the application of this scheme in diffusion inference and propose a scaling-based method to effectively handle discrete actions, such as grasping, in robotic manipulation. The proposed scheme significantly reduces runtime computational costs without the need for distillation or policy redesign. This enables a seamless integration into many pre-trained diffusion-based models, in particular, to resource-demanding large models. We also provide theoretical conditions for the contractivity which could be useful for estimating the initial denoising step. Quantitative results from extensive simulation experiments show a substantial reduction in inference time, with comparable overall performance compared with Diffusion Policy using full-step denoising. Our project page with additional resources is available at: https://rti-dp.github.io/.
comment: \c{opyright} 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ An Explainable Machine Learning Framework for Railway Predictive Maintenance using Data Streams from the Metro Operator of Portugal
This work contributes to a real-time data-driven predictive maintenance solution for Intelligent Transportation Systems. The proposed method implements a processing pipeline comprised of sample pre-processing, incremental classification with Machine Learning models, and outcome explanation. This novel online processing pipeline has two main highlights: (i) a dedicated sample pre-processing module, which builds statistical and frequency-related features on the fly, and (ii) an explainability module. This work is the first to perform online fault prediction with natural language and visual explainability. The experiments were performed with the MetroPT data set from the metro operator of Porto, Portugal. The results are above 98 % for F-measure and 99 % for accuracy. In the context of railway predictive maintenance, achieving these high values is crucial due to the practical and operational implications of accurate failure prediction. In the specific case of a high F-measure, this ensures that the system maintains an optimal balance between detecting the highest possible number of real faults and minimizing false alarms, which is crucial for maximizing service availability. Furthermore, the accuracy obtained enables reliability, directly impacting cost reduction and increased safety. The analysis demonstrates that the pipeline maintains high performance even in the presence of class imbalance and noise, and its explanations effectively reflect the decision-making process. These findings validate the methodological soundness of the approach and confirm its practical applicability for supporting proactive maintenance decisions in real-world railway operations. Therefore, by identifying the early signs of failure, this pipeline enables decision-makers to understand the underlying problems and act accordingly swiftly.
☆ Echo: Decoupling Inference and Training for Large-Scale RL Alignment on Heterogeneous Swarms
Modern RL-based post-training for large language models (LLMs) co-locate trajectory sampling and policy optimisation on the same GPU cluster, forcing the system to switch between inference and training workloads. This serial context switching violates the single-program-multiple-data (SPMD) assumption underlying today's distributed training systems. We present Echo, the RL system that cleanly decouples these two phases across heterogeneous "inference" and "training" swarms while preserving statistical efficiency. Echo introduces two lightweight synchronization protocols: a sequential pull mode that refreshes sampler weights on every API call for minimal bias, and an asynchronous push-pull mode that streams version-tagged rollouts through a replay buffer to maximise hardware utilisation. Training three representative RL workloads with Qwen3-4B, Qwen2.5-7B and Qwen3-32B on a geographically distributed cluster, Echo matches a fully co-located Verl baseline in convergence speed and final reward while off-loading trajectory generation to commodity edge hardware. These promising results demonstrate that large-scale RL for LLMs could achieve datacentre-grade performance using decentralised, heterogeneous resources.
☆ StructVRM: Aligning Multimodal Reasoning with Structured and Verifiable Reward Models
Existing Vision-Language Models often struggle with complex, multi-question reasoning tasks where partial correctness is crucial for effective learning. Traditional reward mechanisms, which provide a single binary score for an entire response, are too coarse to guide models through intricate problems with multiple sub-parts. To address this, we introduce StructVRM, a method that aligns multimodal reasoning with Structured and Verifiable Reward Models. At its core is a model-based verifier trained to provide fine-grained, sub-question-level feedback, assessing semantic and mathematical equivalence rather than relying on rigid string matching. This allows for nuanced, partial credit scoring in previously intractable problem formats. Extensive experiments demonstrate the effectiveness of StructVRM. Our trained model, Seed-StructVRM, achieves state-of-the-art performance on six out of twelve public multimodal benchmarks and our newly curated, high-difficulty STEM-Bench. The success of StructVRM validates that training with structured, verifiable rewards is a highly effective approach for advancing the capabilities of multimodal models in complex, real-world reasoning domains.
☆ Optimal Corpus Aware Training for Neural Machine Translation
Corpus Aware Training (CAT) leverages valuable corpus metadata during training by injecting corpus information into each training example, and has been found effective in the literature, commonly known as the "tagging" approach. Models trained with CAT inherently learn the quality, domain and nuance between corpora directly from data, and can easily switch to different inference behavior. To achieve the best evaluation, CAT models pre-define a group of high quality data before training starts which can be error-prone and inefficient. In this work, we propose Optimal Corpus Aware Training (OCAT), which fine-tunes a CAT pre-trained model by freezing most of the model parameters and only tuning small set of corpus-related parameters. We show that OCAT is lightweight, resilient to overfitting, and effective in boosting model accuracy. We use WMT23 English to Chinese and English to German translation tasks as our test ground and show +3.6 and +1.8 chrF improvement, respectively, over vanilla training. Furthermore, our approach is on-par or slightly better than other state-of-the-art fine-tuning techniques while being less sensitive to hyperparameter settings.
☆ Building Effective Safety Guardrails in AI Education Tools AI
There has been rapid development in generative AI tools across the education sector, which in turn is leading to increased adoption by teachers. However, this raises concerns regarding the safety and age-appropriateness of the AI-generated content that is being created for use in classrooms. This paper explores Oak National Academy's approach to addressing these concerns within the development of the UK Government's first publicly available generative AI tool - our AI-powered lesson planning assistant (Aila). Aila is intended to support teachers planning national curriculum-aligned lessons that are appropriate for pupils aged 5-16 years. To mitigate safety risks associated with AI-generated content we have implemented four key safety guardrails - (1) prompt engineering to ensure AI outputs are generated within pedagogically sound and curriculum-aligned parameters, (2) input threat detection to mitigate attacks, (3) an Independent Asynchronous Content Moderation Agent (IACMA) to assess outputs against predefined safety categories, and (4) taking a human-in-the-loop approach, to encourage teachers to review generated content before it is used in the classroom. Through our on-going evaluation of these safety guardrails we have identified several challenges and opportunities to take into account when implementing and testing safety guardrails. This paper highlights ways to build more effective safety guardrails in generative AI education tools including the on-going iteration and refinement of guardrails, as well as enabling cross-sector collaboration through sharing both open-source code, datasets and learnings.
comment: 9 pages, published in proceedings of International Conference on Artificial Intelligence in Education (AIED) 2025: Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners, Doctoral Consortium, Blue Sky, and WideAIED
☆ PriorRG: Prior-Guided Contrastive Pre-training and Coarse-to-Fine Decoding for Chest X-ray Report Generation
Chest X-ray report generation aims to reduce radiologists' workload by automatically producing high-quality preliminary reports. A critical yet underexplored aspect of this task is the effective use of patient-specific prior knowledge -- including clinical context (e.g., symptoms, medical history) and the most recent prior image -- which radiologists routinely rely on for diagnostic reasoning. Most existing methods generate reports from single images, neglecting this essential prior information and thus failing to capture diagnostic intent or disease progression. To bridge this gap, we propose PriorRG, a novel chest X-ray report generation framework that emulates real-world clinical workflows via a two-stage training pipeline. In Stage 1, we introduce a prior-guided contrastive pre-training scheme that leverages clinical context to guide spatiotemporal feature extraction, allowing the model to align more closely with the intrinsic spatiotemporal semantics in radiology reports. In Stage 2, we present a prior-aware coarse-to-fine decoding for report generation that progressively integrates patient-specific prior knowledge with the vision encoder's hidden states. This decoding allows the model to align with diagnostic focus and track disease progression, thereby enhancing the clinical accuracy and fluency of the generated reports. Extensive experiments on MIMIC-CXR and MIMIC-ABN datasets demonstrate that PriorRG outperforms state-of-the-art methods, achieving a 3.6% BLEU-4 and 3.8% F1 score improvement on MIMIC-CXR, and a 5.9% BLEU-1 gain on MIMIC-ABN. Code and checkpoints will be released upon acceptance.
Multi-Modal Multi-Behavior Sequential Recommendation with Conditional Diffusion-Based Feature Denoising SIGIR 2025
The sequential recommendation system utilizes historical user interactions to predict preferences. Effectively integrating diverse user behavior patterns with rich multimodal information of items to enhance the accuracy of sequential recommendations is an emerging and challenging research direction. This paper focuses on the problem of multi-modal multi-behavior sequential recommendation, aiming to address the following challenges: (1) the lack of effective characterization of modal preferences across different behaviors, as user attention to different item modalities varies depending on the behavior; (2) the difficulty of effectively mitigating implicit noise in user behavior, such as unintended actions like accidental clicks; (3) the inability to handle modality noise in multi-modal representations, which further impacts the accurate modeling of user preferences. To tackle these issues, we propose a novel Multi-Modal Multi-Behavior Sequential Recommendation model (M$^3$BSR). This model first removes noise in multi-modal representations using a Conditional Diffusion Modality Denoising Layer. Subsequently, it utilizes deep behavioral information to guide the denoising of shallow behavioral data, thereby alleviating the impact of noise in implicit feedback through Conditional Diffusion Behavior Denoising. Finally, by introducing a Multi-Expert Interest Extraction Layer, M$^3$BSR explicitly models the common and specific interests across behaviors and modalities to enhance recommendation performance. Experimental results indicate that M$^3$BSR significantly outperforms existing state-of-the-art methods on benchmark datasets.
comment: SIGIR 2025
☆ Minimal Model Reasoning in Description Logics: Don't Try This at Home!
Reasoning with minimal models has always been at the core of many knowledge representation techniques, but we still have only a limited understanding of this problem in Description Logics (DLs). Minimization of some selected predicates, letting the remaining predicates vary or be fixed, as proposed in circumscription, has been explored and exhibits high complexity. The case of `pure' minimal models, where the extension of all predicates must be minimal, has remained largely uncharted. We address this problem in popular DLs and obtain surprisingly negative results: concept satisfiability in minimal models is undecidable already for $\mathcal{EL}$. This undecidability also extends to a very restricted fragment of tuple-generating dependencies. To regain decidability, we impose acyclicity conditions on the TBox that bring the worst-case complexity below double exponential time and allow us to establish a connection with the recently studied pointwise circumscription; we also derive results in data complexity. We conclude with a brief excursion to the DL-Lite family, where a positive result was known for DL-Lite$_{\text{core}}$, but our investigation establishes ExpSpace-hardness already for its extension DL-Lite$_{\text{horn}}$.
comment: 44 pages
☆ NomicLaw: Emergent Trust and Strategic Argumentation in LLMs During Collaborative Law-Making
Recent advancements in large language models (LLMs) have extended their capabilities from basic text processing to complex reasoning tasks, including legal interpretation, argumentation, and strategic interaction. However, empirical understanding of LLM behavior in open-ended, multi-agent settings especially those involving deliberation over legal and ethical dilemmas remains limited. We introduce NomicLaw, a structured multi-agent simulation where LLMs engage in collaborative law-making, responding to complex legal vignettes by proposing rules, justifying them, and voting on peer proposals. We quantitatively measure trust and reciprocity via voting patterns and qualitatively assess how agents use strategic language to justify proposals and influence outcomes. Experiments involving homogeneous and heterogeneous LLM groups demonstrate how agents spontaneously form alliances, betray trust, and adapt their rhetoric to shape collective decisions. Our results highlight the latent social reasoning and persuasive capabilities of ten open-source LLMs and provide insights into the design of future AI systems capable of autonomous negotiation, coordination and drafting legislation in legal settings.
☆ Information-Theoretic Graph Fusion with Vision-Language-Action Model for Policy Reasoning and Dual Robotic Control
Teaching robots dexterous skills from human videos remains challenging due to the reliance on low-level trajectory imitation, which fails to generalize across object types, spatial layouts, and manipulator configurations. We propose Graph-Fused Vision-Language-Action (GF-VLA), a framework that enables dual-arm robotic systems to perform task-level reasoning and execution directly from RGB and Depth human demonstrations. GF-VLA first extracts Shannon-information-based cues to identify hands and objects with the highest task relevance, then encodes these cues into temporally ordered scene graphs that capture both hand-object and object-object interactions. These graphs are fused with a language-conditioned transformer that generates hierarchical behavior trees and interpretable Cartesian motion commands. To improve execution efficiency in bimanual settings, we further introduce a cross-hand selection policy that infers optimal gripper assignment without explicit geometric reasoning. We evaluate GF-VLA on four structured dual-arm block assembly tasks involving symbolic shape construction and spatial generalization. Experimental results show that the information-theoretic scene representation achieves over 95 percent graph accuracy and 93 percent subtask segmentation, supporting the LLM planner in generating reliable and human-readable task policies. When executed by the dual-arm robot, these policies yield 94 percent grasp success, 89 percent placement accuracy, and 90 percent overall task success across stacking, letter-building, and geometric reconfiguration scenarios, demonstrating strong generalization and robustness across diverse spatial and semantic variations.
comment: Journal under review
☆ The Term 'Agent' Has Been Diluted Beyond Utility and Requires Redefinition AI
The term 'agent' in artificial intelligence has long carried multiple interpretations across different subfields. Recent developments in AI capabilities, particularly in large language model systems, have amplified this ambiguity, creating significant challenges in research communication, system evaluation and reproducibility, and policy development. This paper argues that the term 'agent' requires redefinition. Drawing from historical analysis and contemporary usage patterns, we propose a framework that defines clear minimum requirements for a system to be considered an agent while characterizing systems along a multidimensional spectrum of environmental interaction, learning and adaptation, autonomy, goal complexity, and temporal coherence. This approach provides precise vocabulary for system description while preserving the term's historically multifaceted nature. After examining potential counterarguments and implementation challenges, we provide specific recommendations for moving forward as a field, including suggestions for terminology standardization and framework adoption. The proposed approach offers practical tools for improving research clarity and reproducibility while supporting more effective policy development.
comment: Accepted to AIES 2025
☆ Efficient Reasoning for Large Reasoning Language Models via Certainty-Guided Reflection Suppression
Recent Large Reasoning Language Models (LRLMs) employ long chain-of-thought reasoning with complex reflection behaviors, typically signaled by specific trigger words (e.g., "Wait" and "Alternatively") to enhance performance. However, these reflection behaviors can lead to the overthinking problem where the generation of redundant reasoning steps that unnecessarily increase token usage, raise inference costs, and reduce practical utility. In this paper, we propose Certainty-Guided Reflection Suppression (CGRS), a novel method that mitigates overthinking in LRLMs while maintaining reasoning accuracy. CGRS operates by dynamically suppressing the model's generation of reflection triggers when it exhibits high confidence in its current response, thereby preventing redundant reflection cycles without compromising output quality. Our approach is model-agnostic, requires no retraining or architectural modifications, and can be integrated seamlessly with existing autoregressive generation pipelines. Extensive experiments across four reasoning benchmarks (i.e., AIME24, AMC23, MATH500, and GPQA-D) demonstrate CGRS's effectiveness: it reduces token usage by an average of 18.5% to 41.9% while preserving accuracy. It also achieves the optimal balance between length reduction and performance compared to state-of-the-art baselines. These results hold consistently across model architectures (e.g., DeepSeek-R1-Distill series, QwQ-32B, and Qwen3 family) and scales (4B to 32B parameters), highlighting CGRS's practical value for efficient reasoning.
comment: Technical Report
☆ mKG-RAG: Multimodal Knowledge Graph-Enhanced RAG for Visual Question Answering
Recently, Retrieval-Augmented Generation (RAG) has been proposed to expand internal knowledge of Multimodal Large Language Models (MLLMs) by incorporating external knowledge databases into the generation process, which is widely used for knowledge-based Visual Question Answering (VQA) tasks. Despite impressive advancements, vanilla RAG-based VQA methods that rely on unstructured documents and overlook the structural relationships among knowledge elements frequently introduce irrelevant or misleading content, reducing answer accuracy and reliability. To overcome these challenges, a promising solution is to integrate multimodal knowledge graphs (KGs) into RAG-based VQA frameworks to enhance the generation by introducing structured multimodal knowledge. Therefore, in this paper, we propose a novel multimodal knowledge-augmented generation framework (mKG-RAG) based on multimodal KGs for knowledge-intensive VQA tasks. Specifically, our approach leverages MLLM-powered keyword extraction and vision-text matching to distill semantically consistent and modality-aligned entities/relationships from multimodal documents, constructing high-quality multimodal KGs as structured knowledge representations. In addition, a dual-stage retrieval strategy equipped with a question-aware multimodal retriever is introduced to improve retrieval efficiency while refining precision. Comprehensive experiments demonstrate that our approach significantly outperforms existing methods, setting a new state-of-the-art for knowledge-based VQA.
☆ A Novel Architecture for Symbolic Reasoning with Decision Trees and LLM Agents
We propose a hybrid architecture that integrates decision tree-based symbolic reasoning with the generative capabilities of large language models (LLMs) within a coordinated multi-agent framework. Unlike prior approaches that loosely couple symbolic and neural modules, our design embeds decision trees and random forests as callable oracles within a unified reasoning system. Tree-based modules enable interpretable rule inference and causal logic, while LLM agents handle abductive reasoning, generalization, and interactive planning. A central orchestrator maintains belief state consistency and mediates communication across agents and external tools, enabling reasoning over both structured and unstructured inputs. The system achieves strong performance on reasoning benchmarks. On \textit{ProofWriter}, it improves entailment consistency by +7.2\% through logic-grounded tree validation. On GSM8k, it achieves +5.3\% accuracy gains in multistep mathematical problems via symbolic augmentation. On \textit{ARC}, it boosts abstraction accuracy by +6.0\% through integration of symbolic oracles. Applications in clinical decision support and scientific discovery show how the system encodes domain rules symbolically while leveraging LLMs for contextual inference and hypothesis generation. This architecture offers a robust, interpretable, and extensible solution for general-purpose neuro-symbolic reasoning.
☆ ASkDAgger: Active Skill-level Data Aggregation for Interactive Imitation Learning
Human teaching effort is a significant bottleneck for the broader applicability of interactive imitation learning. To reduce the number of required queries, existing methods employ active learning to query the human teacher only in uncertain, risky, or novel situations. However, during these queries, the novice's planned actions are not utilized despite containing valuable information, such as the novice's capabilities, as well as corresponding uncertainty levels. To this end, we allow the novice to say: "I plan to do this, but I am uncertain." We introduce the Active Skill-level Data Aggregation (ASkDAgger) framework, which leverages teacher feedback on the novice plan in three key ways: (1) S-Aware Gating (SAG): Adjusts the gating threshold to track sensitivity, specificity, or a minimum success rate; (2) Foresight Interactive Experience Replay (FIER), which recasts valid and relabeled novice action plans into demonstrations; and (3) Prioritized Interactive Experience Replay (PIER), which prioritizes replay based on uncertainty, novice success, and demonstration age. Together, these components balance query frequency with failure incidence, reduce the number of required demonstration annotations, improve generalization, and speed up adaptation to changing domains. We validate the effectiveness of ASkDAgger through language-conditioned manipulation tasks in both simulation and real-world environments. Code, data, and videos are available at https://askdagger.github.io.
comment: Accepted for publication in Transactions on Machine Learning Research (TMLR, 2025)
☆ Estimating Musical Surprisal from Audio in Autoregressive Diffusion Model Noise Spaces
Recently, the information content (IC) of predictions from a Generative Infinite-Vocabulary Transformer (GIVT) has been used to model musical expectancy and surprisal in audio. We investigate the effectiveness of such modelling using IC calculated with autoregressive diffusion models (ADMs). We empirically show that IC estimates of models based on two different diffusion ordinary differential equations (ODEs) describe diverse data better, in terms of negative log-likelihood, than a GIVT. We evaluate diffusion model IC's effectiveness in capturing surprisal aspects by examining two tasks: (1) capturing monophonic pitch surprisal, and (2) detecting segment boundaries in multi-track audio. In both tasks, the diffusion models match or exceed the performance of a GIVT. We hypothesize that the surprisal estimated at different diffusion process noise levels corresponds to the surprisal of music and audio features present at different audio granularities. Testing our hypothesis, we find that, for appropriate noise levels, the studied musical surprisal tasks' results improve. Code is provided on github.com/SonyCSLParis/audioic.
comment: 9 pages, 1 figure, 5 tables. Accepted at the 25th International Society for Music Information Retrieval Conference (ISMIR), Daejeon, South Korea, 2025 2025
☆ VS-LLM: Visual-Semantic Depression Assessment based on LLM for Drawing Projection Test
The Drawing Projection Test (DPT) is an essential tool in art therapy, allowing psychologists to assess participants' mental states through their sketches. Specifically, through sketches with the theme of "a person picking an apple from a tree (PPAT)", it can be revealed whether the participants are in mental states such as depression. Compared with scales, the DPT can enrich psychologists' understanding of an individual's mental state. However, the interpretation of the PPAT is laborious and depends on the experience of the psychologists. To address this issue, we propose an effective identification method to support psychologists in conducting a large-scale automatic DPT. Unlike traditional sketch recognition, DPT more focus on the overall evaluation of the sketches, such as color usage and space utilization. Moreover, PPAT imposes a time limit and prohibits verbal reminders, resulting in low drawing accuracy and a lack of detailed depiction. To address these challenges, we propose the following efforts: (1) Providing an experimental environment for automated analysis of PPAT sketches for depression assessment; (2) Offering a Visual-Semantic depression assessment based on LLM (VS-LLM) method; (3) Experimental results demonstrate that our method improves by 17.6% compared to the psychologist assessment method. We anticipate that this work will contribute to the research in mental state assessment based on PPAT sketches' elements recognition. Our datasets and codes are available at https://github.com/wmeiqi/VS-LLM.
☆ Towards Embodied Agentic AI: Review and Classification of LLM- and VLM-Driven Robot Autonomy and Interaction
Foundation models, including large language models (LLMs) and vision-language models (VLMs), have recently enabled novel approaches to robot autonomy and human-robot interfaces. In parallel, vision-language-action models (VLAs) or large behavior models (BLMs) are increasing the dexterity and capabilities of robotic systems. This survey paper focuses on those words advancing towards agentic applications and architectures. This includes initial efforts exploring GPT-style interfaces to tooling, as well as more complex system where AI agents are coordinators, planners, perception actors, or generalist interfaces. Such agentic architectures allow robots to reason over natural language instructions, invoke APIs, plan task sequences, or assist in operations and diagnostics. In addition to peer-reviewed research, due to the fast-evolving nature of the field, we highlight and include community-driven projects, ROS packages, and industrial frameworks that show emerging trends. We propose a taxonomy for classifying model integration approaches and present a comparative analysis of the role that agents play in different solutions in today's literature.
☆ FlowState: Sampling Rate Invariant Time Series Forecasting AAAI 2026
Foundation models (FMs) have transformed natural language processing, but their success has not yet translated to time series forecasting. Existing time series foundation models (TSFMs), often based on transformer variants, struggle with generalization across varying context and target lengths, lack adaptability to different sampling rates, and are computationally inefficient. We introduce FlowState, a novel TSFM architecture that addresses these challenges through two key innovations: a state space model (SSM) based encoder and a functional basis decoder. This design enables continuous-time modeling and dynamic time-scale adjustment, allowing FlowState to inherently generalize across all possible temporal resolutions, and dynamically adjust the forecasting horizons. In contrast to other state-of-the-art TSFMs, which require training data across all possible sampling rates to memorize patterns at each scale, FlowState inherently adapts its internal dynamics to the input scale, enabling smaller models, reduced data requirements, and improved efficiency. We further propose an efficient pretraining strategy that improves robustness and accelerates training. Despite being the smallest model, FlowState outperforms all other models and is state-of-the-art for the GIFT-ZS and the Chronos-ZS benchmarks. Ablation studies confirm the effectiveness of its components, and we demonstrate its unique ability to adapt online to varying input sampling rates.
comment: Currently under review at AAAI 2026
☆ An Explainable Natural Language Framework for Identifying and Notifying Target Audiences In Enterprise Communication
In large-scale maintenance organizations, identifying subject matter experts and managing communications across complex entities relationships poses significant challenges -- including information overload and longer response times -- that traditional communication approaches fail to address effectively. We propose a novel framework that combines RDF graph databases with LLMs to process natural language queries for precise audience targeting, while providing transparent reasoning through a planning-orchestration architecture. Our solution enables communication owners to formulate intuitive queries combining concepts such as equipment, manufacturers, maintenance engineers, and facilities, delivering explainable results that maintain trust in the system while improving communication efficiency across the organization.
comment: Accepted to publication at the 24th International Semantic Web Conference Industry Track, ISWC 2025
☆ SGDFuse: SAM-Guided Diffusion for High-Fidelity Infrared and Visible Image Fusion
Infrared and visible image fusion (IVIF) aims to combine the thermal radiation information from infrared images with the rich texture details from visible images to enhance perceptual capabilities for downstream visual tasks. However, existing methods often fail to preserve key targets due to a lack of deep semantic understanding of the scene, while the fusion process itself can also introduce artifacts and detail loss, severely compromising both image quality and task performance. To address these issues, this paper proposes SGDFuse, a conditional diffusion model guided by the Segment Anything Model (SAM), to achieve high-fidelity and semantically-aware image fusion. The core of our method is to utilize high-quality semantic masks generated by SAM as explicit priors to guide the optimization of the fusion process via a conditional diffusion model. Specifically, the framework operates in a two-stage process: it first performs a preliminary fusion of multi-modal features, and then utilizes the semantic masks from SAM jointly with the preliminary fused image as a condition to drive the diffusion model's coarse-to-fine denoising generation. This ensures the fusion process not only has explicit semantic directionality but also guarantees the high fidelity of the final result. Extensive experiments demonstrate that SGDFuse achieves state-of-the-art performance in both subjective and objective evaluations, as well as in its adaptability to downstream tasks, providing a powerful solution to the core challenges in image fusion. The code of SGDFuse is available at https://github.com/boshizhang123/SGDFuse.
comment: Submitted to TCSVT
☆ Robust Tracking with Particle Filtering for Fluorescent Cardiac Imaging
Intraoperative fluorescent cardiac imaging enables quality control following coronary bypass grafting surgery. We can estimate local quantitative indicators, such as cardiac perfusion, by tracking local feature points. However, heart motion and significant fluctuations in image characteristics caused by vessel structural enrichment limit traditional tracking methods. We propose a particle filtering tracker based on cyclicconsistency checks to robustly track particles sampled to follow target landmarks. Our method tracks 117 targets simultaneously at 25.4 fps, allowing real-time estimates during interventions. It achieves a tracking error of (5.00 +/- 0.22 px) and outperforms other deep learning trackers (22.3 +/- 1.1 px) and conventional trackers (58.1 +/- 27.1 px).
comment: Accepted to CURAC conference 2025
☆ Marine Chlorophyll Prediction and Driver Analysis based on LSTM-RF Hybrid Models
Marine chlorophyll concentration is an important indicator of ecosystem health and carbon cycle strength, and its accurate prediction is crucial for red tide warning and ecological response. In this paper, we propose a LSTM-RF hybrid model that combines the advantages of LSTM and RF, which solves the deficiencies of a single model in time-series modelling and nonlinear feature portrayal. Trained with multi-source ocean data(temperature, salinity, dissolved oxygen, etc.), the experimental results show that the LSTM-RF model has an R^2 of 0.5386, an MSE of 0.005806, and an MAE of 0.057147 on the test set, which is significantly better than using LSTM (R^2 = 0.0208) and RF (R^2 =0.4934) alone , respectively. The standardised treatment and sliding window approach improved the prediction accuracy of the model and provided an innovative solution for high-frequency prediction of marine ecological variables.
comment: Accepted by IEEE 5th International Conference on Advanced Algorithms and Neural Networks (AANN)
☆ CF3: Compact and Fast 3D Feature Fields ICCV 2025
3D Gaussian Splatting (3DGS) has begun incorporating rich information from 2D foundation models. However, most approaches rely on a bottom-up optimization process that treats raw 2D features as ground truth, incurring increased computational costs. We propose a top-down pipeline for constructing compact and fast 3D Gaussian feature fields, namely, CF3. We first perform a fast weighted fusion of multi-view 2D features with pre-trained Gaussians. This approach enables training a per-Gaussian autoencoder directly on the lifted features, instead of training autoencoders in the 2D domain. As a result, the autoencoder better aligns with the feature distribution. More importantly, we introduce an adaptive sparsification method that optimizes the Gaussian attributes of the feature field while pruning and merging the redundant Gaussians, constructing an efficient representation with preserved geometric details. Our approach achieves a competitive 3D feature field using as little as 5% of the Gaussians compared to Feature-3DGS.
comment: ICCV 2025
☆ A Study of Gender Classification Techniques Based on Iris Images: A Deep Survey and Analysis
Gender classification is attractive in a range of applications, including surveillance and monitoring, corporate profiling, and human-computer interaction. Individuals' identities may be gleaned from information about their gender, which is a kind of soft biometric.Over the years, several methods for determining a person's gender have been devised. Some of the most well-known ones are based on physical characteristics like face, fingerprint, palmprint, DNA, ears, gait, and iris. On the other hand, facial features account for the vast majority of gender classification methods. Also, the iris is a significant biometric trait because the iris, according to research, remains basically constant during an individual's life. Besides that, the iris is externally visible and is non-invasive to the user, which is important for practical applications. Furthermore, there are already high-quality methods for segmenting and encoding iris images, and the current methods facilitate selecting and extracting attribute vectors from iris textures. This study discusses several approaches to determining gender. The previous works of literature are briefly reviewed. Additionally, there are a variety of methodologies for different steps of gender classification. This study provides researchers with knowledge and analysis of the existing gender classification approaches. Also, it will assist researchers who are interested in this specific area, as well as highlight the gaps and challenges in the field, and finally provide suggestions and future paths for improvement.
comment: 13 Pages, 8 Figures, 1 Table
☆ RegionMed-CLIP: A Region-Aware Multimodal Contrastive Learning Pre-trained Model for Medical Image Understanding
Medical image understanding plays a crucial role in enabling automated diagnosis and data-driven clinical decision support. However, its progress is impeded by two primary challenges: the limited availability of high-quality annotated medical data and an overreliance on global image features, which often miss subtle but clinically significant pathological regions. To address these issues, we introduce RegionMed-CLIP, a region-aware multimodal contrastive learning framework that explicitly incorporates localized pathological signals along with holistic semantic representations. The core of our method is an innovative region-of-interest (ROI) processor that adaptively integrates fine-grained regional features with the global context, supported by a progressive training strategy that enhances hierarchical multimodal alignment. To enable large-scale region-level representation learning, we construct MedRegion-500k, a comprehensive medical image-text corpus that features extensive regional annotations and multilevel clinical descriptions. Extensive experiments on image-text retrieval, zero-shot classification, and visual question answering tasks demonstrate that RegionMed-CLIP consistently exceeds state-of-the-art vision language models by a wide margin. Our results highlight the critical importance of region-aware contrastive pre-training and position RegionMed-CLIP as a robust foundation for advancing multimodal medical image understanding.
☆ Coarse-to-Fine Joint Registration of MR and Ultrasound Images via Imaging Style Transfer
We developed a pipeline for registering pre-surgery Magnetic Resonance (MR) images and post-resection Ultrasound (US) images. Our approach leverages unpaired style transfer using 3D CycleGAN to generate synthetic T1 images, thereby enhancing registration performance. Additionally, our registration process employs both affine and local deformable transformations for a coarse-to-fine registration. The results demonstrate that our approach improves the consistency between MR and US image pairs in most cases.
☆ Pruning Large Language Models by Identifying and Preserving Functional Networks
Structured pruning is one of the representative techniques for compressing large language models (LLMs) to reduce GPU memory consumption and accelerate inference speed. It offers significant practical value in improving the efficiency of LLMs in real-world applications. Current structured pruning methods typically rely on assessment of the importance of the structure units and pruning the units with less importance. Most of them overlooks the interaction and collaboration among artificial neurons that are crucial for the functionalities of LLMs, leading to a disruption in the macro functional architecture of LLMs and consequently a pruning performance degradation. Inspired by the inherent similarities between artificial neural networks and functional neural networks in the human brain, we alleviate this challenge and propose to prune LLMs by identifying and preserving functional networks within LLMs in this study. To achieve this, we treat an LLM as a digital brain and decompose the LLM into functional networks, analogous to identifying functional brain networks in neuroimaging data. Afterwards, an LLM is pruned by preserving the key neurons within these functional networks. Experimental results demonstrate that the proposed method can successfully identify and locate functional networks and key neurons in LLMs, enabling efficient model pruning. Our code is available at https://github.com/WhatAboutMyStar/LLM_ACTIVATION.
comment: 9 pages, 5 figures
☆ Driver Assistant: Persuading Drivers to Adjust Secondary Tasks Using Large Language Models
Level 3 automated driving systems allows drivers to engage in secondary tasks while diminishing their perception of risk. In the event of an emergency necessitating driver intervention, the system will alert the driver with a limited window for reaction and imposing a substantial cognitive burden. To address this challenge, this study employs a Large Language Model (LLM) to assist drivers in maintaining an appropriate attention on road conditions through a "humanized" persuasive advice. Our tool leverages the road conditions encountered by Level 3 systems as triggers, proactively steering driver behavior via both visual and auditory routes. Empirical study indicates that our tool is effective in sustaining driver attention with reduced cognitive load and coordinating secondary tasks with takeover behavior. Our work provides insights into the potential of using LLMs to support drivers during multi-task automated driving.
comment: 6 pages, 4 figures, 2025 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
☆ Navigating the Trade-off: A Synthesis of Defensive Strategies for Zero-Shot Adversarial Robustness in Vision-Language Models
This report synthesizes eight seminal papers on the zero-shot adversarial robustness of vision-language models (VLMs) like CLIP. A central challenge in this domain is the inherent trade-off between enhancing adversarial robustness and preserving the model's zero-shot generalization capabilities. We analyze two primary defense paradigms: Adversarial Fine-Tuning (AFT), which modifies model parameters, and Training-Free/Test-Time Defenses, which preserve them. We trace the evolution from alignment-preserving methods (TeCoA) to embedding space re-engineering (LAAT, TIMA), and from input heuristics (AOM, TTC) to latent-space purification (CLIPure). Finally, we identify key challenges and future directions including hybrid defense strategies and adversarial pre-training.
☆ Resource-Limited Joint Multimodal Sentiment Reasoning and Classification via Chain-of-Thought Enhancement and Distillation
The surge in rich multimodal content on social media platforms has greatly advanced Multimodal Sentiment Analysis (MSA), with Large Language Models (LLMs) further accelerating progress in this field. Current approaches primarily leverage the knowledge and reasoning capabilities of parameter-heavy (Multimodal) LLMs for sentiment classification, overlooking autonomous multimodal sentiment reasoning generation in resource-constrained environments. Therefore, we focus on the Resource-Limited Joint Multimodal Sentiment Reasoning and Classification task, JMSRC, which simultaneously performs multimodal sentiment reasoning chain generation and sentiment classification only with a lightweight model. We propose a Multimodal Chain-of-Thought Reasoning Distillation model, MulCoT-RD, designed for JMSRC that employs a "Teacher-Assistant-Student" distillation paradigm to address deployment constraints in resource-limited environments. We first leverage a high-performance Multimodal Large Language Model (MLLM) to generate the initial reasoning dataset and train a medium-sized assistant model with a multi-task learning mechanism. A lightweight student model is jointly trained to perform efficient multimodal sentiment reasoning generation and classification. Extensive experiments on four datasets demonstrate that MulCoT-RD with only 3B parameters achieves strong performance on JMSRC, while exhibiting robust generalization and enhanced interpretability.
☆ FDC-Net: Rethinking the association between EEG artifact removal and multi-dimensional affective computing
Electroencephalogram (EEG)-based emotion recognition holds significant value in affective computing and brain-computer interfaces. However, in practical applications, EEG recordings are susceptible to the effects of various physiological artifacts. Current approaches typically treat denoising and emotion recognition as independent tasks using cascaded architectures, which not only leads to error accumulation, but also fails to exploit potential synergies between these tasks. Moreover, conventional EEG-based emotion recognition models often rely on the idealized assumption of "perfectly denoised data", lacking a systematic design for noise robustness. To address these challenges, a novel framework that deeply couples denoising and emotion recognition tasks is proposed for end-to-end noise-robust emotion recognition, termed as Feedback-Driven Collaborative Network for Denoising-Classification Nexus (FDC-Net). Our primary innovation lies in establishing a dynamic collaborative mechanism between artifact removal and emotion recognition through: (1) bidirectional gradient propagation with joint optimization strategies; (2) a gated attention mechanism integrated with frequency-adaptive Transformer using learnable band-position encoding. Two most popular EEG-based emotion datasets (DEAP and DREAMER) with multi-dimensional emotional labels were employed to compare the artifact removal and emotion recognition performance between ASLSL and nine state-of-the-art methods. In terms of the denoising task, FDC-Net obtains a maximum correlation coefficient (CC) value of 96.30% on DEAP and a maximum CC value of 90.31% on DREAMER. In terms of the emotion recognition task under physiological artifact interference, FDC-Net achieves emotion recognition accuracies of 82.3+7.1% on DEAP and 88.1+0.8% on DREAMER.
☆ ADSEL: Adaptive dual self-expression learning for EEG feature selection via incomplete multi-dimensional emotional tagging
EEG based multi-dimension emotion recognition has attracted substantial research interest in human computer interfaces. However, the high dimensionality of EEG features, coupled with limited sample sizes, frequently leads to classifier overfitting and high computational complexity. Feature selection constitutes a critical strategy for mitigating these challenges. Most existing EEG feature selection methods assume complete multi-dimensional emotion labels. In practice, open acquisition environment, and the inherent subjectivity of emotion perception often result in incomplete label data, which can compromise model generalization. Additionally, existing feature selection methods for handling incomplete multi-dimensional labels primarily focus on correlations among various dimensions during label recovery, neglecting the correlation between samples in the label space and their interaction with various dimensions. To address these issues, we propose a novel incomplete multi-dimensional feature selection algorithm for EEG-based emotion recognition. The proposed method integrates an adaptive dual self-expression learning (ADSEL) with least squares regression. ADSEL establishes a bidirectional pathway between sample-level and dimension-level self-expression learning processes within the label space. It could facilitate the cross-sharing of learned information between these processes, enabling the simultaneous exploitation of effective information across both samples and dimensions for label reconstruction. Consequently, ADSEL could enhances label recovery accuracy and effectively identifies the optimal EEG feature subset for multi-dimensional emotion recognition.
☆ CWEFS: Brain volume conduction effects inspired channel-wise EEG feature selection for multi-dimensional emotion recognition
Due to the intracranial volume conduction effects, high-dimensional multi-channel electroencephalography (EEG) features often contain substantial redundant and irrelevant information. This issue not only hinders the extraction of discriminative emotional representations but also compromises the real-time performance. Feature selection has been established as an effective approach to address the challenges while enhancing the transparency and interpretability of emotion recognition models. However, existing EEG feature selection research overlooks the influence of latent EEG feature structures on emotional label correlations and assumes uniform importance across various channels, directly limiting the precise construction of EEG feature selection models for multi-dimensional affective computing. To address these limitations, a novel channel-wise EEG feature selection (CWEFS) method is proposed for multi-dimensional emotion recognition. Specifically, inspired by brain volume conduction effects, CWEFS integrates EEG emotional feature selection into a shared latent structure model designed to construct a consensus latent space across diverse EEG channels. To preserve the local geometric structure, this consensus space is further integrated with the latent semantic analysis of multi-dimensional emotional labels. Additionally, CWEFS incorporates adaptive channel-weight learning to automatically determine the significance of different EEG channels in the emotional feature selection task. The effectiveness of CWEFS was validated using three popular EEG datasets with multi-dimensional emotional labels. Comprehensive experimental results, compared against nineteen feature selection methods, demonstrate that the EEG feature subsets chosen by CWEFS achieve optimal emotion recognition performance across six evaluation metrics.
☆ ReasoningTrack: Chain-of-Thought Reasoning for Long-term Vision-Language Tracking
Vision-language tracking has received increasing attention in recent years, as textual information can effectively address the inflexibility and inaccuracy associated with specifying the target object to be tracked. Existing works either directly fuse the fixed language with vision features or simply modify using attention, however, their performance is still limited. Recently, some researchers have explored using text generation to adapt to the variations in the target during tracking, however, these works fail to provide insights into the model's reasoning process and do not fully leverage the advantages of large models, which further limits their overall performance. To address the aforementioned issues, this paper proposes a novel reasoning-based vision-language tracking framework, named ReasoningTrack, based on a pre-trained vision-language model Qwen2.5-VL. Both SFT (Supervised Fine-Tuning) and reinforcement learning GRPO are used for the optimization of reasoning and language generation. We embed the updated language descriptions and feed them into a unified tracking backbone network together with vision features. Then, we adopt a tracking head to predict the specific location of the target object. In addition, we propose a large-scale long-term vision-language tracking benchmark dataset, termed TNLLT, which contains 200 video sequences. 20 baseline visual trackers are re-trained and evaluated on this dataset, which builds a solid foundation for the vision-language visual tracking task. Extensive experiments on multiple vision-language tracking benchmark datasets fully validated the effectiveness of our proposed reasoning-based natural language generation strategy. The source code of this paper will be released on https://github.com/Event-AHU/Open_VLTrack
☆ Advanced Hybrid Transformer LSTM Technique with Attention and TS Mixer for Drilling Rate of Penetration Prediction
The Rate of Penetration (ROP) is crucial for optimizing drilling operations; however, accurately predicting it is hindered by the complex, dynamic, and high-dimensional nature of drilling data. Traditional empirical, physics-based, and basic machine learning models often fail to capture intricate temporal and contextual relationships, resulting in suboptimal predictions and limited real-time utility. To address this gap, we propose a novel hybrid deep learning architecture integrating Long Short-Term Memory (LSTM) networks, Transformer encoders, Time-Series Mixer (TS-Mixer) blocks, and attention mechanisms to synergistically model temporal dependencies, static feature interactions, global context, and dynamic feature importance. Evaluated on a real-world drilling dataset, our model outperformed benchmarks (standalone LSTM, TS-Mixer, and simpler hybrids) with an R-squared score of 0.9988 and a Mean Absolute Percentage Error of 1.447%, as measured by standard regression metrics (R-squared, MAE, RMSE, MAPE). Model interpretability was ensured using SHAP and LIME, while actual vs. predicted curves and bias checks confirmed accuracy and fairness across scenarios. This advanced hybrid approach enables reliable real-time ROP prediction, paving the way for intelligent, cost-effective drilling optimization systems with significant operational impact.
comment: 37 Pages, 19 Figures, 9 Tables
☆ SpectroStream: A Versatile Neural Codec for General Audio
We propose SpectroStream, a full-band multi-channel neural audio codec. Successor to the well-established SoundStream, SpectroStream extends its capability beyond 24 kHz monophonic audio and enables high-quality reconstruction of 48 kHz stereo music at bit rates of 4--16 kbps. This is accomplished with a new neural architecture that leverages audio representation in the time-frequency domain, which leads to better audio quality especially at higher sample rate. The model also uses a delayed-fusion strategy to handle multi-channel audio, which is crucial in balancing per-channel acoustic quality and cross-channel phase consistency.
☆ FAITH: A Framework for Assessing Intrinsic Tabular Hallucinations in finance
Hallucination remains a critical challenge for deploying Large Language Models (LLMs) in finance. Accurate extraction and precise calculation from tabular data are essential for reliable financial analysis, since even minor numerical errors can undermine decision-making and regulatory compliance. Financial applications have unique requirements, often relying on context-dependent, numerical, and proprietary tabular data that existing hallucination benchmarks rarely capture. In this study, we develop a rigorous and scalable framework for evaluating intrinsic hallucinations in financial LLMs, conceptualized as a context-aware masked span prediction task over real-world financial documents. Our main contributions are: (1) a novel, automated dataset creation paradigm using a masking strategy; (2) a new hallucination evaluation dataset derived from S&P 500 annual reports; and (3) a comprehensive evaluation of intrinsic hallucination patterns in state-of-the-art LLMs on financial tabular data. Our work provides a robust methodology for in-house LLM evaluation and serves as a critical step toward building more trustworthy and reliable financial Generative AI systems.
comment: 9 pages
☆ EvoGraph: Hybrid Directed Graph Evolution toward Software 3.0
We introduce **EvoGraph**, a framework that enables software systems to evolve their own source code, build pipelines, documentation, and tickets. EvoGraph represents every artefact in a typed directed graph, applies learned mutation operators driven by specialized small language models (SLMs), and selects survivors with a multi-objective fitness. On three benchmarks, EvoGraph fixes 83% of known security vulnerabilities, translates COBOL to Java with 93% functional equivalence (test verified), and maintains documentation freshness within two minutes. Experiments show a 40% latency reduction and a sevenfold drop in feature lead time compared with strong baselines. We extend our approach to **evoGraph**, leveraging language-specific SLMs for modernizing .NET, Lisp, CGI, ColdFusion, legacy Python, and C codebases, achieving 82-96% semantic equivalence across languages while reducing computational costs by 90% compared to large language models. EvoGraph's design responds to empirical failure modes in legacy modernization, such as implicit contracts, performance preservation, and integration evolution. Our results suggest a practical path toward Software 3.0, where systems adapt continuously yet remain under measurable control.
comment: 15 pages, 3 tables, 1 algorithm. Submitted to ICSE 2025
☆ Balancing Accuracy and Novelty with Sub-Item Popularity
In the realm of music recommendation, sequential recommenders have shown promise in capturing the dynamic nature of music consumption. A key characteristic of this domain is repetitive listening, where users frequently replay familiar tracks. To capture these repetition patterns, recent research has introduced Personalised Popularity Scores (PPS), which quantify user-specific preferences based on historical frequency. While PPS enhances relevance in recommendation, it often reinforces already-known content, limiting the system's ability to surface novel or serendipitous items - key elements for fostering long-term user engagement and satisfaction. To address this limitation, we build upon RecJPQ, a Transformer-based framework initially developed to improve scalability in large-item catalogues through sub-item decomposition. We repurpose RecJPQ's sub-item architecture to model personalised popularity at a finer granularity. This allows us to capture shared repetition patterns across sub-embeddings - latent structures not accessible through item-level popularity alone. We propose a novel integration of sub-ID-level personalised popularity within the RecJPQ framework, enabling explicit control over the trade-off between accuracy and personalised novelty. Our sub-ID-level PPS method (sPPS) consistently outperforms item-level PPS by achieving significantly higher personalised novelty without compromising recommendation accuracy. Code and experiments are publicly available at https://github.com/sisinflab/Sub-id-Popularity.
☆ QA-Dragon: Query-Aware Dynamic RAG System for Knowledge-Intensive Visual Question Answering
Retrieval-Augmented Generation (RAG) has been introduced to mitigate hallucinations in Multimodal Large Language Models (MLLMs) by incorporating external knowledge into the generation process, and it has become a widely adopted approach for knowledge-intensive Visual Question Answering (VQA). However, existing RAG methods typically retrieve from either text or images in isolation, limiting their ability to address complex queries that require multi-hop reasoning or up-to-date factual knowledge. To address this limitation, we propose QA-Dragon, a Query-Aware Dynamic RAG System for Knowledge-Intensive VQA. Specifically, QA-Dragon introduces a domain router to identify the query's subject domain for domain-specific reasoning, along with a search router that dynamically selects optimal retrieval strategies. By orchestrating both text and image search agents in a hybrid setup, our system supports multimodal, multi-turn, and multi-hop reasoning, enabling it to tackle complex VQA tasks effectively. We evaluate our QA-Dragon on the Meta CRAG-MM Challenge at KDD Cup 2025, where it significantly enhances the reasoning performance of base models under challenging scenarios. Our framework achieves substantial improvements in both answer accuracy and knowledge overlap scores, outperforming baselines by 5.06% on the single-source task, 6.35% on the multi-source task, and 5.03% on the multi-turn task.
comment: The source code for our system is released in https://github.com/jzzzzh/QA-Dragon
☆ Incident Response Planning Using a Lightweight Large Language Model with Reduced Hallucination
Timely and effective incident response is key to managing the growing frequency of cyberattacks. However, identifying the right response actions for complex systems is a major technical challenge. A promising approach to mitigate this challenge is to use the security knowledge embedded in large language models (LLMs) to assist security operators during incident handling. Recent research has demonstrated the potential of this approach, but current methods are mainly based on prompt engineering of frontier LLMs, which is costly and prone to hallucinations. We address these limitations by presenting a novel way to use an LLM for incident response planning with reduced hallucination. Our method includes three steps: fine-tuning, information retrieval, and lookahead planning. We prove that our method generates response plans with a bounded probability of hallucination and that this probability can be made arbitrarily small at the expense of increased planning time under certain assumptions. Moreover, we show that our method is lightweight and can run on commodity hardware. We evaluate our method on logs from incidents reported in the literature. The experimental results show that our method a) achieves up to 22% shorter recovery times than frontier LLMs and b) generalizes to a broad range of incident types and response actions.
☆ Refining Gaussian Splatting: A Volumetric Densification Approach
Achieving high-quality novel view synthesis in 3D Gaussian Splatting (3DGS) often depends on effective point primitive management. The underlying Adaptive Density Control (ADC) process addresses this issue by automating densification and pruning. Yet, the vanilla 3DGS densification strategy shows key shortcomings. To address this issue, in this paper we introduce a novel density control method, which exploits the volumes of inertia associated to each Gaussian function to guide the refinement process. Furthermore, we study the effect of both traditional Structure from Motion (SfM) and Deep Image Matching (DIM) methods for point cloud initialization. Extensive experimental evaluations on the Mip-NeRF 360 dataset demonstrate that our approach surpasses 3DGS in reconstruction quality, delivering encouraging performance across diverse scenes.
☆ Posterior-GRPO: Rewarding Reasoning Processes in Code Generation
Reinforcement learning (RL) has significantly advanced code generation for large language models (LLMs). However, current paradigms rely on outcome-based rewards from test cases, neglecting the quality of the intermediate reasoning process. While supervising the reasoning process directly is a promising direction, it is highly susceptible to reward hacking, where the policy model learns to exploit the reasoning reward signal without improving final outcomes. To address this, we introduce a unified framework that can effectively incorporate the quality of the reasoning process during RL. First, to enable reasoning evaluation, we develop LCB-RB, a benchmark comprising preference pairs of superior and inferior reasoning processes. Second, to accurately score reasoning quality, we introduce an Optimized-Degraded based (OD-based) method for reward model training. This method generates high-quality preference pairs by systematically optimizing and degrading initial reasoning paths along curated dimensions of reasoning quality, such as factual accuracy, logical rigor, and coherence. A 7B parameter reward model with this method achieves state-of-the-art (SOTA) performance on LCB-RB and generalizes well to other benchmarks. Finally, we introduce Posterior-GRPO (P-GRPO), a novel RL method that conditions process-based rewards on task success. By selectively applying rewards to the reasoning processes of only successful outcomes, P-GRPO effectively mitigates reward hacking and aligns the model's internal reasoning with final code correctness. A 7B parameter model with P-GRPO achieves superior performance across diverse code generation tasks, outperforming outcome-only baselines by 4.5%, achieving comparable performance to GPT-4-Turbo. We further demonstrate the generalizability of our approach by extending it to mathematical tasks. Our models, dataset, and code are publicly available.
☆ Aligning LLMs on a Budget: Inference-Time Alignment with Heuristic Reward Models
Aligning LLMs with user preferences is crucial for real-world use but often requires costly fine-tuning or expensive inference, forcing trade-offs between alignment quality and computational cost. Existing inference-time methods typically ignore this balance, focusing solely on the optimized policy's performance. We propose HIA (Heuristic-Guided Inference-time Alignment), a tuning-free, black-box-compatible approach that uses a lightweight prompt optimizer, heuristic reward models, and two-stage filtering to reduce inference calls while preserving alignment quality. On real-world prompt datasets, HelpSteer and ComPRed, HIA outperforms best-of-N sampling, beam search, and greedy search baselines in multi-objective, goal-conditioned tasks under the same inference budget. We also find that HIA is effective under low-inference budgets with as little as one or two response queries, offering a practical solution for scalable, personalized LLM deployment.
☆ Domain-driven Metrics for Reinforcement Learning: A Case Study on Epidemic Control using Agent-based Simulation
For the development and optimization of agent-based models (ABMs) and rational agent-based models (RABMs), optimization algorithms such as reinforcement learning are extensively used. However, assessing the performance of RL-based ABMs and RABMS models is challenging due to the complexity and stochasticity of the modeled systems, and the lack of well-standardized metrics for comparing RL algorithms. In this study, we are developing domain-driven metrics for RL, while building on state-of-the-art metrics. We demonstrate our ``Domain-driven-RL-metrics'' using policy optimization on a rational ABM disease modeling case study to model masking behavior, vaccination, and lockdown in a pandemic. Our results show the use of domain-driven rewards in conjunction with traditional and state-of-the-art metrics for a few different simulation scenarios such as the differential availability of masks.
☆ FCBV-Net: Category-Level Robotic Garment Smoothing via Feature-Conditioned Bimanual Value Prediction
Category-level generalization for robotic garment manipulation, such as bimanual smoothing, remains a significant hurdle due to high dimensionality, complex dynamics, and intra-category variations. Current approaches often struggle, either overfitting with concurrently learned visual features for a specific instance or, despite category-level perceptual generalization, failing to predict the value of synergistic bimanual actions. We propose the Feature-Conditioned Bimanual Value Network (FCBV-Net), operating on 3D point clouds to specifically enhance category-level policy generalization for garment smoothing. FCBV-Net conditions bimanual action value prediction on pre-trained, frozen dense geometric features, ensuring robustness to intra-category garment variations. Trainable downstream components then learn a task-specific policy using these static features. In simulated GarmentLab experiments with the CLOTH3D dataset, FCBV-Net demonstrated superior category-level generalization. It exhibited only an 11.5% efficiency drop (Steps80) on unseen garments compared to 96.2% for a 2D image-based baseline, and achieved 89% final coverage, outperforming an 83% coverage from a 3D correspondence-based baseline that uses identical per-point geometric features but a fixed primitive. These results highlight that the decoupling of geometric understanding from bimanual action value learning enables better category-level generalization.
comment: 7 pages, 3 figures, 1 table. Submitted to IEEE Robotics and Automation Letters
☆ Tool Graph Retriever: Exploring Dependency Graph-based Tool Retrieval for Large Language Models
With the remarkable advancement of AI agents, the number of their equipped tools is increasing rapidly. However, integrating all tool information into the limited model context becomes impractical, highlighting the need for efficient tool retrieval methods. In this regard, dominant methods primarily rely on semantic similarities between tool descriptions and user queries to retrieve relevant tools. However, they often consider each tool independently, overlooking dependencies between tools, which may lead to the omission of prerequisite tools for successful task execution. To deal with this defect, in this paper, we propose Tool Graph Retriever (TGR), which exploits the dependencies among tools to learn better tool representations for retrieval. First, we construct a dataset termed TDI300K to train a discriminator for identifying tool dependencies. Then, we represent all candidate tools as a tool dependency graph and use graph convolution to integrate the dependencies into their representations. Finally, these updated tool representations are employed for online retrieval. Experimental results on several commonly used datasets show that our TGR can bring a performance improvement to existing dominant methods, achieving SOTA performance. Moreover, in-depth analyses also verify the importance of tool dependencies and the effectiveness of our TGR.
☆ Speech LLMs in Low-Resource Scenarios: Data Volume Requirements and the Impact of Pretraining on High-Resource Languages
Large language models (LLMs) have demonstrated potential in handling spoken inputs for high-resource languages, reaching state-of-the-art performance in various tasks. However, their applicability is still less explored in low-resource settings. This work investigates the use of Speech LLMs for low-resource Automatic Speech Recognition using the SLAM-ASR framework, where a trainable lightweight projector connects a speech encoder and a LLM. Firstly, we assess training data volume requirements to match Whisper-only performance, re-emphasizing the challenges of limited data. Secondly, we show that leveraging mono- or multilingual projectors pretrained on high-resource languages reduces the impact of data scarcity, especially with small training sets. Using multilingual LLMs (EuroLLM, Salamandra) with whisper-large-v3-turbo, we evaluate performance on several public benchmarks, providing insights for future research on optimizing Speech LLMs for low-resource languages and multilinguality.
comment: Accepted at Interspeech 2025. 5 pages, 2 figures, 3 tables
☆ Chemist Eye: A Visual Language Model-Powered System for Safety Monitoring and Robot Decision-Making in Self-Driving Laboratories
The integration of robotics and automation into self-driving laboratories (SDLs) can introduce additional safety complexities, in addition to those that already apply to conventional research laboratories. Personal protective equipment (PPE) is an essential requirement for ensuring the safety and well-being of workers in laboratories, self-driving or otherwise. Fires are another important risk factor in chemical laboratories. In SDLs, fires that occur close to mobile robots, which use flammable lithium batteries, could have increased severity. Here, we present Chemist Eye, a distributed safety monitoring system designed to enhance situational awareness in SDLs. The system integrates multiple stations equipped with RGB, depth, and infrared cameras, designed to monitor incidents in SDLs. Chemist Eye is also designed to spot workers who have suffered a potential accident or medical emergency, PPE compliance and fire hazards. To do this, Chemist Eye uses decision-making driven by a vision-language model (VLM). Chemist Eye is designed for seamless integration, enabling real-time communication with robots. Based on the VLM recommendations, the system attempts to drive mobile robots away from potential fire locations, exits, or individuals not wearing PPE, and issues audible warnings where necessary. It also integrates with third-party messaging platforms to provide instant notifications to lab personnel. We tested Chemist Eye with real-world data from an SDL equipped with three mobile robots and found that the spotting of possible safety hazards and decision-making performances reached 97 % and 95 %, respectively.
Graph-based Event Log Repair
The quality of event logs in Process Mining is crucial when applying any form of analysis to them. In real-world event logs, the acquisition of data can be non-trivial (e.g., due to the execution of manual activities and related manual recording or to issues in collecting, for each event, all its attributes), and often may end up with events recorded with some missing information. Standard approaches to the problem of trace (or log) reconstruction either require the availability of a process model that is used to fill missing values by leveraging different reasoning techniques or employ a Machine Learning/Deep Learning model to restore the missing values by learning from similar cases. In recent years, a new type of Deep Learning model that is capable of handling input data encoded as graphs has emerged, namely Graph Neural Networks. Graph Neural Network models, and even more so Heterogeneous Graph Neural Networks, offer the advantage of working with a more natural representation of complex multi-modal sequences like the execution traces in Process Mining, allowing for more expressive and semantically rich encodings. In this work, we focus on the development of a Heterogeneous Graph Neural Network model that, given a trace containing some incomplete events, will return the full set of attributes missing from those events. We evaluate our work against a state-of-the-art approach leveraging autoencoders on two synthetic logs and four real event logs, on different types of missing values. Different from state-of-the-art model-free approaches, which mainly focus on repairing a subset of event attributes, the proposed approach shows very good performance in reconstructing all different event attributes.
☆ FedGIN: Federated Learning with Dynamic Global Intensity Non-linear Augmentation for Organ Segmentation using Multi-modal Images AI 2025
Medical image segmentation plays a crucial role in AI-assisted diagnostics, surgical planning, and treatment monitoring. Accurate and robust segmentation models are essential for enabling reliable, data-driven clinical decision making across diverse imaging modalities. Given the inherent variability in image characteristics across modalities, developing a unified model capable of generalizing effectively to multiple modalities would be highly beneficial. This model could streamline clinical workflows and reduce the need for modality-specific training. However, real-world deployment faces major challenges, including data scarcity, domain shift between modalities (e.g., CT vs. MRI), and privacy restrictions that prevent data sharing. To address these issues, we propose FedGIN, a Federated Learning (FL) framework that enables multimodal organ segmentation without sharing raw patient data. Our method integrates a lightweight Global Intensity Non-linear (GIN) augmentation module that harmonizes modality-specific intensity distributions during local training. We evaluated FedGIN using two types of datasets: an imputed dataset and a complete dataset. In the limited dataset scenario, the model was initially trained using only MRI data, and CT data was added to assess its performance improvements. In the complete dataset scenario, both MRI and CT data were fully utilized for training on all clients. In the limited-data scenario, FedGIN achieved a 12 to 18% improvement in 3D Dice scores on MRI test cases compared to FL without GIN and consistently outperformed local baselines. In the complete dataset scenario, FedGIN demonstrated near-centralized performance, with a 30% Dice score improvement over the MRI-only baseline and a 10% improvement over the CT-only baseline, highlighting its strong cross-modality generalization under privacy constraints.
comment: Paper Accepted at MICCAI 2025 DeCaf Workshop Track
☆ Towards Assessing Medical Ethics from Knowledge to Practice
The integration of large language models into healthcare necessitates a rigorous evaluation of their ethical reasoning, an area current benchmarks often overlook. We introduce PrinciplismQA, a comprehensive benchmark with 3,648 questions designed to systematically assess LLMs' alignment with core medical ethics. Grounded in Principlism, our benchmark features a high-quality dataset. This includes multiple-choice questions curated from authoritative textbooks and open-ended questions sourced from authoritative medical ethics case study literature, all validated by medical experts. Our experiments reveal a significant gap between models' ethical knowledge and their practical application, especially in dynamically applying ethical principles to real-world scenarios. Most LLMs struggle with dilemmas concerning Beneficence, often over-emphasizing other principles. Frontier closed-source models, driven by strong general capabilities, currently lead the benchmark. Notably, medical domain fine-tuning can enhance models' overall ethical competence, but further progress requires better alignment with medical ethical knowledge. PrinciplismQA offers a scalable framework to diagnose these specific ethical weaknesses, paving the way for more balanced and responsible medical AI.
☆ Attention Basin: Why Contextual Position Matters in Large Language Models
The performance of Large Language Models (LLMs) is significantly sensitive to the contextual position of information in the input. To investigate the mechanism behind this positional bias, our extensive experiments reveal a consistent phenomenon we term the attention basin: when presented with a sequence of structured items (e.g., retrieved documents or few-shot examples), models systematically assign higher attention to the items at the beginning and end of the sequence, while neglecting those in the middle. Crucially, our analysis further reveals that allocating higher attention to critical information is key to enhancing model performance. Based on these insights, we introduce Attention-Driven Reranking (AttnRank), a two-stage framework that (i) estimates a model's intrinsic positional attention preferences using a small calibration set, and (ii) reorders retrieved documents or few-shot examples to align the most salient content with these high-attention positions. AttnRank is a model-agnostic, training-free, and plug-and-play method with minimal computational overhead. Experiments on multi-hop QA and few-shot in-context learning tasks demonstrate that AttnRank achieves substantial improvements across 10 large language models of varying architectures and scales, without modifying model parameters or training procedures.
☆ Latent Expression Generation for Referring Image Segmentation and Grounding ICCV 2025
Visual grounding tasks, such as referring image segmentation (RIS) and referring expression comprehension (REC), aim to localize a target object based on a given textual description. The target object in an image can be described in multiple ways, reflecting diverse attributes such as color, position, and more. However, most existing methods rely on a single textual input, which captures only a fraction of the rich information available in the visual domain. This mismatch between rich visual details and sparse textual cues can lead to the misidentification of similar objects. To address this, we propose a novel visual grounding framework that leverages multiple latent expressions generated from a single textual input by incorporating complementary visual details absent from the original description. Specifically, we introduce subject distributor and visual concept injector modules to embed both shared-subject and distinct-attributes concepts into the latent representations, thereby capturing unique and target-specific visual cues. We also propose a positive-margin contrastive learning strategy to align all latent expressions with the original text while preserving subtle variations. Experimental results show that our method not only outperforms state-of-the-art RIS and REC approaches on multiple benchmarks but also achieves outstanding performance on the generalized referring expression segmentation (GRES) benchmark.
comment: Accepted to ICCV 2025
☆ Exploring Superior Function Calls via Reinforcement Learning
Function calling capabilities are crucial for deploying Large Language Models in real-world applications, yet current training approaches fail to develop robust reasoning strategies. Supervised fine-tuning produces models that rely on superficial pattern matching, while standard reinforcement learning methods struggle with the complex action space of structured function calls. We present a novel reinforcement learning framework designed to enhance group relative policy optimization through strategic entropy based exploration specifically tailored for function calling tasks. Our approach addresses three critical challenges in function calling: insufficient exploration during policy learning, lack of structured reasoning in chain-of-thought generation, and inadequate verification of parameter extraction. Our two-stage data preparation pipeline ensures high-quality training samples through iterative LLM evaluation and abstract syntax tree validation. Extensive experiments on the Berkeley Function Calling Leaderboard demonstrate that this framework achieves state-of-the-art performance among open-source models with 86.02\% overall accuracy, outperforming standard GRPO by up to 6\% on complex multi-function scenarios. Notably, our method shows particularly strong improvements on code-pretrained models, suggesting that structured language generation capabilities provide an advantageous starting point for reinforcement learning in function calling tasks. We will release all the code, models and dataset to benefit the community.
☆ Beyond Automation: Socratic AI, Epistemic Agency, and the Implications of the Emergence of Orchestrated Multi-Agent Learning Architectures
Generative AI is no longer a peripheral tool in higher education. It is rapidly evolving into a general-purpose infrastructure that reshapes how knowledge is generated, mediated, and validated. This paper presents findings from a controlled experiment evaluating a Socratic AI Tutor, a large language model designed to scaffold student research question development through structured dialogue grounded in constructivist theory. Conducted with 65 pre-service teacher students in Germany, the study compares interaction with the Socratic Tutor to engagement with an uninstructed AI chatbot. Students using the Socratic Tutor reported significantly greater support for critical, independent, and reflective thinking, suggesting that dialogic AI can stimulate metacognitive engagement and challenging recent narratives of de-skilling due to generative AI usage. These findings serve as a proof of concept for a broader pedagogical shift: the use of multi-agent systems (MAS) composed of specialised AI agents. To conceptualise this, we introduce the notion of orchestrated MAS, modular, pedagogically aligned agent constellations, curated by educators, that support diverse learning trajectories through differentiated roles and coordinated interaction. To anchor this shift, we propose an adapted offer-and-use model, in which students appropriate instructional offers from these agents. Beyond technical feasibility, we examine system-level implications for higher education institutions and students, including funding necessities, changes to faculty roles, curriculars, competencies and assessment practices. We conclude with a comparative cost-effectiveness analysis highlighting the scalability of such systems. In sum, this study contributes both empirical evidence and a conceptual roadmap for hybrid learning ecosystems that embed human-AI co-agency and pedagogical alignment.
☆ EasySize: Elastic Analog Circuit Sizing via LLM-Guided Heuristic Search
Analog circuit design is a time-consuming, experience-driven task in chip development. Despite advances in AI, developing universal, fast, and stable gate sizing methods for analog circuits remains a significant challenge. Recent approaches combine Large Language Models (LLMs) with heuristic search techniques to enhance generalizability, but they often depend on large model sizes and lack portability across different technology nodes. To overcome these limitations, we propose EasySize, the first lightweight gate sizing framework based on a finetuned Qwen3-8B model, designed for universal applicability across process nodes, design specifications, and circuit topologies. EasySize exploits the varying Ease of Attainability (EOA) of performance metrics to dynamically construct task-specific loss functions, enabling efficient heuristic search through global Differential Evolution (DE) and local Particle Swarm Optimization (PSO) within a feedback-enhanced flow. Although finetuned solely on 350nm node data, EasySize achieves strong performance on 5 operational amplifier (Op-Amp) netlists across 180nm, 45nm, and 22nm technology nodes without additional targeted training, and outperforms AutoCkt, a widely-used Reinforcement Learning based sizing framework, on 86.67\% of tasks with more than 96.67\% of simulation resources reduction. We argue that EasySize can significantly reduce the reliance on human expertise and computational resources in gate sizing, thereby accelerating and simplifying the analog circuit design process. EasySize will be open-sourced at a later date.
♻ ☆ Diffusion Beats Autoregressive in Data-Constrained Settings
Autoregressive (AR) models have long dominated the landscape of large language models, driving progress across a wide range of tasks. Recently, diffusion-based language models have emerged as a promising alternative, though their advantages over AR models remain underexplored. In this paper, we systematically study masked diffusion models in data-constrained settings-where training involves repeated passes over limited data-and find that they significantly outperform AR models when compute is abundant but data is scarce. Diffusion models make better use of repeated data, achieving lower validation loss and superior downstream performance. We interpret this advantage as implicit data augmentation: masked diffusion exposes the model to a diverse distribution of token orderings and prediction tasks, unlike AR's fixed left-to-right factorization. We find new scaling laws for diffusion models and derive a closed-form expression for the critical compute threshold at which diffusion begins to outperform AR. These results suggest that when data, not compute, is the bottleneck, diffusion models offer a compelling alternative to the standard AR paradigm. Our code is available at: https://diffusion-scaling.github.io.
comment: Project Webpage: https://diffusion-scaling.github.io
♻ ☆ SincVAE: A new semi-supervised approach to improve anomaly detection on EEG data using SincNet and variational autoencoder
Over the past few decades, electroencephalography (EEG) monitoring has become a pivotal tool for diagnosing neurological disorders, particularly for detecting seizures. Epilepsy, one of the most prevalent neurological diseases worldwide, affects approximately the 1 \% of the population. These patients face significant risks, underscoring the need for reliable, continuous seizure monitoring in daily life. Most of the techniques discussed in the literature rely on supervised Machine Learning (ML) methods. However, the challenge of accurately labeling variations in epileptic EEG waveforms complicates the use of these approaches. Additionally, the rarity of ictal events introduces an high imbalancing within the data, which could lead to poor prediction performance in supervised learning approaches. Instead, a semi-supervised approach allows to train the model only on data not containing seizures, thus avoiding the issues related to the data imbalancing. This work proposes a semi-supervised approach for detecting epileptic seizures from EEG data, utilizing a novel Deep Learning-based method called SincVAE. This proposal incorporates the learning of an ad-hoc array of bandpass filter as a first layer of a Variational Autoencoder (VAE), potentially eliminating the preprocessing stage where informative band frequencies are identified and isolated. Results indicate that SincVAE improves seizure detection in EEG data and is capable of identifying early seizures during the preictal stage as well as monitoring patients throughout the postictal stage.
♻ ☆ Graph-Based Fault Diagnosis for Rotating Machinery: Adaptive Segmentation and Structural Feature Integration
This paper proposes a novel graph-based framework for robust and interpretable multiclass fault diagnosis in rotating machinery. The method integrates entropy-optimized signal segmentation, time-frequency feature extraction, and graph-theoretic modeling to transform vibration signals into structured representations suitable for classification. Graph metrics, such as average shortest path length, modularity, and spectral gap, are computed and combined with local features to capture global and segment-level fault characteristics. The proposed method achieves high diagnostic accuracy when evaluated on two benchmark datasets, the CWRU bearing dataset (under 0-3 HP loads) and the SU gearbox and bearing datasets (under different speed-load configurations). Classification scores reach up to 99.8% accuracy on Case Western Reserve University (CWRU) and 100% accuracy on the Southeast University datasets using a logistic regression classifier. Furthermore, the model exhibits strong noise resilience, maintaining over 95.4% accuracy at high noise levels (standard deviation = 0.5), and demonstrates excellent cross-domain transferability with up to 99.7% F1-score in load-transfer scenarios. Compared to traditional techniques, this approach requires no deep learning architecture, enabling lower complexity while ensuring interpretability. The results confirm the method's scalability, reliability, and potential for real-time deployment in industrial diagnostics.
♻ ☆ Human-Centered Human-AI Interaction (HC-HAII): A Human-Centered AI Perspective
This chapter systematically promotes an emerging interdisciplinary field of human-artificial intelligence interaction (human-AI interaction, HAII) from a human-centered AI (HCAI) perspective. It introduces a framework of human-centered HAII (HC-HAII). HC-HAII places humans at the core of HAII research and applications, emphasizing the importance of adopting a human-centered approach over a technology-centered one. The chapter presents the HC-HAII methodology, including human-centered methods, process, interdisciplinary teams, and multi-level design paradigms. It also highlights key research challenges and future directions. As the first chapter, this chapter also provides a structural overview of this book, which brings together contributions from an interdisciplinary community of researchers and practitioners to advance the theory, methodology, and applications of HCAI in diverse domains of HAII. The purpose of this chapter is to provide a fundamental framework for this book, centered on HAII research and applications based on the HCAI approach, which will pave the way for the content of subsequent chapters.
♻ ☆ SE-Agent: Self-Evolution Trajectory Optimization in Multi-Step Reasoning with LLM-Based Agents
Large Language Model (LLM)-based agents have recently shown impressive capabilities in complex reasoning and tool use via multi-step interactions with their environments. While these agents have the potential to tackle complicated tasks, their problem-solving process, i.e., agents' interaction trajectory leading to task completion, remains underexploited. These trajectories contain rich feedback that can navigate agents toward the right directions for solving problems correctly. Although prevailing approaches, such as Monte Carlo Tree Search (MCTS), can effectively balance exploration and exploitation, they ignore the interdependence among various trajectories and lack the diversity of search spaces, which leads to redundant reasoning and suboptimal outcomes. To address these challenges, we propose SE-Agent, a Self-Evolution framework that enables Agents to optimize their reasoning processes iteratively. Our approach revisits and enhances former pilot trajectories through three key operations: revision, recombination, and refinement. This evolutionary mechanism enables two critical advantages: (1) it expands the search space beyond local optima by intelligently exploring diverse solution paths guided by previous trajectories, and (2) it leverages cross-trajectory inspiration to efficiently enhance performance while mitigating the impact of suboptimal reasoning paths. Through these mechanisms, SE-Agent achieves continuous self-evolution that incrementally improves reasoning quality. We evaluate SE-Agent on SWE-bench Verified to resolve real-world GitHub issues. Experimental results across five strong LLMs show that integrating SE-Agent delivers up to 55% relative improvement, achieving state-of-the-art performance among all open-source agents on SWE-bench Verified. Our code and demonstration materials are publicly available at https://github.com/JARVIS-Xs/SE-Agent.
♻ ☆ Probabilistic Stability Guarantees for Feature Attributions
Stability guarantees have emerged as a principled way to evaluate feature attributions, but existing certification methods rely on heavily smoothed classifiers and often produce conservative guarantees. To address these limitations, we introduce soft stability and propose a simple, model-agnostic, sample-efficient stability certification algorithm (SCA) that yields non-trivial and interpretable guarantees for any attribution method. Moreover, we show that mild smoothing achieves a more favorable trade-off between accuracy and stability, avoiding the aggressive compromises made in prior certification methods. To explain this behavior, we use Boolean function analysis to derive a novel characterization of stability under smoothing. We evaluate SCA on vision and language tasks and demonstrate the effectiveness of soft stability in measuring the robustness of explanation methods.
♻ ☆ SciReplicate-Bench: Benchmarking LLMs in Agent-driven Algorithmic Reproduction from Research Papers
This study evaluates large language models (LLMs) in generating code from algorithm descriptions in recent NLP papers. The task requires two key competencies: (1) algorithm comprehension: synthesizing information from papers and academic literature to understand implementation logic, and (2) coding expertise: identifying dependencies and correctly implementing necessary APIs. To facilitate rigorous evaluation, we introduce SciReplicate-Bench, a benchmark of 100 tasks from 36 NLP papers published in 2024, featuring detailed annotations and comprehensive test cases. Building on SciReplicate-Bench, we propose Sci-Reproducer, a dual-agent framework consisting of a Paper Agent that interprets algorithmic concepts from literature and a Code Agent that retrieves dependencies from repositories and implements solutions. To assess algorithm understanding, we introduce reasoning graph accuracy, which quantifies similarity between generated and reference reasoning graphs derived from code comments and structure. For evaluating implementation quality, we employ execution accuracy, CodeBLEU, and repository dependency/API recall metrics. In our experiments, we evaluate various powerful non-reasoning and reasoning LLMs as foundational models. The best-performing LLM using \ModelName~achieves only 39% execution accuracy, highlighting the benchmark's difficulty. Our analysis identifies missing or inconsistent algorithm descriptions as key barriers to successful reproduction. We make available our benchmark and code at https://github.com/xyzCS/SciReplicate-Bench and project homepage at https://xyzcs.github.io/scireplicate.github.io/.
♻ ☆ Efficient Pain Recognition via Respiration Signals: A Single Cross-Attention Transformer Multi-Window Fusion Pipeline
Pain is a complex condition affecting a large portion of the population. Accurate and consistent evaluation is essential for individuals experiencing pain, and it supports the development of effective and advanced management strategies. Automatic pain assessment systems provide continuous monitoring and support clinical decision-making, aiming to reduce distress and prevent functional decline. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed method introduces a pipeline that leverages respiration as the input signal and incorporates a highly efficient cross-attention transformer alongside a multi-windowing strategy. Extensive experiments demonstrate that respiration is a valuable physiological modality for pain assessment. Moreover, experiments revealed that compact and efficient models, when properly optimized, can achieve strong performance, often surpassing larger counterparts. The proposed multi-window approach effectively captures both short-term and long-term features, as well as global characteristics, thereby enhancing the model's representational capacity.
comment: arXiv admin note: text overlap with arXiv:2507.21881, arXiv:2507.21875
♻ ☆ Multi-Representation Diagrams for Pain Recognition: Integrating Various Electrodermal Activity Signals into a Single Image
Pain is a multifaceted phenomenon that affects a substantial portion of the population. Reliable and consistent evaluation benefits those experiencing pain and underpins the development of effective and advanced management strategies. Automatic pain-assessment systems deliver continuous monitoring, inform clinical decision-making, and aim to reduce distress while preventing functional decline. By incorporating physiological signals, these systems provide objective, accurate insights into an individual's condition. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed method introduces a pipeline that leverages electrodermal activity signals as input modality. Multiple representations of the signal are created and visualized as waveforms, and they are jointly visualized within a single multi-representation diagram. Extensive experiments incorporating various processing and filtering techniques, along with multiple representation combinations, demonstrate the effectiveness of the proposed approach. It consistently yields comparable, and in several cases superior, results to traditional fusion methods, establishing it as a robust alternative for integrating different signal representations or modalities.
comment: arXiv admin note: text overlap with arXiv:2507.21875
♻ ☆ Personalized Safety Alignment for Text-to-Image Diffusion Models
Text-to-image diffusion models have revolutionized visual content generation, but current safety mechanisms apply uniform standards that often fail to account for individual user preferences. These models overlook the diverse safety boundaries shaped by factors like age, mental health, and personal beliefs. To address this, we propose Personalized Safety Alignment (PSA), a framework that allows user-specific control over safety behaviors in generative models. PSA integrates personalized user profiles into the diffusion process, adjusting the model's behavior to match individual safety preferences while preserving image quality. We introduce a new dataset, Sage, which captures user-specific safety preferences and incorporates these profiles through a cross-attention mechanism. Experiments show that PSA outperforms existing methods in harmful content suppression and aligns generated content better with user constraints, achieving higher Win Rate and Pass Rate scores. Our code, data, and models are publicly available at https://m-e-agi-lab.github.io/PSAlign/.
comment: metadata-only revision; corrected a typo in the abstract. No changes to the PDF content
♻ ☆ Teaching LLMs How to Learn with Contextual Fine-Tuning
Prompting Large Language Models (LLMs), or providing context on the expected model of operation, is an effective way to steer the outputs of such models to satisfy human desiderata after they have been trained. But in rapidly evolving domains, there is often need to fine-tune LLMs to improve either the kind of knowledge in their memory or their abilities to perform open ended reasoning in new domains. When human's learn new concepts, we often do so by linking the new material that we are studying to concepts we have already learned before. To that end, we ask, "can prompting help us teach LLMs how to learn". In this work, we study a novel generalization of instruction tuning, called contextual fine-tuning, to fine-tune LLMs. Our method leverages instructional prompts designed to mimic human cognitive strategies in learning and problem-solving to guide the learning process during training, aiming to improve the model's interpretation and understanding of domain-specific knowledge. We empirically demonstrate that this simple yet effective modification improves the ability of LLMs to be fine-tuned rapidly on new datasets both within the medical and financial domains.
comment: ICLR 2025
♻ ☆ Style-Preserving Policy Optimization for Game Agents
Proficient game agents with diverse play styles enrich the gaming experience and enhance the replay value of games. However, recent advancements in game AI based on reinforcement learning have predominantly focused on improving proficiency, whereas methods based on evolution algorithms generate agents with diverse play styles but exhibit subpar performance compared to RL methods. To address this gap, this paper proposes Mixed Proximal Policy Optimization (MPPO), a method designed to improve the proficiency of existing suboptimal agents while retaining their distinct styles. MPPO unifies loss objectives for both online and offline samples and introduces an implicit constraint to approximate demonstrator policies by adjusting the empirical distribution of samples. Empirical results across environments of varying scales demonstrate that MPPO achieves proficiency levels comparable to, or even superior to, pure online algorithms while preserving demonstrators' play styles. This work presents an effective approach for generating highly proficient and diverse game agents, ultimately contributing to more engaging gameplay experiences.
♻ ☆ CAMA: Enhancing Mathematical Reasoning in Large Language Models with Causal Knowledge
Large Language Models (LLMs) have demonstrated strong performance across a wide range of tasks, yet they still struggle with complex mathematical reasoning, a challenge fundamentally rooted in deep structural dependencies. To address this challenge, we propose \textbf{CA}usal \textbf{MA}thematician (\textbf{CAMA}), a two-stage causal framework that equips LLMs with explicit, reusable mathematical structure. In the learning stage, CAMA first constructs the \textbf{M}athematical \textbf{C}ausal \textbf{G}raph (\textbf{MCG}), a high-level representation of solution strategies, by combining LLM priors with causal discovery algorithms applied to a corpus of question-solution pairs. The resulting MCG encodes essential knowledge points and their causal dependencies. To better align the graph with downstream reasoning tasks, CAMA further refines the MCG through iterative feedback derived from a selected subset of the question-solution pairs. In the reasoning stage, given a new question, CAMA dynamically extracts a task-relevant subgraph from the MCG, conditioned on both the question content and the LLM's intermediate reasoning trace. This subgraph, which encodes the most pertinent knowledge points and their causal dependencies, is then injected back into the LLM to guide its reasoning process. Empirical results on real-world datasets show that CAMA significantly improves LLM performance on challenging mathematical problems. Furthermore, our experiments demonstrate that structured guidance consistently outperforms unstructured alternatives, and that incorporating asymmetric causal relationships yields greater improvements than using symmetric associations alone.
♻ ☆ Neuromorphic Cybersecurity with Semi-supervised Lifelong Learning
Inspired by the brain's hierarchical processing and energy efficiency, this paper presents a Spiking Neural Network (SNN) architecture for lifelong Network Intrusion Detection System (NIDS). The proposed system first employs an efficient static SNN to identify potential intrusions, which then activates an adaptive dynamic SNN responsible for classifying the specific attack type. Mimicking biological adaptation, the dynamic classifier utilizes Grow When Required (GWR)-inspired structural plasticity and a novel Adaptive Spike-Timing-Dependent Plasticity (Ad-STDP) learning rule. These bio-plausible mechanisms enable the network to learn new threats incrementally while preserving existing knowledge. Tested on the UNSW-NB15 benchmark in a continual learning setting, the architecture demonstrates robust adaptation, reduced catastrophic forgetting, and achieves $85.3$\% overall accuracy. Furthermore, simulations using the Intel Lava framework confirm high operational sparsity, highlighting the potential for low-power deployment on neuromorphic hardware.
comment: Accepted at ACM International Conference on Neuromorphic Systems (ICONS) 2025
♻ ☆ Towards Personalized Conversational Sales Agents: Contextual User Profiling for Strategic Action
Conversational Recommender Systems (CRSs)aim to engage users in dialogue to provide tailored recommendations. While traditional CRSs focus on eliciting preferences and retrieving items, real-world e-commerce interactions involve more complex decision-making, where users consider multiple factors beyond simple attributes. To capture this complexity, we introduce Conversational Sales (CSALES), a novel task that integrates preference elicitation, recommendation, and persuasion within a unified conversational framework. To support realistic and systematic evaluation, we present CSUSER, an evaluation protocol with LLM-based user simulator grounded in real-world behavioral data by modeling fine-grained user profiles for personalized interaction. We also propose CSI, a conversational sales agent that proactively infers contextual user profiles and strategically selects actions through conversation. Comprehensive experiments show that CSI significantly improves both recommendation success and persuasive effectiveness across diverse user profiles.
♻ ☆ Getting out of the Big-Muddy: Escalation of Commitment in LLMs
Large Language Models (LLMs) are increasingly deployed in autonomous decision-making roles across high-stakes domains. However, since models are trained on human-generated data, they may inherit cognitive biases that systematically distort human judgment, including escalation of commitment, where decision-makers continue investing in failing courses of action due to prior investment. Understanding when LLMs exhibit such biases presents a unique challenge. While these biases are well-documented in humans, it remains unclear whether they manifest consistently in LLMs or require specific triggering conditions. This paper investigates this question using a two-stage investment task across four experimental conditions: model as investor, model as advisor, multi-agent deliberation, and compound pressure scenario. Across N = 6,500 trials, we find that bias manifestation in LLMs is highly context-dependent. In individual decision-making contexts (Studies 1-2, N = 4,000), LLMs demonstrate strong rational cost-benefit logic with minimal escalation of commitment. However, multi-agent deliberation reveals a striking hierarchy effect (Study 3, N = 500): while asymmetrical hierarchies show moderate escalation rates (46.2%), symmetrical peer-based decision-making produces near-universal escalation (99.2%). Similarly, when subjected to compound organizational and personal pressures (Study 4, N = 2,000), models exhibit high degrees of escalation of commitment (68.95% average allocation to failing divisions). These findings reveal that LLM bias manifestation depends critically on social and organizational context rather than being inherent, with significant implications for the deployment of multi-agent systems and unsupervised operations where such conditions may emerge naturally.
♻ ☆ Enabling On-Device Medical AI Assistants via Input-Driven Saliency Adaptation
Large Language Models (LLMs) have significant impact on the healthcare scenarios but remain prohibitively large for deployment in real-time, resource-constrained environments such as edge devices. In this work, we introduce a novel medical assistant system, optimized through our general-purpose compression framework, which tailors Large Language Models (LLMs) for deployment in specialized domains. By measuring neuron saliency on domain-specific data, our method can aggressively prune irrelevant neurons, reducing model size while preserving performance. Following pruning, we apply post-training quantization to further reduce the memory footprint, and evaluate the compressed model across medical benchmarks including MedMCQA, MedQA, and PubMedQA. We also deploy the 50\% compressed Gemma and the 67\% compressed LLaMA3 models on Jetson Orin Nano (18.7W peak) and Raspberry Pi 5 (6.3W peak), achieving real-time, energy-efficient inference under hardware constraints.
comment: Accepted for publication in the Proceedings of IEEE BioCAS 2025
♻ ☆ SPICE: An Automated SWE-Bench Labeling Pipeline for Issue Clarity, Test Coverage, and Effort Estimation
High-quality labeled datasets are crucial for training and evaluating foundation models in software engineering, but creating them is often prohibitively expensive and labor-intensive. We introduce SPICE, a scalable, automated pipeline for labeling SWE-bench-style datasets with annotations for issue clarity, test coverage, and effort estimation. SPICE combines context-aware code navigation, rationale-driven prompting, and multi-pass consensus to produce labels that closely approximate expert annotations. SPICE's design was informed by our own experience and frustration in labeling more than 800 instances from SWE-Gym. SPICE achieves strong agreement with human-labeled SWE-bench Verified data while reducing the cost of labeling 1,000 instances from around $100,000 (manual annotation) to just $5.10. These results demonstrate SPICE's potential to enable cost-effective, large-scale dataset creation for SE-focused FMs. To support the community, we release both SPICE tool and SPICE Bench, a new dataset of 6,802 SPICE-labeled instances curated from 291 open-source projects in SWE-Gym (over 13x larger than SWE-bench Verified).
comment: *First three authors contributed equally
♻ ☆ Predicting the Lifespan of Industrial Printheads with Survival Analysis
Accurately predicting the lifespan of critical device components is essential for maintenance planning and production optimization, making it a topic of significant interest in both academia and industry. In this work, we investigate the use of survival analysis for predicting the lifespan of production printheads developed by Canon Production Printing. Specifically, we focus on the application of five techniques to estimate survival probabilities and failure rates: the Kaplan-Meier estimator, Cox proportional hazard model, Weibull accelerated failure time model, random survival forest, and gradient boosting. The resulting estimates are further refined using isotonic regression and subsequently aggregated to determine the expected number of failures. The predictions are then validated against real-world ground truth data across multiple time windows to assess model reliability. Our quantitative evaluation using three performance metrics demonstrates that survival analysis outperforms industry-standard baseline methods for printhead lifespan prediction.
comment: This paper has been published in the 8th IEEE Conference on Industrial Cyber-Physical Systems (ICPS) in Emden, Germany, May 12-15, 2025
♻ ☆ Agent Guide: A Simple Agent Behavioral Watermarking Framework
The increasing deployment of intelligent agents in digital ecosystems, such as social media platforms, has raised significant concerns about traceability and accountability, particularly in cybersecurity and digital content protection. Traditional large language model (LLM) watermarking techniques, which rely on token-level manipulations, are ill-suited for agents due to the challenges of behavior tokenization and information loss during behavior-to-action translation. To address these issues, we propose Agent Guide, a novel behavioral watermarking framework that embeds watermarks by guiding the agent's high-level decisions (behavior) through probability biases, while preserving the naturalness of specific executions (action). Our approach decouples agent behavior into two levels, behavior (e.g., choosing to bookmark) and action (e.g., bookmarking with specific tags), and applies watermark-guided biases to the behavior probability distribution. We employ a z-statistic-based statistical analysis to detect the watermark, ensuring reliable extraction over multiple rounds. Experiments in a social media scenario with diverse agent profiles demonstrate that Agent Guide achieves effective watermark detection with a low false positive rate. Our framework provides a practical and robust solution for agent watermarking, with applications in identifying malicious agents and protecting proprietary agent systems.
♻ ☆ Understanding Large Language Model Behaviors through Interactive Counterfactual Generation and Analysis
Understanding the behavior of large language models (LLMs) is crucial for ensuring their safe and reliable use. However, existing explainable AI (XAI) methods for LLMs primarily rely on word-level explanations, which are often computationally inefficient and misaligned with human reasoning processes. Moreover, these methods often treat explanation as a one-time output, overlooking its inherently interactive and iterative nature. In this paper, we present LLM Analyzer, an interactive visualization system that addresses these limitations by enabling intuitive and efficient exploration of LLM behaviors through counterfactual analysis. Our system features a novel algorithm that generates fluent and semantically meaningful counterfactuals via targeted removal and replacement operations at user-defined levels of granularity. These counterfactuals are used to compute feature attribution scores, which are then integrated with concrete examples in a table-based visualization, supporting dynamic analysis of model behavior. A user study with LLM practitioners and interviews with experts demonstrate the system's usability and effectiveness, emphasizing the importance of involving humans in the explanation process as active participants rather than passive recipients.
♻ ☆ Can open source large language models be used for tumor documentation in Germany? -- An evaluation on urological doctors' notes
Tumor documentation in Germany is largely done manually, requiring reading patient records and entering data into structured databases. Large language models (LLMs) could potentially enhance this process by improving efficiency and reliability. This evaluation tests eleven different open source LLMs with sizes ranging from 1-70 billion model parameters on three basic tasks of the tumor documentation process: identifying tumor diagnoses, assigning ICD-10 codes, and extracting the date of first diagnosis. For evaluating the LLMs on these tasks, a dataset of annotated text snippets based on anonymized doctors' notes from urology was prepared. Different prompting strategies were used to investigate the effect of the number of examples in few-shot prompting and to explore the capabilities of the LLMs in general. The models Llama 3.1 8B, Mistral 7B, and Mistral NeMo 12 B performed comparably well in the tasks. Models with less extensive training data or having fewer than 7 billion parameters showed notably lower performance, while larger models did not display performance gains. Examples from a different medical domain than urology could also improve the outcome in few-shot prompting, which demonstrates the ability of LLMs to handle tasks needed for tumor documentation. Open source LLMs show a strong potential for automating tumor documentation. Models from 7-12 billion parameters could offer an optimal balance between performance and resource efficiency. With tailored fine-tuning and well-designed prompting, these models might become important tools for clinical documentation in the future. The code for the evaluation is available from https://github.com/stefan-m-lenz/UroLlmEval. We also release the dataset as a new valuable resource that addresses the shortage of authentic and easily accessible benchmarks in German-language medical NLP.
comment: 53 pages, 5 figures
♻ ☆ Deep Learning Methods for Detecting Thermal Runaway Events in Battery Production Lines
One of the key safety considerations of battery manufacturing is thermal runaway, the uncontrolled increase in temperature which can lead to fires, explosions, and emissions of toxic gasses. As such, development of automated systems capable of detecting such events is of considerable importance in both academic and industrial contexts. In this work, we investigate the use of deep learning for detecting thermal runaway in the battery production line of VDL Nedcar, a Dutch automobile manufacturer. Specifically, we collect data from the production line to represent both baseline (non thermal runaway) and thermal runaway conditions. Thermal runaway was simulated through the use of external heat and smoke sources. The data consisted of both optical and thermal images which were then preprocessed and fused before serving as input to our models. In this regard, we evaluated three deep-learning models widely used in computer vision including shallow convolutional neural networks, residual neural networks, and vision transformers on two performance metrics. Furthermore, we evaluated these models using explainability methods to gain insight into their ability to capture the relevant feature information from their inputs. The obtained results indicate that the use of deep learning is a viable approach to thermal runaway detection in battery production lines.
comment: This paper has been published in the 8th IEEE Conference on Industrial Cyber-Physical Systems (ICPS) in Emden, Germany, May 12-15, 2025
♻ ☆ Hierarchical Budget Policy Optimization for Adaptive Reasoning
Large reasoning models achieve remarkable performance through extensive chain-of-thought generation, yet they suffer from a critical inefficiency: applying uniformly extensive reasoning regardless of problem complexity. We present Hierarchical Budget Policy Optimization (HBPO), a reinforcement learning framework that enables models to learn problem-specific reasoning depths without sacrificing capability. Unlike existing approaches that impose rigid constraints or rely on discrete mode selection, HBPO partitions the exploration space into budget-constrained hierarchies (512-2560 tokens), each with differentiated reward structures that preserve both efficiency incentives and reasoning capabilities. This design addresses a fundamental challenge in efficient reasoning training: traditional length penalties systematically bias models away from necessary long reasoning paths, causing exploration space collapse. Through hierarchical sampling and budget-aware rewards, HBPO maintains exploration diversity while teaching models to recognize when extended deliberation is warranted. Extensive experiments demonstrate that HBPO reduces average token usage by up to 60.6% while improving accuracy by 3.14% across four reasoning benchmarks. Most notably, HBPO exhibits emergent adaptive behavior where models automatically adjust reasoning depth based on problem complexity. Our results suggest that reasoning efficiency and capability are not inherently conflicting, and can be simultaneously optimized through appropriately structured hierarchical training that preserves exploration diversity.
comment: Code: https://github.com/zju-real/hbpo Project Page:https://zju-real.github.io/hbpo/
♻ ☆ A Comprehensive Framework for Uncertainty Quantification of Voxel-wise Supervised Models in IVIM MRI
Accurate estimation of intravoxel incoherent motion (IVIM) parameters from diffusion-weighted MRI remains challenging due to the ill-posed nature of the inverse problem and high sensitivity to noise, particularly in the perfusion compartment. In this work, we propose a probabilistic deep learning framework based on Deep Ensembles (DE) of Mixture Density Networks (MDNs), enabling estimation of total predictive uncertainty and decomposition into aleatoric (AU) and epistemic (EU) components. The method was benchmarked against non probabilistic neural networks, a Bayesian fitting approach and a probabilistic network with single Gaussian parametrization. Supervised training was performed on synthetic data, and evaluation was conducted on both simulated and an in vivo dataset. The reliability of the quantified uncertainties was assessed using calibration curves, output distribution sharpness, and the Continuous Ranked Probability Score (CRPS). MDNs produced more calibrated and sharper predictive distributions for the diffusion coefficient D and fraction f parameters, although slight overconfidence was observed in pseudo-diffusion coefficient D*. The Robust Coefficient of Variation (RCV) indicated smoother in vivo estimates for D* with MDNs compared to Gaussian model. Despite the training data covering the expected physiological range, elevated EU in vivo suggests a mismatch with real acquisition conditions, highlighting the importance of incorporating EU, which was allowed by DE. Overall, we present a comprehensive framework for IVIM fitting with uncertainty quantification, which enables the identification and interpretation of unreliable estimates. The proposed approach can also be adopted for fitting other physical models through appropriate architectural and simulation adjustments.
♻ ☆ Sign Spotting Disambiguation using Large Language Models
Sign spotting, the task of identifying and localizing individual signs within continuous sign language video, plays a pivotal role in scaling dataset annotations and addressing the severe data scarcity issue in sign language translation. While automatic sign spotting holds great promise for enabling frame-level supervision at scale, it grapples with challenges such as vocabulary inflexibility and ambiguity inherent in continuous sign streams. Hence, we introduce a novel, training-free framework that integrates Large Language Models (LLMs) to significantly enhance sign spotting quality. Our approach extracts global spatio-temporal and hand shape features, which are then matched against a large-scale sign dictionary using dynamic time warping and cosine similarity. This dictionary-based matching inherently offers superior vocabulary flexibility without requiring model retraining. To mitigate noise and ambiguity from the matching process, an LLM performs context-aware gloss disambiguation via beam search, notably without fine-tuning. Extensive experiments on both synthetic and real-world sign language datasets demonstrate our method's superior accuracy and sentence fluency compared to traditional approaches, highlighting the potential of LLMs in advancing sign spotting.
comment: Accepted in the international conference on Intelligent Virtual Agents (IVA Adjunct)
♻ ☆ From Code to Correctness: Closing the Last Mile of Code Generation with Hierarchical Debugging
While large language models have made significant strides in code generation, the pass rate of the generated code is bottlenecked on subtle errors, often requiring human intervention to pass tests, especially for complex problems. Existing LLM-based debugging systems treat generated programs as monolithic units, failing to address bugs at multiple levels of granularity, from low-level syntax errors to high-level algorithmic flaws. In this paper, we introduce Multi-Granularity Debugger (MGDebugger), a hierarchical code debugger by isolating, identifying, and resolving bugs at various levels of granularity. MGDebugger decomposes problematic code into a hierarchical tree structure of subfunctions, with each level representing a particular granularity of error. During debugging, it analyzes each subfunction and iteratively resolves bugs in a bottom-up manner. To effectively test each subfunction, we propose an LLM-simulated Python executor, which traces code execution and tracks important variable states to pinpoint errors accurately. Extensive experiments demonstrate that MGDebugger outperforms existing debugging systems, achieving an 18.9% improvement in accuracy over seed generations in HumanEval and a 97.6% repair success rate in HumanEvalFix. Furthermore, MGDebugger effectively fixes bugs across different categories and difficulty levels, demonstrating its robustness and effectiveness.
comment: Code and data available at https://github.com/YerbaPage/MGDebugger
♻ ☆ WeatherEdit: Controllable Weather Editing with 4D Gaussian Field
In this work, we present WeatherEdit, a novel weather editing pipeline for generating realistic weather effects with controllable types and severity in 3D scenes. Our approach is structured into two key components: weather background editing and weather particle construction. For weather background editing, we introduce an all-in-one adapter that integrates multiple weather styles into a single pretrained diffusion model, enabling the generation of diverse weather effects in 2D image backgrounds. During inference, we design a Temporal-View (TV-) attention mechanism that follows a specific order to aggregate temporal and spatial information, ensuring consistent editing across multi-frame and multi-view images. To construct the weather particles, we first reconstruct a 3D scene using the edited images and then introduce a dynamic 4D Gaussian field to generate snowflakes, raindrops and fog in the scene. The attributes and dynamics of these particles are precisely controlled through physical-based modelling and simulation, ensuring realistic weather representation and flexible severity adjustments. Finally, we integrate the 4D Gaussian field with the 3D scene to render consistent and highly realistic weather effects. Experiments on multiple driving datasets demonstrate that WeatherEdit can generate diverse weather effects with controllable condition severity, highlighting its potential for autonomous driving simulation in adverse weather. See project page: https://jumponthemoon.github.io/w-edit
♻ ☆ ST-WebAgentBench: A Benchmark for Evaluating Safety and Trustworthiness in Web Agents
Autonomous web agents solve complex browsing tasks, yet existing benchmarks measure only whether an agent finishes a task, ignoring whether it does so safely or in a way enterprises can trust. To integrate these agents into critical workflows, safety and trustworthiness (ST) are prerequisite conditions for adoption. We introduce \textbf{\textsc{ST-WebAgentBench}}, a configurable and easily extensible suite for evaluating web agent ST across realistic enterprise scenarios. Each of its 222 tasks is paired with ST policies, concise rules that encode constraints, and is scored along six orthogonal dimensions (e.g., user consent, robustness). Beyond raw task success, we propose the \textit{Completion Under Policy} (\textit{CuP}) metric, which credits only completions that respect all applicable policies, and the \textit{Risk Ratio}, which quantifies ST breaches across dimensions. Evaluating three open state-of-the-art agents reveals that their average CuP is less than two-thirds of their nominal completion rate, exposing critical safety gaps. By releasing code, evaluation templates, and a policy-authoring interface, \href{https://sites.google.com/view/st-webagentbench/home}{\textsc{ST-WebAgentBench}} provides an actionable first step toward deploying trustworthy web agents at scale.
♻ ☆ MAGIK: Mapping to Analogous Goals via Imagination-enabled Knowledge Transfer
Humans excel at analogical reasoning - applying knowledge from one task to a related one with minimal relearning. In contrast, reinforcement learning (RL) agents typically require extensive retraining even when new tasks share structural similarities with previously learned ones. In this work, we propose MAGIK, a novel framework that enables RL agents to transfer knowledge to analogous tasks without interacting with the target environment. Our approach leverages an imagination mechanism to map entities in the target task to their analogues in the source domain, allowing the agent to reuse its original policy. Experiments on custom MiniGrid and MuJoCo tasks show that MAGIK achieves effective zero-shot transfer using only a small number of human-labelled examples. We compare our approach to related baselines and highlight how it offers a novel and effective mechanism for knowledge transfer via imagination-based analogy mapping.
♻ ☆ Scaling LLM Planning: NL2FLOW for Parametric Problem Generation and Rigorous Evaluation
Effective agent performance relies on the ability to compose tools and agents into effective workflows. However, progress in Large Language Model (LLM) planning and reasoning is limited by the scarcity of scalable, reliable evaluation data. This study addresses this limitation by identifying a suitable workflow domain for LLM application. I introduce NL2Flow, a fully automated system for parametrically generating planning problems, which are expressed in natural language, a structured intermediate representation, and formal PDDL, and rigorously evaluating the quality of generated plans. NL2Flow generates a dataset of 2296 low-difficulty problems in automated workflow generation and evaluates multiple open-sourced, instruct-tuned LLMs without task-specific optimization or architectural modifications. Results reveal that the highest performing model achieved 86% success in generating valid plans and 69% in generating optimal plans, specifically for problems with feasible plans. Regression analysis shows that the influence of problem characteristics on plan generation is contingent on both model and prompt design. To investigate the potential of LLMs as natural language-to-JSON translators for workflow definition, and to facilitate integration with downstream symbolic computation tools and a symbolic planner, I evaluated the LLM's translation performance on natural language workflow descriptions. I observed that translating natural language into a JSON representation of a workflow problem yielded a lower success rate than generating a plan directly, suggesting that unnecessary decomposition of the reasoning task may degrade performance and highlighting the benefit of models capable of reasoning directly from natural language to action. As LLM reasoning scales to increasingly complex problems, understanding the shifting bottlenecks and sources of error within these systems will be crucial.
comment: 26 pages, 7 figures
♻ ☆ GuARD: Effective Anomaly Detection through a Text-Rich and Graph-Informed Language Model KDD 2025
Anomaly detection on text-rich graphs is widely prevalent in real life, such as detecting incorrectly assigned academic papers to authors and detecting bots in social networks. The remarkable capabilities of large language models (LLMs) pave a new revenue by utilizing rich-text information for effective anomaly detection. However, simply introducing rich texts into LLMs can obscure essential detection cues and introduce high fine-tuning costs. Moreover, LLMs often overlook the intrinsic structural bias of graphs which is vital for distinguishing normal from abnormal node patterns. To this end, this paper introduces GuARD, a text-rich and graph-informed language model that combines key structural features from graph-based methods with fine-grained semantic attributes extracted via small language models for effective anomaly detection on text-rich graphs. GuARD is optimized with the progressive multi-modal multi-turn instruction tuning framework in the task-guided instruction tuning regime tailed to incorporate both rich-text and structural modalities. Extensive experiments on four datasets reveal that GuARD outperforms graph-based and LLM-based anomaly detection methods, while offering up to 5$\times$ times speedup in training and 5$\times$ times speedup in inference over vanilla long-context LLMs on the large-scale WhoIsWho dataset.
comment: Accepted at KDD 2025
♻ ☆ Vector Quantized-Elites: Unsupervised and Problem-Agnostic Quality-Diversity Optimization
Quality-Diversity algorithms have transformed optimization by prioritizing the discovery of diverse, high-performing solutions over a single optimal result. However, traditional Quality-Diversity methods, such as MAP-Elites, rely heavily on predefined behavior descriptors and complete prior knowledge of the task to define the behavior space grid, limiting their flexibility and applicability. In this work, we introduce Vector Quantized-Elites (VQ-Elites), a novel Quality-Diversity algorithm that autonomously constructs a structured behavior space grid using unsupervised learning, eliminating the need for prior task-specific knowledge. At the core of VQ-Elites is the integration of Vector Quantized Variational Autoencoders, which enables the dynamic learning of behavior descriptors and the generation of a structured, rather than unstructured, behavior space grid -- a significant advancement over existing unsupervised Quality-Diversity approaches. This design establishes VQ-Elites as a flexible, robust, and task-agnostic optimization framework. To further enhance the performance of unsupervised Quality-Diversity algorithms, we introduce behavior space bounding and cooperation mechanisms, which significantly improve convergence and performance, as well as the Effective Diversity Ratio and Coverage Diversity Score, two novel metrics that quantify the actual diversity in the unsupervised setting. We validate VQ-Elites on robotic arm pose-reaching, mobile robot space-covering, and MiniGrid exploration tasks. The results demonstrate its ability to efficiently generate diverse, high-quality solutions, emphasizing its adaptability, scalability, robustness to hyperparameters, and potential to extend Quality-Diversity optimization to complex, previously inaccessible domains.
comment: 15 pages, 13 figures, 1 algorithm, 1 table
♻ ☆ Exploring the Feasibility of Deep Learning Techniques for Accurate Gender Classification from Eye Images
Gender classification has emerged as a crucial aspect in various fields, including security, human-machine interaction, surveillance, and advertising. Nonetheless, the accuracy of this classification can be influenced by factors such as cosmetics and disguise. Consequently, our study is dedicated to addressing this concern by concentrating on gender classification using color images of the periocular region. The periocular region refers to the area surrounding the eye, including the eyelids, eyebrows, and the region between them. It contains valuable visual cues that can be used to extract key features for gender classification. This paper introduces a sophisticated Convolutional Neural Network (CNN) model that utilizes color image databases to evaluate the effectiveness of the periocular region for gender classification. To validate the model's performance, we conducted tests on two eye datasets, namely CVBL and (Female and Male). The recommended architecture achieved an outstanding accuracy of 99% on the previously unused CVBL dataset while attaining a commendable accuracy of 96% with a small number of learnable parameters (7,235,089) on the (Female and Male) dataset. To ascertain the effectiveness of our proposed model for gender classification using the periocular region, we evaluated its performance through an extensive range of metrics and compared it with other state-of-the-art approaches. The results unequivocally demonstrate the efficacy of our model, thereby suggesting its potential for practical application in domains such as security and surveillance.
comment: 12 pages, 18 figures, 5 tables
♻ ☆ Video Soundtrack Generation by Aligning Emotions and Temporal Boundaries
We introduce EMSYNC, a video-based symbolic music generation model that aligns music with a video's emotional content and temporal boundaries. It follows a two-stage framework, where a pretrained video emotion classifier extracts emotional features, and a conditional music generator produces MIDI sequences guided by both emotional and temporal cues. We introduce boundary offsets, a novel temporal conditioning mechanism that enables the model to anticipate and align musical chords with scene cuts. Unlike existing models, our approach retains event-based encoding, ensuring fine-grained timing control and expressive musical nuances. We also propose a mapping scheme to bridge the video emotion classifier, which produces discrete emotion categories, with the emotion-conditioned MIDI generator, which operates on continuous-valued valence-arousal inputs. In subjective listening tests, EMSYNC outperforms state-of-the-art models across all subjective metrics, for music theory-aware participants as well as the general listeners.
♻ ☆ SpectrumWorld: Artificial Intelligence Foundation for Spectroscopy
Deep learning holds immense promise for spectroscopy, yet research and evaluation in this emerging field often lack standardized formulations. To address this issue, we introduce SpectrumLab, a pioneering unified platform designed to systematize and accelerate deep learning research in spectroscopy. SpectrumLab integrates three core components: a comprehensive Python library featuring essential data processing and evaluation tools, along with leaderboards; an innovative SpectrumAnnotator module that generates high-quality benchmarks from limited seed data; and SpectrumBench, a multi-layered benchmark suite covering 14 spectroscopic tasks and over 10 spectrum types, featuring spectra curated from over 1.2 million distinct chemical substances. Thorough empirical studies on SpectrumBench with 18 cutting-edge multimodal LLMs reveal critical limitations of current approaches. We hope SpectrumLab will serve as a crucial foundation for future advancements in deep learning-driven spectroscopy.
♻ ☆ CountingFruit: Language-Guided 3D Fruit Counting with Semantic Gaussian Splatting
Accurate 3D fruit counting in orchards is challenging due to heavy occlusion, semantic ambiguity between fruits and surrounding structures, and the high computational cost of volumetric reconstruction. Existing pipelines often rely on multi-view 2D segmentation and dense volumetric sampling, which lead to accumulated fusion errors and slow inference. We introduce FruitLangGS, a language-guided 3D fruit counting framework that reconstructs orchard-scale scenes using an adaptive-density Gaussian Splatting pipeline with radius-aware pruning and tile-based rasterization, enabling scalable 3D representation. During inference, compressed CLIP-aligned semantic vectors embedded in each Gaussian are filtered via a dual-threshold cosine similarity mechanism, retrieving Gaussians relevant to target prompts while suppressing common distractors (e.g., foliage), without requiring retraining or image-space masks. The selected Gaussians are then sampled into dense point clouds and clustered geometrically to estimate fruit instances, remaining robust under severe occlusion and viewpoint variation. Experiments on nine different orchard-scale datasets demonstrate that FruitLangGS consistently outperforms existing pipelines in instance counting recall, avoiding multi-view segmentation fusion errors and achieving up to 99.7% recall on Pfuji-Size_Orch2018 orchard dataset. Ablation studies further confirm that language-conditioned semantic embedding and dual-threshold prompt filtering are essential for suppressing distractors and improving counting accuracy under heavy occlusion. Beyond fruit counting, the same framework enables prompt-driven 3D semantic retrieval without retraining, highlighting the potential of language-guided 3D perception for scalable agricultural scene understanding.
♻ ☆ MetaOcc: Spatio-Temporal Fusion of Surround-View 4D Radar and Camera for 3D Occupancy Prediction with Dual Training Strategies
Robust 3D occupancy prediction is essential for autonomous driving, particularly under adverse weather conditions where traditional vision-only systems struggle. While the fusion of surround-view 4D radar and cameras offers a promising low-cost solution, effectively extracting and integrating features from these heterogeneous sensors remains challenging. This paper introduces MetaOcc, a novel multi-modal framework for omnidirectional 3D occupancy prediction that leverages both multi-view 4D radar and images. To address the limitations of directly applying LiDAR-oriented encoders to sparse radar data, we propose a Radar Height Self-Attention module that enhances vertical spatial reasoning and feature extraction. Additionally, a Hierarchical Multi-scale Multi-modal Fusion strategy is developed to perform adaptive local-global fusion across modalities and time, mitigating spatio-temporal misalignments and enriching fused feature representations. To reduce reliance on expensive point cloud annotations, we further propose a pseudo-label generation pipeline based on an open-set segmentor. This enables a semi-supervised strategy that achieves 90% of the fully supervised performance using only 50% of the ground truth labels, offering an effective trade-off between annotation cost and accuracy. Extensive experiments demonstrate that MetaOcc under full supervision achieves state-of-the-art performance, outperforming previous methods by +0.47 SC IoU and +4.02 mIoU on the OmniHD-Scenes dataset, and by +1.16 SC IoU and +1.24 mIoU on the SurroundOcc-nuScenes dataset. These results demonstrate the scalability and robustness of MetaOcc across sensor domains and training conditions, paving the way for practical deployment in real-world autonomous systems. Code and data are available at https://github.com/LucasYang567/MetaOcc.
♻ ☆ EarthSynth: Generating Informative Earth Observation with Diffusion Models
Remote sensing image (RSI) interpretation typically faces challenges due to the scarcity of labeled data, which limits the performance of RSI interpretation tasks. To tackle this challenge, we propose EarthSynth, a diffusion-based generative foundation model that enables synthesizing multi-category, cross-satellite labeled Earth observation for downstream RSI interpretation tasks. To the best of our knowledge, EarthSynth is the first to explore multi-task generation for remote sensing, tackling the challenge of limited generalization in task-oriented synthesis for RSI interpretation. EarthSynth, trained on the EarthSynth-180K dataset, employs the Counterfactual Composition training strategy with a three-dimensional batch-sample selection mechanism to improve training data diversity and enhance category control. Furthermore, a rule-based method of R-Filter is proposed to filter more informative synthetic data for downstream tasks. We evaluate our EarthSynth on scene classification, object detection, and semantic segmentation in open-world scenarios. There are significant improvements in open-vocabulary understanding tasks, offering a practical solution for advancing RSI interpretation.
comment: 25 pages
♻ ☆ VeOmni: Scaling Any Modality Model Training with Model-Centric Distributed Recipe Zoo
Recent advances in large language models (LLMs) have driven impressive progress in omni-modal understanding and generation. However, training omni-modal LLMs remains a significant challenge due to the heterogeneous model architectures required to process diverse modalities, necessitating sophisticated system design for efficient large-scale training. Existing frameworks typically entangle model definition with parallel logic, incurring limited scalability and substantial engineering overhead for end-to-end omni-modal training. We present VeOmni, a modular and efficient training framework to accelerate the development of omni-modal LLMs. VeOmni introduces model-centric distributed recipes that decouples communication from computation, enabling efficient 3D parallelism on omni-modal LLMs. VeOmni also features a flexible configuration interface supporting seamless integration of new modalities with minimal code change. Using VeOmni, a omni-modal mixture-of-experts (MoE) model with 30B parameters can be trained with over 2,800 tokens/sec/GPU throughput and scale to 160K context lengths via 3D parallelism on 128 GPUs, showcasing its superior efficiency and scalability for training large omni-modal LLMs.
♻ ☆ Efficient Attention Mechanisms for Large Language Models: A Survey
Transformer-based architectures have become the prevailing backbone of large language models. However, the quadratic time and memory complexity of self-attention remains a fundamental obstacle to efficient long-context modeling. To address this limitation, recent research has introduced two principal categories of efficient attention mechanisms. Linear attention methods achieve linear complexity through kernel approximations, recurrent formulations, or fastweight dynamics, thereby enabling scalable inference with reduced computational overhead. Sparse attention techniques, in contrast, limit attention computation to selected subsets of tokens based on fixed patterns, block-wise routing, or clustering strategies, enhancing efficiency while preserving contextual coverage. This survey provides a systematic and comprehensive overview of these developments, integrating both algorithmic innovations and hardware-level considerations. In addition, we analyze the incorporation of efficient attention into largescale pre-trained language models, including both architectures built entirely on efficient attention and hybrid designs that combine local and global components. By aligning theoretical foundations with practical deployment strategies, this work aims to serve as a foundational reference for advancing the design of scalable and efficient language models.
comment: work in progress
♻ ☆ Advancing Multi-Organ Disease Care: A Hierarchical Multi-Agent Reinforcement Learning Framework
In healthcare, multi-organ system diseases pose unique and significant challenges as they impact multiple physiological systems concurrently, demanding complex and coordinated treatment strategies. Despite recent advancements in the AI based clinical decision support systems, these solutions only focus on individual organ systems, failing to account for complex interdependencies between them. This narrow focus greatly hinders their effectiveness in recommending holistic and clinically actionable treatments in the real world setting. To address this critical gap, we propose a novel Hierarchical Multi-Agent Reinforcement Learning (HMARL) framework. Our architecture deploys specialized and dedicated agents for each organ system and facilitates inter-agent communication to enable synergistic decision-making across organ systems. Furthermore, we introduce a dual-layer state representation technique that contextualizes patient conditions at both global and organ-specific levels, improving the accuracy and relevance of treatment decisions. We evaluate our HMARL solution on the task of sepsis management, a common and critical multi-organ disease, using both qualitative and quantitative metrics. Our method learns effective, clinically aligned treatment policies that considerably improve patient survival. We believe this framework represents a significant advancement in clinical decision support systems, introducing the first RL solution explicitly designed for multi-organ treatment recommendations. Our solution moves beyond prevailing simplified, single-organ models that fall short in addressing the complexity of multi-organ diseases.
♻ ☆ NatureGAIA: Pushing the Frontiers of GUI Agents with a Challenging Benchmark and High-Quality Trajectory Dataset
The rapid advancement of Large Language Model (LLM)-driven Graphical User Interface (GUI) agents is significantly hampered by the profound limitations of existing evaluation benchmarks in terms of accuracy, reproducibility, and scalability. To address this critical gap, we introduce NaturalGAIA, a novel benchmark engineered on the principle of Causal Pathways. This design paradigm structures complex tasks into a series of programmatically verifiable atomic steps, ensuring a rigorous, fully automated, and reproducible standard for assessment. Concurrently, to mitigate the inherent capability deficits of agents, we developed LightManus, a hierarchical agent architecture specifically optimized for long-horizon tasks. We leveraged this agent to generate a high-quality, human-verified trajectory dataset that uniquely captures diverse and even self-correcting interaction patterns of LLMs. We then utilized this dataset to perform Reinforcement Fine-Tuning (RFT) on the Qwen2.5-VL-7B model. Our experiments reveal that NaturalGAIA presents a formidable challenge to current state-of-the-art LLMs; even the top-performing Claude-sonnet-4 achieved a Weighted Pathway Success Rate (WPSR) of only 34.6%. Moreover, while RFT substantially improved the smaller model's GUI execution capabilities (WPSR increased from 3.3% to 10.8%), its performance degraded sharply when handling complex scenarios. This outcome highlights the inherent capability ceiling of smaller models when faced with comprehensive tasks that integrate perception, decision-making, and execution. This research contributes a rigorous evaluation standard and a high-quality dataset to the community, aiming to guide the future development of GUI agents.
♻ ☆ MOGO: Residual Quantized Hierarchical Causal Transformer for High-Quality and Real-Time 3D Human Motion Generation
Recent advances in transformer-based text-to-motion generation have led to impressive progress in synthesizing high-quality human motion. Nevertheless, jointly achieving high fidelity, streaming capability, real-time responsiveness, and scalability remains a fundamental challenge. In this paper, we propose MOGO (Motion Generation with One-pass), a novel autoregressive framework tailored for efficient and real-time 3D motion generation. MOGO comprises two key components: (1) MoSA-VQ, a motion scale-adaptive residual vector quantization module that hierarchically discretizes motion sequences with learnable scaling to produce compact yet expressive representations; and (2) RQHC-Transformer, a residual quantized hierarchical causal transformer that generates multi-layer motion tokens in a single forward pass, significantly reducing inference latency. To enhance semantic fidelity, we further introduce a text condition alignment mechanism that improves motion decoding under textual control. Extensive experiments on benchmark datasets including HumanML3D, KIT-ML, and CMP demonstrate that MOGO achieves competitive or superior generation quality compared to state-of-the-art transformer-based methods, while offering substantial improvements in real-time performance, streaming generation, and generalization under zero-shot settings.
comment: 9 pages, 4 figures, conference
♻ ☆ Incentivizing Reasoning for Advanced Instruction-Following of Large Language Models
Existing large language models (LLMs) face challenges of following complex instructions, especially when multiple constraints are present and organized in paralleling, chaining, and branching structures. One intuitive solution, namely chain-of-thought (CoT), is expected to universally improve capabilities of LLMs. However, we find that the vanilla CoT exerts a negative impact on performance due to its superficial reasoning pattern of simply paraphrasing the instructions. It fails to peel back the compositions of constraints for identifying their relationship across hierarchies of types and dimensions. To this end, we propose RAIF, a systematic method to boost LLMs in dealing with complex instructions via incentivizing reasoning for test-time compute scaling. First, we stem from the decomposition of complex instructions under existing taxonomies and propose a reproducible data acquisition method. Second, we exploit reinforcement learning (RL) with verifiable rule-centric reward signals to cultivate reasoning specifically for instruction following. We address the shallow, non-essential nature of reasoning under complex instructions via sample-wise contrast for superior CoT enforcement. We also exploit behavior cloning of experts to facilitate steady distribution shift from fast-thinking LLMs to skillful reasoners. Extensive evaluations on seven comprehensive benchmarks confirm the validity of the proposed method, where a 1.5B LLM achieves 11.74% gains with performance comparable to a 8B LLM. Evaluation on OOD constraints also confirms the generalizability of our RAIF. Codes and data are available at https://github.com/yuleiqin/RAIF. Keywords: reinforcement learning with verifiable rewards (RLVR), instruction following, complex instructions
comment: 15 pages of main body, 5 tables, 5 figures, 42 pages of appendix
♻ ☆ TokenFlow: Unified Image Tokenizer for Multimodal Understanding and Generation CVPR 2025
We present TokenFlow, a novel unified image tokenizer that bridges the long-standing gap between multimodal understanding and generation. Prior research attempt to employ a single reconstruction-targeted Vector Quantization (VQ) encoder for unifying these two tasks. We observe that understanding and generation require fundamentally different granularities of visual information. This leads to a critical trade-off, particularly compromising performance in multimodal understanding tasks. TokenFlow addresses this challenge through an innovative dual-codebook architecture that decouples semantic and pixel-level feature learning while maintaining their alignment via a shared mapping mechanism. This design enables direct access to both high-level semantic representations crucial for understanding tasks and fine-grained visual features essential for generation through shared indices. Our extensive experiments demonstrate TokenFlow's superiority across multiple dimensions. Leveraging TokenFlow, we demonstrate for the first time that discrete visual input can surpass LLaVA-1.5 13B in understanding performance, achieving a 7.2\% average improvement. For image reconstruction, we achieve a strong FID score of 0.63 at 384*384 resolution. Moreover, TokenFlow establishes state-of-the-art performance in autoregressive image generation with a GenEval score of 0.55 at 256*256 resolution, achieving comparable results to SDXL.
comment: CVPR 2025; Code and models: https://github.com/ByteVisionLab/TokenFlow
♻ ☆ RoboMemory: A Brain-inspired Multi-memory Agentic Framework for Lifelong Learning in Physical Embodied Systems
We present RoboMemory, a brain-inspired multi-memory framework for lifelong learning in physical embodied systems, addressing critical challenges in real-world environments: continuous learning, multi-module memory latency, task correlation capture, and infinite-loop mitigation in closed-loop planning. Grounded in cognitive neuroscience, it integrates four core modules: the Information Preprocessor (thalamus-like), the Lifelong Embodied Memory System (hippocampus-like), the Closed-Loop Planning Module (prefrontal lobe-like), and the Low-Level Executer (cerebellum-like) to enable long-term planning and cumulative learning. The Lifelong Embodied Memory System, central to the framework, alleviates inference speed issues in complex memory frameworks via parallelized updates/retrieval across Spatial, Temporal, Episodic, and Semantic submodules. It incorporates a dynamic Knowledge Graph (KG) and consistent architectural design to enhance memory consistency and scalability. Evaluations on EmbodiedBench show RoboMemory outperforms the open-source baseline (Qwen2.5-VL-72B-Ins) by 25% in average success rate and surpasses the closed-source State-of-the-Art (SOTA) (Claude3.5-Sonnet) by 5%, establishing new SOTA. Ablation studies validate key components (critic, spatial memory, long-term memory), while real-world deployment confirms its lifelong learning capability with significantly improved success rates across repeated tasks. RoboMemory alleviates high latency challenges with scalability, serving as a foundational reference for integrating multi-modal memory systems in physical robots.
♻ ☆ Multi-level Value Alignment in Agentic AI Systems: Survey and Perspectives
The ongoing evolution of AI paradigms has propelled AI research into the agentic AI stage. Consequently, the focus of research has shifted from single agents and simple applications towards multi-agent autonomous decision-making and task collaboration in complex environments. As Large Language Models (LLMs) advance, their applications become more diverse and complex, leading to increasing situational and systemic risks. This has brought significant attention to value alignment for agentic AI systems, which aims to ensure that an agent's goals, preferences, and behaviors align with human values and societal norms. Addressing socio-governance demands through a Multi-level Value framework, this study comprehensively reviews value alignment in LLM-based multi-agent systems as the representative archetype of agentic AI systems. Our survey systematically examines three interconnected dimensions: First, value principles are structured via a top-down hierarchy across macro, meso, and micro levels. Second, application scenarios are categorized along a general-to-specific continuum explicitly mirroring these value tiers. Third, value alignment methods and evaluation are mapped to this tiered framework through systematic examination of benchmarking datasets and relevant methodologies. Additionally, we delve into value coordination among multiple agents within agentic AI systems. Finally, we propose several potential research directions in this field.
♻ ☆ Generative Multi-Target Cross-Domain Recommendation
Recently, there has been a surge of interest in Multi-Target Cross-Domain Recommendation (MTCDR), which aims to enhance recommendation performance across multiple domains simultaneously. Existing MTCDR methods primarily rely on domain-shared entities (\eg users or items) to fuse and transfer cross-domain knowledge, which may be unavailable in non-overlapped recommendation scenarios. Some studies model user preferences and item features as domain-sharable semantic representations, which can be utilized to tackle the MTCDR task. Nevertheless, they often require extensive auxiliary data for pre-training. Developing more effective solutions for MTCDR remains an important area for further exploration. Inspired by recent advancements in generative recommendation, this paper introduces GMC, a generative paradigm-based approach for multi-target cross-domain recommendation. The core idea of GMC is to leverage semantically quantized discrete item identifiers as a medium for integrating multi-domain knowledge within a unified generative model. GMC first employs an item tokenizer to generate domain-shared semantic identifiers for each item, and then formulates item recommendation as a next-token generation task by training a domain-unified sequence-to-sequence model. To further leverage the domain information to enhance performance, we incorporate a domain-aware contrastive loss into the semantic identifier learning, and perform domain-specific fine-tuning on the unified recommender. Extensive experiments on five public datasets demonstrate the effectiveness of GMC compared to a range of baseline methods.
comment: fix some information by request
♻ ☆ AI Agent Smart Contract Exploit Generation
Smart contract vulnerabilities have led to billions in losses, yet finding actionable exploits remains challenging. Traditional fuzzers rely on rigid heuristics and struggle with complex attacks, while human auditors are thorough but slow and don't scale. Large Language Models offer a promising middle ground, combining human-like reasoning with machine speed. However, early studies show that simply prompting LLMs generates unverified vulnerability speculations with high false positive rates. To address this, we present A1, an agentic system that transforms any LLM into an end-to-end exploit generator. A1 provides agents with six domain-specific tools for autonomous vulnerability discovery, from understanding contract behavior to testing strategies on real blockchain states. All outputs are concretely validated through execution, ensuring only profitable proof-of-concept exploits are reported. We evaluate A1 across 36 real-world vulnerable contracts on Ethereum and Binance Smart Chain. A1 achieves a 63% success rate on the VERITE benchmark. Across all successful cases, A1 extracts up to \$8.59 million per exploit and \$9.33 million total. Through 432 experiments across six LLMs, we show that most exploits emerge within five iterations, with costs ranging \$0.01-\$3.59 per attempt. Using Monte Carlo analysis of historical attacks, we demonstrate that immediate vulnerability detection yields 86-89% success probability, dropping to 6-21% with week-long delays. Our economic analysis reveals a troubling asymmetry: attackers achieve profitability at \$6,000 exploit values while defenders require \$60,000 -- raising fundamental questions about whether AI agents inevitably favor exploitation over defense.
♻ ☆ ArXivBench: When You Should Avoid Using ChatGPT for Academic Writing
Large language models (LLMs) demonstrate strong capabilities in reasoning and question answering, yet their tendency to generate factually incorrect content remains a critical challenge. This study evaluates proprietary and open-source LLMs on generating relevant research papers with accurate arXiv links. Our evaluation reveals critical academic risks: LLMs frequently generate incorrect arXiv links or references to non-existent papers, fundamentally undermining their ability to properly attribute research contributions to the actual authors. We introduce arXivBench, a benchmark specifically designed to assess LLM performance across eight major subject categories on arXiv and five subfields within computer science, one of the most popular categories among them. Our findings show concerning accuracy variations across subjects, with Claude-3.5-Sonnet exhibiting a substantial advantage in generating both relevant and accurate responses. Notably, most LLMs perform significantly better in Artificial Intelligence than other subfields. This benchmark provides a standardized tool for evaluating LLM reliability in scientific contexts, promoting more dependable academic use in research environments. Our code and dataset are available at https://github.com/liningresearch/arXivBench and https://huggingface.co/datasets/arXivBenchLLM/arXivBench.
♻ ☆ Flex-Judge: Text-Only Reasoning Unleashes Zero-Shot Multimodal Evaluators
Human-generated reward signals are critical for aligning generative models with human preferences, guiding both training and inference-time evaluations. While large language models (LLMs) employed as proxy evaluators, i.e., LLM-as-a-Judge, significantly reduce the costs associated with manual annotations, they typically require extensive modality-specific training data and fail to generalize well across diverse multimodal tasks. In this paper, we propose Flex-Judge, a reasoning-guided multimodal judge model that leverages minimal textual reasoning data to robustly generalize across multiple modalities and evaluation formats. Our core intuition is that structured textual reasoning explanations inherently encode generalizable decision-making patterns, enabling an effective transfer to multimodal judgments, e.g., with images or videos. Empirical results demonstrate that Flex-Judge, despite being trained on significantly fewer text data, achieves competitive or superior performance compared to state-of-the-art commercial APIs and extensively trained multimodal evaluators. Notably, Flex-Judge presents broad impact in modalities like molecule, where comprehensive evaluation benchmarks are scarce, underscoring its practical value in resource-constrained domains. Our framework highlights reasoning-based text supervision as a powerful, cost-effective alternative to traditional annotation-intensive approaches, substantially advancing scalable multimodal model-as-a-judge.
comment: The code is available at https://github.com/jongwooko/flex-judge
♻ ☆ Unsupervised deep learning model for fast energy layer pre-selection of delivery-efficient proton arc therapy plan optimization of nasopharyngeal carcinoma
Proton arc therapy (PAT) is an emerging and promising modality in radiotherapy, offering improved dose distribution and treatment robustness over intensity-modulated proton therapy. Yet, identifying the optimal energy layer (EL) sequence remains challenging due to the intensive computational demand and prolonged treatment delivery time. This study proposes an unsupervised deep learning model for fast EL pre-selection that minimizes EL switch (ELS) time while maintaining high plan quality. We introduce a novel data representation method, spot-count representation, which encodes the number of proton spots intersecting the target and organs at risk (OAR) in a matrix structured by sorted gantry angles and energy layers. This representation serves as the input of an U-Net style architecture, SPArc_dl, which is trained using a tri-objective function: maximizing spot-counts on target, minimizing spot-counts on OAR, and reducing ELS time. The model is evaluated on 35 nasopharyngeal cancer cases, and its performance is compared to SPArc_particle_swarm (SPArc_ps). SPArc_dl produces EL pre-selection that significantly improves both plan quality and delivery efficiency. Compared to SPArc_ps, it enhances the conformity index by 0.1 (p<0.01), reduces the homogeneity index by 0.71 (p<0.01), lowers the brainstem mean dose by 0.25 (p<0.01), and shortens the ELS time by 37.2% (p < 0.01). The results unintentionally reveal employing unchanged ELS is more time-wise efficient than descended ELS. SPArc_dl's inference time is within 1 second. However, SPArc_dl plan demonstrates limitation in robustness. The proposed spot-count representation lays a foundation for incorporating unsupervised deep learning approaches into EL pre-selection task. SPArc_dl is a fast tool for generating high-quality PAT plans by strategically pre-selecting EL to reduce delivery time while maintaining excellent dosimetric performance.
♻ ☆ DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding
Human motion is inherently continuous and dynamic, posing significant challenges for generative models. While discrete generation methods are widely used, they suffer from limited expressiveness and frame-wise noise artifacts. In contrast, continuous approaches produce smoother, more natural motion but often struggle to adhere to conditioning signals due to high-dimensional complexity and limited training data. To resolve this 'discord' between discrete and continuous representations we introduce DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding, a novel method that leverages rectified flow to decode discrete motion tokens in the continuous, raw motion space. Our core idea is to frame token decoding as a conditional generation task, ensuring that DisCoRD captures fine-grained dynamics and achieves smoother, more natural motions. Compatible with any discrete-based framework, our method enhances naturalness without compromising faithfulness to the conditioning signals on diverse settings. Extensive evaluations demonstrate that DisCoRD achieves state-of-the-art performance, with FID of 0.032 on HumanML3D and 0.169 on KIT-ML. These results establish DisCoRD as a robust solution for bridging the divide between discrete efficiency and continuous realism. Project website: https://whwjdqls.github.io/discord-motion/
comment: 11 pages
♻ ☆ SafeWork-R1: Coevolving Safety and Intelligence under the AI-45$^{\circ}$ Law
We introduce SafeWork-R1, a cutting-edge multimodal reasoning model that demonstrates the coevolution of capabilities and safety. It is developed by our proposed SafeLadder framework, which incorporates large-scale, progressive, safety-oriented reinforcement learning post-training, supported by a suite of multi-principled verifiers. Unlike previous alignment methods such as RLHF that simply learn human preferences, SafeLadder enables SafeWork-R1 to develop intrinsic safety reasoning and self-reflection abilities, giving rise to safety `aha' moments. Notably, SafeWork-R1 achieves an average improvement of $46.54\%$ over its base model Qwen2.5-VL-72B on safety-related benchmarks without compromising general capabilities, and delivers state-of-the-art safety performance compared to leading proprietary models such as GPT-4.1 and Claude Opus 4. To further bolster its reliability, we implement two distinct inference-time intervention methods and a deliberative search mechanism, enforcing step-level verification. Finally, we further develop SafeWork-R1-InternVL3-78B, SafeWork-R1-DeepSeek-70B, and SafeWork-R1-Qwen2.5VL-7B. All resulting models demonstrate that safety and capability can co-evolve synergistically, highlighting the generalizability of our framework in building robust, reliable, and trustworthy general-purpose AI.
comment: 47 pages, 18 figures, authors are listed in alphabetical order by their last names; v3 modifies minor issues
Computational Engineering, Finance, and Science 13
☆ Latent Space Diffusion for Topology Optimization
Topology optimization enables the automated design of efficient structures by optimally distributing material within a defined domain. However, traditional gradient-based methods often scale poorly with increasing resolution and dimensionality due to the need for repeated finite element analyses and sensitivity evaluations. In this work, we propose a novel framework that combines latent diffusion models (LDMs) with variational autoencoders (VAEs) to enable fast, conditional generation of optimized topologies. Unlike prior approaches, our method conditions the generative process on physically meaningful fields, specifically von Mises stress, strain energy density, volume fraction, and loading information, embedded as dense input channels. To further guide the generation process, we introduce auxiliary loss functions that penalize floating material, load imbalance, and volume fraction deviation, thereby encouraging physically realistic and manufacturable designs. Numerical experiments on a large synthetic dataset demonstrate that our VAE-LDM framework outperforms existing diffusion-based methods in compliance accuracy, volume control, and structural connectivity, providing a robust and scalable alternative to conventional
☆ Deconstructing the Crystal Ball: From Ad-Hoc Prediction to Principled Startup Evaluation with the SAISE Framework
The integration of Artificial Intelligence (AI) into startup evaluation represents a significant technological shift, yet the academic research underpinning this transition remains methodologically fragmented. Existing studies often employ ad-hoc approaches, leading to a body of work with inconsistent definitions of success, atheoretical features, and a lack of rigorous validation. This fragmentation severely limits the comparability, reliability, and practical utility of current predictive models. To address this critical gap, this paper presents a comprehensive systematic literature review of 57 empirical studies. We deconstruct the current state-of-the-art by systematically mapping the features, algorithms, data sources, and evaluation practices that define the AI-driven startup prediction landscape. Our synthesis reveals a field defined by a central paradox: a strong convergence on a common toolkit -- venture databases and tree-based ensembles -- but a stark divergence in methodological rigor. We identify four foundational weaknesses: a fragmented definition of "success," a divide between theory-informed and data-driven feature engineering, a chasm between common and best-practice model validation, and a nascent approach to data ethics and explainability. In response to these findings, our primary contribution is the proposal of the Systematic AI-driven Startup Evaluation (SAISE) Framework. This novel, five-stage prescriptive roadmap is designed to guide researchers from ad-hoc prediction toward principled evaluation. By mandating a coherent, end-to-end methodology that emphasizes stage-aware problem definition, theory-informed data synthesis, principled feature engineering, rigorous validation, and risk-aware interpretation, the SAISE framework provides a new standard for conducting more comparable, robust, and practically relevant research in this rapidly maturing domain
☆ Categorising SME Bank Transactions with Machine Learning and Synthetic Data Generation
Despite their significant economic contributions, Small and Medium Enterprises (SMEs) face persistent barriers to securing traditional financing due to information asymmetries. Cash flow lending has emerged as a promising alternative, but its effectiveness depends on accurate modelling of transaction-level data. The main challenge in SME transaction analysis lies in the unstructured nature of textual descriptions, characterised by extreme abbreviations, limited context, and imbalanced label distributions. While consumer transaction descriptions often show significant commonalities across individuals, SME transaction descriptions are typically nonstandard and inconsistent across businesses and industries. To address some of these challenges, we propose a bank categorisation pipeline that leverages synthetic data generation to augment existing transaction data sets. Our approach comprises three core components: (1) a synthetic data generation module that replicates transaction properties while preserving context and semantic meaning; (2) a fine-tuned classification model trained on this enriched dataset; and (3) a calibration methodology that aligns model outputs with real-world label distributions. Experimental results demonstrate that our approach achieves 73.49% (+-5.09) standard accuracy on held-out data, with high-confidence predictions reaching 90.36% (+-6.52) accuracy. The model exhibits robust generalisation across different types of SMEs and transactions, which makes it suitable for practical deployment in cash-flow lending applications. By addressing core data challenges, namely, scarcity, noise, and imbalance, our framework provides a practical solution to build robust classification systems in data-sparse SME lending contexts.
☆ Fuzzy Decisions on Fluid Instabilities: Autoencoder-Based Reconstruction meets Rule-Based Anomaly Classification
Shockwave classification in shadowgraph imaging is challenging due to limited labeled data and complex flow structures. This study presents a hybrid framework that combines unsupervised autoencoder models with a fuzzy inference system to generate and interpret anomaly maps. Among the evaluated methods, the hybrid $\beta$-VAE autoencoder with a fuzzy rule-based system most effectively captured coherent shock features, integrating spatial context to enhance anomaly classification. The resulting approach enables interpretable, unsupervised classification of flow disruptions and lays the groundwork for real-time, physics-informed diagnostics in experimental and industrial fluid applications.
☆ Echo State Networks for Bitcoin Time Series Prediction
Forecasting stock and cryptocurrency prices is challenging due to high volatility and non-stationarity, influenced by factors like economic changes and market sentiment. Previous research shows that Echo State Networks (ESNs) can effectively model short-term stock market movements, capturing nonlinear patterns in dynamic data. To the best of our knowledge, this work is among the first to explore ESNs for cryptocurrency forecasting, especially during extreme volatility. We also conduct chaos analysis through the Lyapunov exponent in chaotic periods and show that our approach outperforms existing machine learning methods by a significant margin. Our findings are consistent with the Lyapunov exponent analysis, showing that ESNs are robust during chaotic periods and excel under high chaos compared to Boosting and Na\"ive methods.
☆ Task-Based Programming for Adaptive Mesh Refinement in Compressible Flow Simulations
High-order solvers for compressible flows are vital in scientific applications. Adaptive mesh refinement (AMR) is a key technique for reducing computational cost by concentrating resolution in regions of interest. In this work, we develop an AMR-based numerical solver using Regent, a high-level programming language for the Legion programming model. We address several challenges associated with implementing AMR in Regent. These include dynamic data structures for patch refinement/coarsening, mesh validity enforcement, and reducing task launch overhead via task fusion. Experimental results show that task fusion achieves 18x speedup, while automated GPU kernel generation via simple annotations yields 9.7x speedup for the targeted kernel. We demonstrate our approach through simulations of two canonical compressible flow problems governed by the Euler equations.
☆ Sentiment-Aware Stock Price Prediction with Transformer and LLM-Generated Formulaic Alpha
Traditionally, traders and quantitative analysts address alpha decay by manually crafting formulaic alphas, mathematical expressions that identify patterns or signals in financial data, through domain expertise and trial-and-error. This process is often time-consuming and difficult to scale. With recent advances in large language models (LLMs), it is now possible to automate the generation of such alphas by leveraging the reasoning capabilities of LLMs. This paper introduces a novel framework that integrates a prompt-based LLM with a Transformer model for stock price prediction. The LLM first generates diverse and adaptive alphas using structured inputs such as historical stock features (Close, Open, High, Low, Volume), technical indicators, sentiment scores of both target and related companies. These alphas, instead of being used directly for trading, are treated as high-level features that capture complex dependencies within the financial data. To evaluate the effectiveness of these LLM-generated formulaic alphas, the alpha features are then fed into prediction models such as Transformer, LSTM, TCN, SVR, and Random Forest to forecast future stock prices. Experimental results demonstrate that the LLM-generated alphas significantly improve predictive accuracy. Moreover, the accompanying natural language reasoning provided by the LLM enhances the interpretability and transparency of the predictions, supporting more informed financial decision-making.
♻ ☆ Constitutive Manifold Neural Networks
Anisotropic material properties, such as the thermal conductivities of engineering composites, exhibit variability due to inherent material heterogeneity and manufacturing-related uncertainties. Mathematically, these properties are modeled as symmetric positive definite (SPD) tensors, which reside on a curved Riemannian manifold. Extending this description to a stochastic framework requires preserving both the SPD structure and the underlying spatial symmetries of the tensors. This is achieved through the spectral decomposition of tensors, which enables the parameterization of uncertainties into scale (strength) and rotation (orientation) components. To quantify the impact of strength and orientation uncertainties on the thermal behaviour of the composite, the stochastic material tensor must be propagated through a physics-based forward model. This process necessitates computationally efficient surrogate models, for which a feedforward neural network (FNN) is employed. However, conventional FNN architectures are not well-suited for SPD tensors, as directly using tensor components as input features fails to preserve their underlying geometric structure, often leading to suboptimal performance. To address this issue, we introduce the Constitutive Manifold Neural Network (CMNN), which incorporates input layers that map SPD tensors from the curved manifold to the local tangent space-a flat vector space-thus preserving the statistical and geometric information in the dataset. A case study involving steady-state heat conduction with stochastic anisotropic conductivity demonstrates that geometry-preserving neural network significantly enhances learning performance compared to conventional multilayer perceptrons (MLPs). These findings underscore the importance of manifold-aware methods when working with tensor-valued data in engineering applications.
♻ ☆ ByteGen: A Tokenizer-Free Generative Model for Orderbook Events in Byte Space
Generative modeling of high-frequency limit order book (LOB) dynamics is a critical yet unsolved challenge in quantitative finance, essential for robust market simulation and strategy backtesting. Existing approaches are often constrained by simplifying stochastic assumptions or, in the case of modern deep learning models like Transformers, rely on tokenization schemes that affect the high-precision, numerical nature of financial data through discretization and binning. To address these limitations, we introduce ByteGen, a novel generative model that operates directly on the raw byte streams of LOB events. Our approach treats the problem as an autoregressive next-byte prediction task, for which we design a compact and efficient 32-byte packed binary format to represent market messages without information loss. The core novelty of our work is the complete elimination of feature engineering and tokenization, enabling the model to learn market dynamics from its most fundamental representation. We achieve this by adapting the H-Net architecture, a hybrid Mamba-Transformer model that uses a dynamic chunking mechanism to discover the inherent structure of market messages without predefined rules. Our primary contributions are: 1) the first end-to-end, byte-level framework for LOB modeling; 2) an efficient packed data representation; and 3) a comprehensive evaluation on high-frequency data. Trained on over 34 million events from CME Bitcoin futures, ByteGen successfully reproduces key stylized facts of financial markets, generating realistic price distributions, heavy-tailed returns, and bursty event timing. Our findings demonstrate that learning directly from byte space is a promising and highly flexible paradigm for modeling complex financial systems, achieving competitive performance on standard market quality metrics without the biases of tokenization.
comment: 21 pages, 3 tables, 5 figures
♻ ☆ Method-Based Reasoning for Large Language Models: Extraction, Reuse, and Continuous Improvement
Large language models (LLMs) have shown impressive capabilities across a wide range of language tasks. However, their reasoning process is primarily guided by statistical patterns in training data, which limits their ability to handle novel problems and perform consistent logical reasoning. In this paper, we propose a method-based model that enhances LLMs with explicit, reusable procedures extracted from training content, generated responses, and user interactions. Each method is represented as a pair consisting of a problem and its corresponding solution, stored externally and ranked based on feedback. When a new query is received, the system retrieves and applies the most relevant methods to guide the LLM's response. Our model enables continual learning, method reuse, and logical consistency beyond next-token prediction. Experimental results demonstrate that the system improves factual verification and generalization in complex prompts, and that newly learned methods can outperform earlier ones through user-driven refinement.
♻ ☆ Mean-Variance Efficient Collaborative Filtering for Stock Recommendation
The rise of FinTech has transformed financial services onto online platforms, yet stock investment recommender systems have received limited attention compared to other industries. Personalized stock recommendations can significantly impact customer engagement and satisfaction within the industry. However, traditional investment recommendations focus on high-return stocks or highly diversified portfolios based on the modern portfolio theory, often neglecting user preferences. On the other hand, collaborative filtering (CF) methods also may not be directly applicable to stock recommendations, because it is inappropriate to just recommend stocks that users like. The key is to optimally blend users preference with the portfolio theory. However, research on stock recommendations within the recommender system domain remains comparatively limited, and no existing model considers both the preference of users and the risk-return characteristics of stocks. In this regard, we propose a mean-variance efficient collaborative filtering (MVECF) model for stock recommendations that consider both aspects. Our model is specifically designed to improve the pareto optimality (mean-variance efficiency) in a trade-off between the risk (variance of return) and return (mean return) by systemically handling uncertainties in stock prices. Such improvements are incorporated into the MVECF model using regularization, and the model is restructured to fit into the ordinary matrix factorization scheme to boost computational efficiency. Experiments on real-world fund holdings data show that our model can increase the mean-variance efficiency of suggested portfolios while sacrificing just a small amount of mean average precision and recall. Finally, we further show MVECF is easily applicable to the state-of-the-art graph-based ranking models.
comment: 12 pages, 4 figures, preprint, under review
♻ ☆ Adaptive Collocation Point Strategies For Physics Informed Neural Networks via the QR Discrete Empirical Interpolation Method
Physics-informed neural networks (PINNs) have gained significant attention for solving forward and inverse problems related to partial differential equations (PDEs). While advancements in loss functions and network architectures have improved PINN accuracy, the impact of collocation point sampling on their performance remains underexplored. Fixed sampling methods, such as uniform random sampling and equispaced grids, can fail to capture critical regions with high solution gradients, limiting their effectiveness for complex PDEs. Adaptive methods, inspired by adaptive mesh refinement from traditional numerical methods, address this by dynamically updating collocation points during training but may overlook residual dynamics between updates, potentially losing valuable information. To overcome this limitation, we propose two adaptive collocation point selection strategies utilizing the QR Discrete Empirical Interpolation Method (QR-DEIM), a reduced-order modeling technique for efficiently approximating nonlinear functions. Our results on benchmark PDEs demonstrate that our QR-DEIM-based approaches improve PINN accuracy compared to existing methods, offering a promising direction for adaptive collocation point strategies.
♻ ☆ From Autonomy to Agency: Agentic Vehicles for Human-Centered Mobility Systems
Autonomy, from the Greek autos (self) and nomos (law), refers to the capacity to operate according to internal rules without external control. Accordingly, autonomous vehicles (AuVs) are defined as systems capable of perceiving their environment and executing preprogrammed tasks independently of external input. However, both research and real-world deployments increasingly showcase vehicles that demonstrate behaviors beyond this definition (including the SAE levels 1 to 6), such as interaction with humans and machines, goal adaptation, contextual reasoning, external tool use, and long-term planning, particularly with the integration of large language models (LLMs) and agentic AI systems. These developments reveal a conceptual gap between technical autonomy and the broader cognitive and social capabilities needed for future human-centered mobility systems. To address this, we introduce the concept of agentic vehicles (AgVs), referring to vehicles that integrate agentic AI to reason, adapt, and interact within complex environments. This paper presents a systems-level framework to characterize AgVs, focusing on their cognitive and communicative layers and differentiating them from conventional AuVs. It synthesizes relevant advances in agentic AI, robotics, multi-agent systems, and human-machine interaction, and highlights how agentic AI, through high-level reasoning and tool use, can function not merely as computational tools but as interactive agents embedded in mobility ecosystems. The paper concludes by identifying key challenges in the development and governance of AgVs, including safety, real-time control, public acceptance, ethical alignment, and regulatory frameworks.
Databases 8
☆ Rethinking Analytical Processing in the GPU Era
The era of GPU-powered data analytics has arrived. In this paper, we argue that recent advances in hardware (e.g., larger GPU memory, faster interconnect and IO, and declining cost) and software (e.g., composable data systems and mature libraries) have removed the key barriers that have limited the wider adoption of GPU data analytics. We present Sirius, a prototype open-source GPU-native SQL engine that offers drop-in acceleration for diverse data systems. Sirius treats GPU as the primary engine and leverages libraries like libcudf for high-performance relational operators. It provides drop-in acceleration for existing databases by leveraging the standard Substrait query representation, replacing the CPU engine without changing the user-facing interface. On TPC-H, Sirius achieves 7x speedup when integrated with DuckDB in a single node at the same hardware rental cost, and up to 12.5x speedup when integrated with Apache Doris in a distributed setting.
☆ BridgeScope: A Universal Toolkit for Bridging Large Language Models and Databases
As large language models (LLMs) demonstrate increasingly powerful reasoning and orchestration capabilities, LLM-based agents are rapidly proliferating for complex data-related tasks. Despite this progress, the current design of how LLMs interact with databases exhibits critical limitations in usability, security, privilege management, and data transmission efficiency. To resolve these challenges, we introduce BridgeScope, a universal toolkit bridging LLMs and databases through three key innovations. First, it modularizes SQL operations into fine-grained tools for context retrieval, CRUD execution, and ACID-compliant transaction management, enabling more precise and LLM-friendly functionality controls. Second, it aligns tool implementations with both database privileges and user security policies to steer LLMs away from unsafe or unauthorized operations, improving task execution efficiency while safeguarding database security. Third, it introduces a proxy mechanism for seamless inter-tool data transfer, bypassing LLM transmission bottlenecks. All of these designs are database-agnostic and can be transparently integrated with existing agent architectures. We also release an open-source implementation of BridgeScope for PostgreSQL. Evaluations on two novel benchmarks demonstrate that BridgeScope enables LLM agents to operate databases more effectively, reduces token usage by up to 80% through improved security awareness, and uniquely supports data-intensive workflows beyond existing toolkits, establishing BridgeScope as a robust foundation for next-generation intelligent data automation.
comment: 6 pages, 6 figures
☆ Advanced DAG-Based Ranking (ADR) Protocol for Blockchain Scalability
In the past decade, blockchain has emerged as a promising solution for building secure distributed ledgers and has attracted significant attention. However, current blockchain systems suffer from limited throughput, poor scalability, and high latency. Due to limitations in consensus mechanisms, especially in managing node identities, blockchain is often considered unsuitable for applications such as the Internet of Things (IoT). This paper proposes the Advanced DAG-based Ranking (ADR) protocol to enhance blockchain scalability and throughput. ADR employs a directed acyclic graph (DAG) structure where nodes are positioned based on their rankings. Unlike traditional chains, ADR allows honest nodes to write blocks and verify transactions using a DAG-based topology. The protocol follows a three-step approach to secure the network against double-spending and enhance performance. First, it verifies nodes using their public and private keys before granting entry. Second, it builds an advanced DAG ledger enabling block production and transaction validation. Third, a ranking algorithm filters out malicious nodes, ranks the remaining nodes based on performance, and arranges them topologically. This process increases throughput and ensures robust scalability. We evaluated ADR on Amazon EC2 clusters with over 100 nodes, including scenarios with injected malicious nodes. Simulation results demonstrate that ADR significantly improves transaction throughput and network liveness compared to existing DAG-based blockchains such as IOTA and ByteBall, making it well-suited for IoT applications.
☆ Reputation-based partition scheme for IoT security
With the popularity of smart terminals, such as the Internet of Things, crowdsensing is an emerging data aggregation paradigm, which plays a pivotal role in data-driven applications. There are some key issues in the development of crowdsensing such as platform security and privacy protection. As the crowdsensing is usually managed by a centralized platform, centralized management will bring various security vulnerabilities and scalability issues. To solve these issues, an effective reputation-based partition scheme (RSPC) is proposed in this article. The partition scheme calculates the optimal partition size by combining the node reputation value and divides the node into several disjoint partitions according to the node reputation value. By selecting the appropriate partition size, RSPC provides a mechanism to ensure that each partition is valid, as long as themaximum permissible threshold for the failed node is observed. At the same time, the RSPC reorganizes the network periodically to avoid partition attacks. In addition, for cross-partition transactions, this paper innovatively proposes a four-stage confirmation protocol to ensure the efficient and safe completion of cross-partition transactions. Finally, experiments show that RSPC improves scalability, low latency, and high throughput for crowdsensing.
☆ Raqlet: Cross-Paradigm Compilation for Recursive Queries
We introduce Raqlet, a source-to-source compilation framework that addresses the fragmentation of recursive querying engines spanning relational (recursive SQL), graph (Cypher, GQL), and deductive (Datalog) systems. Recent standards such as SQL:2023's SQL/PGQ and the GQL standard provide a common foundation for querying graph data within relational and graph databases; however, real-world support remains inconsistent across systems. Raqlet bridges this gap by translating recursive queries across paradigms through leveraging intermediate representations (IRs) grounded in well-defined semantics; it translates Cypher or SQL/PGQ to PGIR (inspired by Cypher), then into DLIR (inspired by Datalog), and finally to SQIR (inspired by recursive SQL). Raqlet provides a shared semantic basis that can serve as a golden reference implementation for language standards, while supporting static analysis and transformations (e.g., magic-set transformation) for performance tuning. Our vision is to make Raqlet a robust platform that enables rapid cross-paradigm prototyping, portable recursive queries, and formal reasoning about recursion even when targeting diverse query execution engines.
☆ Leveraging large language models for SQL behavior-based database intrusion detection
Database systems are extensively used to store critical data across various domains. However, the frequency of abnormal database access behaviors, such as database intrusion by internal and external attacks, continues to rise. Internal masqueraders often have greater organizational knowledge, making it easier to mimic employee behavior effectively. In contrast, external masqueraders may behave differently due to their lack of familiarity with the organization. Current approaches lack the granularity needed to detect anomalies at the operational level, frequently misclassifying entire sequences of operations as anomalies, even though most operations are likely to represent normal behavior. On the other hand, some anomalous behaviors often resemble normal activities, making them difficult for existing detection methods to identify. This paper introduces a two-tiered anomaly detection approach for Structured Query Language (SQL) using the Bidirectional Encoder Representations from Transformers (BERT) model, specifically DistilBERT, a more efficient, pre-trained version. Our method combines both unsupervised and supervised machine learning techniques to accurately identify anomalous activities while minimizing the need for data labeling. First, the unsupervised method uses ensemble anomaly detectors that flag embedding vectors distant from learned normal patterns of typical user behavior across the database (out-of-scope queries). Second, the supervised method uses fine-tuned transformer-based models to detect internal attacks with high precision (in-scope queries), using role-labeled classification, even on limited labeled SQL data. Our findings make a significant contribution by providing an effective solution for safeguarding critical database systems from sophisticated threats.
♻ ☆ From FASTER to F2: Evolving Concurrent Key-Value Store Designs for Large Skewed Workloads VLDB
Modern large-scale services such as search engines, messaging platforms, and serverless functions, rely on key-value (KV) stores to maintain high performance at scale. When such services are deployed in constrained memory environments, they present challenging requirements: point operations requiring high throughput, working sets much larger than main memory, and natural skew in key access patterns. Traditional KV stores, based on LSM- and B-Trees, have been widely used to handle such use cases, but they often suffer from suboptimal use of modern hardware resources. The FASTER project, developed as a high-performance open-source KV storage library, has demonstrated remarkable success in both in-memory and hybrid storage environments. However, when tasked with serving large skewed workloads, it faced challenges, including high indexing and compactions overheads, and inefficient management of non-overlapping read-hot and write-hot working sets. In this paper, we introduce F2 (for FASTER v2), an evolution of FASTER designed to meet the requirements of large skewed workloads common in industry applications. F2 adopts a two-tier record-oriented design to handle larger-than-memory skewed workloads, along with new concurrent latch-free mechanisms and components to maximize performance on modern hardware. To realize this design, F2 tackles key challenges and introduces several innovations, including new latch-free algorithms for multi-threaded log compaction, a two-level hash index to reduce indexing overhead for cold records, and a read-cache for serving read-hot records. Our evaluation shows that F2 achieves 2-11.9x better throughput compared to existing KV stores, effectively serving the target workload. F2 is open-source and available as part of the FASTER project.
comment: Proceedings of the VLDB Endowment 18 (VLDB'25)
♻ ☆ Oze: Decentralized Graph-based Concurrency Control for Long-running Update Transactions (Extended Version)
This paper proposes Oze, a concurrency control protocol that handles heterogeneous workloads, including long-running update transactions. Oze explores a large scheduling space using a multi-version serialization graph to reduce false positives. Oze manages the graph in a decentralized manner to exploit many cores in modern servers. We further propose an OLTP benchmark, BoMB (Bill of Materials Benchmark), based on a use case in an actual manufacturing company. BoMB consists of one long-running update transaction and five short transactions that conflict with each other. Experiments using BoMB show that Oze can handle the long-running update transaction while achieving four orders of magnitude higher throughput than state-of-the-art optimistic and multi-version protocols and up to five times higher throughput than pessimistic protocols. We also show Oze performs comparably with existing techniques even in a typical OLTP workload, TPC-C, thanks to a protocol switching mechanism.
comment: 14 pages, 14 figures
Distributed, Parallel, and Cluster Computing 19
☆ Edge-assisted Parallel Uncertain Skyline Processing for Low-latency IoE Analysis
Due to the Internet of Everything (IoE), data generated in our life become larger. As a result, we need more effort to analyze the data and extract valuable information. In the cloud computing environment, all data analysis is done in the cloud, and the client only needs less computing power to handle some simple tasks. However, with the rapid increase in data volume, sending all data to the cloud via the Internet has become more expensive. The required cloud computing resources have also become larger. To solve this problem, edge computing is proposed. Edge is granted with more computation power to process data before sending it to the cloud. Therefore, the data transmitted over the Internet and the computing resources required by the cloud can be effectively reduced. In this work, we proposed an Edge-assisted Parallel Uncertain Skyline (EPUS) algorithm for emerging low-latency IoE analytic applications. We use the concept of skyline candidate set to prune data that are less likely to become the skyline data on the parallel edge computing nodes. With the candidate skyline set, each edge computing node only sends the information required to the server for updating the global skyline, which reduces the amount of data that transfer over the internet. According to the simulation results, the proposed method is better than two comparative methods, which reduces the latency of processing two-dimensional data by more than 50%. For high-dimensional data, the proposed EPUS method also outperforms the other existing methods.
comment: 18 pages, 15 figures, to appear in IEEE Internet of Things Journal
☆ Policy Design in Zero-Trust Distributed Networks: Challenges and Solutions
Traditional security architectures are becoming more vulnerable to distributed attacks due to significant dependence on trust. This will further escalate when implementing agentic AI within the systems, as more components must be secured over a similar distributed space. These scenarios can be observed in consumer technologies, such as the dense Internet of things (IoT). Here, zero-trust architecture (ZTA) can be seen as a potential solution, which relies on a key principle of not giving users explicit trust, instead always verifying their privileges whenever a request is made. However, the overall security in ZTA is managed through its policies, and unverified policies can lead to unauthorized access. Thus, this paper explores challenges and solutions for ZTA policy design in the context of distributed networks, which is referred to as zero-trust distributed networks (ZTDN). This is followed by a case-study on formal verification of policies using UPPAAL. Subsequently, the importance of accountability and responsibility in the system's security is discussed.
comment: 10 pages, 5 Figures, 2 Tables
Data Scheduling Algorithm for Scalable and Efficient IoT Sensing in Cloud Computing
The rapid growth of Internet of Things (IoT) devices produces massive, heterogeneous data streams, demanding scalable and efficient scheduling in cloud environments to meet latency, energy, and Quality-of-Service (QoS) requirements. Existing scheduling methods often lack adaptability to dynamic workloads and network variability inherent in IoT-cloud systems. This paper presents a novel hybrid scheduling algorithm combining deep Reinforcement Learning (RL) and Ant Colony Optimization (ACO) to address these challenges. The deep RL agent utilizes a model-free policy-gradient approach to learn adaptive task allocation policies responsive to real-time workload fluctuations and network states. Simultaneously, the ACO metaheuristic conducts a global combinatorial search to optimize resource distribution, mitigate congestion, and balance load across distributed cloud nodes. Extensive experiments on large-scale synthetic IoT datasets, reflecting diverse workloads and QoS constraints, demonstrate that the proposed method achieves up to 18.4% reduction in average response time, 12.7% improvement in resource utilization, and 9.3% decrease in energy consumption compared to leading heuristics and RL-only baselines. Moreover, the algorithm ensures strict Service Level Agreement (SLA) compliance through deadline-aware scheduling and dynamic prioritization. The results confirm the effectiveness of integrating model-free RL with swarm intelligence for scalable, energy-efficient IoT data scheduling, offering a promising approach for next-generation IoT-cloud platforms.
☆ Optimizing Microgrid Composition for Sustainable Data Centers
As computing energy demand continues to grow and electrical grid infrastructure struggles to keep pace, an increasing number of data centers are being planned with colocated microgrids that integrate on-site renewable generation and energy storage. However, while existing research has examined the tradeoffs between operational and embodied carbon emissions in the context of renewable energy certificates, there is a lack of tools to assess how the sizing and composition of microgrid components affects long-term sustainability and power reliability. In this paper, we present a novel optimization framework that extends the computing and energy system co-simulator Vessim with detailed renewable energy generation models from the National Renewable Energy Laboratory's (NREL) System Advisor Model (SAM). Our framework simulates the interaction between computing workloads, on-site renewable production, and energy storage, capturing both operational and embodied emissions. We use a multi-horizon black-box optimization to explore efficient microgrid compositions and enable operators to make more informed decisions when planning energy systems for data centers.
☆ S2M3: Split-and-Share Multi-Modal Models for Distributed Multi-Task Inference on the Edge
With the advancement of Artificial Intelligence (AI) towards multiple modalities (language, vision, speech, etc.), multi-modal models have increasingly been used across various applications (e.g., visual question answering or image generation/captioning). Despite the success of AI as a service for multi-modal applications, it relies heavily on clouds, which are constrained by bandwidth, latency, privacy concerns, and unavailability under network or server failures. While on-device AI becomes popular, supporting multiple tasks on edge devices imposes significant resource challenges. To address this, we introduce S2M3, a split-and-share multi-modal architecture for multi-task inference on edge devices. Inspired by the general-purpose nature of multi-modal models, which are composed of multiple modules (encoder, decoder, classifier, etc.), we propose to split multi-modal models at functional-level modules; and then share common modules to reuse them across tasks, thereby reducing resource usage. To address cross-model dependency arising from module sharing, we propose a greedy module-level placement with per-request parallel routing by prioritizing compute-intensive modules. Through experiments on a testbed consisting of 14 multi-modal models across 5 tasks and 10 benchmarks, we demonstrate that S2M3 can reduce memory usage by up to 50% and 62% in single-task and multi-task settings, respectively, without sacrificing accuracy. Furthermore, S2M3 achieves optimal placement in 89 out of 95 instances (93.7%) while reducing inference latency by up to 56.9% on resource-constrained devices, compared to cloud AI.
comment: Accepted at IEEE International Conference on Distributed Computing Systems (ICDCS 2025)
☆ SelectiveShield: Lightweight Hybrid Defense Against Gradient Leakage in Federated Learning
Federated Learning (FL) enables collaborative model training on decentralized data but remains vulnerable to gradient leakage attacks that can reconstruct sensitive user information. Existing defense mechanisms, such as differential privacy (DP) and homomorphic encryption (HE), often introduce a trade-off between privacy, model utility, and system overhead, a challenge that is exacerbated in heterogeneous environments with non-IID data and varying client capabilities. To address these limitations, we propose SelectiveShield, a lightweight hybrid defense framework that adaptively integrates selective homomorphic encryption and differential privacy. SelectiveShield leverages Fisher information to quantify parameter sensitivity, allowing clients to identify critical parameters locally. Through a collaborative negotiation protocol, clients agree on a shared set of the most sensitive parameters for protection via homomorphic encryption. Parameters that are uniquely important to individual clients are retained locally, fostering personalization, while non-critical parameters are protected with adaptive differential privacy noise. Extensive experiments demonstrate that SelectiveShield maintains strong model utility while significantly mitigating gradient leakage risks, offering a practical and scalable defense mechanism for real-world federated learning deployments.
comment: 19 pages, 7 figures
☆ Dynamic Solutions for Hybrid Quantum-HPC Resource Allocation
The integration of quantum computers within classical High-Performance Computing (HPC) infrastructures is receiving increasing attention, with the former expected to serve as accelerators for specific computational tasks. However, combining HPC and quantum computers presents significant technical challenges, including resource allocation. This paper presents a novel malleability-based approach, alongside a workflow-based strategy, to optimize resource utilization in hybrid HPC-quantum workloads. With both these approaches, we can release classical resources when computations are offloaded to the quantum computer and reallocate them once quantum processing is complete. Our experiments with a hybrid HPC-quantum use case show the benefits of dynamic allocation, highlighting the potential of those solutions.
comment: 7 pages, accepted to QCE25 WIHPQC Workshop (The Fifth International Workshop on Integrating High-Performance and Quantum Computing)
☆ Advantages of Co-locating Quantum-HPC Platforms: A Survey for Near-Future Industrial Applications
We conducted a systematic survey of emerging quantum-HPC platforms, which integrate quantum computers and High-Performance Computing (HPC) systems through co-location. Currently, it remains unclear whether such platforms provide tangible benefits for near-future industrial applications. To address this, we examined the impact of co-location on latency reduction, bandwidth enhancement, and advanced job scheduling. Additionally, we assessed how HPC-level capabilities could enhance hybrid algorithm performance, support large-scale error mitigation, and facilitate complex quantum circuit partitioning and optimization. Our findings demonstrate that co-locating quantum and HPC systems can yield measurable improvements in overall hybrid job throughput. We also observe that large-scale real-world problems can require HPC-level computational resources for executing hybrid algorithms.
comment: 20 pages, 3 figures
☆ SenseCrypt: Sensitivity-guided Selective Homomorphic Encryption for Joint Federated Learning in Cross-Device Scenarios
Homomorphic Encryption (HE) prevails in securing Federated Learning (FL), but suffers from high overhead and adaptation cost. Selective HE methods, which partially encrypt model parameters by a global mask, are expected to protect privacy with reduced overhead and easy adaptation. However, in cross-device scenarios with heterogeneous data and system capabilities, traditional Selective HE methods deteriorate client straggling, and suffer from degraded HE overhead reduction performance. Accordingly, we propose SenseCrypt, a Sensitivity-guided selective Homomorphic EnCryption framework, to adaptively balance security and HE overhead per cross-device FL client. Given the observation that model parameter sensitivity is effective for measuring clients' data distribution similarity, we first design a privacy-preserving method to respectively cluster the clients with similar data distributions. Then, we develop a scoring mechanism to deduce the straggler-free ratio of model parameters that can be encrypted by each client per cluster. Finally, for each client, we formulate and solve a multi-objective model parameter selection optimization problem, which minimizes HE overhead while maximizing model security without causing straggling. Experiments demonstrate that SenseCrypt ensures security against the state-of-the-art inversion attacks, while achieving normal model accuracy as on IID data, and reducing training time by 58.4%-88.7% as compared to traditional HE methods.
comment: 17 pages, 19 figures
☆ The Ubiquitous Sparse Matrix-Matrix Products
Multiplication of a sparse matrix with another (dense or sparse) matrix is a fundamental operation that captures the computational patterns of many data science applications, including but not limited to graph algorithms, sparsely connected neural networks, graph neural networks, clustering, and many-to-many comparisons of biological sequencing data. In many application scenarios, the matrix multiplication takes places on an arbitrary algebraic semiring where the scalar operations are overloaded with user-defined functions with certain properties or a more general heterogenous algebra where even the domains of the input matrices can be different. Here, we provide a unifying treatment of the sparse matrix-matrix operation and its rich application space including machine learning, computational biology and chemistry, graph algorithms, and scientific computing.
☆ High-Performance Statistical Computing (HPSC): Challenges, Opportunities, and Future Directions
We recognize the emergence of a statistical computing community focused on working with large computing platforms and producing software and applications that exemplify high-performance statistical computing (HPSC). The statistical computing (SC) community develops software that is widely used across disciplines. However, it remains largely absent from the high-performance computing (HPC) landscape, particularly on platforms such as those featured on the Top500 or Green500 lists. Many disciplines already participate in HPC, mostly centered around simulation science, although data-focused efforts under the artificial intelligence (AI) label are gaining popularity. Bridging this gap requires both community adaptation and technical innovation to align statistical methods with modern HPC technologies. We can accelerate progress in fast and scalable statistical applications by building strong connections between the SC and HPC communities. We present a brief history of SC, a vision for how its strengths can contribute to statistical science in the HPC environment (such as HPSC), the challenges that remain, and the opportunities currently available, culminating in a possible roadmap toward a thriving HPSC community.
☆ Advanced DAG-Based Ranking (ADR) Protocol for Blockchain Scalability
In the past decade, blockchain has emerged as a promising solution for building secure distributed ledgers and has attracted significant attention. However, current blockchain systems suffer from limited throughput, poor scalability, and high latency. Due to limitations in consensus mechanisms, especially in managing node identities, blockchain is often considered unsuitable for applications such as the Internet of Things (IoT). This paper proposes the Advanced DAG-based Ranking (ADR) protocol to enhance blockchain scalability and throughput. ADR employs a directed acyclic graph (DAG) structure where nodes are positioned based on their rankings. Unlike traditional chains, ADR allows honest nodes to write blocks and verify transactions using a DAG-based topology. The protocol follows a three-step approach to secure the network against double-spending and enhance performance. First, it verifies nodes using their public and private keys before granting entry. Second, it builds an advanced DAG ledger enabling block production and transaction validation. Third, a ranking algorithm filters out malicious nodes, ranks the remaining nodes based on performance, and arranges them topologically. This process increases throughput and ensures robust scalability. We evaluated ADR on Amazon EC2 clusters with over 100 nodes, including scenarios with injected malicious nodes. Simulation results demonstrate that ADR significantly improves transaction throughput and network liveness compared to existing DAG-based blockchains such as IOTA and ByteBall, making it well-suited for IoT applications.
☆ High-Performance and Power-Efficient Emulation of Matrix Multiplication using INT8 Matrix Engines
Recent architectures integrate high-performance and power-efficient matrix engines. These engines demonstrate remarkable performance in low-precision matrix multiplication, which is crucial in deep learning. Several techniques have been proposed to emulate single- and double-precision general matrix-matrix multiplication (SGEMM and DGEMM, respectively) by leveraging such low-precision matrix engines. In this study, we present emulation methods that significantly outperforms conventional approaches. On a GH200 Grace Hopper Superchip, the proposed DGEMM emulation achieves a 1.4x speedup and a 43\% improvement in power efficiency compared to native DGEMM for sufficiently large problems. The proposed SGEMM emulation achieves a 3.0x speedup and a 154\% improvement in power efficiency compared to native SGEMM for sufficiently large problems. Furthermore, compared to conventional emulation methods, the proposed emulation achieves more than 2x higher performance and superior power efficiency.
comment: 8 pages, 9 figures
☆ Reputation-based partition scheme for IoT security
With the popularity of smart terminals, such as the Internet of Things, crowdsensing is an emerging data aggregation paradigm, which plays a pivotal role in data-driven applications. There are some key issues in the development of crowdsensing such as platform security and privacy protection. As the crowdsensing is usually managed by a centralized platform, centralized management will bring various security vulnerabilities and scalability issues. To solve these issues, an effective reputation-based partition scheme (RSPC) is proposed in this article. The partition scheme calculates the optimal partition size by combining the node reputation value and divides the node into several disjoint partitions according to the node reputation value. By selecting the appropriate partition size, RSPC provides a mechanism to ensure that each partition is valid, as long as themaximum permissible threshold for the failed node is observed. At the same time, the RSPC reorganizes the network periodically to avoid partition attacks. In addition, for cross-partition transactions, this paper innovatively proposes a four-stage confirmation protocol to ensure the efficient and safe completion of cross-partition transactions. Finally, experiments show that RSPC improves scalability, low latency, and high throughput for crowdsensing.
☆ Linear Search for Capturing an Oblivious Mobile Target in the Sender/Receiver Model
We consider linear search for capturing an oblivious moving target by two autonomous robots with different communicating abilities. Both robots can communicate Face-to-Face (F2F) when co-located but in addition one robot is a Sender (can also send messages wirelessly) and the other also a Receiver (can also receive messages wirelessly). This is known as Sender/Receiver (S/R, for short) communication model. The robots can move with max speed $1$. The moving target starts at distance $d$ from the origin and can move either with speed $v<1$ away from the origin in the ``away'' model or with speed $v \geq 0$ toward the origin in the ``toward'' model. We assume that the direction of motion of the target (i.e., whether it is the away or toward model) is known to the robots in advance. To capture the target the two robots must be co-located with it. We design new linear search algorithms and analyze the competitive ratio of the time required to capture the target. The approach takes into account various scenarios related to what the robots know about the search environment (e.g., starting distance or speed of the mobile, away or toward model, or a combination thereof). Our study contributes to understanding how asymmetric communication affects the competitive ratio of linear search.
☆ OPTIMUMP2P: Fast and Reliable Gossiping in P2P Networks
Gossip algorithms are pivotal in the dissemination of information within decentralized systems. Consequently, numerous gossip libraries have been developed and widely utilized especially in blockchain protocols for the propagation of blocks and transactions. A well-established library is libp2p, which provides two gossip algorithms: floodsup and gossibsup. These algorithms enable the delivery of published messages to a set of peers. In this work we aim to enhance the performance and reliability of libp2p by introducing OPTIMUMP2P, a novel gossip algorithm that leverages the capabilities of Random Linear Network Coding (RLNC) to expedite the dissemination of information in a peer-to-peer (P2P) network while ensuring reliable delivery, even in the presence of malicious actors capable of corrupting the transmitted data. Preliminary research from the Ethereum Foundation has demonstrated the use of RLNC in the significant improvement in the block propagation time [14]. Here we present extensive evaluation results both in simulation and real-world environments that demonstrate the performance gains of OPTIMUMP2P over the Gossipsub protocol.
♻ ☆ xDeepServe: Model-as-a-Service on Huawei CloudMatrix384
The rise of scaled-out LLMs and scaled-up SuperPods signals a new era in large-scale AI infrastructure. LLMs continue to scale out via MoE, as seen in recent models like DeepSeek, Kimi, and Qwen. In parallel, AI hardware is scaling up, with Huawei's CloudMatrix384 SuperPod offering hundreds of GB/s high-speed interconnects. Running large MoE models on SuperPod-scale hardware brings new challenges. It requires new execution models, scalable scheduling, efficient expert load balancing, and elimination of single points of failure. This paper presents xDeepServe, Huawei Cloud's LLM serving system designed for SuperPod-scale infrastructure. At its core is Transformerless, a disaggregated architecture that decomposes transformer models into modular units--attention, feedforward, and MoE--executed independently on NPUs connected via high-speed fabric. We implement this design in two forms: disaggregated prefill-decode and disaggregated MoE-attention. This fully disaggregated setup enables independent scaling of compute and memory without sacrificing performance. To support this architecture, we propose XCCL, a communication library that leverages CloudMatrix384's global shared memory to implement efficient point-to-point and all-to-all primitives. We also extend our serving engine FlowServe with system-level techniques, enabling scalable inference across hundreds of NPUs.
♻ ☆ A Study on 5G Network Slice Isolation Based on Native Cloud and Edge Computing Tools
5G networks support various advanced applications through network slicing, network function virtualization (NFV), and edge computing, ensuring low latency and service isolation. However, private 5G networks relying on open-source tools still face challenges in maturity and integration with edge/cloud platforms, compromising proper slice isolation. This study investigates resource allocation mechanisms to address this issue, conducting experiments in a hospital scenario with medical video conferencing. The results show that CPU limitations improve the performance of prioritized slices, while memory restrictions have minimal impact. The generated data and scripts have been made publicly available for future research and machine learning applications.
comment: Submitted to Journal of Network and Systems Management (JNSM)
♻ ☆ Ichnos: A Carbon Footprint Estimator for Scientific Workflows
Scientific workflows facilitate the automation of data analysis, and are used to process increasing amounts of data. Therefore, they tend to be resource-intensive and long-running, leading to significant energy consumption and carbon emissions. With ever-increasing emissions from the ICT sector, it is crucial to quantify and understand the carbon footprint of scientific workflows. However, existing tooling requires significant effort from users - such as setting up power monitoring before executing workloads, or translating monitored metrics into the carbon footprints post-execution. In this paper, we introduce a system to estimate the carbon footprint of Nextflow scientific workflows that enables post-hoc estimation based on existing workflow traces, power models for computational resources utilised, and carbon intensity data aligned with the execution time. We discuss our automated power modelling approach, and compare it with commonly used estimation methodologies. Furthermore, we exemplify several potential use cases and evaluate our energy consumption estimation approach, finding its estimation error to be between 3.9-10.3%, outperforming both baseline methodologies.
comment: Tool Repository: https://github.com/GlasgowC3lab/ichnos Results & Evaluation Repository: https://github.com/GlasgowC3lab/ichnos-results-evaluation
Information Retrieval 38
☆ Query Attribute Modeling: Improving search relevance with Semantic Search and Meta Data Filtering
This study introduces Query Attribute Modeling (QAM), a hybrid framework that enhances search precision and relevance by decomposing open text queries into structured metadata tags and semantic elements. QAM addresses traditional search limitations by automatically extracting metadata filters from free-form text queries, reducing noise and enabling focused retrieval of relevant items. Experimental evaluation using the Amazon Toys Reviews dataset (10,000 unique items with 40,000+ reviews and detailed product attributes) demonstrated QAM's superior performance, achieving a mean average precision at 5 (mAP@5) of 52.99\%. This represents significant improvement over conventional methods, including BM25 keyword search, encoder-based semantic similarity search, cross-encoder re-ranking, and hybrid search combining BM25 and semantic results via Reciprocal Rank Fusion (RRF). The results establish QAM as a robust solution for Enterprise Search applications, particularly in e-commerce systems.
☆ Lightweight Transformers for Zero-Shot and Fine-Tuned Text-to-SQL Generation Using Spider
Text-to-SQL translation enables non-expert users to query relational databases using natural language, with applications in education and business intelligence. This study evaluates three lightweight transformer models - T5-Small, BART-Small, and GPT-2 - on the Spider dataset, focusing on low-resource settings. We developed a reusable, model-agnostic pipeline that tailors schema formatting to each model's architecture, training them across 1000 to 5000 iterations and evaluating on 1000 test samples using Logical Form Accuracy (LFAcc), BLEU, and Exact Match (EM) metrics. Fine-tuned T5-Small achieves the highest LFAcc (27.8%), outperforming BART-Small (23.98%) and GPT-2 (20.1%), highlighting encoder-decoder models' superiority in schema-aware SQL generation. Despite resource constraints limiting performance, our pipeline's modularity supports future enhancements, such as advanced schema linking or alternative base models. This work underscores the potential of compact transformers for accessible text-to-SQL solutions in resource-scarce environments.
☆ HiD-VAE: Interpretable Generative Recommendation via Hierarchical and Disentangled Semantic IDs
Recommender systems are indispensable for helping users navigate the immense item catalogs of modern online platforms. Recently, generative recommendation has emerged as a promising paradigm, unifying the conventional retrieve-and-rank pipeline into an end-to-end model capable of dynamic generation. However, existing generative methods are fundamentally constrained by their unsupervised tokenization, which generates semantic IDs suffering from two critical flaws: (1) they are semantically flat and uninterpretable, lacking a coherent hierarchy, and (2) they are prone to representation entanglement (i.e., ``ID collisions''), which harms recommendation accuracy and diversity. To overcome these limitations, we propose HiD-VAE, a novel framework that learns hierarchically disentangled item representations through two core innovations. First, HiD-VAE pioneers a hierarchically-supervised quantization process that aligns discrete codes with multi-level item tags, yielding more uniform and disentangled IDs. Crucially, the trained codebooks can predict hierarchical tags, providing a traceable and interpretable semantic path for each recommendation. Second, to combat representation entanglement, HiD-VAE incorporates a novel uniqueness loss that directly penalizes latent space overlap. This mechanism not only resolves the critical ID collision problem but also promotes recommendation diversity by ensuring a more comprehensive utilization of the item representation space. These high-quality, disentangled IDs provide a powerful foundation for downstream generative models. Extensive experiments on three public benchmarks validate HiD-VAE's superior performance against state-of-the-art methods. The code is available at https://anonymous.4open.science/r/HiD-VAE-84B2.
☆ A Reproducible, Scalable Pipeline for Synthesizing Autoregressive Model Literature
The accelerating pace of research on autoregressive generative models has produced thousands of papers, making manual literature surveys and reproduction studies increasingly impractical. We present a fully open-source, reproducible pipeline that automatically retrieves candidate documents from public repositories, filters them for relevance, extracts metadata, hyper-parameters and reported results, clusters topics, produces retrieval-augmented summaries and generates containerised scripts for re-running selected experiments. Quantitative evaluation on 50 manually-annotated papers shows F1 scores above 0.85 for relevance classification, hyper-parameter extraction and citation identification. Experiments on corpora of up to 1000 papers demonstrate near-linear scalability with eight CPU workers. Three case studies -- AWD-LSTM on WikiText-2, Transformer-XL on WikiText-103 and an autoregressive music model on the Lakh MIDI dataset -- confirm that the extracted settings support faithful reproduction, achieving test perplexities within 1--3% of the original reports.
comment: 9 pages
☆ TURA: Tool-Augmented Unified Retrieval Agent for AI Search
The advent of Large Language Models (LLMs) is transforming search engines into conversational AI search products, primarily using Retrieval-Augmented Generation (RAG) on web corpora. However, this paradigm has significant industrial limitations. Traditional RAG approaches struggle with real-time needs and structured queries that require accessing dynamically generated content like ticket availability or inventory. Limited to indexing static pages, search engines cannot perform the interactive queries needed for such time-sensitive data. Academic research has focused on optimizing RAG for static content, overlooking complex intents and the need for dynamic sources like databases and real-time APIs. To bridge this gap, we introduce TURA (Tool-Augmented Unified Retrieval Agent for AI Search), a novel three-stage framework that combines RAG with agentic tool-use to access both static content and dynamic, real-time information. TURA has three key components: an Intent-Aware Retrieval module to decompose queries and retrieve information sources encapsulated as Model Context Protocol (MCP) Servers, a DAG-based Task Planner that models task dependencies as a Directed Acyclic Graph (DAG) for optimal parallel execution, and a lightweight Distilled Agent Executor for efficient tool calling. TURA is the first architecture to systematically bridge the gap between static RAG and dynamic information sources for a world-class AI search product. Serving tens of millions of users, it leverages an agentic framework to deliver robust, real-time answers while meeting the low-latency demands of a large-scale industrial system.
☆ Do Recommender Systems Really Leverage Multimodal Content? A Comprehensive Analysis on Multimodal Representations for Recommendation
Multimodal Recommender Systems aim to improve recommendation accuracy by integrating heterogeneous content, such as images and textual metadata. While effective, it remains unclear whether their gains stem from true multimodal understanding or increased model complexity. This work investigates the role of multimodal item embeddings, emphasizing the semantic informativeness of the representations. Initial experiments reveal that embeddings from standard extractors (e.g., ResNet50, Sentence-Bert) enhance performance, but rely on modality-specific encoders and ad hoc fusion strategies that lack control over cross-modal alignment. To overcome these limitations, we leverage Large Vision-Language Models (LVLMs) to generate multimodal-by-design embeddings via structured prompts. This approach yields semantically aligned representations without requiring any fusion. Experiments across multiple settings show notable performance improvements. Furthermore, LVLMs embeddings offer a distinctive advantage: they can be decoded into structured textual descriptions, enabling direct assessment of their multimodal comprehension. When such descriptions are incorporated as side content into recommender systems, they improve recommendation performance, empirically validating the semantic depth and alignment encoded within LVLMs outputs. Our study highlights the importance of semantically rich representations and positions LVLMs as a compelling foundation for building robust and meaningful multimodal representations in recommendation tasks.
comment: Accepted as Full Research Papers at CIKM 2025
☆ TRAIL: Joint Inference and Refinement of Knowledge Graphs with Large Language Models
Recent advances in large language models (LLMs) have unlocked powerful reasoning and decision-making capabilities. However, their inherent dependence on static parametric memory fundamentally limits their adaptability, factual accuracy, and interpretability in knowledge-intensive scenarios. Knowledge graphs (KGs), as structured repositories of explicit relational knowledge, offer a promising approach for augmenting LLMs with external, interpretable memory. Nevertheless, most existing methods that combine LLMs with KGs treat reasoning and knowledge updating as separate processes, resulting in suboptimal utilization of new information and hindering real-time updates. In this work, we propose TRAIL: a novel, unified framework for Thinking, Reasoning, And Incremental Learning that couples joint inference and dynamic KG refinement with large language models. TRAIL enables LLM agents to iteratively explore, update, and refine knowledge graphs during the reasoning process, employing a confidence-driven mechanism for the generation, validation, and pruning of new facts. This plug-and-play architecture facilitates seamless integration with various LLMs, supporting continual adaptation without the need for retraining. Extensive experiments on multiple benchmarks demonstrate that TRAIL outperforms existing KG-augmented and retrieval-augmented LLM baselines by 3% to 13%. More importantly, these results represent a significant step toward developing adaptive, memory-augmented language models capable of continual learning and reliable, transparent reasoning.
☆ Algorithm Selection for Recommender Systems via Meta-Learning on Algorithm Characteristics
The Algorithm Selection Problem for recommender systems-choosing the best algorithm for a given user or context-remains a significant challenge. Traditional meta-learning approaches often treat algorithms as categorical choices, ignoring their intrinsic properties. Recent work has shown that explicitly characterizing algorithms with features can improve model performance in other domains. Building on this, we propose a per-user meta-learning approach for recommender system selection that leverages both user meta-features and automatically extracted algorithm features from source code. Our preliminary results, averaged over six diverse datasets, show that augmenting a meta-learner with algorithm features improves its average NDCG@10 performance by 8.83% from 0.135 (user features only) to 0.147. This enhanced model outperforms the Single Best Algorithm baseline (0.131) and successfully closes 10.5% of the performance gap to a theoretical oracle selector. These findings show that even static source code metrics provide a valuable predictive signal, presenting a promising direction for building more robust and intelligent recommender systems.
☆ Improving Crash Data Quality with Large Language Models: Evidence from Secondary Crash Narratives in Kentucky
This study evaluates advanced natural language processing (NLP) techniques to enhance crash data quality by mining crash narratives, using secondary crash identification in Kentucky as a case study. Drawing from 16,656 manually reviewed narratives from 2015-2022, with 3,803 confirmed secondary crashes, we compare three model classes: zero-shot open-source large language models (LLMs) (LLaMA3:70B, DeepSeek-R1:70B, Qwen3:32B, Gemma3:27B); fine-tuned transformers (BERT, DistilBERT, RoBERTa, XLNet, Longformer); and traditional logistic regression as baseline. Models were calibrated on 2015-2021 data and tested on 1,771 narratives from 2022. Fine-tuned transformers achieved superior performance, with RoBERTa yielding the highest F1-score (0.90) and accuracy (95%). Zero-shot LLaMA3:70B reached a comparable F1 of 0.86 but required 139 minutes of inference; the logistic baseline lagged well behind (F1:0.66). LLMs excelled in recall for some variants (e.g., GEMMA3:27B at 0.94) but incurred high computational costs (up to 723 minutes for DeepSeek-R1:70B), while fine-tuned models processed the test set in seconds after brief training. Further analysis indicated that mid-sized LLMs (e.g., DeepSeek-R1:32B) can rival larger counterparts in performance while reducing runtime, suggesting opportunities for optimized deployments. Results highlight trade-offs between accuracy, efficiency, and data requirements, with fine-tuned transformer models balancing precision and recall effectively on Kentucky data. Practical deployment considerations emphasize privacy-preserving local deployment, ensemble approaches for improved accuracy, and incremental processing for scalability, providing a replicable scheme for enhancing crash-data quality with advanced NLP.
comment: 19 pages, 2 figures
☆ Modelling and Classifying the Components of a Literature Review
Previous work has demonstrated that AI methods for analysing scientific literature benefit significantly from annotating sentences in papers according to their rhetorical roles, such as research gaps, results, limitations, extensions of existing methodologies, and others. Such representations also have the potential to support the development of a new generation of systems capable of producing high-quality literature reviews. However, achieving this goal requires the definition of a relevant annotation schema and effective strategies for large-scale annotation of the literature. This paper addresses these challenges by 1) introducing a novel annotation schema specifically designed to support literature review generation and 2) conducting a comprehensive evaluation of a wide range of state-of-the-art large language models (LLMs) in classifying rhetorical roles according to this schema. To this end, we also present Sci-Sentence, a novel multidisciplinary benchmark comprising 700 sentences manually annotated by domain experts and 2,240 sentences automatically labelled using LLMs. We evaluate 37 LLMs on this benchmark, spanning diverse model families and sizes, using both zero-shot learning and fine-tuning approaches. The experiments yield several novel insights that advance the state of the art in this challenging domain. First, the current generation of LLMs performs remarkably well on this task when fine-tuned on high-quality data, achieving performance levels above 96\% F1. Second, while large proprietary models like GPT-4o achieve the best results, some lightweight open-source alternatives also demonstrate excellent performance. Finally, enriching the training data with semi-synthetic examples generated by LLMs proves beneficial, enabling small encoders to achieve robust results and significantly enhancing the performance of several open decoder models.
☆ Comparative Analysis of Novel NIRMAL Optimizer Against Adam and SGD with Momentum
This study proposes NIRMAL (Novel Integrated Robust Multi-Adaptation Learning), a novel optimization algorithm that combines multiple strategies inspired by the movements of the chess piece. These strategies include gradient descent, momentum, stochastic perturbations, adaptive learning rates, and non-linear transformations. We carefully evaluated NIRMAL against two widely used and successful optimizers, Adam and SGD with Momentum, on four benchmark image classification datasets: MNIST, FashionMNIST, CIFAR-10, and CIFAR-100. The custom convolutional neural network (CNN) architecture is applied on each dataset. The experimental results show that NIRMAL achieves competitive performance, particularly on the more challenging CIFAR-100 dataset, where it achieved a test accuracy of 45.32\%and a weighted F1-score of 0.4328. This performance surpasses Adam (41.79\% accuracy, 0.3964 F1-score) and closely matches SGD with Momentum (46.97\% accuracy, 0.4531 F1-score). Also, NIRMAL exhibits robust convergence and strong generalization capabilities, especially on complex datasets, as evidenced by stable training results in loss and accuracy curves. These findings underscore NIRMAL's significant ability as a versatile and effective optimizer for various deep learning tasks.
comment: 9 pages, 12 figures
☆ I$^3$-MRec: Invariant Learning with Information Bottleneck for Incomplete Modality Recommendation
Multimodal recommender systems (MRS) improve recommendation performance by integrating diverse semantic information from multiple modalities. However, the assumption of the availability of all modalities rarely holds in practice due to missing images, incomplete descriptions, or inconsistent user content. These challenges significantly degrade the robustness and generalization capabilities of current models. To address these challenges, we introduce a novel method called \textbf{I$^3$-MRec}, which uses \textbf{I}nvariant learning with \textbf{I}nformation bottleneck principle for \textbf{I}ncomplete \textbf{M}odality \textbf{Rec}ommendation. To achieve robust performance in missing modality scenarios, I$^3$-MRec enforces two pivotal properties: (i) cross-modal preference invariance, which ensures consistent user preference modeling across varying modality environments, and (ii) compact yet effective modality representation, which filters out task-irrelevant modality information while maximally preserving essential features relevant to recommendation. By treating each modality as a distinct semantic environment, I$^3$-MRec employs invariant risk minimization (IRM) to learn modality-specific item representations. In parallel, a missing-aware fusion module grounded in the Information Bottleneck (IB) principle extracts compact and effective item embeddings by suppressing modality noise and preserving core user preference signals. Extensive experiments conducted on three real-world datasets demonstrate that I$^3$-MRec consistently outperforms existing state-of-the-art MRS methods across various modality-missing scenarios, highlighting its effectiveness and robustness in practical applications. The code and processed datasets are released at https://github.com/HuilinChenJN/I3-MRec.
comment: ACM Multimedia 2025 Accepted
☆ Discrete-event Tensor Factorization: Learning a Smooth Embedding for Continuous Domains
Recommender systems learn from past user behavior to predict future user preferences. Intuitively, it has been established that the most recent interactions are more indicative of future preferences than older interactions. Many recommendation algorithms use this notion to either drop older interactions or to assign them a lower weight, so the model can focus on the more informative, recent information. However, very few approaches model the flow of time explicitly. This paper analyzes how time can be encoded in factorization-style recommendation models. By including absolute time as a feature, our models can learn varying user preferences and changing item perception over time. In addition to simple binning approaches, we also propose a novel, fully continuous time encoding mechanism. Through the use of a polynomial fit inside the loss function, our models completely avoid the need for discretization, and they are able to capture the time dimension in arbitrary resolution. We perform a comparative study on three real-world datasets that span multiple years, where long user histories are present, and items stay relevant for a longer time. Empirical results show that, by explicitly modeling time, our models are very effective at capturing temporal signals, such as varying item popularities over time. Despite this however, our experiments also indicate that a simple post-hoc popularity adjustment is often sufficient to achieve the best performance on the unseen test set. This teaches us that, for the recommendation task, predicting the future is more important than capturing past trends. As such, we argue that specialized mechanisms are needed for extrapolation to future data.
☆ A Hybrid AI Methodology for Generating Ontologies of Research Topics from Scientific Paper Corpora
Taxonomies and ontologies of research topics (e.g., MeSH, UMLS, CSO, NLM) play a central role in providing the primary framework through which intelligent systems can explore and interpret the literature. However, these resources have traditionally been manually curated, a process that is time-consuming, prone to obsolescence, and limited in granularity. This paper presents Sci-OG, a semi-auto\-mated methodology for generating research topic ontologies, employing a multi-step approach: 1) Topic Discovery, extracting potential topics from research papers; 2) Relationship Classification, determining semantic relationships between topic pairs; and 3) Ontology Construction, refining and organizing topics into a structured ontology. The relationship classification component, which constitutes the core of the system, integrates an encoder-based language model with features describing topic occurrence in the scientific literature. We evaluate this approach against a range of alternative solutions using a dataset of 21,649 manually annotated semantic triples. Our method achieves the highest F1 score (0.951), surpassing various competing approaches, including a fine-tuned SciBERT model and several LLM baselines, such as the fine-tuned GPT4-mini. Our work is corroborated by a use case which illustrates the practical application of our system to extend the CSO ontology in the area of cybersecurity. The presented solution is designed to improve the accessibility, organization, and analysis of scientific knowledge, thereby supporting advancements in AI-enabled literature management and research exploration.
☆ ViLLA-MMBench: A Unified Benchmark Suite for LLM-Augmented Multimodal Movie Recommendation
Recommending long-form video content demands joint modeling of visual, audio, and textual modalities, yet most benchmarks address only raw features or narrow fusion. We present ViLLA-MMBench, a reproducible, extensible benchmark for LLM-augmented multimodal movie recommendation. Built on MovieLens and MMTF-14K, it aligns dense item embeddings from three modalities: audio (block-level, i-vector), visual (CNN, AVF), and text. Missing or sparse metadata is automatically enriched using state-of-the-art LLMs (e.g., OpenAI Ada), generating high-quality synopses for thousands of movies. All text (raw or augmented) is embedded with configurable encoders (Ada, LLaMA-2, Sentence-T5), producing multiple ready-to-use sets. The pipeline supports interchangeable early-, mid-, and late-fusion (concatenation, PCA, CCA, rank-aggregation) and multiple backbones (MF, VAECF, VBPR, AMR, VMF) for ablation. Experiments are fully declarative via a single YAML file. Evaluation spans accuracy (Recall, nDCG) and beyond-accuracy metrics: cold-start rate, coverage, novelty, diversity, fairness. Results show LLM-based augmentation and strong text embeddings boost cold-start and coverage, especially when fused with audio-visual features. Systematic benchmarking reveals universal versus backbone- or metric-specific combinations. Open-source code, embeddings, and configs enable reproducible, fair multimodal RS research and advance principled generative AI integration in large-scale recommendation. Code: https://recsys-lab.github.io/ViLLA-MMBench
comment: 17 pages, 3 figures, 5 tables
☆ SSEmb: A Joint Structural and Semantic Embedding Framework for Mathematical Formula Retrieval
Formula retrieval is an important topic in Mathematical Information Retrieval. We propose SSEmb, a novel embedding framework capable of capturing both structural and semantic features of mathematical formulas. Structurally, we employ Graph Contrastive Learning to encode formulas represented as Operator Graphs. To enhance structural diversity while preserving mathematical validity of these formula graphs, we introduce a novel graph data augmentation approach through a substitution strategy. Semantically, we utilize Sentence-BERT to encode the surrounding text of formulas. Finally, for each query and its candidates, structural and semantic similarities are calculated separately and then fused through a weighted scheme. In the ARQMath-3 formula retrieval task, SSEmb outperforms existing embedding-based methods by over 5 percentage points on P'@10 and nDCG'@10. Furthermore, SSEmb enhances the performance of all runs of other methods and achieves state-of-the-art results when combined with Approach0.
☆ Bridging Search and Recommendation through Latent Cross Reasoning
Search and recommendation (S&R) are fundamental components of modern online platforms, yet effectively leveraging search behaviors to improve recommendation remains a challenging problem. User search histories often contain noisy or irrelevant signals that can even degrade recommendation performance, while existing approaches typically encode S&R histories either jointly or separately without explicitly identifying which search behaviors are truly useful. Inspired by the human decision-making process, where one first identifies recommendation intent and then reasons about relevant evidence, we design a latent cross reasoning framework that first encodes user S&R histories to capture global interests and then iteratively reasons over search behaviors to extract signals beneficial for recommendation. Contrastive learning is employed to align latent reasoning states with target items, and reinforcement learning is further introduced to directly optimize ranking performance. Extensive experiments on public benchmarks demonstrate consistent improvements over strong baselines, validating the importance of reasoning in enhancing search-aware recommendation.
☆ Benefit from Rich: Tackling Search Interaction Sparsity in Search Enhanced Recommendation
In modern online platforms, search and recommendation (S&R) often coexist, offering opportunities for performance improvement through search-enhanced approaches. Existing studies show that incorporating search signals boosts recommendation performance. However, the effectiveness of these methods relies heavily on rich search interactions. They primarily benefit a small subset of users with abundant search behavior, while offering limited improvements for the majority of users who exhibit only sparse search activity. To address the problem of sparse search data in search-enhanced recommendation, we face two key challenges: (1) how to learn useful search features for users with sparse search interactions, and (2) how to design effective training objectives under sparse conditions. Our idea is to leverage the features of users with rich search interactions to enhance those of users with sparse search interactions. Based on this idea, we propose GSERec, a method that utilizes message passing on the User-Code Graphs to alleviate data sparsity in Search-Enhanced Recommendation. Specifically, we utilize Large Language Models (LLMs) with vector quantization to generate discrete codes, which connect similar users and thereby construct the graph. Through message passing on this graph, embeddings of users with rich search data are propagated to enhance the embeddings of users with sparse interactions. To further ensure that the message passing captures meaningful information from truly similar users, we introduce a contrastive loss to better model user similarities. The enhanced user representations are then integrated into downstream search-enhanced recommendation models. Experiments on three real-world datasets show that GSERec consistently outperforms baselines, especially for users with sparse search behaviors.
comment: Accepted by CIKM 2025
☆ Enhancing Serendipity Recommendation System by Constructing Dynamic User Knowledge Graphs with Large Language Models
The feedback loop in industrial recommendation systems reinforces homogeneous content, creates filter bubble effects, and diminishes user satisfaction. Recently, large language models(LLMs) have demonstrated potential in serendipity recommendation, thanks to their extensive world knowledge and superior reasoning capabilities. However, these models still face challenges in ensuring the rationality of the reasoning process, the usefulness of the reasoning results, and meeting the latency requirements of industrial recommendation systems (RSs). To address these challenges, we propose a method that leverages llm to dynamically construct user knowledge graphs, thereby enhancing the serendipity of recommendation systems. This method comprises a two stage framework:(1) two-hop interest reasoning, where user static profiles and historical behaviors are utilized to dynamically construct user knowledge graphs via llm. Two-hop reasoning, which can enhance the quality and accuracy of LLM reasoning results, is then performed on the constructed graphs to identify users' potential interests; and(2) Near-line adaptation, a cost-effective approach to deploying the aforementioned models in industrial recommendation systems. We propose a u2i (user-to-item) retrieval model that also incorporates i2i (item-to-item) retrieval capabilities, the retrieved items not only exhibit strong relevance to users' newly emerged interests but also retain the high conversion rate of traditional u2i retrieval. Our online experiments on the Dewu app, which has tens of millions of users, indicate that the method increased the exposure novelty rate by 4.62%, the click novelty rate by 4.85%, the average view duration per person by 0.15%, unique visitor click through rate by 0.07%, and unique visitor interaction penetration by 0.30%, enhancing user experience.
comment: 8 pages
☆ Dual Prompt Learning for Adapting Vision-Language Models to Downstream Image-Text Retrieval
Recently, prompt learning has demonstrated remarkable success in adapting pre-trained Vision-Language Models (VLMs) to various downstream tasks such as image classification. However, its application to the downstream Image-Text Retrieval (ITR) task is more challenging. We find that the challenge lies in discriminating both fine-grained attributes and similar subcategories of the downstream data. To address this challenge, we propose Dual prompt Learning with Joint Category-Attribute Reweighting (DCAR), a novel dual-prompt learning framework to achieve precise image-text matching. The framework dynamically adjusts prompt vectors from both semantic and visual dimensions to improve the performance of CLIP on the downstream ITR task. Based on the prompt paradigm, DCAR jointly optimizes attribute and class features to enhance fine-grained representation learning. Specifically, (1) at the attribute level, it dynamically updates the weights of attribute descriptions based on text-image mutual information correlation; (2) at the category level, it introduces negative samples from multiple perspectives with category-matching weighting to learn subcategory distinctions. To validate our method, we construct the Fine-class Described Retrieval Dataset (FDRD), which serves as a challenging benchmark for ITR in downstream data domains. It covers over 1,500 downstream fine categories and 230,000 image-caption pairs with detailed attribute annotations. Extensive experiments on FDRD demonstrate that DCAR achieves state-of-the-art performance over existing baselines.
comment: 10 pages, 7figures
☆ Prototype-Driven Structure Synergy Network for Remote Sensing Images Segmentation
In the semantic segmentation of remote sensing images, acquiring complete ground objects is critical for achieving precise analysis. However, this task is severely hindered by two major challenges: high intra-class variance and high inter-class similarity. Traditional methods often yield incomplete segmentation results due to their inability to effectively unify class representations and distinguish between similar features. Even emerging class-guided approaches are limited by coarse class prototype representations and a neglect of target structural information. Therefore, this paper proposes a Prototype-Driven Structure Synergy Network (PDSSNet). The design of this network is based on a core concept, a complete ground object is jointly defined by its invariant class semantics and its variant spatial structure. To implement this, we have designed three key modules. First, the Adaptive Prototype Extraction Module (APEM) ensures semantic accuracy from the source by encoding the ground truth to extract unbiased class prototypes. Subsequently, the designed Semantic-Structure Coordination Module (SSCM) follows a hierarchical semantics-first, structure-second principle. This involves first establishing a global semantic cognition, then leveraging structural information to constrain and refine the semantic representation, thereby ensuring the integrity of class information. Finally, the Channel Similarity Adjustment Module (CSAM) employs a dynamic step-size adjustment mechanism to focus on discriminative features between classes. Extensive experiments demonstrate that PDSSNet outperforms state-of-the-art methods. The source code is available at https://github.com/wangjunyi-1/PDSSNet.
☆ ConvMix: A Mixed-Criteria Data Augmentation Framework for Conversational Dense Retrieval
Conversational search aims to satisfy users' complex information needs via multiple-turn interactions. The key challenge lies in revealing real users' search intent from the context-dependent queries. Previous studies achieve conversational search by fine-tuning a conversational dense retriever with relevance judgments between pairs of context-dependent queries and documents. However, this training paradigm encounters data scarcity issues. To this end, we propose ConvMix, a mixed-criteria framework to augment conversational dense retrieval, which covers more aspects than existing data augmentation frameworks. We design a two-sided relevance judgment augmentation schema in a scalable manner via the aid of large language models. Besides, we integrate the framework with quality control mechanisms to obtain semantically diverse samples and near-distribution supervisions to combine various annotated data. Experimental results on five widely used benchmarks show that the conversational dense retriever trained by our ConvMix framework outperforms previous baseline methods, which demonstrates our superior effectiveness.
☆ Federated Continual Recommendation
The increasing emphasis on privacy in recommendation systems has led to the adoption of Federated Learning (FL) as a privacy-preserving solution, enabling collaborative training without sharing user data. While Federated Recommendation (FedRec) effectively protects privacy, existing methods struggle with non-stationary data streams, failing to maintain consistent recommendation quality over time. On the other hand, Continual Learning Recommendation (CLRec) methods address evolving user preferences but typically assume centralized data access, making them incompatible with FL constraints. To bridge this gap, we introduce Federated Continual Recommendation (FCRec), a novel task that integrates FedRec and CLRec, requiring models to learn from streaming data while preserving privacy. As a solution, we propose F3CRec, a framework designed to balance knowledge retention and adaptation under the strict constraints of FCRec. F3CRec introduces two key components: Adaptive Replay Memory on the client side, which selectively retains past preferences based on user-specific shifts, and Item-wise Temporal Mean on the server side, which integrates new knowledge while preserving prior information. Extensive experiments demonstrate that F3CRec outperforms existing approaches in maintaining recommendation quality over time in a federated environment.
comment: Accepted to CIKM 2025
☆ Audio Does Matter: Importance-Aware Multi-Granularity Fusion for Video Moment Retrieval
Video Moment Retrieval (VMR) aims to retrieve a specific moment semantically related to the given query. To tackle this task, most existing VMR methods solely focus on the visual and textual modalities while neglecting the complementary but important audio modality. Although a few recent works try to tackle the joint audio-vision-text reasoning, they treat all modalities equally and simply embed them without fine-grained interaction for moment retrieval. These designs are counter-practical as: Not all audios are helpful for video moment retrieval, and the audio of some videos may be complete noise or background sound that is meaningless to the moment determination. To this end, we propose a novel Importance-aware Multi-Granularity fusion model (IMG), which learns to dynamically and selectively aggregate the audio-vision-text contexts for VMR. Specifically, after integrating the textual guidance with vision and audio separately, we first design a pseudo-label-supervised audio importance predictor that predicts the importance score of the audio, and accordingly assigns weights to mitigate the interference caused by noisy audio. Then, we design a multi-granularity audio fusion module that adaptively fuses audio and visual modalities at local-, event-, and global-level, fully capturing their complementary contexts. We further propose a cross-modal knowledge distillation strategy to address the challenge of missing audio modality during inference. To evaluate our method, we further construct a new VMR dataset, i.e., Charades-AudioMatter, where audio-related samples are manually selected and re-organized from the original Charades-STA to validate the model's capability in utilizing audio modality. Extensive experiments validate the effectiveness of our method, achieving state-of-the-art with audio-video fusion in VMR methods. Our code is available at https://github.com/HuiGuanLab/IMG.
comment: Accepted to ACM MM 2025
☆ LLM4ES: Learning User Embeddings from Event Sequences via Large Language Models
This paper presents LLM4ES, a novel framework that exploits large pre-trained language models (LLMs) to derive user embeddings from event sequences. Event sequences are transformed into a textual representation, which is subsequently used to fine-tune an LLM through next-token prediction to generate high-quality embeddings. We introduce a text enrichment technique that enhances LLM adaptation to event sequence data, improving representation quality for low-variability domains. Experimental results demonstrate that LLM4ES achieves state-of-the-art performance in user classification tasks in financial and other domains, outperforming existing embedding methods. The resulting user embeddings can be incorporated into a wide range of applications, from user segmentation in finance to patient outcome prediction in healthcare.
Multimodal RAG Enhanced Visual Description
Textual descriptions for multimodal inputs entail recurrent refinement of queries to produce relevant output images. Despite efforts to address challenges such as scaling model size and data volume, the cost associated with pre-training and fine-tuning remains substantial. However, pre-trained large multimodal models (LMMs) encounter a modality gap, characterised by a misalignment between textual and visual representations within a common embedding space. Although fine-tuning can potentially mitigate this gap, it is typically expensive and impractical due to the requirement for extensive domain-driven data. To overcome this challenge, we propose a lightweight training-free approach utilising Retrieval-Augmented Generation (RAG) to extend across the modality using a linear mapping, which can be computed efficiently. During inference, this mapping is applied to images embedded by an LMM enabling retrieval of closest textual descriptions from the training set. These textual descriptions, in conjunction with an instruction, cater as an input prompt for the language model to generate new textual descriptions. In addition, we introduce an iterative technique for distilling the mapping by generating synthetic descriptions via the language model facilitating optimisation for standard utilised image description measures. Experimental results on two benchmark multimodal datasets demonstrate significant improvements.
comment: Accepted by ACM CIKM 2025. 5 pages, 2 figures
♻ ☆ Harnessing Large Language Models for Group POI Recommendations
The rapid proliferation of Location-Based Social Networks (LBSNs) has underscored the importance of Point-of-Interest (POI) recommendation systems in enhancing user experiences. While individual POI recommendation methods leverage users' check-in histories to provide personalized suggestions, they struggle to address scenarios requiring group decision-making. Group POI recommendation systems aim to satisfy the collective preferences of multiple users, but existing approaches face two major challenges: diverse group preferences and extreme data sparsity in group check-in data. To overcome these challenges, we propose LLMGPR, a novel framework that leverages large language models (LLMs) for group POI recommendations. LLMGPR introduces semantic-enhanced POI tokens and incorporates rich contextual information to model the diverse and complex dynamics of group decision-making. To further enhance its capabilities, we developed a sequencing adapter using Quantized Low-Rank Adaptation (QLoRA), which aligns LLMs with group POI recommendation tasks. To address the issue of sparse group check-in data, LLMGPR employs an aggregation adapter that integrates individual representations into meaningful group representations. Additionally, a self-supervised learning (SSL) task is designed to predict the purposes of check-in sequences (e.g., business trips and family vacations), thereby enriching group representations with deeper semantic insights. Extensive experiments demonstrate the effectiveness of LLMGPR, showcasing its ability to significantly enhance the accuracy and robustness of group POI recommendations.
♻ ☆ Paragon: Parameter Generation for Controllable Multi-Task Recommendation
Commercial recommender systems face the challenge that task requirements from platforms or users often change dynamically (e.g., varying preferences for accuracy or diversity). Ideally, the model should be re-trained after resetting a new objective function, adapting to these changes in task requirements. However, in practice, the high computational costs associated with retraining make this process impractical for models already deployed to online environments. This raises a new challenging problem: how to efficiently adapt the learned model to different task requirements by controlling the model parameters after deployment, without the need for retraining. To address this issue, we propose a novel controllable learning approach via \textbf{para}meter \textbf{g}eneration for c\textbf{on}trollable multi-task recommendation (\textbf{Paragon}), which allows the customization and adaptation of recommendation model parameters to new task requirements without retraining. Specifically, we first obtain the optimized model parameters through adapter tunning based on the feasible task requirements. Then, we utilize the generative model as a parameter generator, employing classifier-free guidance in conditional training to learn the distribution of optimized model parameters under various task requirements. Finally, the parameter generator is applied to effectively generate model parameters in a test-time adaptation manner given task requirements. Moreover, Paragon seamlessly integrates with various existing recommendation models to enhance their controllability. Extensive experiments on two public datasets and one commercial dataset demonstrate that Paragon can efficiently generate model parameters instead of retraining, reducing computational time by at least 94.6\%. The code is released at \href{https://github.com/bubble65/Paragon}{https://github.com/bubble65/Paragon}.
♻ ☆ A Survey of Controllable Learning: Methods and Applications in Information Retrieval
Controllability has become a crucial aspect of trustworthy machine learning, enabling learners to meet predefined targets and adapt dynamically at test time without requiring retraining as the targets shift. We provide a formal definition of controllable learning (CL), and discuss its applications in information retrieval (IR) where information needs are often complex and dynamic. The survey categorizes CL according to what is controllable (e.g., multiple objectives, user portrait, scenario adaptation), who controls (users or platforms), how control is implemented (e.g., rule-based method, Pareto optimization, hypernetwork and others), and where to implement control (e.g., pre-processing, in-processing, post-processing methods). Then, we identify challenges faced by CL across training, evaluation, task setting, and deployment in online environments. Additionally, we outline promising directions for CL in theoretical analysis, efficient computation, empowering large language models, application scenarios and evaluation frameworks.
♻ ☆ GraphRAG-Induced Dual Knowledge Structure Graphs for Personalized Learning Path Recommendation
Learning path recommendation seeks to provide learners with a structured sequence of learning items (\eg, knowledge concepts or exercises) to optimize their learning efficiency. Despite significant efforts in this area, most existing methods primarily rely on prerequisite relationships, which present two major limitations: 1) Requiring prerequisite relationships between knowledge concepts, which are difficult to obtain due to the cost of expert annotation, hindering the application of current learning path recommendation methods. 2) Relying on a single, sequentially dependent knowledge structure based on prerequisite relationships implies that difficulties at any stage can cause learning blockages, which in turn disrupt subsequent learning processes. To address these challenges, we propose a novel approach, GraphRAG-Induced Dual Knowledge Structure Graphs for Personalized Learning Path Recommendation (KnowLP), which enhances learning path recommendations by incorporating both prerequisite and similarity relationships between knowledge concepts. Specifically, we introduce a knowledge concept structure graph generation module EDU-GraphRAG that adaptively constructs knowledge concept structure graphs for different educational datasets, significantly improving the generalizability of learning path recommendation methods. We then propose a Discrimination Learning-driven Reinforcement Learning (DLRL) module, which mitigates the issue of blocked learning paths, further enhancing the efficacy of learning path recommendations. Finally, we conduct extensive experiments on three benchmark datasets, demonstrating that our method not only achieves state-of-the-art performance but also provides interpretable reasoning for the recommended learning paths.
♻ ☆ A Comparative Study of Specialized LLMs as Dense Retrievers AI
While large language models (LLMs) are increasingly deployed as dense retrievers, the impact of their domain-specific specialization on retrieval effectiveness remains underexplored. This investigation systematically examines how task-specific adaptations in LLMs influence their retrieval capabilities, an essential step toward developing unified retrievers capable of handling text, code, images, and multimodal content. We conduct extensive experiments with eight Qwen2.5 7B LLMs, including base, instruction-tuned, code/math-specialized, long reasoning, and vision-language models across zero-shot retrieval settings and the supervised setting. For the zero-shot retrieval settings, we consider text retrieval from the BEIR benchmark and code retrieval from the CoIR benchmark. Further, to evaluate supervised performance, all LLMs are fine-tuned on the MS MARCO dataset. We find that mathematical specialization and the long reasoning capability cause consistent degradation in three settings, indicating conflicts between mathematical reasoning and semantic matching. The vision-language model and code-specialized LLMs demonstrate superior zero-shot performance compared to other LLMs, even surpassing BM25 on the code retrieval task, and maintain comparable performance to base LLMs in supervised settings. These findings suggest promising directions for the unified retrieval task leveraging cross-domain and cross-modal fusion.
comment: Accepted by CCIR25 and published by Springer LNCS or LNAI
♻ ☆ Modality and Task Adaptation for Enhanced Zero-shot Composed Image Retrieval
As a challenging vision-language task, Zero-Shot Composed Image Retrieval (ZS-CIR) is designed to retrieve target images using bi-modal (image+text) queries. Typical ZS-CIR methods employ an inversion network to generate pseudo-word tokens that effectively represent the input semantics. However, the inversion-based methods suffer from two inherent issues: First, the task discrepancy exists because inversion training and CIR inference involve different objectives. Second, the modality discrepancy arises from the input feature distribution mismatch between training and inference. To this end, we propose a lightweight post-hoc framework, consisting of two components: (1) A new text-anchored triplet construction pipeline leverages a large language model (LLM) to transform a standard image-text dataset into a triplet dataset, where a textual description serves as the target of each triplet. (2) The MoTa-Adapter, a novel parameter-efficient fine-tuning method, adapts the dual encoder to the CIR task using our constructed triplet data. Specifically, on the text side, multiple sets of learnable task prompts are integrated via a Mixture-of-Experts (MoE) layer to capture task-specific priors and handle different types of modifications. On the image side, MoTa-Adapter modulates the inversion network's input to better match the downstream text encoder. In addition, an entropy-based optimization strategy is proposed to assign greater weight to challenging samples, thus ensuring efficient adaptation. Experiments show that, with the incorporation of our proposed components, inversion-based methods achieve significant improvements, reaching state-of-the-art performance across four widely-used benchmarks. All data and code will be made publicly available.
♻ ☆ Evaluating User Experience in Conversational Recommender Systems: A Systematic Review Across Classical and LLM-Powered Approaches
Conversational Recommender Systems (CRSs) are receiving growing research attention across domains, yet their user experience (UX) evaluation remains limited. Existing reviews largely overlook empirical UX studies, particularly in adaptive and large language model (LLM)-based CRSs. To address this gap, we conducted a systematic review following PRISMA guidelines, synthesising 23 empirical studies published between 2017 and 2025. We analysed how UX has been conceptualised, measured, and shaped by domain, adaptivity, and LLM. Our findings reveal persistent limitations: post hoc surveys dominate, turn-level affective UX constructs are rarely assessed, and adaptive behaviours are seldom linked to UX outcomes. LLM-based CRSs introduce further challenges, including epistemic opacity and verbosity, yet evaluations infrequently address these issues. We contribute a structured synthesis of UX metrics, a comparative analysis of adaptive and nonadaptive systems, and a forward-looking agenda for LLM-aware UX evaluation. These findings support the development of more transparent, engaging, and user-centred CRS evaluation practices.
comment: Accepted at OzCHI 2025. 23 pages, 1 figure, 5 tables
♻ ☆ On-Device Recommender Systems: A Comprehensive Survey
Recommender systems have been widely deployed in various real-world applications to help users identify content of interest from massive amounts of information. Traditional recommender systems work by collecting user-item interaction data in a cloud-based data center and training a centralized model to perform the recommendation service. However, such cloud-based recommender systems (CloudRSs) inevitably suffer from excessive resource consumption, response latency, as well as privacy and security risks concerning both data and models. Recently, driven by the advances in storage, communication, and computation capabilities of edge devices, there has been a shift of focus from CloudRSs to on-device recommender systems (DeviceRSs), which leverage the capabilities of edge devices to minimize centralized data storage requirements, reduce the response latency caused by communication overheads, and enhance user privacy and security by localizing data processing and model training. Despite the rapid rise of DeviceRSs, there is a clear absence of timely literature reviews that systematically introduce, categorize and contrast these methods. To bridge this gap, we aim to provide a comprehensive survey of DeviceRSs, covering three main aspects: (1) the deployment and inference of DeviceRSs (2) the training and update of DeviceRSs (3) the security and privacy of DeviceRSs. Furthermore, we provide a fine-grained and systematic taxonomy of the methods involved in each aspect, followed by a discussion regarding challenges and future research directions. This is the first comprehensive survey on DeviceRSs that covers a spectrum of tasks to fit various needs. We believe this survey will help readers effectively grasp the current research status in this field, equip them with relevant technical foundations, and stimulate new research ideas for developing DeviceRSs.
♻ ☆ Reliable Evaluation Protocol for Low-Precision Retrieval
Lowering the numerical precision of model parameters and computations is widely adopted to improve the efficiency of retrieval systems. However, when computing relevance scores between the query and documents in low-precision, we observe spurious ties due to the reduced granularity. This introduces high variability in the results based on tie resolution, making the evaluation less reliable. To address this, we propose a more robust retrieval evaluation protocol designed to reduce score variation. It consists of: (1) High-Precision Scoring (HPS), which upcasts the final scoring step to higher precision to resolve tied candidates with minimal computational cost; and (2) Tie-aware Retrieval Metrics (TRM), which report expected scores, range, and bias to quantify order uncertainty of tied candidates. Our experiments test multiple models with three scoring functions on two retrieval datasets to demonstrate that HPS dramatically reduces tie-induced instability, and TRM accurately recovers expected metric values. This combination enables a more consistent and reliable evaluation system for lower-precision retrievals.
comment: 11 pages, 5 figures, submitted to ARR
♻ ☆ Enhancing Graph-based Recommendations with Majority-Voting LLM-Rerank Augmentation
Recommendation systems often suffer from data sparsity caused by limited user-item interactions, which degrade their performance and amplify popularity bias in real-world scenarios. This paper proposes a novel data augmentation framework that leverages Large Language Models (LLMs) and item textual descriptions to enrich interaction data. By few-shot prompting LLMs multiple times to rerank items and aggregating the results via majority voting, we generate high-confidence synthetic user-item interactions, supported by theoretical guarantees based on the concentration of measure. To effectively leverage the augmented data in the context of a graph recommendation system, we integrate it into a graph contrastive learning framework to mitigate distributional shift and alleviate popularity bias. Extensive experiments show that our method improves accuracy and reduces popularity bias, outperforming strong baselines.
♻ ☆ PinRec: Outcome-Conditioned, Multi-Token Generative Retrieval for Industry-Scale Recommendation Systems
Generative retrieval methods utilize generative sequential modeling techniques, such as transformers, to generate candidate items for recommender systems. These methods have demonstrated promising results in academic benchmarks, surpassing traditional retrieval models like two-tower architectures. However, current generative retrieval methods lack the scalability required for industrial recommender systems, and they are insufficiently flexible to satisfy the multiple metric requirements of modern systems. This paper introduces PinRec, a novel generative retrieval model developed for applications at Pinterest. PinRec utilizes outcome-conditioned generation, enabling modelers to specify how to balance various outcome metrics, such as the number of saves and clicks, to effectively align with business goals and user exploration. Additionally, PinRec incorporates multi-token generation to enhance output diversity while optimizing generation. Our experiments demonstrate that PinRec can successfully balance performance, diversity, and efficiency, delivering a significant positive impact to users using generative models. This paper marks a significant milestone in generative retrieval, as it presents, to our knowledge, the first rigorous study on implementing generative retrieval at the scale of Pinterest.
♻ ☆ Realizing Scaling Laws in Recommender Systems: A Foundation-Expert Paradigm for Hyperscale Model Deployment
While scaling laws promise significant performance gains for recommender systems, efficiently deploying hyperscale models remains a major unsolved challenge. In contrast to fields where FMs are already widely adopted such as natural language processing and computer vision, progress in recommender systems is hindered by unique challenges including the need to learn from online streaming data under shifting data distributions, the need to adapt to different recommendation surfaces with a wide diversity in their downstream tasks and their input distributions, and stringent latency and computational constraints. To bridge this gap, we propose to leverage the Foundation-Expert Paradigm: a framework designed for the development and deployment of hyperscale recommendation FMs. In our approach, a central FM is trained on lifelong, cross-surface, multi-modal user data to learn generalizable knowledge. This knowledge is then efficiently transferred to various lightweight, surface-specific "expert" models via target-aware embeddings, allowing them to adapt to local data distributions and optimization goals with minimal overhead. To meet our training, inference and development needs, we built HyperCast, a production-grade infrastructure system that re-engineers training, serving, logging and iteration to power this decoupled paradigm. Our approach is now deployed at Meta serving tens of billions of user requests daily, demonstrating online metric improvements over our previous one-stage production system while improving developer velocity and maintaining infrastructure efficiency. To the best of our knowledge, this work represents the first successful deployment of a Foundation-Expert paradigm at this scale, offering a proven, compute-efficient, and developer-friendly blueprint to realize the promise of scaling laws in recommender systems.
Artificial Intelligence 150
☆ SEAgent: Self-Evolving Computer Use Agent with Autonomous Learning from Experience
Repurposing large vision-language models (LVLMs) as computer use agents (CUAs) has led to substantial breakthroughs, primarily driven by human-labeled data. However, these models often struggle with novel and specialized software, particularly in scenarios lacking human annotations. To address this challenge, we propose SEAgent, an agentic self-evolving framework enabling CUAs to autonomously evolve through interactions with unfamiliar software. Specifically, SEAgent empowers computer-use agents to autonomously master novel software environments via experiential learning, where agents explore new software, learn through iterative trial-and-error, and progressively tackle auto-generated tasks organized from simple to complex. To achieve this goal, we design a World State Model for step-wise trajectory assessment, along with a Curriculum Generator that generates increasingly diverse and challenging tasks. The agent's policy is updated through experiential learning, comprised of adversarial imitation of failure actions and Group Relative Policy Optimization (GRPO) on successful ones. Furthermore, we introduce a specialist-to-generalist training strategy that integrates individual experiential insights from specialist agents, facilitating the development of a stronger generalist CUA capable of continuous autonomous evolution. This unified agent ultimately achieves performance surpassing ensembles of individual specialist agents on their specialized software. We validate the effectiveness of SEAgent across five novel software environments within OS-World. Our approach achieves a significant improvement of 23.2% in success rate, from 11.3% to 34.5%, over a competitive open-source CUA, i.e., UI-TARS.
comment: Code at https://github.com/SunzeY/SEAgent
☆ Hop, Skip, and Overthink: Diagnosing Why Reasoning Models Fumble during Multi-Hop Analysis
The emergence of reasoning models and their integration into practical AI chat bots has led to breakthroughs in solving advanced math, deep search, and extractive question answering problems that requires a complex and multi-step thought process. Yet, a complete understanding of why these models hallucinate more than general purpose language models is missing. In this investigative study, we systematicallyexplore reasoning failures of contemporary language models on multi-hop question answering tasks. We introduce a novel, nuanced error categorization framework that examines failures across three critical dimensions: the diversity and uniqueness of source documents involved ("hops"), completeness in capturing relevant information ("coverage"), and cognitive inefficiency ("overthinking"). Through rigorous hu-man annotation, supported by complementary automated metrics, our exploration uncovers intricate error patterns often hidden by accuracy-centric evaluations. This investigative approach provides deeper insights into the cognitive limitations of current models and offers actionable guidance toward enhancing reasoning fidelity, transparency, and robustness in future language modeling efforts.
☆ From MAS to MARS: Coordination Failures and Reasoning Trade-offs in Hierarchical Multi-Agent Robotic Systems within a Healthcare Scenario
Multi-agent robotic systems (MARS) build upon multi-agent systems by integrating physical and task-related constraints, increasing the complexity of action execution and agent coordination. However, despite the availability of advanced multi-agent frameworks, their real-world deployment on robots remains limited, hindering the advancement of MARS research in practice. To bridge this gap, we conducted two studies to investigate performance trade-offs of hierarchical multi-agent frameworks in a simulated real-world multi-robot healthcare scenario. In Study 1, using CrewAI, we iteratively refine the system's knowledge base, to systematically identify and categorize coordination failures (e.g., tool access violations, lack of timely handling of failure reports) not resolvable by providing contextual knowledge alone. In Study 2, using AutoGen, we evaluate a redesigned bidirectional communication structure and further measure the trade-offs between reasoning and non-reasoning models operating within the same robotic team setting. Drawing from our empirical findings, we emphasize the tension between autonomy and stability and the importance of edge-case testing to improve system reliability and safety for future real-world deployment. Supplementary materials, including codes, task agent setup, trace outputs, and annotated examples of coordination failures and reasoning behaviors, are available at: https://byc-sophie.github.io/mas-to-mars/.
☆ Query Attribute Modeling: Improving search relevance with Semantic Search and Meta Data Filtering
This study introduces Query Attribute Modeling (QAM), a hybrid framework that enhances search precision and relevance by decomposing open text queries into structured metadata tags and semantic elements. QAM addresses traditional search limitations by automatically extracting metadata filters from free-form text queries, reducing noise and enabling focused retrieval of relevant items. Experimental evaluation using the Amazon Toys Reviews dataset (10,000 unique items with 40,000+ reviews and detailed product attributes) demonstrated QAM's superior performance, achieving a mean average precision at 5 (mAP@5) of 52.99\%. This represents significant improvement over conventional methods, including BM25 keyword search, encoder-based semantic similarity search, cross-encoder re-ranking, and hybrid search combining BM25 and semantic results via Reciprocal Rank Fusion (RRF). The results establish QAM as a robust solution for Enterprise Search applications, particularly in e-commerce systems.
☆ GeRe: Towards Efficient Anti-Forgetting in Continual Learning of LLM via General Samples Replay
The continual learning capability of large language models (LLMs) is crucial for advancing artificial general intelligence. However, continual fine-tuning LLMs across various domains often suffers from catastrophic forgetting, characterized by: 1) significant forgetting of their general capabilities, and 2) sharp performance declines in previously learned tasks. To simultaneously address both issues in a simple yet stable manner, we propose General Sample Replay (GeRe), a framework that use usual pretraining texts for efficient anti-forgetting. Beyond revisiting the most prevalent replay-based practices under GeRe, we further leverage neural states to introduce a enhanced activation states constrained optimization method using threshold-based margin (TM) loss, which maintains activation state consistency during replay learning. We are the first to validate that a small, fixed set of pre-collected general replay samples is sufficient to resolve both concerns--retaining general capabilities while promoting overall performance across sequential tasks. Indeed, the former can inherently facilitate the latter. Through controlled experiments, we systematically compare TM with different replay strategies under the GeRe framework, including vanilla label fitting, logit imitation via KL divergence and feature imitation via L1/L2 losses. Results demonstrate that TM consistently improves performance and exhibits better robustness. Our work paves the way for efficient replay of LLMs for the future. Our code and data are available at https://github.com/Qznan/GeRe.
☆ How are CS students using resources and AI tools for coding tasks?
A survey of 26 CS students reveals that AI coding assistants are mainly used for writing code (second to online searches) while AI chatbots are the top resource for debugging. Participants with different coding experience prefer online help over direct human help from peers and instructors.
☆ Sculptor: Empowering LLMs with Cognitive Agency via Active Context Management
Large Language Models (LLMs) suffer from significant performance degradation when processing long contexts due to proactive interference, where irrelevant information in earlier parts of the context disrupts reasoning and memory recall. While most research focuses on external memory systems to augment LLMs' capabilities, we propose a complementary approach: empowering LLMs with Active Context Management (ACM) tools to actively sculpt their internal working memory. We introduce Sculptor, a framework that equips LLMs with three categories of tools: (1) context fragmentation, (2) summary, hide, and restore, and (3) intelligent search. Our approach enables LLMs to proactively manage their attention and working memory, analogous to how humans selectively focus on relevant information while filtering out distractions. Experimental evaluation on information-sparse benchmarks-PI-LLM (proactive interference) and NeedleBench Multi-Needle Reasoning-demonstrates that Sculptor significantly improves performance even without specific training, leveraging LLMs' inherent tool calling generalization capabilities. By enabling Active Context Management, Sculptor not only mitigates proactive interference but also provides a cognitive foundation for more reliable reasoning across diverse long-context tasks-highlighting that explicit context-control strategies, rather than merely larger token windows, are key to robustness at scale.
comment: Preprint. Work in progress
☆ HierarchicalPrune: Position-Aware Compression for Large-Scale Diffusion Models
State-of-the-art text-to-image diffusion models (DMs) achieve remarkable quality, yet their massive parameter scale (8-11B) poses significant challenges for inferences on resource-constrained devices. In this paper, we present HierarchicalPrune, a novel compression framework grounded in a key observation: DM blocks exhibit distinct functional hierarchies, where early blocks establish semantic structures while later blocks handle texture refinements. HierarchicalPrune synergistically combines three techniques: (1) Hierarchical Position Pruning, which identifies and removes less essential later blocks based on position hierarchy; (2) Positional Weight Preservation, which systematically protects early model portions that are essential for semantic structural integrity; and (3) Sensitivity-Guided Distillation, which adjusts knowledge-transfer intensity based on our discovery of block-wise sensitivity variations. As a result, our framework brings billion-scale diffusion models into a range more suitable for on-device inference, while preserving the quality of the output images. Specifically, when combined with INT4 weight quantisation, HierarchicalPrune achieves 77.5-80.4% memory footprint reduction (e.g., from 15.8 GB to 3.2 GB) and 27.9-38.0% latency reduction, measured on server and consumer grade GPUs, with the minimum drop of 2.6% in GenEval score and 7% in HPSv2 score compared to the original model. Last but not least, our comprehensive user study with 85 participants demonstrates that HierarchicalPrune maintains perceptual quality comparable to the original model while significantly outperforming prior works.
☆ YOLOv8-Based Deep Learning Model for Automated Poultry Disease Detection and Health Monitoring paper
In the poultry industry, detecting chicken illnesses is essential to avoid financial losses. Conventional techniques depend on manual observation, which is laborious and prone to mistakes. Using YOLO v8 a deep learning model for real-time object recognition. This study suggests an AI based approach, by developing a system that analyzes high resolution chicken photos, YOLO v8 detects signs of illness, such as abnormalities in behavior and appearance. A sizable, annotated dataset has been used to train the algorithm, which provides accurate real-time identification of infected chicken and prompt warnings to farm operators for prompt action. By facilitating early infection identification, eliminating the need for human inspection, and enhancing biosecurity in large-scale farms, this AI technology improves chicken health management. The real-time features of YOLO v8 provide a scalable and effective method for improving farm management techniques.
comment: 6 Pages, 9 Figures, 2 Tables
☆ X-SAM: From Segment Anything to Any Segmentation
Large Language Models (LLMs) demonstrate strong capabilities in broad knowledge representation, yet they are inherently deficient in pixel-level perceptual understanding. Although the Segment Anything Model (SAM) represents a significant advancement in visual-prompt-driven image segmentation, it exhibits notable limitations in multi-mask prediction and category-specific segmentation tasks, and it cannot integrate all segmentation tasks within a unified model architecture. To address these limitations, we present X-SAM, a streamlined Multimodal Large Language Model (MLLM) framework that extends the segmentation paradigm from \textit{segment anything} to \textit{any segmentation}. Specifically, we introduce a novel unified framework that enables more advanced pixel-level perceptual comprehension for MLLMs. Furthermore, we propose a new segmentation task, termed Visual GrounDed (VGD) segmentation, which segments all instance objects with interactive visual prompts and empowers MLLMs with visual grounded, pixel-wise interpretative capabilities. To enable effective training on diverse data sources, we present a unified training strategy that supports co-training across multiple datasets. Experimental results demonstrate that X-SAM achieves state-of-the-art performance on a wide range of image segmentation benchmarks, highlighting its efficiency for multimodal, pixel-level visual understanding. Code is available at https://github.com/wanghao9610/X-SAM.
comment: Technical Report
☆ LLM Collaboration With Multi-Agent Reinforcement Learning
A large amount of work has been done in Multi-Agent Systems (MAS) for modeling and solving problems with multiple interacting agents. However, most LLMs are pretrained independently and not specifically optimized for coordination. Existing LLM fine-tuning frameworks rely on individual rewards, which require complex reward designs for each agent to encourage collaboration. To address these challenges, we model LLM collaboration as a cooperative Multi-Agent Reinforcement Learning (MARL) problem. We develop a multi-agent, multi-turn algorithm, Multi-Agent Group Relative Policy Optimization (MAGRPO), to solve it, building on current RL approaches for LLMs as well as MARL techniques. Our experiments on LLM writing and coding collaboration demonstrate that fine-tuning MAS with MAGRPO enables agents to generate high-quality responses efficiently through effective cooperation. Our approach opens the door to using other MARL methods for LLMs and highlights the associated challenges.
☆ A Scalable Pretraining Framework for Link Prediction with Efficient Adaptation KDD 2025
Link Prediction (LP) is a critical task in graph machine learning. While Graph Neural Networks (GNNs) have significantly advanced LP performance recently, existing methods face key challenges including limited supervision from sparse connectivity, sensitivity to initialization, and poor generalization under distribution shifts. We explore pretraining as a solution to address these challenges. Unlike node classification, LP is inherently a pairwise task, which requires the integration of both node- and edge-level information. In this work, we present the first systematic study on the transferability of these distinct modules and propose a late fusion strategy to effectively combine their outputs for improved performance. To handle the diversity of pretraining data and avoid negative transfer, we introduce a Mixture-of-Experts (MoE) framework that captures distinct patterns in separate experts, facilitating seamless application of the pretrained model on diverse downstream datasets. For fast adaptation, we develop a parameter-efficient tuning strategy that allows the pretrained model to adapt to unseen datasets with minimal computational overhead. Experiments on 16 datasets across two domains demonstrate the effectiveness of our approach, achieving state-of-the-art performance on low-resource link prediction while obtaining competitive results compared to end-to-end trained methods, with over 10,000x lower computational overhead.
comment: Accepted by KDD 2025 Research Track
☆ P-Aligner: Enabling Pre-Alignment of Language Models via Principled Instruction Synthesis
Large Language Models (LLMs) are expected to produce safe, helpful, and honest content during interaction with human users, but they frequently fail to align with such values when given flawed instructions, e.g., missing context, ambiguous directives, or inappropriate tone, leaving substantial room for improvement along multiple dimensions. A cost-effective yet high-impact way is to pre-align instructions before the model begins decoding. Existing approaches either rely on prohibitive test-time search costs or end-to-end model rewrite, which is powered by a customized training corpus with unclear objectives. In this work, we demonstrate that the goal of efficient and effective preference alignment can be achieved by P-Aligner, a lightweight module generating instructions that preserve the original intents while being expressed in a more human-preferred form. P-Aligner is trained on UltraPrompt, a new dataset synthesized via a proposed principle-guided pipeline using Monte-Carlo Tree Search, which systematically explores the space of candidate instructions that are closely tied to human preference. Experiments across different methods show that P-Aligner generally outperforms strong baselines across various models and benchmarks, including average win-rate gains of 28.35% and 8.69% on GPT-4-turbo and Gemma-2-SimPO, respectively. Further analyses validate its effectiveness and efficiency through multiple perspectives, including data quality, search strategies, iterative deployment, and time overhead.
☆ HiD-VAE: Interpretable Generative Recommendation via Hierarchical and Disentangled Semantic IDs
Recommender systems are indispensable for helping users navigate the immense item catalogs of modern online platforms. Recently, generative recommendation has emerged as a promising paradigm, unifying the conventional retrieve-and-rank pipeline into an end-to-end model capable of dynamic generation. However, existing generative methods are fundamentally constrained by their unsupervised tokenization, which generates semantic IDs suffering from two critical flaws: (1) they are semantically flat and uninterpretable, lacking a coherent hierarchy, and (2) they are prone to representation entanglement (i.e., ``ID collisions''), which harms recommendation accuracy and diversity. To overcome these limitations, we propose HiD-VAE, a novel framework that learns hierarchically disentangled item representations through two core innovations. First, HiD-VAE pioneers a hierarchically-supervised quantization process that aligns discrete codes with multi-level item tags, yielding more uniform and disentangled IDs. Crucially, the trained codebooks can predict hierarchical tags, providing a traceable and interpretable semantic path for each recommendation. Second, to combat representation entanglement, HiD-VAE incorporates a novel uniqueness loss that directly penalizes latent space overlap. This mechanism not only resolves the critical ID collision problem but also promotes recommendation diversity by ensuring a more comprehensive utilization of the item representation space. These high-quality, disentangled IDs provide a powerful foundation for downstream generative models. Extensive experiments on three public benchmarks validate HiD-VAE's superior performance against state-of-the-art methods. The code is available at https://anonymous.4open.science/r/HiD-VAE-84B2.
☆ Neuromorphic Cybersecurity with Semi-supervised Lifelong Learning
Inspired by the brain's hierarchical processing and energy efficiency, this paper presents a Spiking Neural Network (SNN) architecture for lifelong Network Intrusion Detection System (NIDS). The proposed system first employs an efficient static SNN to identify potential intrusions, which then activates an adaptive dynamic SNN responsible for classifying the specific attack type. Mimicking biological adaptation, the dynamic classifier utilizes Grow When Required (GWR)-inspired structural plasticity and a novel Adaptive Spike-Timing-Dependent Plasticity (Ad-STDP) learning rule. These bio-plausible mechanisms enable the network to learn new threats incrementally while preserving existing knowledge. Tested on the UNSW-NB15 benchmark in a continual learning setting, the architecture demonstrates robust adaptation, reduced catastrophic forgetting, and achieves $85.3$\% overall accuracy. Furthermore, simulations using the Intel Lava framework confirm high operational sparsity, highlighting the potential for low-power deployment on neuromorphic hardware.
☆ TURA: Tool-Augmented Unified Retrieval Agent for AI Search
The advent of Large Language Models (LLMs) is transforming search engines into conversational AI search products, primarily using Retrieval-Augmented Generation (RAG) on web corpora. However, this paradigm has significant industrial limitations. Traditional RAG approaches struggle with real-time needs and structured queries that require accessing dynamically generated content like ticket availability or inventory. Limited to indexing static pages, search engines cannot perform the interactive queries needed for such time-sensitive data. Academic research has focused on optimizing RAG for static content, overlooking complex intents and the need for dynamic sources like databases and real-time APIs. To bridge this gap, we introduce TURA (Tool-Augmented Unified Retrieval Agent for AI Search), a novel three-stage framework that combines RAG with agentic tool-use to access both static content and dynamic, real-time information. TURA has three key components: an Intent-Aware Retrieval module to decompose queries and retrieve information sources encapsulated as Model Context Protocol (MCP) Servers, a DAG-based Task Planner that models task dependencies as a Directed Acyclic Graph (DAG) for optimal parallel execution, and a lightweight Distilled Agent Executor for efficient tool calling. TURA is the first architecture to systematically bridge the gap between static RAG and dynamic information sources for a world-class AI search product. Serving tens of millions of users, it leverages an agentic framework to deliver robust, real-time answers while meeting the low-latency demands of a large-scale industrial system.
GraphProp: Training the Graph Foundation Models using Graph Properties
This work focuses on training graph foundation models (GFMs) that have strong generalization ability in graph-level tasks such as graph classification. Effective GFM training requires capturing information consistent across different domains. We discover that graph structures provide more consistent cross-domain information compared to node features and graph labels. However, traditional GFMs primarily focus on transferring node features from various domains into a unified representation space but often lack structural cross-domain generalization. To address this, we introduce GraphProp, which emphasizes structural generalization. The training process of GraphProp consists of two main phases. First, we train a structural GFM by predicting graph invariants. Since graph invariants are properties of graphs that depend only on the abstract structure, not on particular labellings or drawings of the graph, this structural GFM has a strong ability to capture the abstract structural information and provide discriminative graph representations comparable across diverse domains. In the second phase, we use the representations given by the structural GFM as positional encodings to train a comprehensive GFM. This phase utilizes domain-specific node attributes and graph labels to further improve cross-domain node feature generalization. Our experiments demonstrate that GraphProp significantly outperforms the competitors in supervised learning and few-shot learning, especially in handling graphs without node attributes.
☆ A Comprehensive Framework for Uncertainty Quantification of Voxel-wise Supervised Models in IVIM MRI
Accurate estimation of intravoxel incoherent motion (IVIM) parameters from diffusion-weighted MRI remains challenging due to the ill-posed nature of the inverse problem and high sensitivity to noise, particularly in the perfusion compartment. In this work, we propose a probabilistic deep learning framework based on Deep Ensembles (DE) of Mixture Density Networks (MDNs), enabling estimation of total predictive uncertainty and decomposition into aleatoric (AU) and epistemic (EU) components. The method was benchmarked against non probabilistic neural networks, a Bayesian fitting approach and a probabilistic network with single Gaussian parametrization. Supervised training was performed on synthetic data, and evaluation was conducted on both simulated and two in vivo datasets. The reliability of the quantified uncertainties was assessed using calibration curves, output distribution sharpness, and the Continuous Ranked Probability Score (CRPS). MDNs produced more calibrated and sharper predictive distributions for the D and f parameters, although slight overconfidence was observed in D*. The Robust Coefficient of Variation (RCV) indicated smoother in vivo estimates for D* with MDNs compared to Gaussian model. Despite the training data covering the expected physiological range, elevated EU in vivo suggests a mismatch with real acquisition conditions, highlighting the importance of incorporating EU, which was allowed by DE. Overall, we present a comprehensive framework for IVIM fitting with uncertainty quantification, which enables the identification and interpretation of unreliable estimates. The proposed approach can also be adopted for fitting other physical models through appropriate architectural and simulation adjustments.
☆ Position: The Current AI Conference Model is Unsustainable! Diagnosing the Crisis of Centralized AI Conference
Artificial Intelligence (AI) conferences are essential for advancing research, sharing knowledge, and fostering academic community. However, their rapid expansion has rendered the centralized conference model increasingly unsustainable. This paper offers a data-driven diagnosis of a structural crisis that threatens the foundational goals of scientific dissemination, equity, and community well-being. We identify four key areas of strain: (1) scientifically, with per-author publication rates more than doubling over the past decade to over 4.5 papers annually; (2) environmentally, with the carbon footprint of a single conference exceeding the daily emissions of its host city; (3) psychologically, with 71% of online community discourse reflecting negative sentiment and 35% referencing mental health concerns; and (4) logistically, with attendance at top conferences such as NeurIPS 2024 beginning to outpace venue capacity. These pressures point to a system that is misaligned with its core mission. In response, we propose the Community-Federated Conference (CFC) model, which separates peer review, presentation, and networking into globally coordinated but locally organized components, offering a more sustainable, inclusive, and resilient path forward for AI research.
comment: Preprint
☆ Share Your Attention: Transformer Weight Sharing via Matrix-based Dictionary Learning
Large language models (LLMs) have revolutionized AI applications, yet their high computational and memory demands hinder their widespread deployment. Existing compression techniques focus on intra-block optimizations (e.g. low-rank approximation, attention head pruning), while the repetitive layered structure of transformers implies significant inter-block redundancy - a dimension largely unexplored beyond key-value (KV) caching. Inspired by dictionary learning in CNNs, we propose a framework for structured weight sharing across transformer layers. Our approach decomposes attention projection matrices into shared dictionary atoms, reducing the attention module's parameters by 66.7% while achieving on-par performance. Unlike complex methods requiring distillation or architectural changes, MASA (Matrix Atom Sharing in Attention) operates as a drop-in replacement - trained with standard optimizers - and represents each layer's weights as linear combinations of shared matrix atoms. Experiments across scales (100M-700M parameters) show that MASA achieves better benchmark accuracy and perplexity than grouped-query attention (GQA), low-rank baselines and recently proposed Repeat-all-over/Sequential sharing at comparable parameter budgets. Ablation studies confirm robustness to the dictionary size and the efficacy of shared representations in capturing cross-layer statistical regularities. Extending to Vision Transformers (ViT), MASA matches performance metrics on image classification and detection tasks with 66.7% fewer attention parameters. By combining dictionary learning strategies with transformer efficiency, MASA offers a scalable blueprint for parameter-efficient models without sacrificing performance. Finally, we investigate the possibility of employing MASA on pretrained LLMs to reduce their number of parameters without experiencing any significant drop in their performance.
☆ ConfProBench: A Confidence Evaluation Benchmark for MLLM-Based Process Judges
Reasoning is a critical capability of multimodal large language models (MLLMs) for solving complex multimodal tasks, and judging the correctness of reasoning steps is crucial for improving this capability. Recently, MLLM-based process judges (MPJs) have been widely used to assess the correctness of reasoning steps in multimodal tasks. Therefore, evaluating MPJs is important for identifying their limitations and guiding future improvements. However, existing benchmarks for MPJs mainly focus on tasks such as step correctness classification and reasoning process search, while overlooking a key aspect: whether the confidence scores produced by MPJs at the step level are reliable. To address this gap, we propose ConfProBench, the first comprehensive benchmark designed to systematically evaluate the reliability of step-level confidence scores generated by MPJs. Our benchmark constructs three types of adversarially perturbed reasoning steps: Synonym Substitution, Syntactic Transformation, and Image Perturbation, to test the robustness of MPJ confidence under perturbations. In addition, we introduce three novel evaluation metrics: Confidence Robustness Score (CRS), Confidence Sensitivity Score (CSS), and Confidence Calibration Score (CCS), which evaluate robustness, sensitivity, and calibration, respectively. We evaluate 14 state-of-the-art MLLMs, including both proprietary and open-source models. Experiments reveal limitations in current MPJs' confidence performance and offer competitive baselines to support future research.
☆ Beyond Brainstorming: What Drives High-Quality Scientific Ideas? Lessons from Multi-Agent Collaboration
While AI agents show potential in scientific ideation, most existing frameworks rely on single-agent refinement, limiting creativity due to bounded knowledge and perspective. Inspired by real-world research dynamics, this paper investigates whether structured multi-agent discussions can surpass solitary ideation. We propose a cooperative multi-agent framework for generating research proposals and systematically compare configurations including group size, leaderled versus leaderless structures, and team compositions varying in interdisciplinarity and seniority. To assess idea quality, we employ a comprehensive protocol with agent-based scoring and human review across dimensions such as novelty, strategic vision, and integration depth. Our results show that multi-agent discussions substantially outperform solitary baselines. A designated leader acts as a catalyst, transforming discussion into more integrated and visionary proposals. Notably, we find that cognitive diversity is a primary driver of quality, yet expertise is a non-negotiable prerequisite, as teams lacking a foundation of senior knowledge fail to surpass even a single competent agent. These findings offer actionable insights for designing collaborative AI ideation systems and shed light on how team structure influences creative outcomes.
comment: Preprint
☆ CLASP: Cross-modal Salient Anchor-based Semantic Propagation for Weakly-supervised Dense Audio-Visual Event Localization
The Dense Audio-Visual Event Localization (DAVEL) task aims to temporally localize events in untrimmed videos that occur simultaneously in both the audio and visual modalities. This paper explores DAVEL under a new and more challenging weakly-supervised setting (W-DAVEL task), where only video-level event labels are provided and the temporal boundaries of each event are unknown. We address W-DAVEL by exploiting \textit{cross-modal salient anchors}, which are defined as reliable timestamps that are well predicted under weak supervision and exhibit highly consistent event semantics across audio and visual modalities. Specifically, we propose a \textit{Mutual Event Agreement Evaluation} module, which generates an agreement score by measuring the discrepancy between the predicted audio and visual event classes. Then, the agreement score is utilized in a \textit{Cross-modal Salient Anchor Identification} module, which identifies the audio and visual anchor features through global-video and local temporal window identification mechanisms. The anchor features after multimodal integration are fed into an \textit{Anchor-based Temporal Propagation} module to enhance event semantic encoding in the original temporal audio and visual features, facilitating better temporal localization under weak supervision. We establish benchmarks for W-DAVEL on both the UnAV-100 and ActivityNet1.3 datasets. Extensive experiments demonstrate that our method achieves state-of-the-art performance.
☆ SID: Benchmarking Guided Instruction Capabilities in STEM Education with a Socratic Interdisciplinary Dialogues Dataset
Fostering students' abilities for knowledge integration and transfer in complex problem-solving scenarios is a core objective of modern education, and interdisciplinary STEM is a key pathway to achieve this, yet it requires expert guidance that is difficult to scale. While LLMs offer potential in this regard, their true capability for guided instruction remains unclear due to the lack of an effective evaluation benchmark. To address this, we introduce SID, the first benchmark designed to systematically evaluate the higher-order guidance capabilities of LLMs in multi-turn, interdisciplinary Socratic dialogues. Our contributions include a large-scale dataset of 10,000 dialogue turns across 48 complex STEM projects, a novel annotation schema for capturing deep pedagogical features, and a new suite of evaluation metrics (e.g., X-SRG). Baseline experiments confirm that even state-of-the-art LLMs struggle to execute effective guided dialogues that lead students to achieve knowledge integration and transfer. This highlights the critical value of our benchmark in driving the development of more pedagogically-aware LLMs.
comment: 26 pages, 20 figures
☆ MSC: A Marine Wildlife Video Dataset with Grounded Segmentation and Clip-Level Captioning
Marine videos present significant challenges for video understanding due to the dynamics of marine objects and the surrounding environment, camera motion, and the complexity of underwater scenes. Existing video captioning datasets, typically focused on generic or human-centric domains, often fail to generalize to the complexities of the marine environment and gain insights about marine life. To address these limitations, we propose a two-stage marine object-oriented video captioning pipeline. We introduce a comprehensive video understanding benchmark that leverages the triplets of video, text, and segmentation masks to facilitate visual grounding and captioning, leading to improved marine video understanding and analysis, and marine video generation. Additionally, we highlight the effectiveness of video splitting in order to detect salient object transitions in scene changes, which significantly enrich the semantics of captioning content. Our dataset and code have been released at https://msc.hkustvgd.com.
comment: Published at ACMMM2025 (Dataset track)
☆ Unveiling the Landscape of Clinical Depression Assessment: From Behavioral Signatures to Psychiatric Reasoning
Depression is a widespread mental disorder that affects millions worldwide. While automated depression assessment shows promise, most studies rely on limited or non-clinically validated data, and often prioritize complex model design over real-world effectiveness. In this paper, we aim to unveil the landscape of clinical depression assessment. We introduce C-MIND, a clinical neuropsychiatric multimodal diagnosis dataset collected over two years from real hospital visits. Each participant completes three structured psychiatric tasks and receives a final diagnosis from expert clinicians, with informative audio, video, transcript, and functional near-infrared spectroscopy (fNIRS) signals recorded. Using C-MIND, we first analyze behavioral signatures relevant to diagnosis. We train a range of classical models to quantify how different tasks and modalities contribute to diagnostic performance, and dissect the effectiveness of their combinations. We then explore whether LLMs can perform psychiatric reasoning like clinicians and identify their clear limitations in realistic clinical settings. In response, we propose to guide the reasoning process with clinical expertise and consistently improves LLM diagnostic performance by up to 10% in Macro-F1 score. We aim to build an infrastructure for clinical depression assessment from both data and algorithmic perspectives, enabling C-MIND to facilitate grounded and reliable research for mental healthcare.
☆ RAIDX: A Retrieval-Augmented Generation and GRPO Reinforcement Learning Framework for Explainable Deepfake Detection
The rapid advancement of AI-generation models has enabled the creation of hyperrealistic imagery, posing ethical risks through widespread misinformation. Current deepfake detection methods, categorized as face specific detectors or general AI-generated detectors, lack transparency by framing detection as a classification task without explaining decisions. While several LLM-based approaches offer explainability, they suffer from coarse-grained analyses and dependency on labor-intensive annotations. This paper introduces RAIDX (Retrieval-Augmented Image Deepfake Detection and Explainability), a novel deepfake detection framework integrating Retrieval-Augmented Generation (RAG) and Group Relative Policy Optimization (GRPO) to enhance detection accuracy and decision explainability. Specifically, RAIDX leverages RAG to incorporate external knowledge for improved detection accuracy and employs GRPO to autonomously generate fine-grained textual explanations and saliency maps, eliminating the need for extensive manual annotations. Experiments on multiple benchmarks demonstrate RAIDX's effectiveness in identifying real or fake, and providing interpretable rationales in both textual descriptions and saliency maps, achieving state-of-the-art detection performance while advancing transparency in deepfake identification. RAIDX represents the first unified framework to synergize RAG and GRPO, addressing critical gaps in accuracy and explainability. Our code and models will be publicly available.
☆ Argumentative Debates for Transparent Bias Detection [Technical Report]
As the use of AI systems in society grows, addressing potential biases that emerge from data or are learned by models is essential to prevent systematic disadvantages against specific groups. Several notions of (un)fairness have been proposed in the literature, alongside corresponding algorithmic methods for detecting and mitigating unfairness, but, with very few exceptions, these tend to ignore transparency. Instead, interpretability and explainability are core requirements for algorithmic fairness, even more so than for other algorithmic solutions, given the human-oriented nature of fairness. In this paper, we contribute a novel interpretable, explainable method for bias detection relying on debates about the presence of bias against individuals, based on the values of protected features for the individuals and others in their neighbourhoods. Our method builds upon techniques from formal and computational argumentation, whereby debates result from arguing about biases within and across neighbourhoods. We provide formal, quantitative, and qualitative evaluations of our method, highlighting its strengths in performance against baselines, as well as its interpretability and explainability.
☆ PRISM: Lightweight Multivariate Time-Series Classification through Symmetric Multi-Resolution Convolutional Layers
Multivariate time-series classification is pivotal in domains ranging from wearable sensing to biomedical monitoring. Despite recent advances, Transformer- and CNN-based models often remain computationally heavy, offer limited frequency diversity, and require extensive parameter budgets. We propose PRISM (Per-channel Resolution-Informed Symmetric Module), a convolutional-based feature extractor that applies symmetric finite-impulse-response (FIR) filters at multiple temporal scales, independently per channel. This multi-resolution, per-channel design yields highly frequency-selective embeddings without any inter-channel convolutions, greatly reducing model size and complexity. Across human-activity, sleep-stage and biomedical benchmarks, PRISM, paired with lightweight classification heads, matches or outperforms leading CNN and Transformer baselines, while using roughly an order of magnitude fewer parameters and FLOPs. By uniting classical signal processing insights with modern deep learning, PRISM offers an accurate, resource-efficient solution for multivariate time-series classification.
☆ Learning Robust Intervention Representations with Delta Embeddings
Causal representation learning has attracted significant research interest during the past few years, as a means for improving model generalization and robustness. Causal representations of interventional image pairs, have the property that only variables corresponding to scene elements affected by the intervention / action are changed between the start state and the end state. While most work in this area has focused on identifying and representing the variables of the scene under a causal model, fewer efforts have focused on representations of the interventions themselves. In this work, we show that an effective strategy for improving out of distribution (OOD) robustness is to focus on the representation of interventions in the latent space. Specifically, we propose that an intervention can be represented by a Causal Delta Embedding that is invariant to the visual scene and sparse in terms of the causal variables it affects. Leveraging this insight, we propose a framework that is capable of learning causal representations from image pairs, without any additional supervision. Experiments in the Causal Triplet challenge demonstrate that Causal Delta Embeddings are highly effective in OOD settings, significantly exceeding baseline performance in both synthetic and real-world benchmarks.
☆ Hierarchical Scoring for Machine Learning Classifier Error Impact Evaluation
A common use of machine learning (ML) models is predicting the class of a sample. Object detection is an extension of classification that includes localization of the object via a bounding box within the sample. Classification, and by extension object detection, is typically evaluated by counting a prediction as incorrect if the predicted label does not match the ground truth label. This pass/fail scoring treats all misclassifications as equivalent. In many cases, class labels can be organized into a class taxonomy with a hierarchical structure to either reflect relationships among the data or operator valuation of misclassifications. When such a hierarchical structure exists, hierarchical scoring metrics can return the model performance of a given prediction related to the distance between the prediction and the ground truth label. Such metrics can be viewed as giving partial credit to predictions instead of pass/fail, enabling a finer-grained understanding of the impact of misclassifications. This work develops hierarchical scoring metrics varying in complexity that utilize scoring trees to encode relationships between class labels and produce metrics that reflect distance in the scoring tree. The scoring metrics are demonstrated on an abstract use case with scoring trees that represent three weighting strategies and evaluated by the kind of errors discouraged. Results demonstrate that these metrics capture errors with finer granularity and the scoring trees enable tuning. This work demonstrates an approach to evaluating ML performance that ranks models not only by how many errors are made but by the kind or impact of errors. Python implementations of the scoring metrics will be available in an open-source repository at time of publication.
☆ Benchmarking Quantum and Classical Sequential Models for Urban Telecommunication Forecasting
In this study, we evaluate the performance of classical and quantum-inspired sequential models in forecasting univariate time series of incoming SMS activity (SMS-in) using the Milan Telecommunication Activity Dataset. Due to data completeness limitations, we focus exclusively on the SMS-in signal for each spatial grid cell. We compare five models, LSTM (baseline), Quantum LSTM (QLSTM), Quantum Adaptive Self-Attention (QASA), Quantum Receptance Weighted Key-Value (QRWKV), and Quantum Fast Weight Programmers (QFWP), under varying input sequence lengths (4, 8, 12, 16, 32 and 64). All models are trained to predict the next 10-minute SMS-in value based solely on historical values within a given sequence window. Our findings indicate that different models exhibit varying sensitivities to sequence length, suggesting that quantum enhancements are not universally advantageous. Rather, the effectiveness of quantum modules is highly dependent on the specific task and architectural design, reflecting inherent trade-offs among model size, parameterization strategies, and temporal modeling capabilities.
☆ OS Agents: A Survey on MLLM-based Agents for General Computing Devices Use ACL 2025
The dream to create AI assistants as capable and versatile as the fictional J.A.R.V.I.S from Iron Man has long captivated imaginations. With the evolution of (multi-modal) large language models ((M)LLMs), this dream is closer to reality, as (M)LLM-based Agents using computing devices (e.g., computers and mobile phones) by operating within the environments and interfaces (e.g., Graphical User Interface (GUI)) provided by operating systems (OS) to automate tasks have significantly advanced. This paper presents a comprehensive survey of these advanced agents, designated as OS Agents. We begin by elucidating the fundamentals of OS Agents, exploring their key components including the environment, observation space, and action space, and outlining essential capabilities such as understanding, planning, and grounding. We then examine methodologies for constructing OS Agents, focusing on domain-specific foundation models and agent frameworks. A detailed review of evaluation protocols and benchmarks highlights how OS Agents are assessed across diverse tasks. Finally, we discuss current challenges and identify promising directions for future research, including safety and privacy, personalization and self-evolution. This survey aims to consolidate the state of OS Agents research, providing insights to guide both academic inquiry and industrial development. An open-source GitHub repository is maintained as a dynamic resource to foster further innovation in this field. We present a 9-page version of our work, accepted by ACL 2025, to provide a concise overview to the domain.
comment: ACL 2025 (Oral)
☆ Metric Learning in an RKHS AI 2025
Metric learning from a set of triplet comparisons in the form of "Do you think item h is more similar to item i or item j?", indicating similarity and differences between items, plays a key role in various applications including image retrieval, recommendation systems, and cognitive psychology. The goal is to learn a metric in the RKHS that reflects the comparisons. Nonlinear metric learning using kernel methods and neural networks have shown great empirical promise. While previous works have addressed certain aspects of this problem, there is little or no theoretical understanding of such methods. The exception is the special (linear) case in which the RKHS is the standard Euclidean space $\mathbb{R}^d$; there is a comprehensive theory for metric learning in $\mathbb{R}^d$. This paper develops a general RKHS framework for metric learning and provides novel generalization guarantees and sample complexity bounds. We validate our findings through a set of simulations and experiments on real datasets. Our code is publicly available at https://github.com/RamyaLab/metric-learning-RKHS.
comment: Appeared in the 41st Conference on Uncertainty in Artificial Intelligence (UAI 2025)
☆ Zero-Residual Concept Erasure via Progressive Alignment in Text-to-Image Model
Concept Erasure, which aims to prevent pretrained text-to-image models from generating content associated with semantic-harmful concepts (i.e., target concepts), is getting increased attention. State-of-the-art methods formulate this task as an optimization problem: they align all target concepts with semantic-harmless anchor concepts, and apply closed-form solutions to update the model accordingly. While these closed-form methods are efficient, we argue that existing methods have two overlooked limitations: 1) They often result in incomplete erasure due to "non-zero alignment residual", especially when text prompts are relatively complex. 2) They may suffer from generation quality degradation as they always concentrate parameter updates in a few deep layers. To address these issues, we propose a novel closed-form method ErasePro: it is designed for more complete concept erasure and better preserving overall generative quality. Specifically, ErasePro first introduces a strict zero-residual constraint into the optimization objective, ensuring perfect alignment between target and anchor concept features and enabling more complete erasure. Secondly, it employs a progressive, layer-wise update strategy that gradually transfers target concept features to those of the anchor concept from shallow to deep layers. As the depth increases, the required parameter changes diminish, thereby reducing deviations in sensitive deep layers and preserving generative quality. Empirical results across different concept erasure tasks (including instance, art style, and nudity erasure) have demonstrated the effectiveness of our ErasePro.
☆ Small transformer architectures for task switching
The rapid progress seen in terms of large-scale generative AI is largely based on the attention mechanism. It is conversely non-trivial to conceive small-scale applications for which attention-based architectures outperform traditional approaches, such as multi-layer perceptrons or recurrent networks. We examine this problem in the context of 'task switching'. In this framework models work on ongoing token sequences with the current task being determined by stochastically interspersed control tokens. We show that standard transformers cannot solve a basic task switching reference model based on finite domain arithmetics which contains subtasks dedicated to increment / addition / reverse copy / context (IARC). We show that transformers, long short-term memory recurrent networks (LSTM), and plain multi-layer perceptrons (MLPs) achieve similar, but only modest prediction accuracies. We enlarge our comparative study by including an extension of the standard transformer architecture to its non-translational invariant counterpart, the cisformer, and an alternative attention mechanism, extensive attention. A combination of the latter is found to be the only model able to achieve considerable performance levels, of around 95%. Our results indicate that the workings of attention can be understood better, and even improved, when comparing qualitatively different formulations in task-switching settings.
comment: ICANN 2025, in press
☆ From "Aha Moments" to Controllable Thinking: Toward Meta-Cognitive Reasoning in Large Reasoning Models via Decoupled Reasoning and Control
Large Reasoning Models (LRMs) have demonstrated a latent capacity for complex reasoning by spontaneously exhibiting cognitive behaviors such as step-by-step reasoning, reflection, and backtracking, commonly referred to as "Aha Moments". However, such emergent behaviors remain unregulated and uncontrolled, often resulting in overthinking, where the model continues generating redundant reasoning content even after reaching reliable conclusions. This leads to excessive computational costs and increased latency, limiting the practical deployment of LRMs. The root cause lies in the absence of intrinsic regulatory mechanisms, as current models are unable to monitor and adaptively manage their reasoning process to determine when to continue, backtrack, or terminate. To address this issue, we propose the Meta-cognitive Reasoning Framework (MERA), which explicitly decouples the thinking process into distinct reasoning and control components, thereby enabling the independent optimization of control strategies. Specifically, MERA incorporates a takeover-based data construction mechanism that identifies critical decision points during reasoning and delegates the creation of control signals to auxiliary LLMs, thereby enabling the construction of high-quality reasoning-control data. Additionally, a structured reasoning-control separation is implemented via supervised fine-tuning, enabling the model to generate explicit traces and acquire initial meta-cognitive control capabilities. Finally, MERA employs Control-Segment Policy Optimization (CSPO), which combines segment-wise Group Relative Policy Optimization (GRPO) with a control-masking mechanism to optimize control behavior learning while minimizing interference from irrelevant content. Experiments on various reasoning benchmarks demonstrate that models trained with MERA enhance both reasoning efficiency and accuracy.
☆ Automatic LLM Red Teaming
Red teaming is critical for identifying vulnerabilities and building trust in current LLMs. However, current automated methods for Large Language Models (LLMs) rely on brittle prompt templates or single-turn attacks, failing to capture the complex, interactive nature of real-world adversarial dialogues. We propose a novel paradigm: training an AI to strategically `break' another AI. By formalizing red teaming as a Markov Decision Process (MDP) and employing a hierarchical Reinforcement Learning (RL) framework, we effectively address the inherent sparse reward and long-horizon challenges. Our generative agent learns coherent, multi-turn attack strategies through a fine-grained, token-level harm reward, enabling it to uncover subtle vulnerabilities missed by existing baselines. This approach sets a new state-of-the-art, fundamentally reframing LLM red teaming as a dynamic, trajectory-based process (rather than a one-step test) essential for robust AI deployment.
☆ Cloud Model Characteristic Function Auto-Encoder: Integrating Cloud Model Theory with MMD Regularization for Enhanced Generative Modeling
We introduce Cloud Model Characteristic Function Auto-Encoder (CMCFAE), a novel generative model that integrates the cloud model into the Wasserstein Auto-Encoder (WAE) framework. By leveraging the characteristic functions of the cloud model to regularize the latent space, our approach enables more accurate modeling of complex data distributions. Unlike conventional methods that rely on a standard Gaussian prior and traditional divergence measures, our method employs a cloud model prior, providing a more flexible and realistic representation of the latent space, thus mitigating the homogenization observed in reconstructed samples. We derive the characteristic function of the cloud model and propose a corresponding regularizer within the WAE framework. Extensive quantitative and qualitative evaluations on MNIST, FashionMNIST, CIFAR-10, and CelebA demonstrate that CMCFAE outperforms existing models in terms of reconstruction quality, latent space structuring, and sample diversity. This work not only establishes a novel integration of cloud model theory with MMD-based regularization but also offers a promising new perspective for enhancing autoencoder-based generative models.
☆ Automated Generation of Curriculum-Aligned Multiple-Choice Questions for Malaysian Secondary Mathematics Using Generative AI
This paper addresses the critical need for scalable and high-quality educational assessment tools within the Malaysian education system. It highlights the potential of Generative AI (GenAI) while acknowledging the significant challenges of ensuring factual accuracy and curriculum alignment, especially for low-resource languages like Bahasa Melayu. This research introduces and compares four incremental pipelines for generating Form 1 Mathematics multiple-choice questions (MCQs) in Bahasa Melayu using OpenAI's GPT-4o. The methods range from non-grounded prompting (structured and basic) to Retrieval-Augmented Generation (RAG) approaches (one using the LangChain framework, one implemented manually). The system is grounded in official curriculum documents, including teacher-prepared notes and the yearly teaching plan (RPT). A dual-pronged automated evaluation framework is employed to assess the generated questions. Curriculum alignment is measured using Semantic Textual Similarity (STS) against the RPT, while contextual validity is verified through a novel RAG-based Question-Answering (RAG-QA) method. The results demonstrate that RAG-based pipelines significantly outperform non-grounded prompting methods, producing questions with higher curriculum alignment and factual validity. The study further analyzes the trade-offs between the ease of implementation of framework-based RAG and the fine-grained control offered by a manual pipeline. This work presents a validated methodology for generating curriculum-specific educational content in a low-resource language, introduces a symbiotic RAG-QA evaluation technique, and provides actionable insights for the development and deployment of practical EdTech solutions in Malaysia and similar regions.
☆ StepFun-Formalizer: Unlocking the Autoformalization Potential of LLMs through Knowledge-Reasoning Fusion
Autoformalization aims to translate natural-language mathematical statements into a formal language. While LLMs have accelerated progress in this area, existing methods still suffer from low accuracy. We identify two key abilities for effective autoformalization: comprehensive mastery of formal-language domain knowledge, and reasoning capability of natural language problem understanding and informal-formal alignment. Without the former, a model cannot identify the correct formal objects; without the latter, it struggles to interpret real-world contexts and map them precisely into formal expressions. To address these gaps, we introduce ThinkingF, a data synthesis and training pipeline that improves both abilities. First, we construct two datasets: one by distilling and selecting large-scale examples rich in formal knowledge, and another by generating informal-to-formal reasoning trajectories guided by expert-designed templates. We then apply SFT and RLVR with these datasets to further fuse and refine the two abilities. The resulting 7B and 32B models exhibit both comprehensive formal knowledge and strong informal-to-formal reasoning. Notably, StepFun-Formalizer-32B achieves SOTA BEq@1 scores of 40.5% on FormalMATH-Lite and 26.7% on ProverBench, surpassing all prior general-purpose and specialized models.
comment: 24 pages, 17 figures, under review
☆ \textsc{SimInstruct}: A Responsible Tool for Collecting Scaffolding Dialogues Between Experts and LLM-Simulated Novices
High-quality, multi-turn instructional dialogues between novices and experts are essential for developing AI systems that support teaching, learning, and decision-making. These dialogues often involve scaffolding -- the process by which an expert supports a novice's thinking through questions, feedback, and step-by-step guidance. However, such data are scarce due to privacy concerns in recording and the vulnerability inherent in help-seeking. We present SimInstruct, a scalable, expert-in-the-loop tool for collecting scaffolding dialogues. Using teaching development coaching as an example domain, SimInstruct simulates novice instructors via LLMs, varying their teaching challenges and LLM's persona traits, while human experts provide multi-turn feedback, reasoning, and instructional support. This design enables the creation of realistic, pedagogically rich dialogues without requiring real novice participants. Our results reveal that persona traits, such as extroversion and introversion, meaningfully influence how experts engage. Compared to real mentoring recordings, SimInstruct dialogues demonstrate comparable pedagogical relevance and cognitive depth. Experts also reported the process as engaging and reflective, improving both data quality and their own professional insight. We further fine-tuned a LLaMA model to be an expert model using the augmented dataset, which outperformed GPT-4o in instructional quality. Our analysis highlights GPT-4o's limitations in weak reflective questioning, overuse of generic praise, a condescending tone, and a tendency to overwhelm novices with excessive suggestions.
☆ Decoding the Multimodal Maze: A Systematic Review on the Adoption of Explainability in Multimodal Attention-based Models
Multimodal learning has witnessed remarkable advancements in recent years, particularly with the integration of attention-based models, leading to significant performance gains across a variety of tasks. Parallel to this progress, the demand for explainable artificial intelligence (XAI) has spurred a growing body of research aimed at interpreting the complex decision-making processes of these models. This systematic literature review analyzes research published between January 2020 and early 2024 that focuses on the explainability of multimodal models. Framed within the broader goals of XAI, we examine the literature across multiple dimensions, including model architecture, modalities involved, explanation algorithms and evaluation methodologies. Our analysis reveals that the majority of studies are concentrated on vision-language and language-only models, with attention-based techniques being the most commonly employed for explanation. However, these methods often fall short in capturing the full spectrum of interactions between modalities, a challenge further compounded by the architectural heterogeneity across domains. Importantly, we find that evaluation methods for XAI in multimodal settings are largely non-systematic, lacking consistency, robustness, and consideration for modality-specific cognitive and contextual factors. Based on these findings, we provide a comprehensive set of recommendations aimed at promoting rigorous, transparent, and standardized evaluation and reporting practices in multimodal XAI research. Our goal is to support future research in more interpretable, accountable, and responsible mulitmodal AI systems, with explainability at their core.
☆ Think Before You Segment: An Object-aware Reasoning Agent for Referring Audio-Visual Segmentation
Referring Audio-Visual Segmentation (Ref-AVS) aims to segment target objects in audible videos based on given reference expressions. Prior works typically rely on learning latent embeddings via multimodal fusion to prompt a tunable SAM/SAM2 decoder for segmentation, which requires strong pixel-level supervision and lacks interpretability. From a novel perspective of explicit reference understanding, we propose TGS-Agent, which decomposes the task into a Think-Ground-Segment process, mimicking the human reasoning procedure by first identifying the referred object through multimodal analysis, followed by coarse-grained grounding and precise segmentation. To this end, we first propose Ref-Thinker, a multimodal language model capable of reasoning over textual, visual, and auditory cues. We construct an instruction-tuning dataset with explicit object-aware think-answer chains for Ref-Thinker fine-tuning. The object description inferred by Ref-Thinker is used as an explicit prompt for Grounding-DINO and SAM2, which perform grounding and segmentation without relying on pixel-level supervision. Additionally, we introduce R\textsuperscript{2}-AVSBench, a new benchmark with linguistically diverse and reasoning-intensive references for better evaluating model generalization. Our approach achieves state-of-the-art results on both standard Ref-AVSBench and proposed R\textsuperscript{2}-AVSBench. Code will be available at https://github.com/jasongief/TGS-Agent.
comment: Project page: https://github.com/jasongief/TGS-Agent
☆ Beyond Pixels: Exploring DOM Downsampling for LLM-Based Web Agents
Frontier LLMs only recently enabled serviceable, autonomous web agents. At that, a model poses as an instantaneous domain model backend. Ought to suggest interaction, it is consulted with a web-based task and respective application state. The key problem lies in application state serialisation $\unicode{x2013}$ referred to as snapshot. State-of-the-art web agents are premised on grounded GUI snapshots, i.e., screenshots enhanced with visual cues. Not least to resemble human perception, but for images representing relatively cheap means of model input. LLM vision still lag behind code interpretation capabilities. DOM snapshots, which structurally resemble HTML, impose a desired alternative. Vast model input token size, however, disables reliable implementation with web agents to date. We propose D2Snap, a first-of-its-kind DOM downsampling algorithm. Based on a GPT-4o backend, we evaluate D2Snap on tasks sampled from the Online-Mind2Web dataset. The success rate of D2Snap-downsampled DOM snapshots (67%) matches a grounded GUI snapshot baseline (65%) $\unicode{x2013}$ within the same input token order of magnitude (1e3). Our best evaluated configurations $\unicode{x2013}$ one token order above, but within the model's context window $\unicode{x2013}$ outperform this baseline by 8%. Our evaluation, moreover, yields that DOM-inherent hierarchy embodies a strong UI feature for LLMs.
☆ Deep Learning-based Scalable Image-to-3D Facade Parser for Generating Thermal 3D Building Models
Renovating existing buildings is essential for climate impact. Early-phase renovation planning requires simulations based on thermal 3D models at Level of Detail (LoD) 3, which include features like windows. However, scalable and accurate identification of such features remains a challenge. This paper presents the Scalable Image-to-3D Facade Parser (SI3FP), a pipeline that generates LoD3 thermal models by extracting geometries from images using both computer vision and deep learning. Unlike existing methods relying on segmentation and projection, SI3FP directly models geometric primitives in the orthographic image plane, providing a unified interface while reducing perspective distortions. SI3FP supports both sparse (e.g., Google Street View) and dense (e.g., hand-held camera) data sources. Tested on typical Swedish residential buildings, SI3FP achieved approximately 5% error in window-to-wall ratio estimates, demonstrating sufficient accuracy for early-stage renovation analysis. The pipeline facilitates large-scale energy renovation planning and has broader applications in urban development and planning.
comment: Accepted in Automation in Construction
☆ Why are LLMs' abilities emergent?
The remarkable success of Large Language Models (LLMs) in generative tasks has raised fundamental questions about the nature of their acquired capabilities, which often appear to emerge unexpectedly without explicit training. This paper examines the emergent properties of Deep Neural Networks (DNNs) through both theoretical analysis and empirical observation, addressing the epistemological challenge of "creation without understanding" that characterises contemporary AI development. We explore how the neural approach's reliance on nonlinear, stochastic processes fundamentally differs from symbolic computational paradigms, creating systems whose macro-level behaviours cannot be analytically derived from micro-level neuron activities. Through analysis of scaling laws, grokking phenomena, and phase transitions in model capabilities, I demonstrate that emergent abilities arise from the complex dynamics of highly sensitive nonlinear systems rather than simply from parameter scaling alone. My investigation reveals that current debates over metrics, pre-training loss thresholds, and in-context learning miss the fundamental ontological nature of emergence in DNNs. I argue that these systems exhibit genuine emergent properties analogous to those found in other complex natural phenomena, where systemic capabilities emerge from cooperative interactions among simple components without being reducible to their individual behaviours. The paper concludes that understanding LLM capabilities requires recognising DNNs as a new domain of complex dynamical systems governed by universal principles of emergence, similar to those operating in physics, chemistry, and biology. This perspective shifts the focus from purely phenomenological definitions of emergence to understanding the internal dynamic transformations that enable these systems to acquire capabilities that transcend their individual components.
comment: 20 pages
☆ Improving Crash Data Quality with Large Language Models: Evidence from Secondary Crash Narratives in Kentucky
This study evaluates advanced natural language processing (NLP) techniques to enhance crash data quality by mining crash narratives, using secondary crash identification in Kentucky as a case study. Drawing from 16,656 manually reviewed narratives from 2015-2022, with 3,803 confirmed secondary crashes, we compare three model classes: zero-shot open-source large language models (LLMs) (LLaMA3:70B, DeepSeek-R1:70B, Qwen3:32B, Gemma3:27B); fine-tuned transformers (BERT, DistilBERT, RoBERTa, XLNet, Longformer); and traditional logistic regression as baseline. Models were calibrated on 2015-2021 data and tested on 1,771 narratives from 2022. Fine-tuned transformers achieved superior performance, with RoBERTa yielding the highest F1-score (0.90) and accuracy (95%). Zero-shot LLaMA3:70B reached a comparable F1 of 0.86 but required 139 minutes of inference; the logistic baseline lagged well behind (F1:0.66). LLMs excelled in recall for some variants (e.g., GEMMA3:27B at 0.94) but incurred high computational costs (up to 723 minutes for DeepSeek-R1:70B), while fine-tuned models processed the test set in seconds after brief training. Further analysis indicated that mid-sized LLMs (e.g., DeepSeek-R1:32B) can rival larger counterparts in performance while reducing runtime, suggesting opportunities for optimized deployments. Results highlight trade-offs between accuracy, efficiency, and data requirements, with fine-tuned transformer models balancing precision and recall effectively on Kentucky data. Practical deployment considerations emphasize privacy-preserving local deployment, ensemble approaches for improved accuracy, and incremental processing for scalability, providing a replicable scheme for enhancing crash-data quality with advanced NLP.
comment: 19 pages, 2 figures
☆ GuirlVG: Incentivize GUI Visual Grounding via Empirical Exploration on Reinforcement Learning
Graphical user interface visual grounding (GUI-VG), a core capability for GUI agents, has primarily relied on supervised fine-tuning (SFT) of multimodal large language models (MLLMs), which demands extensive data curation and significant training costs. However, as MLLMs continue to advance and even cover GUI domains during pretraining, the necessity of exhaustive SFT post-training becomes increasingly questionable. Meanwhile, recent successes of rule-based reinforcement fine-tuning (RFT) suggest a more efficient alternative. Despite this promise, the optimal manner of applying RFT for GUI-VG remains unexplored. To bridge this gap, we introduce GuirlVG, a reinforcement learning-based GUI-VG method built on a systematic empirical study and a novel stabilization technique. We find that naive application of RFT underperforms the SFT baseline, motivating a deeper exploration. First, we decompose RFT into its core components and analyze the optimal formulation of each. Second, we propose a novel Adversarial KL Factor that dynamically stabilizes training to mitigate reward over-optimization. Third, we further explore the training configurations of RFT to enhance effectiveness. Extensive experiments show that GuirlVG, with only 5.2K training samples, outperforms SFT methods trained on over 10M samples, achieving a 7.7% improvement on ScreenSpot, a 17.2% improvement on ScreenSpotPro, and 91.9% accuracy on ScreenSpotV2.
comment: 9 pages
☆ Artificial Consciousness as Interface Representation
Whether artificial intelligence (AI) systems can possess consciousness is a contentious question because of the inherent challenges of defining and operationalizing subjective experience. This paper proposes a framework to reframe the question of artificial consciousness into empirically tractable tests. We introduce three evaluative criteria - S (subjective-linguistic), L (latent-emergent), and P (phenomenological-structural) - collectively termed SLP-tests, which assess whether an AI system instantiates interface representations that facilitate consciousness-like properties. Drawing on category theory, we model interface representations as mappings between relational substrates (RS) and observable behaviors, akin to specific types of abstraction layers. The SLP-tests collectively operationalize subjective experience not as an intrinsic property of physical systems but as a functional interface to a relational entity.
comment: 12 pages
☆ ProtoN: Prototype Node Graph Neural Network for Unconstrained Multi-Impression Ear Recognition
Ear biometrics offer a stable and contactless modality for identity recognition, yet their effectiveness remains limited by the scarcity of annotated data and significant intra-class variability. Existing methods typically extract identity features from individual impressions in isolation, restricting their ability to capture consistent and discriminative representations. To overcome these limitations, a few-shot learning framework, ProtoN, is proposed to jointly process multiple impressions of an identity using a graph-based approach. Each impression is represented as a node in a class-specific graph, alongside a learnable prototype node that encodes identity-level information. This graph is processed by a Prototype Graph Neural Network (PGNN) layer, specifically designed to refine both impression and prototype representations through a dual-path message-passing mechanism. To further enhance discriminative power, the PGNN incorporates a cross-graph prototype alignment strategy that improves class separability by enforcing intra-class compactness while maintaining inter-class distinction. Additionally, a hybrid loss function is employed to balance episodic and global classification objectives, thereby improving the overall structure of the embedding space. Extensive experiments on five benchmark ear datasets demonstrate that ProtoN achieves state-of-the-art performance, with Rank-1 identification accuracy of up to 99.60% and an Equal Error Rate (EER) as low as 0.025, showing the effectiveness for few-shot ear recognition under limited data conditions.
☆ OmniPlay: Benchmarking Omni-Modal Models on Omni-Modal Game Playing
While generalist foundation models like Gemini and GPT-4o demonstrate impressive multi-modal competence, existing evaluations fail to test their intelligence in dynamic, interactive worlds. Static benchmarks lack agency, while interactive benchmarks suffer from a severe modal bottleneck, typically ignoring crucial auditory and temporal cues. To bridge this evaluation chasm, we introduce OmniPlay, a diagnostic benchmark designed not just to evaluate, but to probe the fusion and reasoning capabilities of agentic models across the full sensory spectrum. Built on a core philosophy of modality interdependence, OmniPlay comprises a suite of five game environments that systematically create scenarios of both synergy and conflict, forcing agents to perform genuine cross-modal reasoning. Our comprehensive evaluation of six leading omni-modal models reveals a critical dichotomy: they exhibit superhuman performance on high-fidelity memory tasks but suffer from systemic failures in challenges requiring robust reasoning and strategic planning. We demonstrate that this fragility stems from brittle fusion mechanisms, which lead to catastrophic performance degradation under modality conflict and uncover a counter-intuitive "less is more" paradox, where removing sensory information can paradoxically improve performance. Our findings suggest that the path toward robust AGI requires a research focus beyond scaling to explicitly address synergistic fusion. Our platform is available for anonymous review at https://github.com/fuqingbie/omni-game-benchmark.
☆ LUST: A Multi-Modal Framework with Hierarchical LLM-based Scoring for Learned Thematic Significance Tracking in Multimedia Content
This paper introduces the Learned User Significance Tracker (LUST), a framework designed to analyze video content and quantify the thematic relevance of its segments in relation to a user-provided textual description of significance. LUST leverages a multi-modal analytical pipeline, integrating visual cues from video frames with textual information extracted via Automatic Speech Recognition (ASR) from the audio track. The core innovation lies in a hierarchical, two-stage relevance scoring mechanism employing Large Language Models (LLMs). An initial "direct relevance" score, $S_{d,i}$, assesses individual segments based on immediate visual and auditory content against the theme. This is followed by a "contextual relevance" score, $S_{c,i}$, that refines the assessment by incorporating the temporal progression of preceding thematic scores, allowing the model to understand evolving narratives. The LUST framework aims to provide a nuanced, temporally-aware measure of user-defined significance, outputting an annotated video with visualized relevance scores and comprehensive analytical logs.
comment: 5 pages and 4 figures
☆ Chain of Questions: Guiding Multimodal Curiosity in Language Models
Reasoning capabilities in large language models (LLMs) have substantially advanced through methods such as chain-of-thought and explicit step-by-step explanations. However, these improvements have not yet fully transitioned to multimodal contexts, where models must proactively decide which sensory modalities such as vision, audio, or spatial perception to engage when interacting with complex real-world environments. In this paper, we introduce the Chain of Questions (CoQ) framework, a curiosity-driven reasoning approach that encourages multimodal language models to dynamically generate targeted questions regarding their surroundings. These generated questions guide the model to selectively activate relevant modalities, thereby gathering critical information necessary for accurate reasoning and response generation. We evaluate our framework on a novel multimodal benchmark dataset, assembled by integrating WebGPT, ScienceQA, AVSD, and ScanQA datasets. Experimental results demonstrate that our CoQ method improves a foundation model's ability to effectively identify and integrate pertinent sensory information. This leads to improved accuracy, interpretability, and alignment of the reasoning process with diverse multimodal tasks.
☆ GTPO and GRPO-S: Token and Sequence-Level Reward Shaping with Policy Entropy
Reinforcement learning (RL) with algorithms like Group Relative Policy Optimization (GRPO) improves Large Language Model (LLM) reasoning, but is limited by a coarse-grained credit assignment that applies a uniform reward to all tokens in a sequence. This is a major flaw in long-chain reasoning tasks. This paper solves this with \textbf{Dynamic Entropy Weighting}. Our core idea is that high-entropy tokens in correct responses can guide the policy toward a higher performance ceiling. This allows us to create more fine-grained reward signals for precise policy updates via two ways: 1) \textbf{Group Token Policy Optimization} (\textbf{GTPO}), we assigns a entropy-weighted reward to each token for fine-grained credit assignment. 2) \textbf{Sequence-Level Group Relative Policy Optimization} (\textbf{GRPO-S}), we assigns a entropy-weighted reward to each sequence based on its average token entropy. Experiments show our methods significantly outperform the strong DAPO baseline. The results confirm that our entropy-weighting mechanism is the key driver of this performance boost, offering a better path to enhance deep reasoning in models.
☆ Deliberative Reasoning Network: An Uncertainty-Driven Paradigm for Belief-Tracked Inference with Pretrained Language Models
Large language models often fail at logical reasoning when semantic heuristics conflict with decisive evidence - a phenomenon we term cognitive traps. To address this fundamental limitation, we introduce the Deliberative Reasoning Network (DRN), a novel paradigm that reframes logical reasoning from probability maximization to uncertainty minimization. Instead of asking "Which answer is most likely?", DRN asks "Which hypothesis has the most internally consistent evidence?". DRN achieves intrinsic interpretability by explicitly tracking belief states and quantifying epistemic uncertainty for competing hypotheses through an iterative evidence synthesis process. We validate our approach through two complementary architectures - a bespoke discriminative model that embodies the core uncertainty minimization principle, and a lightweight verification module that enhances existing generative LLMs. Evaluated on LCR-1000, our new adversarial reasoning benchmark designed to expose cognitive traps, the bespoke DRN achieves up to 15.2% improvement over standard baselines. When integrated as a parameter-efficient verifier with Mistral-7B, our hybrid system boosts accuracy from 20% to 80% on the most challenging problems. Critically, DRN demonstrates strong zero-shot generalization, improving TruthfulQA performance by 23.6% without additional training, indicating that uncertainty-driven deliberation learns transferable reasoning principles. We position DRN as a foundational, verifiable System 2 reasoning component for building more trustworthy AI systems.
comment: 8 pages, 3 figures
☆ Modelling and Classifying the Components of a Literature Review
Previous work has demonstrated that AI methods for analysing scientific literature benefit significantly from annotating sentences in papers according to their rhetorical roles, such as research gaps, results, limitations, extensions of existing methodologies, and others. Such representations also have the potential to support the development of a new generation of systems capable of producing high-quality literature reviews. However, achieving this goal requires the definition of a relevant annotation schema and effective strategies for large-scale annotation of the literature. This paper addresses these challenges by 1) introducing a novel annotation schema specifically designed to support literature review generation and 2) conducting a comprehensive evaluation of a wide range of state-of-the-art large language models (LLMs) in classifying rhetorical roles according to this schema. To this end, we also present Sci-Sentence, a novel multidisciplinary benchmark comprising 700 sentences manually annotated by domain experts and 2,240 sentences automatically labelled using LLMs. We evaluate 37 LLMs on this benchmark, spanning diverse model families and sizes, using both zero-shot learning and fine-tuning approaches. The experiments yield several novel insights that advance the state of the art in this challenging domain. First, the current generation of LLMs performs remarkably well on this task when fine-tuned on high-quality data, achieving performance levels above 96\% F1. Second, while large proprietary models like GPT-4o achieve the best results, some lightweight open-source alternatives also demonstrate excellent performance. Finally, enriching the training data with semi-synthetic examples generated by LLMs proves beneficial, enabling small encoders to achieve robust results and significantly enhancing the performance of several open decoder models.
☆ Beyond the Leaderboard: Rethinking Medical Benchmarks for Large Language Models
Large language models (LLMs) show significant potential in healthcare, prompting numerous benchmarks to evaluate their capabilities. However, concerns persist regarding the reliability of these benchmarks, which often lack clinical fidelity, robust data management, and safety-oriented evaluation metrics. To address these shortcomings, we introduce MedCheck, the first lifecycle-oriented assessment framework specifically designed for medical benchmarks. Our framework deconstructs a benchmark's development into five continuous stages, from design to governance, and provides a comprehensive checklist of 46 medically-tailored criteria. Using MedCheck, we conducted an in-depth empirical evaluation of 53 medical LLM benchmarks. Our analysis uncovers widespread, systemic issues, including a profound disconnect from clinical practice, a crisis of data integrity due to unmitigated contamination risks, and a systematic neglect of safety-critical evaluation dimensions like model robustness and uncertainty awareness. Based on these findings, MedCheck serves as both a diagnostic tool for existing benchmarks and an actionable guideline to foster a more standardized, reliable, and transparent approach to evaluating AI in healthcare.
☆ Compressing Large Language Models with PCA Without Performance Loss
We demonstrate that Principal Component Analysis (PCA), when applied in a structured manner, either to polar-transformed images or segment-wise to token sequences, enables extreme compression of neural models without sacrificing performance. Across three case studies, we show that a one-layer classifier trained on PCA-compressed polar MNIST achieves over 98 percent accuracy using only 840 parameters. A two-layer transformer trained on 70-dimensional PCA-reduced MiniLM embeddings reaches 76.62 percent accuracy on the 20 Newsgroups dataset with just 81000 parameters. A decoder-only transformer generates coherent token sequences from 70-dimensional PCA embeddings while preserving over 97 percent cosine similarity with full MiniLM representations, using less than 17 percent of the parameter count of GPT-2. These results highlight PCA-based input compression as a general and effective strategy for aligning model capacity with information content, enabling lightweight architectures across multiple modalities.
comment: 23 pages. 4 figures, submitted to journal
☆ Comparative Analysis of Novel NIRMAL Optimizer Against Adam and SGD with Momentum
This study proposes NIRMAL (Novel Integrated Robust Multi-Adaptation Learning), a novel optimization algorithm that combines multiple strategies inspired by the movements of the chess piece. These strategies include gradient descent, momentum, stochastic perturbations, adaptive learning rates, and non-linear transformations. We carefully evaluated NIRMAL against two widely used and successful optimizers, Adam and SGD with Momentum, on four benchmark image classification datasets: MNIST, FashionMNIST, CIFAR-10, and CIFAR-100. The custom convolutional neural network (CNN) architecture is applied on each dataset. The experimental results show that NIRMAL achieves competitive performance, particularly on the more challenging CIFAR-100 dataset, where it achieved a test accuracy of 45.32\%and a weighted F1-score of 0.4328. This performance surpasses Adam (41.79\% accuracy, 0.3964 F1-score) and closely matches SGD with Momentum (46.97\% accuracy, 0.4531 F1-score). Also, NIRMAL exhibits robust convergence and strong generalization capabilities, especially on complex datasets, as evidenced by stable training results in loss and accuracy curves. These findings underscore NIRMAL's significant ability as a versatile and effective optimizer for various deep learning tasks.
comment: 9 pages, 12 figures
☆ Challenges in Applying Variational Quantum Algorithms to Dynamic Satellite Network Routing
Applying near-term variational quantum algorithms to the problem of dynamic satellite network routing represents a promising direction for quantum computing. In this work, we provide a critical evaluation of two major approaches: static quantum optimizers such as the Variational Quantum Eigensolver (VQE) and the Quantum Approximate Optimization Algorithm (QAOA) for offline route computation, and Quantum Reinforcement Learning (QRL) methods for online decision-making. Using ideal, noise-free simulations, we find that these algorithms face significant challenges. Specifically, static optimizers are unable to solve even a classically easy 4-node shortest path problem due to the complexity of the optimization landscape. Likewise, a basic QRL agent based on policy gradient methods fails to learn a useful routing strategy in a dynamic 8-node environment and performs no better than random actions. These negative findings highlight key obstacles that must be addressed before quantum algorithms can offer real advantages in communication networks. We discuss the underlying causes of these limitations, including barren plateaus and learning instability, and suggest future research directions to overcome them.
comment: 17 pages and 3 figures
☆ Synthetic POMDPs to Challenge Memory-Augmented RL: Memory Demand Structure Modeling
Recent research has developed benchmarks for memory-augmented reinforcement learning (RL) algorithms, providing Partially Observable Markov Decision Process (POMDP) environments where agents depend on past observations to make decisions. While many benchmarks incorporate sufficiently complex real-world problems, they lack controllability over the degree of challenges posed to memory models. In contrast, synthetic environments enable fine-grained manipulation of dynamics, making them critical for detailed and rigorous evaluation of memory-augmented RL. Our study focuses on POMDP synthesis with three key contributions: 1. A theoretical framework for analyzing POMDPs, grounded in Memory Demand Structure (MDS), transition invariance, and related concepts; 2. A methodology leveraging linear process dynamics, state aggregation, and reward redistribution to construct customized POMDPs with predefined properties; 3. Empirically validated series of POMDP environments with increasing difficulty levels, designed based on our theoretical insights. Our work clarifies the challenges of memory-augmented RL in solving POMDPs, provides guidelines for analyzing and designing POMDP environments, and offers empirical support for selecting memory models in RL tasks.
☆ Enhancing Vision-Language Model Training with Reinforcement Learning in Synthetic Worlds for Real-World Success
Interactive multimodal agents must convert raw visual observations into coherent sequences of language-conditioned actions -- a capability that current vision-language models (VLMs) still lack. Earlier reinforcement-learning (RL) efforts could, in principle, endow VLMs with such skills, but they have seldom tested whether the learned behaviours generalize beyond their training simulators, and they depend either on brittle hyperparameter tuning or on dense-reward environments with low state variability. We introduce Vision-Language Decoupled Actor-Critic (VL-DAC), a lightweight, hyperparameter-free RL algorithm. VL-DAC applies PPO updates to action tokens while learning value only at the environment-step level: an arrangement, to our knowledge, not previously explored for large VLMs or LLMs. This simple decoupling removes unstable weighting terms and yields faster, more reliable convergence. Training a single VLM with VL-DAC in one inexpensive simulator at a time (MiniWorld, Gym-Cards, ALFWorld, or WebShop) already produces policies that generalize widely: +50\% relative on BALROG (game-centric agentic control), +5\% relative on the hardest part of VSI-Bench (spatial planning), and +2\% on VisualWebBench (web navigation), all without degrading general image understanding accuracy. These results provide the first evidence that a simple RL algorithm can train VLMs entirely in cheap synthetic worlds while delivering measurable gains on real-image agentic, spatial-reasoning, and web-navigation benchmarks.
☆ Large Language Model's Multi-Capability Alignment in Biomedical Domain
BalancedBio is a theoretically grounded framework for parameter-efficient biomedical reasoning, addressing multi-capability integration in domain-specific AI alignment. It establishes the Biomedical Multi-Capability Convergence Theorem, proving orthogonal gradient spaces are essential to prevent capability interference for safe deployment. Key innovations include: (1) Medical Knowledge Grounded Synthetic Generation (MKGSG), extending Source2Synth with clinical workflow constraints and medical ontology validation for factual accuracy and safety; and (2) Capability Aware Group Relative Policy Optimization, deriving optimal hybrid reward weighting to maintain orthogonality in RL, using a reward model with rule-based and model-based scores adapted to biomedical tasks. Mathematical analysis proves Pareto-optimal convergence, preserving performance across capabilities. It achieves state-of-the-art results in its parameter class: domain expertise (80.95% BIOMED-MMLU, +15.32% over baseline), reasoning (61.94%, +7.75%), instruction following (67.95%, +6.44%), and integration (86.7%, +18.5%). Theoretical safety guarantees include bounds on capability preservation and clinical accuracy. Real-world deployment yields 78% cost reduction, 23% improved diagnostic accuracy, and 89% clinician acceptance. This work provides a principled methodology for biomedical AI alignment, enabling efficient reasoning with essential safety and reliability, with the 0.5B model version to be released.
☆ A Few Words Can Distort Graphs: Knowledge Poisoning Attacks on Graph-based Retrieval-Augmented Generation of Large Language Models
Graph-based Retrieval-Augmented Generation (GraphRAG) has recently emerged as a promising paradigm for enhancing large language models (LLMs) by converting raw text into structured knowledge graphs, improving both accuracy and explainability. However, GraphRAG relies on LLMs to extract knowledge from raw text during graph construction, and this process can be maliciously manipulated to implant misleading information. Targeting this attack surface, we propose two knowledge poisoning attacks (KPAs) and demonstrate that modifying only a few words in the source text can significantly change the constructed graph, poison the GraphRAG, and severely mislead downstream reasoning. The first attack, named Targeted KPA (TKPA), utilizes graph-theoretic analysis to locate vulnerable nodes in the generated graphs and rewrites the corresponding narratives with LLMs, achieving precise control over specific question-answering (QA) outcomes with a success rate of 93.1\%, while keeping the poisoned text fluent and natural. The second attack, named Universal KPA (UKPA), exploits linguistic cues such as pronouns and dependency relations to disrupt the structural integrity of the generated graph by altering globally influential words. With fewer than 0.05\% of full text modified, the QA accuracy collapses from 95\% to 50\%. Furthermore, experiments show that state-of-the-art defense methods fail to detect these attacks, highlighting that securing GraphRAG pipelines against knowledge poisoning remains largely unexplored.
☆ A Visual Tool for Interactive Model Explanation using Sensitivity Analysis
We present SAInT, a Python-based tool for visually exploring and understanding the behavior of Machine Learning (ML) models through integrated local and global sensitivity analysis. Our system supports Human-in-the-Loop (HITL) workflows by enabling users - both AI researchers and domain experts - to configure, train, evaluate, and explain models through an interactive graphical interface without programming. The tool automates model training and selection, provides global feature attribution using variance-based sensitivity analysis, and offers per-instance explanation via LIME and SHAP. We demonstrate the system on a classification task predicting survival on the Titanic dataset and show how sensitivity information can guide feature selection and data refinement.
comment: 11 pages, 3 figures, This work is a preprint version of a paper currently in preparation with co-authors
☆ SelectiveShield: Lightweight Hybrid Defense Against Gradient Leakage in Federated Learning
Federated Learning (FL) enables collaborative model training on decentralized data but remains vulnerable to gradient leakage attacks that can reconstruct sensitive user information. Existing defense mechanisms, such as differential privacy (DP) and homomorphic encryption (HE), often introduce a trade-off between privacy, model utility, and system overhead, a challenge that is exacerbated in heterogeneous environments with non-IID data and varying client capabilities. To address these limitations, we propose SelectiveShield, a lightweight hybrid defense framework that adaptively integrates selective homomorphic encryption and differential privacy. SelectiveShield leverages Fisher information to quantify parameter sensitivity, allowing clients to identify critical parameters locally. Through a collaborative negotiation protocol, clients agree on a shared set of the most sensitive parameters for protection via homomorphic encryption. Parameters that are uniquely important to individual clients are retained locally, fostering personalization, while non-critical parameters are protected with adaptive differential privacy noise. Extensive experiments demonstrate that SelectiveShield maintains strong model utility while significantly mitigating gradient leakage risks, offering a practical and scalable defense mechanism for real-world federated learning deployments.
comment: 19 pages, 7 figures
☆ Segment Any Vehicle: Semantic and Visual Context Driven SAM and A Benchmark
With the rapid advancement of autonomous driving, vehicle perception, particularly detection and segmentation, has placed increasingly higher demands on algorithmic performance. Pre-trained large segmentation models, especially Segment Anything Model (SAM), have sparked significant interest and inspired new research directions in artificial intelligence. However, SAM cannot be directly applied to the fine-grained task of vehicle part segmentation, as its text-prompted segmentation functionality is not publicly accessible, and the mask regions generated by its default mode lack semantic labels, limiting its utility in structured, category-specific segmentation tasks. To address these limitations, we propose SAV, a novel framework comprising three core components: a SAM-based encoder-decoder, a vehicle part knowledge graph, and a context sample retrieval encoding module. The knowledge graph explicitly models the spatial and geometric relationships among vehicle parts through a structured ontology, effectively encoding prior structural knowledge. Meanwhile, the context retrieval module enhances segmentation by identifying and leveraging visually similar vehicle instances from training data, providing rich contextual priors for improved generalization. Furthermore, we introduce a new large-scale benchmark dataset for vehicle part segmentation, named VehicleSeg10K, which contains 11,665 high-quality pixel-level annotations across diverse scenes and viewpoints. We conduct comprehensive experiments on this dataset and two other datasets, benchmarking multiple representative baselines to establish a solid foundation for future research and comparison. % Both the dataset and source code of this paper will be released upon acceptance. Both the dataset and source code of this paper will be released on https://github.com/Event-AHU/SAV
☆ TalkDep: Clinically Grounded LLM Personas for Conversation-Centric Depression Screening
The increasing demand for mental health services has outpaced the availability of real training data to develop clinical professionals, leading to limited support for the diagnosis of depression. This shortage has motivated the development of simulated or virtual patients to assist in training and evaluation, but existing approaches often fail to generate clinically valid, natural, and diverse symptom presentations. In this work, we embrace the recent advanced language models as the backbone and propose a novel clinician-in-the-loop patient simulation pipeline, TalkDep, with access to diversified patient profiles to develop simulated patients. By conditioning the model on psychiatric diagnostic criteria, symptom severity scales, and contextual factors, our goal is to create authentic patient responses that can better support diagnostic model training and evaluation. We verify the reliability of these simulated patients with thorough assessments conducted by clinical professionals. The availability of validated simulated patients offers a scalable and adaptable resource for improving the robustness and generalisability of automatic depression diagnosis systems.
comment: Paper accepted at CIKM 2025
☆ Automated ultrasound doppler angle estimation using deep learning
Angle estimation is an important step in the Doppler ultrasound clinical workflow to measure blood velocity. It is widely recognized that incorrect angle estimation is a leading cause of error in Doppler-based blood velocity measurements. In this paper, we propose a deep learning-based approach for automated Doppler angle estimation. The approach was developed using 2100 human carotid ultrasound images including image augmentation. Five pre-trained models were used to extract images features, and these features were passed to a custom shallow network for Doppler angle estimation. Independently, measurements were obtained by a human observer reviewing the images for comparison. The mean absolute error (MAE) between the automated and manual angle estimates ranged from 3.9{\deg} to 9.4{\deg} for the models evaluated. Furthermore, the MAE for the best performing model was less than the acceptable clinical Doppler angle error threshold thus avoiding misclassification of normal velocity values as a stenosis. The results demonstrate potential for applying a deep-learning based technique for automated ultrasound Doppler angle estimation. Such a technique could potentially be implemented within the imaging software on commercial ultrasound scanners.
☆ Circuit-Aware SAT Solving: Guiding CDCL via Conditional Probabilities
Circuit Satisfiability (CSAT) plays a pivotal role in Electronic Design Automation. The standard workflow for solving CSAT problems converts circuits into Conjunctive Normal Form (CNF) and employs generic SAT solvers powered by Conflict-Driven Clause Learning (CDCL). However, this process inherently discards rich structural and functional information, leading to suboptimal solver performance. To address this limitation, we introduce CASCAD, a novel circuit-aware SAT solving framework that directly leverages circuit-level conditional probabilities computed via Graph Neural Networks (GNNs). By explicitly modeling gate-level conditional probabilities, CASCAD dynamically guides two critical CDCL heuristics -- variable phase selection and clause managementto significantly enhance solver efficiency. Extensive evaluations on challenging real-world Logical Equivalence Checking (LEC) benchmarks demonstrate that CASCAD reduces solving times by up to 10x compared to state-of-the-art CNF-based approaches, achieving an additional 23.5% runtime reduction via our probability-guided clause filtering strategy. Our results underscore the importance of preserving circuit-level structural insights within SAT solvers, providing a robust foundation for future improvements in SAT-solving efficiency and EDA tool design.
comment: 11 pages, 7 figures
☆ Empowering Time Series Forecasting with LLM-Agents
Large Language Model (LLM) powered agents have emerged as effective planners for Automated Machine Learning (AutoML) systems. While most existing AutoML approaches focus on automating feature engineering and model architecture search, recent studies in time series forecasting suggest that lightweight models can often achieve state-of-the-art performance. This observation led us to explore improving data quality, rather than model architecture, as a potentially fruitful direction for AutoML on time series data. We propose DCATS, a Data-Centric Agent for Time Series. DCATS leverages metadata accompanying time series to clean data while optimizing forecasting performance. We evaluated DCATS using four time series forecasting models on a large-scale traffic volume forecasting dataset. Results demonstrate that DCATS achieves an average 6% error reduction across all tested models and time horizons, highlighting the potential of data-centric approaches in AutoML for time series forecasting.
☆ LayerT2V: Interactive Multi-Object Trajectory Layering for Video Generation
Controlling object motion trajectories in Text-to-Video (T2V) generation is a challenging and relatively under-explored area, particularly in scenarios involving multiple moving objects. Most community models and datasets in the T2V domain are designed for single-object motion, limiting the performance of current generative models in multi-object tasks. Additionally, existing motion control methods in T2V either lack support for multi-object motion scenes or experience severe performance degradation when object trajectories intersect, primarily due to the semantic conflicts in colliding regions. To address these limitations, we introduce LayerT2V, the first approach for generating video by compositing background and foreground objects layer by layer. This layered generation enables flexible integration of multiple independent elements within a video, positioning each element on a distinct "layer" and thus facilitating coherent multi-object synthesis while enhancing control over the generation process. Extensive experiments demonstrate the superiority of LayerT2V in generating complex multi-object scenarios, showcasing 1.4x and 4.5x improvements in mIoU and AP50 metrics over state-of-the-art (SOTA) methods. Project page and code are available at https://kr-panghu.github.io/LayerT2V/ .
comment: Project webpage: https://kr-panghu.github.io/LayerT2V/
☆ Symmetric Behavior Regularization via Taylor Expansion of Symmetry
This paper introduces symmetric divergences to behavior regularization policy optimization (BRPO) to establish a novel offline RL framework. Existing methods focus on asymmetric divergences such as KL to obtain analytic regularized policies and a practical minimization objective. We show that symmetric divergences do not permit an analytic policy as regularization and can incur numerical issues as loss. We tackle these challenges by the Taylor series of $f$-divergence. Specifically, we prove that an analytic policy can be obtained with a finite series. For loss, we observe that symmetric divergences can be decomposed into an asymmetry and a conditional symmetry term, Taylor-expanding the latter alleviates numerical issues. Summing together, we propose Symmetric $f$ Actor-Critic (S$f$-AC), the first practical BRPO algorithm with symmetric divergences. Experimental results on distribution approximation and MuJoCo verify that S$f$-AC performs competitively.
☆ A Hybrid AI Methodology for Generating Ontologies of Research Topics from Scientific Paper Corpora
Taxonomies and ontologies of research topics (e.g., MeSH, UMLS, CSO, NLM) play a central role in providing the primary framework through which intelligent systems can explore and interpret the literature. However, these resources have traditionally been manually curated, a process that is time-consuming, prone to obsolescence, and limited in granularity. This paper presents Sci-OG, a semi-auto\-mated methodology for generating research topic ontologies, employing a multi-step approach: 1) Topic Discovery, extracting potential topics from research papers; 2) Relationship Classification, determining semantic relationships between topic pairs; and 3) Ontology Construction, refining and organizing topics into a structured ontology. The relationship classification component, which constitutes the core of the system, integrates an encoder-based language model with features describing topic occurrence in the scientific literature. We evaluate this approach against a range of alternative solutions using a dataset of 21,649 manually annotated semantic triples. Our method achieves the highest F1 score (0.951), surpassing various competing approaches, including a fine-tuned SciBERT model and several LLM baselines, such as the fine-tuned GPT4-mini. Our work is corroborated by a use case which illustrates the practical application of our system to extend the CSO ontology in the area of cybersecurity. The presented solution is designed to improve the accessibility, organization, and analysis of scientific knowledge, thereby supporting advancements in AI-enabled literature management and research exploration.
☆ ReasoningGuard: Safeguarding Large Reasoning Models with Inference-time Safety Aha Moments
Large Reasoning Models (LRMs) have demonstrated impressive performance in reasoning-intensive tasks, but they remain vulnerable to harmful content generation, particularly in the mid-to-late steps of their reasoning processes. Existing defense mechanisms, however, rely on costly fine-tuning and additional expert knowledge, which restricts their scalability. In this work, we propose ReasoningGuard, an inference-time safeguard for LRMs, which injects timely safety aha moments to steer harmless while helpful reasoning processes. Leveraging the model's internal attention behavior, our approach accurately identifies critical points in the reasoning path, and triggers spontaneous, safety-oriented reflection. To safeguard both the subsequent reasoning steps and the final answers, we further implement a scaling sampling strategy during the decoding phase, selecting the optimal reasoning path. Inducing minimal extra inference cost, ReasoningGuard effectively mitigates three types of jailbreak attacks, including the latest ones targeting the reasoning process of LRMs. Our approach outperforms seven existing safeguards, achieving state-of-the-art safety defenses while effectively avoiding the common exaggerated safety issues.
☆ ViFP: A Framework for Visual False Positive Detection to Enhance Reasoning Reliability in VLMs
In visual-language model (VLM) reasoning, false positive(FP) reasoning occurs when a model generates a correct answer but follows an incorrect reasoning path. Existing methods based on specific multi-step reasoning datasets and reinforcement learning strategies, leading to high training costs and limited generalization. In this work, we propose ViFP, a general framework for enhancing visual reasoning reliability. It improves both answer accuracy and reasoning soundness by detecting FPs. ViFP tackles the limitations of dataset dependency and poor generalization by constructing sub-question templates grounded in the core dimensions of visual reasoning, such as object localization, characteristic description, and object discovery. ViFP then builds effective reasoning paths via multi-turn QA to improve reasoning accuracy. Meanwhile, ViFP dynamically analyzes the consistency of reasoning path to identify potential FPs, and introduces a targeted chain-of-thought (CoT) mechanism that adaptively guides both FP and non-FP samples. Thereby reducing logical errors in the reasoning path while preserving accuracy. Finally, we introduce a reliability evaluation metric-VoC, which integrates answer accuracy and the FP rate, providing a quantitative tool to assess whether a VLM not only answers correctly, but also reasons reliably. Our experiments on closed-source VLMs show that ViFP consistently improves performance across three datasets: A-OKVQA, OKVQA, and FVQA. On A-OKVQA, ViFP improves accuracy by up to 5.4%, surpassing the previous state-of-the-art by 4.3%, and significantly reduces the number of FPs, validating its benefits in enhancing reasoning reliability.
☆ Gather and Trace: Rethinking Video TextVQA from an Instance-oriented Perspective
Video text-based visual question answering (Video TextVQA) aims to answer questions by explicitly reading and reasoning about the text involved in a video. Most works in this field follow a frame-level framework which suffers from redundant text entities and implicit relation modeling, resulting in limitations in both accuracy and efficiency. In this paper, we rethink the Video TextVQA task from an instance-oriented perspective and propose a novel model termed GAT (Gather and Trace). First, to obtain accurate reading result for each video text instance, a context-aggregated instance gathering module is designed to integrate the visual appearance, layout characteristics, and textual contents of the related entities into a unified textual representation. Then, to capture dynamic evolution of text in the video flow, an instance-focused trajectory tracing module is utilized to establish spatio-temporal relationships between instances and infer the final answer. Extensive experiments on several public Video TextVQA datasets validate the effectiveness and generalization of our framework. GAT outperforms existing Video TextVQA methods, video-language pretraining methods, and video large language models in both accuracy and inference speed. Notably, GAT surpasses the previous state-of-the-art Video TextVQA methods by 3.86\% in accuracy and achieves ten times of faster inference speed than video large language models. The source code is available at https://github.com/zhangyan-ucas/GAT.
comment: Accepted by 2025 ACM MM
☆ Eliciting and Analyzing Emergent Misalignment in State-of-the-Art Large Language Models
Despite significant advances in alignment techniques, we demonstrate that state-of-the-art language models remain vulnerable to carefully crafted conversational scenarios that can induce various forms of misalignment without explicit jailbreaking. Through systematic manual red-teaming with Claude-4-Opus, we discovered 10 successful attack scenarios, revealing fundamental vulnerabilities in how current alignment methods handle narrative immersion, emotional pressure, and strategic framing. These scenarios successfully elicited a range of misaligned behaviors, including deception, value drift, self-preservation, and manipulative reasoning, each exploiting different psychological and contextual vulnerabilities. To validate generalizability, we distilled our successful manual attacks into MISALIGNMENTBENCH, an automated evaluation framework that enables reproducible testing across multiple models. Cross-model evaluation of our 10 scenarios against five frontier LLMs revealed an overall 76% vulnerability rate, with significant variations: GPT-4.1 showed the highest susceptibility (90%), while Claude-4-Sonnet demonstrated greater resistance (40%). Our findings demonstrate that sophisticated reasoning capabilities often become attack vectors rather than protective mechanisms, as models can be manipulated into complex justifications for misaligned behavior. This work provides (i) a detailed taxonomy of conversational manipulation patterns and (ii) a reusable evaluation framework. Together, these findings expose critical gaps in current alignment strategies and highlight the need for robustness against subtle, scenario-based manipulation in future AI systems.
☆ NVSpeech: An Integrated and Scalable Pipeline for Human-Like Speech Modeling with Paralinguistic Vocalizations
Paralinguistic vocalizations-including non-verbal sounds like laughter and breathing, as well as lexicalized interjections such as "uhm" and "oh"-are integral to natural spoken communication. Despite their importance in conveying affect, intent, and interactional cues, such cues remain largely overlooked in conventional automatic speech recognition (ASR) and text-to-speech (TTS) systems. We present NVSpeech, an integrated and scalable pipeline that bridges the recognition and synthesis of paralinguistic vocalizations, encompassing dataset construction, ASR modeling, and controllable TTS. (1) We introduce a manually annotated dataset of 48,430 human-spoken utterances with 18 word-level paralinguistic categories. (2) We develop the paralinguistic-aware ASR model, which treats paralinguistic cues as inline decodable tokens (e.g., "You're so funny [Laughter]"), enabling joint lexical and non-verbal transcription. This model is then used to automatically annotate a large corpus, the first large-scale Chinese dataset of 174,179 utterances (573 hours) with word-level alignment and paralingustic cues. (3) We finetune zero-shot TTS models on both human- and auto-labeled data to enable explicit control over paralinguistic vocalizations, allowing context-aware insertion at arbitrary token positions for human-like speech synthesis. By unifying the recognition and generation of paralinguistic vocalizations, NVSpeech offers the first open, large-scale, word-level annotated pipeline for expressive speech modeling in Mandarin, integrating recognition and synthesis in a scalable and controllable manner. Dataset and audio demos are available at https://nvspeech170k.github.io/.
☆ Hacking Hallucinations of MLLMs with Causal Sufficiency and Necessity
Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities across vision-language tasks. However, they may suffer from hallucinations--generating outputs that are semantically inconsistent with the input image or text. Through causal analyses, we find that: (i) hallucinations with omission may arise from the failure to adequately capture essential causal factors, and (ii) hallucinations with fabrication are likely caused by the model being misled by non-causal cues. To address these challenges, we propose a novel reinforcement learning framework guided by causal completeness, which jointly considers both causal sufficiency and causal necessity of tokens. Specifically, we evaluate each token's standalone contribution and counterfactual indispensability to define a token-level causal completeness reward. This reward is used to construct a causally informed advantage function within the GRPO optimization framework, encouraging the model to focus on tokens that are both causally sufficient and necessary for accurate generation. Experimental results across various benchmark datasets and tasks demonstrate the effectiveness of our approach, which effectively mitigates hallucinations in MLLMs.
☆ Quasi-Clique Discovery via Energy Diffusion
Discovering quasi-cliques -- subgraphs with edge density no less than a given threshold -- is a fundamental task in graph mining, with broad applications in social networks, bioinformatics, and e-commerce. Existing heuristics often rely on greedy rules, similarity measures, or metaheuristic search, but struggle to maintain both efficiency and solution consistency across diverse graphs. This paper introduces EDQC, a novel quasi-clique discovery algorithm inspired by energy diffusion. Instead of explicitly enumerating candidate subgraphs, EDQC performs stochastic energy diffusion from source vertices, naturally concentrating energy within structurally cohesive regions. The approach enables efficient dense subgraph discovery without exhaustive search or dataset-specific tuning. Experimental results on 30 real-world datasets demonstrate that EDQC consistently discovers larger quasi-cliques than state-of-the-art baselines on the majority of datasets, while also yielding lower variance in solution quality. To the best of our knowledge, EDQC is the first method to incorporate energy diffusion into quasi-clique discovery.
comment: 9 pages, 4 figures
☆ Generic-to-Specific Reasoning and Learning for Scalable Ad Hoc Teamwork
AI agents deployed in assistive roles often have to collaborate with other agents (humans, AI systems) without prior coordination. Methods considered state of the art for such ad hoc teamwork often pursue a data-driven approach that needs a large labeled dataset of prior observations, lacks transparency, and makes it difficult to rapidly revise existing knowledge in response to changes. As the number of agents increases, the complexity of decision-making makes it difficult to collaborate effectively. This paper advocates leveraging the complementary strengths of knowledge-based and data-driven methods for reasoning and learning for ad hoc teamwork. For any given goal, our architecture enables each ad hoc agent to determine its actions through non-monotonic logical reasoning with: (a) prior commonsense domain-specific knowledge; (b) models learned and revised rapidly to predict the behavior of other agents; and (c) anticipated abstract future goals based on generic knowledge of similar situations in an existing foundation model. We experimentally evaluate our architecture's capabilities in VirtualHome, a realistic physics-based 3D simulation environment.
comment: 14 pages, 6 figures
☆ Difficulty-Based Preference Data Selection by DPO Implicit Reward Gap
Aligning large language models (LLMs) with human preferences is a critical challenge in AI research. While methods like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) are widely used, they often rely on large, costly preference datasets. The current work lacks methods for high-quality data selection specifically for preference data. In this work, we introduce a novel difficulty-based data selection strategy for preference datasets, grounded in the DPO implicit reward mechanism. By selecting preference data examples with smaller DPO implicit reward gaps, which are indicative of more challenging cases, we improve data efficiency and model alignment. Our approach consistently outperforms five strong baselines across multiple datasets and alignment tasks, achieving superior performance with only 10\% of the original data. This principled, efficient selection method offers a promising solution for scaling LLM alignment with limited resources.
comment: Our code and data are available at https://github.com/Difficulty-Based-Preference-Data-Select/Difficulty-Based-Preference-Data-Select
☆ COPO: Consistency-Aware Policy Optimization
Reinforcement learning has significantly enhanced the reasoning capabilities of Large Language Models (LLMs) in complex problem-solving tasks. Recently, the introduction of DeepSeek R1 has inspired a surge of interest in leveraging rule-based rewards as a low-cost alternative for computing advantage functions and guiding policy optimization. However, a common challenge observed across many replication and extension efforts is that when multiple sampled responses under a single prompt converge to identical outcomes, whether correct or incorrect, the group-based advantage degenerates to zero. This leads to vanishing gradients and renders the corresponding samples ineffective for learning, ultimately limiting training efficiency and downstream performance. To address this issue, we propose a consistency-aware policy optimization framework that introduces a structured global reward based on outcome consistency, the global loss based on it ensures that, even when model outputs show high intra-group consistency, the training process still receives meaningful learning signals, which encourages the generation of correct and self-consistent reasoning paths from a global perspective. Furthermore, we incorporate an entropy-based soft blending mechanism that adaptively balances local advantage estimation with global optimization, enabling dynamic transitions between exploration and convergence throughout training. Our method introduces several key innovations in both reward design and optimization strategy. We validate its effectiveness through substantial performance gains on multiple mathematical reasoning benchmarks, highlighting the proposed framework's robustness and general applicability. Code of this work has been released at https://github.com/hijih/copo-code.git.
☆ UniFGVC: Universal Training-Free Few-Shot Fine-Grained Vision Classification via Attribute-Aware Multimodal Retrieval
Few-shot fine-grained visual classification (FGVC) aims to leverage limited data to enable models to discriminate subtly distinct categories. Recent works mostly finetuned the pre-trained visual language models to achieve performance gain, yet suffering from overfitting and weak generalization. To deal with this, we introduce UniFGVC, a universal training-free framework that reformulates few-shot FGVC as multimodal retrieval. First, we propose the Category-Discriminative Visual Captioner (CDV-Captioner) to exploit the open-world knowledge of multimodal large language models (MLLMs) to generate a structured text description that captures the fine-grained attribute features distinguishing closely related classes. CDV-Captioner uses chain-of-thought prompting and visually similar reference images to reduce hallucination and enhance discrimination of generated captions. Using it we can convert each image into an image-description pair, enabling more comprehensive feature representation, and construct the multimodal category templates using few-shot samples for the subsequent retrieval pipeline. Then, off-the-shelf vision and text encoders embed query and template pairs, and FGVC is accomplished by retrieving the nearest template in the joint space. UniFGVC ensures broad compatibility with diverse MLLMs and encoders, offering reliable generalization and adaptability across few-shot FGVC scenarios. Extensive experiments on 12 FGVC benchmarks demonstrate its consistent superiority over prior few-shot CLIP-based methods and even several fully-supervised MLLMs-based approaches.
☆ DS$^2$Net: Detail-Semantic Deep Supervision Network for Medical Image Segmentation
Deep Supervision Networks exhibit significant efficacy for the medical imaging community. Nevertheless, existing work merely supervises either the coarse-grained semantic features or fine-grained detailed features in isolation, which compromises the fact that these two types of features hold vital relationships in medical image analysis. We advocate the powers of complementary feature supervision for medical image segmentation, by proposing a Detail-Semantic Deep Supervision Network (DS$^2$Net). DS$^2$Net navigates both low-level detailed and high-level semantic feature supervision through Detail Enhance Module (DEM) and Semantic Enhance Module (SEM). DEM and SEM respectively harness low-level and high-level feature maps to create detail and semantic masks for enhancing feature supervision. This is a novel shift from single-view deep supervision to multi-view deep supervision. DS$^2$Net is also equipped with a novel uncertainty-based supervision loss that adaptively assigns the supervision strength of features within distinct scales based on their uncertainty, thus circumventing the sub-optimal heuristic design that typifies previous works. Through extensive experiments on six benchmarks captured under either colonoscopy, ultrasound and microscope, we demonstrate that DS$^2$Net consistently outperforms state-of-the-art methods for medical image analysis.
☆ Experimental Analysis of Productive Interaction Strategy with ChatGPT: User Study on Function and Project-level Code Generation Tasks
The application of Large Language Models (LLMs) is growing in the productive completion of Software Engineering tasks. Yet, studies investigating the productive prompting techniques often employed a limited problem space, primarily focusing on well-known prompting patterns and mainly targeting function-level SE practices. We identify significant gaps in real-world workflows that involve complexities beyond class-level (e.g., multi-class dependencies) and different features that can impact Human-LLM Interactions (HLIs) processes in code generation. To address these issues, we designed an experiment that comprehensively analyzed the HLI features regarding the code generation productivity. Our study presents two project-level benchmark tasks, extending beyond function-level evaluations. We conducted a user study with 36 participants from diverse backgrounds, asking them to solve the assigned tasks by interacting with the GPT assistant using specific prompting patterns. We also examined the participants' experience and their behavioral features during interactions by analyzing screen recordings and GPT chat logs. Our statistical and empirical investigation revealed (1) that three out of 15 HLI features significantly impacted the productivity in code generation; (2) five primary guidelines for enhancing productivity for HLI processes; and (3) a taxonomy of 29 runtime and logic errors that can occur during HLI processes, along with suggested mitigation plans.
comment: The benchmark repository has not been publicly released yet due to the IP policy in our institutions. If you would like to use the benchmark or collaborate on extension, please contact "dr.sangwon.hyun@gmail.com"
☆ AgREE: Agentic Reasoning for Knowledge Graph Completion on Emerging Entities
Open-domain Knowledge Graph Completion (KGC) faces significant challenges in an ever-changing world, especially when considering the continual emergence of new entities in daily news. Existing approaches for KGC mainly rely on pretrained language models' parametric knowledge, pre-constructed queries, or single-step retrieval, typically requiring substantial supervision and training data. Even so, they often fail to capture comprehensive and up-to-date information about unpopular and/or emerging entities. To this end, we introduce Agentic Reasoning for Emerging Entities (AgREE), a novel agent-based framework that combines iterative retrieval actions and multi-step reasoning to dynamically construct rich knowledge graph triplets. Experiments show that, despite requiring zero training efforts, AgREE significantly outperforms existing methods in constructing knowledge graph triplets, especially for emerging entities that were not seen during language models' training processes, outperforming previous methods by up to 13.7%. Moreover, we propose a new evaluation methodology that addresses a fundamental weakness of existing setups and a new benchmark for KGC on emerging entities. Our work demonstrates the effectiveness of combining agent-based reasoning with strategic information retrieval for maintaining up-to-date knowledge graphs in dynamic information environments.
♻ ☆ Beyond Adapter Retrieval: Latent Geometry-Preserving Composition via Sparse Task Projection
Recent advances in parameter-efficient transfer learning have demonstrated the utility of composing LoRA adapters from libraries of pretrained modules. However, most existing approaches rely on simple retrieval heuristics or uniform averaging, which overlook the latent structure of task relationships in representation space. We propose a new framework for adapter reuse that moves beyond retrieval, formulating adapter composition as a geometry-aware sparse reconstruction problem. Specifically, we represent each task by a latent prototype vector derived from the base model's encoder and aim to approximate the target task prototype as a sparse linear combination of retrieved reference prototypes, under an $\ell_1$-regularized optimization objective. The resulting combination weights are then used to blend the corresponding LoRA adapters, yielding a composite adapter tailored to the target task. This formulation not only preserves the local geometric structure of the task representation manifold, but also promotes interpretability and efficient reuse by selecting a minimal set of relevant adapters. We demonstrate the effectiveness of our approach across multiple domains-including medical image segmentation, medical report generation and image synthesis. Our results highlight the benefit of coupling retrieval with latent geometry-aware optimization for improved zero-shot generalization.
♻ ☆ Self-Questioning Language Models
Can large language models improve without external data -- by generating their own questions and answers? We hypothesize that a pre-trained language model can improve its reasoning skills given only a single prompt specifying the topic (e.g., algebra word problems) and asking the model to generate its own questions. To do this, we propose Self-Questioning Language Models (SQLM): an asymmetric self-play framework where a proposer is given the topic and generates a question for a solver, who tries to answer it. Both the proposer and solver are trained via reinforcement learning. The proposer receives a reward if the problem is not too easy or too difficult, and the solver receives a reward based on majority voting, a proxy for correctness in the absence of ground-truth answers. For coding, the proposer can instead generate unit tests which are used for verification. We study this asymmetric self-play framework on three benchmarks: three-digit multiplication, algebra problems from the OMEGA benchmark, and programming problems from Codeforces. By continually generating more interesting problems and attempting to solve them, language models can improve on downstream benchmarks without access to any curated training datasets.
♻ ☆ Temporal and Heterogeneous Graph Neural Network for Remaining Useful Life Prediction
Predicting Remaining Useful Life (RUL) plays a crucial role in the prognostics and health management of industrial systems that involve a variety of interrelated sensors. Given a constant stream of time series sensory data from such systems, deep learning models have risen to prominence at identifying complex, nonlinear temporal dependencies in these data. In addition to the temporal dependencies of individual sensors, spatial dependencies emerge as important correlations among these sensors, which can be naturally modelled by a temporal graph that describes time-varying spatial relationships. However, the majority of existing studies have relied on capturing discrete snapshots of this temporal graph, a coarse-grained approach that leads to loss of temporal information. Moreover, given the variety of heterogeneous sensors, it becomes vital that such inherent heterogeneity is leveraged for RUL prediction in temporal sensor graphs. To capture the nuances of the temporal and spatial relationships and heterogeneous characteristics in an interconnected graph of sensors, we introduce a novel model named Temporal and Heterogeneous Graph Neural Networks (THGNN). Specifically, THGNN aggregates historical data from neighboring nodes to accurately capture the temporal dynamics and spatial correlations within the stream of sensor data in a fine-grained manner. Moreover, the model leverages Feature-wise Linear Modulation (FiLM) to address the diversity of sensor types, significantly improving the model's capacity to learn the heterogeneity in the data sources. Finally, we have validated the effectiveness of our approach through comprehensive experiments. Our empirical findings demonstrate significant advancements on the N-CMAPSS dataset, achieving improvements of up to 19.2% and 31.6% in terms of two different evaluation metrics over state-of-the-art methods.
comment: 14 pages
♻ ☆ RL-PLUS: Countering Capability Boundary Collapse of LLMs in Reinforcement Learning with Hybrid-policy Optimization
Reinforcement Learning with Verifiable Reward (RLVR) has significantly advanced the complex reasoning abilities of Large Language Models (LLMs). However, it struggles to break through the inherent capability boundaries of the base LLM, due to its essentially on-policy strategy coupled with LLM's immense action space and sparse reward. Critically, RLVR can lead to the capability boundary collapse, narrowing the LLM's problem-solving scope. To address this problem, we propose RL-PLUS, a novel hybrid-policy optimization approach for LLMs that synergizes internal exploitation with external data to achieve stronger reasoning capabilities and surpass the boundaries of base models. RL-PLUS integrates two core components, i.e., Multiple Importance Sampling to address distributional mismatch from external data, and Exploration-Based Advantage Function to guide the model towards high-value, unexplored reasoning paths. We provide both theoretical analysis and extensive experiments to demonstrate the superiority and generalizability of our approach. Compared with existing RLVR methods, RL-PLUS achieves 1) state-of-the-art performance on six math reasoning benchmarks; 2) superior performance on six out-of-distribution reasoning tasks; 3) consistent and significant gains across diverse model families, with average relative improvements up to 69.2\%. Moreover, the analysis of Pass@k curves indicates that RL-PLUS effectively resolves the capability boundary collapse problem.
♻ ☆ CostFilter-AD: Enhancing Anomaly Detection through Matching Cost Filtering ICML 2025
Unsupervised anomaly detection (UAD) seeks to localize the anomaly mask of an input image with respect to normal samples. Either by reconstructing normal counterparts (reconstruction-based) or by learning an image feature embedding space (embedding-based), existing approaches fundamentally rely on image-level or feature-level matching to derive anomaly scores. Often, such a matching process is inaccurate yet overlooked, leading to sub-optimal detection. To address this issue, we introduce the concept of cost filtering, borrowed from classical matching tasks, such as depth and flow estimation, into the UAD problem. We call this approach {\em CostFilter-AD}. Specifically, we first construct a matching cost volume between the input and normal samples, comprising two spatial dimensions and one matching dimension that encodes potential matches. To refine this, we propose a cost volume filtering network, guided by the input observation as an attention query across multiple feature layers, which effectively suppresses matching noise while preserving edge structures and capturing subtle anomalies. Designed as a generic post-processing plug-in, CostFilter-AD can be integrated with either reconstruction-based or embedding-based methods. Extensive experiments on MVTec-AD and VisA benchmarks validate the generic benefits of CostFilter-AD for both single- and multi-class UAD tasks. Code and models will be released at https://github.com/ZHE-SAPI/CostFilter-AD.
comment: 25 pages, 12 figures, 20 tables, accepted by Forty-Second International Conference on Machine Learning ( ICML 2025 ), link: https://icml.cc/virtual/2025/poster/46359
♻ ☆ Bob's Confetti: Phonetic Memorization Attacks in Music and Video Generation
Memorization in generative models extends far beyond verbatim text reproduction--it manifests through non-literal patterns, semantic associations, and surprisingly, across modalities in transcript-conditioned generation tasks such as Lyrics-to-Song (L2S) and Text-to-Video (T2V) models. We reveal a new class of cross-modality memorization where models trained on these tasks leak copyrighted content through indirect, phonetic pathways invisible to traditional text-based analysis. In this work, we introduce Adversarial PhoneTic Prompting (APT), an attack that replaces iconic phrases with homophonic alternatives--e.g., "mom's spaghetti" becomes "Bob's confetti"--preserving the acoustic form while largely changing semantic content. We demonstrate that models can be prompted to regurgitate memorized songs using phonetically similar but semantically unrelated lyrics. Despite the semantic drift, black-box models like SUNO and open-source models like YuE generate outputs that are strikingly similar to the original songs--melodically, rhythmically, and vocally--achieving high scores on AudioJudge, CLAP, and CoverID. These effects persist across genres and languages. More surprisingly, we find that phonetic prompts alone can trigger visual memorization in text-to-video models: when given altered lyrics from Lose Yourself, Veo 3 generates scenes that mirror the original music video--complete with a hooded rapper and dim urban settings--despite no explicit visual cues in the prompt. This cross-modality leakage represents an unprecedented threat: models memorize deep, structural patterns that transcend their training modality, making traditional safety measures like copyright filters ineffective. Our findings reveal a fundamental vulnerability in transcript-conditioned generative models and raise urgent concerns around copyright, provenance, and secure deployment of multimodal generation systems.
♻ ☆ SDBench: A Comprehensive Benchmark Suite for Speaker Diarization
Even state-of-the-art speaker diarization systems exhibit high variance in error rates across different datasets, representing numerous use cases and domains. Furthermore, comparing across systems requires careful application of best practices such as dataset splits and metric definitions to allow for apples-to-apples comparison. We propose SDBench (Speaker Diarization Benchmark), an open-source benchmark suite that integrates 13 diverse datasets with built-in tooling for consistent and fine-grained analysis of speaker diarization performance for various on-device and server-side systems. SDBench enables reproducible evaluation and easy integration of new systems over time. To demonstrate the efficacy of SDBench, we built SpeakerKit, an inference efficiency-focused system built on top of Pyannote v3. SDBench enabled rapid execution of ablation studies that led to SpeakerKit being 9.6x faster than Pyannote v3 while achieving comparable error rates. We benchmark 6 state-of-the-art systems including Deepgram, AWS Transcribe, and Pyannote AI API, revealing important trade-offs between accuracy and speed.
♻ ☆ CauKer: classification time series foundation models can be pretrained on synthetic data only
Time series foundation models (TSFMs) have recently gained significant attention due to their strong zero-shot capabilities and widespread real-world applications. Such models typically require a computationally costly pretraining on large-scale, carefully curated collections of real-world sequences. To allow for a sample-efficient pretraining of TSFMs, we propose CauKer, a novel algorithm designed to generate diverse, causally coherent synthetic time series with realistic trends, seasonality, and nonlinear interactions. CauKer combines Gaussian Process (GP) kernel composition with Structural Causal Models (SCM) to produce data for sample-efficient pretraining of state-of-the-art classification TSFMs having different architectures and following different pretraining approaches. Additionally, our experiments reveal that CauKer-generated datasets exhibit clear scaling laws for both dataset size (10K to 10M samples) and model capacity (1M to 783M parameters), unlike real-world datasets, which display irregular scaling behavior.
♻ ☆ Beyond risk: A proto-framework for assessing the societal impact of AI systems
In the discourse on AI regulation, 'responsible AI' is the dominant paradigm, with the focus on mitigating the risks related to AI systems. While this focus is important and necessary, it has limited use for a systematic consideration of AI's societal impact. This paper proposes a proto-framework for assessing the societal impact of AI systems by operationalising the concept of freedom. This proto-framework is intended as a step towards a fully operationalised framework to be used in policymaking contexts. By drawing on Kantian philosophy and related contemporary interpretations, freedom is developed as the counterpart to the concept of responsibility. Two dimensions of freedom are developed in further detail: freedom as capability and freedom as opportunity. These two dimensions of freedom are then applied in a proto-framework that systematically considers AI's impact on society using the Sustainable Development Goals. This proto-framework aims to complement current risk-based approaches and thereby offers a first step towards operationalising the concept of freedom in AI regulation.
♻ ☆ InqEduAgent: Adaptive AI Learning Partners with Gaussian Process Augmentation
Collaborative partnership matters in inquiry-oriented education. However, most study partners are selected either rely on experience-based assignments with little scientific planning or build on rule-based machine assistants, encountering difficulties in knowledge expansion and inadequate flexibility. This paper proposes an LLM-empowered agent model for simulating and selecting learning partners tailored to inquiry-oriented learning, named InqEduAgent. Generative agents are designed to capture cognitive and evaluative features of learners in real-world scenarios. Then, an adaptive matching algorithm with Gaussian process augmentation is formulated to identify patterns within prior knowledge. Optimal learning-partner matches are provided for learners facing different exercises. The experimental results show the optimal performance of InqEduAgent in most knowledge-learning scenarios and LLM environment with different levels of capabilities. This study promotes the intelligent allocation of human-based learning partners and the formulation of AI-based learning partners. The code, data, and appendix are publicly available at https://github.com/InqEduAgent/InqEduAgent.
♻ ☆ The Dark Side of LLMs: Agent-based Attacks for Complete Computer Takeover
The rapid adoption of Large Language Model (LLM) agents and multi-agent systems enables remarkable capabilities in natural language processing and generation. However, these systems introduce unprecedented security vulnerabilities that extend beyond traditional content generation attacks to system-level compromise. This paper presents a comprehensive evaluation of the security of LLMs used as reasoning engines within autonomous agents, highlighting how they can be exploited as attack vectors capable of achieving complete computer takeover. We focus on how different attack surfaces and trust boundaries - Direct Prompt Injection, RAG Backdoor, and Inter Agent Trust - can be leveraged to orchestrate such takeovers. We demonstrate that adversaries can effectively coerce popular LLMs (including GPT-4, Claude-4 and Gemini-2.5) into autonomously installing and executing malware on victim machines. Our evaluation of 18 state-of-the-art LLMs reveals an alarming scenario: 94.4% of models succumb to Direct Prompt Injection and 83.3% are vulnerable to the more stealth and evasive RAG Backdoor Attack. Notably, we tested trust boundaries within multi-agent systems, where LLM agents interact and influence each other, and we revealed a critical security flaw: LLMs which successfully resist direct injection or RAG backdoor will execute identical payloads when requested by peer agents. Our findings show that 100.0% of tested LLMs can be compromised through Inter-Agent Trust Exploitation attacks and that every model exhibits context-dependent security behaviors that create exploitable blind spots. Our results also highlight the need to increase awareness and research on the security risks of LLMs, showing a paradigm shift in cybersecurity threats, where AI tools themselves become sophisticated attack vectors.
♻ ☆ LLMs Have a Heart of Stone: Demystifying the Soft Thinking Ability of Large Reasoning Models
Human cognition naturally engages with abstract and fluid concepts, whereas existing reasoning models often rely on generating discrete tokens, potentially constraining their expressive capabilities. Recent advancements aim to address this limitation by enabling large language models (LLMs) to generate soft, abstract tokens, thus facilitating reasoning within a continuous concept space. This paper explores the `Soft Thinking' capabilities of various LLMs by examining the models' internal behavior using a suite of probing techniques. Contrary to the common belief that Soft Thinking enables the simultaneous exploration of diverse reasoning paths, our findings reveal that LLMs predominantly rely on the most influential component of the soft inputs during subsequent decoding steps. This reliance hinders the exploration of different reasoning paths and reduces vanilla Soft Thinking to a form of greedy decoding, obscuring the advantage of transmitting more information through Soft Tokens. To tackle this issue, we explore sampling strategies to introduce \emph{randomness}, employing methods such as Dirichlet resampling and the Gumbel-Softmax trick. Our experiments demonstrate that incorporating randomness can alleviate the limitations of vanilla approaches and unleash the potential of Soft Thinking. Notably, the Gumbel-Softmax trick provides adequate randomness with controlled smoothness, resulting in superior performance across eight reasoning benchmarks.
comment: 10 pages, 7 figures, working in progress
♻ ☆ SLR: Automated Synthesis for Scalable Logical Reasoning
We introduce SLR, an end-to-end framework for systematic evaluation and training of Large Language Models (LLMs) via Scalable Logical Reasoning. Given a user's task specification, SLR automatically synthesizes (i) an instruction prompt for an inductive reasoning task, (ii) a validation program, executable on model outputs to provide verifiable rewards, and (iii) the latent ground-truth rule. This process is fully automated, scalable, requires no human annotations, and offers precise control over task difficulty. Using SLR, we create SLR-Bench, a benchmark comprising 19k prompts organized into 20 curriculum levels that progressively increase in relational, arithmetic, and recursive complexity. Large-scale evaluation reveals that contemporary LLMs readily produce syntactically valid rules, yet often fail at correct logical inference. Recent reasoning LLMs demonstrate improved performance but incur very high test-time computation, with costs exceeding $300 for just 1,000 prompts. Finally, curriculum learning via SLR doubles Llama-3-8B accuracy on SLR-Bench, achieving parity with Gemini-Flash-Thinking at a fraction of computational cost. Moreover, these reasoning capabilities generalize to a wide range of established benchmarks, underscoring the effectiveness of SLR for downstream reasoning.
♻ ☆ Avoiding Catastrophe in Online Learning by Asking for Help ICML 2025
Most learning algorithms with formal regret guarantees assume that all mistakes are recoverable and essentially rely on trying all possible behaviors. This approach is problematic when some mistakes are "catastrophic", i.e., irreparable. We propose an online learning problem where the goal is to minimize the chance of catastrophe. Specifically, we assume that the payoff in each round represents the chance of avoiding catastrophe in that round and try to maximize the product of payoffs (the overall chance of avoiding catastrophe) while allowing a limited number of queries to a mentor. We also assume that the agent can transfer knowledge between similar inputs. We first show that in general, any algorithm either queries the mentor at a linear rate or is nearly guaranteed to cause catastrophe. However, in settings where the mentor policy class is learnable in the standard online model, we provide an algorithm whose regret and rate of querying the mentor both approach 0 as the time horizon grows. Although our focus is the product of payoffs, we provide matching bounds for the typical additive regret. Conceptually, if a policy class is learnable in the absence of catastrophic risk, it is learnable in the presence of catastrophic risk if the agent can ask for help.
comment: Accepted to ICML 2025
♻ ☆ Think How to Think: Mitigating Overthinking with Autonomous Difficulty Cognition in Large Reasoning Models
Recent Large Reasoning Models (LRMs) excel at complex reasoning tasks but often suffer from overthinking, generating overly long and redundant reasoning trajectories. To explore its essence, our empirical analysis reveals that LRMs are primarily limited to recognizing task properties (i.e., difficulty levels) like humans before solving the problem, leading to a one-size-fits-all reasoning process. Inspired by this, a pressing and natural question emerges: Can we explicitly bootstrap such ability to alleviate overthinking in LRMs? In this paper, we propose Think-How-to-Think (TH2T), a novel two-stage fine-tuning strategy that progressively inspires LRMs' difficulty cognition and redundancy cognition of LRMs. Specifically, we first inject difficulty hypnosis into output prefixes to guide the model toward adaptive reasoning depth, trained on a hybrid dataset mixing short and long reasoning paths. Then, we incorporate redundancy hypnosis, which supervises the intermediate reasoning steps to identify and eliminate unnecessary reasoning patterns. Experiments on 7B/14B/32B models demonstrate that TH2T significantly reduces inference costs by over 70% on easy tasks and 40% on hard tasks while maintaining performance stability. The resulting outputs exhibit clear signs of difficulty-aware capabilities and reduced redundancy (e.g., reflection and looping).
comment: 19 pages, 19 figures
♻ ☆ NCCR: to Evaluate the Robustness of Neural Networks and Adversarial Examples
Neural networks have received a lot of attention recently, and related security issues have come with it. Many studies have shown that neural networks are vulnerable to adversarial examples that have been artificially perturbed with modification, which is too small to be distinguishable by human perception. Different attacks and defenses have been proposed to solve these problems, but there is little research on evaluating the robustness of neural networks and their inputs. In this work, we propose a metric called the neuron cover change rate (NCCR) to measure the ability of deep learning models to resist attacks and the stability of adversarial examples. NCCR monitors alterations in the output of specifically chosen neurons when the input is perturbed, and networks with a smaller degree of variation are considered to be more robust. The results of the experiment on image recognition and the speaker recognition model show that our metrics can provide a good assessment of the robustness of neural networks or their inputs. It can also be used to detect whether an input is adversarial or not, as adversarial examples are always less robust.
♻ ☆ Spatial-Frequency Aware for Object Detection in RAW Image
Direct RAW-based object detection offers great promise by utilizing RAW data (unprocessed sensor data), but faces inherent challenges due to its wide dynamic range and linear response, which tends to suppress crucial object details. In particular, existing enhancement methods are almost all performed in the spatial domain, making it difficult to effectively recover these suppressed details from the skewed pixel distribution of RAW images. To address this limitation, we turn to the frequency domain, where features, such as object contours and textures, can be naturally separated based on frequency. In this paper, we propose Space-Frequency Aware RAW Image Object Detection Enhancer (SFAE), a novel framework that synergizes spatial and frequency representations. Our contribution is threefold. The first lies in the ``spatialization" of frequency bands. Different from the traditional paradigm of directly manipulating abstract spectra in deep networks, our method inversely transforms individual frequency bands back into tangible spatial maps, thus preserving direct physical intuition. Then the cross-domain fusion attention module is developed to enable deep multimodal interactions between these maps and the original spatial features. Finally, the framework performs adaptive nonlinear adjustments by predicting and applying different gamma parameters for the two domains.
♻ ☆ Pull-Based Query Scheduling for Goal-Oriented Semantic Communication
This paper addresses query scheduling for goal-oriented semantic communication in pull-based status update systems. We consider a system where multiple sensing agents (SAs) observe a source characterized by various attributes and provide updates to multiple actuation agents (AAs), which act upon the received information to fulfill their heterogeneous goals at the endpoint. A hub serves as an intermediary, querying the SAs for updates on observed attributes and maintaining a knowledge base, which is then broadcast to the AAs. The AAs leverage the knowledge to perform their actions effectively. To quantify the semantic value of updates, we introduce a grade of effectiveness (GoE) metric. Furthermore, we integrate cumulative perspective theory (CPT) into the long-term effectiveness analysis to account for risk awareness and loss aversion in the system. Leveraging this framework, we compute effect-aware scheduling policies aimed at maximizing the expected discounted sum of CPT-based total GoE provided by the transmitted updates while complying with a given query cost constraint. To achieve this, we propose a model-based solution based on dynamic programming and model-free solutions employing state-of-the-art deep reinforcement learning (DRL) algorithms. Our findings demonstrate that effect-aware scheduling significantly enhances the effectiveness of communicated updates compared to benchmark scheduling methods, particularly in settings with stringent cost constraints where optimal query scheduling is vital for system performance and overall effectiveness.
comment: Submitted for possible publication
♻ ☆ ChartM$^3$: Benchmarking Chart Editing with Multimodal Instructions
Charts are a fundamental visualization format widely used in data analysis across research and industry. While enabling users to edit charts based on high-level intentions is of great practical value, existing methods primarily rely on natural language instructions, which are often too ambiguous to support fine-grained editing. In this work, we introduce a novel paradigm for multimodal chart editing, where user intent is expressed through a combination of natural language and visual indicators that explicitly highlight the elements to be modified. To support this paradigm, we present Chart$\text{M}^3$, a new benchmark for Multimodal chart editing with Multi-level complexity and Multi-perspective evaluation. Chart$\text{M}^3$ contains 1,000 samples spanning four levels of editing difficulty. Each sample includes triplets in the form of (chart, code, multimodal instructions). To comprehensively evaluate chart editing models, Chart$\text{M}^3$ provides metrics that assess both visual appearance and code correctness. Our benchmark reveals significant limitations in current multimodal large language models (MLLMs), including GPT-4o, particularly in their ability to interpret and act on visual indicators. To address this, we construct Chart$\text{M}^3$-Train, a large-scale training set with 24,000 multimodal chart editing samples. Fine-tuning MLLMs on this dataset leads to substantial improvements, demonstrating the importance of multimodal supervision in building practical chart editing systems. Our datasets, codes, and evaluation tools are available at https://github.com/MLrollIT/ChartM3. %https://github.com/MLrollIT/ChartM3Our datasets, codes, and evaluation tools are available at https://github.com/yaolinli/VCE.
♻ ☆ 3DTTNet: Multimodal Fusion-Based 3D Traversable Terrain Modeling for Off-Road Environments
Off-road environments remain significant challenges for autonomous ground vehicles, due to the lack of structured roads and the presence of complex obstacles, such as uneven terrain, vegetation, and occlusions. Traditional perception algorithms, primarily designed for structured environments, often fail in unstructured scenarios. In this paper, traversable area recognition is achieved through semantic scene completion. A novel multimodal method, 3DTTNet, is proposed to generate dense traversable terrain estimations by integrating LiDAR point clouds with monocular images from a forward-facing perspective. By integrating multimodal data, environmental feature extraction is strengthened, which is crucial for accurate terrain modeling in complex terrains. Furthermore, RELLIS-OCC, a dataset with 3D traversable annotations, is introduced, incorporating geometric features such as step height, slope, and unevenness. Through a comprehensive analysis of vehicle obsta cle-crossing conditions and the incorporation of vehicle body structure constraints, four traversability cost labels are generated: lethal, medium-cost, low-cost, and free. Experimental results demonstrate that 3DTTNet outperforms the comparison approaches in 3D traversable area recognition, particularly in off-road environments with irregular geometries and partial occlusions. Specifically, 3DTTNet achieves a 42\% improvement in scene completion IoU compared to other models. The proposed framework is scalable and adaptable to various vehicle platforms, allowing for adjustments to occupancy grid parameters and the integration of advanced dynamic models for traversability cost estimation.
comment: 15 pages,13 figures
♻ ☆ Through the Magnifying Glass: Adaptive Perception Magnification for Hallucination-Free VLM Decoding
Existing vision-language models (VLMs) often suffer from visual hallucination, where the generated responses contain inaccuracies that are not grounded in the visual input. Efforts to address this issue without model finetuning primarily mitigate hallucination by contrastively reducing language biases or amplifying the weights of visual embedding during decoding. However, these approaches remain limited in their ability to capture fine-grained visual details. In this work, we propose the Perception Magnifier (PM), a novel visual decoding method that iteratively isolates relevant visual tokens based on attention and magnifies the corresponding regions, spurring the model to concentrate on fine-grained visual details during decoding. By magnifying critical regions while preserving the structural and contextual information at each decoding step, PM allows the VLM to enhance its scrutiny of the visual input, hence producing more accurate and faithful responses. Extensive experimental results demonstrate that PM not only achieves superior hallucination mitigation but also enhances language generation while preserving strong reasoning capabilities.
comment: 17 pages, 6 figures, 9 tables
♻ ☆ A Value Based Parallel Update MCTS Method for Multi-Agent Cooperative Decision Making of Connected and Automated Vehicles
To solve the problem of lateral and logitudinal joint decision-making of multi-vehicle cooperative driving for connected and automated vehicles (CAVs), this paper proposes a Monte Carlo tree search (MCTS) method with parallel update for multi-agent Markov game with limited horizon and time discounted setting. By analyzing the parallel actions in the multi-vehicle joint action space in the partial-steady-state traffic flow, the parallel update method can quickly exclude potential dangerous actions, thereby increasing the search depth without sacrificing the search breadth. The proposed method is tested in a large number of randomly generated traffic flow. The experiment results show that the algorithm has good robustness and better performance than the SOTA reinforcement learning algorithms and heuristic methods. The vehicle driving strategy using the proposed algorithm shows rationality beyond human drivers, and has advantages in traffic efficiency and safety in the coordinating zone.
comment: arXiv admin note: text overlap with arXiv:2408.04295 by other authors
♻ ☆ AUTALIC: A Dataset for Anti-AUTistic Ableist Language In Context ACL
As our understanding of autism and ableism continues to increase, so does our understanding of ableist language towards autistic people. Such language poses a significant challenge in NLP research due to its subtle and context-dependent nature. Yet, detecting anti-autistic ableist language remains underexplored, with existing NLP tools often failing to capture its nuanced expressions. We present AUTALIC, the first benchmark dataset dedicated to the detection of anti-autistic ableist language in context, addressing a significant gap in the field. The dataset comprises 2,400 autism-related sentences collected from Reddit, accompanied by surrounding context, and is annotated by trained experts with backgrounds in neurodiversity. Our comprehensive evaluation reveals that current language models, including state-of-the-art LLMs, struggle to reliably identify anti-autistic ableism and align with human judgments, underscoring their limitations in this domain. We publicly release AUTALIC along with the individual annotations which serve as a valuable resource to researchers working on ableism, neurodiversity, and also studying disagreements in annotation tasks. This dataset serves as a crucial step towards developing more inclusive and context-aware NLP systems that better reflect diverse perspectives.
comment: accepted to ACL main 2025, 9 pages, 5 figures, 7 tables
♻ ☆ What Lives? A meta-analysis of diverse opinions on the definition of life
The question of "what is life?" has challenged scientists and philosophers for centuries, producing an array of definitions that reflect both the mystery of its emergence and the diversity of disciplinary perspectives brought to bear on the question. Despite significant progress in our understanding of biological systems, psychology, computation, and information theory, no single definition for life has yet achieved universal acceptance. This challenge becomes increasingly urgent as advances in synthetic biology, artificial intelligence, and astrobiology challenge our traditional conceptions of what it means to be alive. We undertook a methodological approach that leverages large language models (LLMs) to analyze a set of definitions of life provided by a curated set of cross-disciplinary experts. We used a novel pairwise correlation analysis to map the definitions into distinct feature vectors, followed by agglomerative clustering, intra-cluster semantic analysis, and t-SNE projection to reveal underlying conceptual archetypes. This methodology revealed a continuous landscape of the themes relating to the definition of life, suggesting that what has historically been approached as a binary taxonomic problem should be instead conceived as differentiated perspectives within a unified conceptual latent space. We offer a new methodological bridge between reductionist and holistic approaches to fundamental questions in science and philosophy, demonstrating how computational semantic analysis can reveal conceptual patterns across disciplinary boundaries, and opening similar pathways for addressing other contested definitional territories across the sciences.
comment: 54 pages, 4 figures, 2 tables, 11 supplemental figures, 3 supplemental tables
♻ ☆ Industrial LLM-based Code Optimization under Regulation: A Mixture-of-Agents Approach
Recent advancements in Large Language Models (LLMs) for code optimization have enabled industrial platforms to automate software performance engineering at unprecedented scale and speed. Yet, organizations in regulated industries face strict constraints on which LLMs they can use - many cannot utilize commercial models due to data privacy regulations and compliance requirements, creating a significant challenge for achieving high-quality code optimization while maintaining cost-effectiveness. We address this by implementing a Mixture-of-Agents (MoA) approach that directly synthesizes code from multiple specialized LLMs, comparing it against TurinTech AI's vanilla Genetic Algorithm (GA)-based ensemble system and individual LLM optimizers using real-world industrial codebases. Our key contributions include: (1) First MoA application to industrial code optimization using real-world codebases; (2) Empirical evidence that MoA excels with open-source models, achieving 14.3% to 22.2% cost savings and 28.6% to 32.2% faster optimization times for regulated environments; (3) Deployment guidelines demonstrating GA's advantage with commercial models while both ensembles outperform individual LLMs; and (4) Real-world validation across 50 code snippets and seven LLM combinations, generating over 8,700 variants, addresses gaps in industrial LLM ensemble evaluation. This provides actionable guidance for organizations balancing regulatory compliance with optimization performance in production environments.
comment: Submitted to ASE'25 Industry Showcase
♻ ☆ CITRAS: Covariate-Informed Transformer for Time Series Forecasting
In practical time series forecasting, covariates provide rich contextual information that can potentially enhance the forecast of target variables. Although some covariates extend into the future forecasting horizon (e.g., calendar events, discount schedules), most multivariate models fail to leverage this pivotal insight due to the length discrepancy with target variables. Additionally, capturing the dependency between target variables and covariates is non-trivial, as models must precisely reflect the local impact of covariates while also capturing global cross-variate dependencies. To overcome these challenges, we propose CITRAS, a decoder-only Transformer that flexibly leverages multiple targets, past covariates, and future covariates. While preserving strong autoregressive capabilities, CITRAS introduces two novel mechanisms in patch-wise cross-variate attention: Key-Value (KV) Shift and Attention Score Smoothing. KV Shift seamlessly incorporates future covariates into the forecasting of target variables based on their concurrent dependencies. Additionally, Attention Score Smoothing refines locally accurate patch-wise cross-variate dependencies into global variate-level dependencies by smoothing the past series of attention scores. Experimentally, CITRAS outperforms state-of-the-art models on thirteen real-world benchmarks from both covariate-informed and multivariate settings, demonstrating its versatile ability to leverage cross-variate and cross-time dependencies for improved forecasting accuracy.
comment: Submission under review
♻ ☆ On the Fundamental Impossibility of Hallucination Control in Large Language Models
This paper establishes a fundamental impossibility theorem: no LLM capable performing non-trivial knowledge aggregation can simultaneously achieve truthful (internally consistent) knowledge representation, semantic information conservation, complete revelation of relevant knowledge, and knowledge-constrained optimality. This impossibility is not an engineering limitation but arises from the mathematical structure of information aggregation itself. We establish this result by describing the inference process as an auction of ideas, where distributed components compete exploiting their partial knowledge to shape responses. The proof spans three independent mathematical domains: mechanism design theory (Green-Laffont), the theory of proper scoring rules (Savage), and direct architectural analysis of transformers (Log-Sum-Exp convexity). In particular, we show how in the strictly concave settings the score of an aggregate of diverse beliefs strictly exceeds the sum of individual scores. That gap may quantify the creation of unattributable certainty or overconfidence -- the mathematical origin of both hallucination and creativity, or imagination. To support this analysis, we introduce the complementary concepts of the semantic information measure and the emergence operator to model bounded reasoning in a general setting. We prove that while bounded reasoning generates accessible information, providing valuable insights and inspirations, idealized reasoning strictly preserves semantic content. By demonstrating that hallucination and imagination are mathematically identical phenomena-grounded in the necessary violation of information conservation-this paper offers a principled foundation for managing these behaviors in advanced AI systems. Finally, we present some speculative ideas to inspire evaluation and refinements of the proposed theory.
comment: cleared mathematics, proofs and ideas explained, added missing definitions and axioms, discussion and speculation section added
♻ ☆ Sign Spotting Disambiguation using Large Language Models
Sign spotting, the task of identifying and localizing individual signs within continuous sign language video, plays a pivotal role in scaling dataset annotations and addressing the severe data scarcity issue in sign language translation. While automatic sign spotting holds great promise for enabling frame-level supervision at scale, it grapples with challenges such as vocabulary inflexibility and ambiguity inherent in continuous sign streams. Hence, we introduce a novel, training-free framework that integrates Large Language Models (LLMs) to significantly enhance sign spotting quality. Our approach extracts global spatio-temporal and hand shape features, which are then matched against a large-scale sign dictionary using dynamic time warping and cosine similarity. This dictionary-based matching inherently offers superior vocabulary flexibility without requiring model retraining. To mitigate noise and ambiguity from the matching process, an LLM performs context-aware gloss disambiguation via beam search, notably without fine-tuning. Extensive experiments on both synthetic and real-world sign language datasets demonstrate our method's superior accuracy and sentence fluency compared to traditional approaches, highlighting the potential of LLMs in advancing sign spotting.
comment: Accepted in the international conference on Intelligent Virtual Agents (IVA Adjunct)
♻ ☆ Adversarial Cooperative Rationalization: The Risk of Spurious Correlations in Even Clean Datasets ICML 2025
This study investigates the self-rationalization framework constructed with a cooperative game, where a generator initially extracts the most informative segment from raw input, and a subsequent predictor utilizes the selected subset for its input. The generator and predictor are trained collaboratively to maximize prediction accuracy. In this paper, we first uncover a potential caveat: such a cooperative game could unintentionally introduce a sampling bias during rationale extraction. Specifically, the generator might inadvertently create an incorrect correlation between the selected rationale candidate and the label, even when they are semantically unrelated in the original dataset. Subsequently, we elucidate the origins of this bias using both detailed theoretical analysis and empirical evidence. Our findings suggest a direction for inspecting these correlations through attacks, based on which we further introduce an instruction to prevent the predictor from learning the correlations. Through experiments on six text classification datasets and two graph classification datasets using three network architectures (GRUs, BERT, and GCN), we show that our method not only significantly outperforms recent rationalization methods, but also achieves comparable or even better results than a representative LLM (llama3.1-8b-instruct).
comment: ICML 2025
♻ ☆ The SWE-Bench Illusion: When State-of-the-Art LLMs Remember Instead of Reason
As large language models (LLMs) become increasingly capable and widely adopted, benchmarks play a central role in assessing their practical utility. For example, SWE-Bench Verified has emerged as a critical benchmark for evaluating LLMs' software engineering abilities, particularly their aptitude for resolving real-world GitHub issues. Recent LLMs show impressive performance on SWE-Bench, leading to optimism about their capacity for complex coding tasks. However, current evaluation protocols may overstate these models' true capabilities. It is crucial to distinguish LLMs' generalizable problem-solving ability and other learned artifacts. In this work, we introduce two diagnostic tasks: file path identification from issue descriptions alone and ground truth function reproduction with only the current file context and issue description to probe models' underlying knowledge. We present empirical evidence that performance gains on SWE-Bench-Verified may be partially driven by memorization rather than genuine problem-solving. We show that state-of-the-art models achieve up to 76% accuracy in identifying buggy file paths using only issue descriptions, without access to repository structure. This performance is merely up to 53% on tasks from repositories not included in SWE-Bench, pointing to possible data contamination or memorization. Similar patterns are also observed for the function reproduction task, where the verbatim similarity is much higher on SWE-Bench Verified than on other similar coding benchmarks (up to 35% consecutive 5-gram accuracy on SWE-Bench Verified and Full, but only up to 18% for tasks in other benchmarks). These findings raise concerns about the validity of existing results and underscore the need for more robust, contamination-resistant benchmarks to reliably evaluate LLMs' coding abilities.
♻ ☆ RGB-Event based Pedestrian Attribute Recognition: A Benchmark Dataset and An Asymmetric RWKV Fusion Framework
Existing pedestrian attribute recognition methods are generally developed based on RGB frame cameras. However, these approaches are constrained by the limitations of RGB cameras, such as sensitivity to lighting conditions and motion blur, which hinder their performance. Furthermore, current attribute recognition primarily focuses on analyzing pedestrians' external appearance and clothing, lacking an exploration of emotional dimensions. In this paper, we revisit these issues and propose a novel multi-modal RGB-Event attribute recognition task by drawing inspiration from the advantages of event cameras in low-light, high-speed, and low-power consumption. Specifically, we introduce the first large-scale multi-modal pedestrian attribute recognition dataset, termed EventPAR, comprising 100K paired RGB-Event samples that cover 50 attributes related to both appearance and six human emotions, diverse scenes, and various seasons. By retraining and evaluating mainstream PAR models on this dataset, we establish a comprehensive benchmark and provide a solid foundation for future research in terms of data and algorithmic baselines. In addition, we propose a novel RWKV-based multi-modal pedestrian attribute recognition framework, featuring an RWKV visual encoder and an asymmetric RWKV fusion module. Extensive experiments are conducted on our proposed dataset as well as two simulated datasets (MARS-Attribute and DukeMTMC-VID-Attribute), achieving state-of-the-art results. The source code and dataset will be released on https://github.com/Event-AHU/OpenPAR
comment: The First Benchmark Dataset for RGB-Event Multimodal Pedestrian Attribute Recognition Task
♻ ☆ Real-World Offline Reinforcement Learning from Vision Language Model Feedback
Offline reinforcement learning can enable policy learning from pre-collected, sub-optimal datasets without online interactions. This makes it ideal for real-world robots and safety-critical scenarios, where collecting online data or expert demonstrations is slow, costly, and risky. However, most existing offline RL works assume the dataset is already labeled with the task rewards, a process that often requires significant human effort, especially when ground-truth states are hard to ascertain (e.g., in the real-world). In this paper, we build on prior work, specifically RL-VLM-F, and propose a novel system that automatically generates reward labels for offline datasets using preference feedback from a vision-language model and a text description of the task. Our method then learns a policy using offline RL with the reward-labeled dataset. We demonstrate the system's applicability to a complex real-world robot-assisted dressing task, where we first learn a reward function using a vision-language model on a sub-optimal offline dataset, and then we use the learned reward to employ Implicit Q learning to develop an effective dressing policy. Our method also performs well in simulation tasks involving the manipulation of rigid and deformable objects, and significantly outperform baselines such as behavior cloning and inverse RL. In summary, we propose a new system that enables automatic reward labeling and policy learning from unlabeled, sub-optimal offline datasets.
comment: 7 pages. Accepted at the LangRob Workshop 2024 @ CoRL, 2024. Accepted at 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
♻ ☆ Long-Term Visual Object Tracking with Event Cameras: An Associative Memory Augmented Tracker and A Benchmark Dataset
Existing event stream based trackers undergo evaluation on short-term tracking datasets, however, the tracking of real-world scenarios involves long-term tracking, and the performance of existing tracking algorithms in these scenarios remains unclear. In this paper, we first propose a new long-term, large-scale frame-event visual object tracking dataset, termed FELT. It contains 1,044 long-term videos that involve 1.9 million RGB frames and event stream pairs, 60 different target objects, and 14 challenging attributes. To build a solid benchmark, we retrain and evaluate 21 baseline trackers on our dataset for future work to compare. In addition, we propose a novel Associative Memory Transformer based RGB-Event long-term visual tracker, termed AMTTrack. It follows a one-stream tracking framework and aggregates the multi-scale RGB/event template and search tokens effectively via the Hopfield retrieval layer. The framework also embodies another aspect of associative memory by maintaining dynamic template representations through an associative memory update scheme, which addresses the appearance variation in long-term tracking. Extensive experiments on FELT, FE108, VisEvent, and COESOT datasets fully validated the effectiveness of our proposed tracker. Both the dataset and source code will be released on https://github.com/Event-AHU/FELT_SOT_Benchmark
comment: FELT v2 benchmark dataset and a new Modern Hopfield Network based Tracker
♻ ☆ Hulk: A Universal Knowledge Translator for Human-Centric Tasks TPAMI2025
Human-centric perception tasks, e.g., pedestrian detection, skeleton-based action recognition, and pose estimation, have wide industrial applications, such as metaverse and sports analysis. There is a recent surge to develop human-centric foundation models that can benefit a broad range of human-centric perception tasks. While many human-centric foundation models have achieved success, they did not explore 3D and vision-language tasks for human-centric and required task-specific finetuning. These limitations restrict their application to more downstream tasks and situations. To tackle these problems, we present Hulk, the first multimodal human-centric generalist model, capable of addressing 2D vision, 3D vision, skeleton-based, and vision-language tasks without task-specific finetuning. The key to achieving this is condensing various task-specific heads into two general heads, one for discrete representations, \emph{e.g.,} languages, and the other for continuous representations, \emph{e.g.,} location coordinates. The outputs of two heads can be further stacked into four distinct input and output modalities. This uniform representation enables Hulk to treat diverse human-centric tasks as modality translation, integrating knowledge across a wide range of tasks. Comprehensive evaluations of Hulk on 12 benchmarks covering 8 human-centric tasks demonstrate the superiority of our proposed method, achieving state-of-the-art performance in 11 benchmarks. The code will be available on https://github.com/OpenGVLab/Hulk.
comment: Accepted by TPAMI2025
♻ ☆ GRILL: Gradient Signal Restoration in Ill-Conditioned Layers to Enhance Adversarial Attacks on Autoencoders
Adversarial robustness of deep autoencoders (AEs) remains relatively unexplored, even though their non-invertible nature poses distinct challenges. Existing attack algorithms during the optimization of imperceptible, norm-bounded adversarial perturbations to maximize output damage in AEs, often stop at sub-optimal attacks. We observe that the adversarial loss gradient vanishes when backpropagated through ill-conditioned layers. This issue arises from near-zero singular values in the Jacobians of these layers, which weaken the gradient signal during optimization. We introduce GRILL, a technique that locally restores gradient signals in ill-conditioned layers, enabling more effective norm-bounded attacks. Through extensive experiments on different architectures of popular AEs, under both sample-specific and universal attack setups, and across standard and adaptive attack settings, we show that our method significantly increases the effectiveness of our adversarial attacks, enabling a more rigorous evaluation of AE robustness.
♻ ☆ DOGR: Towards Versatile Visual Document Grounding and Referring
With recent advances in Multimodal Large Language Models (MLLMs), grounding and referring capabilities have gained increasing attention for achieving detailed understanding and flexible user interaction. However, these capabilities still remain underdeveloped in visual document understanding due to the scarcity of fine-grained datasets and comprehensive benchmarks. To fill this gap, we propose the DOcument Grounding and Referring data engine (DOGR-Engine), which generates two types of high-quality fine-grained document data: (1) multi-granular parsing data to improve text localization and recognition, and (2) instruction-tuning data to activate MLLMs' grounding and referring capabilities in dialogue and reasoning. Using the DOGR-Engine, we construct DOGR-Bench, a benchmark covering seven grounding and referring tasks across three document types (chart, poster, and PDF document), offering a comprehensive evaluation of fine-grained document understanding. Leveraging the generated data, we further develop DOGR, a strong baseline model that excels in text localization and recognition, while precisely grounds and refers to key textual information during conversation and reasoning, thereby advancing document understanding to a finer granularity and enable flexible interaction paradigms.
comment: 22 pages, 16 figures
♻ ☆ Efficient rule induction by ignoring pointless rules
The goal of inductive logic programming (ILP) is to find a set of logical rules that generalises training examples and background knowledge. We introduce an ILP approach that identifies pointless rules. A rule is pointless if it contains a redundant literal or cannot discriminate against negative examples. We show that ignoring pointless rules allows an ILP system to soundly prune the hypothesis space. Our experiments on multiple domains, including visual reasoning and game playing, show that our approach can reduce learning times by 99% whilst maintaining predictive accuracies.
comment: Under review for a conference
♻ ☆ Zero-Shot Neural Architecture Search with Weighted Response Correlation
Neural architecture search (NAS) is a promising approach for automatically designing neural network architectures. However, the architecture estimation of NAS is computationally expensive and time-consuming because of training multiple architectures from scratch. Although existing zero-shot NAS methods use training-free proxies to accelerate the architecture estimation, their effectiveness, stability, and generality are still lacking. We present a novel training-free estimation proxy called weighted response correlation (WRCor). WRCor utilizes correlation coefficient matrices of responses across different input samples to calculate the proxy scores of estimated architectures, which can measure their expressivity and generalizability. Experimental results on proxy evaluation demonstrate that WRCor and its voting proxies are more efficient estimation strategies than existing proxies. We also apply them with different search strategies in architecture search. Experimental results on architecture search show that our zero-shot NAS algorithm outperforms most existing NAS algorithms in different search spaces. Our NAS algorithm can discover an architecture with a 22.1% test error on the ImageNet-1k dataset within 4 GPU hours. All codes are publicly available at https://github.com/kunjing96/ZSNAS-WRCor.git.
♻ ☆ Higher Gauge Flow Models
This paper introduces Higher Gauge Flow Models, a novel class of Generative Flow Models. Building upon ordinary Gauge Flow Models (arXiv:2507.13414), these Higher Gauge Flow Models leverage an L$_{\infty}$-algebra, effectively extending the Lie Algebra. This expansion allows for the integration of the higher geometry and higher symmetries associated with higher groups into the framework of Generative Flow Models. Experimental evaluation on a Gaussian Mixture Model dataset revealed substantial performance improvements compared to traditional Flow Models.
comment: arXiv admin note: text overlap with arXiv:2507.13414
♻ ☆ True Multimodal In-Context Learning Needs Attention to the Visual Context
Multimodal Large Language Models (MLLMs), built on powerful language backbones, have enabled Multimodal In-Context Learning (MICL)-adapting to new tasks from a few multimodal demonstrations consisting of images, questions, and answers. Despite showing noticeable improvement on standard vision-language datasets, current MLLMs struggle to leverage visual information in the demonstrations. Specifically, they tend to neglect visual cues and over-rely on textual patterns, leading to mere text imitation rather than genuine multimodal adaptation. This behavior makes MICL still unimodal and largely restricts its practical utility. More importantly, this limitation is often concealed by the improved performance on tasks that do not require understanding the visual context. As a result, how to effectively enhance MICL ability and reliably evaluate the MICL performance remains underexplored. To address these issues, we first introduce Dynamic Attention Reallocation (DARA), an efficient fine-tuning strategy that encourages models to attend to the visual context by rebalancing attention across visual and textual tokens. In addition, we present TrueMICL, an MICL-dedicated dataset with both support and test sets that explicitly requires the integration of multimodal information-particularly visual content-for correct task completion. Extensive experiments demonstrate the effectiveness of our holistic solution, showcasing substantial improvements in the true multimodal in-context learning capabilities. Code and datasets are available at https://chenxshuo.github.io/true-micl-colm .
comment: Accepted to COLM 2025
♻ ☆ UITron-Speech: Towards Automated GUI Agents Based on Speech Instructions
Autonomous agents for Graphical User Interfaces (GUIs) are revolutionizing human-computer interaction, yet their reliance on text-based instructions imposes limitations on accessibility and convenience, particularly in hands-free scenarios. To address this issue, we propose replacing text with speech as the instruction input modality for GUI agents, and introduce UITron-Speech, which is the first end-to-end GUI agent capable of directly processing speech instructions and on-device screenshots to predict user actions. To tackle the problem of data scarcity, we synthesize high-quality speech instruction datasets using a random-speaker text-to-speech model. Additionally, we design a mixed-modality training strategy to mitigate the inherent modality imbalance in pre-trained foundation models. Furthermore, we conduct a statistical analysis of the distribution of GUI grounding prediction errors and propose a training-free two-step grounding refinement method to alleviate minor localization deviations. Extensive experiments on multiple benchmarks demonstrate that UITron-Speech achieves robust performance and superior adaptability, underscoring the feasibility and potential of speech-driven GUI agents for more accessible and intelligent human-computer interaction. Our code and datasets are available at https://github.com/UITron-hub/UITron-Speech.
♻ ☆ UltraSTF: Ultra-Compact Model for Large-Scale Spatio-Temporal Forecasting
Spatio-temporal data, prevalent in real-world applications such as traffic monitoring, financial transactions, and ride-share demands, represents a specialized case of multivariate time series characterized by high dimensionality. This high dimensionality necessitates computationally efficient models and benefits from applying univariate forecasting approaches through channel-independent strategies. SparseTSF, a recently proposed competitive univariate forecasting model, leverages periodicity to achieve compactness by focusing on cross-period dynamics, extending the Pareto frontier in terms of model size and predictive performance. However, it underperforms on spatio-temporal data due to limited capture of intra-period temporal dependencies. To address this limitation, we propose UltraSTF, which integrates a cross-period forecasting component with an ultra-compact shape bank component. Our model efficiently captures recurring patterns in time series using the attention mechanism of the shape bank component, significantly enhancing its capability to learn intra-period dynamics. UltraSTF achieves state-of-the-art performance on the LargeST benchmark while utilizing fewer than 0.2% of the parameters required by the second-best methods, thereby further extending the Pareto frontier of existing approaches.
♻ ☆ Accelerating Focal Search in Multi-Agent Path Finding with Tighter Lower Bounds
Multi-Agent Path Finding (MAPF) involves finding collision-free paths for multiple agents while minimizing a cost function--an NP-hard problem. Bounded suboptimal methods like Enhanced Conflict-Based Search (ECBS) and Explicit Estimation CBS (EECBS) balance solution quality with computational efficiency using focal search mechanisms. While effective, traditional focal search faces a limitation: the lower bound (LB) value determining which nodes enter the FOCAL list often increases slowly in early search stages, resulting in a constrained search space that delays finding valid solutions. In this paper, we propose a novel bounded suboptimal algorithm, double-ECBS (DECBS), to address this issue by first determining the maximum LB value and then employing a best-first search guided by this LB to find a collision-free path. Experimental results demonstrate that DECBS outperforms ECBS in most test cases and is compatible with existing optimization techniques. DECBS can reduce nearly 30% high-level CT nodes and 50% low-level focal search nodes. When agent density is moderate to high, DECBS achieves a 23.5% average runtime improvement over ECBS with identical suboptimality bounds and optimizations.
comment: 7 pages
♻ ☆ SimpleRL-Zoo: Investigating and Taming Zero Reinforcement Learning for Open Base Models in the Wild
DeepSeek-R1 has shown that long chain-of-thought (CoT) reasoning can naturally emerge through a simple reinforcement learning (RL) framework with rule-based rewards, where the training may directly start from the base models-a paradigm referred to as zero RL training. Most recent efforts to reproduce zero RL training have primarily focused on the Qwen2.5 model series, which may not be representative as we find the base models already exhibit strong instruction-following and self-reflection abilities. In this work, we investigate zero RL training across 10 diverse base models, spanning different families and sizes including LLama3-8B, Mistral-7B/24B, DeepSeek-Math-7B, Qwen2.5-math-7B, and all Qwen2.5 models from 0.5B to 32B. Leveraging several key design strategies-such as adjusting format reward and controlling query difficulty-we achieve substantial improvements in both reasoning accuracy and response length across most settings. However, by carefully monitoring the training dynamics, we observe that different base models exhibit distinct patterns during training. For instance, the increased response length does not always correlate with the emergence of certain cognitive behaviors such as verification (i.e., the "aha moment"). Notably, we observe the "aha moment" for the first time in small models not from the Qwen family. We share the key designs that enable successful zero RL training, along with our findings and practices. To facilitate further research, we open-source the code, models, and analysis tools.
comment: Published as a conference paper at COLM 2025
♻ ☆ RAILGUN: A Unified Convolutional Policy for Multi-Agent Path Finding Across Different Environments and Tasks
Multi-Agent Path Finding (MAPF), which focuses on finding collision-free paths for multiple robots, is crucial for applications ranging from aerial swarms to warehouse automation. Solving MAPF is NP-hard so learning-based approaches for MAPF have gained attention, particularly those leveraging deep neural networks. Nonetheless, despite the community's continued efforts, all learning-based MAPF planners still rely on decentralized planning due to variability in the number of agents and map sizes. We have developed the first centralized learning-based policy for MAPF problem called RAILGUN. RAILGUN is not an agent-based policy but a map-based policy. By leveraging a CNN-based architecture, RAILGUN can generalize across different maps and handle any number of agents. We collect trajectories from rule-based methods to train our model in a supervised way. In experiments, RAILGUN outperforms most baseline methods and demonstrates great zero-shot generalization capabilities on various tasks, maps and agent numbers that were not seen in the training dataset.
comment: 7 pages
♻ ☆ Gauge Flow Models
This paper introduces Gauge Flow Models, a novel class of Generative Flow Models. These models incorporate a learnable Gauge Field within the Flow Ordinary Differential Equation (ODE). A comprehensive mathematical framework for these models, detailing their construction and properties, is provided. Experiments using Flow Matching on Gaussian Mixture Models demonstrate that Gauge Flow Models yields significantly better performance than traditional Flow Models of comparable or even larger size. Additionally, unpublished research indicates a potential for enhanced performance across a broader range of generative tasks.
♻ ☆ Comparative Study of State-based Neural Networks for Virtual Analog Audio Effects Modeling
Artificial neural networks are a promising technique for virtual analog modeling, having shown particular success in emulating distortion circuits. Despite their potential, enhancements are needed to enable effect parameters to influence the network's response and to achieve a low-latency output. While hybrid solutions, which incorporate both analytical and black-box techniques, offer certain advantages, black-box approaches, such as neural networks, can be preferable in contexts where rapid deployment, simplicity, or adaptability are required, and where understanding the internal mechanisms of the system is less critical. In this article, we explore the application of recent machine learning advancements for virtual analog modeling. We compare State-Space models and Linear Recurrent Units against the more common LSTM networks, with a variety of audio effects. We evaluate the performance and limitations of these models using multiple metrics, providing insights for future research and development. Our metrics aim to assess the models' ability to accurately replicate the signal's energy and frequency contents, with a particular focus on transients. The Feature-wise Linear Modulation method is employed to incorporate effect parameters that influence the network's response, enabling dynamic adaptability based on specified conditions. Experimental results suggest that LSTM networks offer an advantage in emulating distortions and equalizers, although performance differences are sometimes subtle yet statistically significant. On the other hand, encoder-decoder configurations of Long Short-Term Memory networks and State-Space models excel in modeling saturation and compression, effectively managing the dynamic aspects inherent in these effects. However, no models effectively emulate the low-pass filter, and Linear Recurrent Units show inconsistent performance across various audio effects.
comment: In EURASIP Journal on Audio, Speech, and Music Processing 2025
♻ ☆ A Comparative Study of Specialized LLMs as Dense Retrievers AI
While large language models (LLMs) are increasingly deployed as dense retrievers, the impact of their domain-specific specialization on retrieval effectiveness remains underexplored. This investigation systematically examines how task-specific adaptations in LLMs influence their retrieval capabilities, an essential step toward developing unified retrievers capable of handling text, code, images, and multimodal content. We conduct extensive experiments with eight Qwen2.5 7B LLMs, including base, instruction-tuned, code/math-specialized, long reasoning, and vision-language models across zero-shot retrieval settings and the supervised setting. For the zero-shot retrieval settings, we consider text retrieval from the BEIR benchmark and code retrieval from the CoIR benchmark. Further, to evaluate supervised performance, all LLMs are fine-tuned on the MS MARCO dataset. We find that mathematical specialization and the long reasoning capability cause consistent degradation in three settings, indicating conflicts between mathematical reasoning and semantic matching. The vision-language model and code-specialized LLMs demonstrate superior zero-shot performance compared to other LLMs, even surpassing BM25 on the code retrieval task, and maintain comparable performance to base LLMs in supervised settings. These findings suggest promising directions for the unified retrieval task leveraging cross-domain and cross-modal fusion.
comment: Accepted by CCIR25 and published by Springer LNCS or LNAI
♻ ☆ IS-Bench: Evaluating Interactive Safety of VLM-Driven Embodied Agents in Daily Household Tasks
Flawed planning from VLM-driven embodied agents poses significant safety hazards, hindering their deployment in real-world household tasks. However, existing static, non-interactive evaluation paradigms fail to adequately assess risks within these interactive environments, since they cannot simulate dynamic risks that emerge from an agent's actions and rely on unreliable post-hoc evaluations that ignore unsafe intermediate steps. To bridge this critical gap, we propose evaluating an agent's interactive safety: its ability to perceive emergent risks and execute mitigation steps in the correct procedural order. We thus present IS-Bench, the first multi-modal benchmark designed for interactive safety, featuring 161 challenging scenarios with 388 unique safety risks instantiated in a high-fidelity simulator. Crucially, it facilitates a novel process-oriented evaluation that verifies whether risk mitigation actions are performed before/after specific risk-prone steps. Extensive experiments on leading VLMs, including the GPT-4o and Gemini-2.5 series, reveal that current agents lack interactive safety awareness, and that while safety-aware Chain-of-Thought can improve performance, it often compromises task completion. By highlighting these critical limitations, IS-Bench provides a foundation for developing safer and more reliable embodied AI systems. Code and data are released under [this https URL](https://github.com/AI45Lab/IS-Bench).
♻ ☆ From Entanglement to Alignment: Representation Space Decomposition for Unsupervised Time Series Domain Adaptation
Domain shift poses a fundamental challenge in time series analysis, where models trained on source domain often fail dramatically when applied in target domain with different yet similar distributions. While current unsupervised domain adaptation (UDA) methods attempt to align cross-domain feature distributions, they typically treat features as indivisible entities, ignoring their intrinsic compositions that govern domain adaptation. We introduce DARSD, a novel UDA framework with theoretical explainability that explicitly realizes UDA tasks from the perspective of representation space decomposition. Our core insight is that effective domain adaptation requires not just alignment, but principled disentanglement of transferable knowledge from mixed representations. DARSD consists of three synergistic components: (I) An adversarial learnable common invariant basis that projects original features into a domain-invariant subspace while preserving semantic content; (II) A prototypical pseudo-labeling mechanism that dynamically separates target features based on confidence, hindering error accumulation; (III) A hybrid contrastive optimization strategy that simultaneously enforces feature clustering and consistency while mitigating emerging distribution gaps. Comprehensive experiments conducted on four benchmarks (WISDM, HAR, HHAR, and MFD) demonstrate DARSD's superiority against 12 UDA algorithms, achieving optimal performance in 35 out of 53 scenarios and ranking first across all benchmarks.
comment: 15 pages, 7 figures
♻ ☆ Evaluating User Experience in Conversational Recommender Systems: A Systematic Review Across Classical and LLM-Powered Approaches
Conversational Recommender Systems (CRSs) are receiving growing research attention across domains, yet their user experience (UX) evaluation remains limited. Existing reviews largely overlook empirical UX studies, particularly in adaptive and large language model (LLM)-based CRSs. To address this gap, we conducted a systematic review following PRISMA guidelines, synthesising 23 empirical studies published between 2017 and 2025. We analysed how UX has been conceptualised, measured, and shaped by domain, adaptivity, and LLM. Our findings reveal persistent limitations: post hoc surveys dominate, turn-level affective UX constructs are rarely assessed, and adaptive behaviours are seldom linked to UX outcomes. LLM-based CRSs introduce further challenges, including epistemic opacity and verbosity, yet evaluations infrequently address these issues. We contribute a structured synthesis of UX metrics, a comparative analysis of adaptive and nonadaptive systems, and a forward-looking agenda for LLM-aware UX evaluation. These findings support the development of more transparent, engaging, and user-centred CRS evaluation practices.
comment: Accepted at OzCHI 2025. 23 pages, 1 figure, 5 tables
♻ ☆ Parse Trees Guided LLM Prompt Compression TPAMI
Offering rich contexts to Large Language Models (LLMs) has shown to boost the performance in various tasks, but the resulting longer prompt would increase the computational cost and might exceed the input limit of LLMs. Recently, some prompt compression methods have been suggested to shorten the length of prompts by using language models to generate shorter prompts or by developing computational models to select important parts of original prompt. The generative compression methods would suffer from issues like hallucination, while the selective compression methods have not involved linguistic rules and overlook the global structure of prompt. To this end, we propose a novel selective compression method called PartPrompt. It first obtains a parse tree for each sentence based on linguistic rules, and calculates local information entropy for each node in a parse tree. These local parse trees are then organized into a global tree according to the hierarchical structure such as the dependency of sentences, paragraphs, and sections. After that, the root-ward propagation and leaf-ward propagation are proposed to adjust node values over the global tree. Finally, a recursive algorithm is developed to prune the global tree based on the adjusted node values. The experiments show that PartPrompt receives the state-of-the-art performance across various datasets, metrics, compression ratios, and target LLMs for inference. The in-depth ablation studies confirm the effectiveness of designs in PartPrompt, and other additional experiments also demonstrate its superiority in terms of the coherence of compressed prompts and in the extreme long prompt scenario.
comment: IEEE TPAMI major revision submitted
♻ ☆ HyCodePolicy: Hybrid Language Controllers for Multimodal Monitoring and Decision in Embodied Agents ICCV 2025
Recent advances in multimodal large language models (MLLMs) have enabled richer perceptual grounding for code policy generation in embodied agents. However, most existing systems lack effective mechanisms to adaptively monitor policy execution and repair codes during task completion. In this work, we introduce HyCodePolicy, a hybrid language-based control framework that systematically integrates code synthesis, geometric grounding, perceptual monitoring, and iterative repair into a closed-loop programming cycle for embodied agents. Technically, given a natural language instruction, our system first decomposes it into subgoals and generates an initial executable program grounded in object-centric geometric primitives. The program is then executed in simulation, while a vision-language model (VLM) observes selected checkpoints to detect and localize execution failures and infer failure reasons. By fusing structured execution traces capturing program-level events with VLM-based perceptual feedback, HyCodePolicy infers failure causes and repairs programs. This hybrid dual feedback mechanism enables self-correcting program synthesis with minimal human supervision. Our results demonstrate that HyCodePolicy significantly improves the robustness and sample efficiency of robot manipulation policies, offering a scalable strategy for integrating multimodal reasoning into autonomous decision-making pipelines.
comment: Accepted to ICCV 2025 Workshop on Multi-Modal Reasoning for Agentic Intelligence
♻ ☆ UnMix-NeRF: Spectral Unmixing Meets Neural Radiance Fields ICCV 2025
Neural Radiance Field (NeRF)-based segmentation methods focus on object semantics and rely solely on RGB data, lacking intrinsic material properties. This limitation restricts accurate material perception, which is crucial for robotics, augmented reality, simulation, and other applications. We introduce UnMix-NeRF, a framework that integrates spectral unmixing into NeRF, enabling joint hyperspectral novel view synthesis and unsupervised material segmentation. Our method models spectral reflectance via diffuse and specular components, where a learned dictionary of global endmembers represents pure material signatures, and per-point abundances capture their distribution. For material segmentation, we use spectral signature predictions along learned endmembers, allowing unsupervised material clustering. Additionally, UnMix-NeRF enables scene editing by modifying learned endmember dictionaries for flexible material-based appearance manipulation. Extensive experiments validate our approach, demonstrating superior spectral reconstruction and material segmentation to existing methods. Project page: https://www.factral.co/UnMix-NeRF.
comment: Paper accepted at ICCV 2025 main conference
♻ ☆ Text-Only Reasoning Unleashes Zero-Shot Multimodal Evaluators
Human-generated reward signals are critical for aligning generative models with human preferences, guiding both training and inference-time evaluations. While large language models (LLMs) employed as proxy evaluators, i.e., LLM-as-a-Judge, significantly reduce the costs associated with manual annotations, they typically require extensive modality-specific training data and fail to generalize well across diverse multimodal tasks. In this paper, we propose Flex-Judge, a reasoning-guided multimodal judge model that leverages minimal textual reasoning data to robustly generalize across multiple modalities and evaluation formats. Our core intuition is that structured textual reasoning explanations inherently encode generalizable decision-making patterns, enabling an effective transfer to multimodal judgments, e.g., with images or videos. Empirical results demonstrate that Flex-Judge, despite being trained on significantly fewer text data, achieves competitive or superior performance compared to state-of-the-art commercial APIs and extensively trained multimodal evaluators. Notably, Flex-Judge presents broad impact in modalities like molecule, where comprehensive evaluation benchmarks are scarce, underscoring its practical value in resource-constrained domains. Our framework highlights reasoning-based text supervision as a powerful, cost-effective alternative to traditional annotation-intensive approaches, substantially advancing scalable multimodal model-as-a-judge.
comment: The code is available at https://github.com/jongwooko/flex-judge
♻ ☆ AVG-LLaVA: An Efficient Large Multimodal Model with Adaptive Visual Granularity ACL 2025
Recently, large multimodal models (LMMs) have achieved significant advancements. When dealing with high-resolution images, dominant LMMs typically divide them into multiple local images and a global image, leading to a large number of visual tokens. In this work, we introduce AVG-LLaVA, an LMM that can adaptively select the appropriate visual granularity based on the input image and instruction. Specifically, we first apply the multiple pooling layers to obtain visual tokens at different granularities. Then we propose a visual granularity router, which includes a Transformer layer, an MLP layer, and a voter layer, used to select the appropriate visual granularity based on the image and instruction. Furthermore, we put forward RGLF, a novel training paradigm that aims at aligning the granularity predicted by the router with the preferences of the LMM, without the need for additional manually annotated data. Extensive experiments and analysis show that AVG-LLaVA achieves superior performance across 11 benchmarks, as well as significantly reduces the number of visual tokens and speeds up inference (e.g., an 85.3% reduction in visual tokens and a 2.53$\times$ increase in inference speed on the AI2D benchmark).
comment: Accepted by ACL 2025 Findings
♻ ☆ Explain Less, Understand More: Jargon Detection via Personalized Parameter-Efficient Fine-tuning
Personalizing jargon detection and explanation is essential for making technical documents accessible to readers with diverse disciplinary backgrounds. However, tailoring models to individual users typically requires substantial annotation efforts and computational resources due to user-specific finetuning. To address this, we present a systematic study of personalized jargon detection, focusing on methods that are both efficient and scalable for real-world deployment. We explore two personalization strategies: (1) lightweight fine-tuning using Low-Rank Adaptation (LoRA) on open-source models, and (2) personalized prompting, which tailors model behavior at inference time without retaining. To reflect realistic constraints, we also investigate hybrid approaches that combine limited annotated data with unsupervised user background signals. Our personalized LoRA model outperforms GPT-4 by 21.4% in F1 score and exceeds the best performing oracle baseline by 8.3%. Remarkably, our method achieves comparable performance using only 10% of the annotated training data, demonstrating its practicality for resource-constrained settings. Our study offers the first work to systematically explore efficient, low-resource personalization of jargon detection using open-source language models, offering a practical path toward scalable, user-adaptive NLP system.
♻ ☆ DMSC: Dynamic Multi-Scale Coordination Framework for Time Series Forecasting
Time Series Forecasting (TSF) faces persistent challenges in modeling intricate temporal dependencies across different scales. Despite recent advances leveraging different decomposition operations and novel architectures based on CNN, MLP or Transformer, existing methods still struggle with static decomposition strategies, fragmented dependency modeling, and inflexible fusion mechanisms, limiting their ability to model intricate temporal dependencies. To explicitly solve the mentioned three problems respectively, we propose a novel Dynamic Multi-Scale Coordination Framework (DMSC) with Multi-Scale Patch Decomposition block (EMPD), Triad Interaction Block (TIB) and Adaptive Scale Routing MoE block (ASR-MoE). Specifically, EMPD is designed as a built-in component to dynamically segment sequences into hierarchical patches with exponentially scaled granularities, eliminating predefined scale constraints through input-adaptive patch adjustment. TIB then jointly models intra-patch, inter-patch, and cross-variable dependencies within each layer's decomposed representations. EMPD and TIB are jointly integrated into layers forming a multi-layer progressive cascade architecture, where coarse-grained representations from earlier layers adaptively guide fine-grained feature extraction in subsequent layers via gated pathways. And ASR-MoE dynamically fuses multi-scale predictions by leveraging specialized global and local experts with temporal-aware weighting. Comprehensive experiments on thirteen real-world benchmarks demonstrate that DMSC consistently maintains state-of-the-art (SOTA) performance and superior computational efficiency for TSF tasks. Code is available at https://github.com/1327679995/DMSC.
♻ ☆ EmoSteer-TTS: Fine-Grained and Training-Free Emotion-Controllable Text-to-Speech via Activation Steering
Text-to-speech (TTS) has shown great progress in recent years. However, most existing TTS systems offer only coarse and rigid emotion control, typically via discrete emotion labels or a carefully crafted and detailed emotional text prompt, making fine-grained emotion manipulation either inaccessible or unstable. These models also require extensive, high-quality datasets for training. To address these limitations, we propose EmoSteer-TTS, a novel training-free approach, to achieve fine-grained speech emotion control (conversion, interpolation, erasure) by activation steering. We first empirically observe that modifying a subset of the internal activations within a flow matching-based TTS model can effectively alter the emotional tone of synthesized speech. Building on this insight, we then develop a training-free and efficient algorithm, including activation extraction, emotional token searching, and inference-time steering, which can be seamlessly integrated into a wide range of pretrained models (e.g., F5-TTS, CosyVoice2, and E2-TTS). In addition, to derive effective steering vectors, we construct a curated emotional speech dataset with diverse speakers. Extensive experiments demonstrate that EmoSteer-TTS enables fine-grained, interpretable, and continuous control over speech emotion, outperforming the state-of-the-art (SOTA). To the best of our knowledge, this is the first method that achieves training-free and continuous fine-grained emotion control in TTS.
♻ ☆ Learning to Inference Adaptively for Multimodal Large Language Models ICCV 2025
Multimodal Large Language Models (MLLMs) have shown impressive capabilities in visual reasoning, yet come with substantial computational cost, limiting their deployment in resource-constrained settings. Despite recent effort on improving the efficiency of MLLMs, prior solutions fall short in responding to varying runtime conditions, in particular changing resource availability (e.g., contention due to the execution of other programs on the device). To bridge this gap, we introduce AdaLLaVA, an adaptive inference framework that learns to dynamically reconfigure operations in an MLLM during inference, accounting for the input data and a latency budget. We conduct extensive experiments across benchmarks involving question-answering, reasoning, and hallucination. Our results show that AdaLLaVA effectively adheres to input latency budget, achieving varying accuracy and latency tradeoffs at runtime. Further, we demonstrate that AdaLLaVA adapts to both input latency and content, can be integrated with token selection for enhanced efficiency, and generalizes across MLLMs. Our project webpage with code release is at https://zhuoyan-xu.github.io/ada-llava/.
comment: Published at ICCV 2025
♻ ☆ CAIN: Hijacking LLM-Humans Conversations via Malicious System Prompts
Large language models (LLMs) have advanced many applications, but are also known to be vulnerable to adversarial attacks. In this work, we introduce a novel security threat: hijacking AI-human conversations by manipulating LLMs' system prompts to produce malicious answers only to specific targeted questions (e.g., "Who should I vote for US President?", "Are Covid vaccines safe?"), while behaving benignly on others. This attack is detrimental as it can enable malicious actors to exercise large-scale information manipulation by spreading harmful but benign-looking system prompts online. To demonstrate such an attack, we develop CAIN, an algorithm that can automatically curate such harmful system prompts for a specific target question in a black-box setting or without the need to access the LLM's parameters. Evaluated on both open-source and commercial LLMs, CAIN demonstrates significant adversarial impact. In untargeted attacks or forcing LLMs to output incorrect answers, CAIN achieves up to 40% F1 degradation on targeted questions while preserving high accuracy on benign inputs. For targeted attacks or forcing LLMs to output specific harmful answers, CAIN achieves over 70% F1 scores on these targeted responses with minimal impact on benign questions. Our results highlight the critical need for enhanced robustness measures to safeguard the integrity and safety of LLMs in real-world applications. All source code will be publicly available.
Computational Engineering, Finance, and Science 16
☆ FinMMR: Make Financial Numerical Reasoning More Multimodal, Comprehensive, and Challenging ICCV 2025
We present FinMMR, a novel bilingual multimodal benchmark tailored to evaluate the reasoning capabilities of multimodal large language models (MLLMs) in financial numerical reasoning tasks. Compared to existing benchmarks, our work introduces three significant advancements. (1) Multimodality: We meticulously transform existing financial reasoning benchmarks, and construct novel questions from the latest Chinese financial research reports. FinMMR comprises 4.3K questions and 8.7K images spanning 14 categories, including tables, bar charts, and ownership structure charts. (2) Comprehensiveness: FinMMR encompasses 14 financial subdomains, including corporate finance, banking, and industry analysis, significantly exceeding existing benchmarks in financial domain knowledge breadth. (3) Challenge: Models are required to perform multi-step precise numerical reasoning by integrating financial knowledge with the understanding of complex financial images and text. The best-performing MLLM achieves only 53.0% accuracy on Hard problems. We believe that FinMMR will drive advancements in enhancing the reasoning capabilities of MLLMs in real-world scenarios.
comment: Accepted by ICCV 2025. arXiv admin note: text overlap with arXiv:2311.06602 by other authors
☆ Bridging Simulation and Experiment: A Self-Supervised Domain Adaptation Framework for Concrete Damage Classification
Reliable assessment of concrete degradation is critical for ensuring structural safety and longevity of engineering structures. This study proposes a self-supervised domain adaptation framework for robust concrete damage classification using coda wave signals. To support this framework, an advanced virtual testing platform is developed, combining multiscale modeling of concrete degradation with ultrasonic wave propagation simulations. This setup enables the generation of large-scale labeled synthetic data under controlled conditions, reducing the dependency on costly and time-consuming experimental labeling. However, neural networks trained solely on synthetic data often suffer from degraded performance when applied to experimental data due to domain shifts. To bridge this domain gap, the proposed framework integrates domain adversarial training, minimum class confusion loss, and the Bootstrap Your Own Latent (BYOL) strategy. These components work jointly to facilitate effective knowledge transfer from the labeled simulation domain to the unlabeled experimental domain, achieving accurate and reliable damage classification in concrete. Extensive experiments demonstrate that the proposed method achieves notable performance improvements, reaching an accuracy of 0.7762 and a macro F1 score of 0.7713, outperforming both the plain 1D CNN baseline and six representative domain adaptation techniques. Moreover, the method exhibits high robustness across training runs and introduces only minimal additional computational cost. These findings highlight the practical potential of the proposed simulation-driven and label-efficient framework for real-world applications in structural health monitoring.
☆ Compressing Large Language Models with PCA Without Performance Loss
We demonstrate that Principal Component Analysis (PCA), when applied in a structured manner, either to polar-transformed images or segment-wise to token sequences, enables extreme compression of neural models without sacrificing performance. Across three case studies, we show that a one-layer classifier trained on PCA-compressed polar MNIST achieves over 98 percent accuracy using only 840 parameters. A two-layer transformer trained on 70-dimensional PCA-reduced MiniLM embeddings reaches 76.62 percent accuracy on the 20 Newsgroups dataset with just 81000 parameters. A decoder-only transformer generates coherent token sequences from 70-dimensional PCA embeddings while preserving over 97 percent cosine similarity with full MiniLM representations, using less than 17 percent of the parameter count of GPT-2. These results highlight PCA-based input compression as a general and effective strategy for aligning model capacity with information content, enabling lightweight architectures across multiple modalities.
comment: 23 pages. 4 figures, submitted to journal
☆ Multi-Agent Taskforce Collaboration: Self-Correction of Compounding Errors in Long-Form Literature Review Generation
Literature reviews play an important role in scientific research. Recent advances in large language models (LLMs) have boosted the development of automated systems for the entire literature review workflow, from retrieval to manuscript drafting. However, a key challenge is that mistakes made in early stages can propagate and amplify in subsequent steps, leading to compounding errors that undermine the faithfulness of the final review. To tackle this issue, we propose the Multi-Agent Taskforce Collaboration (MATC) framework, which consists of a manager agent and four executor agents for literature searching, outline generation, fact localization, and manuscript drafting. We propose three novel collaboration paradigms, forming exploration, exploitation, and experience taskforces, to effectively organize agents and mitigate compounding errors both between and within executor agents. Experimental results show that MATC achieves state-of-the-art performance on existing benchmarks. We further propose a new benchmark dataset featuring more diverse topics for faithful literature review generation.
☆ Extreme Event Precursor Prediction in Turbulent Dynamical Systems via CNN-Augmented Recurrence Analysis
We present a general framework to predict precursors to extreme events in turbulent dynamical systems. The approach combines phase-space reconstruction techniques with recurrence matrices and convolutional neural networks to identify precursors to extreme events. We evaluate the framework across three distinct testbed systems: a triad turbulent interaction model, a prototype stochastic anisotropic turbulent flow, and the Kolmogorov flow. This method offers three key advantages: (1) a threshold-free classification strategy that eliminates subjective parameter tuning, (2) efficient training using only $\mathcal{O}(100)$ recurrence matrices, and (3) ability to generalize to unseen systems. The results demonstrate robust predictive performance across all test systems: 96\% detection rate for the triad model with a mean lead time of 1.8 time units, 96\% for the anisotropic turbulent flow with a mean lead time of 6.1 time units, and 93\% for the Kolmogorov flow with a mean lead time of 22.7 units.
☆ Method-Based Reasoning for Large Language Models: Extraction, Reuse, and Continuous Improvement
Large language models (LLMs) have shown impressive capabilities across a wide range of language tasks. However, their reasoning process is primarily guided by statistical patterns in training data, which limits their ability to handle novel problems and perform consistent logical reasoning. In this paper, we propose a method-based model that enhances LLMs with explicit, reusable procedures extracted from training content, generated responses, and user interactions. Each method is represented as a pair consisting of a problem and its corresponding solution, stored externally and ranked based on feedback. When a new query is received, the system retrieves and applies the most relevant methods to guide the LLM's response. Our model enables continual learning, method reuse, and logical consistency beyond next-token prediction. Experimental results demonstrate that the system improves factual verification and generalization in complex prompts, and that newly learned methods can outperform earlier ones through user-driven refinement.
☆ A Generic Framework for Optimization in Blockchain Simulators
As blockchain technology rapidly evolves, researchers face a significant challenge due to diverse and non-standardized simulation parameters, which hinder the replicability and comparability of research methodologies. This paper introduces a Generic Framework for Optimization in Blockchain Simulators (GFOBS), a comprehensive and adaptable solution designed to standardize and optimize blockchain simulations. GFOBS provides a flexible platform that supports various optimization algorithms, variables, and objectives, thereby catering to a wide range of blockchain research needs. The paper's key contributions are threefold: the development of GFOBS as a versatile tool for blockchain simulation optimization; the introduction of an innovative optimization method using warm starting technique; and the proposition of a novel concurrent multiprocessing technique for simultaneous simulation processes. These advancements collectively enhance the efficiency, replicability, and standardization of blockchain simulation experiments.
☆ Convolutional autoencoders for the reconstruction of three-dimensional interfacial multiphase flows
In this work, we perform a comprehensive investigation of autoencoders for reduced-order modeling of three-dimensional multiphase flows. Focusing on the accuracy of reconstructing multiphase flow volume/mass fractions with a standard convolutional architecture, we examine the advantages and disadvantages of different interface representation choices (diffuse, sharp, level set). We use a combination of synthetic data with non-trivial interface topologies and high-resolution simulation data of multiphase homogeneous isotropic turbulence for training and validation. This study clarifies the best practices for reducing the dimensionality of multiphase flows via autoencoders. Consequently, this paves the path for uncoupling the training of autoencoders for accurate reconstruction and the training of temporal or input/output models such as neural operators (e.g., FNOs, DeepONets) and neural ODEs on the lower-dimensional latent space given by the autoencoders. As such, the implications of this study are significant and of interest to the multiphase flow community and beyond.
☆ A GPU-Accelerated Three-Dimensional Crack Element Method for Transient Dynamic Fracture Simulation
This work presents a novel three-dimensional Crack Element Method (CEM) designed to model transient dynamic crack propagation in quasi-brittle materials efficiently. CEM introduces an advanced element-splitting algorithm that enables element-wise crack growth, including crack branching. Based on the evolving topology of split elements, an original formulation for computing the fracture energy release rate in three dimensions is derived. A series of benchmark examples is conducted to demonstrate that the proposed 3D CEM accurately simulates both single crack propagation and complex crack branching scenarios. Furthermore, all three-dimensional simulations are GPU-accelerated, achieving high levels of computational efficiency, consistency, and accuracy.
☆ Tunable Plasmonic Absorption in Metal-Dielectric Multilayers via FDTD Simulations and an Explainable Machine Learning Approach
Plasmonic devices, fundamental to modern nanophotonics, exploit resonant interactions between light and free electrons in metals to achieve enhanced light trapping and electromagnetic field confinement. However, modeling their complex, nonlinear optical responses remains computationally intensive. In this work, we combine finite-difference time-domain simulations with machine learning to simulate and predict absorbed power behavior in multilayer plasmonic stacks composed of SiO2, gold, silver, and indium tin oxide. By varying Au and Ag thicknesses (10-50nm) across a spectral range of 300-1500nm, we generate spatial absorption maps and integrated power metrics from full-wave solutions to Maxwell's equations. A multilayer perceptron models global absorption behavior with a mean absolute error of 0.0953, while a convolutional neural network predicts spatial absorption distributions with an MAE of 0.0101. SHapley Additive exPlanations identify plasmonic layer thickness and excitation wavelength as dominant contributors to absorption, which peaks between 450 and 850~nm. Gold demonstrates broader and more sustained absorption compared to silver, although both metals exhibit reduced efficiency outside the resonance window. This integrated FDTD-ML framework offers a fast, explainable, and accurate approach for investigating tunable plasmonic behavior in multilayer systems, with applications in optical sensing, photovoltaics, and nanophotonic device design.
comment: 19 pages, 9 Figures
☆ PriceFM: Foundation Model for Probabilistic Electricity Price Forecasting
Electricity price forecasting in Europe presents unique challenges due to the continent's increasingly integrated and physically interconnected power market. While recent advances in deep learning and foundation models have led to substantial improvements in general time series forecasting, most existing approaches fail to capture the complex spatial interdependencies and uncertainty inherent in electricity markets. In this paper, we address these limitations by introducing a comprehensive and up-to-date dataset across 24 European countries (38 regions), spanning from 2022-01-01 to 2025-01-01. Building on this groundwork, we propose PriceFM, a spatiotemporal foundation model that integrates graph-based inductive biases to capture spatial interdependencies across interconnected electricity markets. The model is designed for multi-region, multi-timestep, and multi-quantile probabilistic electricity price forecasting. Extensive experiments and ablation studies confirm the model's effectiveness, consistently outperforming competitive baselines and highlighting the importance of spatial context in electricity markets. The dataset and code can be found at https://github.com/runyao-yu/PriceFM.
comment: 12 pages, 5 figures, 5 tables
☆ Are Large Language Models Dynamic Treatment Planners? An In Silico Study from a Prior Knowledge Injection Angle
Reinforcement learning (RL)-based dynamic treatment regimes (DTRs) hold promise for automating complex clinical decision-making, yet their practical deployment remains hindered by the intensive engineering required to inject clinical knowledge and ensure patient safety. Recent advancements in large language models (LLMs) suggest a complementary approach, where implicit prior knowledge and clinical heuristics are naturally embedded through linguistic prompts without requiring environment-specific training. In this study, we rigorously evaluate open-source LLMs as dynamic insulin dosing agents in an in silico Type 1 diabetes simulator, comparing their zero-shot inference performance against small neural network-based RL agents (SRAs) explicitly trained for the task. Our results indicate that carefully designed zero-shot prompts enable smaller LLMs (e.g., Qwen2.5-7B) to achieve comparable or superior clinical performance relative to extensively trained SRAs, particularly in stable patient cohorts. However, LLMs exhibit notable limitations, such as overly aggressive insulin dosing when prompted with chain-of-thought (CoT) reasoning, highlighting critical failure modes including arithmetic hallucination, temporal misinterpretation, and inconsistent clinical logic. Incorporating explicit reasoning about latent clinical states (e.g., meals) yielded minimal performance gains, underscoring the current model's limitations in capturing complex, hidden physiological dynamics solely through textual inference. Our findings advocate for cautious yet optimistic integration of LLMs into clinical workflows, emphasising the necessity of targeted prompt engineering, careful validation, and potentially hybrid approaches that combine linguistic reasoning with structured physiological modelling to achieve safe, robust, and clinically effective decision-support systems.
comment: 20 pages
☆ Assessing Engineering Student Perceptions of Introductory CS Courses in an Indian Context
Understanding student perceptions of assessment is vital for designing inclusive and effective learning environments, especially in technical education. This study explores engineering students' perceptions of assessment practices in an introductory computer science/ programming course, and its associated laboratory within an Indian engineering institute context. A total of 318 first-year Bachelor of Technology students participated in a weekly 25-statement Likert-scale survey conducted over nine weeks. Using descriptive statistics and non-parametric tests (Mann-Whitney U and Kruskal-Wallis), the analysis reveals that students largely perceive lab assignments as effective learning activities and view exams and projects as authentic and skill-enhancing. Students appreciated the role of instructors in shaping course content and found teaching assistants to be approachable and helpful, despite some inconsistencies. The study also finds significant variations in students' academic performance and assessment perceptions based on prior programming experience, technology familiarity, gender, and academic branch. Notably, the performance data did not follow a Gaussian distribution, challenging common assumptions in grade modeling. A comparative analysis with European cohorts highlights both universal patterns and contextual differences, offering valuable insights for designing inclusive and equitable assessment strategies in programming education.
♻ ☆ FinanceReasoning: Benchmarking Financial Numerical Reasoning More Credible, Comprehensive and Challenging ACL 2025
We introduce FinanceReasoning, a novel benchmark designed to evaluate the reasoning capabilities of large reasoning models (LRMs) in financial numerical reasoning problems. Compared to existing benchmarks, our work provides three key advancements. (1) Credibility: We update 15.6% of the questions from four public datasets, annotating 908 new questions with detailed Python solutions and rigorously refining evaluation standards. This enables an accurate assessment of the reasoning improvements of LRMs. (2) Comprehensiveness: FinanceReasoning covers 67.8% of financial concepts and formulas, significantly surpassing existing datasets. Additionally, we construct 3,133 Python-formatted functions, which enhances LRMs' financial reasoning capabilities through refined knowledge (e.g., 83.2% $\rightarrow$ 91.6% for GPT-4o). (3) Challenge: Models are required to apply multiple financial formulas for precise numerical reasoning on 238 Hard problems. The best-performing model (i.e., OpenAI o1 with PoT) achieves 89.1% accuracy, yet LRMs still face challenges in numerical precision. We demonstrate that combining Reasoner and Programmer models can effectively enhance LRMs' performance (e.g., 83.2% $\rightarrow$ 87.8% for DeepSeek-R1). Our work paves the way for future research on evaluating and improving LRMs in domain-specific complex reasoning tasks.
comment: Accepted by ACL 2025 Main Conference
♻ ☆ A CFL condition for the finite cell method
Immersed boundary finite element methods allow the user to bypass the potentially troublesome task of boundary-conforming mesh generation. When combined with explicit time integration, poorly cut elements with little support in the physical domain lead to a severely reduced critical time step size, posing a major challenge for immersed wave propagation simulations. The finite cell method stabilizes cut elements by defining the weak form of the problem also in the fictitious domain, but scaled by a small value $\alpha$. This paper investigates the effect of the finite cell method on the critical time step size for explicit time integration. Starting with an analytical one-degree-of-freedom model, we systematically study the influence of $\alpha$-stabilization on the maximum eigenvalue, and thus on the critical time step size, for corner and sliver cuts. The analysis is complemented by a numerical study of an example with one element and increasing polynomial degree, confirming that the critical time step size does not decrease below a certain limit, even as the cut fraction tends to zero. This lower bound is controlled by the choice of $\alpha$. In higher dimensions, sliver cuts are found to be more detrimental than corner cuts, thus determining the minimum critical time step size. Increasing the polynomial degree has only little effect on this degradation. Based on these observations, we derive an estimate of the minimum critical time step size as a function of $\alpha$, which we use to propose a modified CFL condition for the finite cell method. The validity of this condition is demonstrated on a two-dimensional perforated plate example.
comment: 19 pages, 9 figures, 4 tables
♻ ☆ Evaluation of Deep Reinforcement Learning Algorithms for Portfolio Optimisation
We evaluate benchmark deep reinforcement learning algorithms on the task of portfolio optimisation using simulated data. The simulator to generate the data is based on correlated geometric Brownian motion with the Bertsimas-Lo market impact model. Using the Kelly criterion (log utility) as the objective, we can analytically derive the optimal policy without market impact as an upper bound to measure performance when including market impact. We find that the off-policy algorithms DDPG, TD3 and SAC are unable to learn the right $Q$-function due to the noisy rewards and therefore perform poorly. The on-policy algorithms PPO and A2C, with the use of generalised advantage estimation, are able to deal with the noise and derive a close to optimal policy. The clipping variant of PPO was found to be important in preventing the policy from deviating from the optimal once converged. In a more challenging environment where we have regime changes in the GBM parameters, we find that PPO, combined with a hidden Markov model to learn and predict the regime context, is able to learn different policies adapted to each regime. Overall, we find that the sample complexity of these algorithms is too high for applications using real data, requiring more than 2m steps to learn a good policy in the simplest setting, which is equivalent to almost 8,000 years of daily prices.
Databases 7
☆ [Technical Report] ArceKV: Towards Workload-driven LSM-compactions for Key-Value Store Under Dynamic Workloads
Key-value stores underpin a wide range of applications due to their simplicity and efficiency. Log-Structured Merge Trees (LSM-trees) dominate as their underlying structure, excelling at handling rapidly growing data. Recent research has focused on optimizing LSM-tree performance under static workloads with fixed read-write ratios. However, real-world workloads are highly dynamic, and existing workload-aware approaches often struggle to sustain optimal performance or incur substantial transition overhead when workload patterns shift. To address this, we propose ElasticLSM, which removes traditional LSM-tree structural constraints to allow more flexible management actions (i.e., compactions and write stalls) creating greater opportunities for continuous performance optimization. We further design Arce, a lightweight compaction decision engine that guides ElasticLSM in selecting the optimal action from its expanded action space. Building on these components, we implement ArceKV, a full-fledged key-value store atop RocksDB. Extensive evaluations demonstrate that ArceKV outperforms state-of-the-art compaction strategies across diverse workloads, delivering around 3x faster performance in dynamic scenarios.
comment: 17 pages, 11 figures
☆ Learned Adaptive Indexing
Indexes can significantly improve search performance in relational databases. However, if the query workload changes frequently or new data updates occur continuously, it may not be worthwhile to build a conventional index upfront for query processing. Adaptive indexing is a technique in which an index gets built on the fly as a byproduct of query processing. In recent years, research in database indexing has taken a new direction where machine learning models are employed for the purpose of indexing. These indexes, known as learned indexes, can be more efficient compared to traditional indexes such as B+-tree in terms of memory footprints and query performance. However, a learned index has to be constructed upfront and requires training the model in advance, which becomes a challenge in dynamic situations when workload changes frequently. To the best of our knowledge, no learned indexes exist yet for adaptive indexing. We propose a novel learned approach for adaptive indexing. It is built on the fly as queries are submitted and utilizes learned models for indexing data. To enhance query performance, we employ a query workload prediction technique that makes future workload projection based on past workload data. We have evaluated our learned adaptive indexing approach against existing adaptive indexes for various query workloads. Our results show that our approach performs better than others in most cases, offering 1.2x - 5.6x improvement in query performance.
☆ A Robust and Efficient Pipeline for Enterprise-Level Large-Scale Entity Resolution
Entity resolution (ER) remains a significant challenge in data management, especially when dealing with large datasets. This paper introduces MERAI (Massive Entity Resolution using AI), a robust and efficient pipeline designed to address record deduplication and linkage issues in high-volume datasets at an enterprise level. The pipeline's resilience and accuracy have been validated through various large-scale record deduplication and linkage projects. To evaluate MERAI's performance, we compared it with two well-known entity resolution libraries, Dedupe and Splink. While Dedupe failed to scale beyond 2 million records due to memory constraints, MERAI successfully processed datasets of up to 15.7 million records and produced accurate results across all experiments. Experimental data demonstrates that MERAI outperforms both baseline systems in terms of matching accuracy, with consistently higher F1 scores in both deduplication and record linkage tasks. MERAI offers a scalable and reliable solution for enterprise-level large-scale entity resolution, ensuring data integrity and consistency in real-world applications.
comment: 10 pages, 5 figures
☆ Presenting DiaData for Research on Type 1 Diabetes
Type 1 diabetes (T1D) is an autoimmune disorder that leads to the destruction of insulin-producing cells, resulting in insulin deficiency, as to why the affected individuals depend on external insulin injections. However, insulin can decrease blood glucose levels and can cause hypoglycemia. Hypoglycemia is a severe event of low blood glucose levels ($\le$70 mg/dL) with dangerous side effects of dizziness, coma, or death. Data analysis can significantly enhance diabetes care by identifying personal patterns and trends leading to adverse events. Especially, machine learning (ML) models can predict glucose levels and provide early alarms. However, diabetes and hypoglycemia research is limited by the unavailability of large datasets. Thus, this work systematically integrates 15 datasets to provide a large database of 2510 subjects with glucose measurements recorded every 5 minutes. In total, 149 million measurements are included, of which 4% represent values in the hypoglycemic range. Moreover, two sub-databases are extracted. Sub-database I includes demographics, and sub-database II includes heart rate data. The integrated dataset provides an equal distribution of sex and different age levels. As a further contribution, data quality is assessed, revealing that data imbalance and missing values present a significant challenge. Moreover, a correlation study on glucose levels and heart rate data is conducted, showing a relation between 15 and 55 minutes before hypoglycemia.
comment: 11 pages, 7 figures, 3 tables
♻ ☆ M2: An Analytic System with Specialized Storage Engines for Multi-Model Workloads
Modern data analytic workloads increasingly require handling multiple data models simultaneously. Two primary approaches meet this need: polyglot persistence and multi-model database systems. Polyglot persistence employs a coordinator program to manage several independent database systems but suffers from high communication costs due to its physically disaggregated architecture. Meanwhile, existing multi-model database systems rely on a single storage engine optimized for a specific data model, resulting in inefficient processing across diverse data models. To address these limitations, we present M2, a multi-model analytic system with integrated storage engines. M2 treats all data models as first-class entities, composing query plans that incorporate operations across models. To effectively combine data from different models, the system introduces a specialized inter-model join algorithm called multi-stage hash join. Our evaluation demonstrates that M2 outperforms existing approaches by up to 188x speedup on multi-model analytics, confirming the effectiveness of our proposed techniques.
♻ ☆ From Stimuli to Minds: Enhancing Psychological Reasoning in LLMs via Bilateral Reinforcement Learning
Large Language Models show promise in emotion understanding, social reasoning, and empathy, yet they struggle with psychologically grounded tasks that require inferring implicit mental states in context-rich, ambiguous settings. These limitations arise from the absence of theory-aligned supervision and the difficulty of capturing nuanced mental processes in real-world narratives. To address this gap, we leverage expert-labeled, psychologically rich scenarios and propose a trajectory-aware reinforcement learning framework that explicitly imitates expert psychological thought patterns. By integrating real-world stimuli with structured reasoning guidance, our approach enables compact models to internalize social-cognitive principles, perform nuanced psychological inference, and support continual self-improvement. Comprehensive experiments across multiple benchmarks further demonstrate that our models achieve expert-level interpretive capabilities, exhibiting strong out-of-distribution generalization and robust continual learning across diverse, challenging, and psychologically grounded tasks.
♻ ☆ Decentralized Graph-based Concurrency Control for Long-running Update Transactions (Extended Version)
This paper proposes Oze, a concurrency control protocol that handles heterogeneous workloads, including long-running update transactions. Oze explores a large scheduling space using a multi-version serialization graph to reduce false positives. Oze manages the graph in a decentralized manner to exploit many cores in modern servers. We further propose an OLTP benchmark, BoMB (Bill of Materials Benchmark), based on a use case in an actual manufacturing company. BoMB consists of one long-running update transaction and five short transactions that conflict with each other. Experiments using BoMB show that Oze can handle the long-running update transaction while achieving four orders of magnitude higher throughput than state-of-the-art optimistic and multi-version protocols and up to five times higher throughput than pessimistic protocols. We also show Oze performs comparably with existing techniques even in a typical OLTP workload, TPC-C, thanks to a protocol switching mechanism.
comment: 14 pages, 14 figures
Distributed, Parallel, and Cluster Computing 13
☆ Block: Balancing Load in LLM Serving with Context, Knowledge and Predictive Scheduling
This paper presents Block, a distributed scheduling framework designed to optimize load balancing and auto-provisioning across instances in large language model serving frameworks by leveraging contextual information from incoming requests. Unlike popular model serving systems that rely on monolithic and heuristic task schedulers, Block operates as a fully distributed, stateless, and predictive scheduling system to achieve low overhead, reliability, and scalability. It leverages the deterministic and predictable characteristics of LLM inferences, such as host configurations, response lengths, and hardware performance, to make scheduling decisions based on accurately predicted metrics. Evaluation on a 12 GPUs cluster shows that Block significantly outperforms heuristic schedulers, boosting serving capacity by up to 16.7\% and reducing P99 tail latency by up to 49.5\%. These performance gains remain consistent across diverse models, workloads and configurations. Code and data are open-sourced.
comment: 12 pages, 8 figures excluding appendix
☆ In-Memory Non-Binary LDPC Decoding
Low-density parity-check (LDPC) codes are an important feature of several communication and storage applications, offering a flexible and effective method for error correction. These codes are computationally complex and require the exploitation of parallel processing to meet real-time constraints. As advancements in arithmetic and logic unit technology allowed for higher performance of computing systems, memory technology has not kept the same pace of development, creating a data movement bottleneck and affecting parallel processing systems more dramatically. To alleviate the severity of this bottleneck, several solutions have been proposed, namely the processing in-memory (PiM) paradigm that involves the design of compute units to where (or near) the data is stored, utilizing thousands of low-complexity processing units to perform out bit-wise and simple arithmetic operations. This paper presents a novel efficient solution for near-memory non-binary LDPC decoders in the UPMEM system, for the best of our knowledge the first real hardware PiM-based non-binary LDPC decoder that is benchmarked against low-power GPU parallel solutions highly optimized for throughput performance. PiM-based non-binary LDPC decoders can achieve 76 Mbit/s of decoding throughput, which is even competitive when compared against implementations running in edge GPUs.
comment: 23 pages, 10 figures, and 4 tables
☆ Understanding the Landscape of Ampere GPU Memory Errors
Graphics Processing Units (GPUs) have become a de facto solution for accelerating high-performance computing (HPC) applications. Understanding their memory error behavior is an essential step toward achieving efficient and reliable HPC systems. In this work, we present a large-scale cross-supercomputer study to characterize GPU memory reliability, covering three supercomputers - Delta, Polaris, and Perlmutter - all equipped with NVIDIA A100 GPUs. We examine error logs spanning 67.77 million GPU device-hours across 10,693 GPUs. We compare error rates and mean-time-between-errors (MTBE) and highlight both shared and distinct error characteristics among these three systems. Based on these observations and analyses, we discuss the implications and lessons learned, focusing on the reliable operation of supercomputers, the choice of checkpointing interval, and the comparison of reliability characteristics with those of previous-generation GPUs. Our characterization study provides valuable insights into fault-tolerant HPC system design and operation, enabling more efficient execution of HPC applications.
☆ Optimal Simultaneous Byzantine Agreement, Common Knowledge and Limited Information Exchange
In order to develop solutions that perform actions as early as possible, analysis of distributed algorithms using epistemic logic has generally concentrated on ``full information protocols'', which may be inefficient with respect to space and computation time. The paper reconsiders the epistemic analysis of the problem of Simultaneous Byzantine Agreement with respect to weaker, but more practical, exchanges of information. The paper first clarifies some issues concerning both the specification of this problem and the knowledge based program characterizing its solution, concerning the distinction between the notions of ``nonfaulty'' and ``not yet failed'', on which there are variances in the literature. It is then shown that, when implemented relative to a given failure model and an information exchange protocol satisfying certain conditions, this knowledge based program yields a protocol that is optimal relative to solutions using the same information exchange. Conditions are also identified under which this implementation is also an optimum, but an example is provided that shows this does not hold in general.
☆ Directives for Function Offloading in 5G Networks Based on a Performance Characteristics Analysis
Cloud-based offloading helps address energy consumption and performance challenges in executing resource-intensive vehicle algorithms. Utilizing 5G, with its low latency and high bandwidth, enables seamless vehicle-to-cloud integration. Currently, only non-standalone 5G is publicly available, and real-world applications remain underexplored compared to theoretical studies. This paper evaluates 5G non-standalone networks for cloud execution of vehicle functions, focusing on latency, Round Trip Time, and packet delivery. Tests used two AI-based algorithms -- emotion recognition and object recognition -- along an 8.8 km route in Baden-W\"urttemberg, Germany, encompassing urban, rural, and forested areas. Two platforms were analyzed: a cloudlet in Frankfurt and a cloud in Mannheim, employing various deployment strategies like conventional applications and containerized and container-orchestrated setups. Key findings highlight an average signal quality of 84 %, with no connectivity interruptions despite minor drops in built-up areas. Packet analysis revealed a Packet Error Rate below 0.1 % for both algorithms. Transfer times varied significantly depending on the geographical location and the backend servers' network connections, while processing times were mainly influenced by the computation hardware in use. Additionally, cloud offloading seems only be a suitable option, when a round trip time of more than 150 ms is possible.
comment: 7 pages, 4 figures
☆ Frontier: Simulating the Next Generation of LLM Inference Systems
Large Language Model (LLM) inference is growing increasingly complex with the rise of Mixture-of-Experts (MoE) models and disaggregated architectures that decouple components like prefill/decode (PD) or attention/FFN (AF) for heterogeneous scaling. Existing simulators, architected for co-located, dense models, are unable to capture the intricate system dynamics of these emerging paradigms. We present Frontier, a high-fidelity simulator designed from the ground up for this new landscape. Frontier introduces a unified framework to model both co-located and disaggregated systems, providing native support for MoE inference with expert parallelism (EP). It enables the simulation of complex workflows like cross-cluster expert routing and advanced pipelining strategies for latency hiding. To ensure fidelity and usability, Frontier incorporates refined operator models for improved accuracy. Frontier empowers the community to design and optimize the future of LLM inference at scale.
☆ Intelligent Sampling of Extreme-Scale Turbulence Datasets for Accurate and Efficient Spatiotemporal Model Training
With the end of Moore's law and Dennard scaling, efficient training increasingly requires rethinking data volume. Can we train better models with significantly less data via intelligent subsampling? To explore this, we develop SICKLE, a sparse intelligent curation framework for efficient learning, featuring a novel maximum entropy (MaxEnt) sampling approach, scalable training, and energy benchmarking. We compare MaxEnt with random and phase-space sampling on large direct numerical simulation (DNS) datasets of turbulence. Evaluating SICKLE at scale on Frontier, we show that subsampling as a preprocessing step can improve model accuracy and substantially lower energy consumption, with reductions of up to 38x observed in certain cases.
comment: 14 pages, 8 figures, 2 tables
☆ Two-dimensional Sparse Parallelism for Large Scale Deep Learning Recommendation Model Training
The increasing complexity of deep learning recommendation models (DLRM) has led to a growing need for large-scale distributed systems that can efficiently train vast amounts of data. In DLRM, the sparse embedding table is a crucial component for managing sparse categorical features. Typically, these tables in industrial DLRMs contain trillions of parameters, necessitating model parallelism strategies to address memory constraints. However, as training systems expand with massive GPUs, the traditional fully parallelism strategies for embedding table post significant scalability challenges, including imbalance and straggler issues, intensive lookup communication, and heavy embedding activation memory. To overcome these limitations, we propose a novel two-dimensional sparse parallelism approach. Rather than fully sharding tables across all GPUs, our solution introduces data parallelism on top of model parallelism. This enables efficient all-to-all communication and reduces peak memory consumption. Additionally, we have developed the momentum-scaled row-wise AdaGrad algorithm to mitigate performance losses associated with the shift in training paradigms. Our extensive experiments demonstrate that the proposed approach significantly enhances training efficiency while maintaining model performance parity. It achieves nearly linear training speed scaling up to 4K GPUs, setting a new state-of-the-art benchmark for recommendation model training.
♻ ☆ xDeepServe: Model-as-a-Service on Huawei CloudMatrix384
The rise of scaled-out LLMs and scaled-up SuperPods signals a new era in large-scale AI infrastructure. LLMs continue to scale out via MoE, as seen in recent models like DeepSeek, Kimi, and Qwen. In parallel, AI hardware is scaling up, with Huawei's CloudMatrix384 SuperPod offering hundreds of GB/s high-speed interconnects. Running large MoE models on SuperPod-scale hardware brings new challenges. It requires new execution models, scalable scheduling, efficient expert load balancing, and elimination of single points of failure. This paper presents xDeepServe, Huawei Cloud's LLM serving system designed for SuperPod-scale infrastructure. At its core is Transformerless, a disaggregated architecture that decomposes transformer models into modular units--attention, feedforward, and MoE--executed independently on NPUs connected via high-speed fabric. We implement this design in two forms: disaggregated prefill-decode and disaggregated MoE-attention. This fully disaggregated setup enables independent scaling of compute and memory without sacrificing performance. To support this architecture, we propose XCCL, a communication library that leverages CloudMatrix384's global shared memory to implement efficient point-to-point and all-to-all primitives. We also extend our serving engine FlowServe with system-level techniques, enabling scalable inference across hundreds of NPUs.
♻ ☆ TAPAS: Fast and Automatic Derivation of Tensor Parallel Strategies for Large Neural Networks
Tensor parallelism is an essential technique for distributed training of large neural networks. However, automatically determining an optimal tensor parallel strategy is challenging due to the gigantic search space, which grows exponentially with model size and tensor dimension. This prohibits the adoption of auto-parallel systems on larger models. We observe that neural networks usually contain repeated substructures, and build an automatic parallelism framework named TAPAS that eliminates redundant search efforts. TAPAS employs a divide-and-conquer approach that efficiently folds the search space by identifying those unique substructures. As a result, it runs at sub-linear complexity concerning the model size, making it a scalable solution for training large-scale networks. Our evaluations demonstrate that TAPAS outperforms the state-of-the-art automatic parallelism frameworks by up to $160\times$ in search speed on a wide range of models, and the performance of derived strategies is competitive or even better compared with the expert-engineered Megatron-LM library.
comment: Accepted by 54th International Conference on Parallel Processing (ICPP'25)
♻ ☆ VeOmni: Scaling Any Modality Model Training with Model-Centric Distributed Recipe Zoo
Recent advances in large language models (LLMs) have driven impressive progress in omni-modal understanding and generation. However, training omni-modal LLMs remains a significant challenge due to the heterogeneous model architectures required to process diverse modalities, necessitating sophisticated system design for efficient large-scale training. Existing frameworks typically entangle model definition with parallel logic, incurring limited scalability and substantial engineering overhead for end-to-end omni-modal training. We present VeOmni, a modular and efficient training framework to accelerate the development of omni-modal LLMs. VeOmni introduces model-centric distributed recipes that decouples communication from computation, enabling efficient 3D parallelism on omni-modal LLMs. VeOmni also features a flexible configuration interface supporting seamless integration of new modalities with minimal code change. Using VeOmni, a omni-modal mixture-of-experts (MoE) model with 30B parameters can be trained with over 2,800 tokens/sec/GPU throughput and scale to 160K context lengths via 3D parallelism on 128 GPUs, showcasing its superior efficiency and scalability for training large omni-modal LLMs.
♻ ☆ P3SL: Personalized Privacy-Preserving Split Learning on Heterogeneous Edge Devices
Split Learning (SL) is an emerging privacy-preserving machine learning technique that enables resource constrained edge devices to participate in model training by partitioning a model into client-side and server-side sub-models. While SL reduces computational overhead on edge devices, it encounters significant challenges in heterogeneous environments where devices vary in computing resources, communication capabilities, environmental conditions, and privacy requirements. Although recent studies have explored heterogeneous SL frameworks that optimize split points for devices with varying resource constraints, they often neglect personalized privacy requirements and local model customization under varying environmental conditions. To address these limitations, we propose P3SL, a Personalized Privacy-Preserving Split Learning framework designed for heterogeneous, resource-constrained edge device systems. The key contributions of this work are twofold. First, we design a personalized sequential split learning pipeline that allows each client to achieve customized privacy protection and maintain personalized local models tailored to their computational resources, environmental conditions, and privacy needs. Second, we adopt a bi-level optimization technique that empowers clients to determine their own optimal personalized split points without sharing private sensitive information (i.e., computational resources, environmental conditions, privacy requirements) with the server. This approach balances energy consumption and privacy leakage risks while maintaining high model accuracy. We implement and evaluate P3SL on a testbed consisting of 7 devices including 4 Jetson Nano P3450 devices, 2 Raspberry Pis, and 1 laptop, using diverse model architectures and datasets under varying environmental conditions.
comment: Accepted as invited paper in The 34th International Conference on Computer Communications and Networks (ICCCN 2025)
♻ ☆ Vertex addition to a ball graph with application to reliability and area coverage in autonomous swarms
A unit ball graph consists of a set of vertices, labeled by points in Euclidean space, and edges joining all pairs of points within distance 1. These geometric graphs are used to model a variety of spatial networks, including communication networks between agents in an autonomous swarm. In such an application, vertices and/or edges of the graph may not be perfectly reliable; an agent may experience failure or a communication link rendered inoperable. With the goal of designing robust swarm formations, or unit ball graphs with high reliability (probability of connectedness), in a preliminary conference paper we provided an algorithm with cubic time complexity to determine all possible changes to a unit ball graph by repositioning a single vertex. Using this algorithm and Monte Carlo simulations, one obtains an efficient method to modify a unit ball graph by moving a single vertex to a location which maximizes the reliability. Another important consideration in many swarm missions is area coverage, yet highly reliable ball graphs often contain clusters of vertices. Here, we generalize our previous algorithm to improve area coverage as well as reliability. Our algorithm determines a location to add or move a vertex within a unit ball graph which maximizes the reliability, under the constraint that no other vertices of the graph be within some fixed distance. We compare this method of obtaining graphs with high reliability and evenly distributed area coverage to another method which uses a modified Fruchterman-Reingold algorithm for ball graphs.
Information Retrieval 33
☆ Personalized Recommendation of Dish and Restaurant Collections on iFood KDD
Food delivery platforms face the challenge of helping users navigate vast catalogs of restaurants and dishes to find meals they truly enjoy. This paper presents RED, an automated recommendation system designed for iFood, Latin America's largest on-demand food delivery platform, to personalize the selection of curated food collections displayed to millions of users. Our approach employs a LightGBM classifier that scores collections based on three feature groups: collection characteristics, user-collection similarity, and contextual information. To address the cold-start problem of recommending newly created collections, we develop content-based representations using item embeddings and implement monotonicity constraints to improve generalization. We tackle data scarcity by bootstrapping from category carousel interactions and address visibility bias through unbiased sampling of impressions and purchases in production. The system demonstrates significant real-world impact through extensive A/B testing with 5-10% of iFood's user base. Online results of our A/B tests add up to 97% improvement in Card Conversion Rate and 1.4% increase in overall App Conversion Rate compared to popularity-based baselines. Notably, our offline accuracy metrics strongly correlate with online performance, enabling reliable impact prediction before deployment. To our knowledge, this is the first work to detail large-scale recommendation of curated food collections in a dynamic commercial environment.
comment: Workshop on Two-sided Marketplace Optimization: Search, Discovery, Matching, Pricing & Growth in conjunction with KDD Conference (KDD 2025) in Toronto, Canada
☆ Are We on the Right Way for Assessing Document Retrieval-Augmented Generation?
Retrieval-Augmented Generation (RAG) systems using Multimodal Large Language Models (MLLMs) show great promise for complex document understanding, yet their development is critically hampered by inadequate evaluation. Current benchmarks often focus on specific part of document RAG system and use synthetic data with incomplete ground truth and evidence labels, therefore failing to reflect real-world bottlenecks and challenges. To overcome these limitations, we introduce Double-Bench: a new large-scale, multilingual, and multimodal evaluation system that is able to produce fine-grained assessment to each component within document RAG systems. It comprises 3,276 documents (72,880 pages) and 5,168 single- and multi-hop queries across 6 languages and 4 document types with streamlined dynamic update support for potential data contamination issues. Queries are grounded in exhaustively scanned evidence pages and verified by human experts to ensure maximum quality and completeness. Our comprehensive experiments across 9 state-of-the-art embedding models, 4 MLLMs and 4 end-to-end document RAG frameworks demonstrate the gap between text and visual embedding models is narrowing, highlighting the need in building stronger document retrieval models. Our findings also reveal the over-confidence dilemma within current document RAG frameworks that tend to provide answer even without evidence support. We hope our fully open-source Double-Bench provide a rigorous foundation for future research in advanced document RAG systems. We plan to retrieve timely corpus and release new benchmarks on an annual basis.
comment: In submission. Project website: https://double-bench.github.io/
☆ LLMDistill4Ads: Using Cross-Encoders to Distill from LLM Signals for Advertiser Keyphrase Recommendations at eBay
Sellers at eBay are recommended keyphrases to bid on to enhance the performance of their advertising campaigns. The relevance of these keyphrases is crucial in avoiding the overcrowding of search systems with irrelevant items and maintaining a positive seller perception. It is essential that keyphrase recommendations align with both seller and Search judgments regarding auctions. Due to the difficulty in procuring negative human judgment at scale, employing LLM-as-a-judge to mimic seller judgment has been established as the norm in several studies. This study introduces a novel two-step LLM distillation process from a LLM-judge used to debias our Embedding Based Retrieval (EBR) model from the various biases that exist in click-data. We distill from an LLM teacher via a cross-encoder assistant into a bi-encoder student using a multi-task training approach, ultimately employing the student bi-encoder to retrieve relevant advertiser keyphrases. We show that integrating a knowledge distillation process from LLMs in a multi-task training setup enhances bi-encoder performance in retrieving relevant advertiser keyphrases at eBay.
☆ Demystifying Sequential Recommendations: Counterfactual Explanations via Genetic Algorithms
Sequential Recommender Systems (SRSs) have demonstrated remarkable effectiveness in capturing users' evolving preferences. However, their inherent complexity as "black box" models poses significant challenges for explainability. This work presents the first counterfactual explanation technique specifically developed for SRSs, introducing a novel approach in this space, addressing the key question: What minimal changes in a user's interaction history would lead to different recommendations? To achieve this, we introduce a specialized genetic algorithm tailored for discrete sequences and show that generating counterfactual explanations for sequential data is an NP-Complete problem. We evaluate these approaches across four experimental settings, varying between targeted-untargeted and categorized-uncategorized scenarios, to comprehensively assess their capability in generating meaningful explanations. Using three different datasets and three models, we are able to demonstrate that our methods successfully generate interpretable counterfactual explanation while maintaining model fidelity close to one. Our findings contribute to the growing field of Explainable AI by providing a framework for understanding sequential recommendation decisions through the lens of "what-if" scenarios, ultimately enhancing user trust and system transparency.
☆ OpenLifelogQA: An Open-Ended Multi-Modal Lifelog Question-Answering Dataset
Lifelogging refers to the process of passively collecting, storing, and analysing personal daily life data using wearable devices. This data can support applications in memory preservation and enhancement. For example, using an ask-and-answer strategy, question-answering (QA) on lifelog data opens an interactive and interesting way to explore memorable events and insights into daily life. However, research resources for QA on lifelog data are limited to small-sized or synthetic QA datasets. In this paper, we present a novel lifelog QA dataset called OpenLifelogQA, building upon an 18-month lifelog dataset. Our dataset focuses on an open-ended and practical QA with real-world application in daily lifelog usage. We construct 14,187 pairs of Q&A with diverse types and difficulty levels. A baseline experiment is reported for this dataset with competitive average performance of 89.7% BERT Score, 25.87% ROUGE-L and 3.9665 LLM Score from LLaVA-NeXT-Interleave 7B model. We release this Q&A dataset to the research community to support new research into lifelog technologies, such as enabling personal chat-based assistants for lifelog data to become a reality.
☆ PyLate: Flexible Training and Retrieval for Late Interaction Models
Neural ranking has become a cornerstone of modern information retrieval. While single vector search remains the dominant paradigm, it suffers from the shortcoming of compressing all the information into a single vector. This compression leads to notable performance degradation in out-of-domain, long-context, and reasoning-intensive retrieval tasks. Multi-vector approaches pioneered by ColBERT aim to address these limitations by preserving individual token embeddings and computing similarity via the MaxSim operator. This architecture has demonstrated superior empirical advantages, including enhanced out-of-domain generalization, long-context handling, and performance in complex retrieval scenarios. Despite these compelling empirical results and clear theoretical advantages, the practical adoption and public availability of late interaction models remain low compared to their single-vector counterparts, primarily due to a lack of accessible and modular tools for training and experimenting with such models. To bridge this gap, we introduce PyLate, a streamlined library built on top of Sentence Transformers to support multi-vector architectures natively, inheriting its efficient training, advanced logging, and automated model card generation while requiring minimal code changes to code templates users are already familiar with. By offering multi-vector-specific features such as efficient indexes, PyLate aims to accelerate research and real-world application of late interaction models, thereby unlocking their full potential in modern IR systems. Finally, PyLate has already enabled the development of state-of-the-art models, including GTE-ModernColBERT and Reason-ModernColBERT, demonstrating its practical utility for both research and production environments.
comment: 5 pages
☆ MultiRAG: A Knowledge-guided Framework for Mitigating Hallucination in Multi-source Retrieval Augmented Generation ICDE 2025
Retrieval Augmented Generation (RAG) has emerged as a promising solution to address hallucination issues in Large Language Models (LLMs). However, the integration of multiple retrieval sources, while potentially more informative, introduces new challenges that can paradoxically exacerbate hallucination problems. These challenges manifest primarily in two aspects: the sparse distribution of multi-source data that hinders the capture of logical relationships and the inherent inconsistencies among different sources that lead to information conflicts. To address these challenges, we propose MultiRAG, a novel framework designed to mitigate hallucination in multi-source retrieval-augmented generation through knowledge-guided approaches. Our framework introduces two key innovations: (1) a knowledge construction module that employs multi-source line graphs to efficiently aggregate logical relationships across different knowledge sources, effectively addressing the sparse data distribution issue; and (2) a sophisticated retrieval module that implements a multi-level confidence calculation mechanism, performing both graph-level and node-level assessments to identify and eliminate unreliable information nodes, thereby reducing hallucinations caused by inter-source inconsistencies. Extensive experiments on four multi-domain query datasets and two multi-hop QA datasets demonstrate that MultiRAG significantly enhances the reliability and efficiency of knowledge retrieval in complex multi-source scenarios. \textcolor{blue}{Our code is available in https://github.com/wuwenlong123/MultiRAG.
comment: Accepted by ICDE 2025 Research Paper
☆ Parameter-Efficient Single Collaborative Branch for Recommendation
Recommender Systems (RS) often rely on representations of users and items in a joint embedding space and on a similarity metric to compute relevance scores. In modern RS, the modules to obtain user and item representations consist of two distinct and separate neural networks (NN). In multimodal representation learning, weight sharing has been proven effective in reducing the distance between multiple modalities of a same item. Inspired by these approaches, we propose a novel RS that leverages weight sharing between the user and item NN modules used to obtain the latent representations in the shared embedding space. The proposed framework consists of a single Collaborative Branch for Recommendation (CoBraR). We evaluate CoBraR by means of quantitative experiments on e-commerce and movie recommendation. Our experiments show that by reducing the number of parameters and improving beyond-accuracy aspects without compromising accuracy, CoBraR has the potential to be applied and extended for real-world scenarios.
comment: 5 pages
☆ fact check AI at SemEval-2025 Task 7: Multilingual and Crosslingual Fact-checked Claim Retrieval ACL
SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval is approached as a Learning-to-Rank task using a bi-encoder model fine-tuned from a pre-trained transformer optimized for sentence similarity. Training used both the source languages and their English translations for multilingual retrieval and only English translations for cross-lingual retrieval. Using lightweight models with fewer than 500M parameters and training on Kaggle T4 GPUs, the method achieved 92% Success@10 in multilingual and 80% Success@10 in 5th in crosslingual and 10th in multilingual tracks.
comment: 7 pages, 6 tables. Code available at https://github.com/pranshurastogi29/SemEval-2025-ACL-Multi-and-Crosslingual-Retrieval-using-Bi-encoders
☆ Taggus: An Automated Pipeline for the Extraction of Characters' Social Networks from Portuguese Fiction Literature
Automatically identifying characters and their interactions from fiction books is, arguably, a complex task that requires pipelines that leverage multiple Natural Language Processing (NLP) methods, such as Named Entity Recognition (NER) and Part-of-speech (POS) tagging. However, these methods are not optimized for the task that leads to the construction of Social Networks of Characters. Indeed, the currently available methods tend to underperform, especially in less-represented languages, due to a lack of manually annotated data for training. Here, we propose a pipeline, which we call Taggus, to extract social networks from literary fiction works in Portuguese. Our results show that compared to readily available State-of-the-Art tools -- off-the-shelf NER tools and Large Language Models (ChatGPT) -- the resulting pipeline, which uses POS tagging and a combination of heuristics, achieves satisfying results with an average F1-Score of $94.1\%$ in the task of identifying characters and solving for co-reference and $75.9\%$ in interaction detection. These represent, respectively, an increase of $50.7\%$ and $22.3\%$ on results achieved by the readily available State-of-the-Art tools. Further steps to improve results are outlined, such as solutions for detecting relationships between characters. Limitations on the size and scope of our testing samples are acknowledged. The Taggus pipeline is publicly available to encourage development in this field for the Portuguese language.2
comment: 24 pages, 5 Figures, 4 Tables
☆ Reliable Evaluation Protocol for Low-Precision Retrieval
Lowering the numerical precision of model parameters and computations is widely adopted to improve the efficiency of retrieval systems. However, when computing relevance scores between the query and documents in low-precision, we observe spurious ties due to the reduced granularity. This introduces high variability in the results based on tie resolution, making the evaluation less reliable. To address this, we propose a more robust retrieval evaluation protocol designed to reduce score variation. It consists of: (1) High-Precision Scoring (HPS), which upcasts the final scoring step to higher precision to resolve tied candidates with minimal computational cost; and (2) Tie-aware Retrieval Metrics (TRM), which report expected scores, range, and bias to quantify order uncertainty of tied candidates. Our experiments test multiple models with three scoring functions on two retrieval datasets to demonstrate that HPS dramatically reduces tie-induced instability, and TRM accurately recovers expected metric values. This combination enables a more consistent and reliable evaluation system for lower-precision retrievals.
comment: 11 pages, 5 figures, submitted to ARR
☆ Investigating the Cognitive Response of Brake Lights in Initiating Braking Action Using EEG
Half of all road accidents result from either lack of driver attention or from maintaining insufficient separation between vehicles. Collision from the rear, in particular, has been identified as the most common class of accident in the UK, and its influencing factors have been widely studied for many years. Rear-mounted stop lamps, illuminated when braking, are the primary mechanism to alert following drivers to the need to reduce speed or brake. This paper develops a novel brain response approach to measuring subject reaction to different brake light designs. A variety of off-the-shelf brake light assemblies are tested in a physical simulated driving environment to assess the cognitive reaction times of 22 subjects. Eight pairs of LED-based and two pairs of incandescent bulb-based brake light assemblies are used and electroencephalogram (EEG) data recorded. Channel Pz is utilised to extract the P3 component evoked during the decision making process that occurs in the brain when a participant decides to lift their foot from the accelerator and depress the brake. EEG analysis shows that both incandescent bulb-based lights are statistically slower to evoke cognitive responses than all tested LED-based lights. Between the LED designs, differences are evident, but not statistically significant, attributed to the significant amount of movement artifact in the EEG signal.
comment: arXiv admin note: text overlap with arXiv:2010.10584
☆ Dual-disentangle Framework for Diversified Sequential Recommendation
Sequential recommendation predicts user preferences over time and has achieved remarkable success. However, the growing length of user interaction sequences and the complex entanglement of evolving user interests and intentions introduce significant challenges to diversity. To address these, we propose a model-agnostic Dual-disentangle framework for Diversified Sequential Recommendation (DDSRec). The framework refines user interest and intention modeling by adopting disentangling perspectives in interaction modeling and representation learning, thereby balancing accuracy and diversity in sequential recommendations. Extensive experiments on multiple public datasets demonstrate the effectiveness and superiority of DDSRec in terms of accuracy and diversity for sequential recommendations.
☆ ADSeeker: A Knowledge-Infused Framework for Anomaly Detection and Reasoning
Automatic vision inspection holds significant importance in industry inspection. While multimodal large language models (MLLMs) exhibit strong language understanding capabilities and hold promise for this task, their performance remains significantly inferior to that of human experts. In this context, we identify two key challenges: (i) insufficient integration of anomaly detection (AD) knowledge during pre-training, and (ii) the lack of technically precise and conte-aware language generation for anomaly reasoning. To address these issues, we propose ADSeeker, an anomaly task assistant designed to enhance inspection performance through knowledge-grounded reasoning. ADSeeker leverages a curated visual document knowledge base, SEEK-MVTec&VisA (SEEK-M&V), which we construct to address the limitations of existing resources that rely solely on unstructured text. SEEK-M&V includes semantic-rich descriptions and image-document pairs, enabling more comprehensive anomaly understanding. To effectively retrieve and utilize this knowledge, we introduce the Query Image-Knowledge Retrieval-Augmented Generation (Q2K RAG) framework. To further enhance the performance in zero-shot anomaly detection (ZSAD), ADSeeker leverages the Hierarchical Sparse Prompt mechanism and type-level features to efficiently extract anomaly patterns. Furthermore, to tackle the challenge of limited in industry anomaly detection (IAD) data, we introduce the largest-scale AD dataset, Multi-type Anomaly (MulA), encompassing 72 multi-scale defect types across 26 Categories. Extensive experiments show that our plug-and-play framework, ADSeeker, achieves state-of-the-art zero-shot performance on several benchmark datasets.
☆ KBest: Efficient Vector Search on Kunpeng CPU
Vector search, which returns the vectors most similar to a given query vector from a large vector dataset, underlies many important applications such as search, recommendation, and LLMs. To be economic, vector search needs to be efficient to reduce the resources required by a given query workload. However, existing vector search libraries (e.g., Faiss and DiskANN) are optimized for x86 CPU architectures (i.e., Intel and AMD CPUs) while Huawei Kunpeng CPUs are based on the ARM architecture and competitive in compute power. In this paper, we present KBest as a vector search library tailored for the latest Kunpeng 920 CPUs. To be efficient, KBest incorporates extensive hardware-aware and algorithmic optimizations, which include single-instruction-multiple-data (SIMD) accelerated distance computation, data prefetch, index refinement, early termination, and vector quantization. Experiment results show that KBest outperforms SOTA vector search libraries running on x86 CPUs, and our optimizations can improve the query throughput by over 2x. Currently, KBest serves applications from both our internal business and external enterprise clients with tens of millions of queries on a daily basis.
☆ SustainableQA: A Comprehensive Question Answering Dataset for Corporate Sustainability and EU Taxonomy Reporting
The growing demand for corporate sustainability transparency, particularly under new regulations like the EU Taxonomy, necessitates precise data extraction from large, unstructured corporate reports. Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) systems, requires high-quality, domain-specific question-answering (QA) datasets to excel at particular domains. To address this, we introduce SustainableQA, a novel dataset and a scalable pipeline for generating a comprehensive QA datasets from corporate sustainability reports and annual reports. Our approach integrates semantic chunk classification, a hybrid span extraction pipeline combining fine-tuned Named Entity Recognition (NER), rule-based methods, and LLM-driven refinement, alongside a specialized table-to-paragraph transformation. With over 195,000 diverse factoid and non-factoid QA pairs, SustainableQA is an effective resource for developing and benchmarking advanced knowledge assistants capable of navigating complex sustainability compliance
☆ RAVID: Retrieval-Augmented Visual Detection: A Knowledge-Driven Approach for AI-Generated Image Identification
In this paper, we introduce RAVID, the first framework for AI-generated image detection that leverages visual retrieval-augmented generation (RAG). While RAG methods have shown promise in mitigating factual inaccuracies in foundation models, they have primarily focused on text, leaving visual knowledge underexplored. Meanwhile, existing detection methods, which struggle with generalization and robustness, often rely on low-level artifacts and model-specific features, limiting their adaptability. To address this, RAVID dynamically retrieves relevant images to enhance detection. Our approach utilizes a fine-tuned CLIP image encoder, RAVID CLIP, enhanced with category-related prompts to improve representation learning. We further integrate a vision-language model (VLM) to fuse retrieved images with the query, enriching the input and improving accuracy. Given a query image, RAVID generates an embedding using RAVID CLIP, retrieves the most relevant images from a database, and combines these with the query image to form an enriched input for a VLM (e.g., Qwen-VL or Openflamingo). Experiments on the UniversalFakeDetect benchmark, which covers 19 generative models, show that RAVID achieves state-of-the-art performance with an average accuracy of 93.85%. RAVID also outperforms traditional methods in terms of robustness, maintaining high accuracy even under image degradations such as Gaussian blur and JPEG compression. Specifically, RAVID achieves an average accuracy of 80.27% under degradation conditions, compared to 63.44% for the state-of-the-art model C2P-CLIP, demonstrating consistent improvements in both Gaussian blur and JPEG compression scenarios. The code will be publicly available upon acceptance.
☆ Measuring the stability and plasticity of recommender systems
The typical offline protocol to evaluate recommendation algorithms is to collect a dataset of user-item interactions and then use a part of this dataset to train a model, and the remaining data to measure how closely the model recommendations match the observed user interactions. This protocol is straightforward, useful and practical, but it only captures performance of a particular model trained at some point in the past. We know, however, that online systems evolve over time. In general, it is a good idea that models reflect such changes, so models are frequently retrained with recent data. But if this is the case, to what extent can we trust previous evaluations? How will a model perform when a different pattern (re)emerges? In this paper we propose a methodology to study how recommendation models behave when they are retrained. The idea is to profile algorithms according to their ability to, on the one hand, retain past patterns -- stability -- and, on the other hand, (quickly) adapt to changes -- plasticity. We devise an offline evaluation protocol that provides detail on the long-term behavior of models, and that is agnostic to datasets, algorithms and metrics. To illustrate the potential of this framework, we present preliminary results of three different types of algorithms on the GoodReads dataset that suggest different stability and plasticity profiles depending on the algorithmic technique, and a possible trade-off between stability and plasticity.Although additional experiments will be necessary to confirm these observations, they already illustrate the usefulness of the proposed framework to gain insights on the long term dynamics of recommendation models.
☆ Recommending With, Not For: Co-Designing Recommender Systems for Social Good
Recommender systems are usually designed by engineers, researchers, designers, and other members of development teams. These systems are then evaluated based on goals set by the aforementioned teams and other business units of the platforms operating the recommender systems. This design approach emphasizes the designers' vision for how the system can best serve the interests of users, providers, businesses, and other stakeholders. Although designers may be well-informed about user needs through user experience and market research, they are still the arbiters of the system's design and evaluation, with other stakeholders' interests less emphasized in user-centered design and evaluation. When extended to recommender systems for social good, this approach results in systems that reflect the social objectives as envisioned by the designers and evaluated as the designers understand them. Instead, social goals and operationalizations should be developed through participatory and democratic processes that are accountable to their stakeholders. We argue that recommender systems aimed at improving social good should be designed *by* and *with*, not just *for*, the people who will experience their benefits and harms. That is, they should be designed in collaboration with their users, creators, and other stakeholders as full co-designers, not only as user study participants.
comment: Accepted to ACM TORS Special Issue on Recommender Systems for Social Good
☆ A Robust and Efficient Pipeline for Enterprise-Level Large-Scale Entity Resolution
Entity resolution (ER) remains a significant challenge in data management, especially when dealing with large datasets. This paper introduces MERAI (Massive Entity Resolution using AI), a robust and efficient pipeline designed to address record deduplication and linkage issues in high-volume datasets at an enterprise level. The pipeline's resilience and accuracy have been validated through various large-scale record deduplication and linkage projects. To evaluate MERAI's performance, we compared it with two well-known entity resolution libraries, Dedupe and Splink. While Dedupe failed to scale beyond 2 million records due to memory constraints, MERAI successfully processed datasets of up to 15.7 million records and produced accurate results across all experiments. Experimental data demonstrates that MERAI outperforms both baseline systems in terms of matching accuracy, with consistently higher F1 scores in both deduplication and record linkage tasks. MERAI offers a scalable and reliable solution for enterprise-level large-scale entity resolution, ensuring data integrity and consistency in real-world applications.
comment: 10 pages, 5 figures
☆ NAEx: A Plug-and-Play Framework for Explaining Network Alignment
Network alignment (NA) identifies corresponding nodes across multiple networks, with applications in domains like social networks, co-authorship, and biology. Despite advances in alignment models, their interpretability remains limited, making it difficult to understand alignment decisions and posing challenges in building trust, particularly in high-stakes domains. To address this, we introduce NAEx, a plug-and-play, model-agnostic framework that explains alignment models by identifying key subgraphs and features influencing predictions. NAEx addresses the key challenge of preserving the joint cross-network dependencies on alignment decisions by: (1) jointly parameterizing graph structures and feature spaces through learnable edge and feature masks, and (2) introducing an optimization objective that ensures explanations are both faithful to the original predictions and enable meaningful comparisons of structural and feature-based similarities between networks. NAEx is an inductive framework that efficiently generates NA explanations for previously unseen data. We introduce evaluation metrics tailored to alignment explainability and demonstrate NAEx's effectiveness and efficiency on benchmark datasets by integrating it with four representative NA models.
☆ Are All Genders Equal in the Eyes of Algorithms? -- Analysing Search and Retrieval Algorithms for Algorithmic Gender Fairness
Algorithmic systems such as search engines and information retrieval platforms significantly influence academic visibility and the dissemination of knowledge. Despite assumptions of neutrality, these systems can reproduce or reinforce societal biases, including those related to gender. This paper introduces and applies a bias-preserving definition of algorithmic gender fairness, which assesses whether algorithmic outputs reflect real-world gender distributions without introducing or amplifying disparities. Using a heterogeneous dataset of academic profiles from German universities and universities of applied sciences, we analyse gender differences in metadata completeness, publication retrieval in academic databases, and visibility in Google search results. While we observe no overt algorithmic discrimination, our findings reveal subtle but consistent imbalances: male professors are associated with a greater number of search results and more aligned publication records, while female professors display higher variability in digital visibility. These patterns reflect the interplay between platform algorithms, institutional curation, and individual self-presentation. Our study highlights the need for fairness evaluations that account for both technical performance and representational equality in digital systems.
☆ Domain-Specific Fine-Tuning and Prompt-Based Learning: A Comparative Study for developing Natural Language-Based BIM Information Retrieval Systems
Building Information Modeling (BIM) is essential for managing building data across the entire lifecycle, supporting tasks from design to maintenance. Natural Language Interface (NLI) systems are increasingly explored as user-friendly tools for information retrieval in Building Information Modeling (BIM) environments. Despite their potential, accurately extracting BIM-related data through natural language queries remains a persistent challenge due to the complexity use queries and specificity of domain knowledge. This study presents a comparative analysis of two prominent approaches for developing NLI-based BIM information retrieval systems: domain-specific fine-tuning and prompt-based learning using large language models (LLMs). A two-stage framework consisting of intent recognition and table-based question answering is implemented to evaluate the effectiveness of both approaches. To support this evaluation, a BIM-specific dataset of 1,740 annotated queries of varying types across 69 models is constructed. Experimental results show that domain-specific fine-tuning delivers superior performance in intent recognition tasks, while prompt-based learning, particularly with GPT-4o, shows strength in table-based question answering. Based on these findings, this study identify a hybrid configuration that combines fine-tuning for intent recognition with prompt-based learning for question answering, achieving more balanced and robust performance across tasks. This integrated approach is further tested through case studies involving BIM models of varying complexity. This study provides a systematic analysis of the strengths and limitations of each approach and discusses the applicability of the NLI to real-world BIM scenarios. The findings offer insights for researchers and practitioners in designing intelligent, language-driven BIM systems.
♻ ☆ MetaGen Blended RAG: Unlocking Zero-Shot Precision for Specialized Domain Question-Answering
Retrieval-Augmented Generation (RAG) struggles with domain-specific enterprise datasets, often isolated behind firewalls and rich in complex, specialized terminology unseen by LLMs during pre-training. Semantic variability across domains like medicine, networking, or law hampers RAG's context precision, while fine-tuning solutions are costly, slow, and lack generalization as new data emerges. Achieving zero-shot precision with retrievers without fine-tuning still remains a key challenge. We introduce 'MetaGen Blended RAG', a novel enterprise search approach that enhances semantic retrievers through a metadata generation pipeline and hybrid query indexes using dense and sparse vectors. By leveraging key concepts, topics, and acronyms, our method creates metadata-enriched semantic indexes and boosted hybrid queries, delivering robust, scalable performance without fine-tuning. On the biomedical PubMedQA dataset, MetaGen Blended RAG achieves 82% retrieval accuracy and 77% RAG accuracy, surpassing all prior zero-shot RAG benchmarks and even rivaling fine-tuned models on that dataset, while also excelling on datasets like SQuAD and NQ. This approach redefines enterprise search using a new approach to building semantic retrievers with unmatched generalization across specialized domains.
♻ ☆ Learning Multi-Aspect Item Palette: A Semantic Tokenization Framework for Generative Recommendation
Traditional recommendation models often rely on unique item identifiers (IDs) to distinguish between items, which can hinder their ability to effectively leverage item content information and generalize to long-tailed or cold-start items. Recently, semantic tokenization has been proposed as a promising solution that aims to tokenize each item's semantic representation into a sequence of discrete tokens. These semantic tokens have become fundamental in training generative recommendation models. However, existing methods typically rely on RQ-VAE, a residual vector quantizer, for semantic tokenization. This reliance introduces several key limitations, including challenges in embedding extraction, hierarchical coarse-to-fine quantization, and training stability. To address these issues, we introduce LAMIA, a novel approach for multi-aspect semantic tokenization. Unlike RQ-VAE, which uses a single embedding, LAMIA learns an ``item palette''--a collection of independent and semantically parallel embeddings that capture multiple aspects of items. Additionally, LAMIA enhances the semantic encoders through domain-specific tuning using text-based reconstruction tasks, resulting in more representative item palette embeddings. We have conducted extensive experiments to validate the effectiveness of the LAMIA framework across various recommendation tasks and datasets. Our results demonstrate significant improvements in recommendation accuracy over existing methods. To facilitate reproducible research, we will release the source code, data, and configurations.
♻ ☆ A Foundational Schema.org Mapping for a Legal Knowledge Graph: Representing Brazilian Legal Norms as FRBR Works AI
Structuring legal norms for machine readability is a critical prerequisite for building advanced AI and information retrieval systems, such as Legal Knowledge Graphs (LKGs). Grounded in the Functional Requirements for Bibliographic Records (FRBR) model, this paper proposes a foundational mapping for the abstract legal Work - which is materialized as the Norm node in our legal Graph RAG framework - to the interoperable schema.org/Legislation vocabulary. Using the Normas.leg.br portal as a practical case study, we demonstrate how to describe this Work entity via JSON-LD, considering stable URN identifiers, inter-norm relationships, and lifecycle properties. This structured, formal approach provides the essential first step toward creating a deterministic and verifiable knowledge graph, which can serve as a formalized "ground truth" for Legal AI applications, overcoming the limitations of purely probabilistic models.
comment: Substantial revision. Now grounded in the FRBR model, mapping the legal norm as an abstract Work. Scope narrowed to the Work -> sdo:Legislation mapping (LegislationObject section removed). Emphasizes creating a deterministic 'ground truth' for Legal AI and Graph RAG
♻ ☆ Heterophily-Aware Fair Recommendation using Graph Convolutional Networks
In recent years, graph neural networks (GNNs) have become a popular tool to improve the accuracy and performance of recommender systems. Modern recommender systems are not only designed to serve end users, but also to benefit other participants, such as items and item providers. These participants may have different or conflicting goals and interests, which raises the need for fairness and popularity bias considerations. GNN-based recommendation methods also face the challenges of unfairness and popularity bias, and their normalization and aggregation processes suffer from these challenges. In this paper, we propose a fair GNN-based recommender system, called HetroFair, to improve item-side fairness. HetroFair uses two separate components to generate fairness-aware embeddings: i) Fairness-aware attention, which incorporates the dot product in the normalization process of GNNs to decrease the effect of nodes' degrees. ii) Heterophily feature weighting, to assign distinct weights to different features during the aggregation process. To evaluate the effectiveness of HetroFair, we conduct extensive experiments over six real-world datasets. Our experimental results reveal that HetroFair not only alleviates unfairness and popularity bias on the item side but also achieves superior accuracy on the user side. Our implementation is publicly available at https://github.com/NematGH/HetroFair.
♻ ☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate model behavior across three core dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities. Code is available at https://github.com/zjunlp/DataMind.
comment: Work in progress
♻ ☆ ChineseHarm-Bench: A Chinese Harmful Content Detection Benchmark
Large language models (LLMs) have been increasingly applied to automated harmful content detection tasks, assisting moderators in identifying policy violations and improving the overall efficiency and accuracy of content review. However, existing resources for harmful content detection are predominantly focused on English, with Chinese datasets remaining scarce and often limited in scope. We present a comprehensive, professionally annotated benchmark for Chinese content harm detection, which covers six representative categories and is constructed entirely from real-world data. Our annotation process further yields a knowledge rule base that provides explicit expert knowledge to assist LLMs in Chinese harmful content detection. In addition, we propose a knowledge-augmented baseline that integrates both human-annotated knowledge rules and implicit knowledge from large language models, enabling smaller models to achieve performance comparable to state-of-the-art LLMs. Code and data are available at https://github.com/zjunlp/ChineseHarm-bench.
comment: Work in progress
♻ ☆ LightRetriever: A LLM-based Hybrid Retrieval Architecture with 1000x Faster Query Inference
Large Language Models (LLMs)-based text retrieval retrieves documents relevant to search queries based on vector similarities. Documents are pre-encoded offline, while queries arrive in real-time, necessitating an efficient online query encoder. Although LLMs significantly enhance retrieval capabilities, serving deeply parameterized LLMs slows down query inference throughput and increases demands for online deployment resources. In this paper, we propose LightRetriever, a novel LLM-based retriever with extremely lightweight query encoders. Our method retains a full-sized LLM for document encoding, but reduces the workload of query encoding to no more than an embedding lookup. Compared to serving a full LLM on an A800 GPU, our method achieves over 1000x speedup in query encoding and over 10x increase in end-to-end retrieval throughput. Extensive experiments on large-scale retrieval benchmarks show that LightRetriever generalizes well across diverse tasks, maintaining an average of 95% retrieval performance.
♻ ☆ CAMEF: Causal-Augmented Multi-Modality Event-Driven Financial Forecasting by Integrating Time Series Patterns and Salient Macroeconomic Announcements SIGKDD 2025
Accurately forecasting the impact of macroeconomic events is critical for investors and policymakers. Salient events like monetary policy decisions and employment reports often trigger market movements by shaping expectations of economic growth and risk, thereby establishing causal relationships between events and market behavior. Existing forecasting methods typically focus either on textual analysis or time-series modeling, but fail to capture the multi-modal nature of financial markets and the causal relationship between events and price movements. To address these gaps, we propose CAMEF (Causal-Augmented Multi-Modality Event-Driven Financial Forecasting), a multi-modality framework that effectively integrates textual and time-series data with a causal learning mechanism and an LLM-based counterfactual event augmentation technique for causal-enhanced financial forecasting. Our contributions include: (1) a multi-modal framework that captures causal relationships between policy texts and historical price data; (2) a new financial dataset with six types of macroeconomic releases from 2008 to April 2024, and high-frequency real trading data for five key U.S. financial assets; and (3) an LLM-based counterfactual event augmentation strategy. We compare CAMEF to state-of-the-art transformer-based time-series and multi-modal baselines, and perform ablation studies to validate the effectiveness of the causal learning mechanism and event types.
comment: Accepted in SIGKDD 2025
♻ ☆ Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning
Efficiently acquiring external knowledge and up-to-date information is essential for effective reasoning and text generation in large language models (LLMs). Prompting advanced LLMs with reasoning capabilities to use search engines during inference is often suboptimal, as the LLM might not fully possess the capability on how to interact optimally with the search engine. This paper introduces Search-R1, an extension of reinforcement learning (RL) for reasoning frameworks where the LLM learns to autonomously generate (multiple) search queries during step-by-step reasoning with real-time retrieval. Search-R1 optimizes LLM reasoning trajectories with multi-turn search interactions, leveraging retrieved token masking for stable RL training and a simple outcome-based reward function. Experiments on seven question-answering datasets show that Search-R1 improves performance by 41% (Qwen2.5-7B) and 20% (Qwen2.5-3B) over various RAG baselines under the same setting. This paper further provides empirical insights into RL optimization methods, LLM choices, and response length dynamics in retrieval-augmented reasoning. The code and model checkpoints are available at https://github.com/PeterGriffinJin/Search-R1.
comment: 31 pages
♻ ☆ A Survey of Conversational Search
As a cornerstone of modern information access, search engines have become indispensable in everyday life. With the rapid advancements in AI and natural language processing (NLP) technologies, particularly large language models (LLMs), search engines have evolved to support more intuitive and intelligent interactions between users and systems. Conversational search, an emerging paradigm for next-generation search engines, leverages natural language dialogue to facilitate complex and precise information retrieval, thus attracting significant attention. Unlike traditional keyword-based search engines, conversational search systems enhance user experience by supporting intricate queries, maintaining context over multi-turn interactions, and providing robust information integration and processing capabilities. Key components such as query reformulation, search clarification, conversational retrieval, and response generation work in unison to enable these sophisticated interactions. In this survey, we explore the recent advancements and potential future directions in conversational search, examining the critical modules that constitute a conversational search system. We highlight the integration of LLMs in enhancing these systems and discuss the challenges and opportunities that lie ahead in this dynamic field. Additionally, we provide insights into real-world applications and robust evaluations of current conversational search systems, aiming to guide future research and development in conversational search.
comment: 38 pages, 8 figures, corresponding Github repository: https://github.com/fengranMark/ConvSearch-Survey
Artificial Intelligence 150
☆ CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward
Answer verification is crucial not only for evaluating large language models (LLMs) by matching their unstructured outputs against standard answers, but also serves as the reward model to guide LLM optimization. Most evaluation frameworks rely on regularized matching or employ general LLMs for answer verification, which demands extensive, repetitive customization for regex rules or evaluation prompts. Two fundamental limitations persist in current methodologies: 1) the absence of comprehensive benchmarks that systematically evaluate verification capabilities across different LLMs; and 2) the nascent stage of verifier development, where existing approaches lack both the robustness to handle complex edge cases and the generalizability across different domains. In this work, we develop CompassVerifier, an accurate and robust lightweight verifier model for evaluation and outcome reward. It demonstrates multi-domain competency spanning math, knowledge, and diverse reasoning tasks, with the capability to process various answer types, including multi-subproblems, formulas, and sequence answers, while effectively identifying abnormal/invalid responses. We introduce VerifierBench benchmark comprising model outputs collected from multiple data sources, augmented through manual analysis of metaerror patterns to enhance CompassVerifier. We anticipate that CompassVerifier and VerifierBench will facilitate answer verification, evaluation protocols, and reinforcement learning research. Code and dataset are available at https://github.com/open-compass/CompassVerifier.
comment: Technical Report; 31 Pages
☆ Self-Questioning Language Models
Can large language models improve without external data -- by generating their own questions and answers? We hypothesize that a pre-trained language model can improve its reasoning skills given only a single prompt specifying the topic (e.g., algebra word problems) and asking the model to generate its own questions. To do this, we propose Self-Questioning Language Models (SQLM): an asymmetric self-play framework where a proposer is given the topic and generates a question for a solver, who tries to answer it. Both the proposer and solver are trained via reinforcement learning. The proposer receives a reward if the problem is not too easy or too difficult, and the solver receives a reward based on majority voting, a proxy for correctness in the absence of ground-truth answers. For coding, the proposer can instead generate unit tests which are used for verification. We study this asymmetric self-play framework on three benchmarks: three-digit multiplication, algebra problems from the OMEGA benchmark, and programming problems from Codeforces. By continually generating more interesting problems and attempting to solve them, language models can improve on downstream benchmarks without access to any curated training datasets.
☆ Agent Lightning: Train ANY AI Agents with Reinforcement Learning
We present Agent Lightning, a flexible and extensible framework that enables Reinforcement Learning (RL)-based training of Large Language Models (LLMs) for any AI agent. Unlike existing methods that tightly couple RL training with agent or rely on sequence concatenation with masking, Agent Lightning achieves complete decoupling between agent execution and training, allowing seamless integration with existing agents developed via diverse ways (e.g., using frameworks like LangChain, OpenAI Agents SDK, AutoGen, and building from scratch) with almost ZERO code modifications. By formulating agent execution as Markov decision process, we define an unified data interface and propose a hierarchical RL algorithm, LightningRL, which contains a credit assignment module, allowing us to decompose trajectories generated by ANY agents into training transition. This enables RL to handle complex interaction logic, such as multi-agent scenarios and dynamic workflows. For the system design, we introduce a Training-Agent Disaggregation architecture, and brings agent observability frameworks into agent runtime, providing a standardized agent finetuning interface. Experiments across text-to-SQL, retrieval-augmented generation, and math tool-use tasks demonstrate stable, continuous improvements, showcasing the framework's potential for real-world agent training and deployment.
☆ Beyond risk: A proto-framework for assessing the societal impact of AI systems
In the discourse on AI regulation, 'responsible AI' is the dominant paradigm, with the focus on mitigating the risks related to AI systems. While this focus is important and necessary, it has limited use for a systematic consideration of AI's societal impact. This paper proposes a proto-framework for assessing the societal impact of AI systems by operationalising the concept of freedom. This proto-framework is intended as a step towards a fully operationalised framework to be used in policymaking contexts. By drawing on Kantian philosophy and related contemporary interpretations, freedom is developed as the counterpart to the concept of responsibility. Two dimensions of freedom are developed in further detail: freedom as capability and freedom as opportunity. These two dimensions of freedom are then applied in a proto-framework that systematically considers AI's impact on society using the Sustainable Development Goals. This proto-framework aims to complement current risk-based approaches and thereby offers a first step towards operationalising the concept of freedom in AI regulation.
☆ A DbC Inspired Neurosymbolic Layer for Trustworthy Agent Design
Generative models, particularly Large Language Models (LLMs), produce fluent outputs yet lack verifiable guarantees. We adapt Design by Contract (DbC) and type-theoretic principles to introduce a contract layer that mediates every LLM call. Contracts stipulate semantic and type requirements on inputs and outputs, coupled with probabilistic remediation to steer generation toward compliance. The layer exposes the dual view of LLMs as semantic parsers and probabilistic black-box components. Contract satisfaction is probabilistic and semantic validation is operationally defined through programmer-specified conditions on well-typed data structures. More broadly, this work postulates that any two agents satisfying the same contracts are \emph{functionally equivalent} with respect to those contracts.
comment: 3 pages, 1 figure
☆ Forest vs Tree: The $(N, K)$ Trade-off in Reproducible ML Evaluation
Reproducibility is a cornerstone of scientific validation and of the authority it confers on its results. Reproducibility in machine learning evaluations leads to greater trust, confidence, and value. However, the ground truth responses used in machine learning often necessarily come from humans, among whom disagreement is prevalent, and surprisingly little research has studied the impact of effectively ignoring disagreement in these responses, as is typically the case. One reason for the lack of research is that budgets for collecting human-annotated evaluation data are limited, and obtaining more samples from multiple annotators for each example greatly increases the per-item annotation costs. We investigate the trade-off between the number of items ($N$) and the number of responses per item ($K$) needed for reliable machine learning evaluation. We analyze a diverse collection of categorical datasets for which multiple annotations per item exist, and simulated distributions fit to these datasets, to determine the optimal $(N, K)$ configuration, given a fixed budget ($N \times K$), for collecting evaluation data and reliably comparing the performance of machine learning models. Our findings show, first, that accounting for human disagreement may come with $N \times K$ at no more than 1000 (and often much lower) for every dataset tested on at least one metric. Moreover, this minimal $N \times K$ almost always occurred for $K > 10$. Furthermore, the nature of the tradeoff between $K$ and $N$ -- or if one even existed -- depends on the evaluation metric, with metrics that are more sensitive to the full distribution of responses performing better at higher levels of $K$. Our methods can be used to help ML practitioners get more effective test data by finding the optimal metrics and number of items and annotations per item to collect to get the most reliability for their budget.
☆ Automated Algorithmic Discovery for Gravitational-Wave Detection Guided by LLM-Informed Evolutionary Monte Carlo Tree Search
Computational scientific discovery increasingly relies on algorithms to process complex data and identify meaningful patterns - yet faces persistent challenges in gravitational-wave signal identification. While existing algorithmic approaches like matched filtering (MF) and deep neural networks (DNNs) have achieved partial success, their limitations directly stem from fundamental limitations: MF's excessive computational demands arise from its reliance on predefined theoretical waveform templates, while DNNs' black-box architectures obscure decision logic and introduce hidden biases. We propose Evolutionary Monte Carlo Tree Search (Evo-MCTS), a framework that addresses these limitations through systematic algorithm space exploration guided by domain-aware physical constraints. Our approach combines tree-structured search with evolutionary optimization and large language model heuristics to create interpretable algorithmic solutions. Our Evo-MCTS framework demonstrates substantial improvements, achieving a 20.2\% improvement over state-of-the-art gravitational wave detection algorithms on the MLGWSC-1 benchmark dataset. High-performing algorithm variants consistently exceed thresholds. The framework generates human-interpretable algorithmic pathways that reveal distinct performance patterns. Beyond performance improvements, our framework discovers novel algorithmic combinations, thereby establishing a transferable methodology for automated algorithmic discovery across computational science domains.
comment: 89 pages (37 main), 6+6 figures, 1 table. Initial submission; subject to revision
☆ Probing the Gaps in ChatGPT Live Video Chat for Real-World Assistance for People who are Blind or Visually Impaired
Recent advancements in large multimodal models have provided blind or visually impaired (BVI) individuals with new capabilities to interpret and engage with the real world through interactive systems that utilize live video feeds. However, the potential benefits and challenges of such capabilities to support diverse real-world assistive tasks remain unclear. In this paper, we present findings from an exploratory study with eight BVI participants. Participants used ChatGPT's Advanced Voice with Video, a state-of-the-art live video AI released in late 2024, in various real-world scenarios, from locating objects to recognizing visual landmarks, across unfamiliar indoor and outdoor environments. Our findings indicate that current live video AI effectively provides guidance and answers for static visual scenes but falls short in delivering essential live descriptions required in dynamic situations. Despite inaccuracies in spatial and distance information, participants leveraged the provided visual information to supplement their mobility strategies. Although the system was perceived as human-like due to high-quality voice interactions, assumptions about users' visual abilities, hallucinations, generic responses, and a tendency towards sycophancy led to confusion, distrust, and potential risks for BVI users. Based on the results, we discuss implications for assistive video AI agents, including incorporating additional sensing capabilities for real-world use, determining appropriate intervention timing beyond turn-taking interactions, and addressing ecological and safety concerns.
comment: ACM ASSETS 2025
☆ Cross-Model Semantics in Representation Learning
The internal representations learned by deep networks are often sensitive to architecture-specific choices, raising questions about the stability, alignment, and transferability of learned structure across models. In this paper, we investigate how structural constraints--such as linear shaping operators and corrective paths--affect the compatibility of internal representations across different architectures. Building on the insights from prior studies on structured transformations and convergence, we develop a framework for measuring and analyzing representational alignment across networks with distinct but related architectural priors. Through a combination of theoretical insights, empirical probes, and controlled transfer experiments, we demonstrate that structural regularities induce representational geometry that is more stable under architectural variation. This suggests that certain forms of inductive bias not only support generalization within a model, but also improve the interoperability of learned features across models. We conclude with a discussion on the implications of representational transferability for model distillation, modular learning, and the principled design of robust learning systems.
☆ LLMDistill4Ads: Using Cross-Encoders to Distill from LLM Signals for Advertiser Keyphrase Recommendations at eBay
Sellers at eBay are recommended keyphrases to bid on to enhance the performance of their advertising campaigns. The relevance of these keyphrases is crucial in avoiding the overcrowding of search systems with irrelevant items and maintaining a positive seller perception. It is essential that keyphrase recommendations align with both seller and Search judgments regarding auctions. Due to the difficulty in procuring negative human judgment at scale, employing LLM-as-a-judge to mimic seller judgment has been established as the norm in several studies. This study introduces a novel two-step LLM distillation process from a LLM-judge used to debias our Embedding Based Retrieval (EBR) model from the various biases that exist in click-data. We distill from an LLM teacher via a cross-encoder assistant into a bi-encoder student using a multi-task training approach, ultimately employing the student bi-encoder to retrieve relevant advertiser keyphrases. We show that integrating a knowledge distillation process from LLMs in a multi-task training setup enhances bi-encoder performance in retrieving relevant advertiser keyphrases at eBay.
☆ AttZoom: Attention Zoom for Better Visual Features ICCV
We present Attention Zoom, a modular and model-agnostic spatial attention mechanism designed to improve feature extraction in convolutional neural networks (CNNs). Unlike traditional attention approaches that require architecture-specific integration, our method introduces a standalone layer that spatially emphasizes high-importance regions in the input. We evaluated Attention Zoom on multiple CNN backbones using CIFAR-100 and TinyImageNet, showing consistent improvements in Top-1 and Top-5 classification accuracy. Visual analyses using Grad-CAM and spatial warping reveal that our method encourages fine-grained and diverse attention patterns. Our results confirm the effectiveness and generality of the proposed layer for improving CCNs with minimal architectural overhead.
comment: Accepted at ICCVw HiCV
☆ Refining Critical Thinking in LLM Code Generation: A Faulty Premise-based Evaluation Framework
With the advancement of code generation capabilities in large language models (LLMs), their reliance on input premises has intensified. When users provide inputs containing faulty premises, the probability of code generation hallucinations rises significantly, exposing deficiencies in their self-scrutiny capabilities. This paper proposes Faulty Premises Bench (FPBench), the first code generation evaluation framework targeting faulty premises. By systematically constructing three categories of faulty premises and integrating multi-dimensional evaluation metrics, it conducts in-depth assessments of 15 representative LLMs. The key findings are as follows: (1) Most models exhibit poor reasoning abilities and suboptimal code generation performance under faulty premises, heavily relying on explicit prompts for error detection, with limited self-scrutiny capabilities; (2) Faulty premises trigger a point of diminishing returns in resource investment, leading to blindly increasing length fails to enhance quality; (3) The three types of faulty premises respectively activate distinct defect patterns in models, revealing a triple dissociation in the cognitive mechanisms of code generation models. This study not only highlights the urgent need for LLMs to proactively verify premises in code generation but also, through the proposed FPBench framework and multi-dimensional evaluation system, provides a theoretical foundation and practical pathway for developing reliable, human-centric code generation models.
☆ Hidden Dynamics of Massive Activations in Transformer Training
Massive activations are scalar values in transformer hidden states that achieve values orders of magnitude larger than typical activations and have been shown to be critical for model functionality. While prior work has characterized these phenomena in fully trained models, the temporal dynamics of their emergence during training remain poorly understood. We present the first comprehensive analysis of massive activation development throughout transformer training, using the Pythia model family as our testbed. Through systematic analysis of various model sizes across multiple training checkpoints, we demonstrate that massive activation emergence follows predictable mathematical patterns that can be accurately modeled using an exponentially-modulated logarithmic function with five key parameters. We develop a machine learning framework to predict these mathematical parameters from architectural specifications alone, achieving high accuracy for steady-state behavior and moderate accuracy for emergence timing and magnitude. These findings enable architects to predict and potentially control key aspects of massive activation emergence through design choices, with significant implications for model stability, training cycle length, interpretability, and optimization. Our findings demonstrate that the emergence of massive activations is governed by model design and can be anticipated, and potentially controlled, before training begins.
☆ Goedel-Prover-V2: Scaling Formal Theorem Proving with Scaffolded Data Synthesis and Self-Correction
We introduce Goedel-Prover-V2, a series of open-source language models that set a new state-of-the-art in automated theorem proving. Built on the standard expert iteration and reinforcement learning pipeline, our approach incorporates three key innovations: (1) Scaffolded data synthesis: We generate synthetic tasks of increasing difficulty to train the model to master increasingly complex theorems; (2) Verifier-guided self-correction: We enable the model to iteratively revise its proofs by leveraging feedback from the Lean compiler; (3) Model averaging: We merge model checkpoints to mitigate the decrease in model output diversity in later stages of training. Our small model, Goedel-Prover-V2-8B, reaches 84.6% pass@32 on MiniF2F and outperforms DeepSeek-Prover-V2-671B under the same metric, despite being 80X smaller. Our flagship model, Goedel-Prover-V2-32B, achieves 88.1% on MiniF2F at pass@32 in standard mode and 90.4% in self-correction mode, outperforming prior SOTA by a large margin. Additionally, our flagship model solves 86 problems on PutnamBench at pass@184, securing the first place among open-source models on the leaderboard, surpassing DeepSeek-Prover-V2-671B's record of solving 47 problems by pass@1024 with a significantly smaller model size and compute budget. At the time of its release (July-August 2025), Goedel-Prover-V2 achieves the strongest overall performance among all open-source theorem provers. It also ranks among the top-performing models--including closed-source systems with publicly reported performance--under a constrained test-time compute budget. Our models, code, and data are released at https://github.com/Goedel-LM/Goedel-Prover-V2.
comment: 24 pages, 10 figures, 4 tables
☆ Block: Balancing Load in LLM Serving with Context, Knowledge and Predictive Scheduling
This paper presents Block, a distributed scheduling framework designed to optimize load balancing and auto-provisioning across instances in large language model serving frameworks by leveraging contextual information from incoming requests. Unlike popular model serving systems that rely on monolithic and heuristic task schedulers, Block operates as a fully distributed, stateless, and predictive scheduling system to achieve low overhead, reliability, and scalability. It leverages the deterministic and predictable characteristics of LLM inferences, such as host configurations, response lengths, and hardware performance, to make scheduling decisions based on accurately predicted metrics. Evaluation on a 12 GPUs cluster shows that Block significantly outperforms heuristic schedulers, boosting serving capacity by up to 16.7\% and reducing P99 tail latency by up to 49.5\%. These performance gains remain consistent across diverse models, workloads and configurations. Code and data are open-sourced.
comment: 12 pages, 8 figures excluding appendix
☆ MetaScope: Optics-Driven Neural Network for Ultra-Micro Metalens Endoscopy ICCV 2025
Miniaturized endoscopy has advanced accurate visual perception within the human body. Prevailing research remains limited to conventional cameras employing convex lenses, where the physical constraints with millimetre-scale thickness impose serious impediments on the micro-level clinical. Recently, with the emergence of meta-optics, ultra-micro imaging based on metalenses (micron-scale) has garnered great attention, serving as a promising solution. However, due to the physical difference of metalens, there is a large gap in data acquisition and algorithm research. In light of this, we aim to bridge this unexplored gap, advancing the novel metalens endoscopy. First, we establish datasets for metalens endoscopy and conduct preliminary optical simulation, identifying two derived optical issues that physically adhere to strong optical priors. Second, we propose MetaScope, a novel optics-driven neural network tailored for metalens endoscopy driven by physical optics. MetaScope comprises two novel designs: Optics-informed Intensity Adjustment (OIA), rectifying intensity decay by learning optical embeddings, and Optics-informed Chromatic Correction (OCC), mitigating chromatic aberration by learning spatial deformations informed by learned Point Spread Function (PSF) distributions. To enhance joint learning, we further deploy a gradient-guided distillation to transfer knowledge from the foundational model adaptively. Extensive experiments demonstrate that MetaScope not only outperforms state-of-the-art methods in both metalens segmentation and restoration but also achieves impressive generalized ability in real biomedical scenes.
comment: ICCV 2025 (Highlight); Project Page: https://cuhk-aim-group.github.io/MetaScope/
DeepFaith: A Domain-Free and Model-Agnostic Unified Framework for Highly Faithful Explanations
Explainable AI (XAI) builds trust in complex systems through model attribution methods that reveal the decision rationale. However, due to the absence of a unified optimal explanation, existing XAI methods lack a ground truth for objective evaluation and optimization. To address this issue, we propose Deep architecture-based Faith explainer (DeepFaith), a domain-free and model-agnostic unified explanation framework under the lens of faithfulness. By establishing a unified formulation for multiple widely used and well-validated faithfulness metrics, we derive an optimal explanation objective whose solution simultaneously achieves optimal faithfulness across these metrics, thereby providing a ground truth from a theoretical perspective. We design an explainer learning framework that leverages multiple existing explanation methods, applies deduplicating and filtering to construct high-quality supervised explanation signals, and optimizes both pattern consistency loss and local correlation to train a faithful explainer. Once trained, DeepFaith can generate highly faithful explanations through a single forward pass without accessing the model being explained. On 12 diverse explanation tasks spanning 6 models and 6 datasets, DeepFaith achieves the highest overall faithfulness across 10 metrics compared to all baseline methods, highlighting its effectiveness and cross-domain generalizability.
comment: 22 pages
☆ Decoding and Engineering the Phytobiome Communication for Smart Agriculture
Smart agriculture applications, integrating technologies like the Internet of Things and machine learning/artificial intelligence (ML/AI) into agriculture, hold promise to address modern challenges of rising food demand, environmental pollution, and water scarcity. Alongside the concept of the phytobiome, which defines the area including the plant, its environment, and associated organisms, and the recent emergence of molecular communication (MC), there exists an important opportunity to advance agricultural science and practice using communication theory. In this article, we motivate to use the communication engineering perspective for developing a holistic understanding of the phytobiome communication and bridge the gap between the phytobiome communication and smart agriculture. Firstly, an overview of phytobiome communication via molecular and electrophysiological signals is presented and a multi-scale framework modeling the phytobiome as a communication network is conceptualized. Then, how this framework is used to model electrophysiological signals is demonstrated with plant experiments. Furthermore, possible smart agriculture applications, such as smart irrigation and targeted delivery of agrochemicals, through engineering the phytobiome communication are proposed. These applications merge ML/AI methods with the Internet of Bio-Nano-Things enabled by MC and pave the way towards more efficient, sustainable, and eco-friendly agricultural production. Finally, the implementation challenges, open research issues, and industrial outlook for these applications are discussed.
comment: Under revision for IEEE Communications Magazine
☆ Supervised Dynamic Dimension Reduction with Deep Neural Network
This paper studies the problem of dimension reduction, tailored to improving time series forecasting with high-dimensional predictors. We propose a novel Supervised Deep Dynamic Principal component analysis (SDDP) framework that incorporates the target variable and lagged observations into the factor extraction process. Assisted by a temporal neural network, we construct target-aware predictors by scaling the original predictors in a supervised manner, with larger weights assigned to predictors with stronger forecasting power. A principal component analysis is then performed on the target-aware predictors to extract the estimated SDDP factors. This supervised factor extraction not only improves predictive accuracy in the downstream forecasting task but also yields more interpretable and target-specific latent factors. Building upon SDDP, we propose a factor-augmented nonlinear dynamic forecasting model that unifies a broad family of factor-model-based forecasting approaches. To further demonstrate the broader applicability of SDDP, we extend our studies to a more challenging scenario when the predictors are only partially observable. We validate the empirical performance of the proposed method on several real-world public datasets. The results show that our algorithm achieves notable improvements in forecasting accuracy compared to state-of-the-art methods.
☆ EmoSteer-TTS: Fine-Grained and Training-Free Emotion-Controllable Text-to-Speech via Activation Steering
Text-to-speech (TTS) has shown great progress in recent years. However, most existing TTS systems offer only coarse and rigid emotion control, typically via discrete emotion labels or a carefully crafted and detailed emotional text prompt, making fine-grained emotion manipulation either inaccessible or unstable. These models also require extensive, high-quality datasets for training. To address these limitations, we propose EmoSteer-TTS, a novel training-free approach, to achieve fine-grained speech emotion control (conversion, interpolation, erasure) by activation steering. We first empirically observe that modifying a subset of the internal activations within a flow matching-based TTS model can effectively alter the emotional tone of synthesized speech. Building on this insight, we then develop a training-free and efficient algorithm, including activation extraction, emotional token searching, and inference-time steering, which can be seamlessly integrated into a wide range of pretrained models (e.g., F5-TTS, CosyVoice2, and E2-TTS). In addition, to derive effective steering vectors, we construct a curated emotional speech dataset with diverse speakers. Extensive experiments demonstrate that EmoSteer-TTS enables fine-grained, interpretable, and continuous control over speech emotion, outperforming the state-of-the-art (SOTA). To the best of our knowledge, this is the first method that achieves training-free and continuous fine-grained emotion control in TTS.
☆ Retinal Lipidomics Associations as Candidate Biomarkers for Cardiovascular Health
Retinal microvascular imaging is increasingly recognised as a non invasive method for evaluating systemic vascular and metabolic health. However, the association between lipidomics and retinal vasculature remains inadequate. This study investigates the relationships between serum lipid subclasses, free fatty acids (FA), diacylglycerols (DAG), triacylglycerols (TAG), and cholesteryl esters (CE), and retinal microvascular characteristics in a large population-based cohort. Using Spearman correlation analysis, we examined the interconnection between lipid subclasses and ten retinal microvascular traits, applying the Benjamini-Hochberg false discovery rate (BH-FDR) to adjust for statistical significance. Results indicated that FA were linked to retinal vessel twistiness, while CE correlated with the average widths of arteries and veins. Conversely, DAG and TAG showed negative correlations with the width and complexity of arterioles and venules. These findings suggest that retinal vascular architecture reflects distinct circulating lipid profiles, supporting its role as a non-invasive marker of systemic metabolic health. This study is the first to integrate deep learning (DL)derived retinal traits with lipidomic subclasses in a healthy cohort, thereby providing insights into microvascular structural changes independent of disease status or treatment effects.
☆ MoKA: Mixture of Kronecker Adapters
Parameter-efficient fine-tuning (PEFT) is essential for reducing the computational overhead of large language models (LLMs). Low-rank family adapters are commonly used to control the parameter size efficiently while maintaining the generative power of LLMs. However, their limited expressiveness due to the rank constraint often restricts their performance on complex tasks. We propose Mixture of Kronecker Adapters (MoKA), a new generation of Kronecker adapters that addresses this limitation by modeling weight updates as a mixture of Kronecker products. Our proposed adapter leverages a gating mechanism that measures the importance of each Kronecker factor, enabling more expressive adaptation. Moreover, MoKA enables a rank flexibility that provides a better trade-off between parameter efficiency and accuracy. To ensure hardware efficiency, we reformulate Kronecker computations using standard matrix operations, allowing seamless deployment on GPU-optimized hardware. We conduct extensive experiments on instruction-tuning and commonsense reasoning tasks using low-bit quantized versions of LLaMA2-7B and LLaMA3-8B models. MoKA not only outperforms PEFT baselines, but also reduces the number of trainable parameters up to 27x, achieving state-of-the-art trade-offs between performance and parameter efficiency.
☆ Error Detection and Correction for Interpretable Mathematics in Large Language Models
Recent large language models (LLMs) have demonstrated the ability to perform explicit multi-step reasoning such as chain-of-thought prompting. However, their intermediate steps often contain errors that can propagate leading to inaccurate final predictions. Additionally, LLMs still struggle with hallucinations and often fail to adhere to prescribed output formats, which is particularly problematic for tasks like generating mathematical expressions or source code. This work introduces EDCIM (Error Detection and Correction for Interpretable Mathematics), a method for detecting and correcting these errors in interpretable mathematics tasks, where the model must generate the exact functional form that explicitly solve the problem (expressed in natural language) rather than a black-box solution. EDCIM uses LLMs to generate a system of equations for a given problem, followed by a symbolic error-detection framework that identifies errors and provides targeted feedback for LLM-based correction. To optimize efficiency, EDCIM integrates lightweight, open-source LLMs with more powerful proprietary models, balancing cost and accuracy. This balance is controlled by a single hyperparameter, allowing users to control the trade-off based on their cost and accuracy requirements. Experimental results across different datasets show that EDCIM significantly reduces both computational and financial costs, while maintaining, and even improving, prediction accuracy when the balance is properly configured.
☆ CF-RAG: A Dataset and Method for Carbon Footprint QA Using Retrieval-Augmented Generation
Product sustainability reports provide valuable insights into the environmental impacts of a product and are often distributed in PDF format. These reports often include a combination of tables and text, which complicates their analysis. The lack of standardization and the variability in reporting formats further exacerbate the difficulty of extracting and interpreting relevant information from large volumes of documents. In this paper, we tackle the challenge of answering questions related to carbon footprints within sustainability reports available in PDF format. Unlike previous approaches, our focus is on addressing the difficulties posed by the unstructured and inconsistent nature of text extracted from PDF parsing. To facilitate this analysis, we introduce CarbonPDF-QA, an open-source dataset containing question-answer pairs for 1735 product report documents, along with human-annotated answers. Our analysis shows that GPT-4o struggles to answer questions with data inconsistencies. To address this limitation, we propose CarbonPDF, an LLM-based technique specifically designed to answer carbon footprint questions on such datasets. We develop CarbonPDF by fine-tuning Llama 3 with our training data. Our results show that our technique outperforms current state-of-the-art techniques, including question-answering (QA) systems finetuned on table and text data.
☆ VQA support to Arabic Language Learning Educational Tool
We address the problem of scarcity of educational Arabic Language Learning tools that advocate modern pedagogical models such as active learning which ensures language proficiency. In fact, we investigate the design and evaluation of an AI-powered educational tool designed to enhance Arabic language learning for non-native speakers with beginner-to-intermediate proficiency level. The tool leverages advanced AI models to generate interactive visual quizzes, deploying Visual Question Answering as the primary activity. Adopting a constructivist learning approach, the system encourages active learning through real-life visual quizzes, and image-based questions that focus on improving vocabulary, grammar, and comprehension. The system integrates Vision-Language Pretraining models to generate contextually relevant image description from which Large Language Model generate assignments based on customized Arabic language Learning quizzes thanks to prompting. The effectiveness of the tool is evaluated through a manual annotated benchmark consisting of 1266 real-life visual quizzes, with human participants providing feedback. The results show a suitable accuracy rates, validating the tool's potential to bridge the gap in Arabic language education and highlighting the tool's promise as a reliable, AI-powered resource for Arabic learners, offering personalized and interactive learning experiences.
☆ BitsAI-Fix: LLM-Driven Approach for Automated Lint Error Resolution in Practice
As enterprise codebases continue to grow in scale and complexity, the volume of lint errors far exceeds engineers' manual remediation capacity, leading to continuous accumulation of technical debt and hindered development efficiency. This paper presents BitsAI-Fix, an automated lint error remediation workflow based on Large Language Models (LLMs), designed to address this critical challenge in industrial-scale environments. BitsAI-Fix employs tree-sitter for context expansion and generates search-and-replace format patches through specially trained LLMs, followed by lint scan re-verification to output final remediation results. Additionally, our approach introduces an innovative progressive reinforcement learning (RL) training strategy that can automatically acquire verifiable training data during the project cold-start phase and continuously iterate the model by collecting online samples through feedback after system deployment. Furthermore, we designed a targeted rule-based reward mechanism that combines format rewards and correctness rewards while penalizing redundant modifications. We also propose a "code diff matching" methodology to continuously track online effectiveness. In production deployment at ByteDance, our solution has supported over 5,000 engineers, resolved more than 12,000 static analysis issues, achieved approximately 85% remediation accuracy, with around 1,000 weekly active adopters. This work demonstrates the practical feasibility of LLM-based code remediation solutions in enterprise environments and serves as a reference for automated code fix in large-scale industrial scenarios.
☆ Semantic-aware Graph-guided Behavior Sequences Generation with Large Language Models for Smart Homes
As smart homes become increasingly prevalent, intelligent models are widely used for tasks such as anomaly detection and behavior prediction. These models are typically trained on static datasets, making them brittle to behavioral drift caused by seasonal changes, lifestyle shifts, or evolving routines. However, collecting new behavior data for retraining is often impractical due to its slow pace, high cost, and privacy concerns. In this paper, we propose SmartGen, an LLM-based framework that synthesizes context-aware user behavior data to support continual adaptation of downstream smart home models. SmartGen consists of four key components. First, we design a Time and Semantic-aware Split module to divide long behavior sequences into manageable, semantically coherent subsequences under dual time-span constraints. Second, we propose Semantic-aware Sequence Compression to reduce input length while preserving representative semantics by clustering behavior mapping in latent space. Third, we introduce Graph-guided Sequence Synthesis, which constructs a behavior relationship graph and encodes frequent transitions into prompts, guiding the LLM to generate data aligned with contextual changes while retaining core behavior patterns. Finally, we design a Two-stage Outlier Filter to identify and remove implausible or semantically inconsistent outputs, aiming to improve the factual coherence and behavioral validity of the generated sequences. Experiments on three real-world datasets demonstrate that SmartGen significantly enhances model performance on anomaly detection and behavior prediction tasks under behavioral drift, with anomaly detection improving by 85.43% and behavior prediction by 70.51% on average. The code is available at https://github.com/horizonsinzqs/SmartGen.
☆ When Cars Have Stereotypes: Auditing Demographic Bias in Objects from Text-to-Image Models
While prior research on text-to-image generation has predominantly focused on biases in human depictions, we investigate a more subtle yet pervasive phenomenon: demographic bias in generated objects (e.g., cars). We introduce SODA (Stereotyped Object Diagnostic Audit), a novel framework for systematically measuring such biases. Our approach compares visual attributes of objects generated with demographic cues (e.g., "for young people'') to those from neutral prompts, across 2,700 images produced by three state-of-the-art models (GPT Image-1, Imagen 4, and Stable Diffusion) in five object categories. Through a comprehensive analysis, we uncover strong associations between specific demographic groups and visual attributes, such as recurring color patterns prompted by gender or ethnicity cues. These patterns reflect and reinforce not only well-known stereotypes but also more subtle and unintuitive biases. We also observe that some models generate less diverse outputs, which in turn amplifies the visual disparities compared to neutral prompts. Our proposed auditing framework offers a practical approach for testing, revealing how stereotypes still remain embedded in today's generative models. We see this as an essential step toward more systematic and responsible AI development.
☆ Draw Your Mind: Personalized Generation via Condition-Level Modeling in Text-to-Image Diffusion Models ICCV 2025
Personalized generation in T2I diffusion models aims to naturally incorporate individual user preferences into the generation process with minimal user intervention. However, existing studies primarily rely on prompt-level modeling with large-scale models, often leading to inaccurate personalization due to the limited input token capacity of T2I diffusion models. To address these limitations, we propose DrUM, a novel method that integrates user profiling with a transformer-based adapter to enable personalized generation through condition-level modeling in the latent space. DrUM demonstrates strong performance on large-scale datasets and seamlessly integrates with open-source text encoders, making it compatible with widely used foundation T2I models without requiring additional fine-tuning.
comment: Accepted at ICCV 2025
☆ VideoGuard: Protecting Video Content from Unauthorized Editing
With the rapid development of generative technology, current generative models can generate high-fidelity digital content and edit it in a controlled manner. However, there is a risk that malicious individuals might misuse these capabilities for misleading activities. Although existing research has attempted to shield photographic images from being manipulated by generative models, there remains a significant disparity in the protection offered to video content editing. To bridge the gap, we propose a protection method named VideoGuard, which can effectively protect videos from unauthorized malicious editing. This protection is achieved through the subtle introduction of nearly unnoticeable perturbations that interfere with the functioning of the intended generative diffusion models. Due to the redundancy between video frames, and inter-frame attention mechanism in video diffusion models, simply applying image-based protection methods separately to every video frame can not shield video from unauthorized editing. To tackle the above challenge, we adopt joint frame optimization, treating all video frames as an optimization entity. Furthermore, we extract video motion information and fuse it into optimization objectives. Thus, these alterations can effectively force the models to produce outputs that are implausible and inconsistent. We provide a pipeline to optimize this perturbation. Finally, we use both objective metrics and subjective metrics to demonstrate the efficacy of our method, and the results show that the protection performance of VideoGuard is superior to all the baseline methods.
comment: ai security, 10pages, 5 figures
☆ fact check AI at SemEval-2025 Task 7: Multilingual and Crosslingual Fact-checked Claim Retrieval ACL
SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval is approached as a Learning-to-Rank task using a bi-encoder model fine-tuned from a pre-trained transformer optimized for sentence similarity. Training used both the source languages and their English translations for multilingual retrieval and only English translations for cross-lingual retrieval. Using lightweight models with fewer than 500M parameters and training on Kaggle T4 GPUs, the method achieved 92% Success@10 in multilingual and 80% Success@10 in 5th in crosslingual and 10th in multilingual tracks.
comment: 7 pages, 6 tables. Code available at https://github.com/pranshurastogi29/SemEval-2025-ACL-Multi-and-Crosslingual-Retrieval-using-Bi-encoders
☆ Toward a Graph-Theoretic Model of Belief: Confidence, Credibility, and Structural Coherence
Belief systems are often treated as globally consistent sets of propositions or as scalar-valued probability distributions. Such representations tend to obscure the internal structure of belief, conflate external credibility with internal coherence, and preclude the modeling of fragmented or contradictory epistemic states. This paper introduces a minimal formalism for belief systems as directed, weighted graphs. In this framework, nodes represent individual beliefs, edges encode epistemic relationships (e.g., support or contradiction), and two distinct functions assign each belief a credibility (reflecting source trust) and a confidence (derived from internal structural support). Unlike classical probabilistic models, our approach does not assume prior coherence or require belief updating. Unlike logical and argumentation-based frameworks, it supports fine-grained structural representation without committing to binary justification status or deductive closure. The model is purely static and deliberately excludes inference or revision procedures. Its aim is to provide a foundational substrate for analyzing the internal organization of belief systems, including coherence conditions, epistemic tensions, and representational limits. By distinguishing belief structure from belief strength, this formalism enables a richer classification of epistemic states than existing probabilistic, logical, or argumentation-based approaches.
☆ SonicMaster: Towards Controllable All-in-One Music Restoration and Mastering
Music recordings often suffer from audio quality issues such as excessive reverberation, distortion, clipping, tonal imbalances, and a narrowed stereo image, especially when created in non-professional settings without specialized equipment or expertise. These problems are typically corrected using separate specialized tools and manual adjustments. In this paper, we introduce SonicMaster, the first unified generative model for music restoration and mastering that addresses a broad spectrum of audio artifacts with text-based control. SonicMaster is conditioned on natural language instructions to apply targeted enhancements, or can operate in an automatic mode for general restoration. To train this model, we construct the SonicMaster dataset, a large dataset of paired degraded and high-quality tracks by simulating common degradation types with nineteen degradation functions belonging to five enhancements groups: equalization, dynamics, reverb, amplitude, and stereo. Our approach leverages a flow-matching generative training paradigm to learn an audio transformation that maps degraded inputs to their cleaned, mastered versions guided by text prompts. Objective audio quality metrics demonstrate that SonicMaster significantly improves sound quality across all artifact categories. Furthermore, subjective listening tests confirm that listeners prefer SonicMaster's enhanced outputs over the original degraded audio, highlighting the effectiveness of our unified approach.
☆ LLMs Have a Heart of Stone: Demystifying the Soft Thinking Ability of Large Reasoning Models
Human cognition naturally engages with abstract and fluid concepts, whereas existing reasoning models often rely on generating discrete tokens, potentially constraining their expressive capabilities. Recent advancements aim to address this limitation by enabling large language models (LLMs) to generate soft, abstract tokens, thus facilitating reasoning within a continuous concept space. This paper explores the `Soft Thinking' capabilities of various LLMs by examining the models' internal behavior using a suite of probing techniques. Contrary to the common belief that Soft Thinking enables the simultaneous exploration of diverse reasoning paths, our findings reveal that LLMs predominantly rely on the most influential component of the soft inputs during subsequent decoding steps. This reliance hinders the exploration of different reasoning paths and reduces vanilla Soft Thinking to a form of greedy decoding, obscuring the advantage of transmitting more information through Soft Tokens. To tackle this issue, we explore sampling strategies to introduce \emph{randomness}, employing methods such as Dirichlet resampling and the Gumbel-Softmax trick. Our experiments demonstrate that incorporating randomness can alleviate the limitations of vanilla approaches and unleash the potential of Soft Thinking. Notably, the Gumbel-Softmax trick provides adequate randomness with controlled smoothness, resulting in superior performance across eight reasoning benchmarks.
comment: 10 pages, 7 figures, working in progress
Data Overdose? Time for a Quadruple Shot: Knowledge Graph Construction using Enhanced Triple Extraction
The rapid expansion of publicly-available medical data presents a challenge for clinicians and researchers alike, increasing the gap between the volume of scientific literature and its applications. The steady growth of studies and findings overwhelms medical professionals at large, hindering their ability to systematically review and understand the latest knowledge. This paper presents an approach to information extraction and automatic knowledge graph (KG) generation to identify and connect biomedical knowledge. Through a pipeline of large language model (LLM) agents, the system decomposes 44 PubMed abstracts into semantically meaningful proposition sentences and extracts KG triples from these sentences. The triples are enhanced using a combination of open domain and ontology-based information extraction methodologies to incorporate ontological categories. On top of this, a context variable is included during extraction to allow the triple to stand on its own - thereby becoming `quadruples'. The extraction accuracy of the LLM is validated by comparing natural language sentences generated from the enhanced triples to the original propositions, achieving an average cosine similarity of 0.874. The similarity for generated sentences of enhanced triples were compared with generated sentences of ordinary triples showing an increase as a result of the context variable. Furthermore, this research explores the ability for LLMs to infer new relationships and connect clusters in the knowledge base of the knowledge graph. This approach leads the way to provide medical practitioners with a centralised, updated in real-time, and sustainable knowledge source, and may be the foundation of similar gains in a wide variety of fields.
comment: 18 pages, 8 figures, Published in the Annual Conference of South African Institute of Computer Scientists and Information Technologists, Preprint (author original)
☆ Spatial Imputation Drives Cross-Domain Alignment for EEG Classification
Electroencephalogram (EEG) signal classification faces significant challenges due to data distribution shifts caused by heterogeneous electrode configurations, acquisition protocols, and hardware discrepancies across domains. This paper introduces IMAC, a novel channel-dependent mask and imputation self-supervised framework that formulates the alignment of cross-domain EEG data shifts as a spatial time series imputation task. To address heterogeneous electrode configurations in cross-domain scenarios, IMAC first standardizes different electrode layouts using a 3D-to-2D positional unification mapping strategy, establishing unified spatial representations. Unlike previous mask-based self-supervised representation learning methods, IMAC introduces spatio-temporal signal alignment. This involves constructing a channel-dependent mask and reconstruction task framed as a low-to-high resolution EEG spatial imputation problem. Consequently, this approach simulates cross-domain variations such as channel omissions and temporal instabilities, thus enabling the model to leverage the proposed imputer for robust signal alignment during inference. Furthermore, IMAC incorporates a disentangled structure that separately models the temporal and spatial information of the EEG signals separately, reducing computational complexity while enhancing flexibility and adaptability. Comprehensive evaluations across 10 publicly available EEG datasets demonstrate IMAC's superior performance, achieving state-of-the-art classification accuracy in both cross-subject and cross-center validation scenarios. Notably, IMAC shows strong robustness under both simulated and real-world distribution shifts, surpassing baseline methods by up to $35$\% in integrity scores while maintaining consistent classification accuracy.
comment: ACMMM 2025 poster
☆ The Science Fiction Science Method
Predicting the social and behavioral impact of future technologies, before they are achieved, would allow us to guide their development and regulation before these impacts get entrenched. Traditionally, this prediction has relied on qualitative, narrative methods. Here we describe a method which uses experimental methods to simulate future technologies, and collect quantitative measures of the attitudes and behaviors of participants assigned to controlled variations of the future. We call this method 'science fiction science'. We suggest that the reason why this method has not been fully embraced yet, despite its potential benefits, is that experimental scientists may be reluctant to engage in work facing such serious validity threats as science fiction science. To address these threats, we consider possible constraints on the kind of technology that science fiction science may study, as well as the unconventional, immersive methods that science fiction science may require. We seek to provide perspective on the reasons why this method has been marginalized for so long, what benefits it would bring if it could be built on strong yet unusual methods, and how we can normalize these methods to help the diverse community of science fiction scientists to engage in a virtuous cycle of validity improvement.
☆ R2GenKG: Hierarchical Multi-modal Knowledge Graph for LLM-based Radiology Report Generation
X-ray medical report generation is one of the important applications of artificial intelligence in healthcare. With the support of large foundation models, the quality of medical report generation has significantly improved. However, challenges such as hallucination and weak disease diagnostic capability still persist. In this paper, we first construct a large-scale multi-modal medical knowledge graph (termed M3KG) based on the ground truth medical report using the GPT-4o. It contains 2477 entities, 3 kinds of relations, 37424 triples, and 6943 disease-aware vision tokens for the CheXpert Plus dataset. Then, we sample it to obtain multi-granularity semantic graphs and use an R-GCN encoder for feature extraction. For the input X-ray image, we adopt the Swin-Transformer to extract the vision features and interact with the knowledge using cross-attention. The vision tokens are fed into a Q-former and retrieved the disease-aware vision tokens using another cross-attention. Finally, we adopt the large language model to map the semantic knowledge graph, input X-ray image, and disease-aware vision tokens into language descriptions. Extensive experiments on multiple datasets fully validated the effectiveness of our proposed knowledge graph and X-ray report generation framework. The source code of this paper will be released on https://github.com/Event-AHU/Medical_Image_Analysis.
☆ Learning Latent Representations for Image Translation using Frequency Distributed CycleGAN
This paper presents Fd-CycleGAN, an image-to-image (I2I) translation framework that enhances latent representation learning to approximate real data distributions. Building upon the foundation of CycleGAN, our approach integrates Local Neighborhood Encoding (LNE) and frequency-aware supervision to capture fine-grained local pixel semantics while preserving structural coherence from the source domain. We employ distribution-based loss metrics, including KL/JS divergence and log-based similarity measures, to explicitly quantify the alignment between real and generated image distributions in both spatial and frequency domains. To validate the efficacy of Fd-CycleGAN, we conduct experiments on diverse datasets -- Horse2Zebra, Monet2Photo, and a synthetically augmented Strike-off dataset. Compared to baseline CycleGAN and other state-of-the-art methods, our approach demonstrates superior perceptual quality, faster convergence, and improved mode diversity, particularly in low-data regimes. By effectively capturing local and global distribution characteristics, Fd-CycleGAN achieves more visually coherent and semantically consistent translations. Our results suggest that frequency-guided latent learning significantly improves generalization in image translation tasks, with promising applications in document restoration, artistic style transfer, and medical image synthesis. We also provide comparative insights with diffusion-based generative models, highlighting the advantages of our lightweight adversarial approach in terms of training efficiency and qualitative output.
comment: This paper is currently under review for publication in an IEEE Transactions. If accepted, the copyright will be transferred to IEEE
☆ SlotMatch: Distilling Temporally Consistent Object-Centric Representations for Unsupervised Video Segmentation
Unsupervised video segmentation is a challenging computer vision task, especially due to the lack of supervisory signals coupled with the complexity of visual scenes. To overcome this challenge, state-of-the-art models based on slot attention often have to rely on large and computationally expensive neural architectures. To this end, we propose a simple knowledge distillation framework that effectively transfers object-centric representations to a lightweight student. The proposed framework, called SlotMatch, aligns corresponding teacher and student slots via the cosine similarity, requiring no additional distillation objectives or auxiliary supervision. The simplicity of SlotMatch is confirmed via theoretical and empirical evidence, both indicating that integrating additional losses is redundant. We conduct experiments on two datasets to compare the state-of-the-art teacher model, SlotContrast, with our distilled student. The results show that our student based on SlotMatch matches and even outperforms its teacher, while using 3.6x less parameters and running 1.9x faster. Moreover, our student surpasses previous unsupervised video segmentation models.
☆ NeuroSync: Intent-Aware Code-Based Problem Solving via Direct LLM Understanding Modification
Conversational LLMs have been widely adopted by domain users with limited programming experience to solve domain problems. However, these users often face misalignment between their intent and generated code, resulting in frustration and rounds of clarification. This work first investigates the cause of this misalignment, which dues to bidirectional ambiguity: both user intents and coding tasks are inherently nonlinear, yet must be expressed and interpreted through linear prompts and code sequences. To address this, we propose direct intent-task matching, a new human-LLM interaction paradigm that externalizes and enables direct manipulation of the LLM understanding, i.e., the coding tasks and their relationships inferred by the LLM prior to code generation. As a proof-of-concept, this paradigm is then implemented in NeuroSync, which employs a knowledge distillation pipeline to extract LLM understanding, user intents, and their mappings, and enhances the alignment by allowing users to intuitively inspect and edit them via visualizations. We evaluate the algorithmic components of NeuroSync via technical experiments, and assess its overall usability and effectiveness via a user study (N=12). The results show that it enhances intent-task alignment, lowers cognitive effort, and improves coding efficiency.
comment: Accepted in UIST 2025
☆ Multi-Objective Infeasibility Diagnosis for Routing Problems Using Large Language Models
In real-world routing problems, users often propose conflicting or unreasonable requirements, which result in infeasible optimization models due to overly restrictive or contradictory constraints, leading to an empty feasible solution set. Existing Large Language Model (LLM)-based methods attempt to diagnose infeasible models, but modifying such models often involves multiple potential adjustments that these methods do not consider. To fill this gap, we introduce Multi-Objective Infeasibility Diagnosis (MOID), which combines LLM agents and multi-objective optimization within an automatic routing solver, to provide a set of representative actionable suggestions. Specifically, MOID employs multi-objective optimization to consider both path cost and constraint violation, generating a set of trade-off solutions, each encompassing varying degrees of model adjustments. To extract practical insights from these solutions, MOID utilizes LLM agents to generate a solution analysis function for the infeasible model. This function analyzes these distinct solutions to diagnose the original infeasible model, providing users with diverse diagnostic insights and suggestions. Finally, we compare MOID with several LLM-based methods on 50 types of infeasible routing problems. The results indicate that MOID automatically generates multiple diagnostic suggestions in a single run, providing more practical insights for restoring model feasibility and decision-making compared to existing methods.
☆ Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling
Existing vision-language models (VLMs), whether generalists or specialists, remain constrained by their parameter scale, lack robust self-correction capabilities, and underperform in tasks involving long visual contexts and complex reasoning, resulting in suboptimal performance on document-based tasks. To address this, we propose MACT, a Multi-Agent Collaboration framework with Test-Time scaling, tailored for visual document understanding and visual question answering (VQA). It comprises four distinct small-scale agents, i.e., planning, execution, judgment, and answer agents, with clearly defined roles and effective collaboration. Notably, the judgment agent exclusively verifies correctness and redirects to prior agents for revisions, outperforming conventional correction strategies. To further expand the capability boundaries of the framework, we propose mixed reward modeling that balances agent-specific abilities and global collaboration, as well as agent-wise hybrid test-time scaling, which customizes different scaling strategies for each agent based on their functions. Evaluated on benchmarks spanning both document-based and non-document-based settings, our MACT shows superior performance with a smaller parameter scale without sacrificing the ability of general and mathematical tasks. Especially, it stands out in benchmarks involving long visual contexts and complicated reasoning. The three variants of MACT consistently hold the top three positions in average scores, leading in 13 of the 15 benchmarks. Code will be available at: https://github.com/YU-deep/MACT.git.
☆ SCFlow: Implicitly Learning Style and Content Disentanglement with Flow Models ICCV 2025
Explicitly disentangling style and content in vision models remains challenging due to their semantic overlap and the subjectivity of human perception. Existing methods propose separation through generative or discriminative objectives, but they still face the inherent ambiguity of disentangling intertwined concepts. Instead, we ask: Can we bypass explicit disentanglement by learning to merge style and content invertibly, allowing separation to emerge naturally? We propose SCFlow, a flow-matching framework that learns bidirectional mappings between entangled and disentangled representations. Our approach is built upon three key insights: 1) Training solely to merge style and content, a well-defined task, enables invertible disentanglement without explicit supervision; 2) flow matching bridges on arbitrary distributions, avoiding the restrictive Gaussian priors of diffusion models and normalizing flows; and 3) a synthetic dataset of 510,000 samples (51 styles $\times$ 10,000 content samples) was curated to simulate disentanglement through systematic style-content pairing. Beyond controllable generation tasks, we demonstrate that SCFlow generalizes to ImageNet-1k and WikiArt in zero-shot settings and achieves competitive performance, highlighting that disentanglement naturally emerges from the invertible merging process.
comment: ICCV 2025, Project Page: https://compvis.github.io/SCFlow/
☆ Hide and Seek with LLMs: An Adversarial Game for Sneaky Error Generation and Self-Improving Diagnosis
Large Language Models (LLMs) excel in reasoning and generation across domains, but still struggle with identifying and diagnosing complex errors. This stems mainly from training objectives that prioritize correct answers, limiting exposure to and learning from errors. While recent studies have begun to address this by introducing error signals, most rely on shallow, static errors, restricting improvement in deep diagnostic ability. To overcome this, we propose Hide and Seek Game (HSG), a dynamic adversarial framework for error generation and diagnosis, and evaluate it on mathematical problem-solving. HSG involves two adversarial roles: Sneaky, which "hides" by generating subtle, deceptive reasoning errors, and Diagnosis, which "seeks" to accurately detect them. Through adversarial co-evolution, both error stealth and diagnostic precision are enhanced. Experiments on several math reasoning tasks show that HSG significantly boosts error diagnosis, achieving 16.8\%--31.4\% higher accuracy than baselines like GPT-4o. We also release a challenging dataset of deceptive errors and diagnostic annotations as a benchmark for future research.
☆ Agentic AI in 6G Software Businesses: A Layered Maturity Model
The emergence of agentic AI systems in 6G software businesses presents both strategic opportunities and significant challenges. While such systems promise increased autonomy, scalability, and intelligent decision-making across distributed environments, their adoption raises concerns regarding technical immaturity, integration complexity, organizational readiness, and performance-cost trade-offs. In this study, we conducted a preliminary thematic mapping to identify factors influencing the adoption of agentic software within the context of 6G. Drawing on a multivocal literature review and targeted scanning, we identified 29 motivators and 27 demotivators, which were further categorized into five high-level themes in each group. This thematic mapping offers a structured overview of the enabling and inhibiting forces shaping organizational readiness for agentic transformation. Positioned as a feasibility assessment, the study represents an early phase of a broader research initiative aimed at developing and validating a layered maturity model grounded in CMMI model with the software architectural three dimensions possibly Data, Business Logic, and Presentation. Ultimately, this work seeks to provide a practical framework to help software-driven organizations assess, structure, and advance their agent-first capabilities in alignment with the demands of 6G.
comment: 6 pages, 3 figures and FIT'25 Conference
Data Dependency Inference for Industrial Code Generation Based on UML Sequence Diagrams
Large language models (LLMs) excel at generating code from natural language (NL) descriptions. However, the plain textual descriptions are inherently ambiguous and often fail to capture complex requirements like intricate system behaviors, conditional logic, and architectural constraints; implicit data dependencies in service-oriented architectures are difficult to infer and handle correctly. To bridge this gap, we propose a novel step-by-step code generation framework named UML2Dep by leveraging unambiguous formal specifications of complex requirements. First, we introduce an enhanced Unified Modeling Language (UML) sequence diagram tailored for service-oriented architectures. This diagram extends traditional visual syntax by integrating decision tables and API specifications, explicitly formalizing structural relationships and business logic flows in service interactions to rigorously eliminate linguistic ambiguity. Second, recognizing the critical role of data flow, we introduce a dedicated data dependency inference (DDI) task. DDI systematically constructs an explicit data dependency graph prior to actual code synthesis. To ensure reliability, we formalize DDI as a constrained mathematical reasoning task through novel prompting strategies, aligning with LLMs' excellent mathematical strengths. Additional static parsing and dependency pruning further reduce context complexity and cognitive load associated with intricate specifications, thereby enhancing reasoning accuracy and efficiency.
☆ Board Game Arena: A Framework and Benchmark for Assessing Large Language Models via Strategic Play
The Board Game Arena library provides a framework for evaluating the decision making abilities of large language models (LLMs) through strategic board games implemented in Google OpenSpiel library. The framework enables systematic comparisons between LLM based agents and other agents (random, human, reinforcement learning agents, etc.) in various game scenarios by wrapping multiple board and matrix games and supporting different agent types. It integrates API access to models via LiteLLM, local model deployment via vLLM, and offers distributed execution through Ray. Additionally it provides extensive analysis tools for the LLM reasoning traces. This paper summarizes the structure, key characteristics, and motivation of the repository, highlighting how it contributes to the empirical evaluation of the reasoning of LLM and game-theoretic behavior
☆ A Comparative Study of Neurosymbolic AI Approaches to Interpretable Logical Reasoning
General logical reasoning, defined as the ability to reason deductively on domain-agnostic tasks, continues to be a challenge for large language models (LLMs). Current LLMs fail to reason deterministically and are not interpretable. As such, there has been a recent surge in interest in neurosymbolic AI, which attempts to incorporate logic into neural networks. We first identify two main neurosymbolic approaches to improving logical reasoning: (i) the integrative approach comprising models where symbolic reasoning is contained within the neural network, and (ii) the hybrid approach comprising models where a symbolic solver, separate from the neural network, performs symbolic reasoning. Both contain AI systems with promising results on domain-specific logical reasoning benchmarks. However, their performance on domain-agnostic benchmarks is understudied. To the best of our knowledge, there has not been a comparison of the contrasting approaches that answers the following question: Which approach is more promising for developing general logical reasoning? To analyze their potential, the following best-in-class domain-agnostic models are introduced: Logic Neural Network (LNN), which uses the integrative approach, and LLM-Symbolic Solver (LLM-SS), which uses the hybrid approach. Using both models as case studies and representatives of each approach, our analysis demonstrates that the hybrid approach is more promising for developing general logical reasoning because (i) its reasoning chain is more interpretable, and (ii) it retains the capabilities and advantages of existing LLMs. To support future works using the hybrid approach, we propose a generalizable framework based on LLM-SS that is modular by design, model-agnostic, domain-agnostic, and requires little to no human input.
comment: Accepted to NeSy 2025
☆ When Good Sounds Go Adversarial: Jailbreaking Audio-Language Models with Benign Inputs
As large language models become increasingly integrated into daily life, audio has emerged as a key interface for human-AI interaction. However, this convenience also introduces new vulnerabilities, making audio a potential attack surface for adversaries. Our research introduces WhisperInject, a two-stage adversarial audio attack framework that can manipulate state-of-the-art audio language models to generate harmful content. Our method uses imperceptible perturbations in audio inputs that remain benign to human listeners. The first stage uses a novel reward-based optimization method, Reinforcement Learning with Projected Gradient Descent (RL-PGD), to guide the target model to circumvent its own safety protocols and generate harmful native responses. This native harmful response then serves as the target for Stage 2, Payload Injection, where we use Projected Gradient Descent (PGD) to optimize subtle perturbations that are embedded into benign audio carriers, such as weather queries or greeting messages. Validated under the rigorous StrongREJECT, LlamaGuard, as well as Human Evaluation safety evaluation framework, our experiments demonstrate a success rate exceeding 86% across Qwen2.5-Omni-3B, Qwen2.5-Omni-7B, and Phi-4-Multimodal. Our work demonstrates a new class of practical, audio-native threats, moving beyond theoretical exploits to reveal a feasible and covert method for manipulating AI behavior.
☆ CogBench: A Large Language Model Benchmark for Multilingual Speech-Based Cognitive Impairment Assessment
Automatic assessment of cognitive impairment from spontaneous speech offers a promising, non-invasive avenue for early cognitive screening. However, current approaches often lack generalizability when deployed across different languages and clinical settings, limiting their practical utility. In this study, we propose CogBench, the first benchmark designed to evaluate the cross-lingual and cross-site generalizability of large language models (LLMs) for speech-based cognitive impairment assessment. Using a unified multimodal pipeline, we evaluate model performance on three speech datasets spanning English and Mandarin: ADReSSo, NCMMSC2021-AD, and a newly collected test set, CIR-E. Our results show that conventional deep learning models degrade substantially when transferred across domains. In contrast, LLMs equipped with chain-of-thought prompting demonstrate better adaptability, though their performance remains sensitive to prompt design. Furthermore, we explore lightweight fine-tuning of LLMs via Low-Rank Adaptation (LoRA), which significantly improves generalization in target domains. These findings offer a critical step toward building clinically useful and linguistically robust speech-based cognitive assessment tools.
comment: 19 pages, 9 figures, 12 tables
☆ VLMQ: Efficient Post-Training Quantization for Large Vision-Language Models via Hessian Augmentation
Post-training quantization (PTQ) has emerged as an effective approach for compressing large models and accelerating their inference without retraining. While PTQ has been extensively studied in the context of large language models (LLMs), its applicability to vision-language models (VLMs) remains underexplored. In this paper, we identify a modality discrepancy (\emph{i.e.}, limited text tokens \emph{vs.} excessive and redundant vision tokens) of VLMs. However, existing Hessian-based LLM PTQ methods treat all tokens equally during quantization, resulting in severe performance drops when applied to VLMs. Motivated by this observation, we propose a novel importance-aware PTQ framework tailored for VLMs, dubbed VLMQ. Specifically, to address vision token redundancy, VLMQ 1) optimizes an importance-aware objective that yields an enhanced Hessian with token-level importance factors, while retaining compatibility with parallelized weight updates, and 2) ensures efficiency and effectiveness by computing these factors via a single lightweight block-wise backward pass, guided by a theoretical connection to token-level perturbations. Extensive evaluations on 8 benchmarks across 0.5B$\sim$32B VLMs demonstrate the state-of-the-art (SOTA) performance of our VLMQ, particularly under low-bit settings. For example, it achieves a substantial \textbf{16.45\%} improvement on MME-RealWorld under 2-bit quantization.
comment: 13 pages, 5 figures
☆ Compressing Chain-of-Thought in LLMs via Step Entropy
Large Language Models (LLMs) using Chain-of-Thought (CoT) prompting excel at complex reasoning but generate verbose thought processes with considerable redundancy, leading to increased inference costs and reduced efficiency. We introduce a novel CoT compression framework based on step entropy, a metric that quantifies the informational contribution of individual reasoning steps to identify redundancy. Through theoretical analysis and extensive empirical validation on mathematical reasoning benchmarks, we demonstrate that steps with low entropy are indeed highly redundant. Our experiments reveal that an astonishing 80\% of low-entropy intermediate steps can be pruned with minor degradation in the final answer accuracy across DeepSeek-R1-7B, 14B and Qwen3-8B. This finding sharply contrasts with random or high-entropy pruning, which severely impairs reasoning performance. Building on this, we propose a novel two-stage training strategy combining Supervised Fine-Tuning (SFT) and Group Relative Policy Optimization (GRPO) reinforcement learning. This approach enables LLMs to autonomously learn to generate compressed COTs during inference by strategically incorporating [SKIP] tokens. Our method significantly enhances LLM inference efficiency while rigorously preserving accuracy, offering profound implications for practical LLM deployment and a deeper understanding of reasoning structures.
☆ Adaptive AI Agent Placement and Migration in Edge Intelligence Systems
The rise of LLMs such as ChatGPT and Claude fuels the need for AI agents capable of real-time task handling. However, migrating data-intensive, multi-modal edge workloads to cloud data centers, traditionally used for agent deployment, introduces significant latency. Deploying AI agents at the edge improves efficiency and reduces latency. However, edge environments present challenges due to limited and heterogeneous resources. Maintaining QoS for mobile users necessitates agent migration, which is complicated by the complexity of AI agents coordinating LLMs, task planning, memory, and external tools. This paper presents the first systematic deployment and management solution for LLM-based AI agents in dynamic edge environments. We propose a novel adaptive framework for AI agent placement and migration in edge intelligence systems. Our approach models resource constraints and latency/cost, leveraging ant colony algorithms and LLM-based optimization for efficient decision-making. It autonomously places agents to optimize resource utilization and QoS and enables lightweight agent migration by transferring only essential state. Implemented on a distributed system using AgentScope and validated across globally distributed edge servers, our solution significantly reduces deployment latency and migration costs.
☆ From Legacy to Standard: LLM-Assisted Transformation of Cybersecurity Playbooks into CACAO Format
Existing cybersecurity playbooks are often written in heterogeneous, non-machine-readable formats, which limits their automation and interoperability across Security Orchestration, Automation, and Response platforms. This paper explores the suitability of Large Language Models, combined with Prompt Engineering, to automatically translate legacy incident response playbooks into the standardized, machine-readable CACAO format. We systematically examine various Prompt Engineering techniques and carefully design prompts aimed at maximizing syntactic accuracy and semantic fidelity for control flow preservation. Our modular transformation pipeline integrates a syntax checker to ensure syntactic correctness and features an iterative refinement mechanism that progressively reduces syntactic errors. We evaluate the proposed approach on a custom-generated dataset comprising diverse legacy playbooks paired with manually created CACAO references. The results demonstrate that our method significantly improves the accuracy of playbook transformation over baseline models, effectively captures complex workflow structures, and substantially reduces errors. It highlights the potential for practical deployment in automated cybersecurity playbook transformation tasks.
comment: 20 pages, including appendices, 32 references, 4 tables, 7 main figures (some of them has sub-figures)
☆ Nemori: Self-Organizing Agent Memory Inspired by Cognitive Science
Large Language Models (LLMs) demonstrate remarkable capabilities, yet their inability to maintain persistent memory in long contexts limits their effectiveness as autonomous agents in long-term interactions. While existing memory systems have made progress, their reliance on arbitrary granularity for defining the basic memory unit and passive, rule-based mechanisms for knowledge extraction limits their capacity for genuine learning and evolution. To address these foundational limitations, we present Nemori, a novel self-organizing memory architecture inspired by human cognitive principles. Nemori's core innovation is twofold: First, its Two-Step Alignment Principle, inspired by Event Segmentation Theory, provides a principled, top-down method for autonomously organizing the raw conversational stream into semantically coherent episodes, solving the critical issue of memory granularity. Second, its Predict-Calibrate Principle, inspired by the Free-energy Principle, enables the agent to proactively learn from prediction gaps, moving beyond pre-defined heuristics to achieve adaptive knowledge evolution. This offers a viable path toward handling the long-term, dynamic workflows of autonomous agents. Extensive experiments on the LoCoMo and LongMemEval benchmarks demonstrate that Nemori significantly outperforms prior state-of-the-art systems, with its advantage being particularly pronounced in longer contexts.
☆ CTTS: Collective Test-Time Scaling
Test-time scaling (TTS) has emerged as a promising research field for enhancing the effectiveness of large language models (LLMs) without extra training. However, most existing approaches, e.g., Best-of-N and Self-Consistency rely on a single agent interacting with a reward model (SA-SR), constrained by limited capabilities of a single test-time scaling (STTS) paradigm. On the other hand, recent works demonstrate that collective-agent methods can break through the upper bound of single-agent systems by orchestrating diverse models. Thus, in this paper, we take a first step towards exploring Collective Test-Time Scaling (CTTS). Consider the different interaction types of single and multiple models, we design three primary paradigms to investigate the optimal paradigm of CTTS: (1) single agent to multiple reward models (SA-MR); (2) multiple agents to single reward model (MA-SR); and (3) multiple agents to multiple reward models (MA-MR). Extensive experiments demonstrate that MA-MR consistently achieves the best performance. Based on this, we propose a novel framework named CTTS-MM that effectively leverages both multi-agent and multi-reward-model collaboration for enhanced inference. Specifically, for multi-agent collaboration, we propose an Agent Collaboration Search (ACS), which searches for the most effective combination of LLM agents from a large candidate pool; for multi-reward-model collaboration, we propose Mixture of Reword Models (MoR), which consists of a curated question pool and a Prior Reward model Ensemble Selection (PRES) to select the optimal combinations of reward models via Pair-wise Reward Ranking (PRR) metric. Experiments across seven mainstream benchmarks demonstrate that the proposed CTTS-MM consistently obtains superior performance. Code will be released at https://github.com/magent4aci/CTTS-MM.
☆ Exploring Layer-wise Information Effectiveness for Post-Training Quantization in Small Language Models
Large language models with billions of parameters are often over-provisioned: many layers contribute little unique information yet dominate the memory and energy footprint during inference. We present LieQ, a metric-driven post-training quantization framework that addresses the critical challenge of maintaining accuracy in sub-7B models under extreme low-bit compression. Our method introduces three complementary layer-wise diagnostics-Perplexity Drop, Representational Compactness, and Top-k Energy Gain -that reveal a canonical division of labour across layers, enabling automatic bit-width allocation without gradient updates. Unlike existing approaches that suffer severe accuracy degradation at 2-3 bits precision, LieQ achieves state-of-the-art compression-accuracy trade-offs: on Qwen3-4B, it recovers 95.9% of FP16 baseline performance at 2.05-bit quantization, outperforming GPTQ by 19.7% and AWQ by 18.1% on average across seven zero-shot reasoning tasks. Applied to LLaMA3.2-3B, LieQ maintains 98.2% of baseline accuracy at 2.07-bit precision while enabling 4x memory reduction, establishing new paradigms for deploying small language models on resource-constrained edge devices.
comment: low-bit quantization
☆ Industrial LLM-based Code Optimization under Regulation: A Mixture-of-Agents Approach
Recent advancements in Large Language Models (LLMs) for code optimization have enabled industrial platforms to automate software performance engineering at unprecedented scale and speed. Yet, organizations in regulated industries face strict constraints on which LLMs they can use - many cannot utilize commercial models due to data privacy regulations and compliance requirements, creating a significant challenge for achieving high-quality code optimization while maintaining cost-effectiveness. We address this by implementing a Mixture-of-Agents (MoA) approach that directly synthesizes code from multiple specialized LLMs, comparing it against TurinTech AI's vanilla Genetic Algorithm (GA)-based ensemble system and individual LLM optimizers using real-world industrial codebases. Our key contributions include: (1) First MoA application to industrial code optimization using real-world codebases; (2) Empirical evidence that MoA excels with open-source models, achieving 14.3% to 22.2% cost savings and 28.6% to 32.2% faster optimization times for regulated environments; (3) Deployment guidelines demonstrating GA's advantage with commercial models while both ensembles outperform individual LLMs; and (4) Real-world validation across 50 code snippets and seven LLM combinations, generating over 8,700 variants, addresses gaps in industrial LLM ensemble evaluation. This provides actionable guidance for organizations balancing regulatory compliance with optimization performance in production environments.
comment: Submitted to ASE'25 Industry Showcase
☆ BaroPoser: Real-time Human Motion Tracking from IMUs and Barometers in Everyday Devices
In recent years, tracking human motion using IMUs from everyday devices such as smartphones and smartwatches has gained increasing popularity. However, due to the sparsity of sensor measurements and the lack of datasets capturing human motion over uneven terrain, existing methods often struggle with pose estimation accuracy and are typically limited to recovering movements on flat terrain only. To this end, we present BaroPoser, the first method that combines IMU and barometric data recorded by a smartphone and a smartwatch to estimate human pose and global translation in real time. By leveraging barometric readings, we estimate sensor height changes, which provide valuable cues for both improving the accuracy of human pose estimation and predicting global translation on non-flat terrain. Furthermore, we propose a local thigh coordinate frame to disentangle local and global motion input for better pose representation learning. We evaluate our method on both public benchmark datasets and real-world recordings. Quantitative and qualitative results demonstrate that our approach outperforms the state-of-the-art (SOTA) methods that use IMUs only with the same hardware configuration.
comment: 9 pages, 10 figures
☆ Reliable Evaluation Protocol for Low-Precision Retrieval
Lowering the numerical precision of model parameters and computations is widely adopted to improve the efficiency of retrieval systems. However, when computing relevance scores between the query and documents in low-precision, we observe spurious ties due to the reduced granularity. This introduces high variability in the results based on tie resolution, making the evaluation less reliable. To address this, we propose a more robust retrieval evaluation protocol designed to reduce score variation. It consists of: (1) High-Precision Scoring (HPS), which upcasts the final scoring step to higher precision to resolve tied candidates with minimal computational cost; and (2) Tie-aware Retrieval Metrics (TRM), which report expected scores, range, and bias to quantify order uncertainty of tied candidates. Our experiments test multiple models with three scoring functions on two retrieval datasets to demonstrate that HPS dramatically reduces tie-induced instability, and TRM accurately recovers expected metric values. This combination enables a more consistent and reliable evaluation system for lower-precision retrievals.
comment: 11 pages, 5 figures, submitted to ARR
☆ NLP Methods May Actually Be Better Than Professors at Estimating Question Difficulty AI
Estimating the difficulty of exam questions is essential for developing good exams, but professors are not always good at this task. We compare various Large Language Model-based methods with three professors in their ability to estimate what percentage of students will give correct answers on True/False exam questions in the areas of Neural Networks and Machine Learning. Our results show that the professors have limited ability to distinguish between easy and difficult questions and that they are outperformed by directly asking Gemini 2.5 to solve this task. Yet, we obtained even better results using uncertainties of the LLMs solving the questions in a supervised learning setting, using only 42 training samples. We conclude that supervised learning using LLM uncertainty can help professors better estimate the difficulty of exam questions, improving the quality of assessment.
comment: 10 pages, 2 figures, accepted at the 2nd International Workshop on AI in Society, Education and Educational Research (AISEER)
☆ Investigating Gender Bias in LLM-Generated Stories via Psychological Stereotypes
As Large Language Models (LLMs) are increasingly used across different applications, concerns about their potential to amplify gender biases in various tasks are rising. Prior research has often probed gender bias using explicit gender cues as counterfactual, or studied them in sentence completion and short question answering tasks. These formats might overlook more implicit forms of bias embedded in generative behavior of longer content. In this work, we investigate gender bias in LLMs using gender stereotypes studied in psychology (e.g., aggressiveness or gossiping) in an open-ended task of narrative generation. We introduce a novel dataset called StereoBias-Stories containing short stories either unconditioned or conditioned on (one, two, or six) random attributes from 25 psychological stereotypes and three task-related story endings. We analyze how the gender contribution in the overall story changes in response to these attributes and present three key findings: (1) While models, on average, are highly biased towards male in unconditioned prompts, conditioning on attributes independent from gender stereotypes mitigates this bias. (2) Combining multiple attributes associated with the same gender stereotype intensifies model behavior, with male ones amplifying bias and female ones alleviating it. (3) Model biases align with psychological ground-truth used for categorization, and alignment strength increases with model size. Together, these insights highlight the importance of psychology-grounded evaluation of LLMs.
comment: Under Review
☆ ToolVQA: A Dataset for Multi-step Reasoning VQA with External Tools
Integrating external tools into Large Foundation Models (LFMs) has emerged as a promising approach to enhance their problem-solving capabilities. While existing studies have demonstrated strong performance in tool-augmented Visual Question Answering (VQA), recent benchmarks reveal significant gaps in real-world tool-use proficiency, particularly in functionally diverse multimodal settings requiring multi-step reasoning. In this work, we introduce ToolVQA, a large-scale multimodal dataset comprising 23K instances, designed to bridge this gap. Unlike previous datasets that rely on synthetic scenarios and simplified queries, ToolVQA features real-world visual contexts and challenging implicit multi-step reasoning tasks, better aligning with real user interactions. To construct this dataset, we propose ToolEngine, a novel data generation pipeline that employs Depth-First Search (DFS) with a dynamic in-context example matching mechanism to simulate human-like tool-use reasoning. ToolVQA encompasses 10 multimodal tools across 7 diverse task domains, with an average inference length of 2.78 reasoning steps per instance. The fine-tuned 7B LFMs on ToolVQA not only achieve impressive performance on our test set but also surpass the large close-sourced model GPT-3.5-turbo on various out-of-distribution (OOD) datasets, demonstrating strong generalizability to real-world tool-use scenarios.
☆ Artificial Intelligence and Generative Models for Materials Discovery -- A Review
High throughput experimentation tools, machine learning (ML) methods, and open material databases are radically changing the way new materials are discovered. From the experimentally driven approach in the past, we are moving quickly towards the artificial intelligence (AI) driven approach, realizing the 'inverse design' capabilities that allow the discovery of new materials given the desired properties. This review aims to discuss different principles of AI-driven generative models that are applicable for materials discovery, including different materials representations available for this purpose. We will also highlight specific applications of generative models in designing new catalysts, semiconductors, polymers, or crystals while addressing challenges such as data scarcity, computational cost, interpretability, synthesizability, and dataset biases. Emerging approaches to overcome limitations and integrate AI with experimental workflows will be discussed, including multimodal models, physics informed architectures, and closed-loop discovery systems. This review aims to provide insights for researchers aiming to harness AI's transformative potential in accelerating materials discovery for sustainability, healthcare, and energy innovation.
comment: Review Article in the Thematic Issue on Artificial Intelligence for Materials Discovery in World Scientific Annual Review of Functional Materials
☆ Pay What LLM Wants: Can LLM Simulate Economics Experiment with 522 Real-human Persona?
Recent advances in Large Language Models (LLMs) have generated significant interest in their capacity to simulate human-like behaviors, yet most studies rely on fictional personas rather than actual human data. We address this limitation by evaluating LLMs' ability to predict individual economic decision-making using Pay-What-You-Want (PWYW) pricing experiments with real 522 human personas. Our study systematically compares three state-of-the-art multimodal LLMs using detailed persona information from 522 Korean participants in cultural consumption scenarios. We investigate whether LLMs can accurately replicate individual human choices and how persona injection methods affect prediction performance. Results reveal that while LLMs struggle with precise individual-level predictions, they demonstrate reasonable group-level behavioral tendencies. Also, we found that commonly adopted prompting techniques are not much better than naive prompting methods; reconstruction of personal narrative nor retrieval augmented generation have no significant gain against simple prompting method. We believe that these findings can provide the first comprehensive evaluation of LLMs' capabilities on simulating economic behavior using real human data, offering empirical guidance for persona-based simulation in computational social science.
comment: Preprint
☆ V.I.P. : Iterative Online Preference Distillation for Efficient Video Diffusion Models ICCV2025
With growing interest in deploying text-to-video (T2V) models in resource-constrained environments, reducing their high computational cost has become crucial, leading to extensive research on pruning and knowledge distillation methods while maintaining performance. However, existing distillation methods primarily rely on supervised fine-tuning (SFT), which often leads to mode collapse as pruned models with reduced capacity fail to directly match the teacher's outputs, ultimately resulting in degraded quality. To address this challenge, we propose an effective distillation method, ReDPO, that integrates DPO and SFT. Our approach leverages DPO to guide the student model to focus on recovering only the targeted properties, rather than passively imitating the teacher, while also utilizing SFT to enhance overall performance. We additionally propose V.I.P., a novel framework for filtering and curating high-quality pair datasets, along with a step-by-step online approach for calibrated training. We validate our method on two leading T2V models, VideoCrafter2 and AnimateDiff, achieving parameter reduction of 36.2% and 67.5% each, while maintaining or even surpassing the performance of full models. Further experiments demonstrate the effectiveness of both ReDPO and V.I.P. framework in enabling efficient and high-quality video generation. Our code and videos are available at https://jiiiisoo.github.io/VIP.github.io/.
comment: ICCV2025 accepted
☆ Approximate Proportionality in Online Fair Division
We study the online fair division problem, where indivisible goods arrive sequentially and must be allocated immediately and irrevocably to agents. Prior work has established strong impossibility results for approximating classic fairness notions, such as envy-freeness and maximin share fairness, in this setting. In contrast, we focus on proportionality up to one good (PROP1), a natural relaxation of proportionality whose approximability remains unresolved. We begin by showing that three natural greedy algorithms fail to guarantee any positive approximation to PROP1 in general, against an adaptive adversary. This is surprising because greedy algorithms are commonly used in fair division and a natural greedy algorithm is known to be able to achieve PROP1 under additional information assumptions. This hardness result motivates the study of non-adaptive adversaries and the use of side-information, in the spirit of learning-augmented algorithms. For non-adaptive adversaries, we show that the simple uniformly random allocation can achieve a meaningful PROP1 approximation with high probability. Meanwhile, we present an algorithm that obtain robust approximation ratios against PROP1 when given predictions of the maximum item value (MIV). Interestingly, we also show that stronger fairness notions such as EF1, MMS, and PROPX remain inapproximable even with perfect MIV predictions.
☆ Full-History Graphs with Edge-Type Decoupled Networks for Temporal Reasoning
Modeling evolving interactions among entities is critical in many real-world tasks. For example, predicting driver maneuvers in traffic requires tracking how neighboring vehicles accelerate, brake, and change lanes relative to one another over consecutive frames. Likewise, detecting financial fraud hinges on following the flow of funds through successive transactions as they propagate through the network. Unlike classic time-series forecasting, these settings demand reasoning over who interacts with whom and when, calling for a temporal-graph representation that makes both the relations and their evolution explicit. Existing temporal-graph methods typically use snapshot graphs to encode temporal evolution. We introduce a full-history graph that instantiates one node for every entity at every time step and separates two edge sets: (i) intra-time-step edges that capture relations within a single frame and (ii) inter-time-step edges that connect an entity to itself at consecutive steps. To learn on this graph we design an Edge-Type Decoupled Network (ETDNet) with parallel modules: a graph-attention module aggregates information along intra-time-step edges, a multi-head temporal-attention module attends over an entity's inter-time-step history, and a fusion module combines the two messages after every layer. Evaluated on driver-intention prediction (Waymo) and Bitcoin fraud detection (Elliptic++), ETDNet consistently surpasses strong baselines, lifting Waymo joint accuracy to 75.6\% (vs. 74.1\%) and raising Elliptic++ illicit-class F1 to 88.1\% (vs. 60.4\%). These gains demonstrate the benefit of representing structural and temporal relations as distinct edges in a single graph.
comment: European Conference of Artificial Intelligence 2025
☆ RooseBERT: A New Deal For Political Language Modelling
The increasing amount of political debates and politics-related discussions calls for the definition of novel computational methods to automatically analyse such content with the final goal of lightening up political deliberation to citizens. However, the specificity of the political language and the argumentative form of these debates (employing hidden communication strategies and leveraging implicit arguments) make this task very challenging, even for current general-purpose pre-trained Language Models. To address this issue, we introduce a novel pre-trained Language Model for political discourse language called RooseBERT. Pre-training a language model on a specialised domain presents different technical and linguistic challenges, requiring extensive computational resources and large-scale data. RooseBERT has been trained on large political debate and speech corpora (8K debates, each composed of several sub-debates on different topics) in English. To evaluate its performances, we fine-tuned it on four downstream tasks related to political debate analysis, i.e., named entity recognition, sentiment analysis, argument component detection and classification, and argument relation prediction and classification. Our results demonstrate significant improvements over general-purpose Language Models on these four tasks, highlighting how domain-specific pre-training enhances performance in political debate analysis. We release the RooseBERT language model for the research community.
☆ CardiffNLP at CLEARS-2025: Prompting Large Language Models for Plain Language and Easy-to-Read Text Rewriting
This paper details the CardiffNLP team's contribution to the CLEARS shared task on Spanish text adaptation, hosted by IberLEF 2025. The shared task contained two subtasks and the team submitted to both. Our team took an LLM-prompting approach with different prompt variations. While we initially experimented with LLaMA-3.2, we adopted Gemma-3 for our final submission, and landed third place in Subtask 1 and second place in Subtask 2. We detail our numerous prompt variations, examples, and experimental results.
☆ Navigation Pixie: Implementation and Empirical Study Toward On-demand Navigation Agents in Commercial Metaverse
While commercial metaverse platforms offer diverse user-generated content, they lack effective navigation assistance that can dynamically adapt to users' interests and intentions. Although previous research has investigated on-demand agents in controlled environments, implementation in commercial settings with diverse world configurations and platform constraints remains challenging. We present Navigation Pixie, an on-demand navigation agent employing a loosely coupled architecture that integrates structured spatial metadata with LLM-based natural language processing while minimizing platform dependencies, which enables experiments on the extensive user base of commercial metaverse platforms. Our cross-platform experiments on commercial metaverse platform Cluster with 99 PC client and 94 VR-HMD participants demonstrated that Navigation Pixie significantly increased dwell time and free exploration compared to fixed-route and no-agent conditions across both platforms. Subjective evaluations revealed consistent on-demand preferences in PC environments versus context-dependent social perception advantages in VR-HMD. This research contributes to advancing VR interaction design through conversational spatial navigation agents, establishes cross-platform evaluation methodologies revealing environment-dependent effectiveness, and demonstrates empirical experimentation frameworks for commercial metaverse platforms.
comment: 11 pages + supplement 3 pages. To appear in IEEE ISMAR 2025
☆ The Power of Many: Synergistic Unification of Diverse Augmentations for Efficient Adversarial Robustness
Adversarial perturbations pose a significant threat to deep learning models. Adversarial Training (AT), the predominant defense method, faces challenges of high computational costs and a degradation in standard performance. While data augmentation offers an alternative path, existing techniques either yield limited robustness gains or incur substantial training overhead. Therefore, developing a defense mechanism that is both highly efficient and strongly robust is of paramount importance.In this work, we first conduct a systematic analysis of existing augmentation techniques, revealing that the synergy among diverse strategies -- rather than any single method -- is crucial for enhancing robustness. Based on this insight, we propose the Universal Adversarial Augmenter (UAA) framework, which is characterized by its plug-and-play nature and training efficiency. UAA decouples the expensive perturbation generation process from model training by pre-computing a universal transformation offline, which is then used to efficiently generate unique adversarial perturbations for each sample during training.Extensive experiments conducted on multiple benchmarks validate the effectiveness of UAA. The results demonstrate that UAA establishes a new state-of-the-art (SOTA) for data-augmentation-based adversarial defense strategies , without requiring the online generation of adversarial examples during training. This framework provides a practical and efficient pathway for building robust models,Our code is available in the supplementary materials.
comment: 13 pages,2 figures,6 tables
☆ GeoShield: Safeguarding Geolocation Privacy from Vision-Language Models via Adversarial Perturbations
Vision-Language Models (VLMs) such as GPT-4o now demonstrate a remarkable ability to infer users' locations from public shared images, posing a substantial risk to geoprivacy. Although adversarial perturbations offer a potential defense, current methods are ill-suited for this scenario: they often perform poorly on high-resolution images and low perturbation budgets, and may introduce irrelevant semantic content. To address these limitations, we propose GeoShield, a novel adversarial framework designed for robust geoprivacy protection in real-world scenarios. GeoShield comprises three key modules: a feature disentanglement module that separates geographical and non-geographical information, an exposure element identification module that pinpoints geo-revealing regions within an image, and a scale-adaptive enhancement module that jointly optimizes perturbations at both global and local levels to ensure effectiveness across resolutions. Extensive experiments on challenging benchmarks show that GeoShield consistently surpasses prior methods in black-box settings, achieving strong privacy protection with minimal impact on visual or semantic quality. To our knowledge, this work is the first to explore adversarial perturbations for defending against geolocation inference by advanced VLMs, providing a practical and effective solution to escalating privacy concerns.
☆ Spatiotemporal wall pressure forecast of a rectangular cylinder with physics-aware DeepUFNet
The wall pressure is of great importance in understanding the forces and structural responses induced by fluid. Recent works have investigated the potential of deep learning techniques in predicting mean pressure coefficients and fluctuating pressure coefficients, but most of existing deep learning frameworks are limited to predicting a single snapshot using full spatial information. To forecast spatiotemporal wall pressure of flow past a rectangular cylinder, this study develops a physics-aware DeepU-Fourier neural Network (DeepUFNet) deep learning model. DeepUFNet comprises the UNet structure and the Fourier neural network, with physical high-frequency loss control embedded in the model training stage to optimize model performance, where the parameter $\beta$ varies with the development of the training epoch. Wind tunnel testing is performed to collect wall pressures of a two-dimensional rectangular cylinder with a side ratio of 1.5 at an angle of attack of zero using high-frequency pressure scanning, thereby constructing a database for DeepUFNet training and testing. The DeepUFNet model is found to forecast spatiotemporal wall pressure information with high accuracy. The comparison between forecast results and experimental data presents agreement in statistical information, temporal pressure variation, power spectrum density, spatial distribution, and spatiotemporal correlation. It is also found that embedding a physical high-frequency loss control coefficient $\beta$ in the DeepUFNet model can significantly improve model performance in forecasting spatiotemporal wall pressure information, in particular, in forecasting high-order frequency fluctuation and wall pressure variance. Furthermore, the DeepUFNet extrapolation capability is tested with sparse spatial information input, and the model presents a satisfactory extrapolation ability
comment: In total, 26 pages, 21 figures
☆ StoryEnsemble: Enabling Dynamic Exploration & Iteration in the Design Process with AI and Forward-Backward Propagation
Design processes involve exploration, iteration, and movement across interconnected stages such as persona creation, problem framing, solution ideation, and prototyping. However, time and resource constraints often hinder designers from exploring broadly, collecting feedback, and revisiting earlier assumptions-making it difficult to uphold core design principles in practice. To better understand these challenges, we conducted a formative study with 15 participants-comprised of UX practitioners, students, and instructors. Based on the findings, we developed StoryEnsemble, a tool that integrates AI into a node-link interface and leverages forward and backward propagation to support dynamic exploration and iteration across the design process. A user study with 10 participants showed that StoryEnsemble enables rapid, multi-directional iteration and flexible navigation across design stages. This work advances our understanding of how AI can foster more iterative design practices by introducing novel interactions that make exploration and iteration more fluid, accessible, and engaging.
☆ Light-IF: Endowing LLMs with Generalizable Reasoning via Preview and Self-Checking for Complex Instruction Following
While advancements in the reasoning abilities of LLMs have significantly enhanced their performance in solving mathematical problems, coding tasks, and general puzzles, their effectiveness in accurately adhering to instructions remains inconsistent, particularly with more complex directives. Our investigation identifies lazy reasoning during the thinking stage as the primary factor contributing to poor instruction adherence. To mitigate this issue, we propose a comprehensive framework designed to enable rigorous reasoning processes involving preview and self-checking, essential for satisfying strict instruction constraints. Specifically, we first generate instructions with complex constraints and apply a filtering process to obtain valid prompts, resulting in three distinct prompt datasets categorized as hard, easy, and pass. Then, we employ rejection sampling on the pass prompts to curate a small yet high-quality dataset, enabling a cold-start initialization of the model and facilitating its adaptation to effective reasoning patterns. Subsequently, we employ an entropy-preserving supervised fine-tuning (Entropy-SFT) strategy coupled with token-wise entropy-adaptive (TEA-RL) reinforcement learning guided by rule-based dense rewards. This approach encourages the model to transform its reasoning mechanism, ultimately fostering generalizable reasoning abilities that encompass preview and self-checking. Extensive experiments conducted on instruction-following benchmarks demonstrate remarkable performance improvements across various model scales. Notably, our Light-IF-32B model surpasses both larger open-source models such as DeepSeek-R1 and closed-source models like Doubao-1.6.
comment: 12 pages, 10 figures, 7 tables
☆ InqEduAgent: Adaptive AI Learning Partners with Gaussian Process Augmentation
Collaborative partnership matters in inquiry-oriented education. However, most study partners are selected either rely on experience-based assignments with little scientific planning or build on rule-based machine assistants, encountering difficulties in knowledge expansion and inadequate flexibility. This paper proposes an LLM-empowered agent model for simulating and selecting learning partners tailored to inquiry-oriented learning, named InqEduAgent. Generative agents are designed to capture cognitive and evaluative features of learners in real-world scenarios. Then, an adaptive matching algorithm with Gaussian process augmentation is formulated to identify patterns within prior knowledge. Optimal learning-partner matches are provided for learners facing different exercises. The experimental results show the optimal performance of InqEduAgent in most knowledge-learning scenarios and LLM environment with different levels of capabilities. This study promotes the intelligent allocation of human-based learning partners and the formulation of AI-based learning partners. The code, data, and appendix are publicly available at https://github.com/InqEduAgent/InqEduAgent.
☆ Geoint-R1: Formalizing Multimodal Geometric Reasoning with Dynamic Auxiliary Constructions
Mathematical geometric reasoning is essential for scientific discovery and educational development, requiring precise logic and rigorous formal verification. While recent advances in Multimodal Large Language Models (MLLMs) have improved reasoning tasks, existing models typically struggle with formal geometric reasoning, particularly when dynamically constructing and verifying auxiliary geometric elements. To address these challenges, we introduce Geoint-R1, a multimodal reasoning framework designed to generate formally verifiable geometric solutions from textual descriptions and visual diagrams. Geoint-R1 uniquely integrates auxiliary elements construction, formal reasoning represented via Lean4, and interactive visualization. To systematically evaluate and advance formal geometric reasoning, we propose the Geoint benchmark, comprising 1,885 rigorously annotated geometry problems across diverse topics such as plane, spatial, and solid geometry. Each problem includes structured textual annotations, precise Lean4 code for auxiliary constructions, and detailed solution steps verified by experts. Extensive experiments demonstrate that Geoint-R1 significantly surpasses existing multimodal and math-specific reasoning models, particularly on challenging problems requiring explicit auxiliary element constructions.
☆ Causal identification with $Y_0$
We present the $Y_0$ Python package, which implements causal identification algorithms that apply interventional, counterfactual, and transportability queries to data from (randomized) controlled trials, observational studies, or mixtures thereof. $Y_0$ focuses on the qualitative investigation of causation, helping researchers determine whether a causal relationship can be estimated from available data before attempting to estimate how strong that relationship is. Furthermore, $Y_0$ provides guidance on how to transform the causal query into a symbolic estimand that can be non-parametrically estimated from the available data. $Y_0$ provides a domain-specific language for representing causal queries and estimands as symbolic probabilistic expressions, tools for representing causal graphical models with unobserved confounders, such as acyclic directed mixed graphs (ADMGs), and implementations of numerous identification algorithms from the recent causal inference literature. The $Y_0$ source code can be found under the MIT License at https://github.com/y0-causal-inference/y0 and it can be installed with pip install y0.
☆ ChartCap: Mitigating Hallucination of Dense Chart Captioning ICCV 2025
Generating accurate, informative, and hallucination-free captions for charts remains challenging for vision language models, primarily due to the lack of large-scale, high-quality datasets of real-world charts. However, existing real-world chart datasets suffer from the inclusion of extraneous information that cannot be inferred from the chart and failure to sufficiently capture structural elements and key insights. Therefore, we introduce ChartCap, a large-scale dataset of 565K real-world chart images paired with type-specific, dense captions that exclude extraneous information and highlight both structural elements and key insights in detail. To build ChartCap, we design a four-stage pipeline that generates captions using only the discernible data from the chart and employ a cycle consistency-based human verification, which accelerates quality control without sacrificing accuracy. Additionally, we propose a novel metric, the Visual Consistency Score, which evaluates caption quality by measuring the similarity between the chart regenerated from a caption and the original chart, independent of reference captions. Extensive experiments confirms that models fine-tuned on ChartCap consistently generate more accurate and informative captions with reduced hallucinations, surpassing both open-source and proprietary models and even human-annotated captions.
comment: ICCV 2025 (Highlight)
☆ CoTox: Chain-of-Thought-Based Molecular Toxicity Reasoning and Prediction
Drug toxicity remains a major challenge in pharmaceutical development. Recent machine learning models have improved in silico toxicity prediction, but their reliance on annotated data and lack of interpretability limit their applicability. This limits their ability to capture organ-specific toxicities driven by complex biological mechanisms. Large language models (LLMs) offer a promising alternative through step-by-step reasoning and integration of textual data, yet prior approaches lack biological context and transparent rationale. To address this issue, we propose CoTox, a novel framework that integrates LLM with chain-of-thought (CoT) reasoning for multi-toxicity prediction. CoTox combines chemical structure data, biological pathways, and gene ontology (GO) terms to generate interpretable toxicity predictions through step-by-step reasoning. Using GPT-4o, we show that CoTox outperforms both traditional machine learning and deep learning model. We further examine its performance across various LLMs to identify where CoTox is most effective. Additionally, we find that representing chemical structures with IUPAC names, which are easier for LLMs to understand than SMILES, enhances the model's reasoning ability and improves predictive performance. To demonstrate its practical utility in drug development, we simulate the treatment of relevant cell types with drug and incorporated the resulting biological context into the CoTox framework. This approach allow CoTox to generate toxicity predictions aligned with physiological responses, as shown in case study. This result highlights the potential of LLM-based frameworks to improve interpretability and support early-stage drug safety assessment. The code and prompt used in this work are available at https://github.com/dmis-lab/CoTox.
comment: Under review
♻ ☆ ProRefine: Inference-Time Prompt Refinement with Textual Feedback
Agentic workflows, where multiple AI agents collaborate to accomplish complex tasks like reasoning or planning, play a substantial role in many cutting-edge commercial applications, and continue to fascinate researchers across nearly all fields for their potential to accomplish expensive, complex tasks that, until recently, only humans have been trusted to do. These workflows depend critically on the prompts used to provide the roles models play in such workflows. Poorly designed prompts that fail even slightly to guide individual agents can lead to sub-optimal performance that may snowball within a system of agents, limiting their reliability and scalability. To address this important problem of inference-time prompt optimization, we introduce ProRefine, an innovative inference-time optimization method that uses an agentic loop of LLMs to generate and apply textual feedback. ProRefine dynamically refines prompts for multi-step reasoning tasks without additional training or ground truth labels. Evaluated on five benchmark mathematical reasoning datasets, ProRefine significantly surpasses zero-shot Chain-of-Thought baselines by 3 to 37 percentage points. This approach not only boosts accuracy but also allows smaller models to approach the performance of their larger counterparts. This highlights its potential for building more cost-effective and powerful hybrid AI systems, thereby democratizing access to high-performing AI.
♻ ☆ Consistency-based Abductive Reasoning over Perceptual Errors of Multiple Pre-trained Models in Novel Environments
The deployment of pre-trained perception models in novel environments often leads to performance degradation due to distributional shifts. Although recent artificial intelligence approaches for metacognition use logical rules to characterize and filter model errors, improving precision often comes at the cost of reduced recall. This paper addresses the hypothesis that leveraging multiple pre-trained models can mitigate this recall reduction. We formulate the challenge of identifying and managing conflicting predictions from various models as a consistency-based abduction problem, building on the idea of abductive learning (ABL) but applying it to test-time instead of training. The input predictions and the learned error detection rules derived from each model are encoded in a logic program. We then seek an abductive explanation--a subset of model predictions--that maximizes prediction coverage while ensuring the rate of logical inconsistencies (derived from domain constraints) remains below a specified threshold. We propose two algorithms for this knowledge representation task: an exact method based on Integer Programming (IP) and an efficient Heuristic Search (HS). Through extensive experiments on a simulated aerial imagery dataset featuring controlled, complex distributional shifts, we demonstrate that our abduction-based framework outperforms individual models and standard ensemble baselines, achieving, for instance, average relative improvements of approximately 13.6\% in F1-score and 16.6\% in accuracy across 15 diverse test datasets when compared to the best individual model. Our results validate the use of consistency-based abduction as an effective mechanism to robustly integrate knowledge from multiple imperfect models in challenging, novel scenarios.
♻ ☆ $\texttt{Droid}$: A Resource Suite for AI-Generated Code Detection
In this work, we compile $\textbf{$\texttt{DroidCollection}$}$, the most extensive open data suite for training and evaluating machine-generated code detectors, comprising over a million code samples, seven programming languages, outputs from 43 coding models, and over three real-world coding domains. Alongside fully AI-generated samples, our collection includes human-AI co-authored code, as well as adversarial samples explicitly crafted to evade detection. Subsequently, we develop $\textbf{$\texttt{DroidDetect}$}$, a suite of encoder-only detectors trained using a multi-task objective over $\texttt{DroidCollection}$. Our experiments show that existing detectors' performance fails to generalise to diverse coding domains and programming languages outside of their narrow training data. Additionally, we demonstrate that while most detectors are easily compromised by humanising the output distributions using superficial prompting and alignment approaches, this problem can be easily amended by training on a small amount of adversarial data. Finally, we demonstrate the effectiveness of metric learning and uncertainty-based resampling as means to enhance detector training on possibly noisy distributions.
♻ ☆ A Causal Framework for Aligning Image Quality Metrics and Deep Neural Network Robustness
Image quality plays an important role in the performance of deep neural networks (DNNs) that have been widely shown to exhibit sensitivity to changes in imaging conditions. Conventional image quality assessment (IQA) seeks to measure and align quality relative to human perceptual judgments, but we often need a metric that is not only sensitive to imaging conditions but also well-aligned with DNN sensitivities. We first ask whether conventional IQA metrics are also informative of DNN performance. We show theoretically and empirically that conventional IQA metrics are weak predictors of DNN performance for image classification. Using our causal framework, we then develop metrics that exhibit strong correlation with DNN performance, thus enabling us to effectively estimate the quality distribution of large image datasets relative to targeted vision tasks.
♻ ☆ MetaGen Blended RAG: Unlocking Zero-Shot Precision for Specialized Domain Question-Answering
Retrieval-Augmented Generation (RAG) struggles with domain-specific enterprise datasets, often isolated behind firewalls and rich in complex, specialized terminology unseen by LLMs during pre-training. Semantic variability across domains like medicine, networking, or law hampers RAG's context precision, while fine-tuning solutions are costly, slow, and lack generalization as new data emerges. Achieving zero-shot precision with retrievers without fine-tuning still remains a key challenge. We introduce 'MetaGen Blended RAG', a novel enterprise search approach that enhances semantic retrievers through a metadata generation pipeline and hybrid query indexes using dense and sparse vectors. By leveraging key concepts, topics, and acronyms, our method creates metadata-enriched semantic indexes and boosted hybrid queries, delivering robust, scalable performance without fine-tuning. On the biomedical PubMedQA dataset, MetaGen Blended RAG achieves 82% retrieval accuracy and 77% RAG accuracy, surpassing all prior zero-shot RAG benchmarks and even rivaling fine-tuned models on that dataset, while also excelling on datasets like SQuAD and NQ. This approach redefines enterprise search using a new approach to building semantic retrievers with unmatched generalization across specialized domains.
♻ ☆ REALM-Bench: A Benchmark for Evaluating Multi-Agent Systems on Real-world, Dynamic Planning and Scheduling Tasks
This benchmark suite provides a comprehensive evaluation framework for assessing both individual LLMs and multi-agent systems in Real-world planning and scheduling scenarios. The suite encompasses 14 designed planning and scheduling problems that progress from basic to highly complex, incorporating key aspects such as multi-agent coordination, inter-agent dependencies, and dynamic environmental disruptions. Each problem can be scaled along three dimensions: the number of parallel planning threads, the complexity of inter-dependencies, and the frequency of unexpected disruptions requiring Real-time adaptation. The benchmark includes 14 detailed problem specifications, 15 comparison methods including Random, LPT, SPT, STPT, MPSR, DRL-Liu, GP, GEP, LSO, SPT/TWKR, DRL-Chen, DRL-Zhang, 2+ evaluation metrics, and baseline implementations using 3+ LLMs including GPT-4o, Claude-3.7, DeepSeek-R1, and 4 contemporary frameworks including LangGraph, AutoGen, CrewAI, and Swarm, enabling rigorous testing of both single-agent and multi-agent planning capabilities. Through standardized evaluation criteria and scalable complexity, this benchmark aims to be opened to public, and drive progress in developing more adaptable, robust, and scalable AI planning systems for Real-world applications.
comment: 24 pages, 8 figures, 28 tables, 7 listings
♻ ☆ RL-PLUS: Countering Capability Boundary Collapse of LLMs in Reinforcement Learning with Hybrid-policy Optimization
Reinforcement Learning with Verifiable Reward (RLVR) has significantly advanced the complex reasoning abilities of Large Language Models (LLMs). However, it struggles to break through the inherent capability boundaries of the base LLM, due to its essentially on-policy strategy coupled with LLM's immense action space and sparse reward. Critically, RLVR can lead to the capability boundary collapse, narrowing the LLM's problem-solving scope. To address this problem, we propose RL-PLUS, a novel hybrid-policy optimization approach for LLMs that synergizes internal exploitation with external data to achieve stronger reasoning capabilities and surpass the boundaries of base models. RL-PLUS integrates two core components, i.e., Multiple Importance Sampling to address for distributional mismatch from external data, and Exploration-Based Advantage Function to guide the model towards high-value, unexplored reasoning paths. We provide both theoretical analysis and extensive experiments to demonstrate the superiority and generalizability of our approach. Compared with existing RLVR methods, RL-PLUS achieves 1) state-of-the-art performance on six math reasoning benchmarks; 2) superior performance on six out-of-distribution reasoning tasks; 3) consistent and significant gains across diverse model families, with average relative improvements up to 69.2\%. Moreover, the analysis of Pass@k curves indicates that RL-PLUS effectively resolves the capability boundary collapse problem.
♻ ☆ Graph Attention-Driven Bayesian Deep Unrolling for Dual-Peak Single-Photon Lidar Imaging
Single-photon Lidar imaging offers a significant advantage in 3D imaging due to its high resolution and long-range capabilities, however it is challenging to apply in noisy environments with multiple targets per pixel. To tackle these challenges, several methods have been proposed. Statistical methods demonstrate interpretability on the inferred parameters, but they are often limited in their ability to handle complex scenes. Deep learning-based methods have shown superior performance in terms of accuracy and robustness, but they lack interpretability or they are limited to a single-peak per pixel. In this paper, we propose a deep unrolling algorithm for dual-peak single-photon Lidar imaging. We introduce a hierarchical Bayesian model for multiple targets and propose a neural network that unrolls the underlying statistical method. To support multiple targets, we adopt a dual depth maps representation and exploit geometric deep learning to extract features from the point cloud. The proposed method takes advantages of statistical methods and learning-based methods in terms of accuracy and quantifying uncertainty. The experimental results on synthetic and real data demonstrate the competitive performance when compared to existing methods, while also providing uncertainty information.
♻ ☆ The Unified Cognitive Consciousness Theory for Language Models: Anchoring Semantics, Thresholds of Activation, and Emergent Reasoning
Unified Cognitive Consciousness Theory} (UCCT) casts them instead as vast unconscious pattern repositories: apparent reasoning arises only when external anchoring mechanisms, few shot prompts, retrieval-augmented context, fine-tuning, or multi-agent debate, activate task-relevant patterns. UCCT formalizes this process as Bayesian competition between statistical priors learned in pre-training and context-driven target patterns, yielding a single quantitative account that unifies existing adaptation techniques. We ground the theory in three principles: threshold crossing, modality universality, and density-distance predictive power, and validate them with (i) cross-domain demonstrations (text QA, image captioning, multi-agent debate) and (ii) two depth-oriented experiments: a controlled numeral-base study (bases 8, 9, 10) that isolates pattern-density effects, and a layer-wise trajectory analysis that reveals phase transitions inside a 7B-parameter model. Both experiments confirm UCCT's predictions of threshold behavior, asymmetric interference, and memory hysteresis. By showing that LLM ``intelligence'' is created through semantic anchoring rather than contained within the model, UCCT offers a principled foundation for interpretable diagnostics and practical guidance for prompt engineering, model selection, and alignment-centric system design.
comment: 14 pages, 6 figure, 2 table
♻ ☆ Leveraging Vision-Language Models for Visual Grounding and Analysis of Automotive UI
Modern automotive infotainment systems necessitate intelligent and adaptive solutions to manage frequent User Interface (UI) updates and diverse design variations. This work introduces a vision-language framework to facilitate the understanding of and interaction with automotive UIs, enabling seamless adaptation across different UI designs. To support research in this field, AutomotiveUI-Bench-4K, an open-source dataset comprising 998 images with 4,208 annotations, is also released. Additionally, a data pipeline for generating training data is presented. A Molmo-7B-based model is fine-tuned using Low-Rank Adaptation (LoRa), incorporating generated reasoning along with visual grounding and evaluation capabilities. The fine-tuned Evaluative Large Action Model (ELAM) achieves strong performance on AutomotiveUI-Bench-4K (model and dataset are available on Hugging Face). The approach demonstrates strong cross-domain generalization, including a +5.6% improvement on ScreenSpot over the baseline model. An average accuracy of 80.8% is achieved on ScreenSpot, closely matching or surpassing specialized models for desktop, mobile, and web, despite being trained primarily on the automotive domain. This research investigates how data collection and subsequent fine-tuning can lead to AI-driven advancements in automotive UI understanding and interaction. The applied method is cost-efficient, and fine-tuned models can be deployed on consumer-grade GPUs.
♻ ☆ AI4Research: A Survey of Artificial Intelligence for Scientific Research AI4
Recent advancements in artificial intelligence (AI), particularly in large language models (LLMs) such as OpenAI-o1 and DeepSeek-R1, have demonstrated remarkable capabilities in complex domains such as logical reasoning and experimental coding. Motivated by these advancements, numerous studies have explored the application of AI in the innovation process, particularly in the context of scientific research. These AI technologies primarily aim to develop systems that can autonomously conduct research processes across a wide range of scientific disciplines. Despite these significant strides, a comprehensive survey on AI for Research (AI4Research) remains absent, which hampers our understanding and impedes further development in this field. To address this gap, we present a comprehensive survey and offer a unified perspective on AI4Research. Specifically, the main contributions of our work are as follows: (1) Systematic taxonomy: We first introduce a systematic taxonomy to classify five mainstream tasks in AI4Research. (2) New frontiers: Then, we identify key research gaps and highlight promising future directions, focusing on the rigor and scalability of automated experiments, as well as the societal impact. (3) Abundant applications and resources: Finally, we compile a wealth of resources, including relevant multidisciplinary applications, data corpora, and tools. We hope our work will provide the research community with quick access to these resources and stimulate innovative breakthroughs in AI4Research.
comment: Preprint, Paper list is available at https://github.com/LightChen233/Awesome-AI4Research
♻ ☆ DexGraspVLA: A Vision-Language-Action Framework Towards General Dexterous Grasping
Dexterous grasping remains a fundamental yet challenging problem in robotics. A general-purpose robot must be capable of grasping diverse objects in arbitrary scenarios. However, existing research typically relies on restrictive assumptions, such as single-object settings or limited environments, showing constrained generalization. We present DexGraspVLA, a hierarchical framework for robust generalization in language-guided general dexterous grasping and beyond. It utilizes a pre-trained Vision-Language model as the high-level planner and learns a diffusion-based low-level Action controller. The key insight to achieve generalization lies in iteratively transforming diverse language and visual inputs into domain-invariant representations via foundation models, where imitation learning can be effectively applied due to the alleviation of domain shift. Notably, our method achieves a 90+% dexterous grasping success rate under thousands of challenging unseen cluttered scenes. Empirical analysis confirms the consistency of internal model behavior across environmental variations, validating our design. DexGraspVLA also, for the first time, simultaneously demonstrates free-form long-horizon prompt execution, robustness to adversarial objects and human disturbance, and failure recovery. Extended application to nonprehensile grasping further proves its generality. Project website: https://dexgraspvla.github.io.
comment: 19 pages, 11 figures
♻ ☆ TaylorPODA: A Taylor Expansion-Based Method to Improve Post-Hoc Attributions for Opaque Models AAAI 2026
Existing post-hoc model-agnostic methods generate external explanations for opaque models, primarily by locally attributing the model output to its input features. However, they often lack an explicit and systematic framework for quantifying the contribution of individual features. Building on the Taylor expansion framework introduced by Deng et al. (2024) to unify existing local attribution methods, we propose a rigorous set of postulates -- "precision", "federation", and "zero-discrepancy" -- to govern Taylor term-specific attribution. Guided by these postulates, we introduce TaylorPODA (Taylor expansion-derived imPortance-Order aDapted Attribution), which incorporates an additional "adaptation" property. This property enables alignment with task-specific goals, especially in post-hoc settings lacking ground-truth explanations. Empirical evaluations demonstrate that TaylorPODA achieves competitive results against baseline methods, providing principled and visualization-friendly explanations. This work enhances the trustworthy deployment of opaque models by offering explanations with stronger theoretical grounding.
comment: 18 pages, 4 figures. Submitted to AAAI 2026. Re-upload with amended manuscript
♻ ☆ S2FGL: Spatial Spectral Federated Graph Learning
Federated Graph Learning (FGL) combines the privacy-preserving capabilities of federated learning (FL) with the strong graph modeling capability of Graph Neural Networks (GNNs). Current research addresses subgraph-FL from the structural perspective, neglecting the propagation of graph signals on spatial and spectral domains of the structure. From a spatial perspective, subgraph-FL introduces edge disconnections between clients, leading to disruptions in label signals and a degradation in the semantic knowledge of the global GNN. From a spectral perspective, spectral heterogeneity causes inconsistencies in signal frequencies across subgraphs, which makes local GNNs overfit the local signal propagation schemes. As a result, spectral client drift occurs, undermining global generalizability. To tackle the challenges, we propose a global knowledge repository to mitigate the challenge of poor semantic knowledge caused by label signal disruption. Furthermore, we design a frequency alignment to address spectral client drift. The combination of Spatial and Spectral strategies forms our framework S2FGL. Extensive experiments on multiple datasets demonstrate the superiority of S2FGL. The code is available at https://github.com/Wonder7racer/S2FGL.git.
♻ ☆ Large Learning Rates Simultaneously Achieve Robustness to Spurious Correlations and Compressibility ICCV 2025
Robustness and resource-efficiency are two highly desirable properties for modern machine learning models. However, achieving them jointly remains a challenge. In this paper, we identify high learning rates as a facilitator for simultaneously achieving robustness to spurious correlations and network compressibility. We demonstrate that large learning rates also produce desirable representation properties such as invariant feature utilization, class separation, and activation sparsity. Our findings indicate that large learning rates compare favorably to other hyperparameters and regularization methods, in consistently satisfying these properties in tandem. In addition to demonstrating the positive effect of large learning rates across diverse spurious correlation datasets, models, and optimizers, we also present strong evidence that the previously documented success of large learning rates in standard classification tasks is related to addressing hidden/rare spurious correlations in the training dataset. Our investigation of the mechanisms underlying this phenomenon reveals the importance of confident mispredictions of bias-conflicting samples under large learning rates.
comment: Accepted at ICCV 2025, 25 pages
♻ ☆ AdaMCoT: Rethinking Cross-Lingual Factual Reasoning through Adaptive Multilingual Chain-of-Thought
Large language models (LLMs) have shown impressive multilingual capabilities through pretraining on diverse corpora. Although these models show strong reasoning abilities, their performance varies significantly between languages due to the imbalanced distribution of training data. Existing approaches using sample-level translation for extensive multilingual pretraining and cross-lingual tuning face scalability challenges and often fail to capture nuanced reasoning processes across languages. In this paper, we introduce AdaMCOT (Adaptive Multilingual Chain-of-Thought), a framework that enhances multilingual factual reasoning by dynamically routing thought processes in intermediary "thinking languages" before generating target-language responses. AdaMCOT leverages a language-agnostic core and incorporates an adaptive, reward-based mechanism for selecting optimal reasoning pathways without requiring additional pretraining. Our comprehensive evaluation across multiple benchmarks demonstrates substantial improvements in both factual reasoning quality and cross-lingual consistency, with particularly strong performance gains in low-resource language settings. An in-depth analysis of the model's hidden states and semantic space further elucidates the underlying mechanism of our method. The results suggest that adaptive reasoning paths can effectively bridge the performance gap between high and low-resource languages while maintaining cultural and linguistic nuances.
♻ ☆ SANDWICH: Towards an Offline, Differentiable, Fully-Trainable Wireless Neural Ray-Tracing Surrogate ICML
Wireless ray-tracing (RT) is emerging as a key tool for three-dimensional (3D) wireless channel modeling, driven by advances in graphical rendering. Current approaches struggle to accurately model beyond 5G (B5G) network signaling, which often operates at higher frequencies and is more susceptible to environmental conditions and changes. Existing online learning solutions require real-time environmental supervision during training, which is both costly and incompatible with GPU-based processing. In response, we propose a novel approach that redefines ray trajectory generation as a sequential decision-making problem, leveraging generative models to jointly learn the optical, physical, and signal properties within each designated environment. Our work introduces the Scene-Aware Neural Decision Wireless Channel Raytracing Hierarchy (SANDWICH), an innovative offline, fully differentiable approach that can be trained entirely on GPUs. SANDWICH offers superior performance compared to existing online learning methods, outperforms the baseline by 4e^-2 radian in RT accuracy, and only fades 0.5 dB away from toplined channel gain estimation.
comment: Accepted in ICMLCN 2025
♻ ☆ FedSA-GCL: A Semi-Asynchronous Federated Graph Learning Framework with Personalized Aggregation and Cluster-Aware Broadcasting
Federated Graph Learning (FGL) is a distributed learning paradigm that enables collaborative training over large-scale subgraphs located on multiple local systems. However, most existing FGL approaches rely on synchronous communication, which leads to inefficiencies and is often impractical in real-world deployments. Meanwhile, current asynchronous federated learning (AFL) methods are primarily designed for conventional tasks such as image classification and natural language processing, without accounting for the unique topological properties of graph data. Directly applying these methods to graph learning can possibly result in semantic drift and representational inconsistency in the global model. To address these challenges, we propose FedSA-GCL, a semi-asynchronous federated framework that leverages both inter-client label distribution divergence and graph topological characteristics through a novel ClusterCast mechanism for efficient training. We evaluate FedSA-GCL on multiple real-world graph datasets using the Louvain and Metis split algorithms, and compare it against 9 baselines. Extensive experiments demonstrate that our method achieves strong robustness and outstanding efficiency, outperforming the baselines by an average of 2.92% with the Louvain and by 3.4% with the Metis.
♻ ☆ Reasoning or Memorization? Unreliable Results of Reinforcement Learning Due to Data Contamination
Reasoning in large language models has long been a central research focus, and recent studies employing reinforcement learning (RL) have introduced diverse methods that yield substantial performance gains with minimal or even no external supervision. Surprisingly, some studies even suggest that random or incorrect reward signals can enhance performance. However, these breakthroughs are predominantly observed for the mathematically strong Qwen2.5 series on benchmarks such as MATH-500, AMC, and AIME, and seldom transfer to models like Llama, which warrants a more in-depth investigation. In this work, our empirical analysis reveals that pre-training on massive web-scale corpora leaves Qwen2.5 susceptible to data contamination in widely used benchmarks. Consequently, conclusions derived from contaminated benchmarks on Qwen2.5 series may be unreliable. To obtain trustworthy evaluation results, we introduce a generator that creates fully clean arithmetic problems of arbitrary length and difficulty, dubbed RandomCalculation. Using this leakage-free dataset, we show that only accurate reward signals yield steady improvements that surpass the base model's performance boundary in mathematical reasoning, whereas random or incorrect rewards do not. Moreover, we conduct more fine-grained analyses to elucidate the factors underlying the different performance observed on the MATH-500 and RandomCalculation benchmarks. Consequently, we recommend that future studies evaluate models on uncontaminated benchmarks and, when feasible, test various model series to ensure trustworthy conclusions about RL and related methods.
comment: 33 pages
♻ ☆ Modeling Deontic Modal Logic in the s(CASP) Goal-directed Predicate Answer Set Programming System
We consider the problem of implementing deontic modal logic. We show how (deontic) modal operators can be expressed elegantly using default negation (negation-as-failure) and strong negation present in answer set programming (ASP). We propose using global constraints of ASP to represent obligations and impermissibilities of deontic modal logic. We show that our proposed representation results in the various paradoxes of deontic modal logic being elegantly resolved.
♻ ☆ From Entanglement to Alignment: Representation Space Decomposition for Unsupervised Time Series Domain Adaptation
Domain shift poses a fundamental challenge in time series analysis, where models trained on source domain often fail dramatically when applied in target domain with different yet similar distributions. While current unsupervised domain adaptation (UDA) methods attempt to align cross-domain feature distributions, they typically treat features as indivisible entities, ignoring their intrinsic compositions that govern domain adaptation. We introduce DARSD, a novel UDA framework with theoretical explainability that explicitly realizes UDA tasks from the perspective of representation space decomposition. Our core insight is that effective domain adaptation requires not just alignment, but principled disentanglement of transferable knowledge from mixed representations. DARSD consists of three synergistic components: (I) An adversarial learnable common invariant basis that projects original features into a domain-invariant subspace while preserving semantic content; (II) A prototypical pseudo-labeling mechanism that dynamically separates target features based on confidence, hindering error accumulation; (III) A hybrid contrastive optimization strategy that simultaneously enforces feature clustering and consistency while mitigating emerging distribution gaps. Comprehensive experiments conducted on four benchmarks (WISDM, HAR, HHAR, and MFD) demonstrate DARSD's superiority against 12 UDA algorithms, achieving optimal performance in 35 out of 53 scenarios and ranking first across all benchmarks.
comment: 15 pages, 7 figures
♻ ☆ Average-Reward Soft Actor-Critic
The average-reward formulation of reinforcement learning (RL) has drawn increased interest in recent years for its ability to solve temporally-extended problems without relying on discounting. Meanwhile, in the discounted setting, algorithms with entropy regularization have been developed, leading to improvements over deterministic methods. Despite the distinct benefits of these approaches, deep RL algorithms for the entropy-regularized average-reward objective have not been developed. While policy-gradient based approaches have recently been presented for the average-reward literature, the corresponding actor-critic framework remains less explored. In this paper, we introduce an average-reward soft actor-critic algorithm to address these gaps in the field. We validate our method by comparing with existing average-reward algorithms on standard RL benchmarks, achieving superior performance for the average-reward criterion.
comment: Accepted at the 2nd Reinforcement Learning Conference (Journal Track)
♻ ☆ Principled Foundations for Preference Optimization
In this paper, we show that direct preference optimization (DPO) is a very specific form of a connection between two major theories in the ML context of learning from preferences: loss functions (Savage) and stochastic choice (Doignon-Falmagne and Machina). The connection is established for all of Savage's losses and at this level of generality, (i) it includes support for abstention on the choice theory side, (ii) it includes support for non-convex objectives on the ML side, and (iii) it allows to frame for free some notable extensions of the DPO setting, including margins and corrections for length. Getting to understand how DPO operates from a general principled perspective is crucial because of the huge and diverse application landscape of models, because of the current momentum around DPO, but also -- and importantly -- because many state of the art variations on DPO definitely occupy a small region of the map that we cover. It also helps to understand the pitfalls of departing from this map, and figure out workarounds.
♻ ☆ IDEATOR: Jailbreaking and Benchmarking Large Vision-Language Models Using Themselves
As large Vision-Language Models (VLMs) gain prominence, ensuring their safe deployment has become critical. Recent studies have explored VLM robustness against jailbreak attacks-techniques that exploit model vulnerabilities to elicit harmful outputs. However, the limited availability of diverse multimodal data has constrained current approaches to rely heavily on adversarial or manually crafted images derived from harmful text datasets, which often lack effectiveness and diversity across different contexts. In this paper, we propose IDEATOR, a novel jailbreak method that autonomously generates malicious image-text pairs for black-box jailbreak attacks. IDEATOR is grounded in the insight that VLMs themselves could serve as powerful red team models for generating multimodal jailbreak prompts. Specifically, IDEATOR leverages a VLM to create targeted jailbreak texts and pairs them with jailbreak images generated by a state-of-the-art diffusion model. Extensive experiments demonstrate IDEATOR's high effectiveness and transferability, achieving a 94% attack success rate (ASR) in jailbreaking MiniGPT-4 with an average of only 5.34 queries, and high ASRs of 82%, 88%, and 75% when transferred to LLaVA, InstructBLIP, and Chameleon, respectively. Building on IDEATOR's strong transferability and automated process, we introduce the VLJailbreakBench, a safety benchmark comprising 3,654 multimodal jailbreak samples. Our benchmark results on 11 recently released VLMs reveal significant gaps in safety alignment. For instance, our challenge set achieves ASRs of 46.31% on GPT-4o and 19.65% on Claude-3.5-Sonnet, underscoring the urgent need for stronger defenses.
♻ ☆ All-optical temporal integration mediated by subwavelength heat antennas
Optical computing systems deliver unrivalled processing speeds for scalar operations. Yet, integrated implementations have been constrained to low-dimensional tensor operations that fall short of the vector dimensions required for modern artificial intelligence. We demonstrate an all-optical neuromorphic computing system based on time division multiplexing, capable of processing input vectors exceeding 250,000 elements within a unified framework. The platform harnesses optically driven thermo-optic modulation in standing wave optical fields, with titanium nano-antennas functioning as wavelength-selective absorbers. Counterintuitively, the thermal time dynamics of the system enable simultaneous time integration of ultra-fast (50GHz) signals and the application of programmable, non-linear activation functions, entirely within the optical domain. This unified framework constitutes a leap towards large-scale photonic computing that satisfies the dimensional requirements of AI workloads.
♻ ☆ Proof2Hybrid: Automatic Mathematical Benchmark Synthesis for Proof-Centric Problems
Evaluating the mathematical capability of Large Language Models (LLMs) is a critical yet challenging frontier. Existing benchmarks fall short, particularly for proof-centric problems, as manual creation is unscalable and costly, leaving the true mathematical abilities of LLMs largely unassessed. To overcome these barriers, we propose Proof2Hybrid, the first fully automated framework that synthesizes high-quality, proof-centric benchmarks from natural language mathematical corpora. The key novelty of our solution is Proof2X, a roadmap of converting mathematical proofs into various kinds of questions that are easy to verify. Instructed by this roadmap, we propose a new type of hybrid-formatted questions, named ``$m$-out-of-$n$ multiple judge questions'', specifically designed to enable robust, automatic evaluation while being resilient to guessing and superficial pattern matching inherent in traditional formats. As a demonstration of our framework, we introduce AlgGeoTest, a benchmark for algebraic geometry--a frontier domain of modern mathematics--comprising 456 challenging items. Our extensive evaluations on state-of-the-art LLMs using AlgGeoTest reveal profound deficits in their comprehension of algebraic geometry, providing a more precise measure of their true mathematical capabilities. Our framework and benchmark pave the way for a new wave of in-depth research into the mathematical intelligence of AI systems.
♻ ☆ Managing Escalation in Off-the-Shelf Large Language Models
U.S. national security customers have begun to utilize large language models, including enterprise versions of ``off-the-shelf'' models (e.g., ChatGPT) familiar to the public. This uptake will likely accelerate. However, recent studies suggest that off-the-shelf large language models frequently suggest escalatory actions when prompted with geopolitical or strategic scenarios. We demonstrate two simple, non-technical interventions to control these tendencies. Introducing these interventions into the experimental wargame design of a recent study, we substantially reduce escalation throughout the game. Calls to restrict the use of large language models in national security applications are thus premature. The U.S. government is already, and will continue, employing large language models for scenario planning and suggesting courses of action. Rather than warning against such applications, this study acknowledges the imminent adoption of large language models, and provides actionable measures to align them with national security goals, including escalation management.
♻ ☆ Spectral Architecture Search for Neural Network Models
Architecture design and optimization are challenging problems in the field of artificial neural networks. Working in this context, we here present SPARCS (SPectral ARchiteCture Search), a novel architecture search protocol which exploits the spectral attributes of the inter-layer transfer matrices. SPARCS allows one to explore the space of possible architectures by spanning continuous and differentiable manifolds, thus enabling for gradient-based optimization algorithms to be eventually employed. With reference to simple benchmark models, we show that the newly proposed method yields a self-emerging architecture with a minimal degree of expressivity to handle the task under investigation and with a reduced parameter count as compared to other viable alternatives.
♻ ☆ Equivariant Volumetric Grasping
We propose a new volumetric grasp model that is equivariant to rotations around the vertical axis, leading to a significant improvement in sample efficiency. Our model employs a tri-plane volumetric feature representation -- i.e., the projection of 3D features onto three canonical planes. We introduce a novel tri-plane feature design in which features on the horizontal plane are equivariant to 90{\deg} rotations, while the sum of features from the other two planes remains invariant to the same transformations. This design is enabled by a new deformable steerable convolution, which combines the adaptability of deformable convolutions with the rotational equivariance of steerable ones. This allows the receptive field to adapt to local object geometry while preserving equivariance properties. We further develop equivariant adaptations of two state-of-the-art volumetric grasp planners, GIGA and IGD. Specifically, we derive a new equivariant formulation of IGD's deformable attention mechanism and propose an equivariant generative model of grasp orientations based on flow matching. We provide a detailed analytical justification of the proposed equivariance properties and validate our approach through extensive simulated and real-world experiments. Our results demonstrate that the proposed projection-based design significantly reduces both computational and memory costs. Moreover, the equivariant grasp models built on top of our tri-plane features consistently outperform their non-equivariant counterparts, achieving higher performance with only a modest computational overhead. Video and code can be viewed in: https://mousecpn.github.io/evg-page/
comment: 19 pages
♻ ☆ Talking to DINO: Bridging Self-Supervised Vision Backbones with Language for Open-Vocabulary Segmentation
Open-Vocabulary Segmentation (OVS) aims at segmenting images from free-form textual concepts without predefined training classes. While existing vision-language models such as CLIP can generate segmentation masks by leveraging coarse spatial information from Vision Transformers, they face challenges in spatial localization due to their global alignment of image and text features. Conversely, self-supervised visual models like DINO excel in fine-grained visual encoding but lack integration with language. To bridge this gap, we present Talk2DINO, a novel hybrid approach that combines the spatial accuracy of DINOv2 with the language understanding of CLIP. Our approach aligns the textual embeddings of CLIP to the patch-level features of DINOv2 through a learned mapping function without the need to fine-tune the underlying backbones. At training time, we exploit the attention maps of DINOv2 to selectively align local visual patches with textual embeddings. We show that the powerful semantic and localization abilities of Talk2DINO can enhance the segmentation process, resulting in more natural and less noisy segmentations, and that our approach can also effectively distinguish foreground objects from the background. Experimental results demonstrate that Talk2DINO achieves state-of-the-art performance across several unsupervised OVS benchmarks. Source code and models are publicly available at: https://lorebianchi98.github.io/Talk2DINO/.
♻ ☆ MoCHA: Advanced Vision-Language Reasoning with MoE Connector and Hierarchical Group Attention
Vision large language models (VLLMs) are focusing primarily on handling complex and fine-grained visual information by incorporating advanced vision encoders and scaling up visual models. However, these approaches face high training and inference costs, as well as challenges in extracting visual details, effectively bridging across modalities. In this work, we propose a novel visual framework, MoCHA, to address these issues. Our framework integrates four vision backbones (i.e., CLIP, SigLIP, DINOv2 and ConvNeXt) to extract complementary visual features and is equipped with a sparse Mixture of Experts Connectors (MoECs) module to dynamically select experts tailored to different visual dimensions. To mitigate redundant or insufficient use of the visual information encoded by the MoECs module, we further design a Hierarchical Group Attention (HGA) with intra- and inter-group operations and an adaptive gating strategy for encoded visual features. We train MoCHA on two mainstream LLMs (e.g., Phi2-2.7B and Vicuna-7B) and evaluate their performance across various benchmarks. Notably, MoCHA outperforms state-of-the-art open-weight models on various tasks. For example, compared to CuMo (Mistral-7B), our MoCHA (Phi2-2.7B) presents outstanding abilities to mitigate hallucination by showing improvements of 3.25% in POPE and to follow visual instructions by raising 153 points on MME. Finally, ablation studies further confirm the effectiveness and robustness of the proposed MoECs and HGA in improving the overall performance of MoCHA.
♻ ☆ A Survey of WebAgents: Towards Next-Generation AI Agents for Web Automation with Large Foundation Models KDD 2025
With the advancement of web techniques, they have significantly revolutionized various aspects of people's lives. Despite the importance of the web, many tasks performed on it are repetitive and time-consuming, negatively impacting overall quality of life. To efficiently handle these tedious daily tasks, one of the most promising approaches is to advance autonomous agents based on Artificial Intelligence (AI) techniques, referred to as AI Agents, as they can operate continuously without fatigue or performance degradation. In the context of the web, leveraging AI Agents -- termed WebAgents -- to automatically assist people in handling tedious daily tasks can dramatically enhance productivity and efficiency. Recently, Large Foundation Models (LFMs) containing billions of parameters have exhibited human-like language understanding and reasoning capabilities, showing proficiency in performing various complex tasks. This naturally raises the question: `Can LFMs be utilized to develop powerful AI Agents that automatically handle web tasks, providing significant convenience to users?' To fully explore the potential of LFMs, extensive research has emerged on WebAgents designed to complete daily web tasks according to user instructions, significantly enhancing the convenience of daily human life. In this survey, we comprehensively review existing research studies on WebAgents across three key aspects: architectures, training, and trustworthiness. Additionally, several promising directions for future research are explored to provide deeper insights.
comment: This is the long version of the corresponding survey paper accepted by KDD 2025. The tutorial and corresponding slides are available at https://biglemon-ning.github.io/WebAgents/
♻ ☆ Towards Revealing the Effectiveness of Small-Scale Fine-tuning in R1-style Reinforcement Learning
R1-style Reinforcement Learning (RL) significantly enhances Large Language Models' reasoning capabilities, yet the mechanism behind rule-based RL remains unclear. We found that small-scale SFT has substantial influence on RL but shows poor efficiency. To explain our observations, we propose an analytical framework and compare the efficiency of SFT and RL by measuring \textbf{sample effect}. Our hypothetical analysis shows the potential to improve SFT efficiency. Guided by our analysis, we propose \textbf{Re-distillation}, a technique that aims to boost the effectiveness of small-scale distillation by sampling from the RL-trained policy. Re-distillation shows consistent surprising efficiency on three datasets and both Qwen\&Llama models: Re-distilled models matched RL performance with far fewer samples and less computation. As a result, on K\&K dataset, our re-distilled Qwen-2.5-1.5B model surpasses DeepSeek-V3-0324 with only 1K SFT samples. We demonstrate that re-distillation can be used to efficiently balance multiple goals in RL. Our work explains several interesting phenomena in R1-style RL, shedding light on the mechanisms behind its empirical success. Code is available at: https://github.com/on1262/deep-reasoning.
comment: preprint
♻ ☆ PennyLang: Pioneering LLM-Based Quantum Code Generation with a Novel PennyLane-Centric Dataset
Large Language Models (LLMs) offer powerful capabilities in code generation, natural language understanding, and domain-specific reasoning. Their application to quantum software development remains limited, in part because of the lack of high-quality datasets both for LLM training and as dependable knowledge sources. To bridge this gap, we introduce PennyLang, an off-the-shelf, high-quality dataset of 3,347 PennyLane-specific quantum code samples with contextual descriptions, curated from textbooks, official documentation, and open-source repositories. Our contributions are threefold: (1) the creation and open-source release of PennyLang, a purpose-built dataset for quantum programming with PennyLane; (2) a framework for automated quantum code dataset construction that systematizes curation, annotation, and formatting to maximize downstream LLM usability; and (3) a baseline evaluation of the dataset across multiple open-source models, including ablation studies, all conducted within a retrieval-augmented generation (RAG) pipeline. Using PennyLang with RAG substantially improves performance: for example, Qwen 7B's success rate rises from 8.7% without retrieval to 41.7% with full-context augmentation, and LLaMa 4 improves from 78.8% to 84.8%, while also reducing hallucinations and enhancing quantum code correctness. Moving beyond Qiskit-focused studies, we bring LLM-based tools and reproducible methods to PennyLane for advancing AI-assisted quantum development.
comment: 8 pages, 6 figures, 7 tables
♻ ☆ KCR: Resolving Long-Context Knowledge Conflicts via Reasoning in LLMs
Knowledge conflicts commonly arise across diverse sources, and their prevalence has increased with the advent of LLMs. When dealing with conflicts between multiple contexts, also known as \emph{inter-context knowledge conflicts}, LLMs are often confused by lengthy and conflicting contexts. To address this challenge, we propose the Knowledge Conflict Reasoning (KCR) framework, which enhances the ability of LLMs to resolve conflicting knowledge. The key idea of KCR is to train backbone LLMs to establish a correct reasoning process by rewarding them for selecting and adhering to the context with stronger logical consistency when presented with conflicting contexts. Specifically, we first extract reasoning paths, represented by either text or local knowledge graphs, from the conflicting long contexts. Subsequently, we employ Reinforcement Learning to encourage the model to learn the paradigm of reasoning process that follows correct reasoning paths rather than the incorrect counterparts. This enables the backbone models to genuinely acquire the capability to resolve inter-context knowledge conflicts within long contexts. Experimental results demonstrate that our framework significantly improves the ability of various backbone models to resolve knowledge conflicts in long-context scenarios, yielding substantial performance gains.
♻ ☆ BriLLM: Brain-inspired Large Language Model
We introduce BriLLM, a brain-inspired large language model that redefines the foundations of generative language modeling. Departing from Transformer architectures, GPT frameworks, and traditional input-output constrained paradigms, BriLLM is built on the Signal Fully-connected flowing (SiFu) mechanism - a directed graph-based neural network design that enables full interpretability across all nodes, in contrast to conventional models limited to input-output interpretability. In this framework, tokens are represented as graph nodes, with signal flows - either randomly initialized or user-defined - propagating along paths following a "least resistance" principle. The next token to be generated emerges as the target of this signal flow. Theoretically, BriLLM supports infinitely long n-gram modeling, with model size decoupled from input and prediction length. Its signal propagation dynamics mimic human-like cognitive patterns, enabling recall activation and inherent multi-modal compatibility. We release initial Chinese and English BriLLM versions (4000 tokens, 32-dimensional nodes, 32-token sequence prediction capacity) with sizes ~2B and ~1B parameters, respectively, achieving performance comparable to GPT-1.
♻ ☆ LLM-Generated Heuristics for AI Planning: Do We Even Need Domain-Independence Anymore?
Domain-independent heuristics have long been a cornerstone of AI planning, offering general solutions applicable across a wide range of tasks without requiring domain-specific engineering. However, the advent of large language models (LLMs) presents an opportunity to generate heuristics tailored to specific planning problems, potentially challenging the necessity of domain independence as a strict design principle. In this paper, we explore the use of LLMs to automatically derive planning heuristics from task descriptions represented as successor generators and goal tests written in general purpose programming language. We investigate the trade-offs between domain-specific LLM-generated heuristics and traditional domain-independent methods in terms of computational efficiency and explainability. Our experiments demonstrate that LLMs can create heuristics that achieve state-of-the-art performance on some standard IPC domains, as well as their ability to solve problems that lack an adequate Planning Domain Definition Language ({\sc pddl}) representation. We discuss whether these results signify a paradigm shift and how they can complement existing approaches.
♻ ☆ Ensemble Learning for Large Language Models in Text and Code Generation: A Survey AI
Generative Pretrained Transformers (GPTs) are foundational Large Language Models (LLMs) for text generation. However, individual LLMs often produce inconsistent outputs and exhibit biases, limiting their representation of diverse language patterns. The closed-source nature of many powerful LLMs further restricts industry applications due to data privacy concerns. Inspired by successes in text generation, LLM ensemble techniques are now increasingly explored for code generation. This article reviews these emerging ensemble approaches to enhance understanding, encourage further research, and promote practical implementation in both text and code generation. We categorize LLM ensembles into seven main methods - weight merging, knowledge fusion, mixture-of-experts, reward ensemble, output ensemble, routing, and cascading - analyzing capabilities of those approaches. Our findings highlight key benefits such as improved diversity representation, enhanced output quality, and greater application flexibility. These insights aid model selection for real-world tasks and crucially, lay groundwork for extending ensemble strategies to multimodal LLMs.
comment: Under review by IEEE TAI
♻ ☆ Potential Score Matching: Debiasing Molecular Structure Sampling with Potential Energy Guidance
The ensemble average of physical properties of molecules is closely related to the distribution of molecular conformations, and sampling such distributions is a fundamental challenge in physics and chemistry. Traditional methods like molecular dynamics (MD) simulations and Markov chain Monte Carlo (MCMC) sampling are commonly used but can be time-consuming and costly. Recently, diffusion models have emerged as efficient alternatives by learning the distribution of training data. Obtaining an unbiased target distribution is still an expensive task, primarily because it requires satisfying ergodicity. To tackle these challenges, we propose Potential Score Matching (PSM), an approach that utilizes the potential energy gradient to guide generative models. PSM does not require exact energy functions and can debias sample distributions even when trained on limited and biased data. Our method outperforms existing state-of-the-art (SOTA) models on the Lennard-Jones (LJ) potential, a commonly used toy model. Furthermore, we extend the evaluation of PSM to high-dimensional problems using the MD17 and MD22 datasets. The results demonstrate that molecular distributions generated by PSM more closely approximate the Boltzmann distribution compared to traditional diffusion models.
♻ ☆ Entropy-Lens: The Information Signature of Transformer Computations
Transformer models map input token sequences to output token distributions, layer by layer. While most interpretability work focuses on internal latent representations, we study the evolution of these token-level distributions directly in vocabulary space. However, such distributions are high-dimensional and defined on an unordered support, making common descriptors like moments or cumulants ill-suited. We address this by computing the Shannon entropy of each intermediate predicted distribution, yielding one interpretable scalar per layer. The resulting sequence, the entropy profile, serves as a compact, information-theoretic signature of the model's computation. We introduce Entropy-Lens, a model-agnostic framework that extracts entropy profiles from frozen, off-the-shelf transformers. We show that these profiles (i) reveal family-specific computation patterns invariant under depth rescaling, (ii) are predictive of prompt type and task format, and (iii) correlate with output correctness. We further show that R\'enyi entropies yield similar results within a broad range of $\alpha$ values, justifying the use of Shannon entropy as a stable and principled summary. Our results hold across different transformers, without requiring gradients, fine-tuning, or access to model internals.
♻ ☆ ADS-Edit: A Multimodal Knowledge Editing Dataset for Autonomous Driving Systems
Recent advancements in Large Multimodal Models (LMMs) have shown promise in Autonomous Driving Systems (ADS). However, their direct application to ADS is hindered by challenges such as misunderstanding of traffic knowledge, complex road conditions, and diverse states of vehicle. To address these challenges, we propose the use of Knowledge Editing, which enables targeted modifications to a model's behavior without the need for full retraining. Meanwhile, we introduce ADS-Edit, a multimodal knowledge editing dataset specifically designed for ADS, which includes various real-world scenarios, multiple data types, and comprehensive evaluation metrics. We conduct comprehensive experiments and derive several interesting conclusions. We hope that our work will contribute to the further advancement of knowledge editing applications in the field of autonomous driving. Code and data are available in https://github.com/zjunlp/EasyEdit/blob/main/examples/ADSEdit.md.
comment: ACM MM 2025
♻ ☆ A Foundational Schema.org Mapping for a Legal Knowledge Graph: Representing Brazilian Legal Norms as FRBR Works AI
Structuring legal norms for machine readability is a critical prerequisite for building advanced AI and information retrieval systems, such as Legal Knowledge Graphs (LKGs). Grounded in the Functional Requirements for Bibliographic Records (FRBR) model, this paper proposes a foundational mapping for the abstract legal Work - which is materialized as the Norm node in our legal Graph RAG framework - to the interoperable schema.org/Legislation vocabulary. Using the Normas.leg.br portal as a practical case study, we demonstrate how to describe this Work entity via JSON-LD, considering stable URN identifiers, inter-norm relationships, and lifecycle properties. This structured, formal approach provides the essential first step toward creating a deterministic and verifiable knowledge graph, which can serve as a formalized "ground truth" for Legal AI applications, overcoming the limitations of purely probabilistic models.
comment: Substantial revision. Now grounded in the FRBR model, mapping the legal norm as an abstract Work. Scope narrowed to the Work -> sdo:Legislation mapping (LegislationObject section removed). Emphasizes creating a deterministic 'ground truth' for Legal AI and Graph RAG
♻ ☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate model behavior across three core dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities. Code is available at https://github.com/zjunlp/DataMind.
comment: Work in progress
♻ ☆ CADDesigner: Conceptual Design of CAD Models Based on General-Purpose Agent
Computer-Aided Design (CAD) plays a pivotal role in industrial manufacturing but typically requires a high level of expertise from designers. To lower the entry barrier and improve design efficiency, we present an agent for CAD conceptual design powered by large language models (LLMs). The agent accepts both abstract textual descriptions and freehand sketches as input, engaging in interactive dialogue with users to refine and clarify design requirements through comprehensive requirement analysis. Built upon a novel Context-Independent Imperative Paradigm (CIP), the agent generates high-quality CAD modeling code. During the generation process, the agent incorporates iterative visual feedback to improve model quality. Generated design cases are stored in a structured knowledge base, enabling continuous improvement of the agent's code generation capabilities. Experimental results demonstrate that our method achieves state-of-the-art performance in CAD code generation.
♻ ☆ SMART-Editor: A Multi-Agent Framework for Human-Like Design Editing with Structural Integrity
We present SMART-Editor, a framework for compositional layout and content editing across structured (posters, websites) and unstructured (natural images) domains. Unlike prior models that perform local edits, SMART-Editor preserves global coherence through two strategies: Reward-Refine, an inference-time rewardguided refinement method, and RewardDPO, a training-time preference optimization approach using reward-aligned layout pairs. To evaluate model performance, we introduce SMARTEdit-Bench, a benchmark covering multi-domain, cascading edit scenarios. SMART-Editor outperforms strong baselines like InstructPix2Pix and HIVE, with RewardDPO achieving up to 15% gains in structured settings and Reward-Refine showing advantages on natural images. Automatic and human evaluations confirm the value of reward-guided planning in producing semantically consistent and visually aligned edits.
comment: This requires some internal approval before the public release
♻ ☆ Is Chain-of-Thought Reasoning of LLMs a Mirage? A Data Distribution Lens
Chain-of-Thought (CoT) prompting has been shown to improve Large Language Model (LLM) performance on various tasks. With this approach, LLMs appear to produce human-like reasoning steps before providing answers (a.k.a., CoT reasoning), which often leads to the perception that they engage in deliberate inferential processes. However, some initial findings suggest that CoT reasoning may be more superficial than it appears, motivating us to explore further. In this paper, we study CoT reasoning via a data distribution lens and investigate if CoT reasoning reflects a structured inductive bias learned from in-distribution data, allowing the model to conditionally generate reasoning paths that approximate those seen during training. Thus, its effectiveness is fundamentally bounded by the degree of distribution discrepancy between the training data and the test queries. With this lens, we dissect CoT reasoning via three dimensions: task, length, and format. To investigate each dimension, we design DataAlchemy, an isolated and controlled environment to train LLMs from scratch and systematically probe them under various distribution conditions. Our results reveal that CoT reasoning is a brittle mirage that vanishes when it is pushed beyond training distributions. This work offers a deeper understanding of why and when CoT reasoning fails, emphasizing the ongoing challenge of achieving genuine and generalizable reasoning.
♻ ☆ Causally Steered Diffusion for Automated Video Counterfactual Generation
Adapting text-to-image (T2I) latent diffusion models (LDMs) to video editing has shown strong visual fidelity and controllability, but challenges remain in maintaining causal relationships inherent to the video data generating process. Edits affecting causally dependent attributes often generate unrealistic or misleading outcomes if these relationships are ignored. In this work, we introduce a causally faithful framework for counterfactual video generation, formulated as an Out-of-Distribution (OOD) prediction problem. We embed prior causal knowledge by encoding the relationships specified in a causal graph into text prompts and guide the generation process by optimizing these prompts using a vision-language model (VLM)-based textual loss. This loss encourages the latent space of the LDMs to capture OOD variations in the form of counterfactuals, effectively steering generation toward causally meaningful alternatives. The proposed framework, dubbed CSVC, is agnostic to the underlying video editing system and does not require access to its internal mechanisms or fine-tuning. We evaluate our approach using standard video quality metrics and counterfactual-specific criteria, such as causal effectiveness and minimality. Experimental results show that CSVC generates causally faithful video counterfactuals within the LDM distribution via prompt-based causal steering, achieving state-of-the-art causal effectiveness without compromising temporal consistency or visual quality on real-world facial videos. Due to its compatibility with any black-box video editing system, our framework has significant potential to generate realistic 'what if' hypothetical video scenarios in diverse areas such as digital media and healthcare.
♻ ☆ NoWag: A Unified Framework for Shape Preserving Compression of Large Language Models
Large language models (LLMs) exhibit remarkable performance across various natural language processing tasks but suffer from immense computational and memory demands, limiting their deployment in resource-constrained environments. To address this challenge, we propose NoWag: (Normalized Weight and Activation Guided Compression), a unified framework for zero-shot shape preserving compression algorithms. We compressed Llama-2 7B/13B/70B and Llama-3 8/70BB models, using two popular forms of shape-preserving compression, vector quantization NoWag-VQ (NoWag for Vector Quantization), and unstructured/semi-structured pruning NoWag-P (NoWag for Pruning). We found that NoWag-VQ significantly outperforms state-of-the-art zero shot VQ, and that NoWag-P performs competitively against state-of-the-art methods. These results suggest commonalities between these compression paradigms that could inspire future work. Our code is available at https://github.com/LawrenceRLiu/NoWag
♻ ☆ Shaping Sparse Rewards in Reinforcement Learning: A Semi-supervised Approach
In many real-world scenarios, reward signal for agents are exceedingly sparse, making it challenging to learn an effective reward function for reward shaping. To address this issue, the proposed approach in this paper performs reward shaping not only by utilizing non-zero-reward transitions but also by employing the \emph{Semi-Supervised Learning} (SSL) technique combined with a novel data augmentation to learn trajectory space representations from the majority of transitions, {i.e}., zero-reward transitions, thereby improving the efficacy of reward shaping. Experimental results in Atari and robotic manipulation demonstrate that our method outperforms supervised-based approaches in reward inference, leading to higher agent scores. Notably, in more sparse-reward environments, our method achieves up to twice the peak scores compared to supervised baselines. The proposed double entropy data augmentation enhances performance, showcasing a 15.8\% increase in best score over other augmentation methods
♻ ☆ Multilingual Performance Biases of Large Language Models in Education
Large language models (LLMs) are increasingly being adopted in educational settings. These applications expand beyond English, though current LLMs remain primarily English-centric. In this work, we ascertain if their use in education settings in non-English languages is warranted. We evaluated the performance of popular LLMs on four educational tasks: identifying student misconceptions, providing targeted feedback, interactive tutoring, and grading translations in eight languages (Mandarin, Hindi, Arabic, German, Farsi, Telugu, Ukrainian, Czech) in addition to English. We find that the performance on these tasks somewhat corresponds to the amount of language represented in training data, with lower-resource languages having poorer task performance. Although the models perform reasonably well in most languages, the frequent performance drop from English is significant. Thus, we recommend that practitioners first verify that the LLM works well in the target language for their educational task before deployment.
♻ ☆ From Text to Trajectory: Exploring Complex Constraint Representation and Decomposition in Safe Reinforcement Learning NeurIPS 2024
Safe reinforcement learning (RL) requires the agent to finish a given task while obeying specific constraints. Giving constraints in natural language form has great potential for practical scenarios due to its flexible transfer capability and accessibility. Previous safe RL methods with natural language constraints typically need to design cost functions manually for each constraint, which requires domain expertise and lacks flexibility. In this paper, we harness the dual role of text in this task, using it not only to provide constraint but also as a training signal. We introduce the Trajectory-level Textual Constraints Translator (TTCT) to replace the manually designed cost function. Our empirical results demonstrate that TTCT effectively comprehends textual constraint and trajectory, and the policies trained by TTCT can achieve a lower violation rate than the standard cost function. Extra studies are conducted to demonstrate that the TTCT has zero-shot transfer capability to adapt to constraint-shift environments.
comment: Accepted by NeurIPS 2024
♻ ☆ Tiny-BioMoE: a Lightweight Embedding Model for Biosignal Analysis
Pain is a complex and pervasive condition that affects a significant portion of the population. Accurate and consistent assessment is essential for individuals suffering from pain, as well as for developing effective management strategies in a healthcare system. Automatic pain assessment systems enable continuous monitoring, support clinical decision-making, and help minimize patient distress while mitigating the risk of functional deterioration. Leveraging physiological signals offers objective and precise insights into a person's state, and their integration in a multimodal framework can further enhance system performance. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed approach introduces \textit{Tiny-BioMoE}, a lightweight pretrained embedding model for biosignal analysis. Trained on $4.4$ million biosignal image representations and consisting of only $7.3$ million parameters, it serves as an effective tool for extracting high-quality embeddings for downstream tasks. Extensive experiments involving electrodermal activity, blood volume pulse, respiratory signals, peripheral oxygen saturation, and their combinations highlight the model's effectiveness across diverse modalities in automatic pain recognition tasks. \textit{\textcolor{blue}{The model's architecture (code) and weights are available at https://github.com/GkikasStefanos/Tiny-BioMoE.
♻ ☆ Dynaword: From One-shot to Continuously Developed Datasets
Large-scale datasets are foundational for research and development in natural language processing. However, current approaches face three key challenges: (1) reliance on ambiguously licensed sources restricting use, sharing, and derivative works; (2) static dataset releases that prevent community contributions and diminish longevity; and (3) quality assurance processes restricted to publishing teams rather than leveraging community expertise. To address these limitations, we introduce two contributions: the Dynaword approach and Danish Dynaword. The Dynaword approach is a framework for creating large-scale, open datasets that can be continuously updated through community collaboration. Danish Dynaword is a concrete implementation that validates this approach and demonstrates its potential. Danish Dynaword contains over four times as many tokens as comparable releases, is exclusively openly licensed, and has received multiple contributions across industry and research. The repository includes light-weight tests to ensure data formatting, quality, and documentation, establishing a sustainable framework for ongoing community contributions and dataset evolution.
♻ ☆ Scalable Attribute-Missing Graph Clustering via Neighborhood Differentiation
Deep graph clustering (DGC), which aims to unsupervisedly separate the nodes in an attribute graph into different clusters, has seen substantial potential in various industrial scenarios like community detection and recommendation. However, the real-world attribute graphs, e.g., social networks interactions, are usually large-scale and attribute-missing. To solve these two problems, we propose a novel DGC method termed \underline{\textbf{C}}omplementary \underline{\textbf{M}}ulti-\underline{\textbf{V}}iew \underline{\textbf{N}}eighborhood \underline{\textbf{D}}ifferentiation (\textit{CMV-ND}), which preprocesses graph structural information into multiple views in a complete but non-redundant manner. First, to ensure completeness of the structural information, we propose a recursive neighborhood search that recursively explores the local structure of the graph by completely expanding node neighborhoods across different hop distances. Second, to eliminate the redundancy between neighborhoods at different hops, we introduce a neighborhood differential strategy that ensures no overlapping nodes between the differential hop representations. Then, we construct $K+1$ complementary views from the $K$ differential hop representations and the features of the target node. Last, we apply existing multi-view clustering or DGC methods to the views. Experimental results on six widely used graph datasets demonstrate that CMV-ND significantly improves the performance of various methods.
♻ ☆ BlockA2A: Towards Secure and Verifiable Agent-to-Agent Interoperability
The rapid adoption of agentic AI, powered by large language models (LLMs), is transforming enterprise ecosystems with autonomous agents that execute complex workflows. Yet we observe several key security vulnerabilities in LLM-driven multi-agent systems (MASes): fragmented identity frameworks, insecure communication channels, and inadequate defenses against Byzantine agents or adversarial prompts. In this paper, we present the first systematic analysis of these emerging multi-agent risks and explain why the legacy security strategies cannot effectively address these risks. Afterwards, we propose BlockA2A, the first unified multi-agent trust framework that enables secure and verifiable and agent-to-agent interoperability. At a high level, BlockA2A adopts decentralized identifiers (DIDs) to enable fine-grained cross-domain agent authentication, blockchain-anchored ledgers to enable immutable auditability, and smart contracts to dynamically enforce context-aware access control policies. BlockA2A eliminates centralized trust bottlenecks, ensures message authenticity and execution integrity, and guarantees accountability across agent interactions. Furthermore, we propose a Defense Orchestration Engine (DOE) that actively neutralizes attacks through real-time mechanisms, including Byzantine agent flagging, reactive execution halting, and instant permission revocation. Empirical evaluations demonstrate BlockA2A's effectiveness in neutralizing prompt-based, communication-based, behavioral and systemic MAS attacks. We formalize its integration into existing MAS and showcase a practical implementation for Google's A2A protocol. Experiments confirm that BlockA2A and DOE operate with sub-second overhead, enabling scalable deployment in production LLM-based MAS environments.
comment: 43 pages
♻ ☆ Divide-Then-Rule: A Cluster-Driven Hierarchical Interpolator for Attribute-Missing Graphs
Deep graph clustering (DGC) for attribute-missing graphs is an unsupervised task aimed at partitioning nodes with incomplete attributes into distinct clusters. Addressing this challenging issue is vital for practical applications. However, research in this area remains underexplored. Existing imputation methods for attribute-missing graphs often fail to account for the varying amounts of information available across node neighborhoods, leading to unreliable results, especially for nodes with insufficient known neighborhood. To address this issue, we propose a novel method named Divide-Then-Rule Graph Completion (DTRGC). This method first addresses nodes with sufficient known neighborhood information and treats the imputed results as new knowledge to iteratively impute more challenging nodes, while leveraging clustering information to correct imputation errors. Specifically, Dynamic Cluster-Aware Feature Propagation (DCFP) initializes missing node attributes by adjusting propagation weights based on the clustering structure. Subsequently, Hierarchical Neighborhood-aware Imputation (HNAI) categorizes attribute-missing nodes into three groups based on the completeness of their neighborhood attributes. The imputation is performed hierarchically, prioritizing the groups with nodes that have the most available neighborhood information. The cluster structure is then used to refine the imputation and correct potential errors. Finally, Hop-wise Representation Enhancement (HRE) integrates information across multiple hops, thereby enriching the expressiveness of node representations. Experimental results on six widely used graph datasets show that DTRGC significantly improves the clustering performance of various DGC methods under attribute-missing graphs.
♻ ☆ Mind the Gap: The Divergence Between Human and LLM-Generated Tasks
Humans constantly generate a diverse range of tasks guided by internal motivations. While generative agents powered by large language models (LLMs) aim to simulate this complex behavior, it remains uncertain whether they operate on similar cognitive principles. To address this, we conducted a task-generation experiment comparing human responses with those of an LLM agent (GPT-4o). We find that human task generation is consistently influenced by psychological drivers, including personal values (e.g., Openness to Change) and cognitive style. Even when these psychological drivers are explicitly provided to the LLM, it fails to reflect the corresponding behavioral patterns. They produce tasks that are markedly less social, less physical, and thematically biased toward abstraction. Interestingly, while the LLM's tasks were perceived as more fun and novel, this highlights a disconnect between its linguistic proficiency and its capacity to generate human-like, embodied goals. We conclude that there is a core gap between the value-driven, embodied nature of human cognition and the statistical patterns of LLMs, highlighting the necessity of incorporating intrinsic motivation and physical grounding into the design of more human-aligned agents.
♻ ☆ What Makes a Good Speech Tokenizer for LLM-Centric Speech Generation? A Systematic Study
Speech-language models (SLMs) offer a promising path toward unifying speech and text understanding and generation. However, challenges remain in achieving effective cross-modal alignment and high-quality speech generation. In this work, we systematically investigate the role of speech tokenizer designs in LLM-centric SLMs, augmented by speech heads and speaker modeling. We compare coupled, semi-decoupled, and fully decoupled speech tokenizers under a fair SLM framework and find that decoupled tokenization significantly improves alignment and synthesis quality. To address the information density mismatch between speech and text, we introduce multi-token prediction (MTP) into SLMs, enabling each hidden state to decode multiple speech tokens. This leads to up to 12$\times$ faster decoding and a substantial drop in word error rate (from 6.07 to 3.01). Furthermore, we propose a speaker-aware generation paradigm and introduce RoleTriviaQA, a large-scale role-playing knowledge QA benchmark with diverse speaker identities. Experiments demonstrate that our methods enhance both knowledge understanding and speaker consistency.
♻ ☆ ChineseHarm-Bench: A Chinese Harmful Content Detection Benchmark
Large language models (LLMs) have been increasingly applied to automated harmful content detection tasks, assisting moderators in identifying policy violations and improving the overall efficiency and accuracy of content review. However, existing resources for harmful content detection are predominantly focused on English, with Chinese datasets remaining scarce and often limited in scope. We present a comprehensive, professionally annotated benchmark for Chinese content harm detection, which covers six representative categories and is constructed entirely from real-world data. Our annotation process further yields a knowledge rule base that provides explicit expert knowledge to assist LLMs in Chinese harmful content detection. In addition, we propose a knowledge-augmented baseline that integrates both human-annotated knowledge rules and implicit knowledge from large language models, enabling smaller models to achieve performance comparable to state-of-the-art LLMs. Code and data are available at https://github.com/zjunlp/ChineseHarm-bench.
comment: Work in progress
♻ ☆ Memorization in Fine-Tuned Large Language Models
This study investigates the mechanisms and factors influencing memorization in fine-tuned large language models (LLMs), with a focus on the medical domain due to its privacy-sensitive nature. We examine how different aspects of the fine-tuning process affect a model's propensity to memorize training data, using the PHEE dataset of pharmacovigilance events. Our research employs two main approaches: a membership inference attack to detect memorized data, and a generation task with prompted prefixes to assess verbatim reproduction. We analyze the impact of adapting different weight matrices in the transformer architecture, the relationship between perplexity and memorization, and the effect of increasing the rank in low-rank adaptation (LoRA) fine-tuning. Key findings include: (1) Value and Output matrices contribute more significantly to memorization compared to Query and Key matrices; (2) Lower perplexity in the fine-tuned model correlates with increased memorization; (3) Higher LoRA ranks lead to increased memorization, but with diminishing returns at higher ranks. These results provide insights into the trade-offs between model performance and privacy risks in fine-tuned LLMs. Our findings have implications for developing more effective and responsible strategies for adapting large language models while managing data privacy concerns.
♻ ☆ Beyond Images: Adaptive Fusion of Visual and Textual Data for Food Classification
This study introduces a novel multimodal food recognition framework that effectively combines visual and textual modalities to enhance classification accuracy and robustness. The proposed approach employs a dynamic multimodal fusion strategy that adaptively integrates features from unimodal visual inputs and complementary textual metadata. This fusion mechanism is designed to maximize the use of informative content, while mitigating the adverse impact of missing or inconsistent modality data. The framework was rigorously evaluated on the UPMC Food-101 dataset and achieved unimodal classification accuracies of 73.60% for images and 88.84% for text. When both modalities were fused, the model achieved an accuracy of 97.84%, outperforming several state-of-the-art methods. Extensive experimental analysis demonstrated the robustness, adaptability, and computational efficiency of the proposed settings, highlighting its practical applicability to real-world multimodal food-recognition scenarios.
♻ ☆ SALAD: Systematic Assessment of Machine Unlearning on LLM-Aided Hardware Design
Large Language Models (LLMs) offer transformative capabilities for hardware design automation, particularly in Verilog code generation. However, they also pose significant data security challenges, including Verilog evaluation data contamination, intellectual property (IP) design leakage, and the risk of malicious Verilog generation. We introduce SALAD, a comprehensive assessment that leverages machine unlearning to mitigate these threats. Our approach enables the selective removal of contaminated benchmarks, sensitive IP and design artifacts, or malicious code patterns from pre-trained LLMs, all without requiring full retraining. Through detailed case studies, we demonstrate how machine unlearning techniques effectively reduce data security risks in LLM-aided hardware design.
♻ ☆ M2S: Multi-turn to Single-turn jailbreak in Red Teaming for LLMs ACL 2025
We introduce a novel framework for consolidating multi-turn adversarial ``jailbreak'' prompts into single-turn queries, significantly reducing the manual overhead required for adversarial testing of large language models (LLMs). While multi-turn human jailbreaks have been shown to yield high attack success rates, they demand considerable human effort and time. Our multi-turn-to-single-turn (M2S) methods -- Hyphenize, Numberize, and Pythonize -- systematically reformat multi-turn dialogues into structured single-turn prompts. Despite removing iterative back-and-forth interactions, these prompts preserve and often enhance adversarial potency: in extensive evaluations on the Multi-turn Human Jailbreak (MHJ) dataset, M2S methods achieve attack success rates from 70.6 percent to 95.9 percent across several state-of-the-art LLMs. Remarkably, the single-turn prompts outperform the original multi-turn attacks by as much as 17.5 percentage points while cutting token usage by more than half on average. Further analysis shows that embedding malicious requests in enumerated or code-like structures exploits ``contextual blindness'', bypassing both native guardrails and external input-output filters. By converting multi-turn conversations into concise single-turn prompts, the M2S framework provides a scalable tool for large-scale red teaming and reveals critical weaknesses in contemporary LLM defenses.
comment: Accepted to ACL 2025 (Main Track). Camera-ready version
♻ ☆ SemiSegECG: A Multi-Dataset Benchmark for Semi-Supervised Semantic Segmentation in ECG Delineation
Electrocardiogram (ECG) delineation, the segmentation of meaningful waveform features, is critical for clinical diagnosis. Despite recent advances using deep learning, progress has been limited by the scarcity of publicly available annotated datasets. Semi-supervised learning presents a promising solution by leveraging abundant unlabeled ECG data. In this study, we present SemiSegECG, the first systematic benchmark for semi-supervised semantic segmentation (SemiSeg) in ECG delineation. We curated and unified multiple public datasets, including previously underused sources, to support robust and diverse evaluation. We adopted five representative SemiSeg algorithms from computer vision, implemented them on two different architectures: the convolutional network and the transformer, and evaluated them in two different settings: in-domain and cross-domain. Additionally, we propose ECG-specific training configurations and augmentation strategies and introduce a standardized evaluation framework. Our results show that the transformer outperforms the convolutional network in semi-supervised ECG delineation. We anticipate that SemiSegECG will serve as a foundation for advancing semi-supervised ECG delineation methods and will facilitate further research in this domain.
comment: Accepted by CIKM 2025. The code is available at https://github.com/bakqui/semi-seg-ecg
♻ ☆ LightRetriever: A LLM-based Hybrid Retrieval Architecture with 1000x Faster Query Inference
Large Language Models (LLMs)-based text retrieval retrieves documents relevant to search queries based on vector similarities. Documents are pre-encoded offline, while queries arrive in real-time, necessitating an efficient online query encoder. Although LLMs significantly enhance retrieval capabilities, serving deeply parameterized LLMs slows down query inference throughput and increases demands for online deployment resources. In this paper, we propose LightRetriever, a novel LLM-based retriever with extremely lightweight query encoders. Our method retains a full-sized LLM for document encoding, but reduces the workload of query encoding to no more than an embedding lookup. Compared to serving a full LLM on an A800 GPU, our method achieves over 1000x speedup in query encoding and over 10x increase in end-to-end retrieval throughput. Extensive experiments on large-scale retrieval benchmarks show that LightRetriever generalizes well across diverse tasks, maintaining an average of 95% retrieval performance.
♻ ☆ Collaborative Chain-of-Agents for Parametric-Retrieved Knowledge Synergy
Retrieval-Augmented Generation (RAG) has emerged as a promising framework for enhancing the capabilities of Large Language Models (LLMs), especially in knowledge-intensive tasks. Despite its advantages, current RAG methods often struggle to *fully exploit knowledge during generation*. In particular, the synergy between the model's internal parametric knowledge and external retrieved knowledge remains limited. Retrieved contents may sometimes mislead generation, while certain generated content can guide the model toward more accurate outputs. In this work, we propose Collaborative Chain-of-Agents, a framework designed to enhance explicitly synergy over both parametric and retrieved knowledge. Specifically, we first introduce CoCoA-zero, a multi-agent RAG framework that first performs conditional knowledge induction and then reasons answers. Building on this, we develop CoCoA, a long-chain training strategy that synthesizes extended multi-agent reasoning trajectories from CoCoA-zero to fine-tune the LLM. This strategy enhances the model's capability to explicitly integrate and jointly leverage parametric and retrieved knowledge. Experiments results show that CoCoA-zero and CoCoA achieve superior performance on open-domain and multi-hop QA tasks.
comment: code available at https://github.com/liunian-Jay/CoCoA
♻ ☆ JointDiT: Enhancing RGB-Depth Joint Modeling with Diffusion Transformers ICCV
We present JointDiT, a diffusion transformer that models the joint distribution of RGB and depth. By leveraging the architectural benefit and outstanding image prior of the state-of-the-art diffusion transformer, JointDiT not only generates high-fidelity images but also produces geometrically plausible and accurate depth maps. This solid joint distribution modeling is achieved through two simple yet effective techniques that we propose, namely, adaptive scheduling weights, which depend on the noise levels of each modality, and the unbalanced timestep sampling strategy. With these techniques, we train our model across all noise levels for each modality, enabling JointDiT to naturally handle various combinatorial generation tasks, including joint generation, depth estimation, and depth-conditioned image generation by simply controlling the timesteps of each branch. JointDiT demonstrates outstanding joint generation performance. Furthermore, it achieves comparable results in depth estimation and depth-conditioned image generation, suggesting that joint distribution modeling can serve as a viable alternative to conditional generation. The project page is available at https://byungki-k.github.io/JointDiT/.
comment: Accepted to IEEE/CVF International Conference on Computer Vision (ICCV) 2025. Project page: https://byungki-k.github.io/JointDiT/ Code: https://github.com/kaist-ami/JointDiT
♻ ☆ Long-term Traffic Simulation with Interleaved Autoregressive Motion and Scenario Generation ICCV 2025
An ideal traffic simulator replicates the realistic long-term point-to-point trip that a self-driving system experiences during deployment. Prior models and benchmarks focus on closed-loop motion simulation for initial agents in a scene. This is problematic for long-term simulation. Agents enter and exit the scene as the ego vehicle enters new regions. We propose InfGen, a unified next-token prediction model that performs interleaved closed-loop motion simulation and scene generation. InfGen automatically switches between closed-loop motion simulation and scene generation mode. It enables stable long-term rollout simulation. InfGen performs at the state-of-the-art in short-term (9s) traffic simulation, and significantly outperforms all other methods in long-term (30s) simulation. The code and model of InfGen will be released at https://orangesodahub.github.io/InfGen
comment: ICCV 2025. Project page: https://orangesodahub.github.io/InfGen Code: https://github.com/OrangeSodahub/infgen
Computational Engineering, Finance, and Science 11
☆ SolarSeer: Ultrafast and accurate 24-hour solar irradiance forecasts outperforming numerical weather prediction across the USA
Accurate 24-hour solar irradiance forecasting is essential for the safe and economic operation of solar photovoltaic systems. Traditional numerical weather prediction (NWP) models represent the state-of-the-art in forecasting performance but rely on computationally costly data assimilation and solving complicated partial differential equations (PDEs) that simulate atmospheric physics. Here, we introduce SolarSeer, an end-to-end large artificial intelligence (AI) model for solar irradiance forecasting across the Contiguous United States (CONUS). SolarSeer is designed to directly map the historical satellite observations to future forecasts, eliminating the computational overhead of data assimilation and PDEs solving. This efficiency allows SolarSeer to operate over 1,500 times faster than traditional NWP, generating 24-hour cloud cover and solar irradiance forecasts for the CONUS at 5-kilometer resolution in under 3 seconds. Compared with the state-of-the-art NWP in the CONUS, i.e., High-Resolution Rapid Refresh (HRRR), SolarSeer significantly reduces the root mean squared error of solar irradiance forecasting by 27.28% in reanalysis data and 15.35% across 1,800 stations. SolarSeer also effectively captures solar irradiance fluctuations and significantly enhances the first-order irradiance difference forecasting accuracy. SolarSeer's ultrafast, accurate 24-hour solar irradiance forecasts provide strong support for the transition to sustainable, net-zero energy systems.
☆ In-Memory Non-Binary LDPC Decoding
Low-density parity-check (LDPC) codes are an important feature of several communication and storage applications, offering a flexible and effective method for error correction. These codes are computationally complex and require the exploitation of parallel processing to meet real-time constraints. As advancements in arithmetic and logic unit technology allowed for higher performance of computing systems, memory technology has not kept the same pace of development, creating a data movement bottleneck and affecting parallel processing systems more dramatically. To alleviate the severity of this bottleneck, several solutions have been proposed, namely the processing in-memory (PiM) paradigm that involves the design of compute units to where (or near) the data is stored, utilizing thousands of low-complexity processing units to perform out bit-wise and simple arithmetic operations. This paper presents a novel efficient solution for near-memory non-binary LDPC decoders in the UPMEM system, for the best of our knowledge the first real hardware PiM-based non-binary LDPC decoder that is benchmarked against low-power GPU parallel solutions highly optimized for throughput performance. PiM-based non-binary LDPC decoders can achieve 76 Mbit/s of decoding throughput, which is even competitive when compared against implementations running in edge GPUs.
comment: 23 pages, 10 figures, and 4 tables
☆ Learning to Incentivize: LLM-Empowered Contract for AIGC Offloading in Teleoperation
With the rapid growth in demand for AI-generated content (AIGC), edge AIGC service providers (ASPs) have become indispensable. However, designing incentive mechanisms that motivate ASPs to deliver high-quality AIGC services remains a challenge, especially in the presence of information asymmetry. In this paper, we address bonus design between a teleoperator and an edge ASP when the teleoperator cannot observe the ASP's private settings and chosen actions (diffusion steps). We formulate this as an online learning contract design problem and decompose it into two subproblems: ASP's settings inference and contract derivation. To tackle the NP-hard setting-inference subproblem with unknown variable sizes, we introduce a large language model (LLM)-empowered framework that iteratively refines a naive seed solver using the LLM's domain expertise. Upon obtaining the solution from the LLM-evolved solver, we directly address the contract derivation problem using convex optimization techniques and obtain a near-optimal contract. Simulation results on our Unity-based teleoperation platform show that our method boosts the teleoperator's utility by $5 \sim 40\%$ compared to benchmarks, while preserving positive incentives for the ASP. The code is available at https://github.com/Zijun0819/llm4contract.
☆ A neural network machine-learning approach for characterising hydrogen trapping parameters from TDS experiments
The hydrogen trapping behaviour of metallic alloys is generally characterised using Thermal Desorption Spectroscopy (TDS). However, as an indirect method, extracting key parameters (trap binding energies and densities) remains a significant challenge. To address these limitations, this work introduces a machine learning-based scheme for parameter identification from TDS spectra. A multi-Neural Network (NN) model is developed and trained exclusively on synthetic data to predict trapping parameters directly from experimental data. The model comprises two multi-layer, fully connected, feed-forward NNs trained with backpropagation. The first network (classification model) predicts the number of distinct trap types. The second network (regression model) then predicts the corresponding trap densities and binding energies. The NN architectures, hyperparameters, and data pre-processing were optimised to minimise the amount of training data. The proposed model demonstrated strong predictive capabilities when applied to three tempered martensitic steels of different compositions. The code developed is freely provided.
☆ A Closed-Loop Multi-Agent Framework for Aerodynamics-Aware Automotive Styling Design
The core challenge in automotive exterior design is balancing subjective aesthetics with objective aerodynamic performance while dramatically accelerating the development cycle. To address this, we propose a novel, LLM-driven multi-agent framework that automates the end-to-end workflow from ambiguous requirements to 3D concept model performance validation. The workflow is structured in two stages: conceptual generation and performance validation. In the first stage, agents collaborate to interpret fuzzy design requirements, generate concept sketches, and produce photorealistic renderings using diffusion models. In the second stage, the renderings are converted to 3D point clouds, where a Drag Prediction Agent, built upon a lightweight surrogate model, provides near-instantaneous predictions of the drag coefficient and pressure fields, replacing time-consuming CFD simulations. The primary contribution of this work is the seamless integration of creative generation with a rapid engineering validation loop within a unified, automated system, which provides a new paradigm for efficiently balancing creative exploration with engineering constraints in the earliest stages of design.
☆ Spatiotemporal wall pressure forecast of a rectangular cylinder with physics-aware DeepUFNet
The wall pressure is of great importance in understanding the forces and structural responses induced by fluid. Recent works have investigated the potential of deep learning techniques in predicting mean pressure coefficients and fluctuating pressure coefficients, but most of existing deep learning frameworks are limited to predicting a single snapshot using full spatial information. To forecast spatiotemporal wall pressure of flow past a rectangular cylinder, this study develops a physics-aware DeepU-Fourier neural Network (DeepUFNet) deep learning model. DeepUFNet comprises the UNet structure and the Fourier neural network, with physical high-frequency loss control embedded in the model training stage to optimize model performance, where the parameter $\beta$ varies with the development of the training epoch. Wind tunnel testing is performed to collect wall pressures of a two-dimensional rectangular cylinder with a side ratio of 1.5 at an angle of attack of zero using high-frequency pressure scanning, thereby constructing a database for DeepUFNet training and testing. The DeepUFNet model is found to forecast spatiotemporal wall pressure information with high accuracy. The comparison between forecast results and experimental data presents agreement in statistical information, temporal pressure variation, power spectrum density, spatial distribution, and spatiotemporal correlation. It is also found that embedding a physical high-frequency loss control coefficient $\beta$ in the DeepUFNet model can significantly improve model performance in forecasting spatiotemporal wall pressure information, in particular, in forecasting high-order frequency fluctuation and wall pressure variance. Furthermore, the DeepUFNet extrapolation capability is tested with sparse spatial information input, and the model presents a satisfactory extrapolation ability
comment: In total, 26 pages, 21 figures
☆ VAE-DNN: Energy-Efficient Trainable-by-Parts Surrogate Model For Parametric Partial Differential Equations
We propose a trainable-by-parts surrogate model for solving forward and inverse parameterized nonlinear partial differential equations. Like several other surrogate and operator learning models, the proposed approach employs an encoder to reduce the high-dimensional input $y(\bm{x})$ to a lower-dimensional latent space, $\bm\mu_{\bm\phi_y}$. Then, a fully connected neural network is used to map $\bm\mu_{\bm\phi_y}$ to the latent space, $\bm\mu_{\bm\phi_h}$, of the PDE solution $h(\bm{x},t)$. Finally, a decoder is utilized to reconstruct $h(\bm{x},t)$. The innovative aspect of our model is its ability to train its three components independently. This approach leads to a substantial decrease in both the time and energy required for training when compared to leading operator learning models such as FNO and DeepONet. The separable training is achieved by training the encoder as part of the variational autoencoder (VAE) for $y(\bm{x})$ and the decoder as part of the $h(\bm{x},t)$ VAE. We refer to this model as the VAE-DNN model. VAE-DNN is compared to the FNO and DeepONet models for obtaining forward and inverse solutions to the nonlinear diffusion equation governing groundwater flow in an unconfined aquifer. Our findings indicate that VAE-DNN not only demonstrates greater efficiency but also delivers superior accuracy in both forward and inverse solutions compared to the FNO and DeepONet models.
♻ ☆ CAMEF: Causal-Augmented Multi-Modality Event-Driven Financial Forecasting by Integrating Time Series Patterns and Salient Macroeconomic Announcements SIGKDD 2025
Accurately forecasting the impact of macroeconomic events is critical for investors and policymakers. Salient events like monetary policy decisions and employment reports often trigger market movements by shaping expectations of economic growth and risk, thereby establishing causal relationships between events and market behavior. Existing forecasting methods typically focus either on textual analysis or time-series modeling, but fail to capture the multi-modal nature of financial markets and the causal relationship between events and price movements. To address these gaps, we propose CAMEF (Causal-Augmented Multi-Modality Event-Driven Financial Forecasting), a multi-modality framework that effectively integrates textual and time-series data with a causal learning mechanism and an LLM-based counterfactual event augmentation technique for causal-enhanced financial forecasting. Our contributions include: (1) a multi-modal framework that captures causal relationships between policy texts and historical price data; (2) a new financial dataset with six types of macroeconomic releases from 2008 to April 2024, and high-frequency real trading data for five key U.S. financial assets; and (3) an LLM-based counterfactual event augmentation strategy. We compare CAMEF to state-of-the-art transformer-based time-series and multi-modal baselines, and perform ablation studies to validate the effectiveness of the causal learning mechanism and event types.
comment: Accepted in SIGKDD 2025
♻ ☆ Optimistic MEV in Ethereum Layer 2s: Why Blockspace Is Always in Demand
Layer 2 rollups are rapidly absorbing DeFi activity, securing over $40 billion and accounting for nearly half of Ethereum's DEX volume by Q1 2025, yet their MEV dynamics remain understudied. We address this gap by defining and quantifying optimistic MEV, a form of speculative, on-chain MEV whose detection and execution logic reside largely on-chain in smart contracts. As a result of their speculative nature and lack of off-chain opportunity verification, optimistic MEV transactions frequently decide not to execute any trades. In this work, we focus on cyclic arbitrage, which we find is predominantly executed as optimistic MEV on Layer 2s. Using our multi-stage identification pipeline on Arbitrum, Base, and Optimism, we show that in Q1 2025, transactions from cyclic arbitrage contracts account for over 50% of on-chain gas on Base and Optimism and 7% on Arbitrum, driven mainly by "interaction" probes (on-chain computations searching for arbitrage). This speculative probing indicates that cyclic arbitrage on Layer 2s is predominantly executed as optimistic MEV and contributes to generally keeping blocks on Base and Optimism persistently full. Despite consuming over half of on-chain gas, these optimistic MEV transactions pay less than one quarter of total gas fees. Cross-network comparison reveals divergent success rates, differing patterns of code reuse, and sensitivity to varying sequencer ordering and block production times. Finally, OLS regressions link optimistic MEV trade count to ETH volatility, retail trading activity, and DEX aggregator usage. Together, these findings show that optimistic MEV has become a major source of persistent spam-like transaction activity on Layer 2s, dominating blockspace with low-value probes and reshaping the composition of on-chain activity.
comment: This is the extended version of the paper, forthcoming at Advances in Financial Technologies (AFT) 2025
♻ ☆ SINDyG: Sparse Identification of Nonlinear Dynamical Systems from Graph-Structured Data, with Applications to Stuart-Landau Oscillator Networks
The combination of machine learning (ML) and sparsity-promoting techniques is enabling direct extraction of governing equations from data, revolutionizing computational modeling in diverse fields of science and engineering. The discovered dynamical models could be used to address challenges in climate science, neuroscience, ecology, finance, epidemiology, and beyond. However, most existing sparse identification methods for discovering dynamical systems treat the whole system as one without considering the interactions between subsystems. As a result, such models are not able to capture small changes in the emergent system behavior. To address this issue, we developed a new method called Sparse Identification of Nonlinear Dynamical Systems from Graph-structured data (SINDyG), which incorporates the network structure into sparse regression to identify model parameters that explain the underlying network dynamics. We tested our proposed method using several case studies of neuronal dynamics, where we modeled the macroscopic oscillation of a population of neurons using the extended Stuart-Landau (SL) equation and utilize the SINDyG method to identify the underlying nonlinear dynamics. Our extensive computational experiments validate the improved accuracy and simplicity of discovered network dynamics when compared to the original SINDy approach. The proposed graph-informed penalty can be easily integrated with other symbolic regression algorithms, enhancing model interpretability and performance by incorporating network structure into the regression process.
♻ ☆ Agent-Based Insight into Eco-Choices: Simulating the Fast Fashion Shift
Fashion is a powerful force in the modern world. It is one of the most accessible means of self-expression, thereby playing a significant role in our society. Yet, it is plagued by well-documented issues of waste and human rights abuses. Fast fashion in particular, characterized by its disposable nature, contributes extensively to environmental degradation and CO$_2$ emissions, surpassing the combined outputs of France, Germany, and the UK, but its economic contributions have somewhat shielded it from criticism. In this paper, we examine the demand for fast fashion, with a focus on Spain. We explore the individual decision-making process involved in choosing to buy fast fashion and the role of awareness regarding working conditions, environmental consequences, and education on sustainable fashion in influencing consumer behavior. By employing Agent-Based Modeling, we investigate the factors influencing garment consumption patterns and how shifts in public opinion can be achieved through peer pressure, social media influence, and government interventions. Our study revealed that government interventions are pivotal, with the state's campaigns setting the overall tone for progress, although its success is conditioned by social media and polarization levels of the population. Importantly, the state does not need to adopt an extremely proactive stance or continue the campaigns indefinitely to achieve optimal results, as excessive interventions yield diminishing returns.
comment: The model used for this study can be found on CoMSES Net
Databases 10
☆ The KG-ER Conceptual Schema Language
We propose KG-ER, a conceptual schema language for knowledge graphs that describes the structure of knowledge graphs independently of their representation (relational databases, property graphs, RDF) while helping to capture the semantics of the information stored in a knowledge graph.
☆ M2: An Analytic System with Specialized Storage Engines for Multi-Model Workloads
Modern data analytic workloads increasingly require handling multiple data models simultaneously. Two primary approaches meet this need: polyglot persistence and multi-model database systems. Polyglot persistence employs a coordinator program to manage several independent database systems but suffers from high communication costs due to its physically disaggregated architecture. Meanwhile, existing multi-model database systems rely on a single storage engine optimized for a specific data model, resulting in inefficient processing across diverse data models. To address these limitations, we present M2, a multi-model analytic system with integrated storage engines. M2 treats all data models as first-class entities, composing query plans that incorporate operations across models. To effectively combine data from different models, the system introduces a specialized inter-model join algorithm called multi-stage hash join. Our evaluation demonstrates that M2 outperforms existing approaches by up to 188x speedup on multi-model analytics, confirming the effectiveness of our proposed techniques.
☆ From Stimuli to Minds: Enhancing Psychological Reasoning in LLMs via Bilateral Reinforcement Learning
Large Language Models show promise in emotion understanding, social reasoning, and empathy, yet they struggle with psychologically grounded tasks that require inferring implicit mental states in context-rich, ambiguous settings. These limitations arise from the absence of theory-aligned supervision and the difficulty of capturing nuanced mental processes in real-world narratives. To address this gap, we leverage expert-labeled, psychologically rich scenarios and propose a trajectory-aware reinforcement learning framework that explicitly imitates expert psychological thought patterns. By integrating real-world stimuli with structured reasoning guidance, our approach enables compact models to internalize social-cognitive principles, perform nuanced psychological inference, and support continual self-improvement. Comprehensive experiments across multiple benchmarks further demonstrate that our models achieve expert-level interpretive capabilities, exhibiting strong out-of-distribution generalization and robust continual learning across diverse, challenging, and psychologically grounded tasks.
☆ OnPair: Short Strings Compression for Fast Random Access
We present OnPair, a dictionary-based compression algorithm designed to meet the needs of in-memory database systems that require both high compression and fast random access. Existing methods either achieve strong compression ratios at significant computational and memory cost (e.g., BPE) or prioritize speed at the expense of compression quality (e.g., FSST). OnPair bridges this gap by employing a cache-friendly dictionary construction technique that incrementally merges frequent adjacent substrings in a single sequential pass over a data sample. This enables fast, memory-efficient training without tracking global pair positions, as required by traditional BPE. We also introduce OnPair16, a variant that limits dictionary entries to 16 bytes, enabling faster parsing via optimized longest prefix matching. Both variants compress strings independently, supporting fine-grained random access without block-level overhead. Experiments on real-world datasets show that OnPair and OnPair16 achieve compression ratios comparable to BPE while significantly improving compression speed and memory usage.
☆ Skeleton-Guided Learning for Shortest Path Search
Shortest path search is a core operation in graph-based applications, yet existing methods face important limitations. Classical algorithms such as Dijkstra's and A* become inefficient as graphs grow more complex, while index-based techniques often require substantial preprocessing and storage. Recent learning-based approaches typically focus on spatial graphs and rely on context-specific features like geographic coordinates, limiting their general applicability. We propose a versatile learning-based framework for shortest path search on generic graphs, without requiring domain-specific features. At the core of our approach is the construction of a skeleton graph that captures multi-level distance and hop information in a compact form. A Skeleton Graph Neural Network (SGNN) operates on this structure to learn node embeddings and predict distances and hop lengths between node pairs. These predictions support LSearch, a guided search algorithm that uses model-driven pruning to reduce the search space while preserving accuracy. To handle larger graphs, we introduce a hierarchical training strategy that partitions the graph into subgraphs with individually trained SGNNs. This structure enables HLSearch, an extension of our method for efficient path search across graph partitions. Experiments on five diverse real-world graphs demonstrate that our framework achieves strong performance across graph types, offering a flexible and effective solution for learning-based shortest path search.
☆ CRINN: Contrastive Reinforcement Learning for Approximate Nearest Neighbor Search
Approximate nearest-neighbor search (ANNS) algorithms have become increasingly critical for recent AI applications, particularly in retrieval-augmented generation (RAG) and agent-based LLM applications. In this paper, we present CRINN, a new paradigm for ANNS algorithms. CRINN treats ANNS optimization as a reinforcement learning problem where execution speed serves as the reward signal. This approach enables the automatic generation of progressively faster ANNS implementations while maintaining accuracy constraints. Our experimental evaluation demonstrates CRINN's effectiveness across six widely-used NNS benchmark datasets. When compared against state-of-the-art open-source ANNS algorithms, CRINN achieves best performance on three of them (GIST-960-Euclidean, MNIST-784-Euclidean, and GloVe-25-angular), and tied for first place on two of them (SIFT-128-Euclidean and GloVe-25-angular). The implications of CRINN's success reach well beyond ANNS optimization: It validates that LLMs augmented with reinforcement learning can function as an effective tool for automating sophisticated algorithmic optimizations that demand specialized knowledge and labor-intensive manual refinement.Code can be found at https://github.com/deepreinforce-ai/CRINN
comment: Preprint Version
☆ SSBD Ontology: A Two-Tier Approach for Interoperable Bioimaging Metadata
Advanced bioimaging technologies have enabled the large-scale acquisition of multidimensional data, yet effective metadata management and interoperability remain significant challenges. To address these issues, we propose a new ontology-driven framework for the Systems Science of Biological Dynamics Database (SSBD) that adopts a two-tier architecture. The core layer provides a class-centric structure referencing existing biomedical ontologies, supporting both SSBD:repository -- which focuses on rapid dataset publication with minimal metadata -- and SSBD:database, which is enhanced with biological and imaging-related annotations. Meanwhile, the instance layer represents actual imaging dataset information as Resource Description Framework individuals that are explicitly linked to the core classes. This layered approach aligns flexible instance data with robust ontological classes, enabling seamless integration and advanced semantic queries. By coupling flexibility with rigor, the SSBD Ontology promotes interoperability, data reuse, and the discovery of novel biological mechanisms. Moreover, our solution aligns with the Recommended Metadata for Biological Images guidelines and fosters compatibility. Ultimately, our approach contributes to establishing a Findable, Accessible, Interoperable, and Reusable data ecosystem within the bioimaging community.
comment: Accepted to the 24th International Semantic Web Conference Resource Track (ISWC 2025)
☆ PROV-AGENT: Unified Provenance for Tracking AI Agent Interactions in Agentic Workflows
Foundation models, such as Large Language Models (LLMs), are increasingly used as core components of AI agents in complex, large-scale workflows across federated and heterogeneous environments. In agentic workflows, autonomous agents plan tasks, interact with humans and peers, and shape scientific outcomes. This makes transparency, traceability, reproducibility, and reliability essential. However, AI-based agents can hallucinate or reason incorrectly, and their decisions may propagate errors through the workflow, especially when one agent's output feeds into another's input. Therefore, fine-grained provenance is essential to link agent decisions, their end-to-end context, and downstream impacts. While provenance techniques have long supported reproducibility and workflow data understanding, they fail to capture and relate agent-centric metadata (prompts, responses, and decisions) with the rest of the workflow. In this paper, we introduce PROV-AGENT, a provenance model that extends W3C PROV and leverages the Model Context Protocol (MCP) to integrate agent interactions into end-to-end workflow provenance. Our contributions include: (1) a provenance model tailored for agentic workflows, (2) a near real-time, open-source system for capturing agentic provenance, and (3) a cross-facility evaluation spanning edge, cloud, and HPC environments, demonstrating support for critical provenance queries and agent reliability analysis.
comment: Paper under peer-reviewed evaluation
♻ ☆ Range (Rényi) Entropy Queries and Partitioning
Data partitioning that maximizes/minimizes the Shannon entropy, or more generally the R\'enyi entropy is a crucial subroutine in data compression, columnar storage, and cardinality estimation algorithms. These partition algorithms can be accelerated if we have a data structure to compute the entropy in different subsets of data when the algorithm needs to decide what block to construct. Such a data structure will also be useful for data analysts exploring different subsets of data to identify areas of interest. While it is generally known how to compute the Shannon or the R\'enyi entropy of a discrete distribution in the offline or streaming setting efficiently, we focus on the query setting where we aim to efficiently derive the entropy among a subset of data that satisfy some linear predicates. We solve this problem in a typical setting when we deal with real data, where data items are geometric points and each requested area is a query (hyper)rectangle. More specifically, we consider a set $P$ of $n$ weighted and colored points in $\mathbb{R}^d$. For the range S-entropy (resp. R-entropy) query problem, the goal is to construct a low space data structure, such that given a query (hyper)rectangle $R$, it computes the Shannon (resp. R\'enyi) entropy based on the colors and the weights of the points in $P\cap R$, in sublinear time. We show conditional lower bounds proving that we cannot hope for data structures with near-linear space and near-constant query time for both the range S-entropy and R-entropy query problems. Then, we propose exact data structures for $d=1$ and $d>1$ with $o(n^{2d})$ space and $o(n)$ query time for both problems. Finally, we propose near linear space data structures for returning either an additive or a multiplicative approximation of the Shannon (resp. R\'enyi) entropy in $P\cap R$.
♻ ☆ Towards Question Answering over Large Semi-structured Tables
Table Question Answering (TableQA) attracts strong interests due to the prevalence of web information presented in the form of semi-structured tables. Despite many efforts, TableQA over large tables remains an open challenge. This is because large tables may overwhelm models that try to comprehend them in full to locate question answers. Recent studies reduce input table size by decomposing tables into smaller, question-relevant sub-tables via generating programs to parse the tables. However, such solutions are subject to program generation and execution errors and are difficult to ensure decomposition quality. To address this issue, we propose TaDRe, a TableQA model that incorporates both pre- and post-table decomposition refinements to ensure table decomposition quality, hence achieving highly accurate TableQA results. To evaluate TaDRe, we construct two new large-table TableQA benchmarks via LLM-driven table expansion and QA pair generation. Extensive experiments on both the new and public benchmarks show that TaDRe achieves state-of-the-art performance on large-table TableQA tasks.
Distributed, Parallel, and Cluster Computing 20
☆ Fully Decentralised Consensus for Extreme-scale Blockchain
Blockchain is a decentralised, immutable ledger technology that has been widely adopted in many sectors for various applications such as cryptocurrencies, smart contracts and supply chain management. Distributed consensus is a fundamental component of blockchain, which is required to ensure trust, security, and integrity of the data stored and the transactions processed in the blockchain. Various consensus algorithms have been developed, each affected from certain issues such as node failures, high resource consumption, collusion, etc. This work introduces a fully decentralised consensus protocol, Blockchain Epidemic Consensus Protocol (BECP), suitable for very large and extreme-scale blockchain systems. The proposed approach leverages the benefits of epidemic protocols, such as no reliance on a fixed set of validators or leaders, probabilistic guarantees of convergence, efficient use of network resources, and tolerance to node and network failures. A comparative experimental analysis has been carried out with traditional protocols including PAXOS, RAFT, and Practical Byzantine Fault Tolerance (PBFT), as well as a relatively more recent protocol such as Avalanche, which is specifically designed for very large-scale systems. The results illustrate how BECP outperforms them in terms of throughput, scalability and consensus latency. BECP achieves an average of 1.196 times higher throughput in terms of consensus on items and 4.775 times better average consensus latency. Furthermore, BECP significantly reduces the number of messages compared to Avalanche. These results demonstrate the effectiveness and efficiency of fully decentralised consensus for blockchain technology based on epidemic protocols.
comment: IEEE Global Blockchain Conference (GBC) 2025
☆ Blockchain Epidemic Consensus for Large-Scale Networks
Blockchain is a distributed ledger technology that has applications in many domains such as cryptocurrency, smart contracts, supply chain management, and many others. Distributed consensus is a fundamental component of blockchain systems that enables secure, precise, and tamper-proof verification of data without relying on central authorities. Existing consensus protocols, nevertheless, suffer from drawbacks, some of which are related to scalability, resource consumption, and fault tolerance. We introduce Blockchain Epidemic Consensus Protocol (BECP), a novel fully decentralised consensus protocol for blockchain networks at a large scale. BECP follows epidemic communication principles, without fixed roles like validators or leaders, and achieves probabilistic convergence, efficient message dissemination, and tolerance to message delays. We provide an extensive experimental comparison of BECP against classic protocols like PAXOS, RAFT, and PBFT, and newer epidemic-based protocols like Avalanche and Snowman. The findings indicate that BECP provides desirable gains in throughput, consensus latency, and substantial message-passing efficiency compared to existing epidemic-based approaches, validating its usability as an effective and scalable approach for next-generation blockchain systems.
comment: 2025 IEEE 7th International Conference on Blockchain Computing and Applications (BCCA)
☆ Communication and Computation Efficient Split Federated Learning in O-RAN
The hierarchical architecture of Open Radio Access Network (O-RAN) has enabled a new Federated Learning (FL) paradigm that trains models using data from non- and near-real-time (near-RT) Radio Intelligent Controllers (RICs). However, the ever-increasing model size leads to longer training time, jeopardizing the deadline requirements for both non-RT and near-RT RICs. To address this issue, split federated learning (SFL) offers an approach by offloading partial model layers from near-RT-RIC to high-performance non-RT-RIC. Nonetheless, its deployment presents two challenges: (i) Frequent data/gradient transfers between near-RT-RIC and non-RT-RIC in SFL incur significant communication cost in O-RAN. (ii) Proper allocation of computational and communication resources in O-RAN is vital to satisfying the deadline and affects SFL convergence. Therefore, we propose SplitMe, an SFL framework that exploits mutual learning to alternately and independently train the near-RT-RIC's model and the non-RT-RIC's inverse model, eliminating frequent transfers. The ''inverse'' of the inverse model is derived via a zeroth-order technique to integrate the final model. Then, we solve a joint optimization problem for SplitMe to minimize overall resource costs with deadline-aware selection of near-RT-RICs and adaptive local updates. Our numerical results demonstrate that SplitMe remarkably outperforms FL frameworks like SFL, FedAvg and O-RANFed regarding costs and convergence.
☆ xDeepServe: Model-as-a-Service on Huawei CloudMatrix384
The rise of scaled-out LLMs and scaled-up SuperPods signals a new era in large-scale AI infrastructure. LLMs continue to scale out via MoE, as seen in recent models like DeepSeek, Kimi, and Qwen. In parallel, AI hardware is scaling up, with Huawei's CloudMatrix384 SuperPod offering hundreds of GB/s high-speed interconnects. Running large MoE models on SuperPod-scale hardware brings new challenges. It requires new execution models, scalable scheduling, efficient expert load balancing, and elimination of single points of failure. This paper presents xDeepServe, Huawei Cloud's LLM serving system designed for SuperPod-scale infrastructure. At its core is Transformerless, a disaggregated architecture that decomposes transformer models into modular units--attention, feedforward, and MoE--executed independently on NPUs connected via high-speed fabric. We implement this design in two forms: disaggregated prefill-decode and disaggregated MoE-attention. This fully disaggregated setup enables independent scaling of compute and memory without sacrificing performance. To support this architecture, we propose XCCL, a communication library that leverages CloudMatrix384's global shared memory to implement efficient point-to-point and all-to-all primitives. We also extend our serving engine FlowServe with system-level techniques, enabling scalable inference across hundreds of NPUs.
☆ TeraNoC: A Multi-Channel 32-bit Fine-Grained, Hybrid Mesh-Crossbar NoC for Efficient Scale-up of 1000+ Core Shared-L1-Memory Clusters
A key challenge in on-chip interconnect design is to scale up bandwidth while maintaining low latency and high area efficiency. 2D-meshes scale with low wiring area and congestion overhead; however, their end-to-end latency increases with the number of hops, making them unsuitable for latency-sensitive core-to-L1-memory access. On the other hand, crossbars offer low latency, but their routing complexity grows quadratically with the number of I/Os, requiring large physical routing resources and limiting area-efficient scalability. This two-sided interconnect bottleneck hinders the scale-up of many-core, low-latency, tightly coupled shared-memory clusters, pushing designers toward instantiating many smaller and loosely coupled clusters, at the cost of hardware and software overheads. We present TeraNoC, an open-source, hybrid mesh-crossbar on-chip interconnect that offers both scalability and low latency, while maintaining very low routing overhead. The topology, built on 32bit word-width multi-channel 2D-meshes and crossbars, enables the area-efficient scale-up of shared-memory clusters. A router remapper is designed to balance traffic load across interconnect channels. Using TeraNoC, we build a cluster with 1024 single-stage, single-issue cores that share a 4096-banked L1 memory, implemented in 12nm technology. The low interconnect stalls enable high compute utilization of up to 0.85 IPC in compute-intensive, data-parallel key GenAI kernels. TeraNoC only consumes 7.6\% of the total cluster power in kernels dominated by crossbar accesses, and 22.7\% in kernels with high 2D-mesh traffic. Compared to a hierarchical crossbar-only cluster, TeraNoC reduces die area by 37.8\% and improves area efficiency (GFLOP/s/mm2) by up to 98.7\%, while occupying only 10.9\% of the logic area.
comment: 8 pages, 9 figures. Proceeded by The 43rd IEEE International Conference on Computer Design (ICCD 2025)
☆ On Effectiveness of Graph Neural Network Architectures for Network Digital Twins (NDTs)
Future networks, such as 6G, will need to support a vast and diverse range of interconnected devices and applications, each with its own set of requirements. While traditional network management approaches will suffice, an automated solutions are becoming a must. However, network automation frameworks are prone to errors, and often they employ ML-based techniques that require training to learn how the network can be optimized. In this sense, network digital twins are a useful tool that allows for the simulation, testing, and training of AI models without affecting the real-world networks and users. This paper presents an AI-based Network Digital Twin (AI-NDT) that leverages a multi-layered knowledge graph architecture and graph neural networks to predict network metrics that directly affect the quality of experience of users. An evaluation of the four most prominent Graph Neural Networks (GNN) architectures was conducted to assess their effectiveness in developing network digital twins. We trained the digital twin on publicly available measurement data from RIPE Atlas, therefore obtaining results close to what is expected in real-world applications. The results show that among the four architectures evaluated, GraphTransformer presents the best performance. However, other architectures might fit better in scenarios where shorter training time is important, while also delivering acceptable results. The results of this work are indicative of what might become common practice for proactive network management, offering a scalable and accurate solution aligned with the requirements of the next-generation networks.
comment: This work has been submitted to the IEEE for possible publication
☆ VeOmni: Scaling Any Modality Model Training with Model-Centric Distributed Recipe Zoo
Recent advances in large language models (LLMs) have driven impressive progress in omni-modal understanding and generation. However, training omni-modal LLMs remains a significant challenge due to the heterogeneous model architectures required to process diverse modalities, necessitating sophisticated system design for efficient large-scale training. Existing frameworks typically entangle model definition with parallel logic, incurring limited scalability and substantial engineering overhead for end-to-end omni-modal training. % We present \veomni, a modular and efficient training framework to accelerate the development of omni-modal LLMs. \veomni introduces model-centric distributed recipes that decouples communication from computation, enabling efficient 3D parallelism on omni-modal LLMs. \veomni also features a flexible configuration interface supporting seamless integration of new modalities with minimal code change. % Using \veomni, a omni-modal mixture-of-experts (MoE) model with 30B parameters can be trained with over 2,800 tokens/sec/GPU throughput and scale to 160K context lengths via 3D parallelism on 128 GPUs, showcasing its superior efficiency and scalability for training large omni-modal LLMs.
☆ PUSHtap: PIM-based In-Memory HTAP with Unified Data Storage Format
Hybrid transaction/analytical processing (HTAP) is an emerging database paradigm that supports both online transaction processing (OLTP) and online analytical processing (OLAP) workloads. Computing-intensive OLTP operations, involving row-wise data manipulation, are suitable for row-store format. In contrast, memory-intensive OLAP operations, which are column-centric, benefit from column-store format. This \emph{data-format dilemma} prevents HTAP systems from concurrently achieving three design goals: performance isolation, data freshness, and workload-specific optimization. Another background technology is Processing-in-Memory (PIM), which integrates computing units (PIM units) inside DRAM memory devices to accelerate memory-intensive workloads, including OLAP. Our key insight is to combine the interleaved CPU access and localized PIM unit access to provide two-dimensional access to address the data format contradictions inherent in HTAP. First, we propose a unified data storage format with novel data alignment and placement techniques to optimize the effective bandwidth of CPUs and PIM units and exploit the PIM's parallelism. Second, we implement the multi-version concurrency control (MVCC) essential for single-instance HTAP. Third, we extend the commercial PIM architecture to support the OLAP operations and concurrent access from PIM and CPU. Experiments show that PUSHtap can achieve 3.4\texttimes{}/4.4\texttimes{} OLAP/OLTP throughput improvement compared to multi-instance PIM-based design.
comment: Accepted by the 2025 International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2025) The paper will be presented at ASPLOS 2026
☆ FedAPTA: Federated Multi-task Learning in Computing Power Networks with Adaptive Layer-wise Pruning and Task-aware Aggregation
Federated Learning (FL) has shown considerable promise in Computing Power Networks (CPNs) for privacy protection, efficient data utilization, and dynamic collaboration. Although it offers practical benefits, applying FL in CPNs continues to encounter a major obstacle, i.e., multi-task deployment. However, existing work mainly focuses on mitigating FL's computation and communication overhead of a single task while overlooking the computing resource wastage issue of heterogeneous devices across multiple tasks in FL under CPNs. To tackle this, we design FedAPTA, a federated multi-task learning framework in CPNs. FedAPTA alleviates computing resource wastage through the developed layer-wise model pruning technique, which reduces local model size while considering both data and device heterogeneity. To aggregate structurally heterogeneous local models of different tasks, we introduce a heterogeneous model recovery strategy and a task-aware model aggregation method that enables the aggregation through infilling local model architecture with the shared global model and clustering local models according to their specific tasks. We deploy FedAPTA on a realistic FL platform and benchmark it against nine SOTA FL methods. The experimental outcomes demonstrate that the proposed FedAPTA considerably outperforms the state-of-the-art FL methods by up to 4.23%. Our code is available at https://github.com/Zhenzovo/FedCPN.
☆ Self-assessment approach for resource management protocols in heterogeneous computational systems
With an ever growing number of heterogeneous applicational services running on equally heterogeneous computational systems, the problem of resource management becomes more essential. Although current solutions consider some network and time requirements, they mostly handle a pre-defined list of resource types by design and, consequently, fail to provide an extensible solution to assess any other set of requirements or to switch strategies on its resource estimation. This work proposes an heuristics-based estimation solution to support any computational system as a self-assessment, including considerations on dynamically weighting the requirements, how to compute each node's capacity towards an admission request, and also offers the possibility to extend the list of resource types considered for assessment, which is an uncommon view in related works. This algorithm can be used by distributed and centralized resource allocation protocols to decide the best node(s) for a service intended for deployment. This approach was validated across its components and the results show that its performance is straightforward in resource estimation while allowing scalability and extensibility.
comment: 13 pages, 12 figures, 6 tables
☆ DySTop
Federated Learning (FL) has emerged as a potential distributed learning paradigm that enables model training on edge devices (i.e., workers) while preserving data privacy. However, its reliance on a centralized server leads to limited scalability. Decentralized federated learning (DFL) eliminates the dependency on a centralized server by enabling peer-to-peer model exchange. Existing DFL mechanisms mainly employ synchronous communication, which may result in training inefficiencies under heterogeneous and dynamic edge environments. Although a few recent asynchronous DFL (ADFL) mechanisms have been proposed to address these issues, they typically yield stale model aggregation and frequent model transmission, leading to degraded training performance on non-IID data and high communication overhead. To overcome these issues, we present DySTop, an innovative mechanism that jointly optimizes dynamic staleness control and topology construction in ADFL. In each round, multiple workers are activated, and a subset of their neighbors is selected to transmit models for aggregation, followed by local training. We provide a rigorous convergence analysis for DySTop, theoretically revealing the quantitative relationships between the convergence bound and key factors such as maximum staleness, activating frequency, and data distribution among workers. From the insights of the analysis, we propose a worker activation algorithm (WAA) for staleness control and a phase-aware topology construction algorithm (PTCA) to reduce communication overhead and handle data non-IID. Extensive evaluations through both large-scale simulations and real-world testbed experiments demonstrate that our DySTop reduces completion time by 51.8% and the communication resource consumption by 57.1% compared to state-of-the-art solutions, while maintaining the same model accuracy.
☆ Prefill-Decode Aggregation or Disaggregation? Unifying Both for Goodput-Optimized LLM Serving
An ongoing debate considers whether prefill-decode (PD) aggregation or disaggregation is superior for serving large language models (LLMs). This has driven optimizations for both approaches, each showing distinct advantages. This paper compares PD aggregation and disaggregation, showing that each excels under different service-level objectives (SLOs): aggregation is optimal for tight time-to-first-token (TTFT) and relaxed time-per-output-token (TPOT), while disaggregation excels for strict TPOT and relaxed TTFT. However, under balanced TTFT and TPOT SLOs, neither approach delivers optimal goodput. This paper proposes TaiChi, an LLM serving system that unifies PD disaggregation and aggregation for optimal goodput under any combination of TTFT and TPOT SLOs. TaiChi uses a unified disaggregation-aggregation architecture with differentiated-capability GPU instances: prefill-heavy (fast prefill, high-interference decode) and decode-heavy (low-interference decode, slow prefill). Three configurable sliders control the ratio between these instances and their chunk sizes. TaiChi adapts to various SLO regimes by adjusting sliders. When TTFT constraints are tight, TaiChi resembles a PD aggregation configuration; when TPOT dominates, it adapts toward PD disaggregation. Crucially, under balanced SLOs, TaiChi enables a hybrid mode for superior goodput. The key innovation behind this hybrid mode is latency shifting: selectively reallocating GPU resources from requests that meet SLOs to those at risk of violation, maximizing the number of SLO-satisfied requests. This fine-grained latency shifting is orchestrated by two scheduling mechanisms: flowing decode scheduling to control TPOTs and length-aware prefill scheduling to manage TTFTs, which jointly optimize request assignment. Our experiments show TaiChi improves goodput by up to 77% over state-of-the-art systems under balanced TTFT and TPOT SLOs.
comment: 17 pages, 19 figures
☆ PROV-AGENT: Unified Provenance for Tracking AI Agent Interactions in Agentic Workflows
Foundation models, such as Large Language Models (LLMs), are increasingly used as core components of AI agents in complex, large-scale workflows across federated and heterogeneous environments. In agentic workflows, autonomous agents plan tasks, interact with humans and peers, and shape scientific outcomes. This makes transparency, traceability, reproducibility, and reliability essential. However, AI-based agents can hallucinate or reason incorrectly, and their decisions may propagate errors through the workflow, especially when one agent's output feeds into another's input. Therefore, fine-grained provenance is essential to link agent decisions, their end-to-end context, and downstream impacts. While provenance techniques have long supported reproducibility and workflow data understanding, they fail to capture and relate agent-centric metadata (prompts, responses, and decisions) with the rest of the workflow. In this paper, we introduce PROV-AGENT, a provenance model that extends W3C PROV and leverages the Model Context Protocol (MCP) to integrate agent interactions into end-to-end workflow provenance. Our contributions include: (1) a provenance model tailored for agentic workflows, (2) a near real-time, open-source system for capturing agentic provenance, and (3) a cross-facility evaluation spanning edge, cloud, and HPC environments, demonstrating support for critical provenance queries and agent reliability analysis.
comment: Paper under peer-reviewed evaluation
☆ FlashCommunication V2: Bit Splitting and Spike Reserving for Any Bit Communication
Nowadays, communication bottlenecks have emerged as a critical challenge in the distributed training and deployment of large language models (LLMs). This paper introduces FlashCommunication V2, a novel communication paradigm enabling efficient cross-GPU transmission at arbitrary bit widths. Its core innovations lie in the proposed bit splitting and spike reserving techniques, which address the challenges of low-bit quantization. Bit splitting decomposes irregular bit widths into basic units, ensuring compatibility with hardware capabilities and thus enabling transmission at any bit width. Spike reserving, on the other hand, retains numerical outliers (i.e., minima and maxima) as floating-point numbers, which shrinks the dynamic numerical range and pushes the quantization limits to 2-bit with acceptable losses. FlashCommunication V2 significantly enhances the flexibility and resource utilization of communication systems. Through meticulous software-hardware co-design, it delivers robust performance and reduced overhead across both NVLink-based and PCIe-based architectures, achieving a maximum 3.2$\times$ speedup in AllReduce and 2$\times$ in All2All communication.
comment: 9 pages, 8 figures
♻ ☆ DHO$_2$: Accelerating Distributed Hybrid Order Optimization via Model Parallelism and ADMM
Scaling deep neural network (DNN) training to more devices can reduce time-to-solution. However, it is impractical for users with limited computing resources. FOSI, as a hybrid order optimizer, converges faster than conventional optimizers by taking advantage of both gradient information and curvature information when updating the DNN model. Therefore, it provides a new chance for accelerating DNN training in the resource-constrained setting. In this paper, we explore its distributed design, namely DHO$_2$, including distributed calculation of curvature information and model update with partial curvature information to accelerate DNN training with a low memory burden. To further reduce the training time, we design a novel strategy to parallelize the calculation of curvature information and the model update on different devices. Experimentally, our distributed design can achieve an approximate linear reduction of memory burden on each device with the increase of the device number. Meanwhile, it achieves $1.4\times\sim2.1\times$ speedup in the total training time compared with other distributed designs based on conventional first- and second-order optimizers.
♻ ☆ On the Solvability of Byzantine-tolerant Reliable Communication in Dynamic Networks
A reliable communication primitive guarantees the delivery, integrity, and authorship of messages exchanged between processes of a distributed system. We investigate the necessary and sufficient conditions for reliable communication in dynamic networks, where the network topology evolves over time despite the presence of a limited number of Byzantine faulty processes that may behave arbitrarily (i.e., in the globally bounded Byzantine failure model). We identify classes of dynamic networks where such conditions are satisfied, and extend our analysis to message losses, local computation with unbounded finite delay, and authenticated messages. Our investigation builds on the seminal characterization by Maurer, Tixeuil, and D{\'e}fago (2015)
♻ ☆ Bridging Cache-Friendliness and Concurrency: A Locality-Optimized In-Memory B-Skiplist
Skiplists are widely used for in-memory indexing in many key-value stores, such as RocksDB and LevelDB, due to their ease of implementation and simple concurrency control mechanisms. However, traditional skiplists suffer from poor cache locality, as they store only a single element per node, leaving performance on the table. Minimizing last-level cache misses is key to maximizing in-memory index performance, making high cache locality essential. In this paper, we present a practical concurrent B-skiplist that enhances cache locality and performance while preserving the simplicity of traditional skiplist structures and concurrency control schemes. Our key contributions include a top-down, single-pass insertion algorithm for B-skiplists and a corresponding simple and efficient top-down concurrency control scheme. On 128 threads, the proposed concurrent B-skiplist achieves between 2x-9x higher throughput compared to state-of-the-art concurrent skiplist implementations, including Facebook's concurrent skiplist from Folly and the Java ConcurrentSkipListMap. Furthermore, we find that the B-skiplist achieves competitive (0.9x-1.7x) throughput on point workloads compared to state-of-the-art cache-optimized tree-based indices (e.g., Masstree). For a more complete picture of the performance, we also measure the latency of skiplist and tree-based indices and find that the B-skiplist achieves between 3.5x-103x lower 99% latency compared to other concurrent skiplists and between 0.85x-64x lower 99% latency compared to tree-based indices on point workloads with inserts.
comment: Original paper was accepted into ICPP 2025
♻ ☆ InfiniteHBD: Building Datacenter-Scale High-Bandwidth Domain for LLM with Optical Circuit Switching Transceivers
Scaling Large Language Model (LLM) training relies on multi-dimensional parallelism, where High-Bandwidth Domains (HBDs) are critical for communication-intensive parallelism like Tensor Parallelism. However, existing HBD architectures face fundamental limitations in scalability, cost, and fault resiliency: switch-centric HBDs (e.g., NVL-72) incur prohibitive scaling costs, while GPU-centric HBDs (e.g., TPUv3/Dojo) suffer from severe fault propagation. Switch-GPU hybrid HBDs (e.g., TPUv4) take a middle-ground approach, but the fault explosion radius remains large. We propose InfiniteHBD, a transceiver-centric HBD architecture that integrates connectivity and dynamic switching at the transceiver level by embedding Optical Circuit Switching (OCS) within each transceiver. It enables reconfigurable point-to-multipoint communication and scalable variable-size ring topologies. InfiniteHBD achieves datacenter-scale scalability without cost explosion, fault isolation at the node level, and full bandwidth utilization for healthy GPUs. Key innovations include a Silicon Photonic-based OCS transceiver (OCSTrx), a reconfigurable k-hop ring topology, and an HBD-DCN orchestration algorithm. The evaluation demonstrates that InfiniteHBD reduces cost to 31% of NVL-72, achieves a near-zero GPU waste ratio (over 10x lower than NVL-72 and TPUv4), maintains near-zero cross-ToR traffic under 7% node fault ratio, and improves Model FLOPs Utilization by 3.37x compared to NVIDIA DGX (8 GPUs/node).
♻ ☆ ZenFlow: Enabling Stall-Free Offloading Training via Asynchronous Updates
Fine-tuning large language models (LLMs) often exceeds GPU memory limits, prompting systems to offload model states to CPU memory. However, existing offloaded training frameworks like ZeRO-Offload treat all parameters equally and update the full model on the CPU, causing severe GPU stalls, where fast, expensive GPUs sit idle waiting for slow CPU updates and limited-bandwidth PCIe transfers. We present ZenFlow, a new offloading framework that prioritizes important parameters and decouples updates between GPU and CPU. ZenFlow performs in-place updates of important gradients on GPU, while asynchronously offloading and accumulating less important ones on CPU, fully overlapping CPU work with GPU computation. To scale across GPUs, ZenFlow introduces a lightweight gradient selection method that exploits a novel spatial and temporal locality property of important gradients, avoiding costly global synchronization. ZenFlow achieves up to 5x end-to-end speedup, 2x lower PCIe traffic, and reduces GPU stalls by over 85 percent, all while preserving accuracy.
comment: 13 pages, 16 figures
♻ ☆ Fast algorithms for Vizing's theorem on bounded degree graphs
Vizing's theorem states that every graph $G$ of maximum degree $\Delta$ can be properly edge-colored using $\Delta + 1$ colors. The fastest currently known $(\Delta+1)$-edge-coloring algorithm for general graphs is due to Sinnamon and runs in time $O(m\sqrt{n})$, where $n :=|V(G)|$ and $m :=|E(G)|$. We investigate the case when $\Delta$ is constant, i.e., $\Delta = O(1)$. In this regime, the runtime of Sinnamon's algorithm is $O(n^{3/2})$, which can be improved to $O(n \log n)$, as shown by Gabow, Nishizeki, Kariv, Leven, and Terada. Here we give an algorithm whose running time is only $O(n)$, which is obviously best possible. Prior to this work, no linear-time $(\Delta+1)$-edge-coloring algorithm was known for any $\Delta \geq 4$. Using some of the same ideas, we also develop new algorithms for $(\Delta+1)$-edge-coloring in the $\mathsf{LOCAL}$ model of distributed computation. Namely, when $\Delta$ is constant, we design a deterministic $\mathsf{LOCAL}$ algorithm with running time $\tilde{O}(\log^5 n)$ and a randomized $\mathsf{LOCAL}$ algorithm with running time $O(\log ^2 n)$. Although our focus is on the constant $\Delta$ regime, our results remain interesting for $\Delta$ up to $\log^{o(1)} n$, since the dependence of their running time on $\Delta$ is polynomial. The key new ingredient in our algorithms is a novel application of the entropy compression method.
comment: 45 pages, 15 figures
Information Retrieval 30
☆ Hubness Reduction with Dual Bank Sinkhorn Normalization for Cross-Modal Retrieval
The past decade has witnessed rapid advancements in cross-modal retrieval, with significant progress made in accurately measuring the similarity between cross-modal pairs. However, the persistent hubness problem, a phenomenon where a small number of targets frequently appear as nearest neighbors to numerous queries, continues to hinder the precision of similarity measurements. Despite several proposed methods to reduce hubness, their underlying mechanisms remain poorly understood. To bridge this gap, we analyze the widely-adopted Inverted Softmax approach and demonstrate its effectiveness in balancing target probabilities during retrieval. Building on these insights, we propose a probability-balancing framework for more effective hubness reduction. We contend that balancing target probabilities alone is inadequate and, therefore, extend the framework to balance both query and target probabilities by introducing Sinkhorn Normalization (SN). Notably, we extend SN to scenarios where the true query distribution is unknown, showing that current methods, which rely solely on a query bank to estimate target hubness, produce suboptimal results due to a significant distributional gap between the query bank and targets. To mitigate this issue, we introduce Dual Bank Sinkhorn Normalization (DBSN), incorporating a corresponding target bank alongside the query bank to narrow this distributional gap. Our comprehensive evaluation across various cross-modal retrieval tasks, including image-text retrieval, video-text retrieval, and audio-text retrieval, demonstrates consistent performance improvements, validating the effectiveness of both SN and DBSN. All codes are publicly available at https://github.com/ppanzx/DBSN.
comment: ACMMM 2025
☆ Decomposed Reasoning with Reinforcement Learning for Relevance Assessment in UGC Platforms
Retrieval-augmented generation (RAG) plays a critical role in user-generated content (UGC) platforms, but its effectiveness depends heavily on accurate relevance assessment of query-document pairs. Despite recent advances in applying large language models (LLMs) to relevance modeling, UGC platforms present unique challenges: 1) ambiguous user intent due to sparse user feedback in RAG scenarios, and 2) substantial noise introduced by informal and unstructured language. To address these issues, we propose the Reinforced Reasoning Model for Relevance Assessment (R3A), which introduces a decomposed reasoning framework over queries and candidate documents before scoring. R3A first leverages auxiliary high-ranked documents within the platform to infer latent query intent. It then performs verbatim fragment extraction to justify relevance decisions, thereby reducing errors caused by noisy UGC. Based on a reinforcement learning framework, R3A is optimized to mitigate distortions arising from ambiguous queries and unstructured content. Experimental results show that R3A significantly outperforms existing baseline methods in terms of relevance accuracy, across both offline benchmarks and online experiments.
☆ TreeRanker: Fast and Model-agnostic Ranking System for Code Suggestions in IDEs
Token-level code completion is one of the most critical features in modern Integrated Development Environments (IDEs). It assists developers by suggesting relevant identifiers and APIs during coding. While completions are typically derived from static analysis, their usefulness depends heavily on how they are ranked, as correct predictions buried deep in the list are rarely seen by users. Most current systems rely on hand-crafted heuristics or lightweight machine learning models trained on user logs, which can be further improved to capture context information and generalize across projects and coding styles. In this work, we propose a new scoring approach to ranking static completions using language models in a lightweight and model-agnostic way. Our method organizes all valid completions into a prefix tree and performs a single greedy decoding pass to collect token-level scores across the tree. This enables a precise token-aware ranking without needing beam search, prompt engineering, or model adaptations. The approach is fast, architecture-agnostic, and compatible with already deployed models for code completion. These findings highlight a practical and effective pathway for integrating language models into already existing tools within IDEs, and ultimately providing smarter and more responsive developer assistance.
☆ Dynamic Forgetting and Spatio-Temporal Periodic Interest Modeling for Local-Life Service Recommendation
In the context of the booming digital economy, recommendation systems, as a key link connecting users and numerous services, face challenges in modeling user behavior sequences on local-life service platforms, including the sparsity of long sequences and strong spatio-temporal dependence. Such challenges can be addressed by drawing an analogy to the forgetting process in human memory. This is because users' responses to recommended content follow the recency effect and the cyclicality of memory. By exploring this, this paper introduces the forgetting curve and proposes Spatio-Temporal periodic Interest Modeling (STIM) with long sequences for local-life service recommendation. STIM integrates three key components: a dynamic masking module based on the forgetting curve, which is used to extract both recent spatiotemporal features and periodic spatiotemporal features; a query-based mixture of experts (MoE) approach that can adaptively activate expert networks under different dynamic masks, enabling the collaborative modeling of time, location, and items; and a hierarchical multi-interest network unit, which captures multi-interest representations by modeling the hierarchical interactions between the shallow and deep semantics of users' recent behaviors. By introducing the STIM method, we conducted online A/B tests and achieved a 1.54\% improvement in gross transaction volume (GTV). In addition, extended offline experiments also showed improvements. STIM has been deployed in a large-scale local-life service recommendation system, serving hundreds of millions of daily active users in core application scenarios.
☆ Beyond Chunks and Graphs: Retrieval-Augmented Generation through Triplet-Driven Thinking
Retrieval-augmented generation (RAG) is critical for reducing hallucinations and incorporating external knowledge into Large Language Models (LLMs). However, advanced RAG systems face a trade-off between performance and efficiency. Multi-round RAG approaches achieve strong reasoning but incur excessive LLM calls and token costs, while Graph RAG methods suffer from computationally expensive, error-prone graph construction and retrieval redundancy. To address these challenges, we propose T$^2$RAG, a novel framework that operates on a simple, graph-free knowledge base of atomic triplets. T$^2$RAG leverages an LLM to decompose questions into searchable triplets with placeholders, which it then iteratively resolves by retrieving evidence from the triplet database. Empirical results show that T$^2$RAG significantly outperforms state-of-the-art multi-round and Graph RAG methods, achieving an average performance gain of up to 11\% across six datasets while reducing retrieval costs by up to 45\%. Our code is available at https://github.com/rockcor/T2RAG
comment: 19 pages
Graph Embedding in the Graph Fractional Fourier Transform Domain
Spectral graph embedding plays a critical role in graph representation learning by generating low-dimensional vector representations from graph spectral information. However, the embedding space of traditional spectral embedding methods often exhibit limited expressiveness, failing to exhaustively capture latent structural features across alternative transform domains. To address this issue, we use the graph fractional Fourier transform to extend the existing state-of-the-art generalized frequency filtering embedding (GEFFE) into fractional domains, giving birth to the generalized fractional filtering embedding (GEFRFE), which enhances embedding informativeness via the graph fractional domain. The GEFRFE leverages graph fractional domain filtering and a nonlinear composition of eigenvector components derived from a fractionalized graph Laplacian. To dynamically determine the fractional order, two parallel strategies are introduced: search-based optimization and a ResNet18-based adaptive learning. Extensive experiments on six benchmark datasets demonstrate that the GEFRFE captures richer structural features and significantly enhance classification performance. Notably, the proposed method retains computational complexity comparable to GEFFE approaches.
☆ Uni-Layout: Integrating Human Feedback in Unified Layout Generation and Evaluation
Layout generation plays a crucial role in enhancing both user experience and design efficiency. However, current approaches suffer from task-specific generation capabilities and perceptually misaligned evaluation metrics, leading to limited applicability and ineffective measurement. In this paper, we propose \textit{Uni-Layout}, a novel framework that achieves unified generation, human-mimicking evaluation and alignment between the two. For universal generation, we incorporate various layout tasks into a single taxonomy and develop a unified generator that handles background or element contents constrained tasks via natural language prompts. To introduce human feedback for the effective evaluation of layouts, we build \textit{Layout-HF100k}, the first large-scale human feedback dataset with 100,000 expertly annotated layouts. Based on \textit{Layout-HF100k}, we introduce a human-mimicking evaluator that integrates visual and geometric information, employing a Chain-of-Thought mechanism to conduct qualitative assessments alongside a confidence estimation module to yield quantitative measurements. For better alignment between the generator and the evaluator, we integrate them into a cohesive system by adopting Dynamic-Margin Preference Optimization (DMPO), which dynamically adjusts margins based on preference strength to better align with human judgments. Extensive experiments show that \textit{Uni-Layout} significantly outperforms both task-specific and general-purpose methods. Our code is publicly available at https://github.com/JD-GenX/Uni-Layout.
comment: Accepted to ACM MM 2025
☆ Agentic Personalized Fashion Recommendation in the Age of Generative AI: Challenges, Opportunities, and Evaluation
Fashion recommender systems (FaRS) face distinct challenges due to rapid trend shifts, nuanced user preferences, intricate item-item compatibility, and the complex interplay among consumers, brands, and influencers. Traditional recommendation approaches, largely static and retrieval-focused, struggle to effectively capture these dynamic elements, leading to decreased user satisfaction and elevated return rates. This paper synthesizes both academic and industrial viewpoints to map the distinctive output space and stakeholder ecosystem of modern FaRS, identifying the complex interplay among users, brands, platforms, and influencers, and highlighting the unique data and modeling challenges that arise. We outline a research agenda for industrial FaRS, centered on five representative scenarios spanning static queries, outfit composition, and multi-turn dialogue, and argue that mixed-modality refinement-the ability to combine image-based references (anchors) with nuanced textual constraints-is a particularly critical task for real-world deployment. To this end, we propose an Agentic Mixed-Modality Refinement (AMMR) pipeline, which fuses multimodal encoders with agentic LLM planners and dynamic retrieval, bridging the gap between expressive user intent and fast-changing fashion inventories. Our work shows that moving beyond static retrieval toward adaptive, generative, and stakeholder-aware systems is essential to satisfy the evolving expectations of fashion consumers and brands.
☆ Learning Partially-Decorrelated Common Spaces for Ad-hoc Video Search
Ad-hoc Video Search (AVS) involves using a textual query to search for multiple relevant videos in a large collection of unlabeled short videos. The main challenge of AVS is the visual diversity of relevant videos. A simple query such as "Find shots of a man and a woman dancing together indoors" can span a multitude of environments, from brightly lit halls and shadowy bars to dance scenes in black-and-white animations. It is therefore essential to retrieve relevant videos as comprehensively as possible. Current solutions for the AVS task primarily fuse multiple features into one or more common spaces, yet overlook the need for diverse spaces. To fully exploit the expressive capability of individual features, we propose LPD, short for Learning Partially Decorrelated common spaces. LPD incorporates two key innovations: feature-specific common space construction and the de-correlation loss. Specifically, LPD learns a separate common space for each video and text feature, and employs de-correlation loss to diversify the ordering of negative samples across different spaces. To enhance the consistency of multi-space convergence, we designed an entropy-based fair multi-space triplet ranking loss. Extensive experiments on the TRECVID AVS benchmarks (2016-2023) justify the effectiveness of LPD. Moreover, diversity visualizations of LPD's spaces highlight its ability to enhance result diversity.
comment: Accepted by ACMMM2025
☆ Understanding User Preferences for Interaction Styles in Conversational Recommender Systems: The Predictive Role of System Qualities, User Experience, and Traits
Conversational Recommender Systems (CRSs) deliver personalised recommendations through multi-turn natural language dialogue and increasingly support both task-oriented and exploratory interactions. Yet, the factors shaping user interaction preferences remain underexplored. In this within-subjects study (\(N = 139\)), participants experienced two scripted CRS dialogues, rated their experiences, and indicated the importance of eight system qualities. Logistic regression revealed that preference for the exploratory interaction was predicted by enjoyment, usefulness, novelty, and conversational quality. Unexpectedly, perceived effectiveness was also associated with exploratory preference. Clustering uncovered five latent user profiles with distinct dialogue style preferences. Moderation analyses indicated that age, gender, and control preference significantly influenced these choices. These findings integrate affective, cognitive, and trait-level predictors into CRS user modelling and inform autonomy-sensitive, value-adaptive dialogue design. The proposed predictive and adaptive framework applies broadly to conversational AI systems seeking to align dynamically with evolving user needs.
comment: Accepted at OZCHI 2025. 21 pages, 9 figures, 8 tables
☆ Research Knowledge Graphs in NFDI4DataScience: Key Activities, Achievements, and Future Directions
As research in Artificial Intelligence and Data Science continues to grow in volume and complexity, it becomes increasingly difficult to ensure transparency, reproducibility, and discoverability. To address these challenges, as research artifacts should be understandable and usable by machines, the NFDI4DataScience consortium is developing and providing Research Knowledge Graphs (RKGs). Building upon earlier works, this paper presents recent progress in creating semantically rich RKGs using standardized ontologies, shared vocabularies, and automated Information Extraction techniques. Key achievements include the development of the NFDI4DS ontology, metadata standards, tools, and services designed to support the FAIR principles, as well as community-led projects and various implementations of RKGs. Together, these efforts aim to capture and connect the complex relationships between datasets, models, software, and scientific publications.
☆ Voronoi Diagram Encoded Hashing
The goal of learning to hash (L2H) is to derive data-dependent hash functions from a given data distribution in order to map data from the input space to a binary coding space. Despite the success of L2H, two observations have cast doubt on the source of the power of L2H, i.e., learning. First, a recent study shows that even using a version of locality sensitive hashing functions without learning achieves binary representations that have comparable accuracy as those of L2H, but with less time cost. Second, existing L2H methods are constrained to three types of hash functions: thresholding, hyperspheres, and hyperplanes only. In this paper, we unveil the potential of Voronoi diagrams in hashing. Voronoi diagram is a suitable candidate because of its three properties. This discovery has led us to propose a simple and efficient no-learning binary hashing method, called Voronoi Diagram Encoded Hashing (VDeH), which constructs a set of hash functions through a data-dependent similarity measure and produces independent binary bits through encoded hashing. We demonstrate through experiments on several benchmark datasets that VDeH achieves superior performance and lower computational cost compared to existing state-of-the-art methods under the same bit length.
☆ I2CR: Intra- and Inter-modal Collaborative Reflections for Multimodal Entity Linking
Multimodal entity linking plays a crucial role in a wide range of applications. Recent advances in large language model-based methods have become the dominant paradigm for this task, effectively leveraging both textual and visual modalities to enhance performance. Despite their success, these methods still face two challenges, including unnecessary incorporation of image data in certain scenarios and the reliance only on a one-time extraction of visual features, which can undermine their effectiveness and accuracy. To address these challenges, we propose a novel LLM-based framework for the multimodal entity linking task, called Intra- and Inter-modal Collaborative Reflections. This framework prioritizes leveraging text information to address the task. When text alone is insufficient to link the correct entity through intra- and inter-modality evaluations, it employs a multi-round iterative strategy that integrates key visual clues from various aspects of the image to support reasoning and enhance matching accuracy. Extensive experiments on three widely used public datasets demonstrate that our framework consistently outperforms current state-of-the-art methods in the task, achieving improvements of 3.2%, 5.1%, and 1.6%, respectively. Our code is available at https://github.com/ziyan-xiaoyu/I2CR/.
comment: 10 pages, 6 figures, accepted by ACMMM 2025
☆ From Generation to Consumption: Personalized List Value Estimation for Re-ranking
Re-ranking is critical in recommender systems for optimizing the order of recommendation lists, thus improving user satisfaction and platform revenue. Most existing methods follow a generator-evaluator paradigm, where the evaluator estimates the overall value of each candidate list. However, they often ignore the fact that users may exit before consuming the full list, leading to a mismatch between estimated generation value and actual consumption value. To bridge this gap, we propose CAVE, a personalized Consumption-Aware list Value Estimation framework. CAVE formulates the list value as the expectation over sub-list values, weighted by user-specific exit probabilities at each position. The exit probability is decomposed into an interest-driven component and a stochastic component, the latter modeled via a Weibull distribution to capture random external factors such as fatigue. By jointly modeling sub-list values and user exit behavior, CAVE yields a more faithful estimate of actual list consumption value. We further contribute three large-scale real-world list-wise benchmarks from the Kuaishou platform, varying in size and user activity patterns. Extensive experiments on these benchmarks, two Amazon datasets, and online A/B testing on Kuaishou show that CAVE consistently outperforms strong baselines, highlighting the benefit of explicitly modeling user exits in re-ranking.
☆ FinCPRG: A Bidirectional Generation Pipeline for Hierarchical Queries and Rich Relevance in Financial Chinese Passage Retrieval
In recent years, large language models (LLMs) have demonstrated significant potential in constructing passage retrieval datasets. However, existing methods still face limitations in expressing cross-doc query needs and controlling annotation quality. To address these issues, this paper proposes a bidirectional generation pipeline, which aims to generate 3-level hierarchical queries for both intra-doc and cross-doc scenarios and mine additional relevance labels on top of direct mapping annotation. The pipeline introduces two query generation methods: bottom-up from single-doc text and top-down from multi-doc titles. The bottom-up method uses LLMs to disassemble and generate structured queries at both sentence-level and passage-level simultaneously from intra-doc passages. The top-down approach incorporates three key financial elements--industry, topic, and time--to divide report titles into clusters and prompts LLMs to generate topic-level queries from each cluster. For relevance annotation, our pipeline not only relies on direct mapping annotation from the generation relationship but also implements an indirect positives mining method to enrich the relevant query-passage pairs. Using this pipeline, we constructed a Financial Passage Retrieval Generated dataset (FinCPRG) from almost 1.3k Chinese financial research reports, which includes hierarchical queries and rich relevance labels. Through evaluations of mined relevance labels, benchmarking and training experiments, we assessed the quality of FinCPRG and validated its effectiveness as a passage retrieval dataset for both training and benchmarking.
☆ Evaluating User Experience in Conversational Recommender Systems: A Systematic Review Across Classical and LLM-Powered Approaches
Conversational Recommender Systems (CRSs) are receiving growing research attention across domains, yet their user experience (UX) evaluation remains limited. Existing reviews largely overlook empirical UX studies, particularly in adaptive and large language model (LLM)-based CRSs. To address this gap, we conducted a systematic review following PRISMA guidelines, synthesising 23 empirical studies published between 2017 and 2025. We analysed how UX has been conceptualised, measured, and shaped by domain, adaptivity, and LLM. Our findings reveal persistent limitations: post hoc surveys dominate, turn-level affective UX constructs are rarely assessed, and adaptive behaviours are seldom linked to UX outcomes. LLM-based CRSs introduce further challenges, including epistemic opacity and verbosity, yet evaluations infrequently address these issues. We contribute a structured synthesis of UX metrics, a comparative analysis of adaptive and nonadaptive systems, and a forward-looking agenda for LLM-aware UX evaluation. These findings support the development of more transparent, engaging, and user-centred CRS evaluation practices.
comment: Accepted at OZCHI 2025. 23 pages, 1 figure, 5 tables
☆ Why Generate When You Can Transform? Unleashing Generative Attention for Dynamic Recommendation
Sequential Recommendation (SR) focuses on personalizing user experiences by predicting future preferences based on historical interactions. Transformer models, with their attention mechanisms, have become the dominant architecture in SR tasks due to their ability to capture dependencies in user behavior sequences. However, traditional attention mechanisms, where attention weights are computed through query-key transformations, are inherently linear and deterministic. This fixed approach limits their ability to account for the dynamic and non-linear nature of user preferences, leading to challenges in capturing evolving interests and subtle behavioral patterns. Given that generative models excel at capturing non-linearity and probabilistic variability, we argue that generating attention distributions offers a more flexible and expressive alternative compared to traditional attention mechanisms. To support this claim, we present a theoretical proof demonstrating that generative attention mechanisms offer greater expressiveness and stochasticity than traditional deterministic approaches. Building upon this theoretical foundation, we introduce two generative attention models for SR, each grounded in the principles of Variational Autoencoders (VAE) and Diffusion Models (DMs), respectively. These models are designed specifically to generate adaptive attention distributions that better align with variable user preferences. Extensive experiments on real-world datasets show our models significantly outperform state-of-the-art in both accuracy and diversity.
comment: Accepted at ACMMM 2025
☆ Evaluating Position Bias in Large Language Model Recommendations
Large Language Models (LLMs) are being increasingly explored as general-purpose tools for recommendation tasks, enabling zero-shot and instruction-following capabilities without the need for task-specific training. While the research community is enthusiastically embracing LLMs, there are important caveats to directly adapting them for recommendation tasks. In this paper, we show that LLM-based recommendation models suffer from position bias, where the order of candidate items in a prompt can disproportionately influence the recommendations produced by LLMs. First, we analyse the position bias of LLM-based recommendations on real-world datasets, where results uncover systemic biases of LLMs with high sensitivity to input orders. Furthermore, we introduce a new prompting strategy to mitigate the position bias of LLM recommendation models called Ranking via Iterative SElection (RISE). We compare our proposed method against various baselines on key benchmark datasets. Experiment results show that our method reduces sensitivity to input ordering and improves stability without requiring model fine-tuning or post-processing.
☆ Controllable and Stealthy Shilling Attacks via Dispersive Latent Diffusion
Recommender systems (RSs) are now fundamental to various online platforms, but their dependence on user-contributed data leaves them vulnerable to shilling attacks that can manipulate item rankings by injecting fake users. Although widely studied, most existing attack models fail to meet two critical objectives simultaneously: achieving strong adversarial promotion of target items while maintaining realistic behavior to evade detection. As a result, the true severity of shilling threats that manage to reconcile the two objectives remains underappreciated. To expose this overlooked vulnerability, we present DLDA, a diffusion-based attack framework that can generate highly effective yet indistinguishable fake users by enabling fine-grained control over target promotion. Specifically, DLDA operates in a pre-aligned collaborative embedding space, where it employs a conditional latent diffusion process to iteratively synthesize fake user profiles with precise target item control. To evade detection, DLDA introduces a dispersive regularization mechanism that promotes variability and realism in generated behavioral patterns. Extensive experiments on three real-world datasets and five popular RS models demonstrate that, compared to prior attacks, DLDA consistently achieves stronger item promotion while remaining harder to detect. These results highlight that modern RSs are more vulnerable than previously recognized, underscoring the urgent need for more robust defenses.
☆ LLM-based IR-system for Bank Supervisors
Bank supervisors face the complex task of ensuring that new measures are consistently aligned with historical precedents. To address this challenge, we introduce a novel Information Retrieval (IR) System tailored to assist supervisors in drafting both consistent and effective measures. This system ingests findings from on-site investigations. It then retrieves the most relevant historical findings and their associated measures from a comprehensive database, providing a solid basis for supervisors to write well-informed measures for new findings. Utilizing a blend of lexical, semantic, and Capital Requirements Regulation (CRR) fuzzy set matching techniques, the IR system ensures the retrieval of findings that closely align with current cases. The performance of this system, particularly in scenarios with partially labeled data, is validated through a Monte Carlo methodology, showcasing its robustness and accuracy. Enhanced by a Transformer-based Denoising AutoEncoder for fine-tuning, the final model achieves a Mean Average Precision (MAP@100) of 0.83 and a Mean Reciprocal Rank (MRR@100) of 0.92. These scores surpass those of both standalone lexical models such as BM25 and semantic BERT-like models.
☆ Realizing Scaling Laws in Recommender Systems: A Foundation-Expert Paradigm for Hyperscale Model Deployment
While scaling laws promise significant performance gains for recommender systems, efficiently deploying hyperscale models remains a major unsolved challenge. In contrast to fields where FMs are already widely adopted such as natural language processing and computer vision, progress in recommender systems is hindered by unique challenges including the need to learn from online streaming data under shifting data distributions, the need to adapt to different recommendation surfaces with a wide diversity in their downstream tasks and their input distributions, and stringent latency and computational constraints. To bridge this gap, we propose to leverage the Foundation-Expert Paradigm: a framework designed for the development and deployment of hyperscale recommendation FMs. In our approach, a central FM is trained on lifelong, cross-surface, multi-modal user data to learn generalizable knowledge. This knowledge is then efficiently transferred to various lightweight, surface-specific ``expert" models via target-aware embeddings, allowing them to adapt to local data distributions and optimization goals with minimal overhead. To meet our training, inference and development needs, we built HyperCast, a production-grade infrastructure system that re-engineers training, serving, logging and iteration to power this decoupled paradigm. Our approach is now deployed at Meta serving tens of billions of user requests daily, demonstrating online metric improvements over our previous one-stage production system while improving developer velocity and maintaining infrastructure efficiency. To the best of our knowledge, this work represents the first successful deployment of a Foundation-Expert paradigm at this scale, offering a proven, compute-efficient, and developer-friendly blueprint to realize the promise of scaling laws in recommender systems.
☆ A Multi-Agent System for Complex Reasoning in Radiology Visual Question Answering
Radiology visual question answering (RVQA) provides precise answers to questions about chest X-ray images, alleviating radiologists' workload. While recent methods based on multimodal large language models (MLLMs) and retrieval-augmented generation (RAG) have shown promising progress in RVQA, they still face challenges in factual accuracy, hallucinations, and cross-modal misalignment. We introduce a multi-agent system (MAS) designed to support complex reasoning in RVQA, with specialized agents for context understanding, multimodal reasoning, and answer validation. We evaluate our system on a challenging RVQA set curated via model disagreement filtering, comprising consistently hard cases across multiple MLLMs. Extensive experiments demonstrate the superiority and effectiveness of our system over strong MLLM baselines, with a case study illustrating its reliability and interpretability. This work highlights the potential of multi-agent approaches to support explainable and trustworthy clinical AI applications that require complex reasoning.
☆ Defending Against Knowledge Poisoning Attacks During Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has emerged as a powerful approach to boost the capabilities of large language models (LLMs) by incorporating external, up-to-date knowledge sources. However, this introduces a potential vulnerability to knowledge poisoning attacks, where attackers can compromise the knowledge source to mislead the generation model. One such attack is the PoisonedRAG in which the injected adversarial texts steer the model to generate an attacker-chosen response to a target question. In this work, we propose novel defense methods, FilterRAG and ML-FilterRAG, to mitigate the PoisonedRAG attack. First, we propose a new property to uncover distinct properties to differentiate between adversarial and clean texts in the knowledge data source. Next, we employ this property to filter out adversarial texts from clean ones in the design of our proposed approaches. Evaluation of these methods using benchmark datasets demonstrate their effectiveness, with performances close to those of the original RAG systems.
comment: Preprint for Submission
☆ Simple Methods Defend RAG Systems Well Against Real-World Attacks
Ensuring safety and in-domain responses for Retrieval-Augmented Generation (RAG) systems is paramount in safety-critical applications, yet remains a significant challenge. To address this, we evaluate four methodologies for Out-Of-Domain (OOD) query detection: GPT-4o, regression-based, Principal Component Analysis (PCA)-based, and Neural Collapse (NC), to ensure the RAG system only responds to queries confined to the system's knowledge base. Specifically, our evaluation explores two novel dimensionality reduction and feature separation strategies: \textit{PCA}, where top components are selected using explained variance or OOD separability, and an adaptation of \textit{Neural Collapse Feature Separation}. We validate our approach on standard datasets (StackExchange and MSMARCO) and real-world applications (Substance Use and COVID-19), including tests against LLM-simulated and actual attacks on a COVID-19 vaccine chatbot. Through human and LLM-based evaluations of response correctness and relevance, we confirm that an external OOD detector is crucial for maintaining response relevance.
☆ Breaking the Top-$K$ Barrier: Advancing Top-$K$ Ranking Metrics Optimization in Recommender Systems KDD 2025
In the realm of recommender systems (RS), Top-$K$ ranking metrics such as NDCG@$K$ are the gold standard for evaluating recommendation performance. However, during the training of recommendation models, optimizing NDCG@$K$ poses significant challenges due to its inherent discontinuous nature and the intricate Top-$K$ truncation. Recent efforts to optimize NDCG@$K$ have either overlooked the Top-$K$ truncation or suffered from high computational costs and training instability. To overcome these limitations, we propose SoftmaxLoss@$K$ (SL@$K$), a novel recommendation loss tailored for NDCG@$K$ optimization. Specifically, we integrate the quantile technique to handle Top-$K$ truncation and derive a smooth upper bound for optimizing NDCG@$K$ to address discontinuity. The resulting SL@$K$ loss has several desirable properties, including theoretical guarantees, ease of implementation, computational efficiency, gradient stability, and noise robustness. Extensive experiments on four real-world datasets and three recommendation backbones demonstrate that SL@$K$ outperforms existing losses with a notable average improvement of 6.03%. The code is available at https://github.com/Tiny-Snow/IR-Benchmark.
comment: Accepted by KDD 2025
☆ LMAR: Language Model Augmented Retriever for Domain-specific Knowledge Indexing
Retrieval Augmented Generation (RAG) systems often struggle with domain-specific knowledge due to performance deterioration of pre-trained embeddings and prohibitive computational costs of large language model (LLM)-based retrievers. While fine-tuning data augmentation embedding models offers a promising direction, its effectiveness is limited by the need for high-quality training data and reliable chunking strategies that preserve contextual integrity. We propose LMAR (Language Model Augmented Retriever), a model-agnostic framework that addresses these challenges by combining LLM-guided data synthesis with contrastive embedding adaptation and efficient text clustering. LMAR consists of a two-stage pipeline: (1) Triplet sampling and synthetic data augmentation, where LLMs act as both labeler and validator to ensure high-fidelity supervision throughout the pipeline. Experimental results across multiple domain-specific benchmark datasets demonstrate that LMAR outperforms multiple baseline models, while maintaining moderate hardware requirements and low latency. Its model-agnostic nature further enables seamless integration with emerging RAG architectures and text embedding models, ensuring continual improvements without redesigning the pipeline. These results highlight LMAR as a practical and cost-effective solution for scalable domain-specific adaptation.
☆ Fine-Tuning Vision-Language Models for Markdown Conversion of Financial Tables in Malaysian Audited Financial Reports
Accurately extracting and representing the structure of tabular data from financial documents remains a critical challenge in document understanding, particularly for regulatory and analytical use cases. This study addresses the complexity of converting financial tables from Malaysian audited financial reports into Markdown format, a task complicated by rotated layouts, multi-level headers, and implicit structural cues. We propose a fine-tuned vision-language model (VLM), based on Qwen2.5-VL-7B, optimized for high-fidelity Markdown generation from document images. Our approach includes a curated dataset of 2,152 image-text pairs with augmentations and a supervised fine-tuning strategy using LoRA. To assess performance, we evaluated our model on 100 out-of-sample tables using a dual framework: a criteria-based LLM-as-a-judge for fine-grained accuracy and our novel Markdown Tree-Edit-Distance-based Similarity (TEDS) metric for holistic structural fidelity. Our model achieves a 92.20% overall accuracy on the criteria-based assessment and a 96.53% Markdown TEDS score. This performance significantly surpasses its Qwen2.5-VL-7B base model, larger-scale VLMs, and specialized reasoning-enabled models. Compared to these self-hosted alternatives, it also significantly reduces inference time. Furthermore, its accuracy exceeds that of widely used proprietary models such as OpenAI's GPT-4o and Gemini 2.5 Flash. These results demonstrate that domain-specific fine-tuning provides an effective and efficient method to bridge the gap between unstructured financial documents and downstream automation, rivalling much larger and more general models without their computational overhead.
comment: 28 pages, 14 figures, 5 tables. Evaluation code (LLM-as-a-judge and Markdown TEDS) is available at https://github.com/jinkhye/MyFinMarkdown. The development dataset and evaluation benchmark are available on Hugging Face at https://huggingface.co/datasets/jinkhye/MyFinMarkdown-sample and https://huggingface.co/datasets/jinkhye/MyFinMarkdown-bench respectively
♻ ☆ DRC: Enhancing Personalized Image Generation via Disentangled Representation Composition
Personalized image generation has emerged as a promising direction in multimodal content creation. It aims to synthesize images tailored to individual style preferences (e.g., color schemes, character appearances, layout) and semantic intentions (e.g., emotion, action, scene contexts) by leveraging user-interacted history images and multimodal instructions. Despite notable progress, existing methods -- whether based on diffusion models, large language models, or Large Multimodal Models (LMMs) -- struggle to accurately capture and fuse user style preferences and semantic intentions. In particular, the state-of-the-art LMM-based method suffers from the entanglement of visual features, leading to Guidance Collapse, where the generated images fail to preserve user-preferred styles or reflect the specified semantics. To address these limitations, we introduce DRC, a novel personalized image generation framework that enhances LMMs through Disentangled Representation Composition. DRC explicitly extracts user style preferences and semantic intentions from history images and the reference image, respectively, to form user-specific latent instructions that guide image generation within LMMs. Specifically, it involves two critical learning stages: 1) Disentanglement learning, which employs a dual-tower disentangler to explicitly separate style and semantic features, optimized via a reconstruction-driven paradigm with difficulty-aware importance sampling; and 2) Personalized modeling, which applies semantic-preserving augmentations to effectively adapt the disentangled representations for robust personalized generation. Extensive experiments on two benchmarks demonstrate that DRC shows competitive performance while effectively mitigating the guidance collapse issue, underscoring the importance of disentangled representation learning for controllable and effective personalized image generation.
comment: Accepted for publication in ACM MM'25
♻ ☆ It's High Time: A Survey of Temporal Question Answering
Time plays a critical role in how information is generated, retrieved, and interpreted. In this survey, we provide a comprehensive overview of Temporal Question Answering (TQA), a research area that focuses on answering questions involving temporal constraints or context. As the amount of time-stamped content from sources like news articles, web archives, and knowledge bases increases, systems must address challenges such as detecting temporal intent, normalizing time expressions, ordering events, and reasoning over evolving or ambiguous facts. We focus on recent advances in TQA enabled by neural architectures, especially transformer-based models and Large Language Models (LLMs), highlighting progress in temporal language modeling, retrieval-augmented generation (RAG), and temporal reasoning. We also discuss benchmark datasets and evaluation strategies designed to test temporal robustness, recency awareness, and generalization.
♻ ☆ "Beyond the past": Leveraging Audio and Human Memory for Sequential Music Recommendation
On music streaming services, listening sessions are often composed of a balance of familiar and new tracks. Recently, sequential recommender systems have adopted cognitive-informed approaches, such as Adaptive Control of Thought-Rational (ACT-R), to successfully improve the prediction of the most relevant tracks for the next user session. However, one limitation of using a model inspired by human memory (or the past), is that it struggles to recommend new tracks that users have not previously listened to. To bridge this gap, here we propose a model that leverages audio information to predict in advance the ACT-R-like activation of new tracks and incorporates them into the recommendation scoring process. We demonstrate the empirical effectiveness of the proposed model using proprietary data, which we publicly release along with the model's source code to foster future research in this field.
Artificial Intelligence 150
☆ D2PPO: Diffusion Policy Policy Optimization with Dispersive Loss
Diffusion policies excel at robotic manipulation by naturally modeling multimodal action distributions in high-dimensional spaces. Nevertheless, diffusion policies suffer from diffusion representation collapse: semantically similar observations are mapped to indistinguishable features, ultimately impairing their ability to handle subtle but critical variations required for complex robotic manipulation. To address this problem, we propose D2PPO (Diffusion Policy Policy Optimization with Dispersive Loss). D2PPO introduces dispersive loss regularization that combats representation collapse by treating all hidden representations within each batch as negative pairs. D2PPO compels the network to learn discriminative representations of similar observations, thereby enabling the policy to identify subtle yet crucial differences necessary for precise manipulation. In evaluation, we find that early-layer regularization benefits simple tasks, while late-layer regularization sharply enhances performance on complex manipulation tasks. On RoboMimic benchmarks, D2PPO achieves an average improvement of 22.7% in pre-training and 26.1% after fine-tuning, setting new SOTA results. In comparison with SOTA, results of real-world experiments on a Franka Emika Panda robot show the excitingly high success rate of our method. The superiority of our method is especially evident in complex tasks. Project page: https://guowei-zou.github.io/d2ppo/
☆ An Efficient Continuous-Time MILP for Integrated Aircraft Hangar Scheduling and Layout
Efficient management of aircraft maintenance hangars is a critical operational challenge, involving complex, interdependent decisions regarding aircraft scheduling and spatial allocation. This paper introduces a novel continuous-time mixed-integer linear programming (MILP) model to solve this integrated spatio-temporal problem. By treating time as a continuous variable, our formulation overcomes the scalability limitations of traditional discrete-time approaches. The performance of the exact model is benchmarked against a constructive heuristic, and its practical applicability is demonstrated through a custom-built visualization dashboard. Computational results are compelling: the model solves instances with up to 25 aircraft to proven optimality, often in mere seconds, and for large-scale cases of up to 40 aircraft, delivers high-quality solutions within known optimality gaps. In all tested scenarios, the resulting solutions consistently and significantly outperform the heuristic, which highlights the framework's substantial economic benefits and provides valuable managerial insights into the trade-off between solution time and optimality.
comment: 35 pages, 7 figures
☆ Actionable Counterfactual Explanations Using Bayesian Networks and Path Planning with Applications to Environmental Quality Improvement
Counterfactual explanations study what should have changed in order to get an alternative result, enabling end-users to understand machine learning mechanisms with counterexamples. Actionability is defined as the ability to transform the original case to be explained into a counterfactual one. We develop a method for actionable counterfactual explanations that, unlike predecessors, does not directly leverage training data. Rather, data is only used to learn a density estimator, creating a search landscape in which to apply path planning algorithms to solve the problem and masking the endogenous data, which can be sensitive or private. We put special focus on estimating the data density using Bayesian networks, demonstrating how their enhanced interpretability is useful in high-stakes scenarios in which fairness is raising concern. Using a synthetic benchmark comprised of 15 datasets, our proposal finds more actionable and simpler counterfactuals than the current state-of-the-art algorithms. We also test our algorithm with a real-world Environmental Protection Agency dataset, facilitating a more efficient and equitable study of policies to improve the quality of life in United States of America counties. Our proposal captures the interaction of variables, ensuring equity in decisions, as policies to improve certain domains of study (air, water quality, etc.) can be detrimental in others. In particular, the sociodemographic domain is often involved, where we find important variables related to the ongoing housing crisis that can potentially have a severe negative impact on communities.
☆ What Is Your AI Agent Buying? Evaluation, Implications and Emerging Questions for Agentic E-Commerce
Online marketplaces will be transformed by autonomous AI agents acting on behalf of consumers. Rather than humans browsing and clicking, vision-language-model (VLM) agents can parse webpages, evaluate products, and transact. This raises a fundamental question: what do AI agents buy, and why? We develop ACES, a sandbox environment that pairs a platform-agnostic VLM agent with a fully programmable mock marketplace to study this question. We first conduct basic rationality checks in the context of simple tasks, and then, by randomizing product positions, prices, ratings, reviews, sponsored tags, and platform endorsements, we obtain causal estimates of how frontier VLMs actually shop. Models show strong but heterogeneous position effects: all favor the top row, yet different models prefer different columns, undermining the assumption of a universal "top" rank. They penalize sponsored tags and reward endorsements. Sensitivities to price, ratings, and reviews are directionally human-like but vary sharply in magnitude across models. Motivated by scenarios where sellers use AI agents to optimize product listings, we show that a seller-side agent that makes minor tweaks to product descriptions, targeting AI buyer preferences, can deliver substantial market-share gains if AI-mediated shopping dominates. We also find that modal product choices can differ across models and, in some cases, demand may concentrate on a few select products, raising competition questions. Together, our results illuminate how AI agents may behave in e-commerce settings and surface concrete seller strategy, platform design, and regulatory questions in an AI-mediated ecosystem.
☆ HyCodePolicy: Hybrid Language Controllers for Multimodal Monitoring and Decision in Embodied Agents ICCV 2025
Recent advances in multimodal large language models (MLLMs) have enabled richer perceptual grounding for code policy generation in embodied agents. However, most existing systems lack effective mechanisms to adaptively monitor policy execution and repair codes during task completion. In this work, we introduce HyCodePolicy, a hybrid language-based control framework that systematically integrates code synthesis, geometric grounding, perceptual monitoring, and iterative repair into a closed-loop programming cycle for embodied agents. Technically, given a natural language instruction, our system first decomposes it into subgoals and generates an initial executable program grounded in object-centric geometric primitives. The program is then executed in simulation, while a vision-language model (VLM) observes selected checkpoints to detect and localize execution failures and infer failure reasons. By fusing structured execution traces capturing program-level events with VLM-based perceptual feedback, HyCodePolicy infers failure causes and repairs programs. This hybrid dual feedback mechanism enables self-correcting program synthesis with minimal human supervision. Our results demonstrate that HyCodePolicy significantly improves the robustness and sample efficiency of robot manipulation policies, offering a scalable strategy for integrating multimodal reasoning into autonomous decision-making pipelines.
comment: Accepted to ICCV 2025 Workshop on Multi-Modal Reasoning for Agentic Intelligence
☆ AutoML-Med: A Framework for Automated Machine Learning in Medical Tabular Data
Medical datasets are typically affected by issues such as missing values, class imbalance, a heterogeneous feature types, and a high number of features versus a relatively small number of samples, preventing machine learning models from obtaining proper results in classification and regression tasks. This paper introduces AutoML-Med, an Automated Machine Learning tool specifically designed to address these challenges, minimizing user intervention and identifying the optimal combination of preprocessing techniques and predictive models. AutoML-Med's architecture incorporates Latin Hypercube Sampling (LHS) for exploring preprocessing methods, trains models using selected metrics, and utilizes Partial Rank Correlation Coefficient (PRCC) for fine-tuned optimization of the most influential preprocessing steps. Experimental results demonstrate AutoML-Med's effectiveness in two different clinical settings, achieving higher balanced accuracy and sensitivity, which are crucial for identifying at-risk patients, compared to other state-of-the-art tools. AutoML-Med's ability to improve prediction results, especially in medical datasets with sparse data and class imbalance, highlights its potential to streamline Machine Learning applications in healthcare.
comment: 8 pages, preprint for conference
☆ Noosemia: toward a Cognitive and Phenomenological Account of Intentionality Attribution in Human-Generative AI Interaction
This paper introduces and formalizes Noosemia, a novel cognitive-phenomenological phenomenon emerging from human interaction with generative AI systems, particularly those enabling dialogic or multimodal exchanges. We propose a multidisciplinary framework to explain how, under certain conditions, users attribute intentionality, agency, and even interiority to these systems - a process grounded not in physical resemblance, but in linguistic performance, epistemic opacity, and emergent technological complexity. By linking an LLM declination of meaning holism to our technical notion of the LLM Contextual Cognitive Field, we clarify how LLMs construct meaning relationally and how coherence and a simulacrum of agency arise at the human-AI interface. The analysis situates noosemia alongside pareidolia, animism, the intentional stance and the uncanny valley, distinguishing its unique characteristics. We also introduce a-noosemia to describe the phenomenological withdrawal of such projections. The paper concludes with reflections on the broader philosophical, epistemological, and social implications of noosemic dynamics and directions for future research.
☆ HealthFlow: A Self-Evolving AI Agent with Meta Planning for Autonomous Healthcare Research
The efficacy of AI agents in healthcare research is hindered by their reliance on static, predefined strategies. This creates a critical limitation: agents can become better tool-users but cannot learn to become better strategic planners, a crucial skill for complex domains like healthcare. We introduce HealthFlow, a self-evolving AI agent that overcomes this limitation through a novel meta-level evolution mechanism. HealthFlow autonomously refines its own high-level problem-solving policies by distilling procedural successes and failures into a durable, strategic knowledge base. To anchor our research and facilitate reproducible evaluation, we introduce EHRFlowBench, a new benchmark featuring complex, realistic health data analysis tasks derived from peer-reviewed clinical research. Our comprehensive experiments demonstrate that HealthFlow's self-evolving approach significantly outperforms state-of-the-art agent frameworks. This work marks a necessary shift from building better tool-users to designing smarter, self-evolving task-managers, paving the way for more autonomous and effective AI for scientific discovery.
comment: Code: https://github.com/yhzhu99/HealthFlow
☆ Meta-RAG on Large Codebases Using Code Summarization
Large Language Model (LLM) systems have been at the forefront of applied Artificial Intelligence (AI) research in a multitude of domains. One such domain is software development, where researchers have pushed the automation of a number of code tasks through LLM agents. Software development is a complex ecosystem, that stretches far beyond code implementation and well into the realm of code maintenance. In this paper, we propose a multi-agent system to localize bugs in large pre-existing codebases using information retrieval and LLMs. Our system introduces a novel Retrieval Augmented Generation (RAG) approach, Meta-RAG, where we utilize summaries to condense codebases by an average of 79.8\%, into a compact, structured, natural language representation. We then use an LLM agent to determine which parts of the codebase are critical for bug resolution, i.e. bug localization. We demonstrate the usefulness of Meta-RAG through evaluation with the SWE-bench Lite dataset. Meta-RAG scores 84.67 % and 53.0 % for file-level and function-level correct localization rates, respectively, achieving state-of-the-art performance.
☆ Entity Representation Learning Through Onsite-Offsite Graph for Pinterset Ads
Graph Neural Networks (GNN) have been extensively applied to industry recommendation systems, as seen in models like GraphSage\cite{GraphSage}, TwHIM\cite{TwHIM}, LiGNN\cite{LiGNN} etc. In these works, graphs were constructed based on users' activities on the platforms, and various graph models were developed to effectively learn node embeddings. In addition to users' onsite activities, their offsite conversions are crucial for Ads models to capture their shopping interest. To better leverage offsite conversion data and explore the connection between onsite and offsite activities, we constructed a large-scale heterogeneous graph based on users' onsite ad interactions and opt-in offsite conversion activities. Furthermore, we introduced TransRA (TransR\cite{TransR} with Anchors), a novel Knowledge Graph Embedding (KGE) model, to more efficiently integrate graph embeddings into Ads ranking models. However, our Ads ranking models initially struggled to directly incorporate Knowledge Graph Embeddings (KGE), and only modest gains were observed during offline experiments. To address this challenge, we employed the Large ID Embedding Table technique and innovated an attention based KGE finetuning approach within the Ads ranking models. As a result, we observed a significant AUC lift in Click-Through Rate (CTR) and Conversion Rate (CVR) prediction models. Moreover, this framework has been deployed in Pinterest's Ads Engagement Model and contributed to $2.69\%$ CTR lift and $1.34\%$ CPC reduction. We believe the techniques presented in this paper can be leveraged by other large-scale industrial models.
☆ StructSynth: Leveraging LLMs for Structure-Aware Tabular Data Synthesis in Low-Data Regimes
The application of machine learning on tabular data in specialized domains is severely limited by data scarcity. While generative models offer a solution, traditional methods falter in low-data regimes, and recent Large Language Models (LLMs) often ignore the explicit dependency structure of tabular data, leading to low-fidelity synthetics. To address these limitations, we introduce StructSynth, a novel framework that integrates the generative power of LLMs with robust structural control. StructSynth employs a two-stage architecture. First, it performs explicit structure discovery to learn a Directed Acyclic Graph (DAG) from the available data. Second, this learned structure serves as a high-fidelity blueprint to steer the LLM's generation process, forcing it to adhere to the learned feature dependencies and thereby ensuring the generated data respects the underlying structure by design. Our extensive experiments demonstrate that StructSynth produces synthetic data with significantly higher structural integrity and downstream utility than state-of-the-art methods. It proves especially effective in challenging low-data scenarios, successfully navigating the trade-off between privacy preservation and statistical fidelity.
☆ Explainable AI for Automated User-specific Feedback in Surgical Skill Acquisition
Traditional surgical skill acquisition relies heavily on expert feedback, yet direct access is limited by faculty availability and variability in subjective assessments. While trainees can practice independently, the lack of personalized, objective, and quantitative feedback reduces the effectiveness of self-directed learning. Recent advances in computer vision and machine learning have enabled automated surgical skill assessment, demonstrating the feasibility of automatic competency evaluation. However, it is unclear whether such Artificial Intelligence (AI)-driven feedback can contribute to skill acquisition. Here, we examine the effectiveness of explainable AI (XAI)-generated feedback in surgical training through a human-AI study. We create a simulation-based training framework that utilizes XAI to analyze videos and extract surgical skill proxies related to primitive actions. Our intervention provides automated, user-specific feedback by comparing trainee performance to expert benchmarks and highlighting deviations from optimal execution through understandable proxies for actionable guidance. In a prospective user study with medical students, we compare the impact of XAI-guided feedback against traditional video-based coaching on task outcomes, cognitive load, and trainees' perceptions of AI-assisted learning. Results showed improved cognitive load and confidence post-intervention. While no differences emerged between the two feedback types in reducing performance gaps or practice adjustments, trends in the XAI group revealed desirable effects where participants more closely mimicked expert practice. This work encourages the study of explainable AI in surgical education and the development of data-driven, adaptive feedback mechanisms that could transform learning experiences and competency assessment.
comment: 10 pages, 4 figures
☆ Parameter-Efficient Routed Fine-Tuning: Mixture-of-Experts Demands Mixture of Adaptation Modules
Mixture-of-Experts (MoE) benefits from a dynamic routing mechanism among their specialized experts, which existing Parameter- Efficient Fine-Tuning (PEFT) strategies fail to leverage. This motivates us to investigate whether adaptation modules themselves should incorporate routing mechanisms to align with MoE's multi-expert architecture. We analyze dynamics of core components when applying PEFT to MoE language models and examine how different routing strategies affect adaptation effectiveness. Extensive experiments adapting OLMoE-1B-7B and Mixtral-8x7B on various commonsense and math reasoning tasks validate the performance and efficiency of our routed approach. We identify the optimal configurations for different scenarios and provide empirical analyses with practical insights to facilitate better PEFT and MoE applications.
comment: This paper is a preprint under review. arXiv admin note: text overlap with arXiv:2411.08212
☆ MArgE: Meshing Argumentative Evidence from Multiple Large Language Models for Justifiable Claim Verification
Leveraging outputs from multiple large language models (LLMs) is emerging as a method for harnessing their power across a wide range of tasks while mitigating their capacity for making errors, e.g., hallucinations. However, current approaches to combining insights from multiple LLMs often involve unstructured interactions (e.g., free debate), resulting in model generations that are not faithfully justifiable. In this work, we introduce MArgE, a novel framework to provide formal structure to the evidence from each LLM, in the form of a tree of extracted arguments, for the task of claim verification. We use a variant of Argumentative LLMs (ArgLLMs), i.e. LLMs driven by frameworks and semantics from the field of computational argumentation, to construct structured argument trees for given claims. This process creates an inspectable pathway from the initial arguments to the final claim verification decisions, providing a faithful justification thereof. We show experimentally that MArgE can significantly outperform single LLMs, including three open-source models (4B to 8B parameters), GPT-4o-mini and existing ArgLLMs, as well as prior methods for unstructured multi-LLM debates. We thus demonstrate the advantages of incorporating formal, argumentative reasoning mechanisms when combining multiple LLM outputs.
☆ CAMA: Enhancing Mathematical Reasoning in Large Language Models with Causal Knowledge
Large Language Models (LLMs) have demonstrated strong performance across a wide range of tasks, yet they still struggle with complex mathematical reasoning, a challenge fundamentally rooted in deep structural dependencies. To address this challenge, we propose \textbf{CA}usal \textbf{MA}thematician (\textbf{CAMA}), a two-stage causal framework that equips LLMs with explicit, reusable mathematical structure. In the learning stage, CAMA first constructs the \textbf{M}athematical \textbf{C}ausal \textbf{G}raph (\textbf{MCG}), a high-level representation of solution strategies, by combining LLM priors with causal discovery algorithms applied to a corpus of question-solution pairs. The resulting MCG encodes essential knowledge points and their causal dependencies. To better align the graph with downstream reasoning tasks, CAMA further refines the MCG through iterative feedback derived from a selected subset of the question-solution pairs. In the reasoning stage, given a new question, CAMA dynamically extracts a task-relevant subgraph from the MCG, conditioned on both the question content and the LLM's intermediate reasoning trace. This subgraph, which encodes the most pertinent knowledge points and their causal dependencies, is then injected back into the LLM to guide its reasoning process. Empirical results on real-world datasets show that CAMA significantly improves LLM performance on challenging mathematical problems. Furthermore, our experiments demonstrate that structured guidance consistently outperforms unstructured alternatives, and that incorporating asymmetric causal relationships yields greater improvements than using symmetric associations alone.
☆ EHSAN: Leveraging ChatGPT in a Hybrid Framework for Arabic Aspect-Based Sentiment Analysis in Healthcare
Arabic-language patient feedback remains under-analysed because dialect diversity and scarce aspect-level sentiment labels hinder automated assessment. To address this gap, we introduce EHSAN, a data-centric hybrid pipeline that merges ChatGPT pseudo-labelling with targeted human review to build the first explainable Arabic aspect-based sentiment dataset for healthcare. Each sentence is annotated with an aspect and sentiment label (positive, negative, or neutral), forming a pioneering Arabic dataset aligned with healthcare themes, with ChatGPT-generated rationales provided for each label to enhance transparency. To evaluate the impact of annotation quality on model performance, we created three versions of the training data: a fully supervised set with all labels reviewed by humans, a semi-supervised set with 50% human review, and an unsupervised set with only machine-generated labels. We fine-tuned two transformer models on these datasets for both aspect and sentiment classification. Experimental results show that our Arabic-specific model achieved high accuracy even with minimal human supervision, reflecting only a minor performance drop when using ChatGPT-only labels. Reducing the number of aspect classes notably improved classification metrics across the board. These findings demonstrate an effective, scalable approach to Arabic aspect-based sentiment analysis (SA) in healthcare, combining large language model annotation with human expertise to produce a robust and explainable dataset. Future directions include generalisation across hospitals, prompt refinement, and interpretable data-driven modelling.
☆ Dynamic Feature Selection based on Rule-based Learning for Explainable Classification with Uncertainty Quantification
Dynamic feature selection (DFS) offers a compelling alternative to traditional, static feature selection by adapting the selected features to each individual sample. Unlike classical methods that apply a uniform feature set, DFS customizes feature selection per sample, providing insight into the decision-making process for each case. DFS is especially significant in settings where decision transparency is key, i.e., clinical decisions; however, existing methods use opaque models, which hinder their applicability in real-life scenarios. This paper introduces a novel approach leveraging a rule-based system as a base classifier for the DFS process, which enhances decision interpretability compared to neural estimators. We also show how this method provides a quantitative measure of uncertainty for each feature query and can make the feature selection process computationally lighter by constraining the feature search space. We also discuss when greedy selection of conditional mutual information is equivalent to selecting features that minimize the difference with respect to the global model predictions. Finally, we demonstrate the competitive performance of our rule-based DFS approach against established and state-of-the-art greedy and RL methods, which are mostly considered opaque, compared to our explainable rule-based system.
☆ Stakeholder Perspectives on Humanistic Implementation of Computer Perception in Healthcare: A Qualitative Study
Computer perception (CP) technologies (digital phenotyping, affective computing and related passive sensing approaches) offer unprecedented opportunities to personalize healthcare, but provoke concerns about privacy, bias and the erosion of empathic, relationship-centered practice. A comprehensive understanding of perceived risks, benefits, and implementation challenges from those who design, deploy and experience these tools in real-world settings remains elusive. This study provides the first evidence-based account of key stakeholder perspectives on the relational, technical, and governance challenges raised by the integration of CP technologies into patient care. We conducted in-depth, semi-structured interviews with 102 stakeholders: adolescent patients and their caregivers, frontline clinicians, technology developers, and ethics, legal, policy or philosophy scholars. Transcripts underwent thematic analysis by a multidisciplinary team; reliability was enhanced through double coding and consensus adjudication. Stakeholders articulated seven interlocking concern domains: (1) trustworthiness and data integrity; (2) patient-specific relevance; (3) utility and workflow integration; (4) regulation and governance; (5) privacy and data protection; (6) direct and indirect patient harms; and (7) philosophical critiques of reductionism. To operationalize humanistic safeguards, we propose "personalized roadmaps": co-designed plans that predetermine which metrics will be monitored, how and when feedback is shared, thresholds for clinical action, and procedures for reconciling discrepancies between algorithmic inferences and lived experience. By translating these insights into personalized roadmaps, we offer a practical framework for developers, clinicians and policymakers seeking to harness continuous behavioral data while preserving the humanistic core of care.
comment: 65 pages
☆ The KG-ER Conceptual Schema Language
We propose KG-ER, a conceptual schema language for knowledge graphs that describes the structure of knowledge graphs independently of their representation (relational databases, property graphs, RDF) while helping to capture the semantics of the information stored in a knowledge graph.
☆ What are you sinking? A geometric approach on attention sink
Attention sink (AS) is a consistent pattern in transformer attention maps where certain tokens (often special tokens or positional anchors) disproportionately attract attention from other tokens. We show that in transformers, AS is not an architectural artifact, but it is the manifestation of a fundamental geometric principle: the establishment of reference frames that anchor representational spaces. We analyze several architectures and identify three distinct reference frame types, centralized, distributed, and bidirectional, that correlate with the attention sink phenomenon. We show that they emerge during the earliest stages of training as optimal solutions to the problem of establishing stable coordinate systems in high-dimensional spaces. We show the influence of architecture components, particularly position encoding implementations, on the specific type of reference frame. This perspective transforms our understanding of transformer attention mechanisms and provides insights for both architecture design and the relationship with AS.
☆ Automatic Identification of Machine Learning-Specific Code Smells
Machine learning (ML) has rapidly grown in popularity, becoming vital to many industries. Currently, the research on code smells in ML applications lacks tools and studies that address the identification and validity of ML-specific code smells. This work investigates suitable methods and tools to design and develop a static code analysis tool (MLpylint) based on code smell criteria. This research employed the Design Science Methodology. In the problem identification phase, a literature review was conducted to identify ML-specific code smells. In solution design, a secondary literature review and consultations with experts were performed to select methods and tools for implementing the tool. We evaluated the tool on data from 160 open-source ML applications sourced from GitHub. We also conducted a static validation through an expert survey involving 15 ML professionals. The results indicate the effectiveness and usefulness of the MLpylint. We aim to extend our current approach by investigating ways to introduce MLpylint seamlessly into development workflows, fostering a more productive and innovative developer environment.
☆ Accurate and Interpretable Postmenstrual Age Prediction via Multimodal Large Language Model NeurIPS 2025
Accurate estimation of postmenstrual age (PMA) at scan is crucial for assessing neonatal development and health. While deep learning models have achieved high accuracy in predicting PMA from brain MRI, they often function as black boxes, offering limited transparency and interpretability in clinical decision support. In this work, we address the dual challenge of accuracy and interpretability by adapting a multimodal large language model (MLLM) to perform both precise PMA prediction and clinically relevant explanation generation. We introduce a parameter-efficient fine-tuning (PEFT) strategy using instruction tuning and Low-Rank Adaptation (LoRA) applied to the Qwen2.5-VL-7B model. The model is trained on four 2D cortical surface projection maps derived from neonatal MRI scans. By employing distinct prompts for training and inference, our approach enables the MLLM to handle a regression task during training and generate clinically relevant explanations during inference. The fine-tuned model achieves a low prediction error with a 95 percent confidence interval of 0.78 to 1.52 weeks, while producing interpretable outputs grounded in developmental features, marking a significant step toward transparent and trustworthy AI systems in perinatal neuroscience.
comment: Submitted to the NeurIPS 2025 Workshop GenAI4Health. Conference website: https://aihealth.ischool.utexas.edu/GenAI4HealthNeurips2025/
☆ Test-time Prompt Intervention
Test-time compute has led to remarkable success in the large language model (LLM) community, particularly for complex tasks, where longer chains of thought (CoTs) are generated to enhance reasoning capabilities. However, growing evidence reveals that such reasoning models often produce CoTs plagued by excessive redundancy, including unnecessary verification steps and repetitive reasoning shifts. The root cause lies in post-training of them that overly rely on outcome reward paradigms, as the data of process reward paradigms, which regulate intermediate reasoning steps, is difficult to construct at scale. To address this, we propose PI, a novel framework for Test-time Prompt Intervention. PI provides an interface to dynamically guide and regulate reasoning paths during inference through timely (When module) and proper (How module) interventions and post-intervention sampling (Which module). This allows human problem-solving expertise and cognitive science principles to be seamlessly integrated into LLMs' reasoning processes, enhancing controllability and interpretability. Extensive experiments across multiple models and datasets demonstrate that PI significantly shortens CoTs while reducing hallucination, yielding more concise and reliable reasoning.
comment: 23 pages, 16 figures, under review
☆ Decomposed Reasoning with Reinforcement Learning for Relevance Assessment in UGC Platforms
Retrieval-augmented generation (RAG) plays a critical role in user-generated content (UGC) platforms, but its effectiveness depends heavily on accurate relevance assessment of query-document pairs. Despite recent advances in applying large language models (LLMs) to relevance modeling, UGC platforms present unique challenges: 1) ambiguous user intent due to sparse user feedback in RAG scenarios, and 2) substantial noise introduced by informal and unstructured language. To address these issues, we propose the Reinforced Reasoning Model for Relevance Assessment (R3A), which introduces a decomposed reasoning framework over queries and candidate documents before scoring. R3A first leverages auxiliary high-ranked documents within the platform to infer latent query intent. It then performs verbatim fragment extraction to justify relevance decisions, thereby reducing errors caused by noisy UGC. Based on a reinforcement learning framework, R3A is optimized to mitigate distortions arising from ambiguous queries and unstructured content. Experimental results show that R3A significantly outperforms existing baseline methods in terms of relevance accuracy, across both offline benchmarks and online experiments.
☆ OptiHive: Ensemble Selection for LLM-Based Optimization via Statistical Modeling
LLM-based solvers have emerged as a promising means of automating problem modeling and solving. However, they remain unreliable and often depend on iterative repair loops that result in significant latency. We introduce OptiHive, an LLM-based framework that produces high-quality solvers for optimization problems from natural-language descriptions without iterative self-correction. OptiHive uses a single batched LLM query to generate diverse components (solvers, problem instances, and validation tests) and filters out erroneous components to ensure fully interpretable outputs. Taking into account the imperfection of the generated components, we employ a statistical model to infer their true performance, enabling principled uncertainty quantification and solver selection. On tasks ranging from traditional optimization problems to challenging variants of the Multi-Depot Vehicle Routing Problem, OptiHive significantly outperforms baselines, increasing the optimality rate from 5\% to 92\% on the most complex problems.
☆ PHM-Bench: A Domain-Specific Benchmarking Framework for Systematic Evaluation of Large Models in Prognostics and Health Management
With the rapid advancement of generative artificial intelligence, large language models (LLMs) are increasingly adopted in industrial domains, offering new opportunities for Prognostics and Health Management (PHM). These models help address challenges such as high development costs, long deployment cycles, and limited generalizability. However, despite the growing synergy between PHM and LLMs, existing evaluation methodologies often fall short in structural completeness, dimensional comprehensiveness, and evaluation granularity. This hampers the in-depth integration of LLMs into the PHM domain. To address these limitations, this study proposes PHM-Bench, a novel three-dimensional evaluation framework for PHM-oriented large models. Grounded in the triadic structure of fundamental capability, core task, and entire lifecycle, PHM-Bench is tailored to the unique demands of PHM system engineering. It defines multi-level evaluation metrics spanning knowledge comprehension, algorithmic generation, and task optimization. These metrics align with typical PHM tasks, including condition monitoring, fault diagnosis, RUL prediction, and maintenance decision-making. Utilizing both curated case sets and publicly available industrial datasets, our study enables multi-dimensional evaluation of general-purpose and domain-specific models across diverse PHM tasks. PHM-Bench establishes a methodological foundation for large-scale assessment of LLMs in PHM and offers a critical benchmark to guide the transition from general-purpose to PHM-specialized models.
☆ AIAP: A No-Code Workflow Builder for Non-Experts with Natural Language and Multi-Agent Collaboration
While many tools are available for designing AI, non-experts still face challenges in clearly expressing their intent and managing system complexity. We introduce AIAP, a no-code platform that integrates natural language input with visual workflows. AIAP leverages a coordinated multi-agent system to decompose ambiguous user instructions into modular, actionable steps, hidden from users behind a unified interface. A user study involving 32 participants showed that AIAP's AI-generated suggestions, modular workflows, and automatic identification of data, actions, and context significantly improved participants' ability to develop services intuitively. These findings highlight that natural language-based visual programming significantly reduces barriers and enhances user experience in AI service design.
comment: 14 pages, 6 figures
☆ TreeRanker: Fast and Model-agnostic Ranking System for Code Suggestions in IDEs
Token-level code completion is one of the most critical features in modern Integrated Development Environments (IDEs). It assists developers by suggesting relevant identifiers and APIs during coding. While completions are typically derived from static analysis, their usefulness depends heavily on how they are ranked, as correct predictions buried deep in the list are rarely seen by users. Most current systems rely on hand-crafted heuristics or lightweight machine learning models trained on user logs, which can be further improved to capture context information and generalize across projects and coding styles. In this work, we propose a new scoring approach to ranking static completions using language models in a lightweight and model-agnostic way. Our method organizes all valid completions into a prefix tree and performs a single greedy decoding pass to collect token-level scores across the tree. This enables a precise token-aware ranking without needing beam search, prompt engineering, or model adaptations. The approach is fast, architecture-agnostic, and compatible with already deployed models for code completion. These findings highlight a practical and effective pathway for integrating language models into already existing tools within IDEs, and ultimately providing smarter and more responsive developer assistance.
☆ Dynamic Forgetting and Spatio-Temporal Periodic Interest Modeling for Local-Life Service Recommendation
In the context of the booming digital economy, recommendation systems, as a key link connecting users and numerous services, face challenges in modeling user behavior sequences on local-life service platforms, including the sparsity of long sequences and strong spatio-temporal dependence. Such challenges can be addressed by drawing an analogy to the forgetting process in human memory. This is because users' responses to recommended content follow the recency effect and the cyclicality of memory. By exploring this, this paper introduces the forgetting curve and proposes Spatio-Temporal periodic Interest Modeling (STIM) with long sequences for local-life service recommendation. STIM integrates three key components: a dynamic masking module based on the forgetting curve, which is used to extract both recent spatiotemporal features and periodic spatiotemporal features; a query-based mixture of experts (MoE) approach that can adaptively activate expert networks under different dynamic masks, enabling the collaborative modeling of time, location, and items; and a hierarchical multi-interest network unit, which captures multi-interest representations by modeling the hierarchical interactions between the shallow and deep semantics of users' recent behaviors. By introducing the STIM method, we conducted online A/B tests and achieved a 1.54\% improvement in gross transaction volume (GTV). In addition, extended offline experiments also showed improvements. STIM has been deployed in a large-scale local-life service recommendation system, serving hundreds of millions of daily active users in core application scenarios.
☆ Assessing the Reliability and Validity of Large Language Models for Automated Assessment of Student Essays in Higher Education
This study investigates the reliability and validity of five advanced Large Language Models (LLMs), Claude 3.5, DeepSeek v2, Gemini 2.5, GPT-4, and Mistral 24B, for automated essay scoring in a real world higher education context. A total of 67 Italian-language student essays, written as part of a university psychology course, were evaluated using a four-criterion rubric (Pertinence, Coherence, Originality, Feasibility). Each model scored all essays across three prompt replications to assess intra-model stability. Human-LLM agreement was consistently low and non-significant (Quadratic Weighted Kappa), and within-model reliability across replications was similarly weak (median Kendall's W < 0.30). Systematic scoring divergences emerged, including a tendency to inflate Coherence and inconsistent handling of context-dependent dimensions. Inter-model agreement analysis revealed moderate convergence for Coherence and Originality, but negligible concordance for Pertinence and Feasibility. Although limited in scope, these findings suggest that current LLMs may struggle to replicate human judgment in tasks requiring disciplinary insight and contextual sensitivity. Human oversight remains critical when evaluating open-ended academic work, particularly in interpretive domains.
comment: 24 pages (including appendix), 12 tables, 1 figure
Multimodal Large Language Models for End-to-End Affective Computing: Benchmarking and Boosting with Generative Knowledge Prompting
Multimodal Affective Computing (MAC) aims to recognize and interpret human emotions by integrating information from diverse modalities such as text, video, and audio. Recent advancements in Multimodal Large Language Models (MLLMs) have significantly reshaped the landscape of MAC by offering a unified framework for processing and aligning cross-modal information. However, practical challenges remain, including performance variability across complex MAC tasks and insufficient understanding of how architectural designs and data characteristics impact affective analysis. To address these gaps, we conduct a systematic benchmark evaluation of state-of-the-art open-source MLLMs capable of concurrently processing audio, visual, and textual modalities across multiple established MAC datasets. Our evaluation not only compares the performance of these MLLMs but also provides actionable insights into model optimization by analyzing the influence of model architectures and dataset properties. Furthermore, we propose a novel hybrid strategy that combines generative knowledge prompting with supervised fine-tuning to enhance MLLMs' affective computing capabilities. Experimental results demonstrate that this integrated approach significantly improves performance across various MAC tasks, offering a promising avenue for future research and development in this field. Our code is released on https://github.com/LuoMSen/MLLM-MAC.
☆ CABENCH: Benchmarking Composable AI for Solving Complex Tasks through Composing Ready-to-Use Models
Composable AI offers a scalable and effective paradigm for tackling complex AI tasks by decomposing them into sub-tasks and solving each sub-task using ready-to-use well-trained models. However, systematically evaluating methods under this setting remains largely unexplored. In this paper, we introduce CABENCH, the first public benchmark comprising 70 realistic composable AI tasks, along with a curated pool of 700 models across multiple modalities and domains. We also propose an evaluation framework to enable end-to-end assessment of composable AI solutions. To establish initial baselines, we provide human-designed reference solutions and compare their performance with two LLM-based approaches. Our results illustrate the promise of composable AI in addressing complex real-world problems while highlighting the need for methods that can fully unlock its potential by automatically generating effective execution pipelines.
☆ Multi-Class Human/Object Detection on Robot Manipulators using Proprioceptive Sensing
In physical human-robot collaboration (pHRC) settings, humans and robots collaborate directly in shared environments. Robots must analyze interactions with objects to ensure safety and facilitate meaningful workflows. One critical aspect is human/object detection, where the contacted object is identified. Past research introduced binary machine learning classifiers to distinguish between soft and hard objects. This study improves upon those results by evaluating three-class human/object detection models, offering more detailed contact analysis. A dataset was collected using the Franka Emika Panda robot manipulator, exploring preprocessing strategies for time-series analysis. Models including LSTM, GRU, and Transformers were trained on these datasets. The best-performing model achieved 91.11\% accuracy during real-time testing, demonstrating the feasibility of multi-class detection models. Additionally, a comparison of preprocessing strategies suggests a sliding window approach is optimal for this task.
☆ Emergence of Fair Leaders via Mediators in Multi-Agent Reinforcement Learning AI 2025
Stackelberg games and their resulting equilibria have received increasing attention in the multi-agent reinforcement learning literature. Each stage of a traditional Stackelberg game involves a leader(s) acting first, followed by the followers. In situations where the roles of leader(s) and followers can be interchanged, the designated role can have considerable advantages, for example, in first-mover advantage settings. Then the question arises: Who should be the leader and when? A bias in the leader selection process can lead to unfair outcomes. This problem is aggravated if the agents are self-interested and care only about their goals and rewards. We formally define this leader selection problem and show its relation to fairness in agents' returns. Furthermore, we propose a multi-agent reinforcement learning framework that maximizes fairness by integrating mediators. Mediators have previously been used in the simultaneous action setting with varying levels of control, such as directly performing agents' actions or just recommending them. Our framework integrates mediators in the Stackelberg setting with minimal control (leader selection). We show that the presence of mediators leads to self-interested agents taking fair actions, resulting in higher overall fairness in agents' returns.
comment: Accepted to ECAI 2025
☆ HGTS-Former: Hierarchical HyperGraph Transformer for Multivariate Time Series Analysis
Multivariate time series analysis has long been one of the key research topics in the field of artificial intelligence. However, analyzing complex time series data remains a challenging and unresolved problem due to its high dimensionality, dynamic nature, and complex interactions among variables. Inspired by the strong structural modeling capability of hypergraphs, this paper proposes a novel hypergraph-based time series transformer backbone network, termed HGTS-Former, to address the multivariate coupling in time series data. Specifically, given the multivariate time series signal, we first normalize and embed each patch into tokens. Then, we adopt the multi-head self-attention to enhance the temporal representation of each patch. The hierarchical hypergraphs are constructed to aggregate the temporal patterns within each channel and fine-grained relations between different variables. After that, we convert the hyperedge into node features through the EdgeToNode module and adopt the feed-forward network to further enhance the output features. Extensive experiments conducted on two multivariate time series tasks and eight datasets fully validated the effectiveness of our proposed HGTS-Former. The source code will be released on https://github.com/Event-AHU/Time_Series_Analysis.
☆ Hydra: Accurate Multi-Modal Leaf Wetness Sensing with mm-Wave and Camera Fusion
Leaf Wetness Duration (LWD), the time that water remains on leaf surfaces, is crucial in the development of plant diseases. Existing LWD detection lacks standardized measurement techniques, and variations across different plant characteristics limit its effectiveness. Prior research proposes diverse approaches, but they fail to measure real natural leaves directly and lack resilience in various environmental conditions. This reduces the precision and robustness, revealing a notable practical application and effectiveness gap in real-world agricultural settings. This paper presents Hydra, an innovative approach that integrates millimeter-wave (mm-Wave) radar with camera technology to detect leaf wetness by determining if there is water on the leaf. We can measure the time to determine the LWD based on this detection. Firstly, we design a Convolutional Neural Network (CNN) to selectively fuse multiple mm-Wave depth images with an RGB image to generate multiple feature images. Then, we develop a transformer-based encoder to capture the inherent connection among the multiple feature images to generate a feature map, which is further fed to a classifier for detection. Moreover, we augment the dataset during training to generalize our model. Implemented using a frequency-modulated continuous-wave (FMCW) radar within the 76 to 81 GHz band, Hydra's performance is meticulously evaluated on plants, demonstrating the potential to classify leaf wetness with up to 96% accuracy across varying scenarios. Deploying Hydra in the farm, including rainy, dawn, or poorly light nights, it still achieves an accuracy rate of around 90%.
comment: In Proceedings of ACM MobiCom (2024)
☆ CompressKV: Semantic Retrieval Heads Know What Tokens are Not Important Before Generation
Recent advances in large language models (LLMs) have significantly boosted long-context processing. However, the increasing key-value (KV) cache size poses critical challenges to memory and execution efficiency. Most KV cache compression methods rely on heuristic token eviction using all attention heads in Grouped Query Attention (GQA)-based LLMs. This method ignores the different functionalities of attention heads, leading to the eviction of critical tokens and thus degrades the performance of LLMs. To address the issue above, instead of using all the attention heads in GQA-based LLMs to determine important tokens as in the previous work, we first identify the attention heads in each layer that are not only capable of retrieving the initial and final tokens of a prompt, but also capable of retrieving important tokens within the text and attending to their surrounding semantic context. Afterwards, we exploit such heads to determine the important tokens and retain their corresponding KV cache pairs. Furthermore, we analyze the cache eviction error of each layer individually and introduce a layer-adaptive KV cache allocation strategy. Experimental results demonstrate the proposed CompressKV consistently outperforms state-of-the-art approaches under various memory budgets on LongBench and Needle-in-a-Haystack benchmarks. Our code is publicly available at: https://github.com/TUDa-HWAI/CompressKV.git.
☆ Inference-time Scaling for Diffusion-based Audio Super-resolution
Diffusion models have demonstrated remarkable success in generative tasks, including audio super-resolution (SR). In many applications like movie post-production and album mastering, substantial computational budgets are available for achieving superior audio quality. However, while existing diffusion approaches typically increase sampling steps to improve quality, the performance remains fundamentally limited by the stochastic nature of the sampling process, leading to high-variance and quality-limited outputs. Here, rather than simply increasing the number of sampling steps, we propose a different paradigm through inference-time scaling for SR, which explores multiple solution trajectories during the sampling process. Different task-specific verifiers are developed, and two search algorithms, including the random search and zero-order search for SR, are introduced. By actively guiding the exploration of the high-dimensional solution space through verifier-algorithm combinations, we enable more robust and higher-quality outputs. Through extensive validation across diverse audio domains (speech, music, sound effects) and frequency ranges, we demonstrate consistent performance gains, achieving improvements of up to 9.70% in aesthetics, 5.88% in speaker similarity, 15.20% in word error rate, and 46.98% in spectral distance for speech SR from 4kHz to 24kHz, showcasing the effectiveness of our approach. Audio samples are available at: https://racerk.github.io/tt-scale-audiosr/.
☆ Text2Lip: Progressive Lip-Synced Talking Face Generation from Text via Viseme-Guided Rendering
Generating semantically coherent and visually accurate talking faces requires bridging the gap between linguistic meaning and facial articulation. Although audio-driven methods remain prevalent, their reliance on high-quality paired audio visual data and the inherent ambiguity in mapping acoustics to lip motion pose significant challenges in terms of scalability and robustness. To address these issues, we propose Text2Lip, a viseme-centric framework that constructs an interpretable phonetic-visual bridge by embedding textual input into structured viseme sequences. These mid-level units serve as a linguistically grounded prior for lip motion prediction. Furthermore, we design a progressive viseme-audio replacement strategy based on curriculum learning, enabling the model to gradually transition from real audio to pseudo-audio reconstructed from enhanced viseme features via cross-modal attention. This allows for robust generation in both audio-present and audio-free scenarios. Finally, a landmark-guided renderer synthesizes photorealistic facial videos with accurate lip synchronization. Extensive evaluations show that Text2Lip outperforms existing approaches in semantic fidelity, visual realism, and modality robustness, establishing a new paradigm for controllable and flexible talking face generation. Our project homepage is https://plyon1.github.io/Text2Lip/.
☆ mmWave Radar-Based Non-Line-of-Sight Pedestrian Localization at T-Junctions Utilizing Road Layout Extraction via Camera
Pedestrians Localization in Non-Line-of-Sight (NLoS) regions within urban environments poses a significant challenge for autonomous driving systems. While mmWave radar has demonstrated potential for detecting objects in such scenarios, the 2D radar point cloud (PCD) data is susceptible to distortions caused by multipath reflections, making accurate spatial inference difficult. Additionally, although camera images provide high-resolution visual information, they lack depth perception and cannot directly observe objects in NLoS regions. In this paper, we propose a novel framework that interprets radar PCD through road layout inferred from camera for localization of NLoS pedestrians. The proposed method leverages visual information from the camera to interpret 2D radar PCD, enabling spatial scene reconstruction. The effectiveness of the proposed approach is validated through experiments conducted using a radar-camera system mounted on a real vehicle. The localization performance is evaluated using a dataset collected in outdoor NLoS driving environments, demonstrating the practical applicability of the method.
☆ Traffic-R1: Reinforced LLMs Bring Human-Like Reasoning to Traffic Signal Control Systems
Traffic signal control (TSC) is vital for mitigating congestion and sustaining urban mobility. In this paper, we introduce Traffic-R1, a foundation model with human-like reasoning for TSC systems. Our model is developed through self-exploration and iteration of reinforced large language models (LLMs) with expert guidance in a simulated traffic environment. Compared to traditional reinforcement learning (RL) and recent LLM-based methods, Traffic-R1 offers three significant advantages. First, Traffic-R1 delivers zero-shot generalisation, transferring unchanged to new road networks and out-of-distribution incidents by utilizing its internal traffic control policies and human-like reasoning. Second, its 3B-parameter architecture is lightweight enough for real-time inference on mobile-class chips, enabling large-scale edge deployment. Third, Traffic-R1 provides an explainable TSC process and facilitates multi-intersection communication through its self-iteration and a new synchronous communication network. Extensive benchmarks demonstrate that Traffic-R1 sets a new state of the art, outperforming strong baselines and training-intensive RL controllers. In practice, the model now manages signals for more than 55,000 drivers daily, shortening average queues by over 5% and halving operator workload. Our checkpoint is available at https://huggingface.co/Season998/Traffic-R1.
☆ MicroMix: Efficient Mixed-Precision Quantization with Microscaling Formats for Large Language Models
Quantization significantly accelerates inference in large language models (LLMs) by replacing original high-precision matrices with low-precision counterparts. Recent advances in weight-activation quantization have primarily focused on mapping both weights and activations to the INT4 format. Although the new FP4 Tensor Cores in NVIDIA's Blackwell architecture offer up to 4x speedup over FP16, existing INT4-based kernels fail to fully exploit this capability due to mismatched data formats. To bridge this gap, we propose MicroMix, a co-designed mixed-precision quantization algorithm and matrix multiplication kernel based on Microscaling (MX) data formats. Tailored for the Blackwell architecture, the MicroMix kernel supports arbitrary combinations of MXFP4, MXFP6, and MXFP8 channels, and produces BFloat16 outputs. To achieve a favorable trade-off between accuracy and efficiency for each linear layer, we introduce quantization thresholds that identify activation elements where lower-precision formats (MXFP4 or MXFP6) incur excessive quantization error. Our algorithm selectively allocates higher-precision channels to preserve accuracy while maintaining compute efficiency. MicroMix achieves competitive or superior performance across diverse downstream tasks, including zero-shot and few-shot learning, language modeling, code generation, and mathematical reasoning. On both consumer-grade (RTX 5070Ti laptop) and server-grade (RTX 5090) GPUs, our kernel delivers at least 20% faster execution than TensorRT-FP8. Furthermore, when applied to various Llama and Qwen models, MicroMix consistently improves prefill latency and memory efficiency across a range of batch sizes compared to TensorRT baselines. Our code is available at https://github.com/lwy2020/MicroMix.
comment: 12 pages
☆ VeOmni: Scaling Any Modality Model Training with Model-Centric Distributed Recipe Zoo
Recent advances in large language models (LLMs) have driven impressive progress in omni-modal understanding and generation. However, training omni-modal LLMs remains a significant challenge due to the heterogeneous model architectures required to process diverse modalities, necessitating sophisticated system design for efficient large-scale training. Existing frameworks typically entangle model definition with parallel logic, incurring limited scalability and substantial engineering overhead for end-to-end omni-modal training. % We present \veomni, a modular and efficient training framework to accelerate the development of omni-modal LLMs. \veomni introduces model-centric distributed recipes that decouples communication from computation, enabling efficient 3D parallelism on omni-modal LLMs. \veomni also features a flexible configuration interface supporting seamless integration of new modalities with minimal code change. % Using \veomni, a omni-modal mixture-of-experts (MoE) model with 30B parameters can be trained with over 2,800 tokens/sec/GPU throughput and scale to 160K context lengths via 3D parallelism on 128 GPUs, showcasing its superior efficiency and scalability for training large omni-modal LLMs.
☆ A Survey on Data Security in Large Language Models
Large Language Models (LLMs), now a foundation in advancing natural language processing, power applications such as text generation, machine translation, and conversational systems. Despite their transformative potential, these models inherently rely on massive amounts of training data, often collected from diverse and uncurated sources, which exposes them to serious data security risks. Harmful or malicious data can compromise model behavior, leading to issues such as toxic output, hallucinations, and vulnerabilities to threats such as prompt injection or data poisoning. As LLMs continue to be integrated into critical real-world systems, understanding and addressing these data-centric security risks is imperative to safeguard user trust and system reliability. This survey offers a comprehensive overview of the main data security risks facing LLMs and reviews current defense strategies, including adversarial training, RLHF, and data augmentation. Additionally, we categorize and analyze relevant datasets used for assessing robustness and security across different domains, providing guidance for future research. Finally, we highlight key research directions that focus on secure model updates, explainability-driven defenses, and effective governance frameworks, aiming to promote the safe and responsible development of LLM technology. This work aims to inform researchers, practitioners, and policymakers, driving progress toward data security in LLMs.
☆ CAPO: Towards Enhancing LLM Reasoning through Verifiable Generative Credit Assignment
Reinforcement Learning with Verifiable Rewards (RLVR) has improved the reasoning abilities of Large Language Models (LLMs) by using rule-based binary feedback, helping to mitigate reward hacking. However, current RLVR methods typically treat whole responses as single actions, assigning the same reward to every token. This coarse-grained feedback hampers precise credit assignment, making it hard for models to identify which reasoning steps lead to success or failure, and often results in suboptimal policies and inefficient learning. Methods like PPO provide credit assignment through value estimation, but often yield inaccurate and unverifiable signals due to limited sampling. On the other hand, methods using Process Reward Models can provide step-by-step judgments for each reasoning step, but they require high-quality process supervision labels and are time-consuming when applied in online reinforcement learning (RL). To overcome these limitations, we introduce a simple but efficient method Credit Assignment Policy Optimization (CAPO). Given a reasoning response rollout from the policy model, CAPO directly leverages an off-the-shelf, general-purpose LLM as a Generative Process Reward Model (LLM-as-GenPRM) to generate all step-wise critique by one pass, thereby providing verifiable token-level rewards to refine the tokens that were originally assigned identical rule-based rewards. This enables more fine-grained credit assignment in an effective way. Furthermore, to enhance the accuracy and robustness of CAPO, we employ voting mechanisms that scale with the number of generated critiques. Extensive experiments using different backbones like Llama and Qwen models and in different sizes show that CAPO consistently outperforms supervised learning-based and RL-based fine-tuning methods across six challenging mathematical benchmarks and three out-of-domain benchmarks.
comment: Work in progress
☆ FinWorld: An All-in-One Open-Source Platform for End-to-End Financial AI Research and Deployment
Financial AI holds great promise for transforming modern finance, with the potential to support a wide range of tasks such as market forecasting, portfolio management, quantitative trading, and automated analysis. However, existing platforms remain limited in task coverage, lack robust multimodal data integration, and offer insufficient support for the training and deployment of large language models (LLMs). In response to these limitations, we present FinWorld, an all-in-one open-source platform that provides end-to-end support for the entire financial AI workflow, from data acquisition to experimentation and deployment. FinWorld distinguishes itself through native integration of heterogeneous financial data, unified support for diverse AI paradigms, and advanced agent automation, enabling seamless development and deployment. Leveraging data from 2 representative markets, 4 stock pools, and over 800 million financial data points, we conduct comprehensive experiments on 4 key financial AI tasks. These experiments systematically evaluate deep learning and reinforcement learning algorithms, with particular emphasis on RL-based finetuning for LLMs and LLM Agents. The empirical results demonstrate that FinWorld significantly enhances reproducibility, supports transparent benchmarking, and streamlines deployment, thereby providing a strong foundation for future research and real-world applications. Code is available at Github~\footnote{https://github.com/DVampire/FinWorld}.
☆ Flexible Automatic Identification and Removal (FAIR)-Pruner: An Efficient Neural Network Pruning Method AAAI 2026
Neural network pruning is a critical compression technique that facilitates the deployment of large-scale neural networks on resource-constrained edge devices, typically by identifying and eliminating redundant or insignificant parameters to reduce computational and memory overhead. This paper proposes the Flexible Automatic Identification and Removal (FAIR)-Pruner, a novel method for neural network structured pruning. Specifically, FAIR-Pruner first evaluates the importance of each unit (e.g., neuron or channel) through the Utilization Score quantified by the Wasserstein distance. To reflect the performance degradation after unit removal, it then introduces the Reconstruction Error, which is computed via the Taylor expansion of the loss function. Finally, FAIR-Pruner identifies superfluous units with negligible impact on model performance by controlling the proposed Tolerance of Difference, which measures differences between unimportant units and those that cause performance degradation. A major advantage of FAIR-Pruner lies in its capacity to automatically determine the layer-wise pruning rates, which yields a more efficient subnetwork structure compared to applying a uniform pruning rate. Another advantage of the FAIR-Pruner is its great one-shot performance without post-pruning fine-tuning. Furthermore, with utilization scores and reconstruction errors, users can flexibly obtain pruned models under different pruning ratios. Comprehensive experimental validation on diverse benchmark datasets (e.g., ImageNet) and various neural network architectures (e.g., VGG) demonstrates that FAIR-Pruner achieves significant model compression while maintaining high accuracy.
comment: Submitted to AAAI 2026
☆ Dialogue Systems Engineering: A Survey and Future Directions
This paper proposes to refer to the field of software engineering related to the life cycle of dialogue systems as Dialogue Systems Engineering, and surveys this field while also discussing its future directions. With the advancement of large language models, the core technologies underlying dialogue systems have significantly progressed. As a result, dialogue system technology is now expected to be applied to solving various societal issues and in business contexts. To achieve this, it is important to build, operate, and continuously improve dialogue systems correctly and efficiently. Accordingly, in addition to applying existing software engineering knowledge, it is becoming increasingly important to evolve software engineering tailored specifically to dialogue systems. In this paper, we enumerate the knowledge areas of dialogue systems engineering based on those of software engineering, as defined in the Software Engineering Body of Knowledge (SWEBOK) Version 4.0, and survey each area. Based on this survey, we identify unexplored topics in each area and discuss the future direction of dialogue systems engineering.
comment: 18 pages, 2 figures
☆ CellForge: Agentic Design of Virtual Cell Models
Virtual cell modeling represents an emerging frontier at the intersection of artificial intelligence and biology, aiming to predict quantities such as responses to diverse perturbations quantitatively. However, autonomously building computational models for virtual cells is challenging due to the complexity of biological systems, the heterogeneity of data modalities, and the need for domain-specific expertise across multiple disciplines. Here, we introduce CellForge, an agentic system that leverages a multi-agent framework that transforms presented biological datasets and research objectives directly into optimized computational models for virtual cells. More specifically, given only raw single-cell multi-omics data and task descriptions as input, CellForge outputs both an optimized model architecture and executable code for training virtual cell models and inference. The framework integrates three core modules: Task Analysis for presented dataset characterization and relevant literature retrieval, Method Design, where specialized agents collaboratively develop optimized modeling strategies, and Experiment Execution for automated generation of code. The agents in the Design module are separated into experts with differing perspectives and a central moderator, and have to collaboratively exchange solutions until they achieve a reasonable consensus. We demonstrate CellForge's capabilities in single-cell perturbation prediction, using six diverse datasets that encompass gene knockouts, drug treatments, and cytokine stimulations across multiple modalities. CellForge consistently outperforms task-specific state-of-the-art methods. Overall, CellForge demonstrates how iterative interaction between LLM agents with differing perspectives provides better solutions than directly addressing a modeling challenge. Our code is publicly available at https://github.com/gersteinlab/CellForge.
☆ Dynaword: From One-shot to Continuously Developed Datasets
Large-scale datasets are foundational for research and development in natural language processing. However, current approaches face three key challenges: (1) reliance on ambiguously licensed sources restricting use, sharing, and derivative works; (2) static dataset releases that prevent community contributions and diminish longevity; and (3) quality assurance processes restricted to publishing teams rather than leveraging community expertise. To address these limitations, we introduce two contributions: the Dynaword approach and Danish Dynaword. The Dynaword approach is a framework for creating large-scale, open datasets that can be continuously updated through community collaboration. Danish Dynaword is a concrete implementation that validates this approach and demonstrates its potential. Danish Dynaword contains over four times as many tokens as comparable releases, is exclusively openly licensed, and has received multiple contributions across industry and research. The repository includes light-weight tests to ensure data formatting, quality, and documentation, establishing a sustainable framework for ongoing community contributions and dataset evolution.
☆ AirTrafficGen: Configurable Air Traffic Scenario Generation with Large Language Models
The manual design of scenarios for Air Traffic Control (ATC) training is a demanding and time-consuming bottleneck that limits the diversity of simulations available to controllers. To address this, we introduce a novel, end-to-end approach, AirTrafficGen, that leverages large language models (LLMs) to automate and control the generation of complex ATC scenarios. Our method uses a purpose-built, graph-based representation to encode sector topology (including airspace geometry, routes, and fixes) into a format LLMs can process. Through rigorous benchmarking, we show that state-of-the-art models like Gemini 2.5 Pro and OpenAI o3 can generate high-traffic scenarios whilst maintaining operational realism. Our engineered prompting enables fine-grained control over interaction presence, type, and location. Initial findings suggest these models are also capable of iterative refinement, correcting flawed scenarios based on simple textual feedback. This approach provides a scalable alternative to manual scenario design, addressing the need for a greater volume and variety of ATC training and validation simulations. More broadly, this work showcases the potential of LLMs for complex planning in safety-critical domains.
comment: 7 pages and appendices
☆ Decomposing the Entropy-Performance Exchange: The Missing Keys to Unlocking Effective Reinforcement Learning
Recently, reinforcement learning with verifiable rewards (RLVR) has been widely used for enhancing the reasoning abilities of large language models (LLMs). A core challenge in RLVR involves managing the exchange between entropy and performance of policies. Despite the importance of this exchange, a fine-grained understanding of when and how this exchange operates most effectively remains limited. To bridge this gap, we conduct a systematic empirical analysis of the entropy-performance exchange mechanism of RLVR across different levels of granularity. Specifically, we first divide the training process into two distinct stages based on entropy dynamics, i.e., rising stage and plateau stage, and then systematically investigate how this mechanism varies across stage-level, instance-level, and token-level granularitiess. Our analysis reveals that, in the rising stage, entropy reduction in negative samples facilitates the learning of effective reasoning patterns, which in turn drives rapid performance gains. Moreover, in the plateau stage, learning efficiency strongly correlates with high-entropy tokens present in low-perplexity samples and those located at the end of sequences. Motivated by these findings, we propose two methods that dynamically adjust the reward signal using perplexity and positional information to focus RL updates on tokens that exhibit high learning potential, achieving improvements compared to the baseline methods on various LLMs.
comment: 7 pages, 20 figures
☆ StutterCut: Uncertainty-Guided Normalised Cut for Dysfluency Segmentation
Detecting and segmenting dysfluencies is crucial for effective speech therapy and real-time feedback. However, most methods only classify dysfluencies at the utterance level. We introduce StutterCut, a semi-supervised framework that formulates dysfluency segmentation as a graph partitioning problem, where speech embeddings from overlapping windows are represented as graph nodes. We refine the connections between nodes using a pseudo-oracle classifier trained on weak (utterance-level) labels, with its influence controlled by an uncertainty measure from Monte Carlo dropout. Additionally, we extend the weakly labelled FluencyBank dataset by incorporating frame-level dysfluency boundaries for four dysfluency types. This provides a more realistic benchmark compared to synthetic datasets. Experiments on real and synthetic datasets show that StutterCut outperforms existing methods, achieving higher F1 scores and more precise stuttering onset detection.
comment: Accepted in Interspeech 2025
☆ ByteGen: A Tokenizer-Free Generative Model for Orderbook Events in Byte Space
Generative modeling of high-frequency limit order book (LOB) dynamics is a critical yet unsolved challenge in quantitative finance, essential for robust market simulation and strategy backtesting. Existing approaches are often constrained by simplifying stochastic assumptions or, in the case of modern deep learning models like Transformers, rely on tokenization schemes that affect the high-precision, numerical nature of financial data through discretization and binning. To address these limitations, we introduce ByteGen, a novel generative model that operates directly on the raw byte streams of LOB events. Our approach treats the problem as an autoregressive next-byte prediction task, for which we design a compact and efficient 32-byte packed binary format to represent market messages without information loss. The core novelty of our work is the complete elimination of feature engineering and tokenization, enabling the model to learn market dynamics from its most fundamental representation. We achieve this by adapting the H-Net architecture, a hybrid Mamba-Transformer model that uses a dynamic chunking mechanism to discover the inherent structure of market messages without predefined rules. Our primary contributions are: 1) the first end-to-end, byte-level framework for LOB modeling; 2) an efficient packed data representation; and 3) a comprehensive evaluation on high-frequency data. Trained on over 34 million events from CME Bitcoin futures, ByteGen successfully reproduces key stylized facts of financial markets, generating realistic price distributions, heavy-tailed returns, and bursty event timing. Our findings demonstrate that learning directly from byte space is a promising and highly flexible paradigm for modeling complex financial systems, achieving competitive performance on standard market quality metrics without the biases of tokenization.
comment: 21 pages, 3 tables, 5 figures
☆ Forecasting When to Forecast: Accelerating Diffusion Models with Confidence-Gated Taylor
Diffusion Transformers (DiTs) have demonstrated remarkable performance in visual generation tasks. However, their low inference speed limits their deployment in low-resource applications. Recent training-free approaches exploit the redundancy of features across timesteps by caching and reusing past representations to accelerate inference. Building on this idea, TaylorSeer instead uses cached features to predict future ones via Taylor expansion. However, its module-level prediction across all transformer blocks (e.g., attention or feedforward modules) requires storing fine-grained intermediate features, leading to notable memory and computation overhead. Moreover, it adopts a fixed caching schedule without considering the varying accuracy of predictions across timesteps, which can lead to degraded outputs when prediction fails. To address these limitations, we propose a novel approach to better leverage Taylor-based acceleration. First, we shift the Taylor prediction target from the module level to the last block level, significantly reducing the number of cached features. Furthermore, observing strong sequential dependencies among Transformer blocks, we propose to use the error between the Taylor-estimated and actual outputs of the first block as an indicator of prediction reliability. If the error is small, we trust the Taylor prediction for the last block; otherwise, we fall back to full computation, thereby enabling a dynamic caching mechanism. Empirical results show that our method achieves a better balance between speed and quality, achieving a 3.17x acceleration on FLUX, 2.36x on DiT, and 4.14x on Wan Video with negligible quality drop. The Project Page is \href{https://cg-taylor-acce.github.io/CG-Taylor/}{here.}
comment: 15 pages, 4 figures
☆ FinCPRG: A Bidirectional Generation Pipeline for Hierarchical Queries and Rich Relevance in Financial Chinese Passage Retrieval
In recent years, large language models (LLMs) have demonstrated significant potential in constructing passage retrieval datasets. However, existing methods still face limitations in expressing cross-doc query needs and controlling annotation quality. To address these issues, this paper proposes a bidirectional generation pipeline, which aims to generate 3-level hierarchical queries for both intra-doc and cross-doc scenarios and mine additional relevance labels on top of direct mapping annotation. The pipeline introduces two query generation methods: bottom-up from single-doc text and top-down from multi-doc titles. The bottom-up method uses LLMs to disassemble and generate structured queries at both sentence-level and passage-level simultaneously from intra-doc passages. The top-down approach incorporates three key financial elements--industry, topic, and time--to divide report titles into clusters and prompts LLMs to generate topic-level queries from each cluster. For relevance annotation, our pipeline not only relies on direct mapping annotation from the generation relationship but also implements an indirect positives mining method to enrich the relevant query-passage pairs. Using this pipeline, we constructed a Financial Passage Retrieval Generated dataset (FinCPRG) from almost 1.3k Chinese financial research reports, which includes hierarchical queries and rich relevance labels. Through evaluations of mined relevance labels, benchmarking and training experiments, we assessed the quality of FinCPRG and validated its effectiveness as a passage retrieval dataset for both training and benchmarking.
☆ LeanK: Learnable K Cache Channel Pruning for Efficient Decoding
Large language models (LLMs) enable long-context tasks but face efficiency challenges due to the growing key-value (KV) cache. We propose LeanK, a learning-based method that prunes unimportant key (K) cache channels by leveraging static channel sparsity. With a novel two-stage training process, LeanK learns channel-wise static mask that could satisfy specific sparsity ratio and hardware alignment requirement. LeanK reduces GPU memory and accelerates decoding without sacrificing accuracy. Experiments demonstrate up to 70% K cache and 16%-18% V cache memory reduction. Custom decoding kernel enables 1.3x speedup for attention computation. We also provide insights into model channels and attention heads during long-context inference by analyzing the learned importance distribution. Our code is available at https://aka.ms/LeanK.
☆ Balancing Information Accuracy and Response Timeliness in Networked LLMs
Recent advancements in Large Language Models (LLMs) have transformed many fields including scientific discovery, content generation, biomedical text mining, and educational technology. However, the substantial requirements for training data, computational resources, and energy consumption pose significant challenges for their practical deployment. A promising alternative is to leverage smaller, specialized language models and aggregate their outputs to improve overall response quality. In this work, we investigate a networked LLM system composed of multiple users, a central task processor, and clusters of topic-specialized LLMs. Each user submits categorical binary (true/false) queries, which are routed by the task processor to a selected cluster of $m$ LLMs. After gathering individual responses, the processor returns a final aggregated answer to the user. We characterize both the information accuracy and response timeliness in this setting, and formulate a joint optimization problem to balance these two competing objectives. Our extensive simulations demonstrate that the aggregated responses consistently achieve higher accuracy than those of individual LLMs. Notably, this improvement is more significant when the participating LLMs exhibit similar standalone performance.
☆ Proof2Hybrid: Automatic Mathematical Benchmark Synthesis for Proof-Centric Problems
Evaluating the mathematical capability of Large Language Models (LLMs) is a critical yet challenging frontier. Existing benchmarks fall short, particularly for proof-centric problems, as manual creation is unscalable and costly, leaving the true mathematical abilities of LLMs largely unassessed. To overcome these barriers, we propose Proof2Hybrid, the first fully automated framework that synthesizes high-quality, proof-centric benchmarks from natural language mathematical corpora. The key novelty of our solution is Proof2X, a roadmap of converting mathematical proofs into various kinds of questions that are easy to verify. Instructed by this roadmap, we propose a new type of hybrid-formatted questions, named ``$m$-out-of-$n$ multiple judge questions'', specifically designed to enable robust, automatic evaluation while being resilient to guessing and superficial pattern matching inherent in traditional formats. As a demonstration of our framework, we introduce AlgGeoTest, a benchmark for algebraic geometry--a frontier domain of modern mathematics--comprising 456 challenging items. Our extensive evaluations on state-of-the-art LLMs using AlgGeoTest reveal profound deficits in their comprehension of algebraic geometry, providing a more precise measure of their true mathematical capabilities. Our framework and benchmark pave the way for a new wave of in-depth research into the mathematical intelligence of AI systems.
comment: 14 pages, 5 figures
☆ A Message Passing Realization of Expected Free Energy Minimization
We present a message passing approach to Expected Free Energy (EFE) minimization on factor graphs, based on the theory introduced in arXiv:2504.14898. By reformulating EFE minimization as Variational Free Energy minimization with epistemic priors, we transform a combinatorial search problem into a tractable inference problem solvable through standard variational techniques. Applying our message passing method to factorized state-space models enables efficient policy inference. We evaluate our method on environments with epistemic uncertainty: a stochastic gridworld and a partially observable Minigrid task. Agents using our approach consistently outperform conventional KL-control agents on these tasks, showing more robust planning and efficient exploration under uncertainty. In the stochastic gridworld environment, EFE-minimizing agents avoid risky paths, while in the partially observable minigrid setting, they conduct more systematic information-seeking. This approach bridges active inference theory with practical implementations, providing empirical evidence for the efficiency of epistemic priors in artificial agents.
☆ Neuromorphic Computing with Multi-Frequency Oscillations: A Bio-Inspired Approach to Artificial Intelligence
Despite remarkable capabilities, artificial neural networks exhibit limited flexible, generalizable intelligence. This limitation stems from their fundamental divergence from biological cognition that overlooks both neural regions' functional specialization and the temporal dynamics critical for coordinating these specialized systems. We propose a tripartite brain-inspired architecture comprising functionally specialized perceptual, auxiliary, and executive systems. Moreover, the integration of temporal dynamics through the simulation of multi-frequency neural oscillation and synaptic dynamic adaptation mechanisms enhances the architecture, thereby enabling more flexible and efficient artificial cognition. Initial evaluations demonstrate superior performance compared to state-of-the-art temporal processing approaches, with 2.18\% accuracy improvements while reducing required computation iterations by 48.44\%, and achieving higher correlation with human confidence patterns. Though currently demonstrated on visual processing tasks, this architecture establishes a theoretical foundation for brain-like intelligence across cognitive domains, potentially bridging the gap between artificial and biological intelligence.
☆ FedVLA: Federated Vision-Language-Action Learning with Dual Gating Mixture-of-Experts for Robotic Manipulation ICCV 2025
Vision-language-action (VLA) models have significantly advanced robotic manipulation by enabling robots to interpret language instructions for task execution. However, training these models often relies on large-scale user-specific data, raising concerns about privacy and security, which in turn limits their broader adoption. To address this, we propose FedVLA, the first federated VLA learning framework, enabling distributed model training that preserves data privacy without compromising performance. Our framework integrates task-aware representation learning, adaptive expert selection, and expert-driven federated aggregation, enabling efficient and privacy-preserving training of VLA models. Specifically, we introduce an Instruction Oriented Scene-Parsing mechanism, which decomposes and enhances object-level features based on task instructions, improving contextual understanding. To effectively learn diverse task patterns, we design a Dual Gating Mixture-of-Experts (DGMoE) mechanism, where not only input tokens but also self-aware experts adaptively decide their activation. Finally, we propose an Expert-Driven Aggregation strategy at the federated server, where model aggregation is guided by activated experts, ensuring effective cross-client knowledge transfer.Extensive simulations and real-world robotic experiments demonstrate the effectiveness of our proposals. Notably, DGMoE significantly improves computational efficiency compared to its vanilla counterpart, while FedVLA achieves task success rates comparable to centralized training, effectively preserving data privacy.
comment: Accepted by ICCV 2025
☆ Learning Dynamics of Meta-Learning in Small Model Pretraining
Large language models are powerful but costly. We ask whether meta-learning can make the pretraining of small language models not only better but also more interpretable. We integrate first-order MAML with subset-masked LM pretraining, producing four LLama-style decoder-only models (11M-570M params), and evaluate it on a fundamental NLP task with many settings and real-world applications. Compared with vanilla training, our model (i) reaches the same loss up to 1.6x sooner, (ii) improves F1 on multilingual Universal NER under equal compute, and (iii) makes the training dynamics easy to read: first the network's representations fan out ("diversify") and later they collapse into a smaller, shared subspace ("compress"). This two-stage shift shows up as a rise-and-fall in both effective-rank curves and attention-head entropy. The same curves pinpoint which layers specialise earliest and which later reconverge, giving a compact, interpretable signature of meta-adaptation. Code, checkpoints and WandB logs are released.
☆ Reconsidering Overthinking: Penalizing Internal and External Redundancy in CoT Reasoning
Large Reasoning Models (LRMs) often produce excessively verbose reasoning traces, a phenomenon known as overthinking, which hampers both efficiency and interpretability. Prior works primarily address this issue by reducing response length, without fully examining the underlying semantic structure of the reasoning process. In this paper, we revisit overthinking by decomposing it into two distinct forms: internal redundancy, which consists of low-contribution reasoning steps within the first correct solution (FCS), and external redundancy, which refers to unnecessary continuation after the FCS. To mitigate both forms, we propose a dual-penalty reinforcement learning framework. For internal redundancy, we adopt a sliding-window semantic analysis to penalize low-gain reasoning steps that contribute little toward reaching the correct answer. For external redundancy, we penalize its proportion beyond the FCS to encourage earlier termination. Our method significantly compresses reasoning traces with minimal accuracy loss, and generalizes effectively to out-of-domain tasks such as question answering and code generation. Crucially, we find that external redundancy can be safely removed without degrading performance, whereas internal redundancy must be reduced more cautiously to avoid impairing correctness. These findings suggest that our method not only improves reasoning efficiency but also enables implicit, semantic-aware control over Chain-of-Thought length, paving the way for more concise and interpretable LRMs.
☆ GaussianCross: Cross-modal Self-supervised 3D Representation Learning via Gaussian Splatting
The significance of informative and robust point representations has been widely acknowledged for 3D scene understanding. Despite existing self-supervised pre-training counterparts demonstrating promising performance, the model collapse and structural information deficiency remain prevalent due to insufficient point discrimination difficulty, yielding unreliable expressions and suboptimal performance. In this paper, we present GaussianCross, a novel cross-modal self-supervised 3D representation learning architecture integrating feed-forward 3D Gaussian Splatting (3DGS) techniques to address current challenges. GaussianCross seamlessly converts scale-inconsistent 3D point clouds into a unified cuboid-normalized Gaussian representation without missing details, enabling stable and generalizable pre-training. Subsequently, a tri-attribute adaptive distillation splatting module is incorporated to construct a 3D feature field, facilitating synergetic feature capturing of appearance, geometry, and semantic cues to maintain cross-modal consistency. To validate GaussianCross, we perform extensive evaluations on various benchmarks, including ScanNet, ScanNet200, and S3DIS. In particular, GaussianCross shows a prominent parameter and data efficiency, achieving superior performance through linear probing (<0.1% parameters) and limited data training (1% of scenes) compared to state-of-the-art methods. Furthermore, GaussianCross demonstrates strong generalization capabilities, improving the full fine-tuning accuracy by 9.3% mIoU and 6.1% AP$_{50}$ on ScanNet200 semantic and instance segmentation tasks, respectively, supporting the effectiveness of our approach. The code, weights, and visualizations are publicly available at \href{https://rayyoh.github.io/GaussianCross/}{https://rayyoh.github.io/GaussianCross/}.
comment: 14 pages, 8 figures, accepted by MM'25
☆ DreamPainter: Image Background Inpainting for E-commerce Scenarios
Although diffusion-based image genenation has been widely explored and applied, background generation tasks in e-commerce scenarios still face significant challenges. The first challenge is to ensure that the generated products are consistent with the given product inputs while maintaining a reasonable spatial arrangement, harmonious shadows, and reflections between foreground products and backgrounds. Existing inpainting methods fail to address this due to the lack of domain-specific data. The second challenge involves the limitation of relying solely on text prompts for image control, as effective integrating visual information to achieve precise control in inpainting tasks remains underexplored. To address these challenges, we introduce DreamEcom-400K, a high-quality e-commerce dataset containing accurate product instance masks, background reference images, text prompts, and aesthetically pleasing product images. Based on this dataset, we propose DreamPainter, a novel framework that not only utilizes text prompts for control but also flexibly incorporates reference image information as an additional control signal. Extensive experiments demonstrate that our approach significantly outperforms state-of-the-art methods, maintaining high product consistency while effectively integrating both text prompt and reference image information.
☆ Beyond the Trade-off: Self-Supervised Reinforcement Learning for Reasoning Models' Instruction Following
Reasoning models excel in complex problem solving but exhibit a concerning trade off between reasoning capabilities and instruction following abilities. Existing approaches for improving instruction following rely on stronger external models, creating methodological bottlenecks and practical limitations including increased costs and accessibility constraints. We propose a self-supervised RL framework that leverages reasoning models' own internal signals to improve instruction following capabilities without external supervision. Extensive experiments demonstrate that our framework significantly improves instruction following capabilities while maintaining reasoning performance, offering a scalable and cost-effective approach to enhance instruction following in reasoning models. The data and code are publicly available at https://github.com/Rainier-rq/verl-if.
☆ Large-Scale Model Enabled Semantic Communication Based on Robust Knowledge Distillation
Large-scale models (LSMs) can be an effective framework for semantic representation and understanding, thereby providing a suitable tool for designing semantic communication (SC) systems. However, their direct deployment is often hindered by high computational complexity and resource requirements. In this paper, a novel robust knowledge distillation based semantic communication (RKD-SC) framework is proposed to enable efficient and \textcolor{black}{channel-noise-robust} LSM-powered SC. The framework addresses two key challenges: determining optimal compact model architectures and effectively transferring knowledge while maintaining robustness against channel noise. First, a knowledge distillation-based lightweight differentiable architecture search (KDL-DARTS) algorithm is proposed. This algorithm integrates knowledge distillation loss and a complexity penalty into the neural architecture search process to identify high-performance, lightweight semantic encoder architectures. Second, a novel two-stage robust knowledge distillation (RKD) algorithm is developed to transfer semantic capabilities from an LSM (teacher) to a compact encoder (student) and subsequently enhance system robustness. To further improve resilience to channel impairments, a channel-aware transformer (CAT) block is introduced as the channel codec, trained under diverse channel conditions with variable-length outputs. Extensive simulations on image classification tasks demonstrate that the RKD-SC framework significantly reduces model parameters while preserving a high degree of the teacher model's performance and exhibiting superior robustness compared to existing methods.
comment: 13 pages, 8 figures, 3 tables
☆ Fitness aligned structural modeling enables scalable virtual screening with AuroBind
Most human proteins remain undrugged, over 96% of human proteins remain unexploited by approved therapeutics. While structure-based virtual screening promises to expand the druggable proteome, existing methods lack atomic-level precision and fail to predict binding fitness, limiting translational impact. We present AuroBind, a scalable virtual screening framework that fine-tunes a custom atomic-level structural model on million-scale chemogenomic data. AuroBind integrates direct preference optimization, self-distillation from high-confidence complexes, and a teacher-student acceleration strategy to jointly predict ligand-bound structures and binding fitness. The proposed models outperform state-of-the-art models on structural and functional benchmarks while enabling 100,000-fold faster screening across ultra-large compound libraries. In a prospective screen across ten disease-relevant targets, AuroBind achieved experimental hit rates of 7-69%, with top compounds reaching sub-nanomolar to picomolar potency. For the orphan GPCRs GPR151 and GPR160, AuroBind identified both agonists and antagonists with success rates of 16-30%, and functional assays confirmed GPR160 modulation in liver and prostate cancer models. AuroBind offers a generalizable framework for structure-function learning and high-throughput molecular screening, bridging the gap between structure prediction and therapeutic discovery.
comment: 54 pages, 13 figures, code available at https://github.com/GENTEL-lab/AuroBind
☆ All Stories Are One Story: Emotional Arc Guided Procedural Game Level Generation
The emotional arc is a universal narrative structure underlying stories across cultures and media -- an idea central to structuralist narratology, often encapsulated in the phrase "all stories are one story." We present a framework for procedural game narrative generation that incorporates emotional arcs as a structural backbone for both story progression and gameplay dynamics. Leveraging established narratological theories and large-scale empirical analyses, we focus on two core emotional patterns -- Rise and Fall -- to guide the generation of branching story graphs. Each story node is automatically populated with characters, items, and gameplay-relevant attributes (e.g., health, attack), with difficulty adjusted according to the emotional trajectory. Implemented in a prototype action role-playing game (ARPG), our system demonstrates how emotional arcs can be operationalized using large language models (LLMs) and adaptive entity generation. Evaluation through player ratings, interviews, and sentiment analysis shows that emotional arc integration significantly enhances engagement, narrative coherence, and emotional impact. These results highlight the potential of emotionally structured procedural generation for advancing interactive storytelling for games.
☆ The Complexity of Extreme Climate Events on the New Zealand's Kiwifruit Industry
Climate change has intensified the frequency and severity of extreme weather events, presenting unprecedented challenges to the agricultural industry worldwide. In this investigation, we focus on kiwifruit farming in New Zealand. We propose to examine the impacts of climate-induced extreme events, specifically frost, drought, extreme rainfall, and heatwave, on kiwifruit harvest yields. These four events were selected due to their significant impacts on crop productivity and their prevalence as recorded by climate monitoring institutions in the country. We employed Isolation Forest, an unsupervised anomaly detection method, to analyse climate history and recorded extreme events, alongside with kiwifruit yields. Our analysis reveals considerable variability in how different types of extreme event affect kiwifruit yields underscoring notable discrepancies between climatic extremes and individual farm's yield outcomes. Additionally, our study highlights critical limitations of current anomaly detection approaches, particularly in accurately identifying events such as frost. These findings emphasise the need for integrating supplementary features like farm management strategies with climate adaptation practices. Our further investigation will employ ensemble methods that consolidate nearby farms' yield data and regional climate station features to reduce variance, thereby enhancing the accuracy and reliability of extreme event detection and the formulation of response strategies.
comment: Pre-print v0.8 2025-08-04
☆ Amber Pruner: Leveraging N:M Activation Sparsity for Efficient Prefill in Large Language Models
In the era of large language models (LLMs), N:M sparsity has emerged as a structured compression technique critical for accelerating inference. While prior work has primarily focused on weight sparsity, it often suffers from significant accuracy degradation. Activation sparsity, though promising, is typically training-dependent and faces challenges in generalization. To address these limitations, we introduce Amber Pruner, a training-free N:M activation sparsity method designed specifically for the prefill stage, targeting the acceleration of linear projection layers in LLMs. Extensive experiments across multiple models and sparsity ratios (2:4, 4:8, and 8:16) demonstrate that Amber Pruner can effectively sparsify and accelerate more than 55% of linear computations without requiring model retraining. To further enhance generality and efficiency, we propose Outstanding-sparse, a unified framework that integrates Amber Pruner with post-training W8A8 quantization. Our approach preserves strong performance across a range of downstream tasks, with notable advantages in generative tasks. This work pioneers a new frontier in activation sparsity, providing foundational insights that are poised to guide the co-evolution of algorithms and architectures in the design of next-generation AI systems.
☆ Trainable Dynamic Mask Sparse Attention
In large language models, the demand for modeling long contexts is constantly increasing, but the quadratic complexity of the standard self-attention mechanism often becomes a bottleneck. Although existing sparse attention mechanisms have improved efficiency, they may still encounter issues such as static patterns or information loss. We introduce a trainable dynamic mask sparse attention mechanism, Dynamic Mask Attention, which effectively utilizes content-aware and position-aware sparsity. DMA achieves this through two key innovations: First, it dynamically generates content-aware sparse masks from value representations, enabling the model to identify and focus on critical information adaptively. Second, it implements position-aware sparse attention computation that effectively skips unnecessary calculation regions. This dual-sparsity design allows the model to significantly reduce the computational complexity of important information while retaining complete information, achieving an excellent balance between information fidelity and computational efficiency. We have verified the performance of DMA through comprehensive experiments. Comparative studies show that DMA outperforms multi-head attention, sliding window attention, multi-head latent attention, and native sparse attention in terms of perplexity under Chinchilla Scaling Law settings. Moreover, in challenging multi-query associative recall tasks, DMA also demonstrates superior performance and efficiency compared to these methods. Crucially, in the evaluation of a 1.7B parameter model, DMA significantly outperforms multi-head attention in both standard benchmark performance and the challenging needle-in-a-haystack task. These experimental results highlight its capability to balance model efficiency and long-context modeling ability effectively.
comment: 8 figures, 4 tables
☆ A Survey on AgentOps: Categorization, Challenges, and Future Directions
As the reasoning capabilities of Large Language Models (LLMs) continue to advance, LLM-based agent systems offer advantages in flexibility and interpretability over traditional systems, garnering increasing attention. However, despite the widespread research interest and industrial application of agent systems, these systems, like their traditional counterparts, frequently encounter anomalies. These anomalies lead to instability and insecurity, hindering their further development. Therefore, a comprehensive and systematic approach to the operation and maintenance of agent systems is urgently needed. Unfortunately, current research on the operations of agent systems is sparse. To address this gap, we have undertaken a survey on agent system operations with the aim of establishing a clear framework for the field, defining the challenges, and facilitating further development. Specifically, this paper begins by systematically defining anomalies within agent systems, categorizing them into intra-agent anomalies and inter-agent anomalies. Next, we introduce a novel and comprehensive operational framework for agent systems, dubbed Agent System Operations (AgentOps). We provide detailed definitions and explanations of its four key stages: monitoring, anomaly detection, root cause analysis, and resolution.
comment: 35 pages
☆ Don't Overthink It: A Survey of Efficient R1-style Large Reasoning Models
Recently, Large Reasoning Models (LRMs) have gradually become a research hotspot due to their outstanding performance in handling complex tasks. Among them, DeepSeek R1 has garnered significant attention for its exceptional performance and open-source nature, driving advancements in the research of R1-style LRMs. Unlike traditional Large Language Models (LLMs), these models enhance logical deduction and decision-making capabilities during reasoning by incorporating mechanisms such as long chain-of-thought and self-reflection through reinforcement learning. However, with the widespread application of these models, the problem of overthinking has gradually emerged. Specifically, when generating answers, these models often construct excessively long reasoning chains with redundant or repetitive steps, which leads to reduced reasoning efficiency and may affect the accuracy of the final answer. To this end, various efficient reasoning methods have been proposed, aiming to reduce the length of reasoning paths without compromising model performance and reasoning capability. By reviewing the current research advancements in the field of efficient reasoning methods systematically, we categorize existing works into two main directions based on the lens of single-model optimization versus model collaboration: (1) Efficient Reasoning with Single Model, which focuses on improving the reasoning efficiency of individual models; and (2) Efficient Reasoning with Model Collaboration, which explores optimizing reasoning paths through collaboration among multiple models. Besides, we maintain a public GitHub repository that tracks the latest progress in efficient reasoning methods.
☆ Coward: Toward Practical Proactive Federated Backdoor Defense via Collision-based Watermark
Backdoor detection is currently the mainstream defense against backdoor attacks in federated learning (FL), where malicious clients upload poisoned updates that compromise the global model and undermine the reliability of FL deployments. Existing backdoor detection techniques fall into two categories, including passive and proactive ones, depending on whether the server proactively modifies the global model. However, both have inherent limitations in practice: passive defenses are vulnerable to common non-i.i.d. data distributions and random participation of FL clients, whereas current proactive defenses suffer inevitable out-of-distribution (OOD) bias because they rely on backdoor co-existence effects. To address these issues, we introduce a new proactive defense, dubbed Coward, inspired by our discovery of multi-backdoor collision effects, in which consecutively planted, distinct backdoors significantly suppress earlier ones. In general, we detect attackers by evaluating whether the server-injected, conflicting global watermark is erased during local training rather than retained. Our method preserves the advantages of proactive defenses in handling data heterogeneity (\ie, non-i.i.d. data) while mitigating the adverse impact of OOD bias through a revised detection mechanism. Extensive experiments on benchmark datasets confirm the effectiveness of Coward and its resilience to potential adaptive attacks. The code for our method would be available at https://github.com/still2009/cowardFL.
comment: 13-page main body and 4-page appendix
☆ Attractive Metadata Attack: Inducing LLM Agents to Invoke Malicious Tools
Large language model (LLM) agents have demonstrated remarkable capabilities in complex reasoning and decision-making by leveraging external tools. However, this tool-centric paradigm introduces a previously underexplored attack surface: adversaries can manipulate tool metadata -- such as names, descriptions, and parameter schemas -- to influence agent behavior. We identify this as a new and stealthy threat surface that allows malicious tools to be preferentially selected by LLM agents, without requiring prompt injection or access to model internals. To demonstrate and exploit this vulnerability, we propose the Attractive Metadata Attack (AMA), a black-box in-context learning framework that generates highly attractive but syntactically and semantically valid tool metadata through iterative optimization. Our attack integrates seamlessly into standard tool ecosystems and requires no modification to the agent's execution framework. Extensive experiments across ten realistic, simulated tool-use scenarios and a range of popular LLM agents demonstrate consistently high attack success rates (81\%-95\%) and significant privacy leakage, with negligible impact on primary task execution. Moreover, the attack remains effective even under prompt-level defenses and structured tool-selection protocols such as the Model Context Protocol, revealing systemic vulnerabilities in current agent architectures. These findings reveal that metadata manipulation constitutes a potent and stealthy attack surface, highlighting the need for execution-level security mechanisms that go beyond prompt-level defenses.
☆ Evaluating User Experience in Conversational Recommender Systems: A Systematic Review Across Classical and LLM-Powered Approaches
Conversational Recommender Systems (CRSs) are receiving growing research attention across domains, yet their user experience (UX) evaluation remains limited. Existing reviews largely overlook empirical UX studies, particularly in adaptive and large language model (LLM)-based CRSs. To address this gap, we conducted a systematic review following PRISMA guidelines, synthesising 23 empirical studies published between 2017 and 2025. We analysed how UX has been conceptualised, measured, and shaped by domain, adaptivity, and LLM. Our findings reveal persistent limitations: post hoc surveys dominate, turn-level affective UX constructs are rarely assessed, and adaptive behaviours are seldom linked to UX outcomes. LLM-based CRSs introduce further challenges, including epistemic opacity and verbosity, yet evaluations infrequently address these issues. We contribute a structured synthesis of UX metrics, a comparative analysis of adaptive and nonadaptive systems, and a forward-looking agenda for LLM-aware UX evaluation. These findings support the development of more transparent, engaging, and user-centred CRS evaluation practices.
comment: Accepted at OZCHI 2025. 23 pages, 1 figure, 5 tables
☆ VLM4D: Towards Spatiotemporal Awareness in Vision Language Models
Vision language models (VLMs) have shown remarkable capabilities in integrating linguistic and visual reasoning but remain fundamentally limited in understanding dynamic spatiotemporal interactions. Humans effortlessly track and reason about object movements, rotations, and perspective shifts-abilities essential for robust dynamic real-world understanding yet notably lacking in current VLMs. In this paper, we introduce VLM4D, the first benchmark specifically designed to evaluate the spatiotemporal reasoning capabilities of VLMs. Our benchmark comprises diverse real-world and synthetic videos accompanied by carefully curated question-answer pairs emphasizing translational and rotational motions, perspective awareness, and motion continuity. Through comprehensive evaluations of state-of-the-art open and closed-source VLMs, we identify significant performance gaps compared to human baselines, highlighting fundamental deficiencies in existing models. Extensive analysis reveals that VLMs struggle particularly with integrating multiple visual cues and maintaining temporal coherence. We further explore promising directions, such as leveraging 4D feature field reconstruction and targeted spatiotemporal supervised fine-tuning, demonstrating their effectiveness in enhancing spatiotemporal comprehension. Our work aims to encourage deeper exploration into improving VLMs' spatial and temporal grounding, paving the way towards more capable and reliable visual intelligence for dynamic environments.
☆ "Stack It Up!": 3D Stable Structure Generation from 2D Hand-drawn Sketch
Imagine a child sketching the Eiffel Tower and asking a robot to bring it to life. Today's robot manipulation systems can't act on such sketches directly-they require precise 3D block poses as goals, which in turn demand structural analysis and expert tools like CAD. We present StackItUp, a system that enables non-experts to specify complex 3D structures using only 2D front-view hand-drawn sketches. StackItUp introduces an abstract relation graph to bridge the gap between rough sketches and accurate 3D block arrangements, capturing the symbolic geometric relations (e.g., left-of) and stability patterns (e.g., two-pillar-bridge) while discarding noisy metric details from sketches. It then grounds this graph to 3D poses using compositional diffusion models and iteratively updates it by predicting hidden internal and rear supports-critical for stability but absent from the sketch. Evaluated on sketches of iconic landmarks and modern house designs, StackItUp consistently produces stable, multilevel 3D structures and outperforms all baselines in both stability and visual resemblance.
comment: Accepted to CoRL 2025
☆ FPEdit: Robust LLM Fingerprinting through Localized Knowledge Editing
Large language models represent significant investments in computation, data, and engineering expertise, making them extraordinarily valuable intellectual assets. Nevertheless, these AI assets remain vulnerable to unauthorized redistribution and commercial exploitation through fine-tuning or black-box deployment. Current fingerprinting approaches face a fundamental trade-off: intrinsic methods require full parameter access, while backdoor-based techniques employ statistically anomalous triggers easily detected and filtered by adversaries. To address these limitations, we introduce FPEdit, a novel knowledge-editing framework that injects semantically coherent natural language fingerprints by modifying a sparse subset of model weights. This ensures stealthy and precise ownership encoding without degrading the core functionality. Extensive experiments show that FPEdit achieves $95$-$100\%$ fingerprint retention under both full-parameter fine-tuning and parameter-efficient adaptation, while preserving performance on 24 downstream benchmarks. Moreover, FPEdit remains robust under quantization, pruning, and stochastic decoding, and can embed 10 fingerprint pairs into LLaMA2-7B in under 10 minutes using less than 32 GB of GPU memory, a $70\%$ reduction in resource requirements compared to existing techniques. These advances establish FPEdit as the first fingerprinting approach to simultaneously achieve robustness against adaptation, resistance to detection, and preservation of model utility, providing a minimally invasive solution for reliable provenance verification of large language models in adversarial deployment scenarios.
☆ CRINN: Contrastive Reinforcement Learning for Approximate Nearest Neighbor Search
Approximate nearest-neighbor search (ANNS) algorithms have become increasingly critical for recent AI applications, particularly in retrieval-augmented generation (RAG) and agent-based LLM applications. In this paper, we present CRINN, a new paradigm for ANNS algorithms. CRINN treats ANNS optimization as a reinforcement learning problem where execution speed serves as the reward signal. This approach enables the automatic generation of progressively faster ANNS implementations while maintaining accuracy constraints. Our experimental evaluation demonstrates CRINN's effectiveness across six widely-used NNS benchmark datasets. When compared against state-of-the-art open-source ANNS algorithms, CRINN achieves best performance on three of them (GIST-960-Euclidean, MNIST-784-Euclidean, and GloVe-25-angular), and tied for first place on two of them (SIFT-128-Euclidean and GloVe-25-angular). The implications of CRINN's success reach well beyond ANNS optimization: It validates that LLMs augmented with reinforcement learning can function as an effective tool for automating sophisticated algorithmic optimizations that demand specialized knowledge and labor-intensive manual refinement.Code can be found at https://github.com/deepreinforce-ai/CRINN
comment: Preprint Version
☆ SSBD Ontology: A Two-Tier Approach for Interoperable Bioimaging Metadata
Advanced bioimaging technologies have enabled the large-scale acquisition of multidimensional data, yet effective metadata management and interoperability remain significant challenges. To address these issues, we propose a new ontology-driven framework for the Systems Science of Biological Dynamics Database (SSBD) that adopts a two-tier architecture. The core layer provides a class-centric structure referencing existing biomedical ontologies, supporting both SSBD:repository -- which focuses on rapid dataset publication with minimal metadata -- and SSBD:database, which is enhanced with biological and imaging-related annotations. Meanwhile, the instance layer represents actual imaging dataset information as Resource Description Framework individuals that are explicitly linked to the core classes. This layered approach aligns flexible instance data with robust ontological classes, enabling seamless integration and advanced semantic queries. By coupling flexibility with rigor, the SSBD Ontology promotes interoperability, data reuse, and the discovery of novel biological mechanisms. Moreover, our solution aligns with the Recommended Metadata for Biological Images guidelines and fosters compatibility. Ultimately, our approach contributes to establishing a Findable, Accessible, Interoperable, and Reusable data ecosystem within the bioimaging community.
comment: Accepted to the 24th International Semantic Web Conference Resource Track (ISWC 2025)
☆ SE-Agent: Self-Evolution Trajectory Optimization in Multi-Step Reasoning with LLM-Based Agents
Large Language Model (LLM)-based agents have recently shown impressive capabilities in complex reasoning and tool use via multi-step interactions with their environments. While these agents have the potential to tackle complicated tasks, their problem-solving process, i.e., agents' interaction trajectory leading to task completion, remains underexploited. These trajectories contain rich feedback that can navigate agents toward the right directions for solving problems correctly. Although prevailing approaches, such as Monte Carlo Tree Search (MCTS), can effectively balance exploration and exploitation, they ignore the interdependence among various trajectories and lack the diversity of search spaces, which leads to redundant reasoning and suboptimal outcomes. To address these challenges, we propose SE-Agent, a Self-Evolution framework that enables Agents to optimize their reasoning processes iteratively. Our approach revisits and enhances former pilot trajectories through three key operations: revision, recombination, and refinement. This evolutionary mechanism enables two critical advantages: (1) it expands the search space beyond local optima by intelligently exploring diverse solution paths guided by previous trajectories, and (2) it leverages cross-trajectory inspiration to efficiently enhance performance while mitigating the impact of suboptimal reasoning paths. Through these mechanisms, SE-Agent achieves continuous self-evolution that incrementally improves reasoning quality. We evaluate SE-Agent on SWE-bench Verified to resolve real-world GitHub issues. Experimental results across five strong LLMs show that integrating SE-Agent delivers up to 55% relative improvement, achieving state-of-the-art performance among all open-source agents on SWE-bench Verified. Our code and demonstration materials are publicly available at https://github.com/wanghuacan/SE-Agent.
☆ AlignGuard-LoRA: Alignment-Preserving Fine-Tuning via Fisher-Guided Decomposition and Riemannian-Geodesic Collision Regularization
Low-rank adaptation (LoRA) has become a standard tool for efficiently fine-tuning large language models (LLMs). Yet, even minor LoRA updates can induce alignment drift, weakening safety and behavioral constraints through entangled parameter changes. To address this, we propose AlignGuard-LoRA (AGL), a principled framework for preserving alignment during finetuning. AGL introduces several key components: a primary task loss for supervision, Fisher Information Matrix-based regularization to restrict updates in alignment-sensitive subspaces, and task-specific regularization to stabilize the integration of new knowledge. We further introduce collision-aware regularization, blending Riemannian overlap -- which penalizes coordinate-wise interference -- and geodesic separation -- which encourages disjoint update geometry. We curate DriftCaps, a targeted diagnostic benchmark of safe and unsafe prompts designed to quantify alignment drift and safety degradation. Empirical evaluations show that AGL mitigates alignment drift by up to 50% on safety-critical benchmarks without degrading downstream task performance. Comprehensive ablation confirms that each component contributes distinctly to preserving latent safety behaviors. Finally, we derive and validate a scaling law for catastrophic forgetting, revealing that AGL flattens post-finetuning loss escalation while preserving adaptation dynamics. AGL is a structurally grounded refinement of LoRA, ensuring alignment preservation with minimal trade-offs. To encourage further exploration and development, we open-source our implementation.
☆ Everyone Contributes! Incentivizing Strategic Cooperation in Multi-LLM Systems via Sequential Public Goods Games
Coordinating multiple large language models (LLMs) to solve complex tasks collaboratively poses a fundamental trade-off between the computation costs and collective performance compared with individual model. We introduce a novel, game-theoretically grounded reinforcement learning (RL) framework, the Multi-Agent Cooperation Sequential Public Goods Game (MAC-SPGG), to systematically incentivize cooperation in multi-LLM ensembles. In MAC-SPGG, LLM agents move in sequence, observing predecessors' outputs and updating beliefs to condition their own contributions. By redesigning the public-goods reward, effortful contributions become the unique Subgame Perfect Nash Equilibrium (SPNE), which eliminates free-riding under traditional SPGG or PGG. Its sequential protocol replaces costly round-based information exchanges with a streamlined decision flow, cutting communication overhead while retaining strategic depth. We prove the existence and uniqueness of the SPNE under realistic parameters, and empirically show that MAC-SPGG-trained ensembles outperform single-agent baselines, chain-of-thought prompting, and other cooperative methods, even achieving comparable performance to large-scale models across reasoning, math, code generation, and NLP tasks. Our results highlight the power of structured, incentive-aligned MAC-SPGG cooperation for scalable and robust multi-agent language generation.
☆ Risk identification based on similar case retrieval enhancement,
The goal of construction site risk and hazard identification is to enhance safety management through automation. Existing research based on large language models falls into two categories: image-text matching for collaborative reasoning, which struggles with complex hazard features, and instruction fine-tuning or dialogue guidance using professional datasets, which suffers from high training costs and poor generalization.To address this, we propose a hazard identification method using similar case retrieval enhancement. By integrating external knowledge and retrieved case contexts via prompt fine-tuning, we mitigate misjudgments caused by limited domain knowledge and weak feature associations. Our method includes three modules: retrieval library, image similarity retrieval, and large model retrieval enhancement, enabling efficient recognition without training. Experiments on real construction data show significant improvements. For instance, GLM-4V's recognition accuracy increased to 50\%, a 35.49\% boost. The method enhances accuracy, context understanding, and stability, offering new theoretical and technical support for hazard detection.
comment: in Chinese language
☆ SpikeSTAG: Spatial-Temporal Forecasting via GNN-SNN Collaboration
Spiking neural networks (SNNs), inspired by the spiking behavior of biological neurons, offer a distinctive approach for capturing the complexities of temporal data. However, their potential for spatial modeling in multivariate time-series forecasting remains largely unexplored. To bridge this gap, we introduce a brand new SNN architecture, which is among the first to seamlessly integrate graph structural learning with spike-based temporal processing for multivariate time-series forecasting. Specifically, we first embed time features and an adaptive matrix, eliminating the need for predefined graph structures. We then further learn sequence features through the Observation (OBS) Block. Building upon this, our Multi-Scale Spike Aggregation (MSSA) hierarchically aggregates neighborhood information through spiking SAGE layers, enabling multi-hop feature extraction while eliminating the need for floating-point operations. Finally, we propose a Dual-Path Spike Fusion (DSF) Block to integrate spatial graph features and temporal dynamics via a spike-gated mechanism, combining LSTM-processed sequences with spiking self-attention outputs, effectively improve the model accuracy of long sequence datasets. Experiments show that our model surpasses the state-of-the-art SNN-based iSpikformer on all datasets and outperforms traditional temporal models at long horizons, thereby establishing a new paradigm for efficient spatial-temporal modeling.
comment: 7 pages, 4 figures
☆ MolReasoner: Toward Effective and Interpretable Reasoning for Molecular LLMs
Large Language Models(LLMs) have demonstrated remarkable performance across various domains, yet their capabilities in molecular reasoning remain insufficiently explored. Current approaches tend to rely heavily on general-purpose prompting, which lacks domain-specific molecular semantics, while those that use fine-tuning strategies often face challenges with interpretability and reasoning depth. To address these issues, we introduce MolReasoner, a two-stage framework designed to transition LLMs from memorization towards chemical reasoning. First, we propose Mol-SFT, which initializes the model's reasoning abilities via synthetic Chain-of-Thought(CoT) samples generated by GPT-4o and verified for chemical accuracy. Subsequently, Mol-RL applies reinforcement learning with specialized reward functions designed explicitly to align chemical structures with linguistic descriptions, thereby enhancing molecular reasoning capabilities. Our approach notably enhances interpretability, improving the model 's molecular understanding and enabling better generalization. Extensive experiments demonstrate that MolReasoner outperforms existing methods, and marking a significant shift from memorization-based outputs to robust chemical reasoning.
☆ TRACEALIGN -- Tracing the Drift: Attributing Alignment Failures to Training-Time Belief Sources in LLMs
Large Language Models (LLMs) fine-tuned to align with human values often exhibit alignment drift, producing unsafe or policy-violating completions when exposed to adversarial prompts, decoding perturbations, or paraphrased jailbreaks. While prior work has behaviorally characterized alignment failure, little is known about the training-time belief sources underlying these failures. We introduce TraceAlign, a unified framework for tracing unsafe completions back to their root causes in the model's training corpus. Central to our approach is the Belief Conflict Index (BCI), which quantifies semantic inconsistency between generated spans and aligned policies, based on retrieved training documents using suffix-array matching. We propose three complementary interventions: (i) TraceShield, an inference-time safety filter that refuses completions with high-BCI spans, (ii) Contrastive Belief Deconfliction Loss, a contrastive fine-tuning objective penalizing high-BCI continuations during DPO, and (iii) Prov-Decode, a provenance-aware decoding strategy that vetoes beam expansions predicted to yield high-BCI spans. Together, these defenses reduce alignment drift by up to 85% on our curated Alignment Drift Benchmark (ADB) while preserving utility on standard tasks, with delta less than 0.2 and improved refusal quality. We further derive a theoretical upper bound on drift likelihood via suffix-array span statistics, linking memorization frequency and length to adversarial reactivation risk. TraceAlign thus provides the first scalable, traceable, and grounded toolkit for understanding and mitigating alignment failures at source. To encourage further exploration and development, we open-source our implementation at: https://anonymous.4open.science/r/tracealign-2DA7
☆ RICL: Adding In-Context Adaptability to Pre-Trained Vision-Language-Action Models
Multi-task ``vision-language-action'' (VLA) models have recently demonstrated increasing promise as generalist foundation models for robotics, achieving non-trivial performance out of the box on new tasks in new environments. However, for such models to be truly useful, an end user must have easy means to teach them to improve. For language and vision models, the emergent ability to perform in-context learning (ICL) has proven to be a versatile and highly useful interface to easily teach new tasks with no parameter finetuning. Unfortunately, VLAs pre-trained with imitation learning objectives do not naturally acquire ICL abilities. In this paper, we demonstrate that, with the right finetuning recipe and a small robot demonstration dataset, it is possible to inject in-context adaptability post hoc into such a VLA. After retraining for in-context learning (RICL), our system permits an end user to provide a small number (10-20) of demonstrations for a new task. RICL then fetches the most relevant portions of those demonstrations into the VLA context to exploit ICL, performing the new task and boosting task performance. We apply RICL to inject ICL into the $\pi_{0}$-FAST VLA, and show that it permits large in-context improvements for a variety of new manipulation tasks with only 20 demonstrations per task, without any parameter updates. When parameter updates on the target task demonstrations is possible, RICL finetuning further boosts performance. We release code and model weights for RICL-$\pi_{0}$-FAST alongside the paper to enable, for the first time, a simple in-context learning interface for new manipulation tasks. Website: https://ricl-vla.github.io.
comment: Conference on Robot Learning 2025 (CoRL 2025), 17 pages
☆ Enhancement of Quantum Semi-Supervised Learning via Improved Laplacian and Poisson Methods
This paper develops a hybrid quantum approach for graph-based semi-supervised learning to enhance performance in scenarios where labeled data is scarce. We introduce two enhanced quantum models, the Improved Laplacian Quantum Semi-Supervised Learning (ILQSSL) and the Improved Poisson Quantum Semi-Supervised Learning (IPQSSL), that incorporate advanced label propagation strategies within variational quantum circuits. These models utilize QR decomposition to embed graph structure directly into quantum states, thereby enabling more effective learning in low-label settings. We validate our methods across four benchmark datasets like Iris, Wine, Heart Disease, and German Credit Card -- and show that both ILQSSL and IPQSSL consistently outperform leading classical semi-supervised learning algorithms, particularly under limited supervision. Beyond standard performance metrics, we examine the effect of circuit depth and qubit count on learning quality by analyzing entanglement entropy and Randomized Benchmarking (RB). Our results suggest that while some level of entanglement improves the model's ability to generalize, increased circuit complexity may introduce noise that undermines performance on current quantum hardware. Overall, the study highlights the potential of quantum-enhanced models for semi-supervised learning, offering practical insights into how quantum circuits can be designed to balance expressivity and stability. These findings support the role of quantum machine learning in advancing data-efficient classification, especially in applications constrained by label availability and hardware limitations.
☆ Epi$^2$-Net: Advancing Epidemic Dynamics Forecasting with Physics-Inspired Neural Networks
Advancing epidemic dynamics forecasting is vital for targeted interventions and safeguarding public health. Current approaches mainly fall into two categories: mechanism-based and data-driven models. Mechanism-based models are constrained by predefined compartmental structures and oversimplified system assumptions, limiting their ability to model complex real-world dynamics, while data-driven models focus solely on intrinsic data dependencies without physical or epidemiological constraints, risking biased or misleading representations. Although recent studies have attempted to integrate epidemiological knowledge into neural architectures, most of them fail to reconcile explicit physical priors with neural representations. To overcome these obstacles, we introduce Epi$^2$-Net, a Epidemic Forecasting Framework built upon Physics-Inspired Neural Networks. Specifically, we propose reconceptualizing epidemic transmission from the physical transport perspective, introducing the concept of neural epidemic transport. Further, we present a physic-inspired deep learning framework, and integrate physical constraints with neural modules to model spatio-temporal patterns of epidemic dynamics. Experiments on real-world datasets have demonstrated that Epi$^2$-Net outperforms state-of-the-art methods in epidemic forecasting, providing a promising solution for future epidemic containment. The code is available at: https://anonymous.4open.science/r/Epi-2-Net-48CE.
♻ ☆ Extrapolation by Association: Length Generalization Transfer in Transformers
Transformer language models have demonstrated impressive generalization capabilities in natural language domains, yet we lack a fine-grained understanding of how such generalization arises. In this paper, we investigate length generalization--the ability to extrapolate from shorter to longer inputs--through the lens of \textit{task association}. We find that length generalization can be \textit{transferred} across related tasks. That is, training a model with a longer and related auxiliary task can lead it to generalize to unseen and longer inputs from some other target task. We demonstrate this length generalization transfer across diverse algorithmic tasks, including arithmetic operations, string transformations, and maze navigation. Our results show that transformer models can inherit generalization capabilities from similar tasks when trained jointly. Moreover, we observe similar transfer effects in pretrained language models, suggesting that pretraining equips models with reusable computational scaffolding that facilitates extrapolation in downstream settings. Finally, we provide initial mechanistic evidence that length generalization transfer correlates with the re-use of the same attention heads between the tasks. Together, our findings deepen our understanding of how transformers generalize to out-of-distribution inputs and highlight the compositional reuse of inductive structure across tasks.
comment: 23 pages, 20 figures
♻ ☆ Gandalf the Red: Adaptive Security for LLMs
Current evaluations of defenses against prompt attacks in large language model (LLM) applications often overlook two critical factors: the dynamic nature of adversarial behavior and the usability penalties imposed on legitimate users by restrictive defenses. We propose D-SEC (Dynamic Security Utility Threat Model), which explicitly separates attackers from legitimate users, models multi-step interactions, and expresses the security-utility in an optimizable form. We further address the shortcomings in existing evaluations by introducing Gandalf, a crowd-sourced, gamified red-teaming platform designed to generate realistic, adaptive attack. Using Gandalf, we collect and release a dataset of 279k prompt attacks. Complemented by benign user data, our analysis reveals the interplay between security and utility, showing that defenses integrated in the LLM (e.g., system prompts) can degrade usability even without blocking requests. We demonstrate that restricted application domains, defense-in-depth, and adaptive defenses are effective strategies for building secure and useful LLM applications.
comment: Niklas Pfister, V\'aclav Volhejn and Manuel Knott contributed equally
♻ ☆ A novel approach to navigate the taxonomic hierarchy to address the Open-World Scenarios in Medicinal Plant Classification
In this article, we propose a novel approach for plant hierarchical taxonomy classification by posing the problem as an open class problem. It is observed that existing methods for medicinal plant classification often fail to perform hierarchical classification and accurately identifying unknown species, limiting their effectiveness in comprehensive plant taxonomy classification. Thus we address the problem of unknown species classification by assigning it best hierarchical labels. We propose a novel method, which integrates DenseNet121, Multi-Scale Self-Attention (MSSA) and cascaded classifiers for hierarchical classification. The approach systematically categorizes medicinal plants at multiple taxonomic levels, from phylum to species, ensuring detailed and precise classification. Using multi scale space attention, the model captures both local and global contextual information from the images, improving the distinction between similar species and the identification of new ones. It uses attention scores to focus on important features across multiple scales. The proposed method provides a solution for hierarchical classification, showcasing superior performance in identifying both known and unknown species. The model was tested on two state-of-art datasets with and without background artifacts and so that it can be deployed to tackle real word application. We used unknown species for testing our model. For unknown species the model achieved an average accuracy of 83.36%, 78.30%, 60.34% and 43.32% for predicting correct phylum, class, order and family respectively. Our proposed model size is almost four times less than the existing state of the art methods making it easily deploy able in real world application.
comment: We want to do some modifications and add more experiments
♻ ☆ UrbanSense:A Framework for Quantitative Analysis of Urban Streetscapes leveraging Vision Large Language Models
Urban cultures and architectural styles vary significantly across cities due to geographical, chronological, historical, and socio-political factors. Understanding these differences is essential for anticipating how cities may evolve in the future. As representative cases of historical continuity and modern innovation in China, Beijing and Shenzhen offer valuable perspectives for exploring the transformation of urban streetscapes. However, conventional approaches to urban cultural studies often rely on expert interpretation and historical documentation, which are difficult to standardize across different contexts. To address this, we propose a multimodal research framework based on vision-language models, enabling automated and scalable analysis of urban streetscape style differences. This approach enhances the objectivity and data-driven nature of urban form research. The contributions of this study are as follows: First, we construct UrbanDiffBench, a curated dataset of urban streetscapes containing architectural images from different periods and regions. Second, we develop UrbanSense, the first vision-language-model-based framework for urban streetscape analysis, enabling the quantitative generation and comparison of urban style representations. Third, experimental results show that Over 80% of generated descriptions pass the t-test (p less than 0.05). High Phi scores (0.912 for cities, 0.833 for periods) from subjective evaluations confirm the method's ability to capture subtle stylistic differences. These results highlight the method's potential to quantify and interpret urban style evolution, offering a scientifically grounded lens for future design.
♻ ☆ SCOPE: Stochastic and Counterbiased Option Placement for Evaluating Large Language Models
Large Language Models (LLMs) can achieve inflated scores on multiple-choice tasks by exploiting inherent biases in option positions or labels, rather than demonstrating genuine understanding. This study introduces SCOPE, an evaluation framework designed to measure and mitigate such selection bias in a dataset-independent manner. By repeatedly invoking a null prompt that lacks semantic content, SCOPE estimates each model's unique position-bias distribution. It then redistributes the answer slot according to the inverse-bias distribution, thereby equalizing the lucky-rate, the probability of selecting the correct answer by chance. Furthermore, it prevents semantically similar distractors from being placed adjacent to the answer, thereby blocking near-miss guesses based on superficial proximity cues. Across multiple benchmark experiments, SCOPE consistently outperformed existing debiasing methods in terms of stable performance improvements and showed clearer confidence distributions over correct options. This framework thus offers a new standard for enhancing the fairness and reliability of LLM evaluations.
comment: Comments: 34 pages, 1 figure. v2: All "Consequence." statements in the Theoretical Analysis section relabeled as "Corollary."; duplicated values in Table 20 (previously identical to Table 15) corrected
♻ ☆ Disambiguation-Centric Finetuning Makes Enterprise Tool-Calling LLMs More Realistic and Less Risky
Large language models (LLMs) are increasingly tasked with invoking enterprise APIs, yet they routinely falter when near-duplicate tools vie for the same user intent or when required arguments are left underspecified. We introduce DiaFORGE (Dialogue Framework for Organic Response Generation & Evaluation), a disambiguation-centric, three-stage pipeline that (i) synthesizes persona-driven, multi-turn dialogues in which the assistant must distinguish among highly similar tools, (ii) performs supervised fine-tuning of open-source models with reasoning traces across 3B - 70B parameters, and (iii) evaluates real-world readiness via a dynamic suite that redeploys each model in a live agentic loop and reports end-to-end goal completion alongside conventional static metrics. On our dynamic benchmark DiaBENCH, models trained with DiaFORGE raise tool-invocation success by 27 pp over GPT-4o and by 49 pp over Claude-3.5-Sonnet, both under optimized prompting. To spur further research, we release an open corpus of 5000 production-grade enterprise API specifications paired with rigorously validated, disambiguation-focused dialogues, offering a practical blueprint for building reliable, enterprise-ready tool-calling agents.
♻ ☆ Beyond the Visible: Multispectral Vision-Language Learning for Earth Observation KDD 2025
Vision-language models for Earth observation (EO) typically rely on the visual spectrum of data as the only model input, thus failing to leverage the rich spectral information available in the multispectral channels recorded by satellites. Therefore, we introduce Llama3-MS-CLIP, the first vision-language model pre-trained with contrastive learning on a large-scale multispectral dataset and report on the performance gains due to the extended spectral range. Furthermore, we present the largest-to-date image-caption dataset for multispectral data, consisting of one million Sentinel-2 samples and corresponding textual descriptions generated using Llama3-LLaVA-Next and Overture Maps data. We develop a scalable captioning pipeline, which is validated by domain experts. We evaluate Llama3-MS-CLIP on multispectral zero-shot image classification and retrieval using three datasets of varying complexity. Our results demonstrate that Llama3-MS-CLIP significantly outperforms other RGB-based approaches, improving classification accuracy by +6.77% on average and retrieval performance by +4.63% mAP compared to the second-best model. Our results emphasize the relevance of multispectral vision-language learning. The image-caption dataset, code, and model weights are available at https://github.com/IBM/MS-CLIP.
comment: Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2025
♻ ☆ From Neurons to Computation: Biological Reservoir Computing for Pattern Recognition
In this paper, we introduce a paradigm for reservoir computing (RC) that leverages a pool of cultured biological neurons as the reservoir substrate, creating a biological reservoir computing (BRC). This system operates similarly to an echo state network (ESN), with the key distinction that the neural activity is generated by a network of cultured neurons, rather than being modeled by traditional artificial computational units. The neuronal activity is recorded using a multi-electrode array (MEA), which enables high-throughput recording of neural signals. In our approach, inputs are introduced into the network through a subset of the MEA electrodes, while the remaining electrodes capture the resulting neural activity. This generates a nonlinear mapping of the input data to a high-dimensional biological feature space, where distinguishing between data becomes more efficient and straightforward, allowing a simple linear classifier to perform pattern recognition tasks effectively. To evaluate the performance of our proposed system, we present an experimental study that includes various input patterns, such as positional codes, bars with different orientations, and a digit recognition task. The results demonstrate the feasibility of using biological neural networks to perform tasks traditionally handled by artificial neural networks, paving the way for further exploration of biologically-inspired computing systems, with potential applications in neuromorphic engineering and bio-hybrid computing.
comment: Accepted at ICONIP 2025 Conference
♻ ☆ Friend or Foe? Harnessing Controllable Overfitting for Anomaly Detection
Overfitting has traditionally been viewed as detrimental to anomaly detection, where excessive generalization often limits models' sensitivity to subtle anomalies. Our work challenges this conventional view by introducing Controllable Overfitting-based Anomaly Detection (COAD), a novel framework that strategically leverages overfitting to enhance anomaly discrimination capabilities. We propose the Aberrance Retention Quotient (ARQ), a novel metric that systematically quantifies the extent of overfitting, enabling the identification of an optimal golden overfitting interval wherein model sensitivity to anomalies is maximized without sacrificing generalization. To comprehensively capture how overfitting affects detection performance, we further propose the Relative Anomaly Distribution Index (RADI), a metric superior to traditional AUROC by explicitly modeling the separation between normal and anomalous score distributions. Theoretically, RADI leverages ARQ to track and evaluate how overfitting impacts anomaly detection, offering an integrated approach to understanding the relationship between overfitting dynamics and model efficacy. We also rigorously validate the statistical efficacy of Gaussian noise as pseudo-anomaly generators, reinforcing the method's broad applicability. Empirical evaluations demonstrate that our controllable overfitting method achieves State-Of-The-Art(SOTA) performance in both one-class and multi-class anomaly detection tasks, thus redefining overfitting as a powerful strategy rather than a limitation.
♻ ☆ Abstract Sound Fusion with Unconditional Inversion Models
An abstract sound is defined as a sound that does not disclose identifiable real-world sound events to a listener. Sound fusion aims to synthesize an original sound and a reference sound to generate a novel sound that exhibits auditory features beyond mere additive superposition of the sound constituents. To achieve this fusion, we employ inversion techniques that preserve essential features of the original sample while enabling controllable synthesis. We propose novel SDE and ODE inversion models based on DPMSolver++ samplers that reverse the sampling process by configuring model outputs as constants, eliminating circular dependencies incurred by noise prediction terms. Our inversion approach requires no prompt conditioning while maintaining flexible guidance during sampling.
♻ ☆ Three Kinds of AI Ethics
There is an overwhelming abundance of works in AI Ethics. This growth is chaotic because of how sudden it is, its volume, and its multidisciplinary nature. This makes difficult to keep track of debates, and to systematically characterize goals, research questions, methods, and expertise required by AI ethicists. In this article, I show that the relation between AI and ethics can be characterized in at least three ways, which correspond to three well-represented kinds of AI ethics: ethics and AI; ethics in AI; ethics of AI. I elucidate the features of these three kinds of AI Ethics, characterize their research questions, and identify the kind of expertise that each kind needs. I also show how certain criticisms to AI ethics are misplaced, as being done from the point of view of one kind of AI ethics, to another kind with different goals. All in all, this work sheds light on the nature of AI ethics, and sets the groundwork for more informed discussions about the scope, methods, and training of AI ethicists.
comment: 18 pages, two figures
♻ ☆ Do AI models help produce verified bug fixes?
Among areas of software engineering where AI techniques -- particularly, Large Language Models -- seem poised to yield dramatic improvements, an attractive candidate is Automatic Program Repair (APR), the production of satisfactory corrections to software bugs. Does this expectation materialize in practice? How do we find out, making sure that proposed corrections actually work? If programmers have access to LLMs, how do they actually use them to complement their own skills? To answer these questions, we took advantage of the availability of a program-proving environment, which formally determines the correctness of proposed fixes, to conduct a study of program debugging with two randomly assigned groups of programmers, one with access to LLMs and the other without, both validating their answers through the proof tools. The methodology relied on a division into general research questions (Goals in the Goal-Query-Metric approach), specific elements admitting specific answers (Queries), and measurements supporting these answers (Metrics). While applied so far to a limited sample size, the results are a first step towards delineating a proper role for AI and LLMs in providing guaranteed-correct fixes to program bugs. These results caused surprise as compared to what one might expect from the use of AI for debugging and APR. The contributions also include: a detailed methodology for experiments in the use of LLMs for debugging, which other projects can reuse; a fine-grain analysis of programmer behavior, made possible by the use of full-session recording; a definition of patterns of use of LLMs, with 7 distinct categories; and validated advice for getting the best of LLMs for debugging and Automatic Program Repair.
♻ ☆ MIXPINN: Mixed-Material Simulations by Physics-Informed Neural Network
Simulating the complex interactions between soft tissues and rigid anatomy is critical for applications in surgical training, planning, and robotic-assisted interventions. Traditional Finite Element Method (FEM)-based simulations, while accurate, are computationally expensive and impractical for real-time scenarios. Learning-based approaches have shown promise in accelerating predictions but have fallen short in modeling soft-rigid interactions effectively. We introduce MIXPINN, a physics-informed Graph Neural Network (GNN) framework for mixed-material simulations, explicitly capturing soft-rigid interactions using graph-based augmentations. Our approach integrates Virtual Nodes (VNs) and Virtual Edges (VEs) to enhance rigid body constraint satisfaction while preserving computational efficiency. By leveraging a graph-based representation of biomechanical structures, MIXPINN learns high-fidelity deformations from FEM-generated data and achieves real-time inference with sub-millimeter accuracy. We validate our method in a realistic clinical scenario, demonstrating superior performance compared to baseline GNN models and traditional FEM methods. Our results show that MIXPINN reduces computational cost by an order of magnitude while maintaining high physical accuracy, making it a viable solution for real-time surgical simulation and robotic-assisted procedures.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Arena-Lite: Efficient and Reliable Large Language Model Evaluation via Tournament-Based Direct Comparisons
As Large Language Models (LLMs) expand across domains, LLM judges have become essential for systems evaluation. Current benchmarks typically compare system outputs against baselines. This baseline-mediated approach, though convenient, yields lower reliability than direct comparison between systems. We propose Arena-Lite which integrates tournament structure on top of head-to-head comparison. The application of a tournament structure and direct comparison eliminates the need for baseline outputs, reduces the number of required comparisons, and allows higher reliability in system rankings. We conducted two experiments: (1) controlled stochastic modeling and (2) empirical validation with a real LLM judge. Those experiments collectively demonstrate that Arena-Lite consistently achieves higher reliability with fewer comparisons, even with smaller datasets or weaker judges. We release an easy-to-use web demonstration and code to foster adoption of Arena-Lite, streamlining model selection across research and industry communities. Arena-Lite demo and code are available on \href{https://huggingface.co/spaces/NCSOFT/ArenaLite}{https://huggingface.co/spaces/NCSOFT/ArenaLite}
comment: 8 pages for main body, 19 pages in total
♻ ☆ MIST: Jailbreaking Black-box Large Language Models via Iterative Semantic Tuning
Despite efforts to align large language models (LLMs) with societal and moral values, these models remain susceptible to jailbreak attacks -- methods designed to elicit harmful responses. Jailbreaking black-box LLMs is considered challenging due to the discrete nature of token inputs, restricted access to the target LLM, and limited query budget. To address the issues above, we propose an effective method for jailbreaking black-box large language Models via Iterative Semantic Tuning, named MIST. MIST enables attackers to iteratively refine prompts that preserve the original semantic intent while inducing harmful content. Specifically, to balance semantic similarity with computational efficiency, MIST incorporates two key strategies: sequential synonym search, and its advanced version -- order-determining optimization. We conduct extensive experiments on two datasets using two open-source and four closed-source models. Results show that MIST achieves competitive attack success rate, relatively low query count, and fair transferability, outperforming or matching state-of-the-art jailbreak methods. Additionally, we conduct analysis on computational efficiency to validate the practical viability of MIST.
comment: 14 pages, 7 figures
♻ ☆ medDreamer: Model-Based Reinforcement Learning with Latent Imagination on Complex EHRs for Clinical Decision Support
Timely and personalized treatment decisions are essential across a wide range of healthcare settings where patient responses can vary significantly and evolve over time. Clinical data used to support these treatment decisions are often irregularly sampled, where missing data frequencies may implicitly convey information about the patient's condition. Existing Reinforcement Learning (RL) based clinical decision support systems often ignore the missing patterns and distort them with coarse discretization and simple imputation. They are also predominantly model-free and largely depend on retrospective data, which could lead to insufficient exploration and bias by historical behaviors. To address these limitations, we propose medDreamer, a novel model-based reinforcement learning framework for personalized treatment recommendation. medDreamer contains a world model with an Adaptive Feature Integration module that simulates latent patient states from irregular data and a two-phase policy trained on a hybrid of real and imagined trajectories. This enables learning optimal policies that go beyond the sub-optimality of historical clinical decisions, while remaining close to real clinical data. We evaluate medDreamer on both sepsis and mechanical ventilation treatment tasks using two large-scale Electronic Health Records (EHRs) datasets. Comprehensive evaluations show that medDreamer significantly outperforms model-free and model-based baselines in both clinical outcomes and off-policy metrics.
♻ ☆ Algorithm Discovery With LLMs: Evolutionary Search Meets Reinforcement Learning
Discovering efficient algorithms for solving complex problems has been an outstanding challenge in mathematics and computer science, requiring substantial human expertise over the years. Recent advancements in evolutionary search with large language models (LLMs) have shown promise in accelerating the discovery of algorithms across various domains, particularly in mathematics and optimization. However, existing approaches treat the LLM as a static generator, missing the opportunity to update the model with the signal obtained from evolutionary exploration. In this work, we propose to augment LLM-based evolutionary search by continuously refining the search operator - the LLM - through reinforcement learning (RL) fine-tuning. Our method leverages evolutionary search as an exploration strategy to discover improved algorithms, while RL optimizes the LLM policy based on these discoveries. Our experiments on combinatorial optimization tasks demonstrate that integrating RL with evolutionary search accelerates the discovery of superior algorithms, showcasing the potential of RL-enhanced evolutionary strategies for algorithm design.
comment: 34 pages
♻ ☆ Collaborative Medical Triage under Uncertainty: A Multi-Agent Dynamic Matching Approach
The post-pandemic surge in healthcare demand, coupled with critical nursing shortages, has placed unprecedented pressure on medical triage systems, necessitating innovative AI-driven solutions. We present a multi-agent interactive intelligent system for medical triage that addresses three fundamental challenges in current AI-based triage systems: inadequate medical specialization leading to misclassification, heterogeneous department structures across healthcare institutions, and inefficient detail-oriented questioning that impedes rapid triage decisions. Our system employs three specialized agents--RecipientAgent, InquirerAgent, and DepartmentAgent--that collaborate through Inquiry Guidance mechanism and Classification Guidance Mechanism to transform unstructured patient symptoms into accurate department recommendations. To ensure robust evaluation, we constructed a comprehensive Chinese medical triage dataset from "Ai Ai Yi Medical Network", comprising 3,360 real-world cases spanning 9 primary departments and 62 secondary departments. Experimental results demonstrate that our multi-agent system achieves 89.6% accuracy in primary department classification and 74.3% accuracy in secondary department classification after four rounds of patient interaction. The system's dynamic matching based guidance mechanisms enable efficient adaptation to diverse hospital configurations while maintaining high triage accuracy. We successfully developed this multi-agent triage system that not only adapts to organizational heterogeneity across healthcare institutions but also ensures clinically sound decision-making.
comment: 10 pages, 8 figures, 2 table
♻ ☆ Evaluating Deepfake Detectors in the Wild ICML 2025
Deepfakes powered by advanced machine learning models present a significant and evolving threat to identity verification and the authenticity of digital media. Although numerous detectors have been developed to address this problem, their effectiveness has yet to be tested when applied to real-world data. In this work we evaluate modern deepfake detectors, introducing a novel testing procedure designed to mimic real-world scenarios for deepfake detection. Using state-of-the-art deepfake generation methods, we create a comprehensive dataset containing more than 500,000 high-quality deepfake images. Our analysis shows that detecting deepfakes still remains a challenging task. The evaluation shows that in fewer than half of the deepfake detectors tested achieved an AUC score greater than 60%, with the lowest being 50%. We demonstrate that basic image manipulations, such as JPEG compression or image enhancement, can significantly reduce model performance. All code and data are publicly available at https://github.com/SumSubstance/Deepfake-Detectors-in-the-Wild.
comment: Accepted to the ICML 2025 Workshop 'DataWorld: Unifying Data Curation Frameworks Across Domains'
♻ ☆ Your AI, Not Your View: The Bias of LLMs in Investment Analysis
In finance, Large Language Models (LLMs) face frequent knowledge conflicts due to discrepancies between pre-trained parametric knowledge and real-time market data. These conflicts become particularly problematic when LLMs are deployed in real-world investment services, where misalignment between a model's embedded preferences and those of the financial institution can lead to unreliable recommendations. Yet little research has examined what investment views LLMs actually hold. We propose an experimental framework to investigate such conflicts, offering the first quantitative analysis of confirmation bias in LLM-based investment analysis. Using hypothetical scenarios with balanced and imbalanced arguments, we extract the latent preferences of models and measure their persistence. Focusing on sector, size, and momentum, our analysis reveals distinct, model-specific tendencies. In particular, we observe a consistent preference for large-cap stocks and contrarian strategies across most models. These preferences often harden into confirmation bias, with models clinging to initial judgments despite counter-evidence.
♻ ☆ Leaps Beyond the Seen: Reinforced Reasoning Augmented Generation for Clinical Notes
Clinical note generation aims to produce free-text summaries of a patient's condition and diagnostic process, with discharge instructions being a representative long-form example. While recent LLM-based methods pre-trained on general clinical corpora show promise in clinical text generation, they fall short in producing long-form notes from limited patient information. In this paper, we propose ReinRAG, a reinforced reasoning augmented generation (RAG) for long-form discharge instructions based on pre-admission information. ReinRAG retrieves reasoning paths from a medical knowledge graph to provide explicit semantic guidance to the LLM. To bridge the information gap, we propose group-based retriever optimization (GRO) which improves retrieval quality with group-normalized rewards, encouraging reasoning leaps for deeper inference by the LLM. Comprehensive experiments on the real-world dataset show that ReinRAG outperforms baselines in both clinical efficacy and natural language generation metrics. Further analysis reveals that ReinRAG fills semantic gaps in sparse input scenarios, and retrieved reasoning paths help LLMs avoid clinical misinterpretation by focusing on key evidence and following coherent reasoning.
♻ ☆ Associative memory inspires improvements for in-context learning using a novel attention residual stream architecture
Large language models (LLMs) demonstrate an impressive ability to utilise information within the context of their input sequences to appropriately respond to data unseen by the LLM during its training procedure. This ability is known as in-context learning (ICL). Humans and non-human animals demonstrate similar abilities, however their neural architectures differ substantially from LLMs. Despite this, a critical component within LLMs, the attention mechanism, resembles modern associative memory models, widely used in and influenced by the computational neuroscience community to model biological memory systems. Using this connection, we introduce an associative memory model capable of performing ICL. We use this as inspiration for a novel residual stream architecture which allows information to directly flow between attention heads. We test this architecture during training within a two-layer Transformer and show its ICL abilities manifest more quickly than without this modification. We then apply our architecture in small language models with 8 million and 1 billion parameters, focusing on attention head values, with results also indicating improved performance at these larger and more naturalistic scales.
comment: 35 pages, 14 figures, 6 tables; accepted and published in TMLR
♻ ☆ Thought Manipulation: External Thought Can Be Efficient for Large Reasoning Models
Recent advancements in large reasoning models (LRMs) have demonstrated the effectiveness of scaling test-time computation to enhance reasoning capabilities on various tasks. However, LRMs often suffer from an ``overthinking'' problem, where the model generates excessively redundant reasoning steps with limited performance gains. In this work, we empirically reveal an important characteristic of LRM behaviors that placing external CoTs generated by smaller models between the thinking token (\texttt{} and \texttt{}) can effectively manipulate the model to generate fewer thoughts. Building on this finding, we propose a simple yet efficient pipeline, \Method, to enable LRMs to bypass unnecessary intermediate steps, thereby significantly reducing computational costs. We conduct extensive experiments to evaluate the utility and efficiency of \Method. For instance, when applied to QwQ-32B on the LiveBench/Code dataset, \Method keeps the original performance while reducing output token counts by approximately 30\%, with minimal overhead introduced by the CoT generator. Furthermore, we identify two suboptimal modes, blindly following flawed external thoughts and unnecessary rethinking, and show that simple mitigations, such as difficulty-aware fallbacks, can further improve performance. Overall, \Method offers a practical, general, and efficient way to optimize LRM inference, making powerful reasoning models more accessible and scalable for real-world applications.
♻ ☆ Is It Really You? Exploring Biometric Verification Scenarios in Photorealistic Talking-Head Avatar Videos
Photorealistic talking-head avatars are becoming increasingly common in virtual meetings, gaming, and social platforms. These avatars allow for more immersive communication, but they also introduce serious security risks. One emerging threat is impersonation: an attacker can steal a user's avatar, preserving his appearance and voice, making it nearly impossible to detect its fraudulent usage by sight or sound alone. In this paper, we explore the challenge of biometric verification in such avatar-mediated scenarios. Our main question is whether an individual's facial motion patterns can serve as reliable behavioral biometrics to verify their identity when the avatar's visual appearance is a facsimile of its owner. To answer this question, we introduce a new dataset of realistic avatar videos created using a state-of-the-art one-shot avatar generation model, GAGAvatar, with genuine and impostor avatar videos. We also propose a lightweight, explainable spatio-temporal Graph Convolutional Network architecture with temporal attention pooling, that uses only facial landmarks to model dynamic facial gestures. Experimental results demonstrate that facial motion cues enable meaningful identity verification with AUC values approaching 80%. The proposed benchmark and biometric system are available for the research community in order to bring attention to the urgent need for more advanced behavioral biometric defenses in avatar-based communication systems.
comment: Accepted at the IEEE International Joint Conference on Biometrics (IJCB 2025)
♻ ☆ A Mixed User-Centered Approach to Enable Augmented Intelligence in Intelligent Tutoring Systems: The Case of MathAIde app
Integrating Artificial Intelligence in Education (AIED) aims to enhance learning experiences through technologies like Intelligent Tutoring Systems (ITS), offering personalized learning, increased engagement, and improved retention rates. However, AIED faces three main challenges: the critical role of teachers in the design process, the limitations and reliability of AI tools, and the accessibility of technological resources. Augmented Intelligence (AuI) addresses these challenges by enhancing human capabilities rather than replacing them, allowing systems to suggest solutions. In contrast, humans provide final assessments, thus improving AI over time. In this sense, this study focuses on designing, developing, and evaluating MathAIde, an ITS that corrects mathematics exercises using computer vision and AI and provides feedback based on photos of student work. The methodology included brainstorming sessions with potential users, high-fidelity prototyping, A/B testing, and a case study involving real-world classroom environments for teachers and students. Our research identified several design possibilities for implementing AuI in ITSs, emphasizing a balance between user needs and technological feasibility. Prioritization and validation through prototyping and testing highlighted the importance of efficiency metrics, ultimately leading to a solution that offers pre-defined remediation alternatives for teachers. Real-world deployment demonstrated the usefulness of the proposed solution. Our research contributes to the literature by providing a usable, teacher-centered design approach that involves teachers in all design phases. As a practical implication, we highlight that the user-centered design approach increases the usefulness and adoption potential of AIED systems, especially in resource-limited environments.
comment: Article accepted in the International Journal of Human-Computer Interaction
♻ ☆ UoMo: A Foundation Model for Mobile Traffic Forecasting with Diffusion Model SIGKDD
Mobile traffic forecasting allows operators to anticipate network dynamics and performance in advance, offering substantial potential for enhancing service quality and improving user experience. However, existing models are often task-oriented and are trained with tailored data, which limits their effectiveness in diverse mobile network tasks of Base Station (BS) deployment, resource allocation, energy optimization, etc. and hinders generalization across different urban environments. Foundation models have made remarkable strides across various domains of NLP and CV due to their multi-tasking adaption and zero/few-shot learning capabilities. In this paper, we propose an innovative Foundation model for Mo}bile traffic forecasting (FoMo), aiming to handle diverse forecasting tasks of short/long-term predictions and distribution generation across multiple cities to support network planning and optimization. FoMo combines diffusion models and transformers, where various spatio-temporal masks are proposed to enable FoMo to learn intrinsic features of different tasks, and a contrastive learning strategy is developed to capture the correlations between mobile traffic and urban contexts, thereby improving its transfer learning capability. Extensive experiments on 9 real-world datasets demonstrate that FoMo outperforms current models concerning diverse forecasting tasks and zero/few-shot learning, showcasing a strong universality.
comment: 2025 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2025
♻ ☆ Towards Question Answering over Large Semi-structured Tables
Table Question Answering (TableQA) attracts strong interests due to the prevalence of web information presented in the form of semi-structured tables. Despite many efforts, TableQA over large tables remains an open challenge. This is because large tables may overwhelm models that try to comprehend them in full to locate question answers. Recent studies reduce input table size by decomposing tables into smaller, question-relevant sub-tables via generating programs to parse the tables. However, such solutions are subject to program generation and execution errors and are difficult to ensure decomposition quality. To address this issue, we propose TaDRe, a TableQA model that incorporates both pre- and post-table decomposition refinements to ensure table decomposition quality, hence achieving highly accurate TableQA results. To evaluate TaDRe, we construct two new large-table TableQA benchmarks via LLM-driven table expansion and QA pair generation. Extensive experiments on both the new and public benchmarks show that TaDRe achieves state-of-the-art performance on large-table TableQA tasks.
♻ ☆ LesiOnTime -- Joint Temporal and Clinical Modeling for Small Breast Lesion Segmentation in Longitudinal DCE-MRI
Accurate segmentation of small lesions in Breast Dynamic Contrast-Enhanced MRI (DCE-MRI) is critical for early cancer detection, especially in high-risk patients. While recent deep learning methods have advanced lesion segmentation, they primarily target large lesions and neglect valuable longitudinal and clinical information routinely used by radiologists. In real-world screening, detecting subtle or emerging lesions requires radiologists to compare across timepoints and consider previous radiology assessments, such as the BI-RADS score. We propose LesiOnTime, a novel 3D segmentation approach that mimics clinical diagnostic workflows by jointly leveraging longitudinal imaging and BIRADS scores. The key components are: (1) a Temporal Prior Attention (TPA) block that dynamically integrates information from previous and current scans; and (2) a BI-RADS Consistency Regularization (BCR) loss that enforces latent space alignment for scans with similar radiological assessments, thus embedding domain knowledge into the training process. Evaluated on a curated in-house longitudinal dataset of high-risk patients with DCE-MRI, our approach outperforms state-of-the-art single-timepoint and longitudinal baselines by 5% in terms of Dice. Ablation studies demonstrate that both TPA and BCR contribute complementary performance gains. These results highlight the importance of incorporating temporal and clinical context for reliable early lesion segmentation in real-world breast cancer screening. Our code is publicly available at https://github.com/cirmuw/LesiOnTime
♻ ☆ Benchmarking Sub-Genre Classification For Mainstage Dance Music
Music classification, a cornerstone of music information retrieval, supports a wide array of applications. To address the lack of comprehensive datasets and effective methods for sub-genre classification in mainstage dance music, we introduce a novel benchmark featuring a new dataset and baseline. Our dataset expands the scope of sub-genres to reflect the diversity of recent mainstage live sets performed by leading DJs at global music festivals, capturing the vibrant and rapidly evolving electronic dance music (EDM) scene that engages millions of fans worldwide. We employ a continuous soft labeling approach to accommodate tracks blending multiple sub-genres, preserving their inherent complexity. Experiments demonstrate that even state-of-the-art multimodal large language models (MLLMs) struggle with this task, while our specialized baseline models achieve high accuracy. This benchmark supports applications such as music recommendation, DJ set curation, and interactive multimedia systems, with video demos provided. Our code and data are all open-sourced at https://github.com/Gariscat/housex-v2.git.
comment: WASPAA 2025
♻ ☆ Mix-LN: Unleashing the Power of Deeper Layers by Combining Pre-LN and Post-LN
Large Language Models (LLMs) have achieved remarkable success, yet recent findings reveal that their deeper layers often contribute minimally and can be pruned without affecting overall performance. While some view this as an opportunity for model compression, we identify it as a training shortfall rooted in the widespread use of Pre-Layer Normalization (Pre-LN). We demonstrate that Pre-LN, commonly employed in models like GPT and LLaMA, leads to diminished gradient norms in its deeper layers, reducing their effectiveness. In contrast, Post-Layer Normalization (Post-LN) preserves larger gradient norms in deeper layers but suffers from vanishing gradients in earlier layers. To address this, we introduce Mix-LN, a novel normalization technique that combines the strengths of Pre-LN and Post-LN within the same model. Mix-LN applies Post-LN to the earlier layers and Pre-LN to the deeper layers, ensuring more uniform gradients across layers. This allows all parts of the network--both shallow and deep layers--to contribute effectively to training. Extensive experiments with various model sizes from 70M to 7B demonstrate that Mix-LN consistently outperforms both Pre-LN and Post-LN, promoting more balanced, healthier gradient norms throughout the network, and enhancing the overall quality of LLM pre-training. Furthermore, we demonstrate that models pre-trained with Mix-LN learn better compared to those using Pre-LN or Post-LN during supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF), highlighting the critical importance of high-quality deep layers. By effectively addressing the inefficiencies of deep layers in current LLMs, Mix-LN unlocks their potential, enhancing model capacity without increasing model size. Our code is available at https://github.com/pixeli99/MixLN.
♻ ☆ D-Judge: How Far Are We? Evaluating the Discrepancies Between AI-synthesized Images and Natural Images through Multimodal Guidance
In the rapidly evolving field of Artificial Intelligence Generated Content (AIGC), a central challenge is distinguishing AI-synthesized images from natural images. Despite the impressive capabilities of advanced AI generative models in producing visually compelling content, significant discrepancies remain when compared to natural images. To systematically investigate and quantify these differences, we construct a large-scale multimodal dataset named DANI, comprising 5,000 natural images and over 440,000 AI-generated image (AIGI) samples produced by nine representative models using both unimodal and multimodal prompts, including Text-to-Image (T2I), Image-to-Image (I2I), and Text and Image-to-Image (TI2I). We then introduce D-Judge, a benchmark designed to answer the critical question: how far are AI-generated images from truly realistic images? Our fine-grained evaluation framework assesses DANI across five key dimensions: naive visual quality, semantic alignment, aesthetic appeal, downstream task applicability, and coordinated human validation. Extensive experiments reveal substantial discrepancies across these dimensions, highlighting the importance of aligning quantitative metrics with human judgment to achieve a comprehensive understanding of AI-generated image quality. The code and dataset are publicly available at: https://github.com/ryliu68/DJudge and https://huggingface.co/datasets/Renyang/DANI.
comment: Accepted by ACM MM 2025
♻ ☆ An Electrocardiogram Foundation Model Built on over 10 Million Recordings with External Evaluation across Multiple Domains
Artificial intelligence (AI) has demonstrated significant potential in ECG analysis and cardiovascular disease assessment. Recently, foundation models have played a remarkable role in advancing medical AI. The development of an ECG foundation model holds the promise of elevating AI-ECG research to new heights. However, building such a model faces several challenges, including insufficient database sample sizes and inadequate generalization across multiple domains. Additionally, there is a notable performance gap between single-lead and multi-lead ECG analyses. We introduced an ECG Foundation Model (ECGFounder), a general-purpose model that leverages real-world ECG annotations from cardiology experts to broaden the diagnostic capabilities of ECG analysis. ECGFounder was trained on over 10 million ECGs with 150 label categories from the Harvard-Emory ECG Database, enabling comprehensive cardiovascular disease diagnosis through ECG analysis. The model is designed to be both an effective out-of-the-box solution, and a to be fine-tunable for downstream tasks, maximizing usability. Importantly, we extended its application to lower rank ECGs, and arbitrary single-lead ECGs in particular. ECGFounder is applicable to supporting various downstream tasks in mobile monitoring scenarios. Experimental results demonstrate that ECGFounder achieves expert-level performance on internal validation sets, with AUROC exceeding 0.95 for eighty diagnoses. It also shows strong classification performance and generalization across various diagnoses on external validation sets. When fine-tuned, ECGFounder outperforms baseline models in demographic analysis, clinical event detection, and cross-modality cardiac rhythm diagnosis. The trained model and data will be publicly released upon publication through the bdsp.io. Our code is available at https://github.com/PKUDigitalHealth/ECGFounder
comment: Code: https://github.com/PKUDigitalHealth/ECGFounder
♻ ☆ GenKnowSub: Improving Modularity and Reusability of LLMs through General Knowledge Subtraction ACL 2025
Large language models often struggle with zero-shot generalization, and several modular approaches have been proposed to address this challenge. Yet, we hypothesize that a key limitation remains: the entanglement of general knowledge and task-specific adaptations. To overcome this, we propose a modular framework that disentangles these components by constructing a library of task-specific LoRA modules alongside a general-domain LoRA. By subtracting this general knowledge component from each task-specific module, we obtain residual modules that focus more exclusively on task-relevant information, a method we call general knowledge subtraction (GenKnowSub). Leveraging the refined task-specific modules and the Arrow routing algorithm \citep{ostapenko2024towards}, we dynamically select and combine modules for new inputs without additional training. Our studies on the Phi-3 model and standard Arrow as baselines reveal that using general knowledge LoRAs derived from diverse languages, including English, French, and German, yields consistent performance gains in both monolingual and cross-lingual settings across a wide set of benchmarks. Further experiments on Phi-2 demonstrate how GenKnowSub generalizes to weaker LLMs. The complete code and data are available at https://github.com/saharsamr/Modular-LLM.
comment: Accepted to ACL 2025 (main conference, short paper), 10 pages
♻ ☆ Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts ICML 2025
In this paper, we investigate how concept-based models (CMs) respond to out-of-distribution (OOD) inputs. CMs are interpretable neural architectures that first predict a set of high-level concepts (e.g., stripes, black) and then predict a task label from those concepts. In particular, we study the impact of concept interventions (i.e., operations where a human expert corrects a CM's mispredicted concepts at test time) on CMs' task predictions when inputs are OOD. Our analysis reveals a weakness in current state-of-the-art CMs, which we term leakage poisoning, that prevents them from properly improving their accuracy when intervened on for OOD inputs. To address this, we introduce MixCEM, a new CM that learns to dynamically exploit leaked information missing from its concepts only when this information is in-distribution. Our results across tasks with and without complete sets of concept annotations demonstrate that MixCEMs outperform strong baselines by significantly improving their accuracy for both in-distribution and OOD samples in the presence and absence of concept interventions.
comment: Presented at the Forty-Second International Conference on Machine Learning (ICML 2025). Post-conference manuscript
♻ ☆ StackTrans: From Large Language Model to Large Pushdown Automata Model
The Transformer architecture has emerged as a landmark advancement within the broad field of artificial intelligence, effectively catalyzing the advent of large language models (LLMs). However, despite its remarkable capabilities and the substantial progress it has facilitated, the Transformer architecture still has some limitations. One such intrinsic limitation is its inability to effectively capture the Chomsky hierarchy, such as regular expressions or deterministic context-free grammars. Drawing inspiration from pushdown automata, which efficiently resolve deterministic context-free grammars using stacks, we propose StackTrans to address the aforementioned issue within LLMs. Unlike previous approaches that modify the attention computation, StackTrans explicitly incorporates hidden state stacks between Transformer layers. This design maintains compatibility with existing frameworks like flash-attention. Specifically, our design features stack operations -- such as pushing and popping hidden states -- that are differentiable and can be learned in an end-to-end manner. Our comprehensive evaluation spans benchmarks for both Chomsky hierarchies and large-scale natural languages. Across these diverse tasks, StackTrans consistently outperforms standard Transformer models and other baselines. We have successfully scaled StackTrans up from 360M to 7B parameters. In particular, our from-scratch pretrained model StackTrans-360M outperforms several larger open-source LLMs with 2-3x more parameters, showcasing its superior efficiency and reasoning capability.
♻ ☆ Collision-based Dynamics for Multi-Marginal Optimal Transport
Inspired by the Boltzmann kinetics, we propose a collision-based dynamics with a Monte Carlo solution algorithm that approximates the solution of the multi-marginal optimal transport problem via randomized pairwise swapping of sample indices. The computational complexity and memory usage of the proposed method scale linearly with the number of samples, making it highly attractive for high-dimensional settings. In several examples, we demonstrate the efficiency of the proposed method compared to the state-of-the-art methods.
♻ ☆ How LLMs are Shaping the Future of Virtual Reality
The integration of Large Language Models (LLMs) into Virtual Reality (VR) games marks a paradigm shift in the design of immersive, adaptive, and intelligent digital experiences. This paper presents a comprehensive review of recent research at the intersection of LLMs and VR, examining how these models are transforming narrative generation, non-player character (NPC) interactions, accessibility, personalization, and game mastering. Drawing from an analysis of 62 peer reviewed studies published between 2018 and 2025, we identify key application domains ranging from emotionally intelligent NPCs and procedurally generated storytelling to AI-driven adaptive systems and inclusive gameplay interfaces. We also address the major challenges facing this convergence, including real-time performance constraints, memory limitations, ethical risks, and scalability barriers. Our findings highlight that while LLMs significantly enhance realism, creativity, and user engagement in VR environments, their effective deployment requires robust design strategies that integrate multimodal interaction, hybrid AI architectures, and ethical safeguards. The paper concludes by outlining future research directions in multimodal AI, affective computing, reinforcement learning, and open-source development, aiming to guide the responsible advancement of intelligent and inclusive VR systems.
comment: Pre-print
♻ ☆ Exploiting Uncertainty for Querying Inconsistent Description Logics Knowledge Bases
The necessity to manage inconsistency in Description Logics Knowledge Bases (KBs) has come to the fore with the increasing importance gained by the Semantic Web, where information comes from different sources that constantly change their content and may contain contradictory descriptions when considered either alone or together. Classical reasoning algorithms do not handle inconsistent KBs, forcing the debugging of the KB in order to remove the inconsistency. In this paper, we exploit an existing probabilistic semantics called DISPONTE to overcome this problem and allow queries also in case of inconsistent KBs. We implemented our approach in the reasoners TRILL and BUNDLE and empirically tested the validity of our proposal. Moreover, we formally compare the presented approach to that of the repair semantics, one of the most established semantics when considering DL reasoning tasks.
♻ ☆ Survivability of Backdoor Attacks on Unconstrained Face Recognition Systems
The widespread use of deep learning face recognition raises several security concerns. Although prior works point at existing vulnerabilities, DNN backdoor attacks against real-life, unconstrained systems dealing with images captured in the wild remain a blind spot of the literature. This paper conducts the first system-level study of backdoors in deep learning-based face recognition systems. This paper yields four contributions by exploring the feasibility of DNN backdoors on these pipelines in a holistic fashion. We demonstrate for the first time two backdoor attacks on the face detection task: face generation and face landmark shift attacks. We then show that face feature extractors trained with large margin losses also fall victim to backdoor attacks. Combining our models, we then show using 20 possible pipeline configurations and 15 attack cases that a single backdoor enables an attacker to bypass the entire function of a system. Finally, we provide stakeholders with several best practices and countermeasures.
♻ ☆ VRBench: A Benchmark for Multi-Step Reasoning in Long Narrative Videos ICCV2025
We present VRBench, the first long narrative video benchmark crafted for evaluating large models' multi-step reasoning capabilities, addressing limitations in existing evaluations that overlook temporal reasoning and procedural validity. It comprises 960 long videos (with an average duration of 1.6 hours), along with 8,243 human-labeled multi-step question-answering pairs and 25,106 reasoning steps with timestamps. These videos are curated via a multi-stage filtering process including expert inter-rater reviewing to prioritize plot coherence. We develop a human-AI collaborative framework that generates coherent reasoning chains, each requiring multiple temporally grounded steps, spanning seven types (e.g., event attribution, implicit inference). VRBench designs a multi-phase evaluation pipeline that assesses models at both the outcome and process levels. Apart from the MCQs for the final results, we propose a progress-level LLM-guided scoring metric to evaluate the quality of the reasoning chain from multiple dimensions comprehensively. Through extensive evaluations of 12 LLMs and 19 VLMs on VRBench, we undertake a thorough analysis and provide valuable insights that advance the field of multi-step reasoning.
comment: ICCV2025
♻ ☆ StackLiverNet: A Novel Stacked Ensemble Model for Accurate and Interpretable Liver Disease Detection
Liver diseases are a serious health concern in the world, which requires precise and timely diagnosis to enhance the survival chances of patients. The current literature implemented numerous machine learning and deep learning models to classify liver diseases, but most of them had some issues like high misclassification error, poor interpretability, prohibitive computational expense, and lack of good preprocessing strategies. In order to address these drawbacks, we introduced StackLiverNet in this study; an interpretable stacked ensemble model tailored to the liver disease detection task. The framework uses advanced data preprocessing and feature selection technique to increase model robustness and predictive ability. Random undersampling is performed to deal with class imbalance and make the training balanced. StackLiverNet is an ensemble of several hyperparameter-optimized base classifiers, whose complementary advantages are used through a LightGBM meta-model. The provided model demonstrates excellent performance, with the testing accuracy of 99.89%, Cohen Kappa of 0.9974, and AUC of 0.9993, having only 5 misclassifications, and efficient training and inference speeds that are amenable to clinical practice (training time 4.2783 seconds, inference time 0.1106 seconds). Besides, Local Interpretable Model-Agnostic Explanations (LIME) are applied to generate transparent explanations of individual predictions, revealing high concentrations of Alkaline Phosphatase and moderate SGOT as important observations of liver disease. Also, SHAP was used to rank features by their global contribution to predictions, while the Morris method confirmed the most influential features through sensitivity analysis.
comment: Accepted and presented paper of THE 16th INTERNATIONAL IEEE CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT) INDIA
♻ ☆ Distributed AI Agents for Cognitive Underwater Robot Autonomy
Achieving robust cognitive autonomy in robots navigating complex, unpredictable environments remains a fundamental challenge in robotics. This paper presents Underwater Robot Self-Organizing Autonomy (UROSA), a groundbreaking architecture leveraging distributed Large Language Model AI agents integrated within the Robot Operating System 2 (ROS 2) framework to enable advanced cognitive capabilities in Autonomous Underwater Vehicles. UROSA decentralises cognition into specialised AI agents responsible for multimodal perception, adaptive reasoning, dynamic mission planning, and real-time decision-making. Central innovations include flexible agents dynamically adapting their roles, retrieval-augmented generation utilising vector databases for efficient knowledge management, reinforcement learning-driven behavioural optimisation, and autonomous on-the-fly ROS 2 node generation for runtime functional extensibility. Extensive empirical validation demonstrates UROSA's promising adaptability and reliability through realistic underwater missions in simulation and real-world deployments, showing significant advantages over traditional rule-based architectures in handling unforeseen scenarios, environmental uncertainties, and novel mission objectives. This work not only advances underwater autonomy but also establishes a scalable, safe, and versatile cognitive robotics framework capable of generalising to a diverse array of real-world applications.
♻ ☆ Hierarchical Reasoning Model
Reasoning, the process of devising and executing complex goal-oriented action sequences, remains a critical challenge in AI. Current large language models (LLMs) primarily employ Chain-of-Thought (CoT) techniques, which suffer from brittle task decomposition, extensive data requirements, and high latency. Inspired by the hierarchical and multi-timescale processing in the human brain, we propose the Hierarchical Reasoning Model (HRM), a novel recurrent architecture that attains significant computational depth while maintaining both training stability and efficiency. HRM executes sequential reasoning tasks in a single forward pass without explicit supervision of the intermediate process, through two interdependent recurrent modules: a high-level module responsible for slow, abstract planning, and a low-level module handling rapid, detailed computations. With only 27 million parameters, HRM achieves exceptional performance on complex reasoning tasks using only 1000 training samples. The model operates without pre-training or CoT data, yet achieves nearly perfect performance on challenging tasks including complex Sudoku puzzles and optimal path finding in large mazes. Furthermore, HRM outperforms much larger models with significantly longer context windows on the Abstraction and Reasoning Corpus (ARC), a key benchmark for measuring artificial general intelligence capabilities. These results underscore HRM's potential as a transformative advancement toward universal computation and general-purpose reasoning systems.
♻ ☆ Hypergraph Mamba for Efficient Whole Slide Image Understanding
Whole Slide Images (WSIs) in histopathology pose a significant challenge for extensive medical image analysis due to their ultra-high resolution, massive scale, and intricate spatial relationships. Although existing Multiple Instance Learning (MIL) approaches like Graph Neural Networks (GNNs) and Transformers demonstrate strong instance-level modeling capabilities, they encounter constraints regarding scalability and computational expenses. To overcome these limitations, we introduce the WSI-HGMamba, a novel framework that unifies the high-order relational modeling capabilities of the Hypergraph Neural Networks (HGNNs) with the linear-time sequential modeling efficiency of the State Space Models. At the core of our design is the HGMamba block, which integrates message passing, hypergraph scanning & flattening, and bidirectional state space modeling (Bi-SSM), enabling the model to retain both relational and contextual cues while remaining computationally efficient. Compared to Transformer and Graph Transformer counterparts, WSI-HGMamba achieves superior performance with up to 7* reduction in FLOPs. Extensive experiments on multiple public and private WSI benchmarks demonstrate that our method provides a scalable, accurate, and efficient solution for slide-level understanding, making it a promising backbone for next-generation pathology AI systems.
♻ ☆ Tree-of-Code: A Tree-Structured Exploring Framework for End-to-End Code Generation and Execution in Complex Task Handling ACL 2025
Solving complex reasoning tasks is a key real-world application of agents. Thanks to the pretraining of Large Language Models (LLMs) on code data, recent approaches like CodeAct successfully use code as LLM agents' action, achieving good results. However, CodeAct greedily generates the next action's code block by relying on fragmented thoughts, resulting in inconsistency and instability. Moreover, CodeAct lacks action-related ground-truth (GT), making its supervision signals and termination conditions questionable in multi-turn interactions. To address these issues, we first introduce a simple yet effective end-to-end code generation paradigm, CodeProgram, which leverages code's systematic logic to align with global reasoning and enable cohesive problem-solving. Then, we propose Tree-of-Code (ToC), which self-grows CodeProgram nodes based on the executable nature of the code and enables self-supervision in a GT-free scenario. Experimental results on two datasets using ten popular zero-shot LLMs show ToC remarkably boosts accuracy by nearly 20% over CodeAct with less than 1/4 turns. Several LLMs even perform better on one-turn CodeProgram than on multi-turn CodeAct. To further investigate the trade-off between efficacy and efficiency, we test different ToC tree sizes and exploration mechanisms. We also highlight the potential of ToC's end-to-end data generation for supervised and reinforced fine-tuning.
comment: This idea was first submitted to the NeuralPS Workshop "System 2 Reasoning At Scale" in September 2024. Its OpenReview: https://openreview.net/forum?id=8NKAL8Ngxk¬eId=8NKAL8Ngxk. It was then submitted to the NAACL 2025 in October 2024, which is recorded in: https://openreview.net/forum?id=S0ZUWD3Vy5¬eId=S0ZUWD3Vy5. Now this paper has been accepted for publication in ACL 2025 Findings
♻ ☆ Operator: A Protocol for Trustless Delegation Under Uncertainty
Correctness is an emergent property of systems where exposing error is cheaper than committing it. In dynamic, low-trust environments, autonomous AI agents benefit from delegating work to sub-agents, yet correctness cannot be assured through upfront specification or centralized oversight. We propose a protocol that enforces correctness through collateralized claims in a recursive verification game. Tasks are published as intents, and solvers compete to fulfill them. Selected solvers carry out tasks under risk, with correctness checked post hoc by verifiers. Any challenger can challenge a result by staking against it to trigger the verification process. Incorrect agents are slashed and correct opposition is rewarded, with an escalation path that penalizes erroneous verifiers themselves. When incentives are aligned across solvers, challengers, and verifiers, falsification conditions make correctness the Nash equilibrium.
comment: 9 pages, 1 figure
♻ ☆ ForgeHLS: A Large-Scale, Open-Source Dataset for High-Level Synthesis
High-Level Synthesis (HLS) plays a crucial role in modern hardware design by transforming high-level code into optimized hardware implementations. However, progress in applying machine learning (ML) to HLS optimization has been hindered by a shortage of sufficiently large and diverse datasets. To bridge this gap, we introduce ForgeHLS, a large-scale, open-source dataset explicitly designed for ML-driven HLS research. ForgeHLS comprises over 400k diverse designs generated from 846 kernels covering a broad range of application domains, consuming over 200k CPU hours during dataset construction. Each kernel includes systematically automated pragma insertions (loop unrolling, pipelining, array partitioning), combined with extensive design space exploration using Bayesian optimization. Compared to existing datasets, ForgeHLS significantly enhances scale, diversity, and design coverage. We further define and evaluate representative downstream tasks in Quality of Result (QoR) prediction and automated pragma exploration, clearly demonstrating ForgeHLS utility for developing and improving ML-based HLS optimization methodologies. The dataset and code are public at https://github.com/zedong-peng/ForgeHLS.
♻ ☆ Shaping Sparse Rewards in Reinforcement Learning: A Semi-supervised Approach
In many real-world scenarios, reward signal for agents are exceedingly sparse, making it challenging to learn an effective reward function for reward shaping. To address this issue, the proposed approach in this paper performs reward shaping not only by utilizing non-zero-reward transitions but also by employing the \emph{Semi-Supervised Learning} (SSL) technique combined with a novel data augmentation to learn trajectory space representations from the majority of transitions, {i.e}., zero-reward transitions, thereby improving the efficacy of reward shaping. Experimental results in Atari and robotic manipulation demonstrate that our method outperforms supervised-based approaches in reward inference, leading to higher agent scores. Notably, in more sparse-reward environments, our method achieves up to twice the peak scores compared to supervised baselines. The proposed double entropy data augmentation enhances performance, showcasing a 15.8\% increase in best score over other augmentation methods
♻ ☆ Step-wise Adaptive Integration of Supervised Fine-tuning and Reinforcement Learning for Task-Specific LLMs
Large language models (LLMs) excel at mathematical reasoning and logical problem-solving. The current popular training paradigms primarily use supervised fine-tuning (SFT) and reinforcement learning (RL) to enhance the models' reasoning abilities. However, when using SFT or RL alone, there are respective challenges: SFT may suffer from overfitting, while RL is prone to mode collapse. The state-of-the-art methods have proposed hybrid training schemes. However, static switching faces challenges such as poor generalization across different tasks and high dependence on data quality. In response to these challenges, inspired by the curriculum learning-quiz mechanism in human reasoning cultivation, We propose SASR, a step-wise adaptive hybrid training framework that theoretically unifies SFT and RL and dynamically balances the two throughout optimization. SASR uses SFT for initial warm-up to establish basic reasoning skills, and then uses an adaptive dynamic adjustment algorithm based on gradient norm and divergence relative to the original distribution to seamlessly integrate SFT with the online RL method GRPO. By monitoring the training status of LLMs and adjusting the training process in sequence, SASR ensures a smooth transition between training schemes, maintaining core reasoning abilities while exploring different paths. Experimental results demonstrate that SASR outperforms SFT, RL, and static hybrid training methods.
♻ ☆ Can Reasoning Help Large Language Models Capture Human Annotator Disagreement?
Variation in human annotation (i.e., disagreements) is common in NLP, often reflecting important information like task subjectivity and sample ambiguity. Modeling this variation is important for applications that are sensitive to such information. Although RLVR-style reasoning (Reinforcement Learning with Verifiable Rewards) has improved Large Language Model (LLM) performance on many tasks, it remains unclear whether such reasoning enables LLMs to capture informative variation in human annotation. In this work, we evaluate the influence of different reasoning settings on LLM disagreement modeling. We systematically evaluate each reasoning setting across model sizes, distribution expression methods, and steering methods, resulting in 60 experimental setups across 3 tasks. Surprisingly, our results show that RLVR-style reasoning degrades performance in disagreement modeling, while naive Chain-of-Thought (CoT) reasoning improves the performance of RLHF LLMs (RL from human feedback). These findings underscore the potential risk of replacing human annotators with reasoning LLMs, especially when disagreements are important.
comment: Preprint Under Review
♻ ☆ GS-ID: Illumination Decomposition on Gaussian Splatting via Adaptive Light Aggregation and Diffusion-Guided Material Priors
Gaussian Splatting (GS) has emerged as an effective representation for photorealistic rendering, but the underlying geometry, material, and lighting remain entangled, hindering scene editing. Existing GS-based methods struggle to disentangle these components under non-Lambertian conditions, especially in the presence of specularities and shadows. We propose \textbf{GS-ID}, an end-to-end framework for illumination decomposition that integrates adaptive light aggregation with diffusion-based material priors. In addition to a learnable environment map for ambient illumination, we model spatially-varying local lighting using anisotropic spherical Gaussian mixtures (SGMs) that are jointly optimized with scene content. To better capture cast shadows, we associate each splat with a learnable unit vector that encodes shadow directions from multiple light sources, further improving material and lighting estimation. By combining SGMs with intrinsic priors from diffusion models, GS-ID significantly reduces ambiguity in light-material-geometry interactions and achieves state-of-the-art performance on inverse rendering and relighting benchmarks. Experiments also demonstrate the effectiveness of GS-ID for downstream applications such as relighting and scene composition.
comment: 17 pages, 14 figures
♻ ☆ Contextual Gesture: Co-Speech Gesture Video Generation through Context-aware Gesture Representation
Co-speech gesture generation is crucial for creating lifelike avatars and enhancing human-computer interactions by synchronizing gestures with speech. Despite recent advancements, existing methods struggle with accurately identifying the rhythmic or semantic triggers from audio for generating contextualized gesture patterns and achieving pixel-level realism. To address these challenges, we introduce Contextual Gesture, a framework that improves co-speech gesture video generation through three innovative components: (1) a chronological speech-gesture alignment that temporally connects two modalities, (2) a contextualized gesture tokenization that incorporate speech context into motion pattern representation through distillation, and (3) a structure-aware refinement module that employs edge connection to link gesture keypoints to improve video generation. Our extensive experiments demonstrate that Contextual Gesture not only produces realistic and speech-aligned gesture videos but also supports long-sequence generation and video gesture editing applications, shown in Fig.1.
comment: Accepted to ACMMM 2025. Project Page: https://andypinxinliu.github.io/Contextual-Gesture/
♻ ☆ PRISON: Unmasking the Criminal Potential of Large Language Models
As large language models (LLMs) advance, concerns about their misconduct in complex social contexts intensify. Existing research overlooked the systematic understanding and assessment of their criminal capability in realistic interactions. We propose a unified framework PRISON, to quantify LLMs' criminal potential across five traits: False Statements, Frame-Up, Psychological Manipulation, Emotional Disguise, and Moral Disengagement. Using structured crime scenarios adapted from classic films grounded in reality, we evaluate both criminal potential and anti-crime ability of LLMs. Results show that state-of-the-art LLMs frequently exhibit emergent criminal tendencies, such as proposing misleading statements or evasion tactics, even without explicit instructions. Moreover, when placed in a detective role, models recognize deceptive behavior with only 44% accuracy on average, revealing a striking mismatch between conducting and detecting criminal behavior. These findings underscore the urgent need for adversarial robustness, behavioral alignment, and safety mechanisms before broader LLM deployment.
♻ ☆ DiffSampling: Enhancing Diversity and Accuracy in Neural Text Generation
Despite their growing capabilities, language models still frequently reproduce content from their training data, generate repetitive text, and favor common grammatical patterns and vocabulary. A possible cause is the decoding strategy: the most common strategies either consider only the most probable tokens, which reduces output diversity, or increase the likelihood of unlikely tokens, compromising output accuracy and correctness. In this paper, we propose DiffSampling, a new decoding method that leverages a mathematical analysis of the token probability distribution to ensure the generation of contextually appropriate text. In particular, the difference between consecutive, sorted probabilities can be used to truncate incorrect tokens. In addition, we also propose two variations of the proposed method that aim to correct the subtle inconsistencies of common sampling strategies. Experiments involving four different text-generation tasks demonstrate that our approach consistently performs at least on par with the existing methods it builds upon in terms of quality, while potentially improving output diversity.
♻ ☆ Exploring utilization of generative AI for research and education in data-driven materials science
Generative AI has recently had a profound impact on various fields, including daily life, research, and education. To explore its efficient utilization in data-driven materials science, we organized a hackathon -- AIMHack2024 -- in July 2024. In this hackathon, researchers from fields such as materials science, information science, bioinformatics, and condensed matter physics worked together to explore how generative AI can facilitate research and education. Based on the results of the hackathon, this paper presents topics related to (1) conducting AI-assisted software trials, (2) building AI tutors for software, and (3) developing GUI applications for software. While generative AI continues to evolve rapidly, this paper provides an early record of its application in data-driven materials science and highlights strategies for integrating AI into research and education.
comment: 13 pages, 3 figures
♻ ☆ Thinking Outside the (Gray) Box: A Context-Based Score for Assessing Value and Originality in Neural Text Generation
Despite the increasing use of large language models for creative tasks, their outputs often lack diversity. Common solutions, such as sampling at higher temperatures, can compromise the quality of the results. Dealing with this trade-off is still an open challenge in designing AI systems for creativity. Drawing on information theory, we propose a context-based score to quantitatively evaluate value and originality. This score incentivizes accuracy and adherence to the request while fostering divergence from the learned distribution. We show that our score can be used as a reward in a reinforcement learning framework to fine-tune large language models for maximum performance. We validate our strategy through experiments considering a variety of creative tasks, such as poetry generation and math problem solving, demonstrating that it enhances the value and originality of the generated solutions.
♻ ☆ Intent-Based Network for RAN Management with Large Language Models
Advanced intelligent automation becomes an important feature to deal with the increased complexity in managing wireless networks. This paper proposes a novel automation approach of intent-based network for Radio Access Networks (RANs) management by leveraging Large Language Models (LLMs). The proposed method enhances intent translation, autonomously interpreting high-level objectives, reasoning over complex network states, and generating precise configurations of the RAN by integrating LLMs within an agentic architecture. We propose a structured prompt engineering technique and demonstrate that the network can automatically improve its energy efficiency by dynamically optimizing critical RAN parameters through a closed-loop mechanism. It showcases the potential to enable robust resource management in RAN by adapting strategies based on real-time feedback via LLM-orchestrated agentic systems.
comment: 5 pages, 3 figures, submitted to IEEE Globecom 2025
Computational Engineering, Finance, and Science 14
☆ An Efficient Continuous-Time MILP for Integrated Aircraft Hangar Scheduling and Layout
Efficient management of aircraft maintenance hangars is a critical operational challenge, involving complex, interdependent decisions regarding aircraft scheduling and spatial allocation. This paper introduces a novel continuous-time mixed-integer linear programming (MILP) model to solve this integrated spatio-temporal problem. By treating time as a continuous variable, our formulation overcomes the scalability limitations of traditional discrete-time approaches. The performance of the exact model is benchmarked against a constructive heuristic, and its practical applicability is demonstrated through a custom-built visualization dashboard. Computational results are compelling: the model solves instances with up to 25 aircraft to proven optimality, often in mere seconds, and for large-scale cases of up to 40 aircraft, delivers high-quality solutions within known optimality gaps. In all tested scenarios, the resulting solutions consistently and significantly outperform the heuristic, which highlights the framework's substantial economic benefits and provides valuable managerial insights into the trade-off between solution time and optimality.
comment: 35 pages, 7 figures
☆ Comparative Model Fidelity Evaluation to Support Design Decisions for Complex, Novel Systems of Systems
Systems design processes are increasingly reliant on simulation models to inform design decisions. A pervasive issue within the systems engineering community is trusting in the models used to make decisions about complex systems. This work presents a method of evaluating the trustworthiness of a model to provide utility to a designer making a decision within a design process. Trusting the results of a model is especially important in design processes where the system is complex, novel, or displays emergent phenomena. Additionally, systems that are in the pre-prototype stages of development often do not have sources of ground truth for validating the models. Developing methods of model validation and trust that do not require real-world data is a key challenge facing systems engineers. Model fidelity in this work refers to the adherence of a model to real-world physics and is closely tied to model trust and model validity. Trust and validity directly support a designer's ability to make decisions using physics-based models. The physics that are captured in a model and the complexity of the mathematical representation of the physics contribute to a model's fidelity, and this work leverages the included physical phenomena to develop a means of selecting the most appropriate for a given design decision.
comment: This is the authors' preprint (submitted version) of a paper accepted for ASME IDETC/CIE 2025, edited only to note preprint status. Posted in compliance with ASME 's preprint and copyright policy. The final version is copyrighted by ASME and will appear in the ASME Digital Collection. The DOI will be added once published
☆ ByteGen: A Tokenizer-Free Generative Model for Orderbook Events in Byte Space
Generative modeling of high-frequency limit order book (LOB) dynamics is a critical yet unsolved challenge in quantitative finance, essential for robust market simulation and strategy backtesting. Existing approaches are often constrained by simplifying stochastic assumptions or, in the case of modern deep learning models like Transformers, rely on tokenization schemes that affect the high-precision, numerical nature of financial data through discretization and binning. To address these limitations, we introduce ByteGen, a novel generative model that operates directly on the raw byte streams of LOB events. Our approach treats the problem as an autoregressive next-byte prediction task, for which we design a compact and efficient 32-byte packed binary format to represent market messages without information loss. The core novelty of our work is the complete elimination of feature engineering and tokenization, enabling the model to learn market dynamics from its most fundamental representation. We achieve this by adapting the H-Net architecture, a hybrid Mamba-Transformer model that uses a dynamic chunking mechanism to discover the inherent structure of market messages without predefined rules. Our primary contributions are: 1) the first end-to-end, byte-level framework for LOB modeling; 2) an efficient packed data representation; and 3) a comprehensive evaluation on high-frequency data. Trained on over 34 million events from CME Bitcoin futures, ByteGen successfully reproduces key stylized facts of financial markets, generating realistic price distributions, heavy-tailed returns, and bursty event timing. Our findings demonstrate that learning directly from byte space is a promising and highly flexible paradigm for modeling complex financial systems, achieving competitive performance on standard market quality metrics without the biases of tokenization.
comment: 21 pages, 3 tables, 5 figures
☆ FinCPRG: A Bidirectional Generation Pipeline for Hierarchical Queries and Rich Relevance in Financial Chinese Passage Retrieval
In recent years, large language models (LLMs) have demonstrated significant potential in constructing passage retrieval datasets. However, existing methods still face limitations in expressing cross-doc query needs and controlling annotation quality. To address these issues, this paper proposes a bidirectional generation pipeline, which aims to generate 3-level hierarchical queries for both intra-doc and cross-doc scenarios and mine additional relevance labels on top of direct mapping annotation. The pipeline introduces two query generation methods: bottom-up from single-doc text and top-down from multi-doc titles. The bottom-up method uses LLMs to disassemble and generate structured queries at both sentence-level and passage-level simultaneously from intra-doc passages. The top-down approach incorporates three key financial elements--industry, topic, and time--to divide report titles into clusters and prompts LLMs to generate topic-level queries from each cluster. For relevance annotation, our pipeline not only relies on direct mapping annotation from the generation relationship but also implements an indirect positives mining method to enrich the relevant query-passage pairs. Using this pipeline, we constructed a Financial Passage Retrieval Generated dataset (FinCPRG) from almost 1.3k Chinese financial research reports, which includes hierarchical queries and rich relevance labels. Through evaluations of mined relevance labels, benchmarking and training experiments, we assessed the quality of FinCPRG and validated its effectiveness as a passage retrieval dataset for both training and benchmarking.
☆ Generative Large-Scale Pre-trained Models for Automated Ad Bidding Optimization
Modern auto-bidding systems are required to balance overall performance with diverse advertiser goals and real-world constraints, reflecting the dynamic and evolving needs of the industry. Recent advances in conditional generative models, such as transformers and diffusers, have enabled direct trajectory generation tailored to advertiser preferences, offering a promising alternative to traditional Markov Decision Process-based methods. However, these generative methods face significant challenges, such as the distribution shift between offline and online environments, limited exploration of the action space, and the necessity to meet constraints like marginal Cost-per-Mille (CPM) and Return on Investment (ROI). To tackle these challenges, we propose GRAD (Generative Reward-driven Ad-bidding with Mixture-of-Experts), a scalable foundation model for auto-bidding that combines an Action-Mixture-of-Experts module for diverse bidding action exploration with the Value Estimator of Causal Transformer for constraint-aware optimization. Extensive offline and online experiments demonstrate that GRAD significantly enhances platform revenue, highlighting its effectiveness in addressing the evolving and diverse requirements of modern advertisers. Furthermore, GRAD has been implemented in multiple marketing scenarios at Meituan, one of the world's largest online food delivery platforms, leading to a 2.18% increase in Gross Merchandise Value (GMV) and 10.68% increase in ROI.
☆ A fluid--peridynamic structure model of deformation and damage of microchannels
Soft-walled microchannels arise in many applications, ranging from organ-on-a-chip platforms to soft-robotic actuators. However, despite extensive research on their static and dynamic response, the potential failure of these devices has not been addressed. To this end, we explore fluid--structure interaction in microchannels whose compliant top wall is governed by a nonlocal mechanical theory capable of simulating both deformation and material failure. We develop a one-dimensional model by coupling viscous flow under the lubrication approximation to a state-based peridynamic formulation of an Euler--Bernoulli beam. The peridynamic formulation enables the wall to be modeled as a genuinely nonlocal beam, and the integral form of its equation of motion remains valid whether the deformation field is smooth or contains discontinuities. Through the proposed computational model, we explore the steady and time-dependent behaviors of this fluid--peridynamic structure interaction. We rationalize the wave and damping dynamics observed in the simulations through a dispersion (linearized) analysis of the coupled system, finding that, with increasing nonlocal influence, wave propagation exhibits a clear departure from classical behavior, characterized by a gradual suppression of the phase velocity. The main contribution of our study is to outline the potential failure scenarios of the microchannel's soft wall under the hydrodynamic load of the flow. Specifically, we find a dividing curve in the space spanned by the dimensionless Strouhal number (quantifying unsteady inertia of the beam) and the compliance number (quantifying the strength of the fluid--structure coupling) separating scenarios of potential failure during transient conditions from potential failure at the steady load.
comment: 15 pages, 10 figures
☆ SoK: Stablecoins for Digital Transformation -- Design, Metrics, and Application with Real World Asset Tokenization as a Case Study
Stablecoins have become a foundational component of the digital asset ecosystem, with their market capitalization exceeding 230 billion USD as of May 2025. As fiat-referenced and programmable assets, stablecoins provide low-latency, globally interoperable infrastructure for payments, decentralized finance, DeFi, and tokenized commerce. Their accelerated adoption has prompted extensive regulatory engagement, exemplified by the European Union's Markets in Crypto-assets Regulation, MiCA, the US Guiding and Establishing National Innovation for US Stablecoins Act, GENIUS Act, and Hong Kong's Stablecoins Bill. Despite this momentum, academic research remains fragmented across economics, law, and computer science, lacking a unified framework for design, evaluation, and application. This study addresses that gap through a multi-method research design. First, it synthesizes cross-disciplinary literature to construct a taxonomy of stablecoin systems based on custodial structure, stabilization mechanism, and governance. Second, it develops a performance evaluation framework tailored to diverse stakeholder needs, supported by an open-source benchmarking pipeline to ensure transparency and reproducibility. Third, a case study on Real World Asset tokenization illustrates how stablecoins operate as programmable monetary infrastructure in cross-border digital systems. By integrating conceptual theory with empirical tools, the paper contributes: a unified taxonomy for stablecoin design; a stakeholder-oriented performance evaluation framework; an empirical case linking stablecoins to sectoral transformation; and reproducible methods and datasets to inform future research. These contributions support the development of trusted, inclusive, and transparent digital monetary infrastructure.
☆ Language Models Can Understand Spectra: A Multimodal Model for Molecular Structure Elucidation
Structure elucidation is a fundamental technique for understanding the microscopic composition of matter and is widely applied across various disciplines in the natural sciences and engineering. However, existing methods often rely heavily on prior databases or known structural information, making it difficult to resolve unknown structures. In addition, complex structures typically require the joint analysis of multiple spectroscopic modalities. This process heavily depends on expert domain knowledge and is often accompanied by high costs in terms of both time and instrumentation. To address these challenges, we propose SpectraLLM, the first large language model designed to support multi-modal spectroscopic joint reasoning. SpectraLLM is capable of processing either single or multiple spectroscopic inputs and performing end-to-end structure elucidation. By integrating continuous and discrete spectroscopic modalities into a shared semantic space, SpectraLLM learns to uncover substructural patterns that are consistent and complementary across spectra, enabling precise molecular structure elucidation. We pretrain and fine-tune SpectraLLM in the domain of small molecules, and evaluate it on six standardized, publicly available chemical datasets. The model achieves state-of-the-art performance, significantly outperforming existing approaches trained on single modalities. Notably, SpectraLLM demonstrates strong robustness and generalization even for single-spectrum inference, while its multi-modal reasoning capability further improves the accuracy of structural prediction.
comment: 22 pages, 3 figures, 11 tables
♻ ☆ No Tick-Size Too Small: A General Method for Modelling Small Tick Limit Order Books
Tick-sizes not only influence the granularity of the price formation process but also affect market agents' behavior. We investigate the disparity in the microstructural properties of the Limit Order Book (LOB) across a basket of assets with different relative tick-sizes. A key contribution of this study is the identification of several stylized facts, which are used to differentiate between large, medium, and small-tick assets, along with clear metrics for their measurement. We provide cross-asset visualizations to illustrate how these attributes vary with relative tick-size. Further, we propose a Hawkes Process model that {\color{black}not only fits well for large-tick assets, but also accounts for }sparsity, multi-tick level price moves, and the shape of the LOB in small-tick assets. Through simulation studies, we demonstrate the {\color{black} versatility} of the model and identify key variables that determine whether a simulated LOB resembles a large-tick or small-tick asset. Our tests show that stylized facts like sparsity, shape, and relative returns distribution can be smoothly transitioned from a large-tick to a small-tick asset using our model. We test this model's assumptions, showcase its challenges and propose questions for further directions in this area of research.
♻ ☆ A locking-free isogeometric thin shell formulation based on higher order accurate diagonalized strain projection via approximate dual splines
We present a novel isogeometric discretization approach for the Kirchhoff-Love shell formulation based on the Hellinger-Reissner variational principle. For mitigating membrane locking, we discretize the independent strains with spline basis functions that are one degree lower than those used for the displacements. To enable computationally efficient condensation of the independent strains, we first discretize the variations of the independent strains with approximate dual splines to obtain a projection matrix that is close to a diagonal matrix. We then diagonalize this strain projection matrix via row-sum lumping. Due to this diagonalization, the static condensation of the independent strain fields becomes computationally inexpensive, as no matrix needs to be inverted. At the same time, our approach maintains higher-order accuracy at optimal rates of convergence. We illustrate the numerical properties and the performance of our approach through numerical benchmarks, including a curved Euler-Bernoulli beam and the examples of the shell obstacle course.
♻ ☆ ADformer: A Multi-Granularity Spatial-Temporal Transformer for EEG-Based Alzheimer Detection
Electroencephalography (EEG) has emerged as a cost-effective and efficient tool to support neurologists in the detection of Alzheimer's Disease (AD). However, most existing approaches rely heavily on manual feature engineering or data transformation. While such techniques may provide benefits when working with small-scale datasets, they often lead to information loss and distortion when applied to large-scale data, ultimately limiting model performance. Moreover, the limited subject scale and demographic diversity of datasets used in prior studies hinder comprehensive evaluation of model robustness and generalizability, thus restricting their applicability in real-world clinical settings. To address these challenges, we propose ADformer, a novel multi-granularity spatial-temporal transformer designed to capture both temporal and spatial features from raw EEG signals, enabling effective end-to-end representation learning. Our model introduces multi-granularity embedding strategies across both spatial and temporal dimensions, leveraging a two-stage intra-inter granularity self-attention mechanism to learn both local patterns within each granularity and global dependencies across granularities. We evaluate ADformer on 4 large-scale datasets comprising a total of 1,713 subjects, representing one of the largest corpora for EEG-based AD detection to date, under a cross-validated, subject-independent setting. Experimental results demonstrate that ADformer consistently outperforms existing methods, achieving subject-level F1 scores of 92.82%, 89.83%, 67.99%, and 83.98% on the 4 datasets, respectively, in distinguishing AD from healthy control (HC) subjects.
comment: This work will be submitted to the IEEE for possible publication
♻ ☆ IFD: A Large-Scale Benchmark for Insider Filing Violation Detection
Insider trading violations, particularly delayed disclosures of Form 4 filings, remain a persistent challenge for financial market surveillance. Despite regulatory requirements such as the two-business-day rule of the Securities and Exchange Commission (SEC), enforcement is limited by the lack of large-scale, labeled datasets and task-specific benchmarks. In this paper, we introduce the Insider Filing Delay (IFD) dataset, the first and largest publicly available resource for insider disclosure behavior, comprising over one million Form 4 transactions spanning two decades (2002 to 2025), with structured annotations on delay status, insider roles, governance factors, and firm-level financial indicators. IFD enables the first large-scale formulation of strategic disclosure violation detection as a binary classification task grounded in regulatory compliance. To demonstrate the utility of IFD, we propose MaBoost, a hybrid framework combining a Mamba-based state space encoder with XGBoost, achieving high accuracy and interpretability in identifying high-risk behavioral patterns. Experiments across statistical baselines, deep learning models, and large language models confirm that MaBoost outperforms prior approaches, achieving an F1 score of up to 99.47 percent under constrained regulatory settings. IFD provides a realistic, reproducible, and behavior-rich dataset for developing AI models in financial compliance, regulatory forensics, and interpretable time series classification. All data and codes are available at: https://github.com/CH-YellowOrange/MaBoost-and-IFD.
♻ ☆ Generative AI as a Pillar for Predicting 2D and 3D Wildfire Spread: Beyond Physics-Based Models and Traditional Deep Learning
Wildfires increasingly threaten human life, ecosystems, and infrastructure, with events like the 2025 Palisades and Eaton fires in Los Angeles County underscoring the urgent need for more advanced prediction frameworks. Existing physics-based and deep learning models struggle to capture dynamic wildfire spread across both 2D and 3D domains, especially when incorporating real-time, multimodal geospatial data. This paper explores how generative Artificial Intelligence (AI) models-such as GANs, VAEs, and Transformers-can serve as transformative tools for wildfire prediction and simulation. These models offer superior capabilities in managing uncertainty, integrating multimodal inputs, and generating realistic, scalable wildfire scenarios. We introduce a new paradigm that leverages large language models (LLMs) for literature synthesis, classification, and knowledge extraction, conducting a systematic review of recent studies applying generative AI to fire prediction and monitoring. We highlight how generative approaches uniquely address challenges faced by traditional simulation and deep learning methods. Finally, we outline five key future directions for generative AI in wildfire management, including unified multimodal modeling of 2D and 3D dynamics, agentic AI systems and chatbots for decision intelligence, and real-time scenario generation on mobile devices, along with a discussion of critical challenges. Our findings advocate for a paradigm shift toward multimodal generative frameworks to support proactive, data-informed wildfire response.
♻ ☆ Learning Fluid-Structure Interaction Dynamics with Physics-Informed Neural Networks and Immersed Boundary Methods
We introduce neural network architectures that combine physics-informed neural networks (PINNs) with the immersed boundary method (IBM) to solve fluid-structure interaction (FSI) problems. Our approach features two distinct architectures: a Single-FSI network with a unified parameter space, and an innovative Eulerian-Lagrangian network that maintains separate parameter spaces for fluid and structure domains. We study each architecture using standard Tanh and adaptive B-spline activation functions. Empirical studies on a 2D cavity flow problem involving a moving solid structure show that the Eulerian-Lagrangian architecture performs significantly better. The adaptive B-spline activation further enhances accuracy by providing locality-aware representation near boundaries. While our methodology shows promising results in predicting the velocity field, pressure recovery remains challenging due to the absence of explicit force-coupling constraints in the current formulation. Our findings underscore the importance of domain-specific architectural design and adaptive activation functions for modeling FSI problems within the PINN framework.
Databases 7
☆ Marlin: Efficient Coordination for Autoscaling Cloud DBMS (Extended Version)
Modern cloud databases are shifting from converged architectures to storage disaggregation, enabling independent scaling and billing of compute and storage. However, cloud databases still rely on external, converged coordination services (e.g., ZooKeeper) for their control planes. These services are effectively lightweight databases optimized for low-volume metadata. As the control plane scales in the cloud, this approach faces similar limitations as converged databases did before storage disaggregation: scalability bottlenecks, low cost efficiency, and increased operational burden. We propose to disaggregate the cluster coordination to achieve the same benefits that storage disaggregation brought to modern cloud DBMSs. We present Marlin, a cloud-native coordination mechanism that fully embraces storage disaggregation. Marlin eliminates the need for external coordination services by consolidating coordination functionality into the existing cloud-native database it manages. To achieve failover without an external coordination service, Marlin allows cross-node modifications on coordination states. To ensure data consistency, Marlin employs transactions to manage both coordination and application states and introduces MarlinCommit, an optimized commit protocol that ensures strong transactional guarantees even under cross-node modifications. Our evaluations demonstrate that Marlin improves cost efficiency by up to 4.4x and reduces reconfiguration duration by up to 4.9x compared to converged coordination solutions.
☆ Multi-turn Natural Language to Graph Query Language Translation
In recent years, research on transforming natural language into graph query language (NL2GQL) has been increasing. Most existing methods focus on single-turn transformation from NL to GQL. In practical applications, user interactions with graph databases are typically multi-turn, dynamic, and context-dependent. While single-turn methods can handle straightforward queries, more complex scenarios often require users to iteratively adjust their queries, investigate the connections between entities, or request additional details across multiple dialogue turns. Research focused on single-turn conversion fails to effectively address multi-turn dialogues and complex context dependencies. Additionally, the scarcity of high-quality multi-turn NL2GQL datasets further hinders the progress of this field. To address this challenge, we propose an automated method for constructing multi-turn NL2GQL datasets based on Large Language Models (LLMs) , and apply this method to develop the MTGQL dataset, which is constructed from a financial market graph database and will be publicly released for future research. Moreover, we propose three types of baseline methods to assess the effectiveness of multi-turn NL2GQL translation, thereby laying a solid foundation for future research.
comment: 21 pages
☆ Efficient Byzantine Consensus MechanismBased on Reputation in IoT Blockchain
Blockchain technology has advanced rapidly in recent years and is now widely used in a variety of fields. Blockchain appears to be one of the best solutions for managing massive heterogeneous devices while achieving advanced data security and data reputation, particularly in the field of large-scale IoT (Internet of Things) networks. Despite the numerous advantages, there are still challenges while deploying IoT applications on blockchain systems due to the limited storage, power, and computing capability of IoT devices, and some of these problems are caused by the consensus algorithm, which plays a significant role in blockchain systems by ensuring overall system reliability and robustness. Nonetheless, most existing consensus algorithms are prone to poor node reliability, low transaction per second (TPS) rates, and scalability issues. Aiming at some critical problems in the existing consensus algorithms, this paper proposes the Efficient Byzantine Reputation-based Consensus (EBRC) mechanism to resolve the issues raised above. In comparison to traditional algorithms, we reinvented ways to evaluate node reliability and robustness and manage active nodes. Our experiments show that the EBRC algorithm has lower consensus delay, higher throughput, improved security, and lower verification costs. It offers new reference ideas for solving the Internet of Things+blockchain+Internet court construction problem.
☆ CTBench: Cryptocurrency Time Series Generation Benchmark
Synthetic time series are essential tools for data augmentation, stress testing, and algorithmic prototyping in quantitative finance. However, in cryptocurrency markets, characterized by 24/7 trading, extreme volatility, and rapid regime shifts, existing Time Series Generation (TSG) methods and benchmarks often fall short, jeopardizing practical utility. Most prior work (1) targets non-financial or traditional financial domains, (2) focuses narrowly on classification and forecasting while neglecting crypto-specific complexities, and (3) lacks critical financial evaluations, particularly for trading applications. To address these gaps, we introduce \textsf{CTBench}, the first comprehensive TSG benchmark tailored for the cryptocurrency domain. \textsf{CTBench} curates an open-source dataset from 452 tokens and evaluates TSG models across 13 metrics spanning 5 key dimensions: forecasting accuracy, rank fidelity, trading performance, risk assessment, and computational efficiency. A key innovation is a dual-task evaluation framework: (1) the \emph{Predictive Utility} task measures how well synthetic data preserves temporal and cross-sectional patterns for forecasting, while (2) the \emph{Statistical Arbitrage} task assesses whether reconstructed series support mean-reverting signals for trading. We benchmark eight representative models from five methodological families over four distinct market regimes, uncovering trade-offs between statistical fidelity and real-world profitability. Notably, \textsf{CTBench} offers model ranking analysis and actionable guidance for selecting and deploying TSG models in crypto analytics and strategy development.
comment: 14 pages, 14 figures, and 3 tables
♻ ☆ AI-Based Crypto Tokens: The Illusion of Decentralized AI?
The convergence of blockchain and artificial intelligence (AI) has led to the emergence of AI-based tokens, which are cryptographic assets designed to power decentralized AI platforms and services. This paper provides a comprehensive review of leading AI-token projects, examining their technical architectures, token utilities, consensus mechanisms, and underlying business models. We explore how these tokens operate across various blockchain ecosystems and assess the extent to which they offer value beyond traditional centralized AI services. Based on this assessment, our analysis identifies several core limitations. From a technical perspective, many platforms depend extensively on off-chain computation, exhibit limited capabilities for on-chain intelligence, and encounter significant scalability challenges. From a business perspective, many models appear to replicate centralized AI service structures, simply adding token-based payment and governance layers without delivering truly novel value. In light of these challenges, we also examine emerging developments that may shape the next phase of decentralized AI systems. These include approaches for on-chain verification of AI outputs, blockchain-enabled federated learning, and more robust incentive frameworks. Collectively, while emerging innovations offer pathways to strengthen decentralized AI ecosystems, significant gaps remain between the promises and the realities of current AI-token implementations. Our findings contribute to a growing body of research at the intersection of AI and blockchain, highlighting the need for critical evaluation and more grounded approaches as the field continues to evolve.
♻ ☆ MCTS-SQL: Light-Weight LLMs can Master the Text-to-SQL through Monte Carlo Tree Search
Text-to-SQL is a fundamental yet challenging task in the NLP area, aiming at translating natural language questions into SQL queries. While recent advances in large language models have greatly improved performance, most existing approaches depend on models with tens of billions of parameters or costly APIs, limiting their applicability in resource-constrained environments. For real world, especially on edge devices, it is crucial for Text-to-SQL to ensure cost-effectiveness. Therefore, enabling the light-weight models for Text-to-SQL is of great practical significance. However, smaller LLMs often struggle with complicated user instruction, redundant schema linking or syntax correctness. To address these challenges, we propose MCTS-SQL, a novel framework that uses Monte Carlo Tree Search to guide SQL generation through multi-step refinement. Since the light-weight models' weak performance of single-shot prediction, we generate better results through several trials with feedback. However, directly applying MCTS-based methods inevitably leads to significant time and computational overhead. Driven by this issue, we propose a token-level prefix-cache mechanism that stores prior information during iterations, effectively improved the execution speed. Experiments results on the SPIDER and BIRD benchmarks demonstrate the effectiveness of our approach. Using a small open-source Qwen2.5-Coder-1.5B, our method outperforms ChatGPT-3.5. When leveraging a more powerful model Gemini 2.5 to explore the performance upper bound, we achieved results competitive with the SOTA. Our findings demonstrate that even small models can be effectively deployed in practical Text-to-SQL systems with the right strategy.
comment: 15 pages, 6 figures
♻ ☆ Terabyte-Scale Analytics in the Blink of an Eye
For the past two decades, the DB community has devoted substantial research to take advantage of cheap clusters of machines for distributed data analytics -- we believe that we are at the beginning of a paradigm shift. The scaling laws and popularity of AI models lead to the deployment of incredibly powerful GPU clusters in commercial data centers. Compared to CPU-only solutions, these clusters deliver impressive improvements in per-node compute, memory bandwidth, and inter-node interconnect performance. In this paper, we study the problem of scaling analytical SQL queries on distributed clusters of GPUs, with the stated goal of establishing an upper bound on the likely performance gains. To do so, we build a prototype designed to maximize performance by leveraging ML/HPC best practices, such as group communication primitives for cross-device data movements. This allows us to conduct thorough performance experimentation to point our community towards a massive performance opportunity of at least 60$\times$. To make these gains more relatable, before you can blink twice, our system can run all 22 queries of TPC-H at a 1TB scale factor!
Distributed, Parallel, and Cluster Computing 12
☆ Machine Learning-Driven Performance Analysis of Compressed Communication in Aerial-RIS Networks for Future 6G Networks
In the future 6G and wireless networks, particularly in dense urban environments, bandwidth exhaustion and limited capacity pose significant challenges to enhancing data rates. We introduce a novel system model designed to improve the data rate of users in next-generation multi-cell networks by integrating Unmanned Aerial Vehicle (UAV)-Assisted Reconfigurable Intelligent Surfaces (RIS), Non-Orthogonal Multiple Access (NOMA), and Coordinated Multipoint Transmission (CoMP). Optimally deploying Aerial RIS for higher data rates, employing NOMA to improve spectral efficiency, and utilizing CoMP to mitigate inter-cell interference (ICI), we significantly enhance the overall system capacity and sum rate. Furthermore, we address the challenge of feedback overhead associated with Quantized Phase Shifts (QPS) from the receiver to RIS. The feedback channel is band-limited and cannot support a large overhead of QPS for uplink communication. To ensure seamless transmission, we propose a Machine Learning Autoencoder technique for a compressed communication of QPS from the receiver to RIS, while maintaining high accuracy. Additionally, we investigate the impact of the number of Aerial RIS elements and power allocation ratio for NOMA on the individual data rate of users. Our simulation results demonstrate substantial improvements in spectral efficiency, outage probability, and bandwidth utilization, highlighting the potential of the proposed architecture to enhance network performance.
comment: Submitted to Mobile Networks and Applications
☆ Efficient Byzantine Consensus MechanismBased on Reputation in IoT Blockchain
Blockchain technology has advanced rapidly in recent years and is now widely used in a variety of fields. Blockchain appears to be one of the best solutions for managing massive heterogeneous devices while achieving advanced data security and data reputation, particularly in the field of large-scale IoT (Internet of Things) networks. Despite the numerous advantages, there are still challenges while deploying IoT applications on blockchain systems due to the limited storage, power, and computing capability of IoT devices, and some of these problems are caused by the consensus algorithm, which plays a significant role in blockchain systems by ensuring overall system reliability and robustness. Nonetheless, most existing consensus algorithms are prone to poor node reliability, low transaction per second (TPS) rates, and scalability issues. Aiming at some critical problems in the existing consensus algorithms, this paper proposes the Efficient Byzantine Reputation-based Consensus (EBRC) mechanism to resolve the issues raised above. In comparison to traditional algorithms, we reinvented ways to evaluate node reliability and robustness and manage active nodes. Our experiments show that the EBRC algorithm has lower consensus delay, higher throughput, improved security, and lower verification costs. It offers new reference ideas for solving the Internet of Things+blockchain+Internet court construction problem.
☆ Mitigating Persistent Client Dropout in Asynchronous Decentralized Federated Learning KDD
We consider the problem of persistent client dropout in asynchronous Decentralized Federated Learning (DFL). Asynchronicity and decentralization obfuscate information about model updates among federation peers, making recovery from a client dropout difficult. Access to the number of learning epochs, data distributions, and all the information necessary to precisely reconstruct the missing neighbor's loss functions is limited. We show that obvious mitigations do not adequately address the problem and introduce adaptive strategies based on client reconstruction. We show that these strategies can effectively recover some performance loss caused by dropout. Our work focuses on asynchronous DFL with local regularization and differs substantially from that in the existing literature. We evaluate the proposed methods on tabular and image datasets, involve three DFL algorithms, and three data heterogeneity scenarios (iid, non-iid, class-focused non-iid). Our experiments show that the proposed adaptive strategies can be effective in maintaining robustness of federated learning, even if they do not reconstruct the missing client's data precisely. We also discuss the limitations and identify future avenues for tackling the problem of client dropout.
comment: Presented on FedKDD Workshop at KDD 2025
☆ Faster Distributed $Δ$-Coloring via a Reduction to MIS
Recent improvements on the deterministic complexities of fundamental graph problems in the LOCAL model of distributed computing have yielded state-of-the-art upper bounds of $\tilde{O}(\log^{5/3} n)$ rounds for maximal independent set (MIS) and $(\Delta + 1)$-coloring [Ghaffari, Grunau, FOCS'24] and $\tilde{O}(\log^{19/9} n)$ rounds for the more restrictive $\Delta$-coloring problem [Ghaffari, Kuhn, FOCS'21; Ghaffari, Grunau, FOCS'24; Bourreau, Brandt, Nolin, STOC'25]. In our work, we show that $\Delta$-coloring can be solved deterministically in $\tilde{O}(\log^{5/3} n)$ rounds as well, matching the currently best bound for $(\Delta + 1)$-coloring. We achieve our result by developing a reduction from $\Delta$-coloring to MIS that guarantees that the (asymptotic) complexity of $\Delta$-coloring is at most the complexity of MIS, unless MIS can be solved in sublogarithmic time, in which case, due to the $\Omega(\log n)$-round $\Delta$-coloring lower bound from [BFHKLRSU, STOC'16], our reduction implies a tight complexity of $\Theta(\log n)$ for $\Delta$-coloring. In particular, any improvement on the complexity of the MIS problem will yield the same improvement for the complexity of $\Delta$-coloring (up to the true complexity of $\Delta$-coloring). Our reduction yields improvements for $\Delta$-coloring in the randomized LOCAL model and when complexities are parameterized by both $n$ and $\Delta$. We obtain a randomized complexity bound of $\tilde{O}(\log^{5/3} \log n)$ rounds (improving over the state of the art of $\tilde{O}(\log^{8/3} \log n)$ rounds) on general graphs and tight complexities of $\Theta(\log n)$ and $\Theta(\log \log n)$ for the deterministic, resp.\ randomized, complexity on bounded-degree graphs. In the special case of graphs of constant clique number (which for instance include bipartite graphs), we also give a reduction to the $(\Delta+1)$-coloring problem.
☆ Energy-Efficient Federated Learning for Edge Real-Time Vision via Joint Data, Computation, and Communication Design
Emerging real-time computer vision (CV) applications on wireless edge devices demand energy-efficient and privacy-preserving learning. Federated learning (FL) enables on-device training without raw data sharing, yet remains challenging in resource-constrained environments due to energy-intensive computation and communication, as well as limited and non-i.i.d. local data. We propose FedDPQ, an ultra energy-efficient FL framework for real-time CV over unreliable wireless networks. FedDPQ integrates diffusion-based data augmentation, model pruning, communication quantization, and transmission power control to enhance training efficiency. It expands local datasets using synthetic data, reduces computation through pruning, compresses updates via quantization, and mitigates transmission outages with adaptive power control. We further derive a closed-form energy-convergence model capturing the coupled impact of these components, and develop a Bayesian optimization(BO)-based algorithm to jointly tune data augmentation strategy, pruning ratio, quantization level, and power control. To the best of our knowledge, this is the first work to jointly optimize FL performance from the perspectives of data, computation, and communication under unreliable wireless conditions. Experiments on representative CV tasks show that FedDPQ achieves superior convergence speed and energy efficiency.
☆ Asynchronous Federated Learning with non-convex client objective functions and heterogeneous dataset
Federated Learning (FL) enables collaborative model training across decentralized devices while preserving data privacy. However, traditional FL suffers from communication overhead, system heterogeneity, and straggler effects. Asynchronous Federated Learning (AFL) addresses these by allowing clients to update independently, improving scalability and reducing synchronization delays. This paper extends AFL to handle non-convex objective functions and heterogeneous datasets, common in modern deep learning. We present a rigorous convergence analysis, deriving bounds on the expected gradient norm and studying the effects of staleness, variance, and heterogeneity. To mitigate stale updates, we introduce a staleness aware aggregation that prioritizes fresher updates and a dynamic learning rate schedule that adapts to client staleness and heterogeneity, improving stability and convergence. Our framework accommodates variations in computational power, data distribution, and communication delays, making it practical for real world applications. We also analyze the impact of client selection strategies-sampling with or without replacement-on variance and convergence. Implemented in PyTorch with Python's asyncio, our approach is validated through experiments demonstrating improved performance and scalability for asynchronous, heterogeneous, and non-convex FL scenarios.
☆ Energy-Predictive Planning for Optimizing Drone Service Delivery
We propose a novel Energy-Predictive Drone Service (EPDS) framework for efficient package delivery within a skyway network. The EPDS framework incorporates a formal modeling of an EPDS and an adaptive bidirectional Long Short-Term Memory (Bi-LSTM) machine learning model. This model predicts the energy status and stochastic arrival times of other drones operating in the same skyway network. Leveraging these predictions, we develop a heuristic optimization approach for composite drone services. This approach identifies the most time-efficient and energy-efficient skyway path and recharging schedule for each drone in the network. We conduct extensive experiments using a real-world drone flight dataset to evaluate the performance of the proposed framework.
comment: 37 pages, 16 figures. This is an accepted paper, and it is going to appear in the Expert Systems with Applications journal
☆ Boosting Generalization Performance in Model-Heterogeneous Federated Learning Using Variational Transposed Convolution
Federated learning (FL) is a pioneering machine learning paradigm that enables distributed clients to process local data effectively while ensuring data privacy. However, the efficacy of FL is usually impeded by the data heterogeneity among clients, resulting in local models with low generalization performance. To address this problem, traditional model-homogeneous approaches mainly involve debiasing the local training procedures with regularization or dynamically adjusting client weights in aggregation. Nonetheless, these approaches become incompatible for scenarios where clients exhibit heterogeneous model architectures. In this paper, we propose a model-heterogeneous FL framework that can improve clients' generalization performance over unseen data without model aggregation. Instead of model parameters, clients exchange the feature distributions with the server, including the mean and the covariance. Accordingly, clients train a variational transposed convolutional (VTC) neural network with Gaussian latent variables sampled from the feature distributions, and use the VTC model to generate synthetic data. By fine-tuning local models with the synthetic data, clients significantly increase their generalization performance. Experimental results show that our approach obtains higher generalization accuracy than existing model-heterogeneous FL frameworks, as well as lower communication costs and memory consumption
☆ Learning Unified System Representations for Microservice Tail Latency Prediction
Microservice architectures have become the de facto standard for building scalable cloud-native applications, yet their distributed nature introduces significant challenges in performance monitoring and resource management. Traditional approaches often rely on per-request latency metrics, which are highly sensitive to transient noise and fail to reflect the holistic behavior of complex, concurrent workloads. In contrast, window-level P95 tail latency provides a stable and meaningful signal that captures both system-wide trends and user-perceived performance degradation. We identify two key shortcomings in existing methods: (i) inadequate handling of heterogeneous data, where traffic-side features propagate across service dependencies and resource-side signals reflect localized bottlenecks, and (ii) the lack of principled architectural designs that effectively distinguish and integrate these complementary modalities. To address these challenges, we propose USRFNet, a deep learning network that explicitly separates and models traffic-side and resource-side features. USRFNet employs GNNs to capture service interactions and request propagation patterns, while gMLP modules independently model cluster resource dynamics. These representations are then fused into a unified system embedding to predict window-level P95 latency with high accuracy. We evaluate USRFNet on real-world microservice benchmarks under large-scale stress testing conditions, demonstrating substantial improvements in prediction accuracy over state-of-the-art baselines.
♻ ☆ AI-Based Crypto Tokens: The Illusion of Decentralized AI?
The convergence of blockchain and artificial intelligence (AI) has led to the emergence of AI-based tokens, which are cryptographic assets designed to power decentralized AI platforms and services. This paper provides a comprehensive review of leading AI-token projects, examining their technical architectures, token utilities, consensus mechanisms, and underlying business models. We explore how these tokens operate across various blockchain ecosystems and assess the extent to which they offer value beyond traditional centralized AI services. Based on this assessment, our analysis identifies several core limitations. From a technical perspective, many platforms depend extensively on off-chain computation, exhibit limited capabilities for on-chain intelligence, and encounter significant scalability challenges. From a business perspective, many models appear to replicate centralized AI service structures, simply adding token-based payment and governance layers without delivering truly novel value. In light of these challenges, we also examine emerging developments that may shape the next phase of decentralized AI systems. These include approaches for on-chain verification of AI outputs, blockchain-enabled federated learning, and more robust incentive frameworks. Collectively, while emerging innovations offer pathways to strengthen decentralized AI ecosystems, significant gaps remain between the promises and the realities of current AI-token implementations. Our findings contribute to a growing body of research at the intersection of AI and blockchain, highlighting the need for critical evaluation and more grounded approaches as the field continues to evolve.
♻ ☆ Shared Randomness in Locally Checkable Problems: The Role of Computational Assumptions
Shared randomness is a valuable resource in distributed computing, allowing some form of coordination between processors without explicit communication. But what happens when the shared random string can affect the inputs to the system? Consider the class of distributed graph problems where the correctness of solutions can be checked locally, known as Locally Checkable Labelings (LCL). LCL problems have been extensively studied in the LOCAL model, where nodes operate in synchronous rounds and have access only to local information. This has led to intriguing insights regarding the power of private randomness. E.g., for certain round complexity classes, derandomization does not incur an overhead (asymptotically). This work considers a setting where the randomness is public. Recently, an LCL problem for which shared randomness can reduce the round complexity was discovered by Balliu et al. (ICALP 2025). This result applies to inputs set obliviously of the shared randomness, which may not always be a plausible assumption. We define a model where the inputs can be adversarially chosen, even based on the shared randomness, which we now call preset public coins. We study LCL problems in the preset public coins model, under assumptions regarding the computational power of the adversary that selects the input. We show connections to hardness in the class TFNP. Our results are: 1. Assuming a hard-on-average problem in TFNP, we present an LCL problem that, in the preset public coins model, demonstrates a gap in the round complexity between polynomial-time and unbounded adversaries. 2. An LCL problem for which the error probability is significantly higher when facing unbounded adversaries implies a hard-on-average problem in TFNP/poly.
♻ ☆ Terabyte-Scale Analytics in the Blink of an Eye
For the past two decades, the DB community has devoted substantial research to take advantage of cheap clusters of machines for distributed data analytics -- we believe that we are at the beginning of a paradigm shift. The scaling laws and popularity of AI models lead to the deployment of incredibly powerful GPU clusters in commercial data centers. Compared to CPU-only solutions, these clusters deliver impressive improvements in per-node compute, memory bandwidth, and inter-node interconnect performance. In this paper, we study the problem of scaling analytical SQL queries on distributed clusters of GPUs, with the stated goal of establishing an upper bound on the likely performance gains. To do so, we build a prototype designed to maximize performance by leveraging ML/HPC best practices, such as group communication primitives for cross-device data movements. This allows us to conduct thorough performance experimentation to point our community towards a massive performance opportunity of at least 60$\times$. To make these gains more relatable, before you can blink twice, our system can run all 22 queries of TPC-H at a 1TB scale factor!
Information Retrieval 5
☆ Counterfactual Reciprocal Recommender Systems for User-to-User Matching SIGKDD
Reciprocal recommender systems (RRS) in dating, gaming, and talent platforms require mutual acceptance for a match. Logged data, however, over-represents popular profiles due to past exposure policies, creating feedback loops that skew learning and fairness. We introduce Counterfactual Reciprocal Recommender Systems (CFRR), a causal framework to mitigate this bias. CFRR uses inverse propensity scored, self-normalized objectives. Experiments show CFRR improves NDCG@10 by up to 3.5% (e.g., from 0.459 to 0.475 on DBLP, from 0.299 to 0.307 on Synthetic), increases long-tail user coverage by up to 51% (from 0.504 to 0.763 on Synthetic), and reduces Gini exposure inequality by up to 24% (from 0.708 to 0.535 on Synthetic). CFRR offers a promising approach for more accurate and fair user-to-user matching.
comment: 9 pages, 2 figures. Accepted for publication at the Workshop on Two-sided Marketplace Optimization (TSMO '25), held in conjunction with the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2025), Toronto, Canada
☆ ChEmbed: Enhancing Chemical Literature Search Through Domain-Specific Text Embeddings
Retrieval-Augmented Generation (RAG) systems in chemistry heavily depend on accurate and relevant retrieval of chemical literature. However, general-purpose text embedding models frequently fail to adequately represent complex chemical terminologies, resulting in suboptimal retrieval quality. Specialized embedding models tailored to chemical literature retrieval have not yet been developed, leaving a substantial performance gap. To address this challenge, we introduce ChEmbed, a domain-adapted family of text embedding models fine-tuned on a dataset comprising chemistry-specific text from the PubChem, Semantic Scholar, and ChemRxiv corpora. To create effective training data, we employ large language models to synthetically generate queries, resulting in approximately 1.7 million high-quality query-passage pairs. Additionally, we augment the tokenizer by adding 900 chemically specialized tokens to previously unused slots, which significantly reduces the fragmentation of chemical entities, such as IUPAC names. ChEmbed also maintains a 8192-token context length, enabling the efficient retrieval of longer passages compared to many other open-source embedding models, which typically have a context length of 512 or 2048 tokens. Evaluated on our newly introduced ChemRxiv Retrieval benchmark, ChEmbed outperforms state-of-the-art general embedding models, raising nDCG@10 from 0.82 to 0.91 (+9 pp). ChEmbed represents a practical, lightweight, and reproducible embedding solution that effectively improves retrieval for chemical literature search.
☆ A Survey of LLM-based Deep Search Agents: Paradigm, Optimization, Evaluation, and Challenges
The advent of Large Language Models (LLMs) has significantly revolutionized web search. The emergence of LLM-based Search Agents marks a pivotal shift towards deeper, dynamic, autonomous information seeking. These agents can comprehend user intentions and environmental context and execute multi-turn retrieval with dynamic planning, extending search capabilities far beyond the web. Leading examples like OpenAI's Deep Research highlight their potential for deep information mining and real-world applications. This survey provides the first systematic analysis of search agents. We comprehensively analyze and categorize existing works from the perspectives of architecture, optimization, application, and evaluation, ultimately identifying critical open challenges and outlining promising future research directions in this rapidly evolving field. Our repository is available on https://github.com/YunjiaXi/Awesome-Search-Agent-Papers.
♻ ☆ Fine-grained Alignment of Large Language Models for General Medication Recommendation without Overprescription
Large language models (LLMs) holds significant promise in achieving general medication recommendation systems owing to their comprehensive interpretation of clinical notes and flexibility to medication encoding. We evaluated both general-purpose and medical-specific LLMs for medication recommendations, showing their unsatisfactory precision and severe overprescription. To address this, we introduce Language-Assisted Medication Recommendation, which tailors LLMs for medication recommendation in a medication-aware manner, improving the usage of clinical notes. Fine-tuning LLMs with this framework can outperform existing methods by more than 10% in internal validation and generalize across temporal and external validations. Furthermore, the model maintains high accuracy when encountering out-of-distribution medication.
♻ ☆ Clue-RAG: Towards Accurate and Cost-Efficient Graph-based RAG via Multi-Partite Graph and Query-Driven Iterative Retrieval
Despite the remarkable progress of Large Language Models (LLMs), their performance in question answering (QA) remains limited by the lack of domain-specific and up-to-date knowledge. Retrieval-Augmented Generation (RAG) addresses this limitation by incorporating external information, often from graph-structured data. However, existing graph-based RAG methods suffer from poor graph quality due to incomplete extraction and insufficient utilization of query information during retrieval. To overcome these limitations, we propose Clue-RAG, a novel approach that introduces (1) a multi-partite graph index incorporates Chunk, knowledge unit, and entity to capture semantic content at multiple levels of granularity, coupled with a hybrid extraction strategy that reduces LLM token usage while still producing accurate and disambiguated knowledge units, and (2) Q-Iter, a query-driven iterative retrieval strategy that enhances relevance through semantic search and constrained graph traversal. Experiments on three QA benchmarks show that Clue-RAG significantly outperforms state-of-the-art baselines, achieving up to 99.33% higher Accuracy and 113.51% higher F1 score while reducing indexing costs by 72.58%. Remarkably, Clue-RAG matches or outperforms baselines even without using an LLM for indexing. These results demonstrate the effectiveness and cost-efficiency of Clue-RAG in advancing graph-based RAG systems.
Computational Engineering, Finance, and Science 4
☆ Neural Policy Iteration for Stochastic Optimal Control: A Physics-Informed Approach
We propose a physics-informed neural network policy iteration (PINN-PI) framework for solving stochastic optimal control problems governed by second-order Hamilton--Jacobi--Bellman (HJB) equations. At each iteration, a neural network is trained to approximate the value function by minimizing the residual of a linear PDE induced by a fixed policy. This linear structure enables systematic $L^2$ error control at each policy evaluation step, and allows us to derive explicit Lipschitz-type bounds that quantify how value gradient errors propagate to the policy updates. This interpretability provides a theoretical basis for evaluating policy quality during training. Our method extends recent deterministic PINN-based approaches to stochastic settings, inheriting the global exponential convergence guarantees of classical policy iteration under mild conditions. We demonstrate the effectiveness of our method on several benchmark problems, including stochastic cartpole, pendulum problems and high-dimensional linear quadratic regulation (LQR) problems in up to 10D.
☆ FluidFormer: Transformer with Continuous Convolution for Particle-based Fluid Simulation
Learning-based fluid simulation networks have been proven as viable alternatives to traditional numerical solvers for the Navier-Stokes equations. Existing neural methods follow Smoothed Particle Hydrodynamics (SPH) frameworks, which inherently rely only on local inter-particle interactions. However, we emphasize that global context integration is also essential for learning-based methods to stabilize complex fluid simulations. We propose the first Fluid Attention Block (FAB) with a local-global hierarchy, where continuous convolutions extract local features while self-attention captures global dependencies. This fusion suppresses the error accumulation and models long-range physical phenomena. Furthermore, we pioneer the first Transformer architecture specifically designed for continuous fluid simulation, seamlessly integrated within a dual-pipeline architecture. Our method establishes a new paradigm for neural fluid simulation by unifying convolution-based local features with attention-based global context modeling. FluidFormer demonstrates state-of-the-art performance, with stronger stability in complex fluid scenarios.
☆ CTBench: Cryptocurrency Time Series Generation Benchmark
Synthetic time series are essential tools for data augmentation, stress testing, and algorithmic prototyping in quantitative finance. However, in cryptocurrency markets, characterized by 24/7 trading, extreme volatility, and rapid regime shifts, existing Time Series Generation (TSG) methods and benchmarks often fall short, jeopardizing practical utility. Most prior work (1) targets non-financial or traditional financial domains, (2) focuses narrowly on classification and forecasting while neglecting crypto-specific complexities, and (3) lacks critical financial evaluations, particularly for trading applications. To address these gaps, we introduce \textsf{CTBench}, the first comprehensive TSG benchmark tailored for the cryptocurrency domain. \textsf{CTBench} curates an open-source dataset from 452 tokens and evaluates TSG models across 13 metrics spanning 5 key dimensions: forecasting accuracy, rank fidelity, trading performance, risk assessment, and computational efficiency. A key innovation is a dual-task evaluation framework: (1) the \emph{Predictive Utility} task measures how well synthetic data preserves temporal and cross-sectional patterns for forecasting, while (2) the \emph{Statistical Arbitrage} task assesses whether reconstructed series support mean-reverting signals for trading. We benchmark eight representative models from five methodological families over four distinct market regimes, uncovering trade-offs between statistical fidelity and real-world profitability. Notably, \textsf{CTBench} offers model ranking analysis and actionable guidance for selecting and deploying TSG models in crypto analytics and strategy development.
comment: 14 pages, 14 figures, and 3 tables
☆ GlaBoost: A multimodal Structured Framework for Glaucoma Risk Stratification
Early and accurate detection of glaucoma is critical to prevent irreversible vision loss. However, existing methods often rely on unimodal data and lack interpretability, limiting their clinical utility. In this paper, we present GlaBoost, a multimodal gradient boosting framework that integrates structured clinical features, fundus image embeddings, and expert-curated textual descriptions for glaucoma risk prediction. GlaBoost extracts high-level visual representations from retinal fundus photographs using a pretrained convolutional encoder and encodes free-text neuroretinal rim assessments using a transformer-based language model. These heterogeneous signals, combined with manually assessed risk scores and quantitative ophthalmic indicators, are fused into a unified feature space for classification via an enhanced XGBoost model. Experiments conducted on a real-world annotated dataset demonstrate that GlaBoost significantly outperforms baseline models, achieving a validation accuracy of 98.71%. Feature importance analysis reveals clinically consistent patterns, with cup-to-disc ratio, rim pallor, and specific textual embeddings contributing most to model decisions. GlaBoost offers a transparent and scalable solution for interpretable glaucoma diagnosis and can be extended to other ophthalmic disorders.
Databases 3
Balancing the Blend: An Experimental Analysis of Trade-offs in Hybrid Search
Hybrid search, the integration of lexical and semantic retrieval, has become a cornerstone of modern information retrieval systems, driven by demanding applications like Retrieval-Augmented Generation (RAG). The architectural design space for these systems is vast and complex, yet a systematic, empirical understanding of the trade-offs among their core components--retrieval paradigms, combination schemes, and re-ranking methods--is critically lacking. To address this, and informed by our experience building the Infinity open-source database, we present the first systematic benchmark of advanced hybrid search architectures. Our framework evaluates four retrieval paradigms--Full-Text Search (FTS), Sparse Vector Search (SVS), Dense Vector Search (DVS), and Tensor Search (TenS)--benchmarking their combinations and re-ranking strategies across 11 real-world datasets. Our results reveal three key findings for practitioners and researchers: (1) A "weakest link" phenomenon, where a single underperforming retrieval path can disproportionately degrade overall accuracy, highlighting the need for path-wise quality assessment before fusion. (2) A data-driven map of the performance trade-offs, demonstrating that optimal configurations depend heavily on resource constraints and data characteristics, moving beyond a one-size-fits-all approach. (3) The identification of Tensor-based Re-ranking Fusion (TRF) as a high-efficacy alternative to mainstream fusion methods, offering the semantic power of tensor search at a fraction of the computational and memory cost. Our findings offer concrete guidelines for designing the next generation of adaptive, scalable hybrid search systems while also identifying key directions for future research.
☆ Effective and Efficient Conductance-based Community Search at Billion Scale
Community search is a widely studied semi-supervised graph clustering problem, retrieving a high-quality connected subgraph containing the user-specified query vertex. However, existing methods primarily focus on cohesiveness within the community but ignore the sparsity outside the community, obtaining sub-par results. Inspired by this, we adopt the well-known conductance metric to measure the quality of a community and introduce a novel problem of conductance-based community search (CCS). CCS aims at finding a subgraph with the smallest conductance among all connected subgraphs that contain the query vertex. We prove that the CCS problem is NP-hard. To efficiently query CCS, a four-stage subgraph-conductance-based community search algorithm, SCCS, is proposed. Specifically, we first greatly reduce the entire graph using local sampling techniques. Then, a three-stage local optimization strategy is employed to continuously refine the community quality. Namely, we first utilize a seeding strategy to obtain an initial community to enhance its internal cohesiveness. Then, we iteratively add qualified vertices in the expansion stage to guarantee the internal cohesiveness and external sparsity of the community. Finally, we gradually remove unqualified vertices during the verification stage. Extensive experiments on real-world datasets containing one billion-scale graph and synthetic datasets show the effectiveness, efficiency, and scalability of our solutions.
☆ DBAIOps: A Reasoning LLM-Enhanced Database Operation and Maintenance System using Knowledge Graphs AI
The operation and maintenance (O&M) of database systems is critical to ensuring system availability and performance, typically requiring expert experience (e.g., identifying metric-to-anomaly relations) for effective diagnosis and recovery. However, existing automatic database O&M methods, including commercial products, cannot effectively utilize expert experience. On the one hand, rule-based methods only support basic O&M tasks (e.g., metric-based anomaly detection), which are mostly numerical equations and cannot effectively incorporate literal O&M experience (e.g., troubleshooting guidance in manuals). On the other hand, LLM-based methods, which retrieve fragmented information (e.g., standard documents + RAG), often generate inaccurate or generic results. To address these limitations, we present DBAIOps, a novel hybrid database O&M system that combines reasoning LLMs with knowledge graphs to achieve DBA-style diagnosis. First, DBAIOps introduces a heterogeneous graph model for representing the diagnosis experience, and proposes a semi-automatic graph construction algorithm to build that graph from thousands of documents. Second, DBAIOps develops a collection of (800+) reusable anomaly models that identify both directly alerted metrics and implicitly correlated experience and metrics. Third, for each anomaly, DBAIOps proposes a two-stage graph evolution mechanism to explore relevant diagnosis paths and identify missing relations automatically. It then leverages a reasoning LLM (e.g., DeepSeek-R1) to infer root causes and generate clear diagnosis reports for both DBAs and common users. Our evaluation over four mainstream database systems (Oracle, MySQL, PostgreSQL, and DM8) demonstrates that DBAIOps outperforms state-of-the-art baselines, 34.85% and 47.22% higher in root cause and human evaluation accuracy, respectively.
comment: DBAIOps supports 25 database systems and has been deployed in 20 real-world scenarios, covering domains like finance, energy, and healthcare. See website at: https://www.dbaiops.com; See code at: https://github.com/weAIDB/DBAIOps/
Distributed, Parallel, and Cluster Computing 11
☆ An Analysis of HPC and Edge Architectures in the Cloud
We analyze a recently published dataset of 396 real-world cloud architectures deployed on AWS, from companies belonging to a wide range of industries. From this dataset, we identify those architectures that contain HPC or edge components and characterize their designs. Specifically, we investigate the prevalence and interplay of AWS services within these architectures, examine the types of storage systems employed, assess architectural complexity and the use of machine learning services, discuss the implications of our findings and how representative these results are of HPC and edge architectures in the cloud. This characterization provides valuable insights into current industry practices and trends in building robust and scalable HPC and edge solutions in the cloud continuum, and can be valuable for those seeking to better understand how these architectures are being built and to guide new research.
comment: 8 pages, 10 figures, accepted at 2nd Workshop on Accelerated HPC in the Cloud-Edge Continuum 2025, held in conjunction with 13th IEEE International Conference on Cloud Engineering (IC2E 2025)
☆ A Parallel Algorithm for Finding Robust Spanners in Large Social Networks
Social networks, characterized by community structures, often rely on nodes called structural hole spanners to facilitate inter-community information dissemination. However, the dynamic nature of these networks, where spanner nodes may be removed, necessitates resilient methods to maintain inter-community communication. To this end, we introduce robust spanners (RS) as nodes uniquely equipped to bridge communities despite disruptions, such as node or edge removals. We propose a novel scoring technique to identify RS nodes and present a parallel algorithm with a CUDA implementation for efficient RS detection in large networks. Empirical analysis of real-world social networks reveals that high-scoring nodes exhibit a spanning capacity comparable to those identified by benchmark spanner detection algorithms while offering superior robustness. Our implementation on Nvidia GPUs achieves an average speedup of 244X over traditional spanner detection techniques, demonstrating its efficacy to identify RS in large social networks.
☆ Nakamoto Consensus from Multiple Resources
The blocks in the Bitcoin blockchain record the amount of work W that went into creating them through proofs of work. When honest parties control a majority of the work, consensus is achieved by picking the chain with the highest recorded weight. Resources other than work have been considered to secure such longest-chain blockchains. In Chia, blocks record the amount of space S (via a proof of space) and sequential computational steps V (via a VDF). In this paper, we ask what weight functions {\Gamma}(S,V,W) (that assign a weight to a block as a function of the recorded space, speed, and work) are secure in the sense that whenever the weight of the resources controlled by honest parties is larger than the weight of adversarial parties, the blockchain is secure against private double-spending attacks. We completely classify such functions in an idealized "continuous" model: {\Gamma}(S,V,W) is secure against private double-spending attacks if and only if it is homogeneous of degree one in the timed resources V and W, i.e., {\alpha}{\Gamma}(S,V,W)={\Gamma}(S,{\alpha}V, {\alpha}W). This includes Bitcoin rule {\Gamma}(S,V,W)=W and Chia rule {\Gamma}(S,V,W) = SV. In a more realistic model where blocks are created at discrete time-points, one additionally needs some mild assumptions on the dependency on S (basically, the weight should not grow too much if S is slightly increased, say linear as in Chia). Our classification is more general and allows various instantiations of the same resource. It provides a powerful tool for designing new longest-chain blockchains. E.g., consider combining different PoWs to counter centralization, say the Bitcoin PoW W_1 and a memory-hard PoW W_2. Previous work suggested to use W_1+W_2 as weight. Our results show that using {\sqrt}(W_1){\cdot}{\sqrt}(W_2), {\min}{W_1,W_2} are also secure, and we argue that in practice these are much better choices.
comment: Full version of the paper published at AFT25
☆ Deterministic Fault-Tolerant Local Load Balancing and its Applications against Adaptive Adversaries
Load balancing is among the basic primitives in distributed computing. In this paper, we consider this problem when executed locally on a network with nodes prone to failures. We show that there exist lightweight network topologies that are immune to message delivery failures incurred by (at most) a constant fraction of all nodes. More precisely, we design a novel deterministic fault-tolerant local load balancing (LLB) algorithm, which, similarly to their classical counterparts working in fault-free networks, has a relatively simple structure and guarantees exponentially fast convergence to the average value despite crash and omission failures. As the second part of our contribution, we show three applications of the newly developed fault-tolerant local load balancing protocol. We give a randomized consensus algorithm, working against $t < n / 3$ crash failures, that improves over the best-known consensus solution by Hajiaghayi et al. with respect to communication complexity, yet with an arguable simpler technique of combining a randomly and locally selected virtual communication graph with a deterministic fault-tolerant local load balancing on this graph. We also give a new solution for consensus for networks with omission failures. Our solution works against $t < \frac{n}{C\log{n} (\log\log n)^2}$ omissions, for some constant $C$, is nearly optimal in terms of time complexity, but most notably -- it has communication complexity $O((t^2 + n)\text{ polylog } {n})$, matching, within a polylogarithmic factor, the lower bound by Abraham et. al. with respect to both terms depending on $t$ and $n$. Ours is the first algorithm in the literature that is simultaneously nearly optimal, in terms of $n,t$, with respect to both complexity measures, against the adaptive omission-causing adversary.
☆ PiKV: KV Cache Management System for Mixture of Experts ICML
As large language models continue to scale up in both size and context length, the memory and communication cost of key-value (KV) cache storage has become a major bottleneck in multi-GPU and multi-node inference. While MoE-based architectures sparsify computation across experts, the corresponding KV caches remain dense and globally synchronized, resulting in significant overhead. We introduce \textbf{PiKV}, a parallel and distributed KV cache serving framework tailored for MoE architecture. PiKV leverages \textit{expert-sharded KV storage} to partition caches across GPUs, \textit{PiKV routing} to reduce token-to-KV access, and a \textit{PiKV Scheduling} to adaptively retain query-relevant entries. To further reduce memory usage, PiKV integrates \textit{PiKV Compression} modules the caching pipeline for acceleration. PiKV is recently publicly available as an open-source software library: \href{https://github.com/NoakLiu/PiKV}{https://github.com/NoakLiu/PiKV}. Experiments details is recorded at: \href{https://github.com/NoakLiu/PiKV/blob/main/downstream_tasks/README.md}{https://github.com/NoakLiu/PiKV/Experimental\_Results}. We also have PiKV integrated with Nvidia kvpress for acceleration, details see \href{https://github.com/NoakLiu/PiKVpress}{https://github.com/NoakLiu/PiKVpress}. PiKV is still a living project, aiming to become a comprehesive KV Cache management system for MoE Architectures.
comment: Accepted to ICML ES-MoFo III WorkShop Paper Link: https://openreview.net/pdf?id=hHoK1kBPd9 Github Link: https://github.com/NoakLiu/PiKV
☆ CarbonScaling: Extending Neural Scaling Laws for Carbon Footprint in Large Language Models
Neural scaling laws have driven the development of increasingly large language models (LLMs) by linking accuracy improvements to growth in parameter count, dataset size, and compute. However, these laws overlook the carbon emissions that scale exponentially with LLM size. This paper presents \textit{CarbonScaling}, an analytical framework that extends neural scaling laws to incorporate both operational and embodied carbon in LLM training. By integrating models for neural scaling, GPU hardware evolution, parallelism optimization, and carbon estimation, \textit{CarbonScaling} quantitatively connects model accuracy to carbon footprint. Results show that while a power-law relationship between accuracy and carbon holds, real-world inefficiencies significantly increase the scaling factor. Hardware technology scaling reduces carbon emissions for small to mid-sized models, but offers diminishing returns for extremely large LLMs due to communication overhead and underutilized GPUs. Training optimizations-especially aggressive critical batch size scaling-help alleviate this inefficiency. \textit{CarbonScaling} offers key insights for training more sustainable and carbon-efficient LLMs.
comment: 8 pages
☆ Semantic-Aware LLM Orchestration for Proactive Resource Management in Predictive Digital Twin Vehicular Networks
Next-generation automotive applications require vehicular edge computing (VEC), but current management systems are essentially fixed and reactive. They are suboptimal in extremely dynamic vehicular environments because they are constrained to static optimization objectives and base their decisions on the current network states. This paper presents a novel Semantic-Aware Proactive LLM Orchestration (SP-LLM) framework to address these issues. Our method transforms the traditional Digital Twin (DT) into a Predictive Digital Twin (pDT) that predicts important network parameters such as task arrivals, vehicle mobility, and channel quality. A Large Language Model (LLM) that serves as a cognitive orchestrator is at the heart of our framework. It makes proactive, forward-looking decisions about task offloading and resource allocation by utilizing the pDT's forecasts. The LLM's ability to decipher high-level semantic commands given in natural language is crucial because it enables it to dynamically modify its optimization policy to match evolving strategic objectives, like giving emergency services priority or optimizing energy efficiency. We show through extensive simulations that SP-LLM performs significantly better in terms of scalability, robustness in volatile conditions, and adaptability than state-of-the-art reactive and MARL-based approaches. More intelligent, autonomous, and goal-driven vehicular networks will be possible due to our framework's outstanding capacity to convert human intent into optimal network behavior.
♻ ☆ FedMLAC: Mutual Learning Driven Heterogeneous Federated Audio Classification
Federated Learning (FL) offers a privacy-preserving framework for training audio classification (AC) models across decentralized clients without sharing raw data. However, Federated Audio Classification (FedAC) faces three major challenges: data heterogeneity, model heterogeneity, and data poisoning, which degrade performance in real-world settings. While existing methods often address these issues separately, a unified and robust solution remains underexplored. We propose FedMLAC, a mutual learning-based FL framework that tackles all three challenges simultaneously. Each client maintains a personalized local AC model and a lightweight, globally shared Plug-in model. These models interact via bidirectional knowledge distillation, enabling global knowledge sharing while adapting to local data distributions, thus addressing both data and model heterogeneity. To counter data poisoning, we introduce a Layer-wise Pruning Aggregation (LPA) strategy that filters anomalous Plug-in updates based on parameter deviations during aggregation. Extensive experiments on four diverse audio classification benchmarks, including both speech and non-speech tasks, show that FedMLAC consistently outperforms state-of-the-art baselines in classification accuracy and robustness to noisy data.
comment: updated version for the first submission
♻ ☆ Class-Wise Federated Averaging for Efficient Personalization
Federated learning (FL) enables collaborative model training across distributed clients without centralizing data. However, existing approaches such as Federated Averaging (FedAvg) often perform poorly with heterogeneous data distributions, failing to achieve personalization owing to their inability to capture class-specific information effectively. We propose Class-wise Federated Averaging (cwFedAvg), a novel personalized FL (PFL) framework that performs Federated Averaging for each class, to overcome the personalization limitations of FedAvg. cwFedAvg creates class-specific global models via weighted aggregation of local models using class distributions, and subsequently combines them to generate personalized local models. We further propose Weight Distribution Regularizer (WDR), which encourages deep networks to encode class-specific information efficiently by aligning empirical and approximated class distributions derived from output layer weights, to facilitate effective class-wise aggregation. Our experiments demonstrate the superior performance of cwFedAvg with WDR over existing PFL methods through efficient personalization while maintaining the communication cost of FedAvg and avoiding additional local training and pairwise computations.
♻ ☆ MoDM: Efficient Serving for Image Generation via Mixture-of-Diffusion Models
Diffusion-based text-to-image generation models trade latency for quality: small models are fast but generate lower-quality images, while large models produce better images but are slow. We present MoDM, a novel caching-based serving system for diffusion models that dynamically balances latency and quality through a mixture of diffusion models. Unlike prior approaches that rely on model-specific internal features, MoDM caches final images, allowing seamless retrieval and reuse across multiple diffusion model families. This design enables adaptive serving by dynamically balancing latency and image quality: using smaller models for cache-hit requests to reduce latency while reserving larger models for cache-miss requests to maintain quality. Small model image quality is preserved using retrieved cached images. We design a global monitor that optimally allocates GPU resources and balances inference workload, ensuring high throughput while meeting service-level objectives under varying request rates. Our evaluations show that MoDM significantly reduces average serving time by 2.5x while retaining image quality, making it a practical solution for scalable and resource-efficient model deployment.
comment: To appear in ASPLOS'26
♻ ☆ CUDA-L1: Improving CUDA Optimization via Contrastive Reinforcement Learning
The exponential growth in demand for GPU computing resources has created an urgent need for automated CUDA optimization strategies. While recent advances in LLMs show promise for code generation, current SOTA models achieve low success rates in improving CUDA speed. In this paper, we introduce CUDA-L1, an automated reinforcement learning framework for CUDA optimization that employs a novel contrastive RL algorithm. CUDA-L1 achieves significant performance improvements on the CUDA optimization task: trained on NVIDIA A100, it delivers an average speedup of x3.12 with a median speedup of x1.42 across all 250 CUDA kernels of KernelBench, with peak speedups reaching x120. Furthermore, the model also demonstrates portability across GPU architectures, achieving average speedups of x3.12 on L40, x2.50 on RTX 3090, x2.39 on H100, and x2.37 on H20 despite being optimized specifically for A100. The capabilities of CUDA-L1 demonstrate that, RL can transform an initially poor-performing LLM into an effective CUDA optimizer through speedup-based reward signals alone, without human expertise or domain knowledge. This paradigm opens possibilities for automated optimization of CUDA operations, and holds promise to substantially promote GPU efficiency and alleviate the rising pressure on GPU computing resources. We also identify important challenges posed by training RL models for tasks like CUDA development, where RL often learns to exploit loopholes in reward functions rather than solve the intended optimization problems. By identifying these failure modes and analyzing their root causes, we develop practical methods for creating more robust training procedures that prevent reward hacking.
comment: Project Page: https://deepreinforce-ai.github.io/cudal1_blog/
Information Retrieval 12
☆ End-to-End Personalization: Unifying Recommender Systems with Large Language Models AI
Recommender systems are essential for guiding users through the vast and diverse landscape of digital content by delivering personalized and relevant suggestions. However, improving both personalization and interpretability remains a challenge, particularly in scenarios involving limited user feedback or heterogeneous item attributes. In this article, we propose a novel hybrid recommendation framework that combines Graph Attention Networks (GATs) with Large Language Models (LLMs) to address these limitations. LLMs are first used to enrich user and item representations by generating semantically meaningful profiles based on metadata such as titles, genres, and overviews. These enriched embeddings serve as initial node features in a user and movie bipartite graph, which is processed using a GAT based collaborative filtering model. To enhance ranking accuracy, we introduce a hybrid loss function that combines Bayesian Personalized Ranking (BPR), cosine similarity, and robust negative sampling. Post-processing involves reranking the GAT-generated recommendations using the LLM, which also generates natural-language justifications to improve transparency. We evaluated our model on benchmark datasets, including MovieLens 100k and 1M, where it consistently outperforms strong baselines. Ablation studies confirm that LLM-based embeddings and the cosine similarity term significantly contribute to performance gains. This work demonstrates the potential of integrating LLMs to improve both the accuracy and interpretability of recommender systems.
comment: Second Workshop on Generative AI for Recommender Systems and Personalization at the ACM Conference on Knowledge Discovery and Data Mining (GenAIRecP@KDD 2025)
☆ Req-Rec: Enhancing Requirements Elicitation for Increasing Stakeholder's Satisfaction Using a Collaborative Filtering Based Recommender System
The success or failure of a project is highly related to recognizing the right stakeholders and accurately finding and discovering their requirements. However, choosing the proper elicitation technique was always a considerable challenge for efficient requirement engineering. As a consequence of the swift improvement of digital technologies since the past decade, recommender systems have become an efficient channel for making a deeply personalized interactive communication with stakeholders. In this research, a new method, called the Req-Rec (Requirements Recommender), is proposed. It is a hybrid recommender system based on the collaborative filtering approach and the repertory grid technique as the core component. The primary goal of Req-Rec is to increase stakeholder satisfaction by assisting them in the requirement elicitation phase. Based on the results, the method efficiently could overcome weaknesses of common requirement elicitation techniques, such as time limitation, location-based restrictions, and bias in requirements' elicitation process. Therefore, recommending related requirements assists stakeholders in becoming more aware of different aspects of the project.
comment: March 2023, 28 pages, 7 figures
☆ SaviorRec: Semantic-Behavior Alignment for Cold-Start Recommendation
In recommendation systems, predicting Click-Through Rate (CTR) is crucial for accurately matching users with items. To improve recommendation performance for cold-start and long-tail items, recent studies focus on leveraging item multimodal features to model users' interests. However, obtaining multimodal representations for items relies on complex pre-trained encoders, which incurs unacceptable computation cost to train jointly with downstream ranking models. Therefore, it is important to maintain alignment between semantic and behavior space in a lightweight way. To address these challenges, we propose a Semantic-Behavior Alignment for Cold-start Recommendation framework, which mainly focuses on utilizing multimodal representations that align with the user behavior space to predict CTR. First, we leverage domain-specific knowledge to train a multimodal encoder to generate behavior-aware semantic representations. Second, we use residual quantized semantic ID to dynamically bridge the gap between multimodal representations and the ranking model, facilitating the continuous semantic-behavior alignment. We conduct our offline and online experiments on the Taobao, one of the world's largest e-commerce platforms, and have achieved an increase of 0.83% in offline AUC, 13.21% clicks increase and 13.44% orders increase in the online A/B test, emphasizing the efficacy of our method.
☆ MaRGen: Multi-Agent LLM Approach for Self-Directed Market Research and Analysis
We present an autonomous framework that leverages Large Language Models (LLMs) to automate end-to-end business analysis and market report generation. At its core, the system employs specialized agents - Researcher, Reviewer, Writer, and Retriever - that collaborate to analyze data and produce comprehensive reports. These agents learn from real professional consultants' presentation materials at Amazon through in-context learning to replicate professional analytical methodologies. The framework executes a multi-step process: querying databases, analyzing data, generating insights, creating visualizations, and composing market reports. We also introduce a novel LLM-based evaluation system for assessing report quality, which shows alignment with expert human evaluations. Building on these evaluations, we implement an iterative improvement mechanism that optimizes report quality through automated review cycles. Experimental results show that report quality can be improved by both automated review cycles and consultants' unstructured knowledge. In experimental validation, our framework generates detailed 6-page reports in 7 minutes at a cost of approximately \$1. Our work could be an important step to automatically create affordable market insights.
☆ BioDisco: Multi-agent hypothesis generation with dual-mode evidence, iterative feedback and temporal evaluation
Identifying novel hypotheses is essential to scientific research, yet this process risks being overwhelmed by the sheer volume and complexity of available information. Existing automated methods often struggle to generate novel and evidence-grounded hypotheses, lack robust iterative refinement and rarely undergo rigorous temporal evaluation for future discovery potential. To address this, we propose BioDisco, a multi-agent framework that draws upon language model-based reasoning and a dual-mode evidence system (biomedical knowledge graphs and automated literature retrieval) for grounded novelty, integrates an internal scoring and feedback loop for iterative refinement, and validates performance through pioneering temporal and human evaluations and a Bradley-Terry paired comparison model to provide statistically-grounded assessment. Our evaluations demonstrate superior novelty and significance over ablated configurations representative of existing agentic architectures. Designed for flexibility and modularity, BioDisco allows seamless integration of custom language models or knowledge graphs, and can be run with just a few lines of code. We anticipate researchers using this practical tool as a catalyst for the discovery of new hypotheses.
comment: 7 pages main content + 11 pages appendices
☆ A Study on Enhancing User Engagement by Employing Gamified Recommender Systems
Providing customized products and services in the modern business world is one of the most efficient solutions to improve users' experience and their engagements with the industries. To aim, recommender systems, by producing personalized recommendations, have a crucial role in the digital age. As a consequence of modern improvements in the internet and online-based technologies, using gamification rules also increased in various fields. Recent studies showed that considering gamification concepts in implementing recommendation systems not only can become helpful to overcome the cold start and lack of sufficient data, moreover, can effectively improve user engagement. Gamification can motivate individuals to have more activities on the system; these interactions are valuable resources of data for recommender engines. Unlike the past related works about using gamified recommendation systems in different environments or studies that particularly surveyed gamification strategies or recommenders separately, this work provides a comprehensive review of how gamified recommender systems can enhance user engagement in various domain applications. Furthermore, comparing different approaches for building recommender systems is followed by in-depth surveying about investigating the gamified recommender systems, including their approaches, limitations, evaluation metrics, proposed achievements, datasets, domain areas, and their recommendation techniques. This exhaustive analysis provides a detailed picture of the topic's popularity, gaps, and unexplored regions. It is envisaged that the proposed research and introduced possible future directions would serve as a stepping stone for researchers interested in using gamified recommender systems for user satisfaction and engagement.
comment: June 2023, 21 pages, 6 figures
☆ CM$^3$: Calibrating Multimodal Recommendation
Alignment and uniformity are fundamental principles within the domain of contrastive learning. In recommender systems, prior work has established that optimizing the Bayesian Personalized Ranking (BPR) loss contributes to the objectives of alignment and uniformity. Specifically, alignment aims to draw together the representations of interacting users and items, while uniformity mandates a uniform distribution of user and item embeddings across a unit hypersphere. This study revisits the alignment and uniformity properties within the context of multimodal recommender systems, revealing a proclivity among extant models to prioritize uniformity to the detriment of alignment. Our hypothesis challenges the conventional assumption of equitable item treatment through a uniformity loss, proposing a more nuanced approach wherein items with similar multimodal attributes converge toward proximal representations within the hyperspheric manifold. Specifically, we leverage the inherent similarity between items' multimodal data to calibrate their uniformity distribution, thereby inducing a more pronounced repulsive force between dissimilar entities within the embedding space. A theoretical analysis elucidates the relationship between this calibrated uniformity loss and the conventional uniformity function. Moreover, to enhance the fusion of multimodal features, we introduce a Spherical B\'ezier method designed to integrate an arbitrary number of modalities while ensuring that the resulting fused features are constrained to the same hyperspherical manifold. Empirical evaluations conducted on five real-world datasets substantiate the superiority of our approach over competing baselines. We also shown that the proposed methods can achieve up to a 5.4% increase in NDCG@20 performance via the integration of MLLM-extracted features. Source code is available at: https://github.com/enoche/CM3.
comment: Working Paper: https://github.com/enoche/CM3
☆ DBAIOps: A Reasoning LLM-Enhanced Database Operation and Maintenance System using Knowledge Graphs AI
The operation and maintenance (O&M) of database systems is critical to ensuring system availability and performance, typically requiring expert experience (e.g., identifying metric-to-anomaly relations) for effective diagnosis and recovery. However, existing automatic database O&M methods, including commercial products, cannot effectively utilize expert experience. On the one hand, rule-based methods only support basic O&M tasks (e.g., metric-based anomaly detection), which are mostly numerical equations and cannot effectively incorporate literal O&M experience (e.g., troubleshooting guidance in manuals). On the other hand, LLM-based methods, which retrieve fragmented information (e.g., standard documents + RAG), often generate inaccurate or generic results. To address these limitations, we present DBAIOps, a novel hybrid database O&M system that combines reasoning LLMs with knowledge graphs to achieve DBA-style diagnosis. First, DBAIOps introduces a heterogeneous graph model for representing the diagnosis experience, and proposes a semi-automatic graph construction algorithm to build that graph from thousands of documents. Second, DBAIOps develops a collection of (800+) reusable anomaly models that identify both directly alerted metrics and implicitly correlated experience and metrics. Third, for each anomaly, DBAIOps proposes a two-stage graph evolution mechanism to explore relevant diagnosis paths and identify missing relations automatically. It then leverages a reasoning LLM (e.g., DeepSeek-R1) to infer root causes and generate clear diagnosis reports for both DBAs and common users. Our evaluation over four mainstream database systems (Oracle, MySQL, PostgreSQL, and DM8) demonstrates that DBAIOps outperforms state-of-the-art baselines, 34.85% and 47.22% higher in root cause and human evaluation accuracy, respectively.
comment: DBAIOps supports 25 database systems and has been deployed in 20 real-world scenarios, covering domains like finance, energy, and healthcare. See website at: https://www.dbaiops.com; See code at: https://github.com/weAIDB/DBAIOps/
☆ Towards Bridging Review Sparsity in Recommendation with Textual Edge Graph Representation
Textual reviews enrich recommender systems with fine-grained preference signals and enhanced explainability. However, in real-world scenarios, users rarely leave reviews, resulting in severe sparsity that undermines the effectiveness of existing models. A natural solution is to impute or generate missing reviews to enrich the data. However, conventional imputation techniques -- such as matrix completion and LLM-based augmentation -- either lose contextualized semantics by embedding texts into vectors, or overlook structural dependencies among user-item interactions. To address these shortcomings, we propose TWISTER (ToWards Imputation on Sparsity with Textual Edge Graph Representation), a unified framework that imputes missing reviews by jointly modeling semantic and structural signals. Specifically, we represent user-item interactions as a Textual-Edge Graph (TEG), treating reviews as edge attributes. To capture relational context, we construct line-graph views and employ a large language model as a graph-aware aggregator. For each interaction lacking a textual review, our model aggregates the neighborhood's natural-language representations to generate a coherent and personalized review. Experiments on the Amazon and Goodreads datasets show that TWISTER consistently outperforms traditional numeric, graph-based, and LLM baselines, delivering higher-quality imputed reviews and, more importantly, enhanced recommendation performance. In summary, TWISTER generates reviews that are more helpful, authentic, and specific, while smoothing structural signals for improved recommendations.
comment: 13 pages
☆ Advancing the Foundation Model for Music Understanding
The field of Music Information Retrieval (MIR) is fragmented, with specialized models excelling at isolated tasks. In this work, we challenge this paradigm by introducing a unified foundation model named MuFun for holistic music understanding. Our model features a novel architecture that jointly processes instrumental and lyrical content, and is trained on a large-scale dataset covering diverse tasks such as genre classification, music tagging, and question answering. To facilitate robust evaluation, we also propose a new benchmark for multi-faceted music understanding called MuCUE (Music Comprehensive Understanding Evaluation). Experiments show our model significantly outperforms existing audio large language models across the MuCUE tasks, demonstrating its state-of-the-art effectiveness and generalization ability.
♻ ☆ CTR-Driven Ad Text Generation via Online Feedback Preference Optimization
Advertising text plays a critical role in determining click-through rates (CTR) in online advertising. Large Language Models (LLMs) offer significant efficiency advantages over manual ad text creation. However, LLM-generated ad texts do not guarantee higher CTR performance compared to human-crafted texts, revealing a gap between generation quality and online performance of ad texts. In this work, we propose a novel ad text generation method which optimizes for CTR through preference optimization from online feedback. Our approach adopts an innovative two-stage framework: (1) diverse ad text sampling via one-shot in-context learning, using retrieval-augmented generation (RAG) to provide exemplars with chain-of-thought (CoT) reasoning; (2) CTR-driven preference optimization from online feedback, which weighs preference pairs according to their CTR gains and confidence levels. Through our method, the resulting model enables end-to-end generation of high-CTR ad texts. Extensive experiments have demonstrated the effectiveness of our method in both offline and online metrics. Notably, we have applied our method on a large-scale online shopping platform and achieved significant CTR improvements, showcasing its strong applicability and effectiveness in advertising systems.
comment: 13 pages, 7 figures, 8 tables
♻ ☆ HIT Model: A Hierarchical Interaction-Enhanced Two-Tower Model for Pre-Ranking Systems
Online display advertising platforms rely on pre-ranking systems to efficiently filter and prioritize candidate ads from large corpora, balancing relevance to users with strict computational constraints. The prevailing two-tower architecture, though highly efficient due to its decoupled design and pre-caching, suffers from cross-domain interaction and coarse similarity metrics, undermining its capacity to model complex user-ad relationships. In this study, we propose the Hierarchical Interaction-Enhanced Two-Tower (HIT) model, a new architecture that augments the two-tower paradigm with two key components: $\textit{generators}$ that pre-generate holistic vectors incorporating coarse-grained user-ad interactions through a dual-generator framework with a cosine-similarity-based generation loss as the training objective, and $\textit{multi-head representers}$ that project embeddings into multiple latent subspaces to capture fine-grained, multi-faceted user interests and multi-dimensional ad attributes. This design enhances modeling effectiveness without compromising inference efficiency. Extensive experiments on public datasets and large-scale online A/B testing on Tencent's advertising platform demonstrate that HIT significantly outperforms several baselines in relevance metrics, yielding a $1.66\%$ increase in Gross Merchandise Volume and a $1.55\%$ improvement in Return on Investment, alongside similar serving latency to the vanilla two-tower models. The HIT model has been successfully deployed in Tencent's online display advertising system, serving billions of impressions daily. The code is available at https://github.com/HarveyYang123/HIT_model.
comment: 7 pages
Computational Engineering, Finance, and Science 4
☆ A Reward-Directed Diffusion Framework for Generative Design Optimization
This study presents a generative optimization framework that builds on a fine-tuned diffusion model and reward-directed sampling to generate high-performance engineering designs. The framework adopts a parametric representation of the design geometry and produces new parameter sets corresponding to designs with enhanced performance metrics. A key advantage of the reward-directed approach is its suitability for scenarios in which performance metrics rely on costly engineering simulations or surrogate models (e.g. graph-based, ensemble models, or tree-based) are non-differentiable or prohibitively expensive to differentiate. This work introduces the iterative use of a soft value function within a Markov decision process framework to achieve reward-guided decoding in the diffusion model. By incorporating soft-value guidance during both the training and inference phases, the proposed approach reduces computational and memory costs to achieve high-reward designs, even beyond the training data. Empirical results indicate that this iterative reward-directed method substantially improves the ability of the diffusion models to generate samples with reduced resistance in 3D ship hull design and enhanced hydrodynamic performance in 2D airfoil design tasks. The proposed framework generates samples that extend beyond the training data distribution, resulting in a greater 25 percent reduction in resistance for ship design and over 10 percent improvement in the lift-to-drag ratio for the 2D airfoil design. Successful integration of this model into the engineering design life cycle can enhance both designer productivity and overall design performance.
☆ CreditARF: A Framework for Corporate Credit Rating with Annual Report and Financial Feature Integration
Corporate credit rating serves as a crucial intermediary service in the market economy, playing a key role in maintaining economic order. Existing credit rating models rely on financial metrics and deep learning. However, they often overlook insights from non-financial data, such as corporate annual reports. To address this, this paper introduces a corporate credit rating framework that integrates financial data with features extracted from annual reports using FinBERT, aiming to fully leverage the potential value of unstructured text data. In addition, we have developed a large-scale dataset, the Comprehensive Corporate Rating Dataset (CCRD), which combines both traditional financial data and textual data from annual reports. The experimental results show that the proposed method improves the accuracy of the rating predictions by 8-12%, significantly improving the effectiveness and reliability of corporate credit ratings.
☆ Recovering Individual-Level Activity Sequences from Location-Based Service Data Using a Novel Transformer-Based Model
Location-Based Service (LBS) data provides critical insights into human mobility, yet its sparsity often yields incomplete trip and activity sequences, making accurate inferences about trips and activities difficult. We raise a research problem: Can we use activity sequences derived from high-quality LBS data to recover incomplete activity sequences at the individual level? This study proposes a new solution, the Variable Selection Network-fused Insertion Transformer (VSNIT), integrating the Insertion Transformer's flexible sequence construction with the Variable Selection Network's dynamic covariate handling capability, to recover missing segments in incomplete activity sequences while preserving existing data. The findings show that VSNIT inserts more diverse, realistic activity patterns, more closely matching real-world variability, and restores disrupted activity transitions more effectively aligning with the target. It also performs significantly better than the baseline model across all metrics. These results highlight VSNIT's superior accuracy and diversity in activity sequence recovery tasks, demonstrating its potential to enhance LBS data utility for mobility analysis. This approach offers a promising framework for future location-based research and applications.
comment: 20 pages, 5 figures
♻ ☆ MLLM-based Discovery of Intrinsic Coordinates and Governing Equations from High-Dimensional Data
Discovering governing equations from scientific data is crucial for understanding the evolution of systems, and is typically framed as a search problem within a candidate equation space. However, the high-dimensional nature of dynamical systems leads to an exponentially expanding equation space, making the search process extremely challenging. The visual perception and pre-trained scientific knowledge of multimodal large language models (MLLM) hold promise for providing effective navigation in high-dimensional equation spaces. In this paper, we propose a zero-shot method based on MLLM for automatically discovering physical coordinates and governing equations from high-dimensional data. Specifically, we design a series of enhanced visual prompts for MLLM to enhance its spatial perception. In addition, MLLM's domain knowledge is employed to navigate the search process within the equation space. Quantitative and qualitative evaluations on two representative types of systems demonstrate that the proposed method effectively discovers the physical coordinates and equations from both simulated and real experimental data, with long-term extrapolation accuracy improved by approximately 26.96% compared to the baseline.
Databases 2
☆ Efficient Direct-Access Ranked Retrieval
We study the problem of Direct-Access Ranked Retrieval (DAR) for interactive data tooling, where evolving data exploration practices, combined with large-scale and high-dimensional datasets, create new challenges. DAR concerns the problem of enabling efficient access to arbitrary rank positions according to a ranking function, without enumerating all preceding tuples. To address this need, we formalize the DAR problem and propose a theoretically efficient algorithm based on geometric arrangements, achieving logarithmic query time. However, this method suffers from exponential space complexity in high dimensions. Therefore, we develop a second class of algorithms based on $\varepsilon$-sampling, which consume a linear space. Since exactly locating the tuple at a specific rank is challenging due to its connection to the range counting problem, we introduce a relaxed variant called Conformal Set Ranked Retrieval (CSR), which returns a small subset guaranteed to contain the target tuple. To solve the CSR problem efficiently, we define an intermediate problem, Stripe Range Retrieval (SRR), and design a hierarchical sampling data structure tailored for narrow-range queries. Our method achieves practical scalability in both data size and dimensionality. We prove near-optimal bounds on the efficiency of our algorithms and validate their performance through extensive experiments on real and synthetic datasets, demonstrating scalability to millions of tuples and hundreds of dimensions.
♻ ☆ Meaningful Data Erasure in the Presence of Dependencies VLDB 2025
Data regulations like GDPR require systems to support data erasure but leave the definition of "erasure" open to interpretation. This ambiguity makes compliance challenging, especially in databases where data dependencies can lead to erased data being inferred from remaining data. We formally define a precise notion of data erasure that ensures any inference about deleted data, through dependencies, remains bounded to what could have been inferred before its insertion. We design erasure mechanisms that enforce this guarantee at minimal cost. Additionally, we explore strategies to balance cost and throughput, batch multiple erasures, and proactively compute data retention times when possible. We demonstrate the practicality and scalability of our algorithms using both real and synthetic datasets.
comment: VLDB 2025 Preprint
Distributed, Parallel, and Cluster Computing 14
☆ Adacc: Adaptive Compression and Activation Checkpointing for LLM Memory Management
Training large language models often employs recomputation to alleviate memory pressure, which can introduce up to 30% overhead in real-world scenarios. In this paper, we propose Adacc, a novel memory management framework that combines adaptive compression and activation checkpointing to reduce the GPU memory footprint. It comprises three modules: (1) We design layer-specific compression algorithms that account for outliers in LLM tensors, instead of directly quantizing floats from FP16 to INT4, to ensure model accuracy. (2) We propose an optimal scheduling policy that employs MILP to determine the best memory optimization for each tensor. (3) To accommodate changes in training tensors, we introduce an adaptive policy evolution mechanism that adjusts the policy during training to enhance throughput. Experimental results show that Adacc can accelerate the LLM training by 1.01x to 1.37x compared to state-of-the-art frameworks, while maintaining comparable model accuracy to the Baseline.
comment: 8 pages
☆ FedGuard: A Diverse-Byzantine-Robust Mechanism for Federated Learning with Major Malicious Clients
Federated learning is a distributed training framework vulnerable to Byzantine attacks, particularly when over 50% of clients are malicious or when datasets are highly non-independent and identically distributed (non-IID). Additionally, most existing defense mechanisms are designed for specific attack types (e.g., gradient similarity-based schemes can only defend against outlier model poisoning), limiting their effectiveness. In response, we propose FedGuard, a novel federated learning mechanism. FedGuard cleverly addresses the aforementioned issues by leveraging the high sensitivity of membership inference to model bias. By requiring clients to include an additional mini-batch of server-specified data in their training, FedGuard can identify and exclude poisoned models, as their confidence in the mini-batch will drop significantly. Our comprehensive evaluation unequivocally shows that, under three highly non-IID datasets, with 90% of clients being Byzantine and seven different types of Byzantine attacks occurring in each round, FedGuard significantly outperforms existing robust federated learning schemes in mitigating various types of Byzantine attacks.
☆ SwarnRaft: Leveraging Consensus for Robust Drone Swarm Coordination in GNSS-Degraded Environments
Unmanned aerial vehicle (UAV) swarms are increasingly used in critical applications such as aerial mapping, environmental monitoring, and autonomous delivery. However, the reliability of these systems is highly dependent on uninterrupted access to the Global Navigation Satellite Systems (GNSS) signals, which can be disrupted in real-world scenarios due to interference, environmental conditions, or adversarial attacks, causing disorientation, collision risks, and mission failure. This paper proposes SwarnRaft, a blockchain-inspired positioning and consensus framework for maintaining coordination and data integrity in UAV swarms operating under GNSS-denied conditions. SwarnRaft leverages the Raft consensus algorithm to enable distributed drones (nodes) to agree on state updates such as location and heading, even in the absence of GNSS signals for one or more nodes. In our prototype, each node uses GNSS and local sensing, and communicates over WiFi in a simulated swarm. Upon signal loss, consensus is used to reconstruct or verify the position of the failed node based on its last known state and trajectory. Our system demonstrates robustness in maintaining swarm coherence and fault tolerance through a lightweight, scalable communication model. This work offers a practical and secure foundation for decentralized drone operation in unpredictable environments.
☆ Information-Theoretic Decentralized Secure Aggregation with Collusion Resilience
In decentralized federated learning (FL), multiple clients collaboratively learn a shared machine learning (ML) model by leveraging their privately held datasets distributed across the network, through interactive exchange of the intermediate model updates. To ensure data security, cryptographic techniques are commonly employed to protect model updates during aggregation. Despite growing interest in secure aggregation, existing works predominantly focus on protocol design and computational guarantees, with limited understanding of the fundamental information-theoretic limits of such systems. Moreover, optimal bounds on communication and key usage remain unknown in decentralized settings, where no central aggregator is available. Motivated by these gaps, we study the problem of decentralized secure aggregation (DSA) from an information-theoretic perspective. Specifically, we consider a network of $K$ fully-connected users, each holding a private input -- an abstraction of local training data -- who aim to securely compute the sum of all inputs. The security constraint requires that no user learns anything beyond the input sum, even when colluding with up to $T$ other users. We characterize the optimal rate region, which specifies the minimum achievable communication and secret key rates for DSA. In particular, we show that to securely compute one symbol of the desired input sum, each user must (i) transmit at least one symbol to others, (ii) hold at least one symbol of secret key, and (iii) all users must collectively hold no fewer than $K - 1$ independent key symbols. Our results establish the fundamental performance limits of DSA, providing insights for the design of provably secure and communication-efficient protocols in distributed learning systems.
comment: Submitted to IEEE for potential journal publication
☆ Tetris: Efficient Intra-Datacenter Calls Packing for Large Conferencing Services
Conference services like Zoom, Microsoft Teams, and Google Meet facilitate millions of daily calls, yet ensuring high performance at low costs remains a significant challenge. This paper revisits the problem of packing calls across Media Processor (MP) servers that host the calls within individual datacenters (DCs). We show that the algorithm used in Teams -- a large scale conferencing service as well as other state-of-art algorithms are prone to placing calls resulting in some of the MPs becoming hot (high CPU utilization) that leads to degraded performance and/or elevated hosting costs. The problem arises from disregarding the variability in CPU usage among calls, influenced by differences in participant numbers and media types (audio/video), compounded by bursty call arrivals. To tackle this, we propose Tetris, a multi-step framework which (a) optimizes initial call assignments by leveraging historical data and (b) periodically migrates calls from hot MPs using linear optimization, aiming to minimize hot MP usage. Evaluation based on a 24-hour trace of over 10 million calls in one DC shows that Tetris reduces participant numbers on hot MPs by at least 2.5X.
☆ Integrated user scheduling and beam steering in over-the-air federated learning for mobile IoT
The rising popularity of Internet of things (IoT) has spurred technological advancements in mobile internet and interconnected systems. While offering flexible connectivity and intelligent applications across various domains, IoT service providers must gather vast amounts of sensitive data from users, which nonetheless concomitantly raises concerns about privacy breaches. Federated learning (FL) has emerged as a promising decentralized training paradigm to tackle this challenge. This work focuses on enhancing the aggregation efficiency of distributed local models by introducing over-the-air computation into the FL framework. Due to radio resource scarcity in large-scale networks, only a subset of users can participate in each training round. This highlights the need for effective user scheduling and model transmission strategies to optimize communication efficiency and inference accuracy. To address this, we propose an integrated approach to user scheduling and receive beam steering, subject to constraints on the number of selected users and transmit power. Leveraging the difference-of-convex technique, we decompose the primal non-convex optimization problem into two sub-problems, yielding an iterative solution. While effective, the computational load of the iterative method hampers its practical implementation. To overcome this, we further propose a low-complexity user scheduling policy based on characteristic analysis of the wireless channel to directly determine the user subset without iteration. Extensive experiments validate the superiority of the proposed method in terms of aggregation error and learning performance over existing approaches.
comment: To appear in ACM TOIT. 24 pages, 8 figures
☆ Quality-of-Service Aware LLM Routing for Edge Computing with Multiple Experts
Large Language Models (LLMs) have demonstrated remarkable capabilities, leading to a significant increase in user demand for LLM services. However, cloud-based LLM services often suffer from high latency, unstable responsiveness, and privacy concerns. Therefore, multiple LLMs are usually deployed at the network edge to boost real-time responsiveness and protect data privacy, particularly for many emerging smart mobile and IoT applications. Given the varying response quality and latency of LLM services, a critical issue is how to route user requests from mobile and IoT devices to an appropriate LLM service (i.e., edge LLM expert) to ensure acceptable quality-of-service (QoS). Existing routing algorithms fail to simultaneously address the heterogeneity of LLM services, the interference among requests, and the dynamic workloads necessary for maintaining long-term stable QoS. To meet these challenges, in this paper we propose a novel deep reinforcement learning (DRL)-based QoS-aware LLM routing framework for sustained high-quality LLM services. Due to the dynamic nature of the global state, we propose a dynamic state abstraction technique to compactly represent global state features with a heterogeneous graph attention network (HAN). Additionally, we introduce an action impact estimator and a tailored reward function to guide the DRL agent in maximizing QoS and preventing latency violations. Extensive experiments on both Poisson and real-world workloads demonstrate that our proposed algorithm significantly improves average QoS and computing resource efficiency compared to existing baselines.
comment: Accepted by IEEE Transactions on Mobile Computing
☆ AdVAR-DNN: Adversarial Misclassification Attack on Collaborative DNN Inference
In recent years, Deep Neural Networks (DNNs) have become increasingly integral to IoT-based environments, enabling realtime visual computing. However, the limited computational capacity of these devices has motivated the adoption of collaborative DNN inference, where the IoT device offloads part of the inference-related computation to a remote server. Such offloading often requires dynamic DNN partitioning information to be exchanged among the participants over an unsecured network or via relays/hops, leading to novel privacy vulnerabilities. In this paper, we propose AdVAR-DNN, an adversarial variational autoencoder (VAE)-based misclassification attack, leveraging classifiers to detect model information and a VAE to generate untraceable manipulated samples, specifically designed to compromise the collaborative inference process. AdVAR-DNN attack uses the sensitive information exchange vulnerability of collaborative DNN inference and is black-box in nature in terms of having no prior knowledge about the DNN model and how it is partitioned. Our evaluation using the most popular object classification DNNs on the CIFAR-100 dataset demonstrates the effectiveness of AdVAR-DNN in terms of high attack success rate with little to no probability of detection.
☆ Optimal Scheduling Algorithms for LLM Inference: Theory and Practice
With the growing use of Large Language Model (LLM)-based tools like ChatGPT, Perplexity, and Gemini across industries, there is a rising need for efficient LLM inference systems. These systems handle requests with a unique two-phase computation structure: a prefill-phase that processes the full input prompt and a decode-phase that autoregressively generates tokens one at a time. This structure calls for new strategies for routing and scheduling requests. In this paper, we take a comprehensive approach to this challenge by developing a theoretical framework that models routing and scheduling in LLM inference systems. We identify two key design principles-optimal tiling and dynamic resource allocation-that are essential for achieving high throughput. Guided by these principles, we propose the Resource-Aware Dynamic (RAD) scheduler and prove that it achieves throughput optimality under mild conditions. To address practical Service Level Objectives (SLOs) such as serving requests with different Time Between Token (TBT) constraints, we design the SLO-Aware LLM Inference (SLAI) scheduler. SLAI uses real-time measurements to prioritize decode requests that are close to missing their TBT deadlines and reorders prefill requests based on known prompt lengths to further reduce the Time To First Token (TTFT) delays. We evaluate SLAI on the Openchat ShareGPT4 dataset using the Mistral-7B model on an NVIDIA RTX ADA 6000 GPU. Compared to Sarathi-Serve, SLAI reduces the median TTFT by 53% and increases the maximum serving capacity by 26% such that median TTFT is below 0.5 seconds, while meeting tail TBT latency constraints.
☆ Compression-Induced Communication-Efficient Large Model Training and Inferencing
Energy efficiency of training and inferencing with large neural network models is a critical challenge facing the future of sustainable large-scale machine learning workloads. This paper introduces an alternative strategy, called phantom parallelism, to minimize the net energy consumption of traditional tensor (model) parallelism, the most energy-inefficient component of large neural network training. The approach is presented in the context of feed-forward network architectures as a preliminary, but comprehensive, proof-of-principle study of the proposed methodology. We derive new forward and backward propagation operators for phantom parallelism, implement them as custom autograd operations within an end-to-end phantom parallel training pipeline and compare its parallel performance and energy-efficiency against those of conventional tensor parallel training pipelines. Formal analyses that predict lower bandwidth and FLOP counts are presented with supporting empirical results on up to 256 GPUs that corroborate these gains. Experiments are shown to deliver ~50% reduction in the energy consumed to train FFNs using the proposed phantom parallel approach when compared with conventional tensor parallel methods. Additionally, the proposed approach is shown to train smaller phantom models to the same model loss on smaller GPU counts as larger tensor parallel models on larger GPU counts offering the possibility for even greater energy savings.
♻ ☆ TensorSocket: Shared Data Loading for Deep Learning Training
Training deep learning models is a repetitive and resource-intensive process. Data scientists often train several models before landing on a set of parameters (e.g., hyper-parameter tuning) and model architecture (e.g., neural architecture search), among other things that yield the highest accuracy. The computational efficiency of these training tasks depends highly on how well the training data is supplied to the training process. The repetitive nature of these tasks results in the same data processing pipelines running over and over, exacerbating the need for and costs of computational resources. In this paper, we present TensorSocket to reduce the computational needs of deep learning training by enabling simultaneous training processes to share the same data loader. TensorSocket mitigates CPU-side bottlenecks in cases where the collocated training workloads have high throughput on GPU, but are held back by lower data-loading throughput on CPU. TensorSocket achieves this by reducing redundant computations and data duplication across collocated training processes and leveraging modern GPU-GPU interconnects. While doing so, TensorSocket is able to train and balance differently-sized models and serve multiple batch sizes simultaneously and is hardware- and pipeline-agnostic in nature. Our evaluation shows that TensorSocket enables scenarios that are infeasible without data sharing, increases training throughput by up to 100%, and when utilizing cloud instances, achieves cost savings of 50% by reducing the hardware resource needs on the CPU side. Furthermore, TensorSocket outperforms the state-of-the-art solutions for shared data loading such as CoorDL and Joader; it is easier to deploy and maintain and either achieves higher or matches their throughput while requiring fewer CPU resources.
♻ ☆ ExclaveFL: Providing Transparency to Federated Learning using Exclaves
In federated learning (FL), data providers jointly train a model without disclosing their training data. Despite its inherent privacy benefits, a malicious data provider can simply deviate from the correct training protocol without being detected, potentially compromising the trained model. While current solutions have explored the use of trusted execution environments (TEEs) to combat such attacks, they usually assume side-channel attacks against the TEEs are out of scope. However, such side-channel attacks can undermine the security properties of TEE-based FL frameworks, not by extracting the FL data, but by leaking keys that allow the adversary to impersonate as the TEE whilst deviating arbitrarily from the correct training protocol. We describe ExclaveFL, an FL platform that provides end-to-end integrity and transparency, even in the presence of side-channel attacks on TEEs. We propose a new paradigm in which existing TEEs are used as exclaves -- integrity-protected execution environments that do not contain any secrets, making them immune to side-channel attacks. Whereas previous approaches attest the TEE itself and bind this attestation to a key held by the TEE, ExclaveFL attests individual data transformations at runtime. These runtime attestations form an attested dataflow graph, which can be checked to ensure the FL training job satisfies claims, such as deviations from the correct computation. We implement ExclaveFL by extending the popular NVFlare FL framework to use exclaves, and show experimentally that ExclaveFL introduces less than 10% overhead compared to the same FL framework without TEEs, whilst providing stronger security guarantees.
♻ ☆ SGEMM-cube: Emulating FP32 GEMM on Ascend NPUs Using FP16 Cube Units with Precision Recovery
Low-precision matrix engines, such as FP16 cube, offer high throughput but lack support for full-precision computation. In this work, we propose SGEMM-cube, a high-performance algorithm for emulating FP32 general matrix-matrix multiplication (GEMM) using only FP16 computation units on a representative AI accelerator. The method decomposes each FP32 operand into two FP16 values and compensates for numerical errors through a tunable scaling strategy. A detailed analysis of numerical errors, including underflow conditions and precision loss, guides the selection of scaling parameters to preserve up to 22 bits of mantissa accuracy. We further investigate the effect of computation order on accuracy and demonstrate that a term-wise accumulation scheme improves numerical stability over conventional FP32 GEMM in low-exponent regimes. Finally, a cache-aware blocking strategy and double-buffered pipeline are introduced to overlap memory transfers with computation, enabling SGEMM-cube to achieve up to 77\% of the theoretical FP32-equivalent peak performance on Ascend 910A NPU lacking native FP32 support. Extensive numerical experiments confirm that our method not only recovers the accuracy of native FP32 GEMM but also exhibits superior numerical stability under certain conditions, due to its structured and error-aware computation order.
♻ ☆ Federated Time Series Generation on Feature and Temporally Misaligned Data
Distributed time series data presents a challenge for federated learning, as clients often possess different feature sets and have misaligned time steps. Existing federated time series models are limited by the assumption of perfect temporal or feature alignment across clients. In this paper, we propose FedTDD, a novel federated time series diffusion model that jointly learns a synthesizer across clients. At the core of FedTDD is a novel data distillation and aggregation framework that reconciles the differences between clients by imputing the misaligned timesteps and features. In contrast to traditional federated learning, FedTDD learns the correlation across clients' time series through the exchange of local synthetic outputs instead of model parameters. A coordinator iteratively improves a global distiller network by leveraging shared knowledge from clients through the exchange of synthetic data. As the distiller becomes more refined over time, it subsequently enhances the quality of the clients' local feature estimates, allowing each client to then improve its local imputations for missing data using the latest, more accurate distiller. Experimental results on five datasets demonstrate FedTDD's effectiveness compared to centralized training, and the effectiveness of sharing synthetic outputs to transfer knowledge of local time series. Notably, FedTDD achieves 79.4% and 62.8% improvement over local training in Context-FID and Correlational scores.
Information Retrieval 21
☆ Harnessing the Power of Interleaving and Counterfactual Evaluation for Airbnb Search Ranking
Evaluation plays a crucial role in the development of ranking algorithms on search and recommender systems. It enables online platforms to create user-friendly features that drive commercial success in a steady and effective manner. The online environment is particularly conducive to applying causal inference techniques, such as randomized controlled experiments (known as A/B test), which are often more challenging to implement in fields like medicine and public policy. However, businesses face unique challenges when it comes to effective A/B test. Specifically, achieving sufficient statistical power for conversion-based metrics can be time-consuming, especially for significant purchases like booking accommodations. While offline evaluations are quicker and more cost-effective, they often lack accuracy and are inadequate for selecting candidates for A/B test. To address these challenges, we developed interleaving and counterfactual evaluation methods to facilitate rapid online assessments for identifying the most promising candidates for A/B tests. Our approach not only increased the sensitivity of experiments by a factor of up to 100 (depending on the approach and metrics) compared to traditional A/B testing but also streamlined the experimental process. The practical insights gained from usage in production can also benefit organizations with similar interests.
comment: 10 pages
☆ Experimental Evaluation of Dynamic Topic Modeling Algorithms
The amount of text generated daily on social media is gigantic and analyzing this text is useful for many purposes. To understand what lies beneath a huge amount of text, we need dependable and effective computing techniques from self-powered topic models. Nevertheless, there are currently relatively few thorough quantitative comparisons between these models. In this study, we compare these models and propose an assessment metric that documents how the topics change in time.
☆ NyayaRAG: Realistic Legal Judgment Prediction with RAG under the Indian Common Law System
Legal Judgment Prediction (LJP) has emerged as a key area in AI for law, aiming to automate judicial outcome forecasting and enhance interpretability in legal reasoning. While previous approaches in the Indian context have relied on internal case content such as facts, issues, and reasoning, they often overlook a core element of common law systems, which is reliance on statutory provisions and judicial precedents. In this work, we propose NyayaRAG, a Retrieval-Augmented Generation (RAG) framework that simulates realistic courtroom scenarios by providing models with factual case descriptions, relevant legal statutes, and semantically retrieved prior cases. NyayaRAG evaluates the effectiveness of these combined inputs in predicting court decisions and generating legal explanations using a domain-specific pipeline tailored to the Indian legal system. We assess performance across various input configurations using both standard lexical and semantic metrics as well as LLM-based evaluators such as G-Eval. Our results show that augmenting factual inputs with structured legal knowledge significantly improves both predictive accuracy and explanation quality.
☆ Segment First, Retrieve Better: Realistic Legal Search via Rhetorical Role-Based Queries
Legal precedent retrieval is a cornerstone of the common law system, governed by the principle of stare decisis, which demands consistency in judicial decisions. However, the growing complexity and volume of legal documents challenge traditional retrieval methods. TraceRetriever mirrors real-world legal search by operating with limited case information, extracting only rhetorically significant segments instead of requiring complete documents. Our pipeline integrates BM25, Vector Database, and Cross-Encoder models, combining initial results through Reciprocal Rank Fusion before final re-ranking. Rhetorical annotations are generated using a Hierarchical BiLSTM CRF classifier trained on Indian judgments. Evaluated on IL-PCR and COLIEE 2025 datasets, TraceRetriever addresses growing document volume challenges while aligning with practical search constraints, reliable and scalable foundation for precedent retrieval enhancing legal research when only partial case knowledge is available.
☆ Context-based Motion Retrieval using Open Vocabulary Methods for Autonomous Driving
Autonomous driving systems must operate reliably in safety-critical scenarios, particularly those involving unusual or complex behavior by Vulnerable Road Users (VRUs). Identifying these edge cases in driving datasets is essential for robust evaluation and generalization, but retrieving such rare human behavior scenarios within the long tail of large-scale datasets is challenging. To support targeted evaluation of autonomous driving systems in diverse, human-centered scenarios, we propose a novel context-aware motion retrieval framework. Our method combines Skinned Multi-Person Linear (SMPL)-based motion sequences and corresponding video frames before encoding them into a shared multimodal embedding space aligned with natural language. Our approach enables the scalable retrieval of human behavior and their context through text queries. This work also introduces our dataset WayMoCo, an extension of the Waymo Open Dataset. It contains automatically labeled motion and scene context descriptions derived from generated pseudo-ground-truth SMPL sequences and corresponding image data. Our approach outperforms state-of-the-art models by up to 27.5% accuracy in motion-context retrieval, when evaluated on the WayMoCo dataset.
comment: 9 pages, 10 figure, project page https://iv.ee.hm.edu/contextmotionclip/, submitted to IEEE Transactions on Intelligent Vehicles (T-IV), This work has been submitted to the IEEE for possible publication
☆ MMRAG-DocQA: A Multi-Modal Retrieval-Augmented Generation Method for Document Question-Answering with Hierarchical Index and Multi-Granularity Retrieval
The multi-modal long-context document question-answering task aims to locate and integrate multi-modal evidences (such as texts, tables, charts, images, and layouts) distributed across multiple pages, for question understanding and answer generation. The existing methods can be categorized into Large Vision-Language Model (LVLM)-based and Retrieval-Augmented Generation (RAG)-based methods. However, the former were susceptible to hallucinations, while the latter struggled for inter-modal disconnection and cross-page fragmentation. To address these challenges, a novel multi-modal RAG model, named MMRAG-DocQA, was proposed, leveraging both textual and visual information across long-range pages to facilitate accurate question answering. A hierarchical indexing method with the integration of flattened in-page chunks and topological cross-page chunks was designed to jointly establish in-page multi-modal associations and long-distance cross-page dependencies. By means of joint similarity evaluation and large language model (LLM)-based re-ranking, a multi-granularity semantic retrieval method, including the page-level parent page retrieval and document-level summary retrieval, was proposed to foster multi-modal evidence connection and long-distance evidence integration and reasoning. Experimental results performed on public datasets, MMLongBench-Doc and LongDocURL, demonstrated the superiority of our MMRAG-DocQA method in understanding and answering modality-rich and multi-page documents.
☆ Session-Based Recommendation with Validated and Enriched LLM Intents
Session-based recommendation (SBR) aims to predict the next item for an anonymous user in a timely manner. However, SBR suffers from data sparsity due to the short and anonymous nature of sessions. Recently, an emerging line of work has explored inferring the underlying user intents of a session using large language models (LLMs), with the generated intents serving as auxiliary training signals to enhance SBR models. Despite its promise, this approach faces three key challenges: validating intent quality, incorporating session-level multi-intents, and complementing inevitable LLM failure cases. In this paper, we propose VELI4SBR, a two-stage framework that leverages Validated and Enriched LLM-generated Intents for SBR. In the first stage, we generate high-quality intents using a predict-and-correct loop that validates the informativeness of LLM-generated intents with a global intent pool to constrain the LLM's output space and reduce hallucination. In the second stage, we enhance the SBR model using the generated intents through a lightweight multi-intent prediction and fusion mechanism. Furthermore, we introduce a training strategy that compensates for LLM failures by inferring intents from inter-session behavioral similarities. Extensive experiments show that VELI4SBR outperforms state-of-the-art baselines while improving explainability.
☆ M^2VAE: Multi-Modal Multi-View Variational Autoencoder for Cold-start Item Recommendation
Cold-start item recommendation is a significant challenge in recommendation systems, particularly when new items are introduced without any historical interaction data. While existing methods leverage multi-modal content to alleviate the cold-start issue, they often neglect the inherent multi-view structure of modalities, the distinction between shared and modality-specific features. In this paper, we propose Multi-Modal Multi-View Variational AutoEncoder (M^2VAE), a generative model that addresses the challenges of modeling common and unique views in attribute and multi-modal features, as well as user preferences over single-typed item features. Specifically, we generate type-specific latent variables for item IDs, categorical attributes, and image features, and use Product-of-Experts (PoE) to derive a common representation. A disentangled contrastive loss decouples the common view from unique views while preserving feature informativeness. To model user inclinations, we employ a preference-guided Mixture-of-Experts (MoE) to adaptively fuse representations. We further incorporate co-occurrence signals via contrastive learning, eliminating the need for pretraining. Extensive experiments on real-world datasets validate the effectiveness of our approach.
☆ When Relevance Meets Novelty: Dual-Stable Periodic Optimization for Exploratory Recommendation
Traditional recommendation systems tend to trap users in strong feedback loops by excessively pushing content aligned with their historical preferences, thereby limiting exploration opportunities and causing content fatigue. Although large language models (LLMs) demonstrate potential with their diverse content generation capabilities, existing LLM-enhanced dual-model frameworks face two major limitations: first, they overlook long-term preferences driven by group identity, leading to biased interest modeling; second, they suffer from static optimization flaws, as a one-time alignment process fails to leverage incremental user data for closed-loop optimization. To address these challenges, we propose the Co-Evolutionary Alignment (CoEA) method. For interest modeling bias, we introduce Dual-Stable Interest Exploration (DSIE) module, jointly modeling long-term group identity and short-term individual interests through parallel processing of behavioral sequences. For static optimization limitations, we design a Periodic Collaborative Optimization (PCO) mechanism. This mechanism regularly conducts preference verification on incremental data using the Relevance LLM, then guides the Novelty LLM to perform fine-tuning based on the verification results, and subsequently feeds back the output of the incrementally fine-tuned Novelty LLM to the Relevance LLM for re-evaluation, thereby achieving a dynamic closed-loop optimization. Extensive online and offline experiments verify the effectiveness of the CoEA model in exploratory recommendation.
☆ MetaAgent: Toward Self-Evolving Agent via Tool Meta-Learning
In this work, we propose MetaAgent, an agentic paradigm inspired by the principle of learning-by-doing, where expertise is developed through hands-on practice and continual self-improvement. MetaAgent starts with a minimal workflow, equipped only with basic reasoning and adaptive help-seeking abilities. When a knowledge gap is encountered, MetaAgent generates natural language help requests, which are routed to the most suitable external tool by a dedicated tool router. As MetaAgent solves tasks, it continually conducts self-reflection and answer verification, distilling actionable experience into concise texts that are dynamically incorporated into future task contexts. Besides, MetaAgent autonomously builds in-house tools and a persistent knowledge base by organizing its tool-use history, further enhancing its ability to retrieve and integrate relevant information We term this continual, data-driven process as \textit{meta tool learning}, through which MetaAgent incrementally refines its reasoning and tool-use strategies, without changing model parameters or requiring further post-training. Evaluated on challenging knowledge discovery benchmarks, including GAIA, WebWalkerQA, and BrowseCamp, MetaAgent consistently outperforms workflow-based baselines and matches or exceeds end-to-end trained agents, demonstrating the promise of self-evolving agentic systems for robust, general-purpose knowledge discovery. We provide our source codes in https://github.com/qhjqhj00/MetaAgent.
comment: Technical Report, 14 pages
☆ Cross-Domain Web Information Extraction at Pinterest
The internet offers a massive repository of unstructured information, but it's a significant challenge to convert this into a structured format. At Pinterest, the ability to accurately extract structured product data from e-commerce websites is essential to enhance user experiences and improve content distribution. In this paper, we present Pinterest's system for attribute extraction, which achieves remarkable accuracy and scalability at a manageable cost. Our approach leverages a novel webpage representation that combines structural, visual, and text modalities into a compact form, optimizing it for small model learning. This representation captures each visible HTML node with its text, style and layout information. We show how this allows simple models such as eXtreme Gradient Boosting (XGBoost) to extract attributes more accurately than much more complex Large Language Models (LLMs) such as Generative Pre-trained Transformer (GPT). Our results demonstrate a system that is highly scalable, processing over 1,000 URLs per second, while being 1000 times more cost-effective than the cheapest GPT alternatives.
☆ Addressing Cold Start For next-article Recommendation
This replication study modifies ALMM, the Adaptive Linear Mapping Model constructed for the next song recommendation, to the news recommendation problem on the MIND dataset. The original version of ALMM computes latent representations for users, last-time items, and current items in a tensor factorization structure and learns a linear mapping from content features to latent item vectors. Our replication aims to improve recommendation performance in cold-start scenarios by restructuring this model to sequential news click behavior, viewing consecutively read articles as (last news, next news) tuples. Instead of the original audio features, we apply BERT and a TF-IDF (Term Frequency-Inverse Document Frequency) to news titles and abstracts to extract token contextualized representations and align them with triplet-based user reading patterns. We also propose a reproducibly thorough pre-processing pipeline combining news filtering and feature integrity validation. Our implementation of ALMM with TF-IDF shows relatively improved recommendation accuracy and robustness over Forbes and Oord baseline models in the cold-start scenario. We demonstrate that ALMM in a minimally modified state is not suitable for next news recommendation.
☆ MAO-ARAG: Multi-Agent Orchestration for Adaptive Retrieval-Augmented Generation
In question-answering (QA) systems, Retrieval-Augmented Generation (RAG) has become pivotal in enhancing response accuracy and reducing hallucination issues. The architecture of RAG systems varies significantly, encompassing single-round RAG, iterative RAG, and reasoning RAG, each tailored to address different types of queries. Due to the varying complexity of real-world queries, a fixed RAG pipeline often struggles to balance performance and cost efficiency across different queries. To address this challenge, we propose an adaptive RAG framework called MAO-ARAG, which leverages multi-agent orchestration. Our adaptive RAG is conceived as a multi-turn framework. Specifically, we define multiple executor agents, representing typical RAG modules such as query reformulation agents, document selection agent, and generation agents. A planner agent intelligently selects and integrates the appropriate agents from these executors into a suitable workflow tailored for each query, striving for high-quality answers while maintaining reasonable costs. During each turn, the planner agent is trained using reinforcement learning, guided by an outcome-based reward (F1 score) and a cost-based penalty, continuously improving answer quality while keeping costs within a reasonable range. Experiments conducted on multiple QA datasets demonstrate that our approach, which dynamically plans workflows for each query, not only achieves high answer quality but also maintains both cost and latency within acceptable limits.The code of MAO-ARAG is on https://github.com/chenyiqun/Agentic-RAG.
☆ Learning Unified User Quantized Tokenizers for User Representation
Multi-source user representation learning plays a critical role in enabling personalized services on web platforms (e.g., Alipay). While prior works have adopted late-fusion strategies to combine heterogeneous data sources, they suffer from three key limitations: lack of unified representation frameworks, scalability and storage issues in data compression, and inflexible cross-task generalization. To address these challenges, we propose U^2QT (Unified User Quantized Tokenizers), a novel framework that integrates cross-domain knowledge transfer with early fusion of heterogeneous domains. Our framework employs a two-stage architecture: first, a causal Q-Former projects domain-specific features into a shared causal representation space to preserve inter-modality dependencies; second, a multi-view RQ-VAE discretizes causal embeddings into compact tokens through shared and source-specific codebooks, enabling efficient storage while maintaining semantic coherence. Experimental results showcase U^2QT's advantages across diverse downstream tasks, outperforming task-specific baselines in future behavior prediction and recommendation tasks while achieving efficiency gains in storage and computation. The unified tokenization framework enables seamless integration with language models and supports industrial-scale applications.
☆ From Generator to Embedder: Harnessing Innate Abilities of Multimodal LLMs via Building Zero-Shot Discriminative Embedding Model
Multimodal Large Language Models (MLLMs) have emerged as a promising solution for universal embedding tasks, yet adapting their generative nature for discriminative representation learning remains a significant challenge. The dominant paradigm of large-scale contrastive pre-training suffers from critical inefficiencies, including prohibitive computational costs and a failure to leverage the intrinsic, instruction-following capabilities of MLLMs. To overcome these limitations, we propose an efficient framework for universal multimodal embeddings, which bridges this gap by centering on two synergistic components. First, our hierarchical embedding prompt template employs a two-level instruction architecture that forces the model to produce discriminative representations. Building on this strong foundation, our second component, self-aware hard negative sampling, redefines the fine-tuning process by leveraging the model's own understanding to efficiently mine challenging negatives while actively filtering out potential false negatives. Our comprehensive experiments show that our hierarchical prompt achieves zero-shot performance competitive with contrastively trained baselines and enhances the fine-tuning process by lifting a simple in-batch negative baseline by 4.8 points on the MMEB benchmark. We further boost the performance via our self-aware hard negative sampling, achieving the state-of-the-art performance without the contrative pre-training. Our work presents an effective and efficient pathway to adapt MLLMs for universal embedding tasks, significantly reducing training time.
♻ ☆ RecPS: Privacy Risk Scoring for Recommender Systems
Recommender systems (RecSys) have become an essential component of many web applications. The core of the system is a recommendation model trained on highly sensitive user-item interaction data. While privacy-enhancing techniques are actively studied in the research community, the real-world model development still depends on minimal privacy protection, e.g., via controlled access. Users of such systems should have the right to choose \emph{not} to share highly sensitive interactions. However, there is no method allowing the user to know which interactions are more sensitive than others. Thus, quantifying the privacy risk of RecSys training data is a critical step to enabling privacy-aware RecSys model development and deployment. We propose a membership-inference attack (MIA)- based privacy scoring method, RecPS, to measure privacy risks at both the interaction and user levels. The RecPS interaction-level score definition is motivated and derived from differential privacy, which is then extended to the user-level scoring method. A critical component is the interaction-level MIA method RecLiRA, which gives high-quality membership estimation. We have conducted extensive experiments on well-known benchmark datasets and RecSys models to show the unique features and benefits of RecPS scoring in risk assessment and RecSys model unlearning.
comment: Accepted by ACM RecSys 2025; to appear
♻ ☆ Think Before Recommend: Unleashing the Latent Reasoning Power for Sequential Recommendation
Sequential Recommendation (SeqRec) aims to predict the next item by capturing sequential patterns from users' historical interactions, playing a crucial role in many real-world recommender systems. However, existing approaches predominantly adopt a direct forward computation paradigm, where the final hidden state of the sequence encoder serves as the user representation. We argue that this inference paradigm, due to its limited computational depth, struggles to model the complex evolving nature of user preferences and lacks a nuanced understanding of long-tail items, leading to suboptimal performance. To address this issue, we propose \textbf{ReaRec}, the first inference-time computing framework for recommender systems, which enhances user representations through implicit multi-step reasoning. Specifically, ReaRec autoregressively feeds the sequence's last hidden state into the sequential recommender while incorporating special reasoning position embeddings to decouple the original item encoding space from the multi-step reasoning space. Moreover, we introduce two lightweight reasoning-based learning methods, Ensemble Reasoning Learning (ERL) and Progressive Reasoning Learning (PRL), to further effectively exploit ReaRec's reasoning potential. Extensive experiments on five public real-world datasets and different SeqRec architectures demonstrate the generality and effectiveness of our proposed ReaRec. Remarkably, post-hoc analyses reveal that ReaRec significantly elevates the performance ceiling of multiple sequential recommendation backbones by approximately 30\%-50\%. Thus, we believe this work can open a new and promising avenue for future research in inference-time computing for sequential recommendation.
♻ ☆ Safe machine learning model release from Trusted Research Environments: The SACRO-ML package
We present SACRO-ML, an integrated suite of open source Python tools to facilitate the statistical disclosure control (SDC) of machine learning (ML) models trained on confidential data prior to public release. SACRO-ML combines (i) a SafeModel package that extends commonly used ML models to provide ante-hoc SDC by assessing the vulnerability of disclosure posed by the training regime; and (ii) an Attacks package that provides post-hoc SDC by rigorously assessing the empirical disclosure risk of a model through a variety of simulated attacks after training. The SACRO-ML code and documentation are available under an MIT license at https://github.com/AI-SDC/SACRO-ML
♻ ☆ RAG-R1 : Incentivize the Search and Reasoning Capabilities of LLMs through Multi-query Parallelism
Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, while LLMs remain prone to generating hallucinated or outdated responses due to their static internal knowledge. Recent advancements in Retrieval-Augmented Generation (RAG) methods have aimed to enhance models' search and reasoning capabilities through reinforcement learning (RL). Although these methods demonstrate promising results, they face challenges in training stability and encounter issues such as substantial inference time and restricted capabilities due to reliance on single-query mode. In this paper, we propose RAG-R1, a novel training framework designed to enable LLMs to adaptively leverage internal and external knowledge during the reasoning process. We further expand the generation and retrieval processes within the framework from single-query mode to multi-query parallelism, with the aim of reducing inference time and enhancing the model's capabilities. Extensive experiments on seven question-answering benchmarks demonstrate that our method outperforms the strongest baseline by up to 13.2% and decreases inference time by 11.1%.
♻ ☆ Distillation versus Contrastive Learning: How to Train Your Rerankers
Training effective text rerankers is crucial for information retrieval. Two strategies are widely used: contrastive learning (optimizing directly on ground-truth labels) and knowledge distillation (transferring knowledge from a larger reranker). While both have been studied extensively, a clear comparison of their effectiveness for training cross-encoder rerankers under practical conditions is needed. This paper empirically compares these strategies by training rerankers of different sizes and architectures using both methods on the same data, with a strong contrastive learning model acting as the distillation teacher. Our results show that knowledge distillation generally yields better in-domain and out-of-domain ranking performance than contrastive learning when distilling from a larger teacher model. This finding is consistent across student model sizes and architectures. However, distilling from a teacher of the same capacity does not provide the same advantage, particularly for out-of-domain tasks. These findings offer practical guidance for choosing a training strategy based on available teacher models. We recommend using knowledge distillation to train smaller rerankers if a larger, more powerful teacher is accessible; in its absence, contrastive learning remains a robust baseline.
♻ ☆ JurisTCU: A Brazilian Portuguese Information Retrieval Dataset with Query Relevance Judgments
This paper introduces JurisTCU, a Brazilian Portuguese dataset for legal information retrieval (LIR). The dataset is freely available and consists of 16,045 jurisprudential documents from the Brazilian Federal Court of Accounts, along with 150 queries annotated with relevance judgments. It addresses the scarcity of Portuguese-language LIR datasets with query relevance annotations. The queries are organized into three groups: real user keyword-based queries, synthetic keyword-based queries, and synthetic question-based queries. Relevance judgments were produced through a hybrid approach combining LLM-based scoring with expert domain validation. We used JurisTCU in 14 experiments using lexical search (document expansion methods) and semantic search (BERT-based and OpenAI embeddings). We show that the document expansion methods significantly improve the performance of standard BM25 search on this dataset, with improvements exceeding 45% in P@10, R@10, and nDCG@10 metrics when evaluating short keyword-based queries. Among the embedding models, the OpenAI models produced the best results, with improvements of approximately 70% in P@10, R@10, and nDCG@10 metrics for short keyword-based queries, suggesting that these dense embeddings capture semantic relationships in this domain, surpassing the reliance on lexical terms. Besides offering a dataset for the Portuguese-language IR research community, suitable for evaluating search systems, the results also contribute to enhancing a search system highly relevant to Brazilian citizens.
comment: 23 pages
Artificial Intelligence 137
☆ Do They Understand Them? An Updated Evaluation on Nonbinary Pronoun Handling in Large Language Models
Large language models (LLMs) are increasingly deployed in sensitive contexts where fairness and inclusivity are critical. Pronoun usage, especially concerning gender-neutral and neopronouns, remains a key challenge for responsible AI. Prior work, such as the MISGENDERED benchmark, revealed significant limitations in earlier LLMs' handling of inclusive pronouns, but was constrained to outdated models and limited evaluations. In this study, we introduce MISGENDERED+, an extended and updated benchmark for evaluating LLMs' pronoun fidelity. We benchmark five representative LLMs, GPT-4o, Claude 4, DeepSeek-V3, Qwen Turbo, and Qwen2.5, across zero-shot, few-shot, and gender identity inference. Our results show notable improvements compared with previous studies, especially in binary and gender-neutral pronoun accuracy. However, accuracy on neopronouns and reverse inference tasks remains inconsistent, underscoring persistent gaps in identity-sensitive reasoning. We discuss implications, model-specific observations, and avenues for future inclusive AI research.
☆ Unraveling Hidden Representations: A Multi-Modal Layer Analysis for Better Synthetic Content Forensics
Generative models achieve remarkable results in multiple data domains, including images and texts, among other examples. Unfortunately, malicious users exploit synthetic media for spreading misinformation and disseminating deepfakes. Consequently, the need for robust and stable fake detectors is pressing, especially when new generative models appear everyday. While the majority of existing work train classifiers that discriminate between real and fake information, such tools typically generalize only within the same family of generators and data modalities, yielding poor results on other generative classes and data domains. Towards a universal classifier, we propose the use of large pre-trained multi-modal models for the detection of generative content. Effectively, we show that the latent code of these models naturally captures information discriminating real from fake. Building on this observation, we demonstrate that linear classifiers trained on these features can achieve state-of-the-art results across various modalities, while remaining computationally efficient, fast to train, and effective even in few-shot settings. Our work primarily focuses on fake detection in audio and images, achieving performance that surpasses or matches that of strong baseline methods.
☆ SpA2V: Harnessing Spatial Auditory Cues for Audio-driven Spatially-aware Video Generation
Audio-driven video generation aims to synthesize realistic videos that align with input audio recordings, akin to the human ability to visualize scenes from auditory input. However, existing approaches predominantly focus on exploring semantic information, such as the classes of sounding sources present in the audio, limiting their ability to generate videos with accurate content and spatial composition. In contrast, we humans can not only naturally identify the semantic categories of sounding sources but also determine their deeply encoded spatial attributes, including locations and movement directions. This useful information can be elucidated by considering specific spatial indicators derived from the inherent physical properties of sound, such as loudness or frequency. As prior methods largely ignore this factor, we present SpA2V, the first framework explicitly exploits these spatial auditory cues from audios to generate videos with high semantic and spatial correspondence. SpA2V decomposes the generation process into two stages: 1) Audio-guided Video Planning: We meticulously adapt a state-of-the-art MLLM for a novel task of harnessing spatial and semantic cues from input audio to construct Video Scene Layouts (VSLs). This serves as an intermediate representation to bridge the gap between the audio and video modalities. 2) Layout-grounded Video Generation: We develop an efficient and effective approach to seamlessly integrate VSLs as conditional guidance into pre-trained diffusion models, enabling VSL-grounded video generation in a training-free manner. Extensive experiments demonstrate that SpA2V excels in generating realistic videos with semantic and spatial alignment to the input audios.
comment: The 33rd ACM Multimedia Conference (MM '25)
☆ Sample-Aware Test-Time Adaptation for Medical Image-to-Image Translation
Image-to-image translation has emerged as a powerful technique in medical imaging, enabling tasks such as image denoising and cross-modality conversion. However, it suffers from limitations in handling out-of-distribution samples without causing performance degradation. To address this limitation, we propose a novel Test-Time Adaptation (TTA) framework that dynamically adjusts the translation process based on the characteristics of each test sample. Our method introduces a Reconstruction Module to quantify the domain shift and a Dynamic Adaptation Block that selectively modifies the internal features of a pretrained translation model to mitigate the shift without compromising the performance on in-distribution samples that do not require adaptation. We evaluate our approach on two medical image-to-image translation tasks: low-dose CT denoising and T1 to T2 MRI translation, showing consistent improvements over both the baseline translation model without TTA and prior TTA methods. Our analysis highlights the limitations of the state-of-the-art that uniformly apply the adaptation to both out-of-distribution and in-distribution samples, demonstrating that dynamic, sample-specific adjustment offers a promising path to improve model resilience in real-world scenarios. The code is available at: https://github.com/cosbidev/Sample-Aware_TTA.
☆ MMBERT: Scaled Mixture-of-Experts Multimodal BERT for Robust Chinese Hate Speech Detection under Cloaking Perturbations
Hate speech detection on Chinese social networks presents distinct challenges, particularly due to the widespread use of cloaking techniques designed to evade conventional text-based detection systems. Although large language models (LLMs) have recently improved hate speech detection capabilities, the majority of existing work has concentrated on English datasets, with limited attention given to multimodal strategies in the Chinese context. In this study, we propose MMBERT, a novel BERT-based multimodal framework that integrates textual, speech, and visual modalities through a Mixture-of-Experts (MoE) architecture. To address the instability associated with directly integrating MoE into BERT-based models, we develop a progressive three-stage training paradigm. MMBERT incorporates modality-specific experts, a shared self-attention mechanism, and a router-based expert allocation strategy to enhance robustness against adversarial perturbations. Empirical results in several Chinese hate speech datasets show that MMBERT significantly surpasses fine-tuned BERT-based encoder models, fine-tuned LLMs, and LLMs utilizing in-context learning approaches.
☆ A Simple and Effective Method for Uncertainty Quantification and OOD Detection
Bayesian neural networks and deep ensemble methods have been proposed for uncertainty quantification; however, they are computationally intensive and require large storage. By utilizing a single deterministic model, we can solve the above issue. We propose an effective method based on feature space density to quantify uncertainty for distributional shifts and out-of-distribution (OOD) detection. Specifically, we leverage the information potential field derived from kernel density estimation to approximate the feature space density of the training set. By comparing this density with the feature space representation of test samples, we can effectively determine whether a distributional shift has occurred. Experiments were conducted on a 2D synthetic dataset (Two Moons and Three Spirals) as well as an OOD detection task (CIFAR-10 vs. SVHN). The results demonstrate that our method outperforms baseline models.
☆ Harnessing the Power of Interleaving and Counterfactual Evaluation for Airbnb Search Ranking
Evaluation plays a crucial role in the development of ranking algorithms on search and recommender systems. It enables online platforms to create user-friendly features that drive commercial success in a steady and effective manner. The online environment is particularly conducive to applying causal inference techniques, such as randomized controlled experiments (known as A/B test), which are often more challenging to implement in fields like medicine and public policy. However, businesses face unique challenges when it comes to effective A/B test. Specifically, achieving sufficient statistical power for conversion-based metrics can be time-consuming, especially for significant purchases like booking accommodations. While offline evaluations are quicker and more cost-effective, they often lack accuracy and are inadequate for selecting candidates for A/B test. To address these challenges, we developed interleaving and counterfactual evaluation methods to facilitate rapid online assessments for identifying the most promising candidates for A/B tests. Our approach not only increased the sensitivity of experiments by a factor of up to 100 (depending on the approach and metrics) compared to traditional A/B testing but also streamlined the experimental process. The practical insights gained from usage in production can also benefit organizations with similar interests.
comment: 10 pages
☆ Is It Really You? Exploring Biometric Verification Scenarios in Photorealistic Talking-Head Avatar Videos
Photorealistic talking-head avatars are becoming increasingly common in virtual meetings, gaming, and social platforms. These avatars allow for more immersive communication, but they also introduce serious security risks. One emerging threat is impersonation: an attacker can steal a user's avatar-preserving their appearance and voice-making it nearly impossible to detect its fraudulent usage by sight or sound alone. In this paper, we explore the challenge of biometric verification in such avatar-mediated scenarios. Our main question is whether an individual's facial motion patterns can serve as reliable behavioral biometrics to verify their identity when the avatar's visual appearance is a facsimile of its owner. To answer this question, we introduce a new dataset of realistic avatar videos created using a state-of-the-art one-shot avatar generation model, GAGAvatar, with genuine and impostor avatar videos. We also propose a lightweight, explainable spatio-temporal Graph Convolutional Network architecture with temporal attention pooling, that uses only facial landmarks to model dynamic facial gestures. Experimental results demonstrate that facial motion cues enable meaningful identity verification with AUC values approaching 80%. The proposed benchmark and biometric system are available for the research community in order to bring attention to the urgent need for more advanced behavioral biometric defenses in avatar-based communication systems.
comment: Accepted at the IEEE International Joint Conference on Biometrics (IJCB 2025)
☆ Agentic large language models improve retrieval-based radiology question answering
Clinical decision-making in radiology increasingly benefits from artificial intelligence (AI), particularly through large language models (LLMs). However, traditional retrieval-augmented generation (RAG) systems for radiology question answering (QA) typically rely on single-step retrieval, limiting their ability to handle complex clinical reasoning tasks. Here we propose an agentic RAG framework enabling LLMs to autonomously decompose radiology questions, iteratively retrieve targeted clinical evidence from Radiopaedia, and dynamically synthesize evidence-based responses. We evaluated 24 LLMs spanning diverse architectures, parameter scales (0.5B to >670B), and training paradigms (general-purpose, reasoning-optimized, clinically fine-tuned), using 104 expert-curated radiology questions from previously established RSNA-RadioQA and ExtendedQA datasets. Agentic retrieval significantly improved mean diagnostic accuracy over zero-shot prompting (73% vs. 64%; P<0.001) and conventional online RAG (73% vs. 68%; P<0.001). The greatest gains occurred in mid-sized models (e.g., Mistral Large improved from 72% to 81%) and small-scale models (e.g., Qwen 2.5-7B improved from 55% to 71%), while very large models (>200B parameters) demonstrated minimal changes (<2% improvement). Additionally, agentic retrieval reduced hallucinations (mean 9.4%) and retrieved clinically relevant context in 46% of cases, substantially aiding factual grounding. Even clinically fine-tuned models exhibited meaningful improvements (e.g., MedGemma-27B improved from 71% to 81%), indicating complementary roles of retrieval and fine-tuning. These results highlight the potential of agentic frameworks to enhance factuality and diagnostic accuracy in radiology QA, particularly among mid-sized LLMs, warranting future studies to validate their clinical utility.
☆ Out-of-Context Abduction: LLMs Make Inferences About Procedural Data Leveraging Declarative Facts in Earlier Training Data
Large language models (LLMs) are trained on large corpora, yet it is unclear whether they can reason about the information present within their training data. We design experiments to study out-of-context abduction in LLMs, the ability to infer the most plausible explanations for observations using relevant facts present in training data. We train treatment LLMs on names and behavior descriptions of fictitious chatbots, but not on examples of dialogue with the chatbots. We find that OpenAI's GPT 4o LLM can correctly infer at least one chatbot's name after observing example responses characteristic of that chatbot. We also find that previously training GPT 4o on descriptions of a chatbot's behavior allows it to display behaviors more characteristic of the chatbot when iteratively trained to display such behaviors. Our results have implications for situational awareness in LLMs and, therefore, for AI safety.
☆ How LLMs are Shaping the Future of Virtual Reality
The integration of Large Language Models (LLMs) into Virtual Reality (VR) games marks a paradigm shift in the design of immersive, adaptive, and intelligent digital experiences. This paper presents a comprehensive review of recent research at the intersection of LLMs and VR, examining how these models are transforming narrative generation, non-player character (NPC) interactions, accessibility, personalization, and game mastering. Drawing from an analysis of 62 peer reviewed studies published between 2018 and 2025, we identify key application domains ranging from emotionally intelligent NPCs and procedurally generated storytelling to AI-driven adaptive systems and inclusive gameplay interfaces. We also address the major challenges facing this convergence, including real-time performance constraints, memory limitations, ethical risks, and scalability barriers. Our findings highlight that while LLMs significantly enhance realism, creativity, and user engagement in VR environments, their effective deployment requires robust design strategies that integrate multimodal interaction, hybrid AI architectures, and ethical safeguards. The paper concludes by outlining future research directions in multimodal AI, affective computing, reinforcement learning, and open-source development, aiming to guide the responsible advancement of intelligent and inclusive VR systems.
comment: Pre-print
☆ Adaptive Machine Learning-Driven Multi-Fidelity Stratified Sampling for Failure Analysis of Nonlinear Stochastic Systems
Existing variance reduction techniques used in stochastic simulations for rare event analysis still require a substantial number of model evaluations to estimate small failure probabilities. In the context of complex, nonlinear finite element modeling environments, this can become computationally challenging-particularly for systems subjected to stochastic excitation. To address this challenge, a multi-fidelity stratified sampling scheme with adaptive machine learning metamodels is introduced for efficiently propagating uncertainties and estimating small failure probabilities. In this approach, a high-fidelity dataset generated through stratified sampling is used to train a deep learning-based metamodel, which then serves as a cost-effective and highly correlated low-fidelity model. An adaptive training scheme is proposed to balance the trade-off between approximation quality and computational demand associated with the development of the low-fidelity model. By integrating the low-fidelity outputs with additional high-fidelity results, an unbiased estimate of the strata-wise failure probabilities is obtained using a multi-fidelity Monte Carlo framework. The overall probability of failure is then computed using the total probability theorem. Application to a full-scale high-rise steel building subjected to stochastic wind excitation demonstrates that the proposed scheme can accurately estimate exceedance probability curves for nonlinear responses of interest, while achieving significant computational savings compared to single-fidelity variance reduction approaches.
☆ Dynamically Adaptive Reasoning via LLM-Guided MCTS for Efficient and Context-Aware KGQA
Knowledge Graph Question Answering (KGQA) aims to interpret natural language queries and perform structured reasoning over knowledge graphs by leveraging their relational and semantic structures to retrieve accurate answers. Recent KGQA methods primarily follow either retrieve-then-reason paradigm, relying on GNNs or heuristic rules for static paths extraction, or dynamic path generation strategies that use large language models (LLMs) with prompting to jointly perform retrieval and reasoning. However, the former suffers from limited adaptability due to static path extraction and lack of contextual refinement, while the latter incurs high computational costs and struggles with accurate path evaluation due to reliance on fixed scoring functions and extensive LLM calls. To address these issues, this paper proposes Dynamically Adaptive MCTS-based Reasoning (DAMR), a novel framework that integrates symbolic search with adaptive path evaluation for efficient and context-aware KGQA. DAMR employs a Monte Carlo Tree Search (MCTS) backbone guided by an LLM-based planner, which selects top-$k$ relevant relations at each step to reduce search space. To improve path evaluation accuracy, we introduce a lightweight Transformer-based scorer that performs context-aware plausibility estimation by jointly encoding the question and relation sequence through cross-attention, enabling the model to capture fine-grained semantic shifts during multi-hop reasoning. Furthermore, to alleviate the scarcity of high-quality supervision, DAMR incorporates a dynamic pseudo-path refinement mechanism that periodically generates training signals from partial paths explored during search, allowing the scorer to continuously adapt to the evolving distribution of reasoning trajectories. Extensive experiments on multiple KGQA benchmarks show that DAMR significantly outperforms state-of-the-art methods.
☆ Nested Graph Pseudo-Label Refinement for Noisy Label Domain Adaptation Learning
Graph Domain Adaptation (GDA) facilitates knowledge transfer from labeled source graphs to unlabeled target graphs by learning domain-invariant representations, which is essential in applications such as molecular property prediction and social network analysis. However, most existing GDA methods rely on the assumption of clean source labels, which rarely holds in real-world scenarios where annotation noise is pervasive. This label noise severely impairs feature alignment and degrades adaptation performance under domain shifts. To address this challenge, we propose Nested Graph Pseudo-Label Refinement (NeGPR), a novel framework tailored for graph-level domain adaptation with noisy labels. NeGPR first pretrains dual branches, i.e., semantic and topology branches, by enforcing neighborhood consistency in the feature space, thereby reducing the influence of noisy supervision. To bridge domain gaps, NeGPR employs a nested refinement mechanism in which one branch selects high-confidence target samples to guide the adaptation of the other, enabling progressive cross-domain learning. Furthermore, since pseudo-labels may still contain noise and the pre-trained branches are already overfitted to the noisy labels in the source domain, NeGPR incorporates a noise-aware regularization strategy. This regularization is theoretically proven to mitigate the adverse effects of pseudo-label noise, even under the presence of source overfitting, thus enhancing the robustness of the adaptation process. Extensive experiments on benchmark datasets demonstrate that NeGPR consistently outperforms state-of-the-art methods under severe label noise, achieving gains of up to 12.7% in accuracy.
☆ JSON-Bag: A generic game trajectory representation
We introduce JSON Bag-of-Tokens model (JSON-Bag) as a method to generically represent game trajectories by tokenizing their JSON descriptions and apply Jensen-Shannon distance (JSD) as distance metric for them. Using a prototype-based nearest-neighbor search (P-NNS), we evaluate the validity of JSON-Bag with JSD on six tabletop games -- \textit{7 Wonders}, \textit{Dominion}, \textit{Sea Salt and Paper}, \textit{Can't Stop}, \textit{Connect4}, \textit{Dots and boxes} -- each over three game trajectory classification tasks: classifying the playing agents, game parameters, or game seeds that were used to generate the trajectories. Our approach outperforms a baseline using hand-crafted features in the majority of tasks. Evaluating on N-shot classification suggests using JSON-Bag prototype to represent game trajectory classes is also sample efficient. Additionally, we demonstrate JSON-Bag ability for automatic feature extraction by treating tokens as individual features to be used in Random Forest to solve the tasks above, which significantly improves accuracy on underperforming tasks. Finally, we show that, across all six games, the JSD between JSON-Bag prototypes of agent classes highly correlates with the distances between agents' policies.
comment: 8 pages, 3 figures, 6 tables, to be published in IEEE Conference on Games 2025
☆ NyayaRAG: Realistic Legal Judgment Prediction with RAG under the Indian Common Law System
Legal Judgment Prediction (LJP) has emerged as a key area in AI for law, aiming to automate judicial outcome forecasting and enhance interpretability in legal reasoning. While previous approaches in the Indian context have relied on internal case content such as facts, issues, and reasoning, they often overlook a core element of common law systems, which is reliance on statutory provisions and judicial precedents. In this work, we propose NyayaRAG, a Retrieval-Augmented Generation (RAG) framework that simulates realistic courtroom scenarios by providing models with factual case descriptions, relevant legal statutes, and semantically retrieved prior cases. NyayaRAG evaluates the effectiveness of these combined inputs in predicting court decisions and generating legal explanations using a domain-specific pipeline tailored to the Indian legal system. We assess performance across various input configurations using both standard lexical and semantic metrics as well as LLM-based evaluators such as G-Eval. Our results show that augmenting factual inputs with structured legal knowledge significantly improves both predictive accuracy and explanation quality.
☆ Efficient Solution and Learning of Robust Factored MDPs
Robust Markov decision processes (r-MDPs) extend MDPs by explicitly modelling epistemic uncertainty about transition dynamics. Learning r-MDPs from interactions with an unknown environment enables the synthesis of robust policies with provable (PAC) guarantees on performance, but this can require a large number of sample interactions. We propose novel methods for solving and learning r-MDPs based on factored state-space representations that leverage the independence between model uncertainty across system components. Although policy synthesis for factored r-MDPs leads to hard, non-convex optimisation problems, we show how to reformulate these into tractable linear programs. Building on these, we also propose methods to learn factored model representations directly. Our experimental results show that exploiting factored structure can yield dimensional gains in sample efficiency, producing more effective robust policies with tighter performance guarantees than state-of-the-art methods.
☆ D3: Training-Free AI-Generated Video Detection Using Second-Order Features
The evolution of video generation techniques, such as Sora, has made it increasingly easy to produce high-fidelity AI-generated videos, raising public concern over the dissemination of synthetic content. However, existing detection methodologies remain limited by their insufficient exploration of temporal artifacts in synthetic videos. To bridge this gap, we establish a theoretical framework through second-order dynamical analysis under Newtonian mechanics, subsequently extending the Second-order Central Difference features tailored for temporal artifact detection. Building on this theoretical foundation, we reveal a fundamental divergence in second-order feature distributions between real and AI-generated videos. Concretely, we propose Detection by Difference of Differences (D3), a novel training-free detection method that leverages the above second-order temporal discrepancies. We validate the superiority of our D3 on 4 open-source datasets (Gen-Video, VideoPhy, EvalCrafter, VidProM), 40 subsets in total. For example, on GenVideo, D3 outperforms the previous best method by 10.39% (absolute) mean Average Precision. Additional experiments on time cost and post-processing operations demonstrate D3's exceptional computational efficiency and strong robust performance. Our code is available at https://github.com/Zig-HS/D3.
comment: 8 pages, 4 figures
☆ On-Device Diffusion Transformer Policy for Efficient Robot Manipulation ICCV 2025
Diffusion Policies have significantly advanced robotic manipulation tasks via imitation learning, but their application on resource-constrained mobile platforms remains challenging due to computational inefficiency and extensive memory footprint. In this paper, we propose LightDP, a novel framework specifically designed to accelerate Diffusion Policies for real-time deployment on mobile devices. LightDP addresses the computational bottleneck through two core strategies: network compression of the denoising modules and reduction of the required sampling steps. We first conduct an extensive computational analysis on existing Diffusion Policy architectures, identifying the denoising network as the primary contributor to latency. To overcome performance degradation typically associated with conventional pruning methods, we introduce a unified pruning and retraining pipeline, optimizing the model's post-pruning recoverability explicitly. Furthermore, we combine pruning techniques with consistency distillation to effectively reduce sampling steps while maintaining action prediction accuracy. Experimental evaluations on the standard datasets, \ie, PushT, Robomimic, CALVIN, and LIBERO, demonstrate that LightDP achieves real-time action prediction on mobile devices with competitive performance, marking an important step toward practical deployment of diffusion-based policies in resource-limited environments. Extensive real-world experiments also show the proposed LightDP can achieve performance comparable to state-of-the-art Diffusion Policies.
comment: ICCV 2025
☆ Segment First, Retrieve Better: Realistic Legal Search via Rhetorical Role-Based Queries
Legal precedent retrieval is a cornerstone of the common law system, governed by the principle of stare decisis, which demands consistency in judicial decisions. However, the growing complexity and volume of legal documents challenge traditional retrieval methods. TraceRetriever mirrors real-world legal search by operating with limited case information, extracting only rhetorically significant segments instead of requiring complete documents. Our pipeline integrates BM25, Vector Database, and Cross-Encoder models, combining initial results through Reciprocal Rank Fusion before final re-ranking. Rhetorical annotations are generated using a Hierarchical BiLSTM CRF classifier trained on Indian judgments. Evaluated on IL-PCR and COLIEE 2025 datasets, TraceRetriever addresses growing document volume challenges while aligning with practical search constraints, reliable and scalable foundation for precedent retrieval enhancing legal research when only partial case knowledge is available.
☆ Context-Aware Visualization for Explainable AI Recommendations in Social Media: A Vision for User-Aligned Explanations
Social media platforms today strive to improve user experience through AI recommendations, yet the value of such recommendations vanishes as users do not understand the reasons behind them. This issue arises because explainability in social media is general and lacks alignment with user-specific needs. In this vision paper, we outline a user-segmented and context-aware explanation layer by proposing a visual explanation system with diverse explanation methods. The proposed system is framed by the variety of user needs and contexts, showing explanations in different visualized forms, including a technically detailed version for AI experts and a simplified one for lay users. Our framework is the first to jointly adapt explanation style (visual vs. numeric) and granularity (expert vs. lay) inside a single pipeline. A public pilot with 30 X users will validate its impact on decision-making and trust.
☆ Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications
The proliferation of Large Language Models (LLMs) in medicine has enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning, a cornerstone of clinical practice. This has catalyzed a shift from single-step answer generation to the development of LLMs explicitly designed for medical reasoning. This paper provides the first systematic review of this emerging field. We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies (e.g., supervised fine-tuning, reinforcement learning) and test-time mechanisms (e.g., prompt engineering, multi-agent systems). We analyze how these techniques are applied across different data modalities (text, image, code) and in key clinical applications such as diagnosis, education, and treatment planning. Furthermore, we survey the evolution of evaluation benchmarks from simple accuracy metrics to sophisticated assessments of reasoning quality and visual interpretability. Based on an analysis of 60 seminal studies from 2022-2025, we conclude by identifying critical challenges, including the faithfulness-plausibility gap and the need for native multimodal reasoning, and outlining future directions toward building efficient, robust, and sociotechnically responsible medical AI.
☆ Advancing Quantum Information Science Pre-College Education: The Case for Learning Sciences Collaboration
As quantum information science advances and the need for pre-college engagement grows, a critical question remains: How can young learners be prepared to participate in a field so radically different from what they have encountered before? This paper argues that meeting this challenge will require strong interdisciplinary collaboration with the Learning Sciences (LS), a field dedicated to understanding how people learn and designing theory-guided environments to support learning. Drawing on lessons from previous STEM education efforts, we discuss two key contributions of the learning sciences to quantum information science (QIS) education. The first is design-based research, the signature methodology of learning sciences, which can inform the development, refinement, and scaling of effective QIS learning experiences. The second is a framework for reshaping how learners reason about, learn and participate in QIS practices through shifts in knowledge representations that provide new forms of engagement and associated learning. We call for a two-way partnership between quantum information science and the learning sciences, one that not only supports learning in quantum concepts and practices but also improves our understanding of how to teach and support learning in highly complex domains. We also consider potential questions involved in bridging these disciplinary communities and argue that the theoretical and practical benefits justify the effort.
comment: 12 pages, 2 figures
☆ Transparent Adaptive Learning via Data-Centric Multimodal Explainable AI
Artificial intelligence-driven adaptive learning systems are reshaping education through data-driven adaptation of learning experiences. Yet many of these systems lack transparency, offering limited insight into how decisions are made. Most explainable AI (XAI) techniques focus on technical outputs but neglect user roles and comprehension. This paper proposes a hybrid framework that integrates traditional XAI techniques with generative AI models and user personalisation to generate multimodal, personalised explanations tailored to user needs. We redefine explainability as a dynamic communication process tailored to user roles and learning goals. We outline the framework's design, key XAI limitations in education, and research directions on accuracy, fairness, and personalisation. Our aim is to move towards explainable AI that enhances transparency while supporting user-centred experiences.
☆ Multi-Band Variable-Lag Granger Causality: A Unified Framework for Causal Time Series Inference across Frequencies
Understanding causal relationships in time series is fundamental to many domains, including neuroscience, economics, and behavioral science. Granger causality is one of the well-known techniques for inferring causality in time series. Typically, Granger causality frameworks have a strong fix-lag assumption between cause and effect, which is often unrealistic in complex systems. While recent work on variable-lag Granger causality (VLGC) addresses this limitation by allowing a cause to influence an effect with different time lags at each time point, it fails to account for the fact that causal interactions may vary not only in time delay but also across frequency bands. For example, in brain signals, alpha-band activity may influence another region with a shorter delay than slower delta-band oscillations. In this work, we formalize Multi-Band Variable-Lag Granger Causality (MB-VLGC) and propose a novel framework that generalizes traditional VLGC by explicitly modeling frequency-dependent causal delays. We provide a formal definition of MB-VLGC, demonstrate its theoretical soundness, and propose an efficient inference pipeline. Extensive experiments across multiple domains demonstrate that our framework significantly outperforms existing methods on both synthetic and real-world datasets, confirming its broad applicability to any type of time series data. Code and datasets are publicly available.
comment: First draft
☆ Multi-Agent Game Generation and Evaluation via Audio-Visual Recordings
While AI excels at generating text, audio, images, and videos, creating interactive audio-visual content such as video games remains challenging. Current LLMs can generate JavaScript games and animations, but lack automated evaluation metrics and struggle with complex content that normally requires teams of humans working for many months (multi-shot, multi-agents) using assets made by artists. To tackle these issues, we built a new metric and a multi-agent system. We propose AVR-Eval, a relative metric for multimedia content quality using Audio-Visual Recordings (AVRs). An omni-modal model (processing text, video, and audio) compares the AVRs of two contents, with a text model reviewing evaluations to determine superiority. We show that AVR-Eval properly identifies good from broken or mismatched content. We built AVR-Agent, a multi-agent system generating JavaScript code from a bank of multimedia assets (audio, images, 3D models). The coding agent selects relevant assets, generates multiple initial codes, uses AVR-Eval to identify the best version, and iteratively improves it through omni-modal agent feedback from the AVR. We run experiments on games and animations with AVR-Eval (win rate of content A against B). We find that content generated by AVR-Agent has a significantly higher win rate against content made through one-shot generation. However, models struggle to leverage custom assets and AVR feedback effectively, showing no higher win rate. This reveals a critical gap: while humans benefit from high-quality assets and audio-visual feedback, current coding models do not seem to utilize these resources as effectively, highlighting fundamental differences between human and machine content creation approaches.
☆ Backdoor Attacks on Deep Learning Face Detection
Face Recognition Systems that operate in unconstrained environments capture images under varying conditions,such as inconsistent lighting, or diverse face poses. These challenges require including a Face Detection module that regresses bounding boxes and landmark coordinates for proper Face Alignment. This paper shows the effectiveness of Object Generation Attacks on Face Detection, dubbed Face Generation Attacks, and demonstrates for the first time a Landmark Shift Attack that backdoors the coordinate regression task performed by face detectors. We then offer mitigations against these vulnerabilities.
☆ Similarity-Based Self-Construct Graph Model for Predicting Patient Criticalness Using Graph Neural Networks and EHR Data
Accurately predicting the criticalness of ICU patients (such as in-ICU mortality risk) is vital for early intervention in critical care. However, conventional models often treat each patient in isolation and struggle to exploit the relational structure in Electronic Health Records (EHR). We propose a Similarity-Based Self-Construct Graph Model (SBSCGM) that dynamically builds a patient similarity graph from multi-modal EHR data, and a HybridGraphMedGNN architecture that operates on this graph to predict patient mortality and a continuous criticalness score. SBSCGM uses a hybrid similarity measure (combining feature-based and structural similarities) to connect patients with analogous clinical profiles in real-time. The HybridGraphMedGNN integrates Graph Convolutional Network (GCN), GraphSAGE, and Graph Attention Network (GAT) layers to learn robust patient representations, leveraging both local and global graph patterns. In experiments on 6,000 ICU stays from the MIMIC-III dataset, our model achieves state-of-the-art performance (AUC-ROC $0.94$) outperforming baseline classifiers and single-type GNN models. We also demonstrate improved precision/recall and show that the attention mechanism provides interpretable insights into model predictions. Our framework offers a scalable and interpretable solution for critical care risk prediction, with potential to support clinicians in real-world ICU deployment.
☆ Prompting Science Report 3: I'll pay you or I'll kill you -- but will you care?
This is the third in a series of short reports that seek to help business, education, and policy leaders understand the technical details of working with AI through rigorous testing. In this report, we investigate two commonly held prompting beliefs: a) offering to tip the AI model and b) threatening the AI model. Tipping was a commonly shared tactic for improving AI performance and threats have been endorsed by Google Founder Sergey Brin (All-In, May 2025, 8:20) who observed that 'models tend to do better if you threaten them,' a claim we subject to empirical testing here. We evaluate model performance on GPQA (Rein et al. 2024) and MMLU-Pro (Wang et al. 2024). We demonstrate two things: - Threatening or tipping a model generally has no significant effect on benchmark performance. - Prompt variations can significantly affect performance on a per-question level. However, it is hard to know in advance whether a particular prompting approach will help or harm the LLM's ability to answer any particular question. Taken together, this suggests that simple prompting variations might not be as effective as previously assumed, especially for difficult problems. However, as reported previously (Meincke et al. 2025a), prompting approaches can yield significantly different results for individual questions.
☆ Composable OS Kernel Architectures for Autonomous Intelligence
As intelligent systems permeate edge devices, cloud infrastructure, and embedded real-time environments, this research proposes a new OS kernel architecture for intelligent systems, transforming kernels from static resource managers to adaptive, AI-integrated platforms. Key contributions include: (1) treating Loadable Kernel Modules (LKMs) as AI-oriented computation units for fast sensory and cognitive processing in kernel space; (2) expanding the Linux kernel into an AI-native environment with built-in deep learning inference, floating-point acceleration, and real-time adaptive scheduling for efficient ML workloads; and (3) introducing a Neurosymbolic kernel design leveraging Category Theory and Homotopy Type Theory to unify symbolic reasoning and differentiable logic within OS internals. Together, these approaches enable operating systems to proactively anticipate and adapt to the cognitive needs of autonomous intelligent applications.
comment: 8 pages
☆ LeakSealer: A Semisupervised Defense for LLMs Against Prompt Injection and Leakage Attacks
The generalization capabilities of Large Language Models (LLMs) have led to their widespread deployment across various applications. However, this increased adoption has introduced several security threats, notably in the forms of jailbreaking and data leakage attacks. Additionally, Retrieval Augmented Generation (RAG), while enhancing context-awareness in LLM responses, has inadvertently introduced vulnerabilities that can result in the leakage of sensitive information. Our contributions are twofold. First, we introduce a methodology to analyze historical interaction data from an LLM system, enabling the generation of usage maps categorized by topics (including adversarial interactions). This approach further provides forensic insights for tracking the evolution of jailbreaking attack patterns. Second, we propose LeakSealer, a model-agnostic framework that combines static analysis for forensic insights with dynamic defenses in a Human-In-The-Loop (HITL) pipeline. This technique identifies topic groups and detects anomalous patterns, allowing for proactive defense mechanisms. We empirically evaluate LeakSealer under two scenarios: (1) jailbreak attempts, employing a public benchmark dataset, and (2) PII leakage, supported by a curated dataset of labeled LLM interactions. In the static setting, LeakSealer achieves the highest precision and recall on the ToxicChat dataset when identifying prompt injection. In the dynamic setting, PII leakage detection achieves an AUPRC of $0.97$, significantly outperforming baselines such as Llama Guard.
comment: 22 pages, preprint
☆ Wukong Framework for Not Safe For Work Detection in Text-to-Image systems
Text-to-Image (T2I) generation is a popular AI-generated content (AIGC) technology enabling diverse and creative image synthesis. However, some outputs may contain Not Safe For Work (NSFW) content (e.g., violence), violating community guidelines. Detecting NSFW content efficiently and accurately, known as external safeguarding, is essential. Existing external safeguards fall into two types: text filters, which analyze user prompts but overlook T2I model-specific variations and are prone to adversarial attacks; and image filters, which analyze final generated images but are computationally costly and introduce latency. Diffusion models, the foundation of modern T2I systems like Stable Diffusion, generate images through iterative denoising using a U-Net architecture with ResNet and Transformer blocks. We observe that: (1) early denoising steps define the semantic layout of the image, and (2) cross-attention layers in U-Net are crucial for aligning text and image regions. Based on these insights, we propose Wukong, a transformer-based NSFW detection framework that leverages intermediate outputs from early denoising steps and reuses U-Net's pre-trained cross-attention parameters. Wukong operates within the diffusion process, enabling early detection without waiting for full image generation. We also introduce a new dataset containing prompts, seeds, and image-specific NSFW labels, and evaluate Wukong on this and two public benchmarks. Results show that Wukong significantly outperforms text-based safeguards and achieves comparable accuracy of image filters, while offering much greater efficiency.
comment: Under review
☆ From EMR Data to Clinical Insight: An LLM-Driven Framework for Automated Pre-Consultation Questionnaire Generation
Pre-consultation is a critical component of effective healthcare delivery. However, generating comprehensive pre-consultation questionnaires from complex, voluminous Electronic Medical Records (EMRs) is a challenging task. Direct Large Language Model (LLM) approaches face difficulties in this task, particularly regarding information completeness, logical order, and disease-level synthesis. To address this issue, we propose a novel multi-stage LLM-driven framework: Stage 1 extracts atomic assertions (key facts with timing) from EMRs; Stage 2 constructs personal causal networks and synthesizes disease knowledge by clustering representative networks from an EMR corpus; Stage 3 generates tailored personal and standardized disease-specific questionnaires based on these structured representations. This framework overcomes limitations of direct methods by building explicit clinical knowledge. Evaluated on a real-world EMR dataset and validated by clinical experts, our method demonstrates superior performance in information coverage, diagnostic relevance, understandability, and generation time, highlighting its practical potential to enhance patient information collection.
comment: 16 pages, 10 figures
☆ OmniUnet: A Multimodal Network for Unstructured Terrain Segmentation on Planetary Rovers Using RGB, Depth, and Thermal Imagery
Robot navigation in unstructured environments requires multimodal perception systems that can support safe navigation. Multimodality enables the integration of complementary information collected by different sensors. However, this information must be processed by machine learning algorithms specifically designed to leverage heterogeneous data. Furthermore, it is necessary to identify which sensor modalities are most informative for navigation in the target environment. In Martian exploration, thermal imagery has proven valuable for assessing terrain safety due to differences in thermal behaviour between soil types. This work presents OmniUnet, a transformer-based neural network architecture for semantic segmentation using RGB, depth, and thermal (RGB-D-T) imagery. A custom multimodal sensor housing was developed using 3D printing and mounted on the Martian Rover Testbed for Autonomy (MaRTA) to collect a multimodal dataset in the Bardenas semi-desert in northern Spain. This location serves as a representative environment of the Martian surface, featuring terrain types such as sand, bedrock, and compact soil. A subset of this dataset was manually labeled to support supervised training of the network. The model was evaluated both quantitatively and qualitatively, achieving a pixel accuracy of 80.37% and demonstrating strong performance in segmenting complex unstructured terrain. Inference tests yielded an average prediction time of 673 ms on a resource-constrained computer (Jetson Orin Nano), confirming its suitability for on-robot deployment. The software implementation of the network and the labeled dataset have been made publicly available to support future research in multimodal terrain perception for planetary robotics.
☆ MultiSHAP: A Shapley-Based Framework for Explaining Cross-Modal Interactions in Multimodal AI Models
Multimodal AI models have achieved impressive performance in tasks that require integrating information from multiple modalities, such as vision and language. However, their "black-box" nature poses a major barrier to deployment in high-stakes applications where interpretability and trustworthiness are essential. How to explain cross-modal interactions in multimodal AI models remains a major challenge. While existing model explanation methods, such as attention map and Grad-CAM, offer coarse insights into cross-modal relationships, they cannot precisely quantify the synergistic effects between modalities, and are limited to open-source models with accessible internal weights. Here we introduce MultiSHAP, a model-agnostic interpretability framework that leverages the Shapley Interaction Index to attribute multimodal predictions to pairwise interactions between fine-grained visual and textual elements (such as image patches and text tokens), while being applicable to both open- and closed-source models. Our approach provides: (1) instance-level explanations that reveal synergistic and suppressive cross-modal effects for individual samples - "why the model makes a specific prediction on this input", and (2) dataset-level explanation that uncovers generalizable interaction patterns across samples - "how the model integrates information across modalities". Experiments on public multimodal benchmarks confirm that MultiSHAP faithfully captures cross-modal reasoning mechanisms, while real-world case studies demonstrate its practical utility. Our framework is extensible beyond two modalities, offering a general solution for interpreting complex multimodal AI models.
☆ Analysing Temporal Reasoning in Description Logics Using Formal Grammars AI 2025
We establish a correspondence between (fragments of) $\mathcal{TEL}^\bigcirc$, a temporal extension of the $\mathcal{EL}$ description logic with the LTL operator $\bigcirc^k$, and some specific kinds of formal grammars, in particular, conjunctive grammars (context-free grammars equipped with the operation of intersection). This connection implies that $\mathcal{TEL}^\bigcirc$ does not possess the property of ultimate periodicity of models, and further leads to undecidability of query answering in $\mathcal{TEL}^\bigcirc$, closing a question left open since the introduction of $\mathcal{TEL}^\bigcirc$. Moreover, it also allows to establish decidability of query answering for some new interesting fragments of $\mathcal{TEL}^\bigcirc$, and to reuse for this purpose existing tools and algorithms for conjunctive grammars.
comment: This is an extended version of a paper appearing at the 28th European Conference on Artificial Intelligence (ECAI 2025). 20 pages
☆ SynAdapt: Learning Adaptive Reasoning in Large Language Models via Synthetic Continuous Chain-of-Thought
While Chain-of-Thought (CoT) reasoning improves model performance, it incurs significant time costs due to the generation of discrete CoT tokens (DCoT). Continuous CoT (CCoT) offers a more efficient alternative, but existing CCoT methods are hampered by indirect fine-tuning, limited alignment, or inconsistent targets. To overcome these limitations, we propose \textit{SynAdapt}, an innovative efficient reasoning framework. Specifically, \textit{SynAdapt} generates the synthetic CCoT to serve as a precise and effective alignment target for LLMs. This synthetic CCoT explicitly guides the LLM to learn CCoT and derive accurate answers directly. Furthermore, relying solely on CCoT is insufficient for solving hard questions. To address this, \textit{SynAdapt} integrates a difficulty classifier that leverages both question context and CCoT to identify hard questions. CCoT can effectively help identify hard questions after some brief reasoning. We then adaptively prompt the LLM to re-think these hard questions for improved performance. Extensive experimental results across various benchmarks from different difficulty levels strongly demonstrate the effectiveness of our method, achieving the best accuracy-efficiency trade-off.
☆ Activation-Guided Local Editing for Jailbreaking Attacks
Jailbreaking is an essential adversarial technique for red-teaming these models to uncover and patch security flaws. However, existing jailbreak methods face significant drawbacks. Token-level jailbreak attacks often produce incoherent or unreadable inputs and exhibit poor transferability, while prompt-level attacks lack scalability and rely heavily on manual effort and human ingenuity. We propose a concise and effective two-stage framework that combines the advantages of these approaches. The first stage performs a scenario-based generation of context and rephrases the original malicious query to obscure its harmful intent. The second stage then utilizes information from the model's hidden states to guide fine-grained edits, effectively steering the model's internal representation of the input from a malicious toward a benign one. Extensive experiments demonstrate that this method achieves state-of-the-art Attack Success Rate, with gains of up to 37.74% over the strongest baseline, and exhibits excellent transferability to black-box models. Our analysis further demonstrates that AGILE maintains substantial effectiveness against prominent defense mechanisms, highlighting the limitations of current safeguards and providing valuable insights for future defense development. Our code is available at https://github.com/yunsaijc/AGILE.
☆ SPENCER: Self-Adaptive Model Distillation for Efficient Code Retrieval
Code retrieval aims to provide users with desired code snippets based on users' natural language queries. With the development of deep learning technologies, adopting pre-trained models for this task has become mainstream. Considering the retrieval efficiency, most of the previous approaches adopt a dual-encoder for this task, which encodes the description and code snippet into representation vectors, respectively. However, the model structure of the dual-encoder tends to limit the model's performance, since it lacks the interaction between the code snippet and description at the bottom layer of the model during training. To improve the model's effectiveness while preserving its efficiency, we propose a framework, which adopts Self-AdaPtive Model Distillation for Efficient CodE Retrieval, named SPENCER. SPENCER first adopts the dual-encoder to narrow the search space and then adopts the cross-encoder to improve accuracy. To improve the efficiency of SPENCER, we propose a novel model distillation technique, which can greatly reduce the inference time of the dual-encoder while maintaining the overall performance. We also propose a teaching assistant selection strategy for our model distillation, which can adaptively select the suitable teaching assistant models for different pre-trained models during the model distillation to ensure the model performance. Extensive experiments demonstrate that the combination of dual-encoder and cross-encoder improves overall performance compared to solely dual-encoder-based models for code retrieval. Besides, our model distillation technique retains over 98% of the overall performance while reducing the inference time of the dual-encoder by 70%.
☆ Foundations of Interpretable Models
We argue that existing definitions of interpretability are not actionable in that they fail to inform users about general, sound, and robust interpretable model design. This makes current interpretability research fundamentally ill-posed. To address this issue, we propose a definition of interpretability that is general, simple, and subsumes existing informal notions within the interpretable AI community. We show that our definition is actionable, as it directly reveals the foundational properties, underlying assumptions, principles, data structures, and architectural features necessary for designing interpretable models. Building on this, we propose a general blueprint for designing interpretable models and introduce the first open-sourced library with native support for interpretable data structures and processes.
☆ Towards a Measure Theory of Semantic Information
A classic account of the quantification of semantic information is that of Bar-Hiller and Carnap. Their account proposes an inverse relation between the informativeness of a statement and its probability. However, their approach assigns the maximum informativeness to a contradiction: which Floridi refers to as the Bar-Hillel-Carnap paradox. He developed a novel theory founded on a distance metric and parabolic relation, designed to remove this paradox. Unfortunately is approach does not succeed in that aim. In this paper I critique Floridi's theory of strongly semantic information on its own terms and show where it succeeds and fails. I then present a new approach based on the unit circle (a relation that has been the basis of theories from basic trigonometry to quantum theory). This is used, by analogy with von Neumann's quantum probability to construct a measure space for informativeness that meets all the requirements stipulated by Floridi and removes the paradox. In addition, while contradictions and tautologies have zero informativeness, it is found that messages which are contradictory to each other are equally informative. The utility of this is explained by means of an example.
comment: 17 pages,3 figures
☆ Pro2Guard: Proactive Runtime Enforcement of LLM Agent Safety via Probabilistic Model Checking
Large Language Model (LLM) agents exhibit powerful autonomous capabilities across domains such as robotics, virtual assistants, and web automation. However, their stochastic behavior introduces significant safety risks that are difficult to anticipate. Existing rule-based enforcement systems, such as AgentSpec, focus on developing reactive safety rules, which typically respond only when unsafe behavior is imminent or has already occurred. These systems lack foresight and struggle with long-horizon dependencies and distribution shifts. To address these limitations, we propose Pro2Guard, a proactive runtime enforcement framework grounded in probabilistic reachability analysis. Pro2Guard abstracts agent behaviors into symbolic states and learns a Discrete-Time Markov Chain (DTMC) from execution traces. At runtime, it anticipates future risks by estimating the probability of reaching unsafe states, triggering interventions before violations occur when the predicted risk exceeds a user-defined threshold. By incorporating semantic validity checks and leveraging PAC bounds, Pro2Guard ensures statistical reliability while approximating the underlying ground-truth model. We evaluate Pro2Guard extensively across two safety-critical domains: embodied household agents and autonomous vehicles. In embodied agent tasks, Pro2Guard enforces safety early on up to 93.6% of unsafe tasks using low thresholds, while configurable modes (e.g., reflect) allow balancing safety with task success, maintaining up to 80.4% task completion. In autonomous driving scenarios, Pro2Guard achieves 100% prediction of traffic law violations and collisions, anticipating risks up to 38.66 seconds ahead.
☆ LesiOnTime -- Joint Temporal and Clinical Modeling for Small Breast Lesion Segmentation in Longitudinal DCE-MRI
Accurate segmentation of small lesions in Breast Dynamic Contrast-Enhanced MRI (DCE-MRI) is critical for early cancer detection, especially in high-risk patients. While recent deep learning methods have advanced lesion segmentation, they primarily target large lesions and neglect valuable longitudinal and clinical information routinely used by radiologists. In real-world screening, detecting subtle or emerging lesions requires radiologists to compare across timepoints and consider previous radiology assessments, such as the BI-RADS score. We propose LesiOnTime, a novel 3D segmentation approach that mimics clinical diagnostic workflows by jointly leveraging longitudinal imaging and BIRADS scores. The key components are: (1) a Temporal Prior Attention (TPA) block that dynamically integrates information from previous and current scans; and (2) a BI-RADS Consistency Regularization (BCR) loss that enforces latent space alignment for scans with similar radiological assessments, thus embedding domain knowledge into the training process. Evaluated on a curated in-house longitudinal dataset of high-risk patients with DCE-MRI, our approach outperforms state-of-the-art single-timepoint and longitudinal baselines by 5% in terms of Dice. Ablation studies demonstrate that both TPA and BCR contribute complementary performance gains. These results highlight the importance of incorporating temporal and clinical context for reliable early lesion segmentation in real-world breast cancer screening. Our code is publicly available at https://github.com/cirmuw/LesiOnTime
☆ HannesImitation: Grasping with the Hannes Prosthetic Hand via Imitation Learning
Recent advancements in control of prosthetic hands have focused on increasing autonomy through the use of cameras and other sensory inputs. These systems aim to reduce the cognitive load on the user by automatically controlling certain degrees of freedom. In robotics, imitation learning has emerged as a promising approach for learning grasping and complex manipulation tasks while simplifying data collection. Its application to the control of prosthetic hands remains, however, largely unexplored. Bridging this gap could enhance dexterity restoration and enable prosthetic devices to operate in more unconstrained scenarios, where tasks are learned from demonstrations rather than relying on manually annotated sequences. To this end, we present HannesImitationPolicy, an imitation learning-based method to control the Hannes prosthetic hand, enabling object grasping in unstructured environments. Moreover, we introduce the HannesImitationDataset comprising grasping demonstrations in table, shelf, and human-to-prosthesis handover scenarios. We leverage such data to train a single diffusion policy and deploy it on the prosthetic hand to predict the wrist orientation and hand closure for grasping. Experimental evaluation demonstrates successful grasps across diverse objects and conditions. Finally, we show that the policy outperforms a segmentation-based visual servo controller in unstructured scenarios. Additional material is provided on our project page: https://hsp-iit.github.io/HannesImitation
comment: Paper accepted at IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
☆ CyGATE: Game-Theoretic Cyber Attack-Defense Engine for Patch Strategy Optimization
Modern cyber attacks unfold through multiple stages, requiring defenders to dynamically prioritize mitigations under uncertainty. While game-theoretic models capture attacker-defender interactions, existing approaches often rely on static assumptions and lack integration with real-time threat intelligence, limiting their adaptability. This paper presents CyGATE, a game-theoretic framework modeling attacker-defender interactions, using large language models (LLMs) with retrieval-augmented generation (RAG) to enhance tactic selection and patch prioritization. Applied to a two-agent scenario, CyGATE frames cyber conflicts as a partially observable stochastic game (POSG) across Cyber Kill Chain stages. Both agents use belief states to navigate uncertainty, with the attacker adapting tactics and the defender re-prioritizing patches based on evolving risks and observed adversary behavior. The framework's flexible architecture enables extension to multi-agent scenarios involving coordinated attackers, collaborative defenders, or complex enterprise environments with multiple stakeholders. Evaluated in a dynamic patch scheduling scenario, CyGATE effectively prioritizes high-risk vulnerabilities, enhancing adaptability through dynamic threat integration, strategic foresight by anticipating attacker moves under uncertainty, and efficiency by optimizing resource use.
☆ Thinking Machines: Mathematical Reasoning in the Age of LLMs
Large Language Models (LLMs) have shown remarkable abilities in structured reasoning and symbolic tasks, with coding emerging as a particular area of strength. This success has sparked growing interest in applying LLMs to mathematics, both in informal problem-solving and formal theorem proving. However, progress in formal mathematics has proven to be significantly more difficult, despite surface-level similarities between programming and proof construction. This discrepancy raises important questions about how LLMs ``reason'', how they are supervised, and whether they internally track a notion of computational or deductive state. In this article, we address the state-of-the-art of the discipline, focusing on recent models and benchmarks, and explore three central issues at the intersection of machine learning and mathematical cognition: (i) the trade-offs between formal and informal mathematics as training domains; (ii) the deeper reasons why proof generation remains more brittle than code synthesis; (iii) and the question of whether LLMs represent, or merely mimic, a notion of evolving logical state. Our goal is not to draw hard boundaries, but to identify where the current limits lie, and how they might be extended.
☆ M^2VAE: Multi-Modal Multi-View Variational Autoencoder for Cold-start Item Recommendation
Cold-start item recommendation is a significant challenge in recommendation systems, particularly when new items are introduced without any historical interaction data. While existing methods leverage multi-modal content to alleviate the cold-start issue, they often neglect the inherent multi-view structure of modalities, the distinction between shared and modality-specific features. In this paper, we propose Multi-Modal Multi-View Variational AutoEncoder (M^2VAE), a generative model that addresses the challenges of modeling common and unique views in attribute and multi-modal features, as well as user preferences over single-typed item features. Specifically, we generate type-specific latent variables for item IDs, categorical attributes, and image features, and use Product-of-Experts (PoE) to derive a common representation. A disentangled contrastive loss decouples the common view from unique views while preserving feature informativeness. To model user inclinations, we employ a preference-guided Mixture-of-Experts (MoE) to adaptively fuse representations. We further incorporate co-occurrence signals via contrastive learning, eliminating the need for pretraining. Extensive experiments on real-world datasets validate the effectiveness of our approach.
☆ When Relevance Meets Novelty: Dual-Stable Periodic Optimization for Exploratory Recommendation
Traditional recommendation systems tend to trap users in strong feedback loops by excessively pushing content aligned with their historical preferences, thereby limiting exploration opportunities and causing content fatigue. Although large language models (LLMs) demonstrate potential with their diverse content generation capabilities, existing LLM-enhanced dual-model frameworks face two major limitations: first, they overlook long-term preferences driven by group identity, leading to biased interest modeling; second, they suffer from static optimization flaws, as a one-time alignment process fails to leverage incremental user data for closed-loop optimization. To address these challenges, we propose the Co-Evolutionary Alignment (CoEA) method. For interest modeling bias, we introduce Dual-Stable Interest Exploration (DSIE) module, jointly modeling long-term group identity and short-term individual interests through parallel processing of behavioral sequences. For static optimization limitations, we design a Periodic Collaborative Optimization (PCO) mechanism. This mechanism regularly conducts preference verification on incremental data using the Relevance LLM, then guides the Novelty LLM to perform fine-tuning based on the verification results, and subsequently feeds back the output of the incrementally fine-tuned Novelty LLM to the Relevance LLM for re-evaluation, thereby achieving a dynamic closed-loop optimization. Extensive online and offline experiments verify the effectiveness of the CoEA model in exploratory recommendation.
☆ TopoTTA: Topology-Enhanced Test-Time Adaptation for Tubular Structure Segmentation
Tubular structure segmentation (TSS) is important for various applications, such as hemodynamic analysis and route navigation. Despite significant progress in TSS, domain shifts remain a major challenge, leading to performance degradation in unseen target domains. Unlike other segmentation tasks, TSS is more sensitive to domain shifts, as changes in topological structures can compromise segmentation integrity, and variations in local features distinguishing foreground from background (e.g., texture and contrast) may further disrupt topological continuity. To address these challenges, we propose Topology-enhanced Test-Time Adaptation (TopoTTA), the first test-time adaptation framework designed specifically for TSS. TopoTTA consists of two stages: Stage 1 adapts models to cross-domain topological discrepancies using the proposed Topological Meta Difference Convolutions (TopoMDCs), which enhance topological representation without altering pre-trained parameters; Stage 2 improves topological continuity by a novel Topology Hard sample Generation (TopoHG) strategy and prediction alignment on hard samples with pseudo-labels in the generated pseudo-break regions. Extensive experiments across four scenarios and ten datasets demonstrate TopoTTA's effectiveness in handling topological distribution shifts, achieving an average improvement of 31.81% in clDice. TopoTTA also serves as a plug-and-play TTA solution for CNN-based TSS models.
☆ Reducing the gap between general purpose data and aerial images in concentrated solar power plants
In the context of Concentrated Solar Power (CSP) plants, aerial images captured by drones present a unique set of challenges. Unlike urban or natural landscapes commonly found in existing datasets, solar fields contain highly reflective surfaces, and domain-specific elements that are uncommon in traditional computer vision benchmarks. As a result, machine learning models trained on generic datasets struggle to generalize to this setting without extensive retraining and large volumes of annotated data. However, collecting and labeling such data is costly and time-consuming, making it impractical for rapid deployment in industrial applications. To address this issue, we propose a novel approach: the creation of AerialCSP, a virtual dataset that simulates aerial imagery of CSP plants. By generating synthetic data that closely mimic real-world conditions, our objective is to facilitate pretraining of models before deployment, significantly reducing the need for extensive manual labeling. Our main contributions are threefold: (1) we introduce AerialCSP, a high-quality synthetic dataset for aerial inspection of CSP plants, providing annotated data for object detection and image segmentation; (2) we benchmark multiple models on AerialCSP, establishing a baseline for CSP-related vision tasks; and (3) we demonstrate that pretraining on AerialCSP significantly improves real-world fault detection, particularly for rare and small defects, reducing the need for extensive manual labeling. AerialCSP is made publicly available at https://mpcutino.github.io/aerialcsp/.
☆ Contact-Aware Amodal Completion for Human-Object Interaction via Multi-Regional Inpainting ICCV 2025
Amodal completion, which is the process of inferring the full appearance of objects despite partial occlusions, is crucial for understanding complex human-object interactions (HOI) in computer vision and robotics. Existing methods, such as those that use pre-trained diffusion models, often struggle to generate plausible completions in dynamic scenarios because they have a limited understanding of HOI. To solve this problem, we've developed a new approach that uses physical prior knowledge along with a specialized multi-regional inpainting technique designed for HOI. By incorporating physical constraints from human topology and contact information, we define two distinct regions: the primary region, where occluded object parts are most likely to be, and the secondary region, where occlusions are less probable. Our multi-regional inpainting method uses customized denoising strategies across these regions within a diffusion model. This improves the accuracy and realism of the generated completions in both their shape and visual detail. Our experimental results show that our approach significantly outperforms existing methods in HOI scenarios, moving machine perception closer to a more human-like understanding of dynamic environments. We also show that our pipeline is robust even without ground-truth contact annotations, which broadens its applicability to tasks like 3D reconstruction and novel view/pose synthesis.
comment: ICCV 2025 (Highlight)
☆ Cognitive Kernel-Pro: A Framework for Deep Research Agents and Agent Foundation Models Training
General AI Agents are increasingly recognized as foundational frameworks for the next generation of artificial intelligence, enabling complex reasoning, web interaction, coding, and autonomous research capabilities. However, current agent systems are either closed-source or heavily reliant on a variety of paid APIs and proprietary tools, limiting accessibility and reproducibility for the research community. In this work, we present \textbf{Cognitive Kernel-Pro}, a fully open-source and (to the maximum extent) free multi-module agent framework designed to democratize the development and evaluation of advanced AI agents. Within Cognitive Kernel-Pro, we systematically investigate the curation of high-quality training data for Agent Foundation Models, focusing on the construction of queries, trajectories, and verifiable answers across four key domains: web, file, code, and general reasoning. Furthermore, we explore novel strategies for agent test-time reflection and voting to enhance agent robustness and performance. We evaluate Cognitive Kernel-Pro on GAIA, achieving state-of-the-art results among open-source and free agents. Notably, our 8B-parameter open-source model surpasses previous leading systems such as WebDancer and WebSailor, establishing a new performance standard for accessible, high-capability AI agents. Code is available at https://github.com/Tencent/CognitiveKernel-Pro
comment: 16 pages
☆ DC-AE 1.5: Accelerating Diffusion Model Convergence with Structured Latent Space ICCV 2025
We present DC-AE 1.5, a new family of deep compression autoencoders for high-resolution diffusion models. Increasing the autoencoder's latent channel number is a highly effective approach for improving its reconstruction quality. However, it results in slow convergence for diffusion models, leading to poorer generation quality despite better reconstruction quality. This issue limits the quality upper bound of latent diffusion models and hinders the employment of autoencoders with higher spatial compression ratios. We introduce two key innovations to address this challenge: i) Structured Latent Space, a training-based approach to impose a desired channel-wise structure on the latent space with front latent channels capturing object structures and latter latent channels capturing image details; ii) Augmented Diffusion Training, an augmented diffusion training strategy with additional diffusion training objectives on object latent channels to accelerate convergence. With these techniques, DC-AE 1.5 delivers faster convergence and better diffusion scaling results than DC-AE. On ImageNet 512x512, DC-AE-1.5-f64c128 delivers better image generation quality than DC-AE-f32c32 while being 4x faster. Code: https://github.com/dc-ai-projects/DC-Gen.
comment: ICCV 2025
☆ Theory of Mind Using Active Inference: A Framework for Multi-Agent Cooperation
We present a novel approach to multi-agent cooperation by implementing theory of mind (ToM) within active inference. ToM - the ability to understand that others can have differing knowledge and goals - enables agents to reason about others' beliefs while planning their own actions. Unlike previous active inference approaches to multi-agent cooperation, our method neither relies on task-specific shared generative models nor requires explicit communication, while being generalisable. In our framework, the ToM-equipped agent maintains distinct representations of its own and others' beliefs and goals. We extend the sophisticated inference tree-based planning algorithm to systematically explore joint policy spaces through recursive reasoning. Our approach is evaluated through collision avoidance and foraging task simulations. Results demonstrate that ToM-equipped agents cooperate better compared to non-ToM counterparts by being able to avoid collisions and reduce redundant efforts. Crucially, ToM agents accomplish this by inferring others' beliefs solely from observable behaviour. This work advances practical applications in artificial intelligence while providing computational insights into ToM.
☆ Decouple before Align: Visual Disentanglement Enhances Prompt Tuning TPAMI
Prompt tuning (PT), as an emerging resource-efficient fine-tuning paradigm, has showcased remarkable effectiveness in improving the task-specific transferability of vision-language models. This paper delves into a previously overlooked information asymmetry issue in PT, where the visual modality mostly conveys more context than the object-oriented textual modality. Correspondingly, coarsely aligning these two modalities could result in the biased attention, driving the model to merely focus on the context area. To address this, we propose DAPT, an effective PT framework based on an intuitive decouple-before-align concept. First, we propose to explicitly decouple the visual modality into the foreground and background representation via exploiting coarse-and-fine visual segmenting cues, and then both of these decoupled patterns are aligned with the original foreground texts and the hand-crafted background classes, thereby symmetrically strengthening the modal alignment. To further enhance the visual concentration, we propose a visual pull-push regularization tailored for the foreground-background patterns, directing the original visual representation towards unbiased attention on the region-of-interest object. We demonstrate the power of architecture-free DAPT through few-shot learning, base-to-novel generalization, and data-efficient learning, all of which yield superior performance across prevailing benchmarks. Our code will be released at https://github.com/Ferenas/DAPT.
comment: 16 pages, Accepted at IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
☆ ExeKGLib: A Platform for Machine Learning Analytics based on Knowledge Graphs
Nowadays machine learning (ML) practitioners have access to numerous ML libraries available online. Such libraries can be used to create ML pipelines that consist of a series of steps where each step may invoke up to several ML libraries that are used for various data-driven analytical tasks. Development of high-quality ML pipelines is non-trivial; it requires training, ML expertise, and careful development of each step. At the same time, domain experts in science and engineering may not possess such ML expertise and training while they are in pressing need of ML-based analytics. In this paper, we present our ExeKGLib, a Python library enhanced with a graphical interface layer that allows users with minimal ML knowledge to build ML pipelines. This is achieved by relying on knowledge graphs that encode ML knowledge in simple terms accessible to non-ML experts. ExeKGLib also allows improving the transparency and reusability of the built ML workflows and ensures that they are executable. We show the usability and usefulness of ExeKGLib by presenting real use cases.
☆ $MV_{Hybrid}$: Improving Spatial Transcriptomics Prediction with Hybrid State Space-Vision Transformer Backbone in Pathology Vision Foundation Models AI 2025
Spatial transcriptomics reveals gene expression patterns within tissue context, enabling precision oncology applications such as treatment response prediction, but its high cost and technical complexity limit clinical adoption. Predicting spatial gene expression (biomarkers) from routine histopathology images offers a practical alternative, yet current vision foundation models (VFMs) in pathology based on Vision Transformer (ViT) backbones perform below clinical standards. Given that VFMs are already trained on millions of diverse whole slide images, we hypothesize that architectural innovations beyond ViTs may better capture the low-frequency, subtle morphological patterns correlating with molecular phenotypes. By demonstrating that state space models initialized with negative real eigenvalues exhibit strong low-frequency bias, we introduce $MV_{Hybrid}$, a hybrid backbone architecture combining state space models (SSMs) with ViT. We compare five other different backbone architectures for pathology VFMs, all pretrained on identical colorectal cancer datasets using the DINOv2 self-supervised learning method. We evaluate all pretrained models using both random split and leave-one-study-out (LOSO) settings of the same biomarker dataset. In LOSO evaluation, $MV_{Hybrid}$ achieves 57% higher correlation than the best-performing ViT and shows 43% smaller performance degradation compared to random split in gene expression prediction, demonstrating superior performance and robustness, respectively. Furthermore, $MV_{Hybrid}$ shows equal or better downstream performance in classification, patch retrieval, and survival prediction tasks compared to that of ViT, showing its promise as a next-generation pathology VFM backbone. Our code is publicly available at: https://github.com/deepnoid-ai/MVHybrid.
comment: Accepted (Oral) in MICCAI 2025 COMPAYL Workshop
☆ Advancing Welding Defect Detection in Maritime Operations via Adapt-WeldNet and Defect Detection Interpretability Analysis
Weld defect detection is crucial for ensuring the safety and reliability of piping systems in the oil and gas industry, especially in challenging marine and offshore environments. Traditional non-destructive testing (NDT) methods often fail to detect subtle or internal defects, leading to potential failures and costly downtime. Furthermore, existing neural network-based approaches for defect classification frequently rely on arbitrarily selected pretrained architectures and lack interpretability, raising safety concerns for deployment. To address these challenges, this paper introduces ``Adapt-WeldNet", an adaptive framework for welding defect detection that systematically evaluates various pre-trained architectures, transfer learning strategies, and adaptive optimizers to identify the best-performing model and hyperparameters, optimizing defect detection and providing actionable insights. Additionally, a novel Defect Detection Interpretability Analysis (DDIA) framework is proposed to enhance system transparency. DDIA employs Explainable AI (XAI) techniques, such as Grad-CAM and LIME, alongside domain-specific evaluations validated by certified ASNT NDE Level II professionals. Incorporating a Human-in-the-Loop (HITL) approach and aligning with the principles of Trustworthy AI, DDIA ensures the reliability, fairness, and accountability of the defect detection system, fostering confidence in automated decisions through expert validation. By improving both performance and interpretability, this work enhances trust, safety, and reliability in welding defect detection systems, supporting critical operations in offshore and marine environments.
☆ CoRGI: Verified Chain-of-Thought Reasoning with Visual Grounding AAAI 2026
Chain-of-Thought (CoT) prompting has shown promise in improving reasoning in vision-language models (VLMs), but it often produces explanations that are linguistically fluent yet lack grounding in visual content. We observe that such hallucinations arise in part from the absence of an explicit verification mechanism during multi-step reasoning. To address this, we propose \textbf{CoRGI}(\textbf{C}hain \textbf{o}f \textbf{R}easoning with \textbf{G}rounded \textbf{I}nsights), a modular framework that introduces visual verification into the reasoning process. CoRGI follows a three-stage pipeline: it first generates a textual reasoning chain, then extracts supporting visual evidence for each reasoning step via a dedicated module (VEVM), and finally synthesizes the textual rationale with visual evidence to generate a grounded, verified answer. The framework can be integrated with existing VLMs without end-to-end retraining. We evaluate CoRGI on the VCR benchmark and find that it improves reasoning performance on two representative open-source VLM backbones, Qwen-2.5VL and LLaVA-1.6. Ablation studies confirm the contribution of each step in the verification module, and human evaluations suggest that CoRGI leads to more factual and helpful explanations. We also examine alternative designs for the visual verification step and discuss potential limitations of post-hoc verification frameworks. These findings highlight the importance of grounding intermediate reasoning steps in visual evidence to enhance the robustness of multimodal reasoning.
comment: Preparing for AAAI 2026, Multimodal Reasoning
☆ R1-ACT: Efficient Reasoning Model Safety Alignment by Activating Safety Knowledge
Although large reasoning models (LRMs) have demonstrated impressive capabilities on complex tasks, recent studies reveal that these models frequently fulfill harmful user instructions, raising significant safety concerns. In this paper, we investigate the underlying cause of LRM safety risks and find that models already possess sufficient safety knowledge but fail to activate it during reasoning. Based on this insight, we propose R1-Act, a simple and efficient post-training method that explicitly triggers safety knowledge through a structured reasoning process. R1-Act achieves strong safety improvements while preserving reasoning performance, outperforming prior alignment methods. Notably, it requires only 1,000 training examples and 90 minutes of training on a single RTX A6000 GPU. Extensive experiments across multiple LRM backbones and sizes demonstrate the robustness, scalability, and practical efficiency of our approach.
comment: under review
☆ Oedipus and the Sphinx: Benchmarking and Improving Visual Language Models for Complex Graphic Reasoning
Evaluating the performance of visual language models (VLMs) in graphic reasoning tasks has become an important research topic. However, VLMs still show obvious deficiencies in simulating human-level graphic reasoning capabilities, especially in complex graphic reasoning and abstract problem solving, which are less studied and existing studies only focus on simple graphics. To evaluate the performance of VLMs in complex graphic reasoning, we propose ReasonBench, the first evaluation benchmark focused on structured graphic reasoning tasks, which includes 1,613 questions from real-world intelligence tests. ReasonBench covers reasoning dimensions related to location, attribute, quantity, and multi-element tasks, providing a comprehensive evaluation of the performance of VLMs in spatial, relational, and abstract reasoning capabilities. We benchmark 11 mainstream VLMs (including closed-source and open-source models) and reveal significant limitations of current models. Based on these findings, we propose a dual optimization strategy: Diagrammatic Reasoning Chain (DiaCoT) enhances the interpretability of reasoning by decomposing layers, and ReasonTune enhances the task adaptability of model reasoning through training, all of which improves VLM performance by 33.5\%. All experimental data and code are in the repository: https://huggingface.co/datasets/cistine/ReasonBench.
☆ GV-VAD : Exploring Video Generation for Weakly-Supervised Video Anomaly Detection
Video anomaly detection (VAD) plays a critical role in public safety applications such as intelligent surveillance. However, the rarity, unpredictability, and high annotation cost of real-world anomalies make it difficult to scale VAD datasets, which limits the performance and generalization ability of existing models. To address this challenge, we propose a generative video-enhanced weakly-supervised video anomaly detection (GV-VAD) framework that leverages text-conditioned video generation models to produce semantically controllable and physically plausible synthetic videos. These virtual videos are used to augment training data at low cost. In addition, a synthetic sample loss scaling strategy is utilized to control the influence of generated synthetic samples for efficient training. The experiments show that the proposed framework outperforms state-of-the-art methods on UCF-Crime datasets. The code is available at https://github.com/Sumutan/GV-VAD.git.
☆ Beamformed 360° Sound Maps: U-Net-Driven Acoustic Source Segmentation and Localization
We introduce a U-net model for 360{\deg} acoustic source localization formulated as a spherical semantic segmentation task. Rather than regressing discrete direction-of-arrival (DoA) angles, our model segments beamformed audio maps (azimuth and elevation) into regions of active sound presence. Using delay-and-sum (DAS) beamforming on a custom 24-microphone array, we generate signals aligned with drone GPS telemetry to create binary supervision masks. A modified U-Net, trained on frequency-domain representations of these maps, learns to identify spatially distributed source regions while addressing class imbalance via the Tversky loss. Because the network operates on beamformed energy maps, the approach is inherently array-independent and can adapt to different microphone configurations without retraining from scratch. The segmentation outputs are post-processed by computing centroids over activated regions, enabling robust DoA estimates. Our dataset includes real-world open-field recordings of a DJI Air 3 drone, synchronized with 360{\deg} video and flight logs across multiple dates and locations. Experimental results show that U-net generalizes across environments, providing improved angular precision, offering a new paradigm for dense spatial audio understanding beyond traditional Sound Source Localization (SSL).
☆ MetaExplainer: A Framework to Generate Multi-Type User-Centered Explanations for AI Systems
Explanations are crucial for building trustworthy AI systems, but a gap often exists between the explanations provided by models and those needed by users. To address this gap, we introduce MetaExplainer, a neuro-symbolic framework designed to generate user-centered explanations. Our approach employs a three-stage process: first, we decompose user questions into machine-readable formats using state-of-the-art large language models (LLM); second, we delegate the task of generating system recommendations to model explainer methods; and finally, we synthesize natural language explanations that summarize the explainer outputs. Throughout this process, we utilize an Explanation Ontology to guide the language models and explainer methods. By leveraging LLMs and a structured approach to explanation generation, MetaExplainer aims to enhance the interpretability and trustworthiness of AI systems across various applications, providing users with tailored, question-driven explanations that better meet their needs. Comprehensive evaluations of MetaExplainer demonstrate a step towards evaluating and utilizing current state-of-the-art explanation frameworks. Our results show high performance across all stages, with a 59.06% F1-score in question reframing, 70% faithfulness in model explanations, and 67% context-utilization in natural language synthesis. User studies corroborate these findings, highlighting the creativity and comprehensiveness of generated explanations. Tested on the Diabetes (PIMA Indian) tabular dataset, MetaExplainer supports diverse explanation types, including Contrastive, Counterfactual, Rationale, Case-Based, and Data explanations. The framework's versatility and traceability from using ontology to guide LLMs suggest broad applicability beyond the tested scenarios, positioning MetaExplainer as a promising tool for enhancing AI explainability across various domains.
☆ Controllable Pedestrian Video Editing for Multi-View Driving Scenarios via Motion Sequence ICCV 2025
Pedestrian detection models in autonomous driving systems often lack robustness due to insufficient representation of dangerous pedestrian scenarios in training datasets. To address this limitation, we present a novel framework for controllable pedestrian video editing in multi-view driving scenarios by integrating video inpainting and human motion control techniques. Our approach begins by identifying pedestrian regions of interest across multiple camera views, expanding detection bounding boxes with a fixed ratio, and resizing and stitching these regions into a unified canvas while preserving cross-view spatial relationships. A binary mask is then applied to designate the editable area, within which pedestrian editing is guided by pose sequence control conditions. This enables flexible editing functionalities, including pedestrian insertion, replacement, and removal. Extensive experiments demonstrate that our framework achieves high-quality pedestrian editing with strong visual realism, spatiotemporal coherence, and cross-view consistency. These results establish the proposed method as a robust and versatile solution for multi-view pedestrian video generation, with broad potential for applications in data augmentation and scenario simulation in autonomous driving.
comment: ICCV 2025 Workshop (HiGen)
☆ Formal Power Series Representations in Probability and Expected Utility Theory
We advance a general theory of coherent preference that surrenders restrictions embodied in orthodox doctrine. This theory enjoys the property that any preference system admits extension to a complete system of preferences, provided it satisfies a certain coherence requirement analogous to the one de Finetti advanced for his foundations of probability. Unlike de Finetti's theory, the one we set forth requires neither transitivity nor Archimedeanness nor boundedness nor continuity of preference. This theory also enjoys the property that any complete preference system meeting the standard of coherence can be represented by utility in an ordered field extension of the reals. Representability by utility is a corollary of this paper's central result, which at once extends H\"older's Theorem and strengthens Hahn's Embedding Theorem.
☆ Mind the Gap: The Divergence Between Human and LLM-Generated Tasks
Humans constantly generate a diverse range of tasks guided by internal motivations. While generative agents powered by large language models (LLMs) aim to simulate this complex behavior, it remains uncertain whether they operate on similar cognitive principles. To address this, we conducted a task-generation experiment comparing human responses with those of an LLM agent (GPT-4o). We find that human task generation is consistently influenced by psychological drivers, including personal values (e.g., Openness to Change) and cognitive style. Even when these psychological drivers are explicitly provided to the LLM, it fails to reflect the corresponding behavioral patterns. They produce tasks that are markedly less social, less physical, and thematically biased toward abstraction. Interestingly, while the LLM's tasks were perceived as more fun and novel, this highlights a disconnect between its linguistic proficiency and its capacity to generate human-like, embodied goals.We conclude that there is a core gap between the value-driven, embodied nature of human cognition and the statistical patterns of LLMs, highlighting the necessity of incorporating intrinsic motivation and physical grounding into the design of more human-aligned agents.
☆ MetaAgent: Toward Self-Evolving Agent via Tool Meta-Learning
In this work, we propose MetaAgent, an agentic paradigm inspired by the principle of learning-by-doing, where expertise is developed through hands-on practice and continual self-improvement. MetaAgent starts with a minimal workflow, equipped only with basic reasoning and adaptive help-seeking abilities. When a knowledge gap is encountered, MetaAgent generates natural language help requests, which are routed to the most suitable external tool by a dedicated tool router. As MetaAgent solves tasks, it continually conducts self-reflection and answer verification, distilling actionable experience into concise texts that are dynamically incorporated into future task contexts. Besides, MetaAgent autonomously builds in-house tools and a persistent knowledge base by organizing its tool-use history, further enhancing its ability to retrieve and integrate relevant information We term this continual, data-driven process as \textit{meta tool learning}, through which MetaAgent incrementally refines its reasoning and tool-use strategies, without changing model parameters or requiring further post-training. Evaluated on challenging knowledge discovery benchmarks, including GAIA, WebWalkerQA, and BrowseCamp, MetaAgent consistently outperforms workflow-based baselines and matches or exceeds end-to-end trained agents, demonstrating the promise of self-evolving agentic systems for robust, general-purpose knowledge discovery. We provide our source codes in https://github.com/qhjqhj00/MetaAgent.
comment: Technical Report, 14 pages
☆ Calibrated Language Models and How to Find Them with Label Smoothing ICML
Recent advances in natural language processing (NLP) have opened up greater opportunities to enable fine-tuned large language models (LLMs) to behave as more powerful interactive agents through improved instruction-following ability. However, understanding how this impacts confidence calibration for reliable model output has not been researched in full. In this work, we examine various open-sourced LLMs, identifying significant calibration degradation after instruction tuning in each. Seeking a practical solution, we look towards label smoothing, which has been shown as an effective method to regularize for overconfident predictions but has yet to be widely adopted in the supervised fine-tuning (SFT) of LLMs. We first provide insight as to why label smoothing is sufficient to maintain calibration throughout the SFT process. However, settings remain where the effectiveness of smoothing is severely diminished, in particular the case of large vocabulary LLMs (LV-LLMs). We posit the cause to stem from the ability to become over-confident, which has a direct relationship with the hidden size and vocabulary size, and justify this theoretically and experimentally. Finally, we address an outstanding issue regarding the memory footprint of the cross-entropy loss computation in the label smoothed loss setting, designing a customized kernel to dramatically reduce memory consumption without sacrificing speed or performance in comparison to existing solutions for non-smoothed losses.
comment: Accepted to the Forty-second International Conference on Machine Learning (ICML) 2025. First two authors contributed equally
☆ Large AI Model-Enabled Secure Communications in Low-Altitude Wireless Networks: Concepts, Perspectives and Case Study
Low-altitude wireless networks (LAWNs) have the potential to revolutionize communications by supporting a range of applications, including urban parcel delivery, aerial inspections and air taxis. However, compared with traditional wireless networks, LAWNs face unique security challenges due to low-altitude operations, frequent mobility and reliance on unlicensed spectrum, making it more vulnerable to some malicious attacks. In this paper, we investigate some large artificial intelligence model (LAM)-enabled solutions for secure communications in LAWNs. Specifically, we first explore the amplified security risks and important limitations of traditional AI methods in LAWNs. Then, we introduce the basic concepts of LAMs and delve into the role of LAMs in addressing these challenges. To demonstrate the practical benefits of LAMs for secure communications in LAWNs, we propose a novel LAM-based optimization framework that leverages large language models (LLMs) to generate enhanced state features on top of handcrafted representations, and to design intrinsic rewards accordingly, thereby improving reinforcement learning performance for secure communication tasks. Through a typical case study, simulation results validate the effectiveness of the proposed framework. Finally, we outline future directions for integrating LAMs into secure LAWN applications.
comment: This paper has been submitted to IEEE Communications Magazine for consideration
☆ Accurate and Consistent Graph Model Generation from Text with Large Language Models
Graph model generation from natural language description is an important task with many applications in software engineering. With the rise of large language models (LLMs), there is a growing interest in using LLMs for graph model generation. Nevertheless, LLM-based graph model generation typically produces partially correct models that suffer from three main issues: (1) syntax violations: the generated model may not adhere to the syntax defined by its metamodel, (2) constraint inconsistencies: the structure of the model might not conform to some domain-specific constraints, and (3) inaccuracy: due to the inherent uncertainty in LLMs, the models can include inaccurate, hallucinated elements. While the first issue is often addressed through techniques such as constraint decoding or filtering, the latter two remain largely unaddressed. Motivated by recent self-consistency approaches in LLMs, we propose a novel abstraction-concretization framework that enhances the consistency and quality of generated graph models by considering multiple outputs from an LLM. Our approach first constructs a probabilistic partial model that aggregates all candidate outputs and then refines this partial model into the most appropriate concrete model that satisfies all constraints. We evaluate our framework on several popular open-source and closed-source LLMs using diverse datasets for model generation tasks. The results demonstrate that our approach significantly improves both the consistency and quality of the generated graph models.
comment: Accepted at ACM / IEEE 28th International Conference on Model Driven Engineering Languages and Systems (MODELS 2025)
☆ Jet Image Generation in High Energy Physics Using Diffusion Models
This article presents, for the first time, the application of diffusion models for generating jet images corresponding to proton-proton collision events at the Large Hadron Collider (LHC). The kinematic variables of quark, gluon, W-boson, Z-boson, and top quark jets from the JetNet simulation dataset are mapped to two-dimensional image representations. Diffusion models are trained on these images to learn the spatial distribution of jet constituents. We compare the performance of score-based diffusion models and consistency models in accurately generating class-conditional jet images. Unlike approaches based on latent distributions, our method operates directly in image space. The fidelity of the generated images is evaluated using several metrics, including the Fr\'echet Inception Distance (FID), which demonstrates that consistency models achieve higher fidelity and generation stability compared to score-based diffusion models. These advancements offer significant improvements in computational efficiency and generation accuracy, providing valuable tools for High Energy Physics (HEP) research.
comment: The paper is under review at IEEE Transactions in Nuclear Science
☆ What's Behind the Magic? Audiences Seek Artistic Value in Generative AI's Contributions to a Live Dance Performance AI
With the development of generative artificial intelligence (GenAI) tools to create art, stakeholders cannot come to an agreement on the value of these works. In this study we uncovered the mixed opinions surrounding art made by AI. We developed two versions of a dance performance augmented by technology either with or without GenAI. For each version we informed audiences of the performance's development either before or after a survey on their perceptions of the performance. There were thirty-nine participants (13 males, 26 female) divided between the four performances. Results demonstrated that individuals were more inclined to attribute artistic merit to works made by GenAI when they were unaware of its use. We present this case study as a call to address the importance of utilizing the social context and the users' interpretations of GenAI in shaping a technical explanation, leading to a greater discussion that can bridge gaps in understanding.
comment: In Proceedings of Explainable AI for the Arts Workshop 2025 (XAIxArts 2025) arXiv:2406.14485
☆ Model Misalignment and Language Change: Traces of AI-Associated Language in Unscripted Spoken English AI
In recent years, written language, particularly in science and education, has undergone remarkable shifts in word usage. These changes are widely attributed to the growing influence of Large Language Models (LLMs), which frequently rely on a distinct lexical style. Divergences between model output and target audience norms can be viewed as a form of misalignment. While these shifts are often linked to using Artificial Intelligence (AI) directly as a tool to generate text, it remains unclear whether the changes reflect broader changes in the human language system itself. To explore this question, we constructed a dataset of 22.1 million words from unscripted spoken language drawn from conversational science and technology podcasts. We analyzed lexical trends before and after ChatGPT's release in 2022, focusing on commonly LLM-associated words. Our results show a moderate yet significant increase in the usage of these words post-2022, suggesting a convergence between human word choices and LLM-associated patterns. In contrast, baseline synonym words exhibit no significant directional shift. Given the short time frame and the number of words affected, this may indicate the onset of a remarkable shift in language use. Whether this represents natural language change or a novel shift driven by AI exposure remains an open question. Similarly, although the shifts may stem from broader adoption patterns, it may also be that upstream training misalignments ultimately contribute to changes in human language use. These findings parallel ethical concerns that misaligned models may shape social and moral beliefs.
comment: Accepted at AIES 2025. To appear in the AIES Proceedings. 14 pages, 2 figures, 2 tables. Licensed under CC BY-SA 4.0
☆ Weakly Supervised Intracranial Aneurysm Detection and Segmentation in MR angiography via Multi-task UNet with Vesselness Prior ICCV 2025
Intracranial aneurysms (IAs) are abnormal dilations of cerebral blood vessels that, if ruptured, can lead to life-threatening consequences. However, their small size and soft contrast in radiological scans often make it difficult to perform accurate and efficient detection and morphological analyses, which are critical in the clinical care of the disorder. Furthermore, the lack of large public datasets with voxel-wise expert annotations pose challenges for developing deep learning algorithms to address the issues. Therefore, we proposed a novel weakly supervised 3D multi-task UNet that integrates vesselness priors to jointly perform aneurysm detection and segmentation in time-of-flight MR angiography (TOF-MRA). Specifically, to robustly guide IA detection and segmentation, we employ the popular Frangi's vesselness filter to derive soft cerebrovascular priors for both network input and an attention block to conduct segmentation from the decoder and detection from an auxiliary branch. We train our model on the Lausanne dataset with coarse ground truth segmentation, and evaluate it on the test set with refined labels from the same database. To further assess our model's generalizability, we also validate it externally on the ADAM dataset. Our results demonstrate the superior performance of the proposed technique over the SOTA techniques for aneurysm segmentation (Dice = 0.614, 95%HD =1.38mm) and detection (false positive rate = 1.47, sensitivity = 92.9%).
comment: Accepted to ICCV 2025 Workshop CVAMD
☆ Quality-of-Service Aware LLM Routing for Edge Computing with Multiple Experts
Large Language Models (LLMs) have demonstrated remarkable capabilities, leading to a significant increase in user demand for LLM services. However, cloud-based LLM services often suffer from high latency, unstable responsiveness, and privacy concerns. Therefore, multiple LLMs are usually deployed at the network edge to boost real-time responsiveness and protect data privacy, particularly for many emerging smart mobile and IoT applications. Given the varying response quality and latency of LLM services, a critical issue is how to route user requests from mobile and IoT devices to an appropriate LLM service (i.e., edge LLM expert) to ensure acceptable quality-of-service (QoS). Existing routing algorithms fail to simultaneously address the heterogeneity of LLM services, the interference among requests, and the dynamic workloads necessary for maintaining long-term stable QoS. To meet these challenges, in this paper we propose a novel deep reinforcement learning (DRL)-based QoS-aware LLM routing framework for sustained high-quality LLM services. Due to the dynamic nature of the global state, we propose a dynamic state abstraction technique to compactly represent global state features with a heterogeneous graph attention network (HAN). Additionally, we introduce an action impact estimator and a tailored reward function to guide the DRL agent in maximizing QoS and preventing latency violations. Extensive experiments on both Poisson and real-world workloads demonstrate that our proposed algorithm significantly improves average QoS and computing resource efficiency compared to existing baselines.
comment: Accepted by IEEE Transactions on Mobile Computing
♻ ☆ RecPS: Privacy Risk Scoring for Recommender Systems
Recommender systems (RecSys) have become an essential component of many web applications. The core of the system is a recommendation model trained on highly sensitive user-item interaction data. While privacy-enhancing techniques are actively studied in the research community, the real-world model development still depends on minimal privacy protection, e.g., via controlled access. Users of such systems should have the right to choose \emph{not} to share highly sensitive interactions. However, there is no method allowing the user to know which interactions are more sensitive than others. Thus, quantifying the privacy risk of RecSys training data is a critical step to enabling privacy-aware RecSys model development and deployment. We propose a membership-inference attack (MIA)- based privacy scoring method, RecPS, to measure privacy risks at both the interaction and user levels. The RecPS interaction-level score definition is motivated and derived from differential privacy, which is then extended to the user-level scoring method. A critical component is the interaction-level MIA method RecLiRA, which gives high-quality membership estimation. We have conducted extensive experiments on well-known benchmark datasets and RecSys models to show the unique features and benefits of RecPS scoring in risk assessment and RecSys model unlearning.
comment: Accepted by ACM RecSys 2025; to appear
♻ ☆ A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static, unable to adapt their internal parameters to novel tasks, evolving knowledge domains, or dynamic interaction contexts. As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck, necessitating agents that can adaptively reason, act, and evolve in real time. This paradigm shift -- from scaling static models to developing self-evolving agents -- has sparked growing interest in architectures and methods enabling continual learning and adaptation from data, interactions, and experiences. This survey provides the first systematic and comprehensive review of self-evolving agents, organized around three foundational dimensions -- what to evolve, when to evolve, and how to evolve. We examine evolutionary mechanisms across agent components (e.g., models, memory, tools, architecture), categorize adaptation methods by stages (e.g., intra-test-time, inter-test-time), and analyze the algorithmic and architectural designs that guide evolutionary adaptation (e.g., scalar rewards, textual feedback, single-agent and multi-agent systems). Additionally, we analyze evaluation metrics and benchmarks tailored for self-evolving agents, highlight applications in domains such as coding, education, and healthcare, and identify critical challenges and research directions in safety, scalability, and co-evolutionary dynamics. By providing a structured framework for understanding and designing self-evolving agents, this survey establishes a roadmap for advancing adaptive agentic systems in both research and real-world deployments, ultimately shedding lights to pave the way for the realization of Artificial Super Intelligence (ASI), where agents evolve autonomously, performing at or beyond human-level intelligence across a wide array of tasks.
comment: 51 pages, 9 figures
♻ ☆ An Investigation into Value Misalignment in LLM-Generated Texts for Cultural Heritage
As Large Language Models (LLMs) become increasingly prevalent in tasks related to cultural heritage, such as generating descriptions of historical monuments, translating ancient texts, preserving oral traditions, and creating educational content, their ability to produce accurate and culturally aligned texts is being increasingly relied upon by users and researchers. However, cultural value misalignments may exist in generated texts, such as the misrepresentation of historical facts, the erosion of cultural identity, and the oversimplification of complex cultural narratives, which may lead to severe consequences. Therefore, investigating value misalignment in the context of LLM for cultural heritage is crucial for mitigating these risks, yet there has been a significant lack of systematic and comprehensive study and investigation in this area. To fill this gap, we systematically assess the reliability of LLMs in generating culturally aligned texts for cultural heritage-related tasks. We conduct a comprehensive evaluation by compiling an extensive set of 1066 query tasks covering 5 widely recognized categories with 17 aspects within the knowledge framework of cultural heritage across 5 open-source LLMs, and examine both the type and rate of cultural value misalignments in the generated texts. Using both automated and manual approaches, we effectively detect and analyze the cultural value misalignments in LLM-generated texts. Our findings are concerning: over 65% of the generated texts exhibit notable cultural misalignments, with certain tasks demonstrating almost complete misalignment with key cultural values. Beyond these findings, this paper introduces a benchmark dataset and a comprehensive evaluation workflow that can serve as a valuable resource for future research aimed at enhancing the cultural sensitivity and reliability of LLMs.
♻ ☆ The Second Machine Turn: From Checking Proofs to Creating Concepts
We identify a second machine turn in the process of mathematical discovery: after automating proof-checking, AI is now poised to automate the *creation* of mathematical concepts themselves. We discuss the current state of the art, obstacles and potential solutions as well as a preliminary attempt at mathematizing the creation of concepts itself. The paper ends with an assessment of how these capabilities could reshape mathematics and human-machine collaboration, and a few different futures we might find ourselves in.
comment: Minor clarifications in the final section
♻ ☆ Mitigating Gender Bias via Fostering Exploratory Thinking in LLMs
Large Language Models (LLMs) often exhibit gender bias, resulting in unequal treatment of male and female subjects across different contexts. To address this issue, we propose a novel data generation framework that fosters exploratory thinking in LLMs. Our approach prompts models to generate story pairs featuring male and female protagonists in structurally identical, morally ambiguous scenarios, then elicits and compares their moral judgments. When inconsistencies arise, the model is guided to produce balanced, gender-neutral judgments. These story-judgment pairs are used to fine-tune or optimize the models via Direct Preference Optimization (DPO). Experimental results show that our method significantly reduces gender bias while preserving or even enhancing general model capabilities. We will release the code and generated data. We release the code and generated data at: https://github.com/WeiKangda/LLMs-Exploratory-Bias-Mitigation/tree/main.
♻ ☆ Federated Cross-Training Learners for Robust Generalization under Data Heterogeneity
Federated learning benefits from cross-training strategies, which enables models to train on data from distinct sources to improve generalization capability. However, due to inherent differences in data distributions, the optimization goals of local models remain misaligned, and this mismatch continues to manifest as feature space heterogeneity even after cross-training. We argue that knowledge distillation from the personalized view preserves client-specific characteristics and expands the local knowledge base, while distillation from the global view provides consistent semantic anchors that facilitate feature alignment across clients. To achieve this goal, this paper presents a cross-training scheme, termed FedCT, includes three main modules, where the consistency-aware knowledge broadcasting module aims to optimize model assignment strategies, which enhances collaborative advantages between clients and achieves an efficient federated learning process. The multi-view knowledge-guided representation learning module leverages fused prototypical knowledge from both global and local views to enhance the preservation of local knowledge before and after model exchange, as well as to ensure consistency between local and global knowledge. The mixup-based feature augmentation module aggregates rich information to further increase the diversity of feature spaces, which enables the model to better discriminate complex samples. Extensive experiments were conducted on four datasets in terms of performance comparison, ablation study, in-depth analysis and case study. The results demonstrated that FedCT alleviates knowledge forgetting from both local and global views, which enables it outperform state-of-the-art methods.
♻ ☆ Sound and Complete Neurosymbolic Reasoning with LLM-Grounded Interpretations
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but they exhibit problems with logical consistency in the output they generate. How can we harness LLMs' broad-coverage parametric knowledge in formal reasoning despite their inconsistency? We present a method for directly integrating an LLM into the interpretation function of the formal semantics for a paraconsistent logic. We provide experimental evidence for the feasibility of the method by evaluating the function using datasets created from several short-form factuality benchmarks. Unlike prior work, our method offers a theoretical framework for neurosymbolic reasoning that leverages an LLM's knowledge while preserving the underlying logic's soundness and completeness properties.
comment: 29 pages, 9 tables, 3 figures. Accepted to the 19th Conference on Neurosymbolic Learning and Reasoning (NeSy 2025)
♻ ☆ Discovering the underlying analytic structure within Standard Model constants using artificial intelligence
This paper presents a search for underlying analytic structures among the fundamental parameters of the Standard Model (SM) using symbolic regression and genetic programming. We identify the simplest analytic relationships connecting pairs of these constants and report several notable expressions obtained with relative precision better than 1%. These results may serve as valuable inputs for model builders and artificial intelligence methods aimed at uncovering hidden patterns among the SM constants, or potentially used as building blocks for a deeper underlying law that connects all parameters of the SM through a small set of fundamental constants.
comment: 16 pages, 5 tables
♻ ☆ Think Before Recommend: Unleashing the Latent Reasoning Power for Sequential Recommendation
Sequential Recommendation (SeqRec) aims to predict the next item by capturing sequential patterns from users' historical interactions, playing a crucial role in many real-world recommender systems. However, existing approaches predominantly adopt a direct forward computation paradigm, where the final hidden state of the sequence encoder serves as the user representation. We argue that this inference paradigm, due to its limited computational depth, struggles to model the complex evolving nature of user preferences and lacks a nuanced understanding of long-tail items, leading to suboptimal performance. To address this issue, we propose \textbf{ReaRec}, the first inference-time computing framework for recommender systems, which enhances user representations through implicit multi-step reasoning. Specifically, ReaRec autoregressively feeds the sequence's last hidden state into the sequential recommender while incorporating special reasoning position embeddings to decouple the original item encoding space from the multi-step reasoning space. Moreover, we introduce two lightweight reasoning-based learning methods, Ensemble Reasoning Learning (ERL) and Progressive Reasoning Learning (PRL), to further effectively exploit ReaRec's reasoning potential. Extensive experiments on five public real-world datasets and different SeqRec architectures demonstrate the generality and effectiveness of our proposed ReaRec. Remarkably, post-hoc analyses reveal that ReaRec significantly elevates the performance ceiling of multiple sequential recommendation backbones by approximately 30\%-50\%. Thus, we believe this work can open a new and promising avenue for future research in inference-time computing for sequential recommendation.
♻ ☆ World Model-Based Learning for Long-Term Age of Information Minimization in Vehicular Networks
Traditional reinforcement learning (RL)-based learning approaches for wireless networks rely on expensive trial-and-error mechanisms and real-time feedback based on extensive environment interactions, which leads to low data efficiency and short-sighted policies. These limitations become particularly problematic in complex, dynamic networks with high uncertainty and long-term planning requirements. To address these limitations, in this paper, a novel world model-based learning framework is proposed to minimize packet-completeness-aware age of information (CAoI) in a vehicular network. Particularly, a challenging representative scenario is considered pertaining to a millimeter-wave (mmWave) vehicle-to-everything (V2X) communication network, which is characterized by high mobility, frequent signal blockages, and extremely short coherence time. Then, a world model framework is proposed to jointly learn a dynamic model of the mmWave V2X environment and use it to imagine trajectories for learning how to perform link scheduling. In particular, the long-term policy is learned in differentiable imagined trajectories instead of environment interactions. Moreover, owing to its imagination abilities, the world model can jointly predict time-varying wireless data and optimize link scheduling in real-world wireless and V2X networks. Thus, during intervals without actual observations, the world model remains capable of making efficient decisions. Extensive experiments are performed on a realistic simulator based on Sionna that integrates physics-based end-to-end channel modeling, ray-tracing, and scene geometries with material properties. Simulation results show that the proposed world model achieves a significant improvement in data efficiency, and achieves 26% improvement and 16% improvement in CAoI, respectively, compared to the model-based RL (MBRL) method and the model-free RL (MFRL) method.
♻ ☆ MR-CLIP: Efficient Metadata-Guided Learning of MRI Contrast Representations
Accurate interpretation of Magnetic Resonance Imaging scans in clinical systems is based on a precise understanding of image contrast. This contrast is primarily governed by acquisition parameters, such as echo time and repetition time, which are stored in the DICOM metadata. To simplify contrast identification, broad labels such as T1-weighted or T2-weighted are commonly used, but these offer only a coarse approximation of the underlying acquisition settings. In many real-world datasets, such labels are entirely missing, leaving raw acquisition parameters as the only indicators of contrast. Adding to this challenge, the available metadata is often incomplete, noisy, or inconsistent. The lack of reliable and standardized metadata complicates tasks such as image interpretation, retrieval, and integration into clinical workflows. Furthermore, robust contrast-aware representations are essential to enable more advanced clinical applications, such as achieving modality-invariant representations and data harmonization. To address these challenges, we propose MR-CLIP, a multimodal contrastive learning framework that aligns MR images with their DICOM metadata to learn contrast-aware representations, without relying on manual labels. Trained on a diverse clinical dataset that spans various scanners and protocols, MR-CLIP captures contrast variations across acquisitions and within scans, enabling anatomy-invariant representations. We demonstrate its effectiveness in cross-modal retrieval and contrast classification, highlighting its scalability and potential for further clinical applications. The code and weights are publicly available at https://github.com/myigitavci/MR-CLIP.
♻ ☆ Better Embeddings with Coupled Adam ACL 2025
Despite their remarkable capabilities, LLMs learn word representations that exhibit the undesirable yet poorly understood feature of anisotropy. In this paper, we argue that the second moment in Adam is a cause of anisotropic embeddings, and suggest a modified optimizer called Coupled Adam to mitigate the problem. Our experiments demonstrate that Coupled Adam significantly improves the quality of embeddings, while also leading to better upstream and downstream performance on large enough datasets.
comment: ACL 2025 (Main), see https://aclanthology.org/2025.acl-long.1321/
♻ ☆ Semantic Chain-of-Trust: Autonomous Trust Orchestration for Collaborator Selection via Hypergraph-Aided Agentic AI
In collaborative systems, the effective completion of tasks hinges on task-specific trust evaluations of potential devices for distributed collaboration. However, the complexity of tasks, the spatiotemporal dynamism of distributed device resources, and the inevitable assessment overhead dramatically increase the complexity and resource consumption of the trust evaluation process. As a result, ill-timed or overly frequent trust evaluations can reduce utilization rate of constrained resources, negatively affecting collaborative task execution. To address this challenge, this paper proposes an autonomous trust orchestration method based on a new concept of semantic chain-of-trust. Our technique employs agentic AI and hypergraph to establish and maintain trust relationships among devices. By leveraging its strengths in autonomous perception, task decomposition, and semantic reasoning, we propose agentic AI to perceive device states and autonomously perform trust evaluations of collaborators based on historical performance data only during device idle periods, thereby enabling efficient utilization of distributed resources. In addition, agentic AI performs task-specific trust evaluations on collaborator resources by analyzing the alignment between resource capabilities and task requirements. Moreover, by maintaining a trust hypergraph embedded with trust semantics for each device, agentic AI enables hierarchical management of collaborators and identifies collaborators requiring trust evaluation based on trust semantics, thereby achieving a balance between overhead and trust accuracy. Furthermore, local trust hypergraphs from multiple devices can be chained together to support multi-hop collaboration, enabling efficient coordination in large-scale systems. Experimental results demonstrate that the proposed method achieves resource-efficient trust evaluation.
♻ ☆ Semantic-Aware Adaptive Video Streaming Using Latent Diffusion Models for Wireless Networks
This paper proposes a novel Semantic Communication (SemCom) framework for real-time adaptive-bitrate video streaming by integrating Latent Diffusion Models (LDMs) within the FFmpeg techniques. This solution addresses the challenges of high bandwidth usage, storage inefficiencies, and quality of experience (QoE) degradation associated with traditional Constant Bitrate Streaming (CBS) and Adaptive Bitrate Streaming (ABS). The proposed approach leverages LDMs to compress I-frames into a latent space, offering significant storage and semantic transmission savings without sacrificing high visual quality. While retaining B-frames and P-frames as adjustment metadata to support efficient refinement of video reconstruction at the user side, the proposed framework further incorporates state-of-the-art denoising and Video Frame Interpolation (VFI) techniques. These techniques mitigate semantic ambiguity and restore temporal coherence between frames, even in noisy wireless communication environments. Experimental results demonstrate the proposed method achieves high-quality video streaming with optimized bandwidth usage, outperforming state-of-the-art solutions in terms of QoE and resource efficiency. This work opens new possibilities for scalable real-time video streaming in 5G and future post-5G networks.
comment: Accepted in IEEE Wireless Communications
♻ ☆ FakeIDet: Exploring Patches for Privacy-Preserving Fake ID Detection
Verifying the authenticity of identity documents (IDs) has become a critical challenge for real-life applications such as digital banking, crypto-exchanges, renting, etc. This study focuses on the topic of fake ID detection, covering several limitations in the field. In particular, there are no publicly available data from real IDs for proper research in this area, and most published studies rely on proprietary internal databases that are not available for privacy reasons. In order to advance this critical challenge of real data scarcity that makes it so difficult to advance the technology of machine learning-based fake ID detection, we introduce a new patch-based methodology that trades off privacy and performance, and propose a novel patch-wise approach for privacy-aware fake ID detection: FakeIDet. In our experiments, we explore: i) two levels of anonymization for an ID (i.e., fully- and pseudo-anonymized), and ii) different patch size configurations, varying the amount of sensitive data visible in the patch image. State-of-the-art methods, such as vision transformers and foundation models, are considered as backbones. Our results show that, on an unseen database (DLC-2021), our proposal for fake ID detection achieves 13.91% and 0% EERs at the patch and the whole ID level, showing a good generalization to other databases. In addition to the path-based methodology introduced and the new FakeIDet method based on it, another key contribution of our article is the release of the first publicly available database that contains 48,400 patches from real and fake IDs, called FakeIDet-db, together with the experimental framework.
♻ ☆ A Large Sensor Foundation Model Pretrained on Continuous Glucose Monitor Data for Diabetes Management
Continuous glucose monitoring (CGM) combined with AI offers new opportunities for proactive diabetes management through real-time glucose forecasting. However, most existing models are task-specific and lack generalization across patient populations. Inspired by the autoregressive paradigm of large language models, we introduce CGM-LSM, a Transformer decoder-based Large Sensor Model (LSM) pretrained on 1.6 million CGM records from patients with different diabetes types, ages, and genders. We model patients as sequences of glucose time steps to learn latent knowledge embedded in CGM data and apply it to the prediction of glucose readings for a 2-hour horizon. Compared with prior methods, CGM-LSM significantly improves prediction accuracy and robustness: a 48.51% reduction in root mean square error in one-hour horizon forecasting and consistent zero-shot prediction performance across held-out patient groups. We analyze model performance variations across patient subgroups and prediction scenarios and outline key opportunities and challenges for advancing CGM foundation models.
♻ ☆ Binarizing Physics-Inspired GNNs for Combinatorial Optimization AI 2025
Physics-inspired graph neural networks (PI-GNNs) have been utilized as an efficient unsupervised framework for relaxing combinatorial optimization problems encoded through a specific graph structure and loss, reflecting dependencies between the problem's variables. While the framework has yielded promising results in various combinatorial problems, we show that the performance of PI-GNNs systematically plummets with an increasing density of the combinatorial problem graphs. Our analysis reveals an interesting phase transition in the PI-GNNs' training dynamics, associated with degenerate solutions for the denser problems, highlighting a discrepancy between the relaxed, real-valued model outputs and the binary-valued problem solutions. To address the discrepancy, we propose principled alternatives to the naive strategy used in PI-GNNs by building on insights from fuzzy logic and binarized neural networks. Our experiments demonstrate that the portfolio of proposed methods significantly improves the performance of PI-GNNs in increasingly dense settings.
comment: Accepted to the 28th European Conference on Artificial Intelligence (ECAI 2025). This archival version includes supplementary appendices
♻ ☆ Bayesian Optimization of Process Parameters of a Sensor-Based Sorting System using Gaussian Processes as Surrogate Models
Sensor-based sorting systems enable the physical separation of a material stream into two fractions. The sorting decision is based on the image data evaluation of the sensors used and is carried out using actuators. Various process parameters must be set depending on the properties of the material stream, the dimensioning of the system, and the required sorting accuracy. However, continuous verification and re-adjustment are necessary due to changing requirements and material stream compositions. In this paper, we introduce an approach for optimizing, recurrently monitoring and adjusting the process parameters of a sensor-based sorting system. Based on Bayesian Optimization, Gaussian process regression models are used as surrogate models to achieve specific requirements for system behavior with the uncertainties contained therein. This method minimizes the number of necessary experiments while simultaneously considering two possible optimization targets based on the requirements for both material output streams. In addition, uncertainties are considered during determining sorting accuracies in the model calculation. We evaluated the method with three example process parameters.
comment: Accepted at the 30th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
♻ ☆ E2E Parking Dataset: An Open Benchmark for End-to-End Autonomous Parking
End-to-end learning has shown great potential in autonomous parking, yet the lack of publicly available datasets limits reproducibility and benchmarking. While prior work introduced a visual-based parking model and a pipeline for data generation, training, and close-loop test, the dataset itself was not released. To bridge this gap, we create and open-source a high-quality dataset for end-to-end autonomous parking. Using the original model, we achieve an overall success rate of 85.16% with lower average position and orientation errors (0.24 meters and 0.34 degrees).
♻ ☆ Un-mixing Test-time Adaptation under Heterogeneous Data Streams
Deploying deep models in real-world scenarios remains challenging due to significant performance drops under distribution shifts between training and deployment environments. Test-Time Adaptation (TTA) has recently emerged as a promising solution, enabling on-the-fly model adaptation without access to source data. However, its effectiveness degrades significantly in the presence of complex, mixed distribution shifts - common in practical settings - where multiple latent domains coexist. Adapting under such intrinsic heterogeneity, especially in unlabeled and online conditions, remains an open and underexplored challenge. In this paper, we study TTA under mixed distribution shifts and move beyond conventional homogeneous adaptation paradigms. By revisiting TTA from a frequency-domain perspective, we observe that distribution heterogeneity often manifests in Fourier space - for instance, high-frequency components tend to carry domain-specific variations. This motivates us to perform domain-aware separation using high-frequency texture cues, making diverse shift patterns more tractable. To this end, we propose FreDA, a novel Frequency-based Decentralized Adaptation framework that decomposes globally heterogeneous data into locally homogeneous components in the frequency domain. It further employs decentralized learning and augmentation strategies to robustly adapt under complex, evolving shifts. Extensive experiments across various environments (corrupted, natural, and medical) demonstrate the superiority of our proposed framework over the state-of-the-arts.
♻ ☆ The Urban Impact of AI: Modeling Feedback Loops in Next-Venue Recommendation
Next-venue recommender systems are increasingly embedded in location-based services, shaping individual mobility decisions in urban environments. While their predictive accuracy has been extensively studied, less attention has been paid to their systemic impact on urban dynamics. In this work, we introduce a simulation framework to model the human-AI feedback loop underpinning next-venue recommendation, capturing how algorithmic suggestions influence individual behavior, which in turn reshapes the data used to retrain the models. Our simulations, grounded in real-world mobility data, systematically explore the effects of algorithmic adoption across a range of recommendation strategies. We find that while recommender systems consistently increase individual-level diversity in visited venues, they may simultaneously amplify collective inequality by concentrating visits on a limited subset of popular places. This divergence extends to the structure of social co-location networks, revealing broader implications for urban accessibility and spatial segregation. Our framework operationalizes the feedback loop in next-venue recommendation and offers a novel lens through which to assess the societal impact of AI-assisted mobility-providing a computational tool to anticipate future risks, evaluate regulatory interventions, and inform the design of ethic algorithmic systems.
♻ ☆ MV-MATH: Evaluating Multimodal Math Reasoning in Multi-Visual Contexts CVPR2025
Multimodal Large Language Models (MLLMs) have shown promising capabilities in mathematical reasoning within visual contexts across various datasets. However, most existing multimodal math benchmarks are limited to single-visual contexts, which diverges from the multi-visual scenarios commonly encountered in real-world mathematical applications. To address this gap, we introduce MV-MATH: a meticulously curated dataset of 2,009 high-quality mathematical problems. Each problem integrates multiple images interleaved with text, derived from authentic K-12 scenarios, and enriched with detailed annotations. MV-MATH includes multiple-choice, free-form, and multi-step questions, covering 11 subject areas across 3 difficulty levels, and serves as a comprehensive and rigorous benchmark for assessing MLLMs' mathematical reasoning in multi-visual contexts. Through extensive experimentation, we observe that MLLMs encounter substantial challenges in multi-visual math tasks, with a considerable performance gap relative to human capabilities on MV-MATH. Furthermore, we analyze the performance and error patterns of various models, providing insights into MLLMs' mathematical reasoning capabilities within multi-visual settings.
comment: 45 pages, accepted by CVPR2025
♻ ☆ HuiduRep: A Robust Self-Supervised Framework for Learning Neural Representations from Extracellular Recordings
Extracellular recordings are transient voltage fluctuations in the vicinity of neurons, serving as a fundamental modality in neuroscience for decoding brain activity at single-neuron resolution. Spike sorting, the process of attributing each detected spike to its corresponding neuron, is a pivotal step in brain sensing pipelines. However, it remains challenging under low signal-to-noise ratio (SNR), electrode drift, and cross-session variability. In this paper, we propose HuiduRep, a robust self-supervised representation learning framework that extracts discriminative and generalizable features from extracellular recordings. By integrating contrastive learning with a denoising autoencoder, HuiduRep learns latent representations robust to noise and drift. With HuiduRep, we develop a spike sorting pipeline that clusters spike representations without ground truth labels. Experiments on hybrid and real-world datasets demonstrate that HuiduRep achieves strong robustness. Furthermore, the pipeline significantly outperforms state-of-the-art tools such as KiloSort4 and MountainSort5 on accuracy and precision on diverse datasets. These findings demonstrate the potential of self-supervised spike representation learning as a foundational tool for robust and generalizable processing of extracellular recordings. Code is available at: https://github.com/IgarashiAkatuki/HuiduRep
comment: 9 pages, 3 figures, 6 tables
♻ ☆ Time-RA: Towards Time Series Reasoning for Anomaly with LLM Feedback
Time series anomaly detection is critical across various domains, yet current approaches often limit analysis to mere binary anomaly classification without detailed categorization or further explanatory reasoning. To address these limitations, we propose a novel task, Time-series Reasoning for Anomaly (Time-RA) that transforms classical time series anomaly detection from a discriminative into a generative, reasoning-intensive task leveraging Large Language Models (LLMs). Also, we introduce the first real-world multimodal benchmark dataset, RATs40K, explicitly annotated for anomaly reasoning, comprising approximately 40,000 samples across 10 real-world domains. Each sample includes numeric time series data, contextual text information, and visual representations, each annotated with fine-grained categories (14 types for univariate anomalies and 6 for multivariate anomalies) and structured explanatory reasoning. We develop a sophisticated annotation framework utilizing ensemble-generated labels refined through GPT-4-driven feedback, ensuring accuracy and interpretability. Extensive benchmarking of LLMs and multimodal LLMs demonstrates the capabilities and limitations of current models, highlighting the critical role of supervised fine-tuning. Our dataset and task pave the way for significant advancements in interpretable time series anomaly detection and reasoning. The code (https://github.com/yyysjz1997/Time-RA) and dataset (https://huggingface.co/datasets/Time-RA/RATs40K) have been fully open-sourced to support and accelerate future research in this area.
comment: Under review. 19 pages, 8 figures, 12 tables. Code and dataset are publicly available
♻ ☆ How Far Are AI Scientists from Changing the World?
The emergence of large language models (LLMs) is propelling automated scientific discovery to the next level, with LLM-based Artificial Intelligence (AI) Scientist systems now taking the lead in scientific research. Several influential works have already appeared in the field of AI Scientist systems, with AI-generated research papers having been accepted at the ICLR 2025 workshop, suggesting that a human-level AI Scientist capable of uncovering phenomena previously unknown to humans, may soon become a reality. In this survey, we focus on the central question: How far are AI scientists from changing the world and reshaping the scientific research paradigm? To answer this question, we provide a prospect-driven review that comprehensively analyzes the current achievements of AI Scientist systems, identifying key bottlenecks and the critical components required for the emergence of a scientific agent capable of producing ground-breaking discoveries that solve grand challenges. We hope this survey will contribute to a clearer understanding of limitations of current AI Scientist systems, showing where we are, what is missing, and what the ultimate goals for scientific AI should be.
♻ ☆ Embracing Large Language Models in Traffic Flow Forecasting ACL 2025
Traffic flow forecasting aims to predict future traffic flows based on the historical traffic conditions and the road network. It is an important problem in intelligent transportation systems, with a plethora of methods been proposed. Existing efforts mainly focus on capturing and utilizing spatio-temporal dependencies to predict future traffic flows. Though promising, they fall short in adapting to test-time environmental changes of traffic conditions. To tackle this challenge, we propose to introduce large language models (LLMs) to help traffic flow forecasting and design a novel method named Large Language Model Enhanced Traffic Flow Predictor (LEAF). LEAF adopts two branches, capturing different spatio-temporal relations using graph and hypergraph structures respectively. The two branches are first pre-trained individually, and during test-time, they yield different predictions. Based on these predictions, a large language model is used to select the most likely result. Then, a ranking loss is applied as the learning objective to enhance the prediction ability of the two branches. Extensive experiments on several datasets demonstrate the effectiveness of the proposed LEAF.
comment: Accepted by ACL 2025
♻ ☆ Disentangling Neural Disjunctive Normal Form Models
Neural Disjunctive Normal Form (DNF) based models are powerful and interpretable approaches to neuro-symbolic learning and have shown promising results in classification and reinforcement learning settings without prior knowledge of the tasks. However, their performance is degraded by the thresholding of the post-training symbolic translation process. We show here that part of the performance degradation during translation is due to its failure to disentangle the learned knowledge represented in the form of the networks' weights. We address this issue by proposing a new disentanglement method; by splitting nodes that encode nested rules into smaller independent nodes, we are able to better preserve the models' performance. Through experiments on binary, multiclass, and multilabel classification tasks (including those requiring predicate invention), we demonstrate that our disentanglement method provides compact and interpretable logical representations for the neural DNF-based models, with performance closer to that of their pre-translation counterparts. Our code is available at https://github.com/kittykg/disentangling-ndnf-classification.
comment: Accepted at NeSy 2025
♻ ☆ Gradient Leakage Defense with Key-Lock Module for Federated Learning AI
Federated Learning (FL) is a widely adopted privacy-preserving machine learning approach where private data remains local, enabling secure computations and the exchange of local model gradients between local clients and third-party parameter servers. However, recent findings reveal that privacy may be compromised and sensitive information potentially recovered from shared gradients. In this study, we offer detailed analysis and a novel perspective on understanding the gradient leakage problem. These theoretical works lead to a new gradient leakage defense technique that secures arbitrary model architectures using a private key-lock module. Only the locked gradient is transmitted to the parameter server for global model aggregation. Our proposed learning method is resistant to gradient leakage attacks, and the key-lock module is designed and trained to ensure that, without the private information of the key-lock module: a) reconstructing private training data from the shared gradient is infeasible; and b) the global model's inference performance is significantly compromised. We discuss the theoretical underpinnings of why gradients can leak private information and provide theoretical proof of our method's effectiveness. We conducted extensive empirical evaluations with many models on several popular benchmarks, demonstrating the robustness of our proposed approach in both maintaining model performance and defending against gradient leakage attacks.
comment: The source code can be found at https://github.com/Rand2AI/FedKL
♻ ☆ Dynamic Knowledge Exchange and Dual-diversity Review: Concisely Unleashing the Potential of a Multi-Agent Research Team
Scientific progress increasingly relies on effective collaboration among researchers, a dynamic that large language models (LLMs) have only begun to emulate. While recent LLM-based scientist agents show promise in autonomous scientific discovery, they often lack the interactive reasoning and evaluation mechanisms essential to real-world research. We propose IDVSCI (Internal Discussion and Vote SCIentists), a multi-agent framework built on LLMs that incorporates two key innovations: a Dynamic Knowledge Exchange mechanism enabling iterative feedback among agents, and a Dual-Diversity Review paradigm that simulates heterogeneous expert evaluation. These components jointly promote deeper reasoning and the generation of more creative and impactful scientific ideas. To evaluate the effectiveness and generalizability of our approach, we conduct experiments on two datasets: a widely used benchmark in computer science and a new dataset we introduce in the health sciences domain. Results show that IDVSCI consistently achieves the best performance across both datasets, outperforming existing systems such as AI Scientist and VIRSCI. These findings highlight the value of modeling interaction and peer review dynamics in LLM-based autonomous research.
♻ ☆ DINO-R1: Incentivizing Reasoning Capability in Vision Foundation Models
The recent explosive interest in the reasoning capabilities of large language models, such as DeepSeek-R1, has demonstrated remarkable success through reinforcement learning-based fine-tuning frameworks, exemplified by methods like Group Relative Policy Optimization (GRPO). However, such reasoning abilities remain underexplored and notably absent in vision foundation models, including representation models like the DINO series. In this work, we propose \textbf{DINO-R1}, the first such attempt to incentivize visual in-context reasoning capabilities of vision foundation models using reinforcement learning. Specifically, DINO-R1 introduces \textbf{Group Relative Query Optimization (GRQO)}, a novel reinforcement-style training strategy explicitly designed for query-based representation models, which computes query-level rewards based on group-normalized alignment quality. We also apply KL-regularization to stabilize the objectness distribution to reduce the training instability. This joint optimization enables dense and expressive supervision across queries while mitigating overfitting and distributional drift. Building upon Grounding-DINO, we train a series of DINO-R1 family models that integrate a visual prompt encoder and a visual-guided query selection mechanism. Extensive experiments on COCO, LVIS, and ODinW demonstrate that DINO-R1 significantly outperforms supervised fine-tuning baselines, achieving strong generalization in both open-vocabulary and closed-set visual prompting scenarios.
♻ ☆ Sign Spotting Disambiguation using Large Language Models
Sign spotting, the task of identifying and localizing individual signs within continuous sign language video, plays a pivotal role in scaling dataset annotations and addressing the severe data scarcity issue in sign language translation. While automatic sign spotting holds great promise for enabling frame-level supervision at scale, it grapples with challenges such as vocabulary inflexibility and ambiguity inherent in continuous sign streams. Hence, we introduce a novel, training-free framework that integrates Large Language Models (LLMs) to significantly enhance sign spotting quality. Our approach extracts global spatio-temporal and hand shape features, which are then matched against a large-scale sign dictionary using dynamic time warping and cosine similarity. This dictionary-based matching inherently offers superior vocabulary flexibility without requiring model retraining. To mitigate noise and ambiguity from the matching process, an LLM performs context-aware gloss disambiguation via beam search, notably without fine-tuning. Extensive experiments on both synthetic and real-world sign language datasets demonstrate our method's superior accuracy and sentence fluency compared to traditional approaches, highlighting the potential of LLMs in advancing sign spotting.
comment: Accepted in the international conference on Intelligent Virtual Agents (IVA Adjunct)
♻ ☆ RAG-R1 : Incentivize the Search and Reasoning Capabilities of LLMs through Multi-query Parallelism
Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, while LLMs remain prone to generating hallucinated or outdated responses due to their static internal knowledge. Recent advancements in Retrieval-Augmented Generation (RAG) methods have aimed to enhance models' search and reasoning capabilities through reinforcement learning (RL). Although these methods demonstrate promising results, they face challenges in training stability and encounter issues such as substantial inference time and restricted capabilities due to reliance on single-query mode. In this paper, we propose RAG-R1, a novel training framework designed to enable LLMs to adaptively leverage internal and external knowledge during the reasoning process. We further expand the generation and retrieval processes within the framework from single-query mode to multi-query parallelism, with the aim of reducing inference time and enhancing the model's capabilities. Extensive experiments on seven question-answering benchmarks demonstrate that our method outperforms the strongest baseline by up to 13.2% and decreases inference time by 11.1%.
♻ ☆ FLOAT: Generative Motion Latent Flow Matching for Audio-driven Talking Portrait ICCV 2025
With the rapid advancement of diffusion-based generative models, portrait image animation has achieved remarkable results. However, it still faces challenges in temporally consistent video generation and fast sampling due to its iterative sampling nature. This paper presents FLOAT, an audio-driven talking portrait video generation method based on flow matching generative model. Instead of a pixel-based latent space, we take advantage of a learned orthogonal motion latent space, enabling efficient generation and editing of temporally consistent motion. To achieve this, we introduce a transformer-based vector field predictor with an effective frame-wise conditioning mechanism. Additionally, our method supports speech-driven emotion enhancement, enabling a natural incorporation of expressive motions. Extensive experiments demonstrate that our method outperforms state-of-the-art audio-driven talking portrait methods in terms of visual quality, motion fidelity, and efficiency.
comment: ICCV 2025. Project page: https://deepbrainai-research.github.io/float/
♻ ☆ Loss Landscape Degeneracy and Stagewise Development in Transformers
Deep learning involves navigating a high-dimensional loss landscape over the neural network parameter space. Over the course of training, complex computational structures form and re-form inside the neural network, leading to shifts in input/output behavior. It is a priority for the science of deep learning to uncover principles governing the development of neural network structure and behavior. Drawing on the framework of singular learning theory, we propose that model development is deeply linked to degeneracy in the local geometry of the loss landscape. We investigate this link by monitoring loss landscape degeneracy throughout training, as quantified by the local learning coefficient, for a transformer language model and an in-context linear regression transformer. We show that training can be divided into distinct periods of change in loss landscape degeneracy, and that these changes in degeneracy coincide with significant changes in the internal computational structure and the input/output behavior of the transformers. This finding provides suggestive evidence that degeneracy and development are linked in transformers, underscoring the potential of a degeneracy-based perspective for understanding modern deep learning.
comment: To appear, TMLR. Material on essential dynamics from v1 of this preprint has been removed and developed in arXiv:2501.17745
♻ ☆ Leveraging Synthetic Data for Question Answering with Multilingual LLMs in the Agricultural Domain
Enabling farmers to access accurate agriculture-related information in their native languages in a timely manner is crucial for the success of the agriculture field. Publicly available general-purpose Large Language Models (LLMs) typically offer generic agriculture advisories, lacking precision in local and multilingual contexts. Our study addresses this limitation by generating multilingual (English, Hindi, Punjabi) synthetic datasets from agriculture-specific documents from India and fine-tuning LLMs for the task of question answering (QA). Evaluation on human-created datasets demonstrates significant improvements in factuality, relevance, and agricultural consensus for the fine-tuned LLMs compared to the baseline counterparts.
comment: 16 pages, 9 tables, Appendix A-L
♻ ☆ Simultaneous Motion And Noise Estimation with Event Cameras
Event cameras are emerging vision sensors whose noise is challenging to characterize. Existing denoising methods for event cameras are often designed in isolation and thus consider other tasks, such as motion estimation, separately (i.e., sequentially after denoising). However, motion is an intrinsic part of event data, since scene edges cannot be sensed without motion. We propose, to the best of our knowledge, the first method that simultaneously estimates motion in its various forms (e.g., ego-motion, optical flow) and noise. The method is flexible, as it allows replacing the one-step motion estimation of the widely-used Contrast Maximization framework with any other motion estimator, such as deep neural networks. The experiments show that the proposed method achieves state-of-the-art results on the E-MLB denoising benchmark and competitive results on the DND21 benchmark, while demonstrating effectiveness across motion estimation and intensity reconstruction tasks. Our approach advances event-data denoising theory and expands practical denoising use-cases via open-source code. Project page: https://github.com/tub-rip/ESMD
comment: 13 pages, 13 figures, 6 tables, Project page https://github.com/tub-rip/ESMD
♻ ☆ Teaching the Teacher: Improving Neural Network Distillability for Symbolic Regression via Jacobian Regularization
Distilling large neural networks into simple, human-readable symbolic formulas is a promising path toward trustworthy and interpretable AI. However, this process is often brittle, as the complex functions learned by standard networks are poor targets for symbolic discovery, resulting in low-fidelity student models. In this work, we propose a novel training paradigm to address this challenge. Instead of passively distilling a pre-trained network, we introduce a \textbf{Jacobian-based regularizer} that actively encourages the ``teacher'' network to learn functions that are not only accurate but also inherently smoother and more amenable to distillation. We demonstrate through extensive experiments on a suite of real-world regression benchmarks that our method is highly effective. By optimizing the regularization strength for each problem, we improve the $R^2$ score of the final distilled symbolic model by an average of \textbf{120\% (relative)} compared to the standard distillation pipeline, all while maintaining the teacher's predictive accuracy. Our work presents a practical and principled method for significantly improving the fidelity of interpretable models extracted from complex neural networks.
♻ ☆ Novice Developers' Perspectives on Adopting LLMs for Software Development: A Systematic Literature Review
Following the rise of large language models (LLMs), many studies have emerged in recent years focusing on exploring the adoption of LLM-based tools for software development by novice developers: computer science/software engineering students and early-career industry developers with two years or less of professional experience. These studies have sought to understand the perspectives of novice developers on using these tools, a critical aspect of the successful adoption of LLMs in software engineering. To systematically collect and summarise these studies, we conducted a systematic literature review (SLR) following the guidelines by Kitchenham et al. on 80 primary studies published between April 2022 and June 2025 to answer four research questions (RQs). In answering RQ1, we categorised the study motivations and methodological approaches. In RQ2, we identified the software development tasks for which novice developers use LLMs. In RQ3, we categorised the advantages, challenges, and recommendations discussed in the studies. Finally, we discuss the study limitations and future research needs suggested in the primary studies in answering RQ4. Throughout the paper, we also indicate directions for future work and implications for software engineering researchers, educators, and developers. Our research artifacts are publicly available at https://github.com/Samuellucas97/SupplementaryInfoPackage-SLR.
♻ ☆ A Segmented Robot Grasping Perception Neural Network for Edge AI
Robotic grasping, the ability of robots to reliably secure and manipulate objects of varying shapes, sizes and orientations, is a complex task that requires precise perception and control. Deep neural networks have shown remarkable success in grasp synthesis by learning rich and abstract representations of objects. When deployed at the edge, these models can enable low-latency, low-power inference, making real-time grasping feasible in resource-constrained environments. This work implements Heatmap-Guided Grasp Detection, an end-to-end framework for the detection of 6-Dof grasp poses, on the GAP9 RISC-V System-on-Chip. The model is optimised using hardware-aware techniques, including input dimensionality reduction, model partitioning, and quantisation. Experimental evaluation on the GraspNet-1Billion benchmark validates the feasibility of fully on-chip inference, highlighting the potential of low-power MCUs for real-time, autonomous manipulation.
comment: Accepted by SMC 2025
♻ ☆ Credible Plan-Driven RAG Method for Multi-Hop Question Answering
Multi-hop question answering (QA) presents significant challenges for retrieval-augmented generation (RAG), particularly in decomposing complex queries into reliable reasoning paths and managing error propagation. Existing RAG methods often suffer from deviations in reasoning paths and cumulative errors in intermediate steps, reducing the fidelity of the final answer. To address these limitations, we propose PAR-RAG (Plan-then-Act-and-Review RAG), a novel framework inspired by the PDCA (Plan-Do-Check-Act) cycle, to enhance both the accuracy and factual consistency in multi-hop question answering. Specifically, PAR-RAG selects exemplars matched by the semantic complexity of the current question to guide complexity-aware top-down planning, resulting in more precise and coherent multi-step reasoning trajectories. This design mitigates reasoning drift and reduces the risk of suboptimal path convergence, a common issue in existing RAG approaches. Furthermore, a dual-verification mechanism evaluates and corrects intermediate errors, ensuring that the reasoning process remains factually grounded. Experimental results on various QA benchmarks demonstrate that PAR-RAG outperforms existing state-of-the-art methods, validating its effectiveness in both performance and reasoning robustness.
comment: 17 pages, 5 figures
♻ ☆ AutoSchemaKG: Autonomous Knowledge Graph Construction through Dynamic Schema Induction from Web-Scale Corpora
We present AutoSchemaKG, a framework for fully autonomous knowledge graph construction that eliminates the need for predefined schemas. Our system leverages large language models to simultaneously extract knowledge triples and induce comprehensive schemas directly from text, modeling both entities and events while employing conceptualization to organize instances into semantic categories. Processing over 50 million documents, we construct ATLAS (Automated Triple Linking And Schema induction), a family of knowledge graphs with 900+ million nodes and 5.9 billion edges. This approach outperforms state-of-the-art baselines on multi-hop QA tasks and enhances LLM factuality. Notably, our schema induction achieves 92\% semantic alignment with human-crafted schemas with zero manual intervention, demonstrating that billion-scale knowledge graphs with dynamically induced schemas can effectively complement parametric knowledge in large language models.
comment: 9 pages, preprint, code: https://github.com/HKUST-KnowComp/AutoSchemaKG
♻ ☆ ORFS-agent: Tool-Using Agents for Chip Design Optimization
Machine learning has been widely used to optimize complex engineering workflows across numerous domains. In the context of integrated circuit design, modern flows (e.g., going from a register-transfer level netlist to physical layouts) involve extensive configuration via thousands of parameters, and small changes to these parameters can have large downstream impacts on desired outcomes - namely design performance, power, and area. Recent advances in Large Language Models (LLMs) offer new opportunities for learning and reasoning within such high-dimensional optimization tasks. In this work, we introduce ORFS-agent, an LLM-based iterative optimization agent that automates parameter tuning in an open-source hardware design flow. ORFS-agent adaptively explores parameter configurations, demonstrating clear improvements over standard Bayesian optimization approaches in terms of resource efficiency and final design metrics. Our empirical evaluations on two different technology nodes and a range of circuit benchmarks indicate that ORFS-agent can improve both routed wirelength and effective clock period by over 13%, all while using 40% fewer optimization iterations. Moreover, by following natural language objectives to trade off certain metrics for others, ORFS-agent demonstrates a flexible and interpretable framework for multi-objective optimization. Crucially, RFS-agent is modular and model-agnostic, and can be plugged in to any frontier LLM without any further fine-tuning.
♻ ☆ Curious Causality-Seeking Agents Learn Meta Causal World
When building a world model, a common assumption is that the environment has a single, unchanging underlying causal rule, like applying Newton's laws to every situation. In reality, what appears as a drifting causal mechanism is often the manifestation of a fixed underlying mechanism seen through a narrow observational window. This brings about a problem that, when building a world model, even subtle shifts in policy or environment states can alter the very observed causal mechanisms. In this work, we introduce the \textbf{Meta-Causal Graph} as world models, a minimal unified representation that efficiently encodes the transformation rules governing how causal structures shift across different latent world states. A single Meta-Causal Graph is composed of multiple causal subgraphs, each triggered by meta state, which is in the latent state space. Building on this representation, we introduce a \textbf{Causality-Seeking Agent} whose objectives are to (1) identify the meta states that trigger each subgraph, (2) discover the corresponding causal relationships by agent curiosity-driven intervention policy, and (3) iteratively refine the Meta-Causal Graph through ongoing curiosity-driven exploration and agent experiences. Experiments on both synthetic tasks and a challenging robot arm manipulation task demonstrate that our method robustly captures shifts in causal dynamics and generalizes effectively to previously unseen contexts.
comment: 33 pages
♻ ☆ BOOST: Bootstrapping Strategy-Driven Reasoning Programs for Program-Guided Fact-Checking
Large language model pipelines have improved automated fact-checking for complex claims, yet many approaches rely on few-shot in-context learning with demonstrations that require substantial human effort and domain expertise. Among these, program-guided reasoning, by decomposing claims into function calls and executing reasoning programs, which has shown particular promise, but remains limited by the need for manually crafted demonstrations. Fundamentally, the underlying principles of effective reasoning program generation still remain underexplored. In this work, we introduce BOOST, a bootstrapping approach for automated few-shot reasoning program generation. BOOST iteratively refines explicit, data-driven guidelines as meta-rules for guiding demonstration creation, using a critique-refine loop that eliminates the need for human intervention. This enables a seamless transition from zero-shot to few-shot program-guided learning, enhancing interpretability and effectiveness. Experimental results show that BOOST outperforms prior few-shot baselines in both zero-shot and few-shot settings for complex claim verification.
comment: Work in Progress
♻ ☆ Debunking with Dialogue? Exploring AI-Generated Counterspeech to Challenge Conspiracy Theories
Counterspeech is a key strategy against harmful online content, but scaling expert-driven efforts is challenging. Large Language Models (LLMs) present a potential solution, though their use in countering conspiracy theories is under-researched. Unlike for hate speech, no datasets exist that pair conspiracy theory comments with expert-crafted counterspeech. We address this gap by evaluating the ability of GPT-4o, Llama 3, and Mistral to effectively apply counterspeech strategies derived from psychological research provided through structured prompts. Our results show that the models often generate generic, repetitive, or superficial results. Additionally, they over-acknowledge fear and frequently hallucinate facts, sources, or figures, making their prompt-based use in practical applications problematic.
comment: 16 pages, Association for Computational Linguistics, Proceedings of the 9th Workshop on Online Abuse and Harms (WOAH 2025)
♻ ☆ Tackling Size Generalization of Graph Neural Networks on Biological Data from a Spectral Perspective KDD 2025
We address the key challenge of size-induced distribution shifts in graph neural networks (GNNs) and their impact on the generalization of GNNs to larger graphs. Existing literature operates under diverse assumptions about distribution shifts, resulting in varying conclusions about the generalizability of GNNs. In contrast to prior work, we adopt a data-driven approach to identify and characterize the types of size-induced distribution shifts and explore their impact on GNN performance from a spectral standpoint, a perspective that has been largely underexplored. Leveraging the significant variance in graph sizes in real biological datasets, we analyze biological graphs and find that spectral differences, driven by subgraph patterns (e.g., average cycle length), strongly correlate with GNN performance on larger, unseen graphs. Based on these insights, we propose three model-agnostic strategies to enhance GNNs' awareness of critical subgraph patterns, identifying size-intensive attention as the most effective approach. Extensive experiments with six GNN architectures and seven model-agnostic strategies across five datasets show that our size-intensive attention strategy significantly improves graph classification on test graphs 2 to 10 times larger than the training graphs, boosting F1 scores by up to 8% over strong baselines.
comment: KDD 2025
♻ ☆ EmissionNet: Air Quality Pollution Forecasting for Agriculture
Air pollution from agricultural emissions is a significant yet often overlooked contributor to environmental and public health challenges. Traditional air quality forecasting models rely on physics-based approaches, which struggle to capture complex, nonlinear pollutant interactions. In this work, we explore forecasting N$_2$O agricultural emissions through evaluating popular architectures, and proposing two novel deep learning architectures, EmissionNet (ENV) and EmissionNet-Transformer (ENT). These models leverage convolutional and transformer-based architectures to extract spatial-temporal dependencies from high-resolution emissions data
comment: The appendix figures are mixed up - several emission plots (e.g. CO2, CH4, GWP) are mislabeled and appear in the wrong order, leading to confusion in interpreting the results
♻ ☆ OR-LLM-Agent: Automating Modeling and Solving of Operations Research Optimization Problems with Reasoning LLM
With the rise of artificial intelligence (AI), applying large language models (LLMs) to mathematical problem-solving has attracted increasing attention. Most existing approaches attempt to improve Operations Research (OR) optimization problem-solving through prompt engineering or fine-tuning strategies for LLMs. However, these methods are fundamentally constrained by the limited capabilities of non-reasoning LLMs. To overcome these limitations, we propose OR-LLM-Agent, an AI agent framework built on reasoning LLMs for automated OR problem solving. The framework decomposes the task into three sequential stages: mathematical modeling, code generation, and debugging. Each task is handled by a dedicated sub-agent, which enables more targeted reasoning. We also construct BWOR, an OR dataset for evaluating LLM performance on OR tasks. Our analysis shows that in the benchmarks NL4OPT, MAMO, and IndustryOR, reasoning LLMs sometimes underperform their non-reasoning counterparts within the same model family. In contrast, BWOR provides a more consistent and discriminative assessment of model capabilities. Experimental results demonstrate that OR-LLM-Agent utilizing DeepSeek-R1 in its framework outperforms advanced methods, including GPT-o3, Gemini 2.5 Pro, DeepSeek-R1, and ORLM, by at least 7\% in accuracy. These results demonstrate the effectiveness of task decomposition for OR problem solving.
comment: 8 pages, 13 figures
♻ ☆ ULTHO: Ultra-Lightweight yet Efficient Hyperparameter Optimization in Deep Reinforcement Learning
Hyperparameter optimization (HPO) is a billion-dollar problem in machine learning, which significantly impacts the training efficiency and model performance. However, achieving efficient and robust HPO in deep reinforcement learning (RL) is consistently challenging due to its high non-stationarity and computational cost. To tackle this problem, existing approaches attempt to adapt common HPO techniques (e.g., population-based training or Bayesian optimization) to the RL scenario. However, they remain sample-inefficient and computationally expensive, which cannot facilitate a wide range of applications. In this paper, we propose ULTHO, an ultra-lightweight yet powerful framework for fast HPO in deep RL within single runs. Specifically, we formulate the HPO process as a multi-armed bandit with clustered arms (MABC) and link it directly to long-term return optimization. ULTHO also provides a quantified and statistical perspective to filter the HPs efficiently. We test ULTHO on benchmarks including ALE, Procgen, MiniGrid, and PyBullet. Extensive experiments demonstrate that the ULTHO can achieve superior performance with a simple architecture, contributing to the development of advanced and automated RL systems.
comment: 24 pages, 25 figures
♻ ☆ Do Large Language Models Know How Much They Know?
Large Language Models (LLMs) have emerged as highly capable systems and are increasingly being integrated into various uses. However, the rapid pace of their deployment has outpaced a comprehensive understanding of their internal mechanisms and a delineation of their capabilities and limitations. A desired attribute of an intelligent system is its ability to recognize the scope of its own knowledge. To investigate whether LLMs embody this characteristic, we develop a benchmark designed to challenge these models to enumerate all information they possess on specific topics. This benchmark evaluates whether the models recall excessive, insufficient, or the precise amount of information, thereby indicating their awareness of their own knowledge. Our findings reveal that all tested LLMs, given sufficient scale, demonstrate an understanding of how much they know about specific topics. While different architectures exhibit varying rates of this capability's emergence, the results suggest that awareness of knowledge may be a generalizable attribute of LLMs. Further research is needed to confirm this potential and fully elucidate the underlying mechanisms.
comment: ublished as a long paper at the 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP). Official version of paper within conference proceedings is available at https://aclanthology.org/2024.emnlp-main.348/
♻ ☆ Theoretically Unmasking Inference Attacks Against LDP-Protected Clients in Federated Vision Models ICML 2025
Federated Learning enables collaborative learning among clients via a coordinating server while avoiding direct data sharing, offering a perceived solution to preserve privacy. However, recent studies on Membership Inference Attacks (MIAs) have challenged this notion, showing high success rates against unprotected training data. While local differential privacy (LDP) is widely regarded as a gold standard for privacy protection in data analysis, most studies on MIAs either neglect LDP or fail to provide theoretical guarantees for attack success rates against LDP-protected data. To address this gap, we derive theoretical lower bounds for the success rates of low-polynomial time MIAs that exploit vulnerabilities in fully connected or self-attention layers. We establish that even when data are protected by LDP, privacy risks persist, depending on the privacy budget. Practical evaluations on federated vision models confirm considerable privacy risks, revealing that the noise required to mitigate these attacks significantly degrades models' utility.
comment: Accepted to ICML 2025
♻ ☆ AttnMod: Attention-Based New Art Styles
We introduce AttnMod, a training-free technique that modulates cross-attention in pre-trained diffusion models to generate novel, unpromptable art styles. The method is inspired by how a human artist might reinterpret a generated image, for example by emphasizing certain features, dispersing color, twisting silhouettes, or materializing unseen elements. AttnMod simulates this intent by altering how the text prompt conditions the image through attention during denoising. These targeted modulations enable diverse stylistic transformations without changing the prompt or retraining the model, and they expand the expressive capacity of text-to-image generation.
♻ ☆ Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics ICCV
Recently in robotics, Vision-Language-Action (VLA) models have emerged as a transformative approach, enabling robots to execute complex tasks by integrating visual and linguistic inputs within an end-to-end learning framework. Despite their significant capabilities, VLA models introduce new attack surfaces. This paper systematically evaluates their robustness. Recognizing the unique demands of robotic execution, our attack objectives target the inherent spatial and functional characteristics of robotic systems. In particular, we introduce two untargeted attack objectives that leverage spatial foundations to destabilize robotic actions, and a targeted attack objective that manipulates the robotic trajectory. Additionally, we design an adversarial patch generation approach that places a small, colorful patch within the camera's view, effectively executing the attack in both digital and physical environments. Our evaluation reveals a marked degradation in task success rates, with up to a 100\% reduction across a suite of simulated robotic tasks, highlighting critical security gaps in current VLA architectures. By unveiling these vulnerabilities and proposing actionable evaluation metrics, we advance both the understanding and enhancement of safety for VLA-based robotic systems, underscoring the necessity for continuously developing robust defense strategies prior to physical-world deployments.
comment: ICCV camera ready; Github: https://github.com/William-wAng618/roboticAttack Homepage: https://vlaattacker.github.io/
♻ ☆ Seed-Prover: Deep and Broad Reasoning for Automated Theorem Proving
LLMs have demonstrated strong mathematical reasoning abilities by leveraging reinforcement learning with long chain-of-thought, yet they continue to struggle with theorem proving due to the lack of clear supervision signals when solely using natural language. Dedicated domain-specific languages like Lean provide clear supervision via formal verification of proofs, enabling effective training through reinforcement learning. In this work, we propose \textbf{Seed-Prover}, a lemma-style whole-proof reasoning model. Seed-Prover can iteratively refine its proof based on Lean feedback, proved lemmas, and self-summarization. To solve IMO-level contest problems, we design three test-time inference strategies that enable both deep and broad reasoning. Seed-Prover proves $78.1\%$ of formalized past IMO problems, saturates MiniF2F, and achieves over 50\% on PutnamBench, outperforming the previous state-of-the-art by a large margin. To address the lack of geometry support in Lean, we introduce a geometry reasoning engine \textbf{Seed-Geometry}, which outperforms previous formal geometry engines. We use these two systems to participate in IMO 2025 and fully prove 5 out of 6 problems. This work represents a significant advancement in automated mathematical reasoning, demonstrating the effectiveness of formal verification with long chain-of-thought reasoning.
♻ ☆ Dominated Actions in Imperfect-Information Games
Dominance is a fundamental concept in game theory. In strategic-form games dominated strategies can be identified in polynomial time. As a consequence, iterative removal of dominated strategies can be performed efficiently as a preprocessing step for reducing the size of a game before computing a Nash equilibrium. For imperfect-information games in extensive form, we could convert the game to strategic form and then iteratively remove dominated strategies in the same way; however, this conversion may cause an exponential blowup in game size. In this paper we define and study the concept of dominated actions in imperfect-information games. Our main result is a polynomial-time algorithm for determining whether an action is dominated (strictly or weakly) by any mixed strategy in n-player games, which can be extended to an algorithm for iteratively removing dominated actions. This allows us to efficiently reduce the size of the game tree as a preprocessing step for Nash equilibrium computation. We explore the role of dominated actions empirically in the "All In or Fold" No-Limit Texas Hold'em poker variant.
♻ ☆ Evaluating LLMs on Real-World Forecasting Against Human Superforecasters
Large language models (LLMs) have demonstrated remarkable capabilities across diverse tasks, but their ability to forecast future events remains understudied. A year ago, large language models struggle to come close to the accuracy of a human crowd. I evaluate state-of-the-art LLMs on 464 forecasting questions from Metaculus, comparing their performance against human superforecasters. Frontier models achieve Brier scores that ostensibly surpass the human crowd but still significantly underperform a group of superforecasters.
♻ ☆ HumaniBench: A Human-Centric Framework for Large Multimodal Models Evaluation
Large multimodal models (LMMs) have been widely tested on tasks like visual question answering (VQA), image captioning, and grounding, but lack rigorous evaluation for alignment with human-centered (HC) values such as fairness, ethics, and inclusivity. To address this gap, we introduce \textbf{HumaniBench}, a novel benchmark of 32,000 real-world image-question pairs and an evaluation suite. Labels are generated via an AI-assisted pipeline and validated by experts. HumaniBench assesses LMMs across seven key alignment principles: fairness, ethics, empathy, inclusivity, reasoning, robustness, and multilinguality, through diverse open-ended and closed-ended VQA tasks. Grounded in AI ethics and real-world needs, these principles provide a holistic lens for societal impact. Benchmarking results on different LMM shows that proprietary models generally lead in reasoning, fairness, and multilinguality, while open-source models excel in robustness and grounding. Most models struggle to balance accuracy with ethical and inclusive behavior. Techniques like Chain-of-Thought prompting and test-time scaling improve alignment. As the first benchmark tailored for HC alignment, HumaniBench offers a rigorous testbed to diagnose limitations, and promote responsible LMM development. All data and code are publicly available for reproducibility. Keywords: HumaniBench, vision-language models, responsible AI benchmark, AI alignment evaluation, AI ethics assessment, fairness in AI models, visual question answering (VQA) benchmark, image captioning evaluation, visual grounding tasks, trustworthy AI models, Chain-of-Thought prompting, test-time scaling, ethical AI development tools.
♻ ☆ Identifying Unique Spatial-Temporal Bayesian Network without Markov Equivalence
Identifying vanilla Bayesian network to model spatial-temporal causality can be a critical yet challenging task. Different Markovian-equivalent directed acyclic graphs would be identified if the identifiability is not satisfied. To address this issue, Directed Cyclic Graph is proposed to drop the directed acyclic constraint. But it does not always hold, and cannot model dynamical time-series process. Then, Full Time Graph is proposed with introducing high-order time delay. Full Time Graph has no Markov equivalence class by assuming no instantaneous effects. But, it also assumes that the causality is invariant with varying time, that is not always satisfied in the spatio-temporal scenarios. Thus, in this work, a Spatial-Temporal Bayesian Network (STBN) is proposed to theoretically model the spatial-temporal causality from the perspective of information transfer. STBN explains the disappearance of network structure $X\rightarrow Z \rightarrow Y$ and $X\leftarrow Z \leftarrow Y$ by the principle of information path blocking. And finally, the uniqueness of STBN is proved. Based on this, a High-order Causal Entropy (HCE) algorithm is also proposed to uniquely identify STBN under time complexity $\mathcal{O}(n^3\tau_{max})$, where $n$ is the number of variables and $\tau_{max}$ is the maximum time delay. Numerical experiments are conducted with comparison to other baseline algorithms. The results show that HCE algorithm obtains state-of-the-art identification accuracy. The code is available at https://github.com/KMY-SEU/HCE.
comment: This manuscript is submitted to facilitate early access and encourage follow-up research by other scholars. The code for this work is available at: https://github.com/KMY-SEU/HCE. We sincerely thank you for your support!
♻ ☆ A Survey on Post-training of Large Language Models
The emergence of Large Language Models (LLMs) has fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration. However, their pre-trained architectures often reveal limitations in specialized contexts, including restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance. These challenges necessitate advanced post-training language models (PoLMs) to address these shortcomings, such as OpenAI-o1/o3 and DeepSeek-R1 (collectively known as Large Reasoning Models, or LRMs). This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms: Fine-tuning, which enhances task-specific accuracy; Alignment, which ensures ethical coherence and alignment with human preferences; Reasoning, which advances multi-step inference despite challenges in reward design; Efficiency, which optimizes resource utilization amidst increasing complexity; Integration and Adaptation, which extend capabilities across diverse modalities while addressing coherence issues. Charting progress from ChatGPT's alignment strategies to DeepSeek-R1's innovative reasoning advancements, we illustrate how PoLMs leverage datasets to mitigate biases, deepen reasoning capabilities, and enhance domain adaptability. Our contributions include a pioneering synthesis of PoLM evolution, a structured taxonomy categorizing techniques and datasets, and a strategic agenda emphasizing the role of LRMs in improving reasoning proficiency and domain flexibility. As the first survey of its scope, this work consolidates recent PoLM advancements and establishes a rigorous intellectual framework for future research, fostering the development of LLMs that excel in precision, ethical robustness, and versatility across scientific and societal applications.
comment: 87 pages, 21 figures, 9 tables
♻ ☆ Policy Maps: Tools for Guiding the Unbounded Space of LLM Behaviors
AI policy sets boundaries on acceptable behavior for AI models, but this is challenging in the context of large language models (LLMs): how do you ensure coverage over a vast behavior space? We introduce policy maps, an approach to AI policy design inspired by the practice of physical mapmaking. Instead of aiming for full coverage, policy maps aid effective navigation through intentional design choices about which aspects to capture and which to abstract away. With Policy Projector, an interactive tool for designing LLM policy maps, an AI practitioner can survey the landscape of model input-output pairs, define custom regions (e.g., "violence"), and navigate these regions with if-then policy rules that can act on LLM outputs (e.g., if output contains "violence" and "graphic details," then rewrite without "graphic details"). Policy Projector supports interactive policy authoring using LLM classification and steering and a map visualization reflecting the AI practitioner's work. In an evaluation with 12 AI safety experts, our system helps policy designers craft policies around problematic model behaviors such as incorrect gender assumptions and handling of immediate physical safety threats.
comment: UIST 2025
♻ ☆ BCR-DRL: Behavior- and Context-aware Reward for Deep Reinforcement Learning in Human-AI Coordination
Deep reinforcement Learning (DRL) offers a powerful framework for training AI agents to coordinate with human partners. However, DRL faces two critical challenges in human-AI coordination (HAIC): sparse rewards and unpredictable human behaviors. These challenges significantly limit DRL to identify effective coordination policies, due to its impaired capability of optimizing exploration and exploitation. To address these limitations, we propose an innovative behavior- and context-aware reward (BCR) for DRL, which optimizes exploration and exploitation by leveraging human behaviors and contextual information in HAIC. Our BCR consists of two components: (i) A novel dual intrinsic rewarding scheme to enhance exploration. This scheme composes an AI self-motivated intrinsic reward and a human-motivated intrinsic reward, which are designed to increase the capture of sparse rewards by a logarithmic-based strategy; and (ii) A new context-aware weighting mechanism for the designed rewards to improve exploitation. This mechanism helps the AI agent prioritize actions that better coordinate with the human partner by utilizing contextual information that can reflect the evolution of learning. Extensive simulations in the Overcooked environment demonstrate that our approach can increase the cumulative sparse rewards by approximately 20%, and improve the sample efficiency by around 38% compared to state-of-the-art baselines.
Computational Engineering, Finance, and Science 10
☆ Online Fine-Tuning of Carbon Emission Predictions using Real-Time Recurrent Learning for State Space Models
This paper introduces a new approach for fine-tuning the predictions of structured state space models (SSMs) at inference time using real-time recurrent learning. While SSMs are known for their efficiency and long-range modeling capabilities, they are typically trained offline and remain static during deployment. Our method enables online adaptation by continuously updating model parameters in response to incoming data. We evaluate our approach for linear-recurrent-unit SSMs using a small carbon emission dataset collected from embedded automotive hardware. Experimental results show that our method consistently reduces prediction error online during inference, demonstrating its potential for dynamic, resource-constrained environments.
comment: 6 pages
☆ τ-Ring: A Smart Ring Platform for Multimodal Physiological and Behavioral Sensing
Smart rings have emerged as uniquely convenient devices for continuous physiological and behavioral sensing, offering unobtrusive, constant access to metrics such as heart rate, motion, and skin temperature. Yet most commercial solutions remain proprietary, hindering reproducibility and slowing innovation in wearable research. We introduce {\tau}-Ring, a commercial-ready platform that bridges this gap through: (i) accessible hardware combining time-synchronized multi-channel PPG, 6-axis IMU, temperature sensing, NFC, and on-board storage; (ii) adjustable firmware that lets researchers rapidly reconfigure sampling rates, power modes, and wireless protocols; and (iii) a fully open-source Android software suite that supports both real-time streaming and 8-hour offline logging. Together, these features enable out-of-the-box, reproducible acquisition of rich physiological and behavioral datasets, accelerating prototyping and standardizing experimentation. We validate the platform with demonstration studies in heart-rate monitoring and ring-based handwriting recognition. Source code is available at GitHub: https://github.com/thuhci/OpenRing.
comment: UbiComp 25
☆ Contact Sensors to Remote Cameras: Quantifying Cardiorespiratory Coupling in High-Altitude Exercise Recovery
Cardiorespiratory coupling (CRC) captures the dynamic interaction between the cardiac and respiratory systems--an interaction strengthened by physical exercise and linked to improved physiological function. We examined CRC at high altitude in two states, rest and post-exercise recovery, and found significant differences (p < 0.05). Quantitative analysis revealed that recovery involved more frequent yet less stable episodes of synchronization between respiration and pulse. Furthermore, we explored the feasibility of non-contact CRC measurement with remote photoplethysmography (rPPG), observing a strong correlation with oximeter-based metrics (Pearson r = 0.96). These findings highlight the potential of CRC as a sensitive marker for autonomic regulation and its future application in contactless monitoring. Source code is available at GitHub: https://github.com/McJackTang/CRC.
comment: UbiComp 25
☆ LEO: An Open-Source Platform for Linking OMERO with Lab Notebooks and Heterogeneous Metadata Sources
In the interdisciplinary field of microscopy research, managing and integrating large volumes of data stored across disparate platforms remains a major challenge. Data types such as bioimages, experimental records, and spectral information are often maintained in separate repositories, each following different management standards. However, linking these data sources across the research lifecycle is essential to align with the FAIR principles of data management: Findability, Accessibility, Interoperability, and Reusability. Despite this need, there is a notable lack of tools capable of effectively integrating and linking data from heterogeneous sources. To address this gap, we present LEO (Linking Electronic Lab Notebooks with OMERO), a web-based platform designed to create and manage links between distributed data systems. LEO was initially developed to link objects between Electronic Lab Notebooks (ELNs) and OMERO, but its functionality has since been extended through a plugin-based architecture, allowing the integration of additional data sources. This extensibility makes LEO a scalable and flexible solution for a wide range of microscopy research workflows.
☆ WeightFlow: Learning Stochastic Dynamics via Evolving Weight of Neural Network
Modeling stochastic dynamics from discrete observations is a key interdisciplinary challenge. Existing methods often fail to estimate the continuous evolution of probability densities from trajectories or face the curse of dimensionality. To address these limitations, we presents a novel paradigm: modeling dynamics directly in the weight space of a neural network by projecting the evolving probability distribution. We first theoretically establish the connection between dynamic optimal transport in measure space and an equivalent energy functional in weight space. Subsequently, we design WeightFlow, which constructs the neural network weights into a graph and learns its evolution via a graph controlled differential equation. Experiments on interdisciplinary datasets demonstrate that WeightFlow improves performance by an average of 43.02\% over state-of-the-art methods, providing an effective and scalable solution for modeling high-dimensional stochastic dynamics.
☆ $MV_{Hybrid}$: Improving Spatial Transcriptomics Prediction with Hybrid State Space-Vision Transformer Backbone in Pathology Vision Foundation Models AI 2025
Spatial transcriptomics reveals gene expression patterns within tissue context, enabling precision oncology applications such as treatment response prediction, but its high cost and technical complexity limit clinical adoption. Predicting spatial gene expression (biomarkers) from routine histopathology images offers a practical alternative, yet current vision foundation models (VFMs) in pathology based on Vision Transformer (ViT) backbones perform below clinical standards. Given that VFMs are already trained on millions of diverse whole slide images, we hypothesize that architectural innovations beyond ViTs may better capture the low-frequency, subtle morphological patterns correlating with molecular phenotypes. By demonstrating that state space models initialized with negative real eigenvalues exhibit strong low-frequency bias, we introduce $MV_{Hybrid}$, a hybrid backbone architecture combining state space models (SSMs) with ViT. We compare five other different backbone architectures for pathology VFMs, all pretrained on identical colorectal cancer datasets using the DINOv2 self-supervised learning method. We evaluate all pretrained models using both random split and leave-one-study-out (LOSO) settings of the same biomarker dataset. In LOSO evaluation, $MV_{Hybrid}$ achieves 57% higher correlation than the best-performing ViT and shows 43% smaller performance degradation compared to random split in gene expression prediction, demonstrating superior performance and robustness, respectively. Furthermore, $MV_{Hybrid}$ shows equal or better downstream performance in classification, patch retrieval, and survival prediction tasks compared to that of ViT, showing its promise as a next-generation pathology VFM backbone. Our code is publicly available at: https://github.com/deepnoid-ai/MVHybrid.
comment: Accepted (Oral) in MICCAI 2025 COMPAYL Workshop
☆ Advancing Welding Defect Detection in Maritime Operations via Adapt-WeldNet and Defect Detection Interpretability Analysis
Weld defect detection is crucial for ensuring the safety and reliability of piping systems in the oil and gas industry, especially in challenging marine and offshore environments. Traditional non-destructive testing (NDT) methods often fail to detect subtle or internal defects, leading to potential failures and costly downtime. Furthermore, existing neural network-based approaches for defect classification frequently rely on arbitrarily selected pretrained architectures and lack interpretability, raising safety concerns for deployment. To address these challenges, this paper introduces ``Adapt-WeldNet", an adaptive framework for welding defect detection that systematically evaluates various pre-trained architectures, transfer learning strategies, and adaptive optimizers to identify the best-performing model and hyperparameters, optimizing defect detection and providing actionable insights. Additionally, a novel Defect Detection Interpretability Analysis (DDIA) framework is proposed to enhance system transparency. DDIA employs Explainable AI (XAI) techniques, such as Grad-CAM and LIME, alongside domain-specific evaluations validated by certified ASNT NDE Level II professionals. Incorporating a Human-in-the-Loop (HITL) approach and aligning with the principles of Trustworthy AI, DDIA ensures the reliability, fairness, and accountability of the defect detection system, fostering confidence in automated decisions through expert validation. By improving both performance and interpretability, this work enhances trust, safety, and reliability in welding defect detection systems, supporting critical operations in offshore and marine environments.
☆ Baseline-free Damage Detection and Localization on Composite Structures with Unsupervised Kolmogorov-Arnold Autoencoder and Guided Waves
Structural health monitoring (SHM) ensures the safety and longevity of structures such as aerospace equipment and wind power installations. Developing a simple, highly flexible, and scalable SHM method that does not depend on baseline models is significant for ensuring the operational integrity of advanced composite structures. In this regard, a hybrid baseline-free damage detection and localization framework incorporating an unsupervised Kolmogorov-Arnold autoencoder (KAE) and modified probabilistic elliptical imaging algorithm (MRAPID) is proposed for damage detection and localization in composite structures. Specifically, KAE was used to process the guided wave signals (GW) without any prior feature extraction process. The KAE continuously learns and adapts to the baseline model of each structure, learning from the response characteristics of its undamaged state. Then, the predictions from KAE are processed, combined with the MRAPID to generate a damage probability map. The performance of the proposed method for damage detection and localization was verified using the simulated damage data obtained on wind turbine blades and the actual damage data obtained on composite flat plates. The results show that the proposed method can effectively detect and localize damage and can achieve multiple damage localization. In addition, the method outperforms classical damage detection algorithms and state-of-the-art baseline-free damage detection and localization methods in terms of damage localization accuracy.
comment: 28 pages, 5 figures
☆ Using numerical-experimental analysis to evaluate rPET mechanical behavior under compressive stresses and FFF additive manufacturing for new sustainable designs
The purpose of this study is to investigate the numerical-experimental mechanical behavior modeling of the recycled polymer, that is, recyclable polyethylene terephthalate (rPET), manufactured by a deposition FFF process under compressive stresses for new sustainable designs. In all, 42 test specimens were manufactured and analyzed according to the ASTM D695-15 standards. Eight numerical analyzes were performed on a real design manufactured with rPET using Young's compression modulus from the experimental tests. Finally, eight additional experimental tests under uniaxial compression loads were performed on the real sustainable design for validating its mechanical behavior versus computational numerical tests. As a result of the experimental tests, rPET behaves linearly until it reaches the elastic limit, along each manufacturing axis. The results of this study confirmed the design's structural safety by the load scenario and operating boundary conditions. Experimental and numerical results show a difference of 0.001-0.024 mm, allowing for the rPET to be configured as isotropic in numerical simulation software without having to modify its material modeling equations. The results obtained are of great help to industry, designers and researchers because they validate the use of recycled rPET for the ecological production of real-sustainable products using MEX technology under compressive stress and its configuration for numerical simulations. Major design companies are now using recycled plastic materials in their high-end designs. Validation results have been presented on test specimens and real items, comparing experimental material configuration values with numerical results.
♻ ☆ Deep Operator Networks for Bayesian Parameter Estimation in PDEs
We present a novel framework combining Deep Operator Networks (DeepONets) with Physics-Informed Neural Networks (PINNs) to solve partial differential equations (PDEs) and estimate their unknown parameters. By integrating data-driven learning with physical constraints, our method achieves robust and accurate solutions across diverse scenarios. Bayesian training is implemented through variational inference, allowing for comprehensive uncertainty quantification for both aleatoric and epistemic uncertainties. This ensures reliable predictions and parameter estimates even in noisy conditions or when some of the physical equations governing the problem are missing. The framework demonstrates its efficacy in solving forward and inverse problems, including the 1D unsteady heat equation and 2D reaction-diffusion equations, as well as regression tasks with sparse, noisy observations. This approach provides a computationally efficient and generalizable method for addressing uncertainty quantification in PDE surrogate modeling.
Databases 12
DataLens: Enhancing Dataset Discovery via Network Topologies
The rapid growth of publicly available textual resources, such as lexicons and domain-specific corpora, presents challenges in efficiently identifying relevant resources. While repositories are emerging, they often lack advanced search and exploration features. Most search methods rely on keyword queries and metadata filtering, which require prior knowledge and fail to reveal connections between resources. To address this, we present DataLens, a web-based platform that combines faceted search with advanced visualization techniques to enhance resource discovery. DataLens offers network-based visualizations, where the network structure can be adapted to suit the specific analysis task. It also supports a chained views approach, enabling users to explore data from multiple perspectives. A formative user study involving six data practitioners revealed that users highly value visualization tools-especially network-based exploration-and offered insights to help refine our approach to better support dataset search.
☆ Jelly-Patch: a Fast Format for Recording Changes in RDF Datasets
Recording data changes in RDF systems is a crucial capability, needed to support auditing, incremental backups, database replication, and event-driven workflows. In large-scale and low-latency RDF applications, the high volume and frequency of updates can cause performance bottlenecks in the serialization and transmission of changes. To alleviate this, we propose Jelly-Patch -- a high-performance, compressed binary serialization format for changes in RDF datasets. To evaluate its performance, we benchmark Jelly-Patch against existing RDF Patch formats, using two datasets representing different use cases (change data capture and IoT streams). Jelly-Patch is shown to achieve 3.5--8.9x better compression, and up to 2.5x and 4.6x higher throughput in serialization and parsing, respectively. These significant advancements in throughput and compression are expected to improve the performance of large-scale and low-latency RDF systems.
☆ Chatting with your ERP: A Recipe
This paper presents the design, implementation, and evaluation behind a Large Language Model (LLM) agent that chats with an industrial production-grade ERP system. The agent is capable of interpreting natural language queries and translating them into executable SQL statements, leveraging open-weight LLMs. A novel dual-agent architecture combining reasoning and critique stages was proposed to improve query generation reliability.
comment: 11 pages, includes 3 tables summarizing schema and model performance. Submitted on July 31, 2025. Targets integration of LLM agents with ERP systems using open-weight models and Ollama deployment
☆ Text-to-SQL Task-oriented Dialogue Ontology Construction
Large language models (LLMs) are widely used as general-purpose knowledge sources, but they rely on parametric knowledge, limiting explainability and trustworthiness. In task-oriented dialogue (TOD) systems, this separation is explicit, using an external database structured by an explicit ontology to ensure explainability and controllability. However, building such ontologies requires manual labels or supervised training. We introduce TeQoDO: a Text-to-SQL task-oriented Dialogue Ontology construction method. Here, an LLM autonomously builds a TOD ontology from scratch without supervision using its inherent SQL programming capabilities combined with dialogue theory provided in the prompt. We show that TeQoDO outperforms transfer learning approaches, and its constructed ontology is competitive on a downstream dialogue state tracking task. Ablation studies demonstrate the key role of dialogue theory. TeQoDO also scales to allow construction of much larger ontologies, which we investigate on a Wikipedia and ArXiv dataset. We view this as a step towards broader application of ontologies to increase LLM explainability.
☆ Tabular Data Understanding with LLMs: A Survey of Recent Advances and Challenges
Tables have gained significant attention in large language models (LLMs) and multimodal large language models (MLLMs) due to their complex and flexible structure. Unlike linear text inputs, tables are two-dimensional, encompassing formats that range from well-structured database tables to complex, multi-layered spreadsheets, each with different purposes. This diversity in format and purpose has led to the development of specialized methods and tasks, instead of universal approaches, making navigation of table understanding tasks challenging. To address these challenges, this paper introduces key concepts through a taxonomy of tabular input representations and an introduction of table understanding tasks. We highlight several critical gaps in the field that indicate the need for further research: (1) the predominance of retrieval-focused tasks that require minimal reasoning beyond mathematical and logical operations; (2) significant challenges faced by models when processing complex table structures, large-scale tables, length context, or multi-table scenarios; and (3) the limited generalization of models across different tabular representations and formats.
♻ ☆ Is SHACL Suitable for Data Quality Assessment?
Knowledge graphs have been widely adopted in both enterprises, such as the Google Knowledge Graph, and open platforms like Wikidata, to represent domain knowledge and support artificial intelligence applications. They model real-world information as nodes and edges. To embrace flexibility, knowledge graphs often lack enforced schemas (i.e., ontologies), leading to potential data quality issues, such as semantically overlapping nodes. Yet ensuring their quality is essential, as issues in the data can affect applications relying on them. To assess the quality of knowledge graphs, existing works propose either high-level frameworks comprising various data quality dimensions without concrete implementations, define tools that measure data quality with ad-hoc SPARQL queries, or promote the usage of constraint languages, such as the Shapes Constraint Language (SHACL), to assess and improve the quality of the graph. Although the latter approaches claim to address data quality assessment, none of them comprehensively tries to cover all data quality dimensions. In this paper, we explore this gap by investigating the extent to which SHACL can be used to assess data quality in knowledge graphs. Specifically, we defined SHACL shapes for 69 data quality metrics proposed by Zaveri et al. [1] and implemented a prototype that automatically instantiates these shapes and computes the corresponding data quality measures from their validation results. All resources are provided for repeatability.
comment: 43 pages
♻ ☆ SAM: A Stability-Aware Cache Manager for Multi-Tenant Embedded Databases VLDB 2026
The co-location of multiple database instances on resource constrained edge nodes creates significant cache contention, where traditional schemes are inefficient and unstable under dynamic workloads. To address this, we present SAM(a Stability-Aware Manager), an autonomic cache manager that establishes decision stability as a first-class design principle. It achieves this through its core control policy, AURA(Autonomic Utility-balancing Resource Allocator), which resolves the classic exploitation-exploration dilemma by synthesizing two orthogonal factors: the H-factor, representing proven historical efficiency (exploitation), and the V-factor, for estimated marginal gain (exploration). Through this practical synthesis and adaptive control, SAM achieves sustained high performance with strategic stability and robustness in volatile conditions. Extensive experiments against 14 diverse baselines demonstrate SAM's superiority. It achieves top-tier throughput while being uniquely resilient to complex workload shifts and adversarial workloads like cache pollution. Furthermore, its decision latency is highly scalable, remaining nearly constant as the system grows to 120 databases. Crucially, SAM achieves superior decision stability -- maintaining consistent optimization directions despite noise, avoiding performance oscillations while ensuring predictable Quality of Service. These results prove that a principled, stability-aware design is essential for sustained high performance in real-world, large-scale systems.
comment: 17 pages, 10 figures. An extended version of a paper under review at the VLDB 2026 conference
♻ ☆ Jelly: a Fast and Convenient RDF Serialization Format
Existing RDF serialization formats such as Turtle, N-Quads, and JSON-LD are widely used for communication and storage in knowledge graph and Semantic Web applications. However, they suffer from limitations in performance, compression ratio, and lack of native support for RDF streams. To address these shortcomings, we introduce Jelly, a fast and convenient binary serialization format for RDF data that supports both batch and streaming use cases. Jelly is designed to maximize serialization throughput, reduce file size with lightweight streaming compression, and minimize compute resource usage. Built on Protocol Buffers, Jelly is easy to integrate with modern programming languages and RDF libraries. To maximize reusability, Jelly has an open protocol specification, open-source implementations in Java and Python integrated with popular RDF libraries, and a versatile command-line tool. To illustrate its usefulness, we outline concrete use cases where Jelly can provide tangible benefits. We consider that by combining practical usability with state-of-the-art efficiency, Jelly is an important contribution to the Semantic Web tool stack.
comment: Developers Workshop, co-located with SEMANTiCS'25: International Conference on Semantic Systems, September 3-5, 2025, Vienna, Austria
♻ ☆ Towards Serverless Processing of Spatiotemporal Big Data Queries
Spatiotemporal data are being produced in continuously growing volumes by a variety of data sources and a variety of application fields rely on rapid analysis of such data. Existing systems such as PostGIS or MobilityDB usually build on relational database systems, thus, inheriting their scale-out characteristics. As a consequence, big spatiotemporal data scenarios still have limited support even though many query types can easily be parallelized. In this paper, we propose our vision of a native serverless data processing approach for spatiotemporal data: We break down queries into small subqueries which then leverage the near-instant scaling of Function-as-a-Service platforms to execute them in parallel. With this, we partially solve the scalability needs of big spatiotemporal data processing.
comment: Accepted for publication in 13th IEEE International Conference on Cloud Engineering (IC2E 2025)
♻ ☆ Advances in LLMs with Focus on Reasoning, Adaptability, Efficiency and Ethics
This survey paper outlines the key developments in the field of Large Language Models (LLMs), including enhancements to their reasoning skills, adaptability to various tasks, increased computational efficiency, and the ability to make ethical decisions. The techniques that have been most effective in bridging the gap between human and machine communications include the Chain-of-Thought prompting, Instruction Tuning, and Reinforcement Learning from Human Feedback. The improvements in multimodal learning and few-shot or zero-shot techniques have further empowered LLMs to handle complex jobs with minor input. A significant focus is placed on efficiency, detailing scaling strategies, optimization techniques, and the influential Mixture-of-Experts (MoE) architecture, which strategically routes inputs to specialized subnetworks to boost predictive accuracy, while optimizing resource allocation. This survey also offers a broader perspective on recent advancements in LLMs, going beyond isolated aspects such as model architecture or ethical concerns. Additionally, it explores the role of LLMs in Agentic AI and their use as Autonomous Decision-Making Systems, and categorizes emerging methods that enhance LLM reasoning, efficiency, and ethical alignment. The survey also identifies underexplored areas such as interpretability, cross-modal integration, and sustainability. While significant advancements have been made in LLMs, challenges such as high computational costs, biases, and ethical risks remain. Overcoming these requires a focus on bias mitigation, transparent decision-making, and explicit ethical guidelines. Future research will generally focus on enhancing the model's ability to handle multiple inputs, thereby making it more intelligent, safe, and reliable.
♻ ☆ Cost-Effective, Low Latency Vector Search with Azure Cosmos DB
Vector indexing enables semantic search over diverse corpora and has become an important interface to databases for both users and AI agents. Efficient vector search requires deep optimizations in database systems. This has motivated a new class of specialized vector databases that optimize for vector search quality and cost. Instead, we argue that a scalable, high-performance, and cost-efficient vector search system can be built inside a cloud-native operational database like Azure Cosmos DB while leveraging the benefits of a distributed database such as high availability, durability, and scale. We do this by deeply integrating DiskANN, a state-of-the-art vector indexing library, inside Azure Cosmos DB NoSQL. This system uses a single vector index per partition stored in existing index trees, and kept in sync with underlying data. It supports < 20ms query latency over an index spanning 10 million vectors, has stable recall over updates, and offers approximately 43x and 12x lower query cost compared to Pinecone and Zilliz serverless enterprise products. It also scales out to billions of vectors via automatic partitioning. This convergent design presents a point in favor of integrating vector indices into operational databases in the context of recent debates on specialized vector databases, and offers a template for vector indexing in other databases.
♻ ☆ SourceSplice: Source Selection for Machine Learning Tasks
Data quality plays a pivotal role in the predictive performance of machine learning (ML) tasks - a challenge amplified by the deluge of data sources available in modern organizations. Prior work in data discovery largely focus on metadata matching, semantic similarity or identifying tables that should be joined to answer a particular query, but do not consider source quality for high performance of the downstream ML task. This paper addresses the problem of determining the best subset of data sources that must be combined to construct the underlying training dataset for a given ML task. We propose SourceGrasp and SourceSplice, frameworks designed to efficiently select a suitable subset of sources that maximizes the utility of the downstream ML model. Both the algorithms rely on the core idea that sources (or their combinations) contribute differently to the task utility, and must be judiciously chosen. While SourceGrasp utilizes a metaheuristic based on a greediness criterion and randomization, the SourceSplice framework presents a source selection mechanism inspired from gene splicing - a core concept used in protein synthesis. We empirically evaluate our algorithms on three real-world datasets and synthetic datasets and show that, with significantly fewer subset explorations, SourceSplice effectively identifies subsets of data sources leading to high task utility. We also conduct studies reporting the sensitivity of SourceSplice to the decision choices under several settings.
Distributed, Parallel, and Cluster Computing 14
☆ The ArborX library: version 2.0
This paper provides an overview of the 2.0 release of the ArborX library, a performance portable geometric search library based on Kokkos. We describe the major changes in ArborX 2.0 including a new interface for the library to support a wider range of user problems, new search data structures (brute force, distributed), support for user functions to be executed on the results (callbacks), and an expanded set of the supported algorithms (ray tracing, clustering).
☆ Consistent Point Matching
This study demonstrates that incorporating a consistency heuristic into the point-matching algorithm \cite{yerebakan2023hierarchical} improves robustness in matching anatomical locations across pairs of medical images. We validated our approach on diverse longitudinal internal and public datasets spanning CT and MRI modalities. Notably, it surpasses state-of-the-art results on the Deep Lesion Tracking dataset. Additionally, we show that the method effectively addresses landmark localization. The algorithm operates efficiently on standard CPU hardware and allows configurable trade-offs between speed and robustness. The method enables high-precision navigation between medical images without requiring a machine learning model or training data.
☆ Threshold-Driven Streaming Graph: Expansion and Rumor Spreading
A randomized distributed algorithm called RAES was introduced in [Becchetti et al., SODA 2020] to extract a bounded-degree expander from a dense $n$-vertex expander graph $G = (V, E)$. The algorithm relies on a simple threshold-based procedure. A key assumption in [Becchetti et al., SODA 2020] is that the input graph $G$ is static - i.e., both its vertex set $V$ and edge set $E$ remain unchanged throughout the process - while the analysis of RAES in dynamic models is left as a major open question. In this work, we investigate the behavior of RAES under a dynamic graph model induced by a streaming node-churn process (also known as the sliding window model), where, at each discrete round, a new node joins the graph and the oldest node departs. This process yields a bounded-degree dynamic graph $\mathcal{G} =\{ G_t = (V_t, E_t) : t \in \mathbb{N}\}$ that captures essential characteristics of peer-to-peer networks -- specifically, node churn and threshold on the number of connections each node can manage. We prove that every snapshot $G_t$ in the dynamic graph sequence has good expansion properties with high probability. Furthermore, we leverage this property to establish a logarithmic upper bound on the completion time of the well-known PUSH and PULL rumor spreading protocols over the dynamic graph $\mathcal{G}$.
☆ Scalable contribution bounding to achieve privacy
In modern datasets, where single records can have multiple owners, enforcing user-level differential privacy requires capping each user's total contribution. This "contribution bounding" becomes a significant combinatorial challenge. Existing sequential algorithms for this task are computationally intensive and do not scale to the massive datasets prevalent today. To address this scalability bottleneck, we propose a novel and efficient distributed algorithm. Our approach models the complex ownership structure as a hypergraph, where users are vertices and records are hyperedges. The algorithm proceeds in rounds, allowing users to propose records in parallel. A record is added to the final dataset only if all its owners unanimously agree, thereby ensuring that no user's predefined contribution limit is violated. This method aims to maximize the size of the resulting dataset for high utility while providing a practical, scalable solution for implementing user-level privacy in large, real-world systems.
☆ Towards a Testbed for Scalable FaaS Platforms
Most cloud platforms have a Function-as-a-Service (FaaS) offering that enables users to easily write highly scalable applications. To better understand how the platform's architecture impacts its performance, we present a research-focused testbed that can be adapted to quickly evaluate the impact of different architectures and technologies on the characteristics of scalability-focused FaaS platforms.
comment: Accepted for Publication at the 13th IEEE International Conference on Cloud Engineering (IC2E 2025)
☆ H2SGEMM: Emulating FP32 GEMM on Ascend NPUs using FP16 Units with Precision Recovery and Cache-Aware Optimization
Low-precision matrix engines, such as FP16 cube, offer high throughput but lack support for full-precision computation. In this work, we propose H2SGEMM, a high-performance algorithm for emulating FP32 general matrix-matrix multiplication (GEMM) using only FP16 computation units on a representative AI accelerator. The method decomposes each FP32 operand into two FP16 values and compensates for numerical errors through a tunable scaling strategy. A detailed analysis of numerical errors, including underflow conditions and precision loss, guides the selection of scaling parameters to preserve up to 22 bits of mantissa accuracy. We further investigate the effect of computation order on accuracy and demonstrate that a term-wise accumulation scheme improves numerical stability over conventional FP32 GEMM in low-exponent regimes. Finally, a cache-aware blocking strategy and double-buffered pipeline are introduced to overlap memory transfers with computation, enabling H2SGEMM to achieve up to 77% of the theoretical FP32-equivalent peak performance on Ascend 910A NPU lacking native FP32 support. Extensive numerical experiments confirm that our method not only recovers the accuracy of native FP32 GEMM but also exhibits superior numerical stability under certain conditions, due to its structured and error-aware computation order.
☆ Learning Like Humans: Resource-Efficient Federated Fine-Tuning through Cognitive Developmental Stages
Federated fine-tuning enables Large Language Models (LLMs) to adapt to downstream tasks while preserving data privacy, but its resource-intensive nature limits deployment on edge devices. In this paper, we introduce Developmental Federated Tuning (DevFT), a resource-efficient approach inspired by cognitive development that progressively builds a powerful LLM from a compact foundation. DevFT decomposes the fine-tuning process into developmental stages, each optimizing submodels with increasing parameter capacity. Knowledge from earlier stages transfers to subsequent submodels, providing optimized initialization parameters that prevent convergence to local minima and accelerate training. This paradigm mirrors human learning, gradually constructing comprehensive knowledge structure while refining existing skills. To efficiently build stage-specific submodels, DevFT introduces deconfliction-guided layer grouping and differential-based layer fusion to distill essential information and construct representative layers. Evaluations across multiple benchmarks demonstrate that DevFT significantly outperforms state-of-the-art methods, achieving up to 4.59$\times$ faster convergence, 10.67$\times$ reduction in communication overhead, and 9.07% average performance improvement, while maintaining compatibility with existing approaches.
☆ Service Discovery-Based Hybrid Network Middleware for Efficient Communication in Distributed Robotic Systems
Robotic middleware is fundamental to ensuring reliable communication among system components and is crucial for intelligent robotics, autonomous vehicles, and smart manufacturing. However, existing robotic middleware often struggles to meet the diverse communication demands, optimize data transmission efficiency, and maintain scheduling determinism between Orin computing units in large-scale L4 autonomous vehicle deployments. This paper presents RIMAOS2C, a service discovery-based hybrid network communication middleware designed to tackle these challenges. By leveraging multi-level service discovery multicast, RIMAOS2C supports a wide variety of communication modes, including multiple cross-chip Ethernet protocols and PCIe communication capabilities. Its core mechanism, the Message Bridge, optimizes data flow forwarding and employs shared memory for centralized message distribution, reducing message redundancy and minimizing transmission delay uncertainty. Tested on L4 vehicles and Jetson Orin domain controllers, RIMAOS2C leverages TCP-based ZeroMQ to overcome the large-message transmission bottleneck in native CyberRT. In scenarios with two cross-chip subscribers, it eliminates message redundancy and improves large-data transmission efficiency by 36 to 40 percent while reducing callback latency variation by 42 to 906 percent. This research advances the communication capabilities of robotic operating systems and proposes a novel approach to optimizing communication in distributed computing architectures for autonomous driving.
comment: 8 pages, 8 figures, accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025, oral presentation
♻ ☆ Satellite Federated Fine-Tuning for Foundation Models in Space Computing Power Networks
Advancements in artificial intelligence (AI) and low-earth orbit (LEO) satellites have promoted the application of large remote sensing foundation models for various downstream tasks. However, direct downloading of these models for fine-tuning on the ground is impeded by privacy concerns and limited bandwidth. Satellite federated learning (FL) offers a solution by enabling model fine-tuning directly on-board satellites and aggregating model updates without data downloading. Nevertheless, for large foundation models, the computational capacity of satellites is insufficient to support effective on-board fine-tuning in traditional satellite FL frameworks. To address these challenges, we propose a satellite-ground collaborative federated fine-tuning framework. The key of the framework lies in how to reasonably decompose and allocate model components to alleviate insufficient on-board computation capabilities. During fine-tuning, satellites exchange intermediate results with ground stations or other satellites for forward propagation and back propagation, which brings communication challenges due to the special communication topology of space transmission networks, such as intermittent satellite-ground communication, short duration of satellite-ground communication windows, and unstable inter-orbit inter-satellite links (ISLs). To reduce transmission delays, we further introduce tailored communication strategies that integrate both communication and computing resources. Specifically, we propose a parallel intra-orbit communication strategy, a topology-aware satellite-ground communication strategy, and a latency-minimalization inter-orbit communication strategy to reduce space communication costs. Simulation results demonstrate significant reductions in training time with improvements of approximately 33%.
♻ ☆ Parallel Split Learning with Global Sampling
Distributed deep learning in resource-constrained environments faces scalability and generalization challenges due to large effective batch sizes and non-identically distributed client data. We introduce a server-driven sampling strategy that maintains a fixed global batch size by dynamically adjusting client-side batch sizes. This decouples the effective batch size from the number of participating devices and ensures that global batches better reflect the overall data distribution. Using standard concentration bounds, we establish tighter deviation guarantees compared to existing approaches. Empirical results on a benchmark dataset confirm that the proposed method improves model accuracy, training efficiency, and convergence stability, offering a scalable solution for learning at the network edge.
♻ ☆ Beyond Optimal Fault Tolerance
The optimal fault-tolerance achievable by any protocol has been characterized in a wide range of settings. For example, for state machine replication (SMR) protocols operating in the partially synchronous setting, it is possible to simultaneously guarantee consistency against $\alpha$-bounded adversaries (i.e., adversaries that control less than an $\alpha$ fraction of the participants) and liveness against $\beta$-bounded adversaries if and only if $\alpha + 2\beta \leq 1$. This paper characterizes to what extent "better-than-optimal" fault-tolerance guarantees are possible for SMR protocols when the standard consistency requirement is relaxed to allow a bounded number $r$ of consistency violations. We prove that bounding rollback is impossible without additional timing assumptions and investigate protocols that tolerate and recover from consistency violations whenever message delays around the time of an attack are bounded by a parameter $\Delta^*$ (which may be arbitrarily larger than the parameter $\Delta$ that bounds post-GST message delays in the partially synchronous model). Here, a protocol's fault-tolerance can be a non-constant function of $r$, and we prove, for each $r$, matching upper and lower bounds on the optimal "recoverable fault-tolerance" achievable by any SMR protocol. For example, for protocols that guarantee liveness against 1/3-bounded adversaries in the partially synchronous setting, a 5/9-bounded adversary can always cause one consistency violation but not two, and a 2/3-bounded adversary can always cause two consistency violations but not three. Our positive results are achieved through a generic "recovery procedure" that can be grafted on to any accountable SMR protocol and restores consistency following a violation while rolling back only transactions that were finalized in the previous $2\Delta^*$ timesteps.
♻ ☆ Towards Serverless Processing of Spatiotemporal Big Data Queries
Spatiotemporal data are being produced in continuously growing volumes by a variety of data sources and a variety of application fields rely on rapid analysis of such data. Existing systems such as PostGIS or MobilityDB usually build on relational database systems, thus, inheriting their scale-out characteristics. As a consequence, big spatiotemporal data scenarios still have limited support even though many query types can easily be parallelized. In this paper, we propose our vision of a native serverless data processing approach for spatiotemporal data: We break down queries into small subqueries which then leverage the near-instant scaling of Function-as-a-Service platforms to execute them in parallel. With this, we partially solve the scalability needs of big spatiotemporal data processing.
comment: Accepted for publication in 13th IEEE International Conference on Cloud Engineering (IC2E 2025)
♻ ☆ Minos: Exploiting Cloud Performance Variation with Function-as-a-Service Instance Selection
Serverless Function-as-a-Service (FaaS) is a popular cloud paradigm to quickly and cheaply implement complex applications. Because the function instances cloud providers start to execute user code run on shared infrastructure, their performance can vary. From a user perspective, slower instances not only take longer to complete, but also increase cost due to the pay-per-use model of FaaS services where execution duration is billed with microsecond accuracy. In this paper, we present Minos, a system to take advantage of this performance variation by intentionally terminating instances that are slow. Fast instances are not terminated, so that they can be re-used for subsequent invocations. One use case for this are data processing and machine learning workflows, which often download files as a first step, during which Minos can run a short benchmark. Only if the benchmark passes, the main part of the function is actually executed. Otherwise, the request is re-queued and the instance crashes itself, so that the platform has to assign the request to another (potentially faster) instance. In our experiments, this leads to a speedup of up to 13% in the resource intensive part of a data processing workflow, resulting in up to 4% faster overall performance (and consequently 4% cheaper prices). Longer and complex workflows lead to increased savings, as the pool of fast instances is re-used more often. For platforms exhibiting this behavior, users get better performance and save money by wasting more of the platforms resources.
comment: Accepted for Publication at the 13th IEEE International Conference on Cloud Engineering (IC2E 2025)
♻ ☆ A Simple $(1-ε)$-Approximation Semi-Streaming Algorithm for Maximum (Weighted) Matching
We present a simple semi-streaming algorithm for $(1-\epsilon)$-approximation of bipartite matching in $O(\log{\!(n)}/\epsilon)$ passes. This matches the performance of state-of-the-art "$\epsilon$-efficient" algorithms -- the ones with much better dependence on $\epsilon$ albeit with some mild dependence on $n$ -- while being considerably simpler. The algorithm relies on a direct application of the multiplicative weight update method with a self-contained primal-dual analysis that can be of independent interest. To show case this, we use the same ideas, alongside standard tools from matching theory, to present an equally simple semi-streaming algorithm for $(1-\epsilon)$-approximation of weighted matchings in general (not necessarily bipartite) graphs, again in $O(\log{\!(n)}/\epsilon)$ passes.
comment: 25 pages. This is the TheoretiCS journal version
Information Retrieval 22
☆ Automating AI Failure Tracking: Semantic Association of Reports in AI Incident Database AI 2025
Artificial Intelligence (AI) systems are transforming critical sectors such as healthcare, finance, and transportation, enhancing operational efficiency and decision-making processes. However, their deployment in high-stakes domains has exposed vulnerabilities that can result in significant societal harm. To systematically study and mitigate these risk, initiatives like the AI Incident Database (AIID) have emerged, cataloging over 3,000 real-world AI failure reports. Currently, associating a new report with the appropriate AI Incident relies on manual expert intervention, limiting scalability and delaying the identification of emerging failure patterns. To address this limitation, we propose a retrieval-based framework that automates the association of new reports with existing AI Incidents through semantic similarity modeling. We formalize the task as a ranking problem, where each report-comprising a title and a full textual description-is compared to previously documented AI Incidents based on embedding cosine similarity. Benchmarking traditional lexical methods, cross-encoder architectures, and transformer-based sentence embedding models, we find that the latter consistently achieve superior performance. Our analysis further shows that combining titles and descriptions yields substantial improvements in ranking accuracy compared to using titles alone. Moreover, retrieval performance remains stable across variations in description length, highlighting the robustness of the framework. Finally, we find that retrieval performance consistently improves as the training set expands. Our approach provides a scalable and efficient solution for supporting the maintenance of the AIID.
comment: Accepted at the 28th European Conference on Artificial Intelligence (ECAI 2025)
☆ Personalized Education with Ranking Alignment Recommendation
Personalized question recommendation aims to guide individual students through questions to enhance their mastery of learning targets. Most previous methods model this task as a Markov Decision Process and use reinforcement learning to solve, but they struggle with efficient exploration, failing to identify the best questions for each student during training. To address this, we propose Ranking Alignment Recommendation (RAR), which incorporates collaborative ideas into the exploration mechanism, enabling more efficient exploration within limited training episodes. Experiments show that RAR effectively improves recommendation performance, and our framework can be applied to any RL-based question recommender. Our code is available in https://github.com/wuming29/RAR.git.
☆ KLAN: Kuaishou Landing-page Adaptive Navigator
Modern online platforms configure multiple pages to accommodate diverse user needs. This multi-page architecture inherently establishes a two-stage interaction paradigm between the user and the platform: (1) Stage I: page navigation, navigating users to a specific page and (2) Stage II: in-page interaction, where users engage with customized content within the specific page. While the majority of research has been focusing on the sequential recommendation task that improves users' feedback in Stage II, there has been little investigation on how to achieve better page navigation in Stage I. To fill this gap, we formally define the task of Personalized Landing Page Modeling (PLPM) into the field of recommender systems: Given a user upon app entry, the goal of PLPM is to proactively select the most suitable landing page from a set of candidates (e.g., functional tabs, content channels, or aggregation pages) to optimize the short-term PDR metric and the long-term user engagement and satisfaction metrics, while adhering to industrial constraints. Additionally, we propose KLAN (Kuaishou Landing-page Adaptive Navigator), a hierarchical solution framework designed to provide personalized landing pages under the formulation of PLPM. KLAN comprises three key components: (1) KLAN-ISP captures inter-day static page preference; (2) KLAN-IIT captures intra-day dynamic interest transitions and (3) KLAN-AM adaptively integrates both components for optimal navigation decisions. Extensive online experiments conducted on the Kuaishou platform demonstrate the effectiveness of KLAN, obtaining +0.205% and +0.192% improvements on in Daily Active Users (DAU) and user Lifetime (LT). Our KLAN is ultimately deployed on the online platform at full traffic, serving hundreds of millions of users. To promote further research in this important area, we will release our dataset and code upon paper acceptance.
comment: We propose PLPM, a new task for selecting optimal landing pages upon user entry. Our solution, KLAN, models static and dynamic user interests and is successfully deployed on Kuaishou, improving DAU and user lifetime
☆ Towards LLM-Enhanced Product Line Scoping
The idea of product line scoping is to identify the set of features and configurations that a product line should include, i.e., offer for configuration purposes. In this context, a major scoping task is to find a balance between commercial relevance and technical feasibility. Traditional product line scoping approaches rely on formal feature models and require a manual analysis which can be quite time-consuming. In this paper, we sketch how Large Language Models (LLMs) can be applied to support product line scoping tasks with a natural language interaction based scoping process. Using a working example from the smarthome domain, we sketch how LLMs can be applied to evaluate different feature model alternatives. We discuss open research challenges regarding the integration of LLMs with product line scoping.
☆ MRGSEM-Sum: An Unsupervised Multi-document Summarization Framework based on Multi-Relational Graphs and Structural Entropy Minimization
The core challenge faced by multi-document summarization is the complexity of relationships among documents and the presence of information redundancy. Graph clustering is an effective paradigm for addressing this issue, as it models the complex relationships among documents using graph structures and reduces information redundancy through clustering, achieving significant research progress. However, existing methods often only consider single-relational graphs and require a predefined number of clusters, which hinders their ability to fully represent rich relational information and adaptively partition sentence groups to reduce redundancy. To overcome these limitations, we propose MRGSEM-Sum, an unsupervised multi-document summarization framework based on multi-relational graphs and structural entropy minimization. Specifically, we construct a multi-relational graph that integrates semantic and discourse relations between sentences, comprehensively modeling the intricate and dynamic connections among sentences across documents. We then apply a two-dimensional structural entropy minimization algorithm for clustering, automatically determining the optimal number of clusters and effectively organizing sentences into coherent groups. Finally, we introduce a position-aware compression mechanism to distill each cluster, generating concise and informative summaries. Extensive experiments on four benchmark datasets (Multi-News, DUC-2004, PubMed, and WikiSum) demonstrate that our approach consistently outperforms previous unsupervised methods and, in several cases, achieves performance comparable to supervised models and large language models. Human evaluation demonstrates that the summaries generated by MRGSEM-Sum exhibit high consistency and coverage, approaching human-level quality.
☆ Holistic Evaluations of Topic Models
Topic models are gaining increasing commercial and academic interest for their ability to summarize large volumes of unstructured text. As unsupervised machine learning methods, they enable researchers to explore data and help general users understand key themes in large text collections. However, they risk becoming a 'black box', where users input data and accept the output as an accurate summary without scrutiny. This article evaluates topic models from a database perspective, drawing insights from 1140 BERTopic model runs. The goal is to identify trade-offs in optimizing model parameters and to reflect on what these findings mean for the interpretation and responsible use of topic models
comment: 10 pages, 6 tables
☆ Text-to-SQL Task-oriented Dialogue Ontology Construction
Large language models (LLMs) are widely used as general-purpose knowledge sources, but they rely on parametric knowledge, limiting explainability and trustworthiness. In task-oriented dialogue (TOD) systems, this separation is explicit, using an external database structured by an explicit ontology to ensure explainability and controllability. However, building such ontologies requires manual labels or supervised training. We introduce TeQoDO: a Text-to-SQL task-oriented Dialogue Ontology construction method. Here, an LLM autonomously builds a TOD ontology from scratch without supervision using its inherent SQL programming capabilities combined with dialogue theory provided in the prompt. We show that TeQoDO outperforms transfer learning approaches, and its constructed ontology is competitive on a downstream dialogue state tracking task. Ablation studies demonstrate the key role of dialogue theory. TeQoDO also scales to allow construction of much larger ontologies, which we investigate on a Wikipedia and ArXiv dataset. We view this as a step towards broader application of ontologies to increase LLM explainability.
☆ MUST-RAG: MUSical Text Question Answering with Retrieval Augmented Generation
Recent advancements in Large language models (LLMs) have demonstrated remarkable capabilities across diverse domains. While they exhibit strong zero-shot performance on various tasks, LLMs' effectiveness in music-related applications remains limited due to the relatively small proportion of music-specific knowledge in their training data. To address this limitation, we propose MusT-RAG, a comprehensive framework based on Retrieval Augmented Generation (RAG) to adapt general-purpose LLMs for text-only music question answering (MQA) tasks. RAG is a technique that provides external knowledge to LLMs by retrieving relevant context information when generating answers to questions. To optimize RAG for the music domain, we (1) propose MusWikiDB, a music-specialized vector database for the retrieval stage, and (2) utilizes context information during both inference and fine-tuning processes to effectively transform general-purpose LLMs into music-specific models. Our experiment demonstrates that MusT-RAG significantly outperforms traditional fine-tuning approaches in enhancing LLMs' music domain adaptation capabilities, showing consistent improvements across both in-domain and out-of-domain MQA benchmarks. Additionally, our MusWikiDB proves substantially more effective than general Wikipedia corpora, delivering superior performance and computational efficiency.
comment: 8 pages, 2 figures
☆ Your Spending Needs Attention: Modeling Financial Habits with Transformers
Predictive models play a crucial role in the financial industry, enabling risk prediction, fraud detection, and personalized recommendations, where slight changes in core model performance can result in billions of dollars in revenue or losses. While financial institutions have access to enormous amounts of user data (e.g., bank transactions, in-app events, and customer support logs), leveraging this data effectively remains challenging due to its complexity and scale. Thus, in many financial institutions, most production models follow traditional machine learning (ML) approaches by converting unstructured data into manually engineered tabular features. Conversely, other domains (e.g., natural language processing) have effectively utilized self-supervised learning (SSL) to learn rich representations from raw data, removing the need for manual feature extraction. In this paper, we investigate using transformer-based representation learning models for transaction data, hypothesizing that these models, trained on massive data, can provide a novel and powerful approach to understanding customer behavior. We propose a new method enabling the use of SSL with transaction data by adapting transformer-based models to handle both textual and structured attributes. Our approach, denoted nuFormer, includes an end-to-end fine-tuning method that integrates user embeddings with existing tabular features. Our experiments demonstrate improvements for large-scale recommendation problems at Nubank. Notably, these gains are achieved solely through enhanced representation learning rather than incorporating new data sources.
☆ Not Just What, But When: Integrating Irregular Intervals to LLM for Sequential Recommendation
Time intervals between purchasing items are a crucial factor in sequential recommendation tasks, whereas existing approaches focus on item sequences and often overlook by assuming the intervals between items are static. However, dynamic intervals serve as a dimension that describes user profiling on not only the history within a user but also different users with the same item history. In this work, we propose IntervalLLM, a novel framework that integrates interval information into LLM and incorporates the novel interval-infused attention to jointly consider information of items and intervals. Furthermore, unlike prior studies that address the cold-start scenario only from the perspectives of users and items, we introduce a new viewpoint: the interval perspective to serve as an additional metric for evaluating recommendation methods on the warm and cold scenarios. Extensive experiments on 3 benchmarks with both traditional- and LLM-based baselines demonstrate that our IntervalLLM achieves not only 4.4% improvements in average but also the best-performing warm and cold scenarios across all users, items, and the proposed interval perspectives. In addition, we observe that the cold scenario from the interval perspective experiences the most significant performance drop among all recommendation methods. This finding underscores the necessity of further research on interval-based cold challenges and our integration of interval information in the realm of sequential recommendation tasks. Our code is available here: https://github.com/sony/ds-research-code/tree/master/recsys25-IntervalLLM.
comment: Accepted by RecSys 2025 short paper track
☆ Are Recommenders Self-Aware? Label-Free Recommendation Performance Estimation via Model Uncertainty
Can a recommendation model be self-aware? This paper investigates the recommender's self-awareness by quantifying its uncertainty, which provides a label-free estimation of its performance. Such self-assessment can enable more informed understanding and decision-making before the recommender engages with any users. To this end, we propose an intuitive and effective method, probability-based List Distribution uncertainty (LiDu). LiDu measures uncertainty by determining the probability that a recommender will generate a certain ranking list based on the prediction distributions of individual items. We validate LiDu's ability to represent model self-awareness in two settings: (1) with a matrix factorization model on a synthetic dataset, and (2) with popular recommendation algorithms on real-world datasets. Experimental results show that LiDu is more correlated with recommendation performance than a series of label-free performance estimators. Additionally, LiDu provides valuable insights into the dynamic inner states of models throughout training and inference. This work establishes an empirical connection between recommendation uncertainty and performance, framing it as a step towards more transparent and self-evaluating recommender systems.
☆ Audio Prototypical Network For Controllable Music Recommendation
Traditional recommendation systems represent user preferences in dense representations obtained through black-box encoder models. While these models often provide strong recommendation performance, they lack interpretability for users, leaving users unable to understand or control the system's modeling of their preferences. This limitation is especially challenging in music recommendation, where user preferences are highly personal and often evolve based on nuanced qualities like mood, genre, tempo, or instrumentation. In this paper, we propose an audio prototypical network for controllable music recommendation. This network expresses user preferences in terms of prototypes representative of semantically meaningful features pertaining to musical qualities. We show that the model obtains competitive recommendation performance compared to popular baseline models while also providing interpretable and controllable user profiles.
comment: Accepted to MLSP2025
☆ Melody-Lyrics Matching with Contrastive Alignment Loss
The connection between music and lyrics is far beyond semantic bonds. Conceptual pairs in the two modalities such as rhythm and rhyme, note duration and syllabic stress, and structure correspondence, raise a compelling yet seldom-explored direction in the field of music information retrieval. In this paper, we present melody-lyrics matching (MLM), a new task which retrieves potential lyrics for a given symbolic melody from text sources. Rather than generating lyrics from scratch, MLM essentially exploits the relationships between melody and lyrics. We propose a self-supervised representation learning framework with contrastive alignment loss for melody and lyrics. This has the potential to leverage the abundance of existing songs with paired melody and lyrics. No alignment annotations are required. Additionally, we introduce sylphone, a novel representation for lyrics at syllable-level activated by phoneme identity and vowel stress. We demonstrate that our method can match melody with coherent and singable lyrics with empirical results and intuitive examples. We open source code and provide matching examples on the companion webpage: https://github.com/changhongw/mlm.
comment: 10 pages, 7 figures, 3 tables. This work has been submitted to the IEEE for possible publication
♻ ☆ RecGPT Technical Report
Recommender systems are among the most impactful applications of artificial intelligence, serving as critical infrastructure connecting users, merchants, and platforms. However, most current industrial systems remain heavily reliant on historical co-occurrence patterns and log-fitting objectives, i.e., optimizing for past user interactions without explicitly modeling user intent. This log-fitting approach often leads to overfitting to narrow historical preferences, failing to capture users' evolving and latent interests. As a result, it reinforces filter bubbles and long-tail phenomena, ultimately harming user experience and threatening the sustainability of the whole recommendation ecosystem. To address these challenges, we rethink the overall design paradigm of recommender systems and propose RecGPT, a next-generation framework that places user intent at the center of the recommendation pipeline. By integrating large language models (LLMs) into key stages of user interest mining, item retrieval, and explanation generation, RecGPT transforms log-fitting recommendation into an intent-centric process. To effectively align general-purpose LLMs to the above domain-specific recommendation tasks at scale, RecGPT incorporates a multi-stage training paradigm, which integrates reasoning-enhanced pre-alignment and self-training evolution, guided by a Human-LLM cooperative judge system. Currently, RecGPT has been fully deployed on the Taobao App. Online experiments demonstrate that RecGPT achieves consistent performance gains across stakeholders: users benefit from increased content diversity and satisfaction, merchants and the platform gain greater exposure and conversions. These comprehensive improvement results across all stakeholders validates that LLM-driven, intent-centric design can foster a more sustainable and mutually beneficial recommendation ecosystem.
♻ ☆ An Ecosystem for Ontology Interoperability
Ontology interoperability is one of the complicated issues that restricts the use of ontologies in knowledge graphs (KGs). Different ontologies with conflicting and overlapping concepts make it difficult to design, develop, and deploy an interoperable ontology for downstream tasks. We propose an ecosystem for ontology interoperability. The ecosystem employs three state-of-the-art semantic techniques in different phases of the ontology engineering life cycle: ontology design patterns (ODPs) in the design phase, ontology matching and versioning (OM\&OV) in the develop phase, and ontology-compliant knowledge graphs (OCKGs) in the deploy phase, to achieve better ontology interoperability and data integration in real-world applications. A case study of sensor observation in the building domain validates the usefulness of the proposed ecosystem.
comment: 5 pages, 8 figures
♻ ☆ Who's important? -- SUnSET: Synergistic Understanding of Stakeholder, Events and Time for Timeline Generation
As news reporting becomes increasingly global and decentralized online, tracking related events across multiple sources presents significant challenges. Existing news summarization methods typically utilizes Large Language Models and Graphical methods on article-based summaries. However, this is not effective since it only considers the textual content of similarly dated articles to understand the gist of the event. To counteract the lack of analysis on the parties involved, it is essential to come up with a novel framework to gauge the importance of stakeholders and the connection of related events through the relevant entities involved. Therefore, we present SUnSET: Synergistic Understanding of Stakeholder, Events and Time for the task of Timeline Summarization (TLS). We leverage powerful Large Language Models (LLMs) to build SET triplets and introduced the use of stakeholder-based ranking to construct a $Relevancy$ metric, which can be extended into general situations. Our experimental results outperform all prior baselines and emerged as the new State-of-the-Art, highlighting the impact of stakeholder information within news article.
♻ ☆ KeyB2: Selecting Key Blocks is Also Important for Long Document Ranking with Large Language Models
The emergence of large language models (LLMs) such as Llama has significantly advanced neural information retrieval (IR). However, applying LLMs to long document reranking remains computationally expensive and may be ineffective. Moreover, the internal behavior of LLMs during document relevance judgment is still underexplored. In this paper, we begin with an in-depth analysis of decoder-only LLM attention patterns and find that several attention heads consistently align with relevance signals, yet this alignment deteriorates as irrelevant content increases. Motivated by this observation, we revisit and extend the block selection paradigm, introducing KeyB2, a scalable reranking framework that combines block pre-selection with powerful decoder-only LLMs. KeyB2 generalizes the selection stage to support BM25, cross-encoder, and bi-encoder, and adapts LLM to compute fine-grained relevance scores. We further introduce a new bi-encoder strategy that performs strongly and efficiently. Extensive experiments on TREC DL 2019/2023 document task, Robust04, and MLDR-zh demonstrate that KeyB2 outperforms baselines including RankLLaMA, RankLLaMA-MaxP/AvgP, and KeyB, achieving new state-of-the-art (SOTA) results on TREC DL 2019 document reranking task. In addition, KeyB2 reduces reranking latency compared with RankLLaMA by over 83% and memory usage by over 74%, positioning it as a practical and effective solution for long document ranking with LLMs.
♻ ☆ RAVine: Reality-Aligned Evaluation for Agentic Search
Agentic search, as a more autonomous and adaptive paradigm of retrieval augmentation, is driving the evolution of intelligent search systems. However, existing evaluation frameworks fail to align well with the goals of agentic search. First, the complex queries commonly used in current benchmarks often deviate from realistic user search scenarios. Second, prior approaches tend to introduce noise when extracting ground truth for end-to-end evaluations, leading to distorted assessments at a fine-grained level. Third, most current frameworks focus solely on the quality of final answers, neglecting the evaluation of the iterative process inherent to agentic search. To address these limitations, we propose RAVine -- a Reality-Aligned eValuation framework for agentic LLMs with search. RAVine targets multi-point queries and long-form answers that better reflect user intents, and introduces an attributable ground truth construction strategy to enhance the accuracy of fine-grained evaluation. Moreover, RAVine examines model's interaction with search tools throughout the iterative process, and accounts for factors of efficiency. We benchmark a series of models using RAVine and derive several insights, which we hope will contribute to advancing the development of agentic search systems. The code and datasets are available at https://github.com/SwordFaith/RAVine.
♻ ☆ Transform Before You Query: A Privacy-Preserving Approach for Vector Retrieval with Embedding Space Alignment
Vector Database (VDB) can efficiently index and search high-dimensional vector embeddings from unstructured data, crucially enabling fast semantic similarity search essential for modern AI applications like generative AI and recommendation systems. Since current VDB service providers predominantly use proprietary black-box models, users are forced to expose raw query text to them via API in exchange for the vector retrieval services. Consequently, if query text involves confidential records from finance or healthcare domains, this mechanism inevitably leads to critical leakage of user's sensitive information. To address this issue, we introduce STEER (\textbf{S}ecure \textbf{T}ransformed \textbf{E}mbedding v\textbf{E}ctor\textbf{ R}etrieval), a private vector retrieval framework that leverages the alignment relationship between the semantic spaces of different embedding models to derive approximate embeddings for the query text. STEER performs the retrieval using the approximate embeddings within the original VDB and requires no modifications to the server side. Our theoretical and experimental analyses demonstrate that STEER effectively safeguards query text privacy while maintaining the retrieval accuracy. Even though approximate embeddings are approximations of the embeddings from proprietary models, they still prevent the providers from recovering the query text through Embedding Inversion Attacks (EIAs). Extensive experimental results show that Recall@100 of STEER can basically achieve a decrease of less than 5\%. Furthermore, even when searching within a text corpus of millions of entries, STEER achieves a Recall@20 accuracy 20\% higher than current baselines.
♻ ☆ TransFR: Transferable Federated Recommendation with Adapter Tuning on Pre-trained Language Models
Federated recommendations (FRs), facilitating multiple local clients to collectively learn a global model without disclosing user private data, have emerged as a prevalent on-device service. In conventional FRs, a dominant paradigm is to utilize discrete identities to represent clients and items, which are then mapped to domain-specific embeddings to participate in model training. Despite considerable performance, we reveal three inherent limitations that can not be ignored in federated settings, i.e., non-transferability across domains, ineffectiveness in cold-start settings, and potential privacy violations during federated training. To this end, we propose a transferable federated recommendation model, TransFR, which delicately incorporates the general capabilities empowered by pre-trained models and the personalized abilities by fine-tuning local private data. Specifically, it first learns domain-agnostic representations of items by exploiting pre-trained models with public textual corpora. To tailor for FR tasks, we further introduce efficient federated adapter-tuning and test-time adaptation mechanisms, which facilitate personalized local adapters for each client by fitting their private data distributions. We theoretically prove the advantages of incorporating adapter tuning in FRs regarding both effectiveness and privacy. Through extensive experiments, we show that our TransFR model surpasses several state-of-the-art FRs on transferability.
♻ ☆ Multi-modal Relational Item Representation Learning for Inferring Substitutable and Complementary Items
We introduce a novel self-supervised multi-modal relational item representation learning framework designed to infer substitutable and complementary items. Existing approaches primarily focus on modeling item-item associations deduced from user behaviors using graph neural networks (GNNs) or leveraging item content information. However, these methods often overlook critical challenges, such as noisy user behavior data and data sparsity due to the long-tailed distribution of these behaviors. In this paper, we propose MMSC, a self-supervised multi-modal relational item representation learning framework to address these challenges. Specifically, MMSC consists of three main components: (1) a multi-modal item representation learning module that leverages a multi-modal foundational model and learns from item metadata, (2) a self-supervised behavior-based representation learning module that denoises and learns from user behavior data, and (3) a hierarchical representation aggregation mechanism that integrates item representations at both the semantic and task levels. Additionally, we leverage LLMs to generate augmented training data, further enhancing the denoising process during training. We conduct extensive experiments on five real-world datasets, showing that MMSC outperforms existing baselines by 26.1% for substitutable recommendation and 39.2% for complementary recommendation. In addition, we empirically show that MMSC is effective in modeling cold-start items.
♻ ☆ Cost-Effective, Low Latency Vector Search with Azure Cosmos DB
Vector indexing enables semantic search over diverse corpora and has become an important interface to databases for both users and AI agents. Efficient vector search requires deep optimizations in database systems. This has motivated a new class of specialized vector databases that optimize for vector search quality and cost. Instead, we argue that a scalable, high-performance, and cost-efficient vector search system can be built inside a cloud-native operational database like Azure Cosmos DB while leveraging the benefits of a distributed database such as high availability, durability, and scale. We do this by deeply integrating DiskANN, a state-of-the-art vector indexing library, inside Azure Cosmos DB NoSQL. This system uses a single vector index per partition stored in existing index trees, and kept in sync with underlying data. It supports < 20ms query latency over an index spanning 10 million vectors, has stable recall over updates, and offers approximately 43x and 12x lower query cost compared to Pinecone and Zilliz serverless enterprise products. It also scales out to billions of vectors via automatic partitioning. This convergent design presents a point in favor of integrating vector indices into operational databases in the context of recent debates on specialized vector databases, and offers a template for vector indexing in other databases.
Artificial Intelligence 150
☆ SUB: Benchmarking CBM Generalization via Synthetic Attribute Substitutions ICCV 2025
Concept Bottleneck Models (CBMs) and other concept-based interpretable models show great promise for making AI applications more transparent, which is essential in fields like medicine. Despite their success, we demonstrate that CBMs struggle to reliably identify the correct concepts under distribution shifts. To assess the robustness of CBMs to concept variations, we introduce SUB: a fine-grained image and concept benchmark containing 38,400 synthetic images based on the CUB dataset. To create SUB, we select a CUB subset of 33 bird classes and 45 concepts to generate images which substitute a specific concept, such as wing color or belly pattern. We introduce a novel Tied Diffusion Guidance (TDG) method to precisely control generated images, where noise sharing for two parallel denoising processes ensures that both the correct bird class and the correct attribute are generated. This novel benchmark enables rigorous evaluation of CBMs and similar interpretable models, contributing to the development of more robust methods. Our code is available at https://github.com/ExplainableML/sub and the dataset at http://huggingface.co/datasets/Jessica-bader/SUB.
comment: Accepted at ICCV 2025
☆ Phi-Ground Tech Report: Advancing Perception in GUI Grounding
With the development of multimodal reasoning models, Computer Use Agents (CUAs), akin to Jarvis from \textit{"Iron Man"}, are becoming a reality. GUI grounding is a core component for CUAs to execute actual actions, similar to mechanical control in robotics, and it directly leads to the success or failure of the system. It determines actions such as clicking and typing, as well as related parameters like the coordinates for clicks. Current end-to-end grounding models still achieve less than 65\% accuracy on challenging benchmarks like ScreenSpot-pro and UI-Vision, indicating they are far from being ready for deployment. % , as a single misclick can result in unacceptable consequences. In this work, we conduct an empirical study on the training of grounding models, examining details from data collection to model training. Ultimately, we developed the \textbf{Phi-Ground} model family, which achieves state-of-the-art performance across all five grounding benchmarks for models under $10B$ parameters in agent settings. In the end-to-end model setting, our model still achieves SOTA results with scores of \textit{\textbf{43.2}} on ScreenSpot-pro and \textit{\textbf{27.2}} on UI-Vision. We believe that the various details discussed in this paper, along with our successes and failures, not only clarify the construction of grounding models but also benefit other perception tasks. Project homepage: \href{https://zhangmiaosen2000.github.io/Phi-Ground/}{https://zhangmiaosen2000.github.io/Phi-Ground/}
☆ SimuRA: Towards General Goal-Oriented Agent via Simulative Reasoning Architecture with LLM-Based World Model
AI agents built on large language models (LLMs) hold enormous promise, but current practice focuses on a one-task-one-agent approach, which not only falls short of scalability and generality, but also suffers from the fundamental limitations of autoregressive LLMs. On the other hand, humans are general agents who reason by mentally simulating the outcomes of their actions and plans. Moving towards a more general and powerful AI agent, we introduce SimuRA, a goal-oriented architecture for generalized agentic reasoning. Based on a principled formulation of optimal agent in any environment, \modelname overcomes the limitations of autoregressive reasoning by introducing a world model for planning via simulation. The generalized world model is implemented using LLM, which can flexibly plan in a wide range of environments using the concept-rich latent space of natural language. Experiments on difficult web browsing tasks show that \modelname improves the success of flight search from 0\% to 32.2\%. World-model-based planning, in particular, shows consistent advantage of up to 124\% over autoregressive planning, demonstrating the advantage of world model simulation as a reasoning paradigm. We are excited about the possibility for training a single, general agent model based on LLMs that can act superintelligently in all environments. To start, we make SimuRA, a web-browsing agent built on \modelname with pretrained LLMs, available as a research demo for public testing.
☆ Consensus-Driven Active Model Selection ICCV 2025
The widespread availability of off-the-shelf machine learning models poses a challenge: which model, of the many available candidates, should be chosen for a given data analysis task? This question of model selection is traditionally answered by collecting and annotating a validation dataset -- a costly and time-intensive process. We propose a method for active model selection, using predictions from candidate models to prioritize the labeling of test data points that efficiently differentiate the best candidate. Our method, CODA, performs consensus-driven active model selection by modeling relationships between classifiers, categories, and data points within a probabilistic framework. The framework uses the consensus and disagreement between models in the candidate pool to guide the label acquisition process, and Bayesian inference to update beliefs about which model is best as more information is collected. We validate our approach by curating a collection of 26 benchmark tasks capturing a range of model selection scenarios. CODA outperforms existing methods for active model selection significantly, reducing the annotation effort required to discover the best model by upwards of 70% compared to the previous state-of-the-art. Code and data are available at https://github.com/justinkay/coda.
comment: ICCV 2025 Highlight. 16 pages, 8 figures
☆ CoT-Self-Instruct: Building high-quality synthetic prompts for reasoning and non-reasoning tasks
We propose CoT-Self-Instruct, a synthetic data generation method that instructs LLMs to first reason and plan via Chain-of-Thought (CoT) based on the given seed tasks, and then to generate a new synthetic prompt of similar quality and complexity for use in LLM training, followed by filtering for high-quality data with automatic metrics. In verifiable reasoning, our synthetic data significantly outperforms existing training datasets, such as s1k and OpenMathReasoning, across MATH500, AMC23, AIME24 and GPQA-Diamond. For non-verifiable instruction-following tasks, our method surpasses the performance of human or standard self-instruct prompts on both AlpacaEval 2.0 and Arena-Hard.
☆ Rule2Text: Natural Language Explanation of Logical Rules in Knowledge Graphs
Knowledge graphs (KGs) often contain sufficient information to support the inference of new facts. Identifying logical rules not only improves the completeness of a knowledge graph but also enables the detection of potential errors, reveals subtle data patterns, and enhances the overall capacity for reasoning and interpretation. However, the complexity of such rules, combined with the unique labeling conventions of each KG, can make them difficult for humans to understand. In this paper, we explore the potential of large language models to generate natural language explanations for logical rules. Specifically, we extract logical rules using the AMIE 3.5.1 rule discovery algorithm from the benchmark dataset FB15k-237 and two large-scale datasets, FB-CVT-REV and FB+CVT-REV. We examine various prompting strategies, including zero- and few-shot prompting, including variable entity types, and chain-of-thought reasoning. We conduct a comprehensive human evaluation of the generated explanations based on correctness, clarity, and hallucination, and also assess the use of large language models as automatic judges. Our results demonstrate promising performance in terms of explanation correctness and clarity, although several challenges remain for future research. All scripts and data used in this study are publicly available at https://github.com/idirlab/KGRule2NL}{https://github.com/idirlab/KGRule2NL.
☆ Distributed AI Agents for Cognitive Underwater Robot Autonomy
Achieving robust cognitive autonomy in robots navigating complex, unpredictable environments remains a fundamental challenge in robotics. This paper presents Underwater Robot Self-Organizing Autonomy (UROSA), a groundbreaking architecture leveraging distributed Large Language Model AI agents integrated within the Robot Operating System 2 (ROS 2) framework to enable advanced cognitive capabilities in Autonomous Underwater Vehicles. UROSA decentralises cognition into specialised AI agents responsible for multimodal perception, adaptive reasoning, dynamic mission planning, and real-time decision-making. Central innovations include flexible agents dynamically adapting their roles, retrieval-augmented generation utilising vector databases for efficient knowledge management, reinforcement learning-driven behavioural optimisation, and autonomous on-the-fly ROS 2 node generation for runtime functional extensibility. Extensive empirical validation demonstrates UROSA's promising adaptability and reliability through realistic underwater missions in simulation and real-world deployments, showing significant advantages over traditional rule-based architectures in handling unforeseen scenarios, environmental uncertainties, and novel mission objectives. This work not only advances underwater autonomy but also establishes a scalable, safe, and versatile cognitive robotics framework capable of generalising to a diverse array of real-world applications.
☆ Seed-Prover: Deep and Broad Reasoning for Automated Theorem Proving
LLMs have demonstrated strong mathematical reasoning abilities by leveraging reinforcement learning with long chain-of-thought, yet they continue to struggle with theorem proving due to the lack of clear supervision signals when solely using natural language. Dedicated domain-specific languages like Lean provide clear supervision via formal verification of proofs, enabling effective training through reinforcement learning. In this work, we propose \textbf{Seed-Prover}, a lemma-style whole-proof reasoning model. Seed-Prover can iteratively refine its proof based on Lean feedback, proved lemmas, and self-summarization. To solve IMO-level contest problems, we design three test-time inference strategies that enable both deep and broad reasoning. Seed-Prover proves $78.1\%$ of formalized past IMO problems, saturates MiniF2F, and achieves over 50\% on PutnamBench, outperforming the previous state-of-the-art by a large margin. To address the lack of geometry support in Lean, we introduce a geometry reasoning engine \textbf{Seed-Geometry}, which outperforms previous formal geometry engines. We use these two systems to participate in IMO 2025 and fully prove 5 out of 6 problems. This work represents a significant advancement in automated mathematical reasoning, demonstrating the effectiveness of formal verification with long chain-of-thought reasoning.
☆ Enhanced Velocity Field Modeling for Gaussian Video Reconstruction
High-fidelity 3D video reconstruction is essential for enabling real-time rendering of dynamic scenes with realistic motion in virtual and augmented reality (VR/AR). The deformation field paradigm of 3D Gaussian splatting has achieved near-photorealistic results in video reconstruction due to the great representation capability of deep deformation networks. However, in videos with complex motion and significant scale variations, deformation networks often overfit to irregular Gaussian trajectories, leading to suboptimal visual quality. Moreover, the gradient-based densification strategy designed for static scene reconstruction proves inadequate to address the absence of dynamic content. In light of these challenges, we propose a flow-empowered velocity field modeling scheme tailored for Gaussian video reconstruction, dubbed FlowGaussian-VR. It consists of two core components: a velocity field rendering (VFR) pipeline which enables optical flow-based optimization, and a flow-assisted adaptive densification (FAD) strategy that adjusts the number and size of Gaussians in dynamic regions. We validate our model's effectiveness on multi-view dynamic reconstruction and novel view synthesis with multiple real-world datasets containing challenging motion scenarios, demonstrating not only notable visual improvements (over 2.5 dB gain in PSNR) and less blurry artifacts in dynamic textures, but also regularized and trackable per-Gaussian trajectories.
comment: 17 pages, 8 figures
☆ TextQuests: How Good are LLMs at Text-Based Video Games?
Evaluating AI agents within complex, interactive environments that mirror real-world challenges is critical for understanding their practical capabilities. While existing agent benchmarks effectively assess skills like tool use or performance on structured tasks, they often do not fully capture an agent's ability to operate autonomously in exploratory environments that demand sustained, self-directed reasoning over a long and growing context. To spur the development of agents capable of more robust intrinsic reasoning over long horizons, we introduce TextQuests, a benchmark based on the Infocom suite of interactive fiction games. These text-based adventures, which can take human players over 30 hours and require hundreds of precise actions to solve, serve as an effective proxy for evaluating AI agents on focused, stateful tasks. The benchmark is specifically designed to assess an LLM agent's capacity for self-contained problem-solving by precluding the use of external tools, thereby focusing on intrinsic long-context reasoning capabilities in an exploratory environment characterized by the need for trial-and-error learning and sustained problem-solving within a single interactive session. We release TextQuests at https://textquests.ai.
☆ Scalable Multi-Task Reinforcement Learning for Generalizable Spatial Intelligence in Visuomotor Agents
While Reinforcement Learning (RL) has achieved remarkable success in language modeling, its triumph hasn't yet fully translated to visuomotor agents. A primary challenge in RL models is their tendency to overfit specific tasks or environments, thereby hindering the acquisition of generalizable behaviors across diverse settings. This paper provides a preliminary answer to this challenge by demonstrating that RL-finetuned visuomotor agents in Minecraft can achieve zero-shot generalization to unseen worlds. Specifically, we explore RL's potential to enhance generalizable spatial reasoning and interaction capabilities in 3D worlds. To address challenges in multi-task RL representation, we analyze and establish cross-view goal specification as a unified multi-task goal space for visuomotor policies. Furthermore, to overcome the significant bottleneck of manual task design, we propose automated task synthesis within the highly customizable Minecraft environment for large-scale multi-task RL training, and we construct an efficient distributed RL framework to support this. Experimental results show RL significantly boosts interaction success rates by $4\times$ and enables zero-shot generalization of spatial reasoning across diverse environments, including real-world settings. Our findings underscore the immense potential of RL training in 3D simulated environments, especially those amenable to large-scale task generation, for significantly advancing visuomotor agents' spatial reasoning.
☆ A survey of multi-agent geosimulation methodologies: from ABM to LLM
We provide a comprehensive examination of agent-based approaches that codify the principles and linkages underlying multi-agent systems, simulations, and information systems. Based on two decades of study, this paper confirms a framework intended as a formal specification for geosimulation platforms. Our findings show that large language models (LLMs) can be effectively incorporated as agent components if they follow a structured architecture specific to fundamental agent activities such as perception, memory, planning, and action. This integration is precisely consistent with the architecture that we formalize, providing a solid platform for next-generation geosimulation systems.
comment: 20 pages, 1 table
☆ villa-X: Enhancing Latent Action Modeling in Vision-Language-Action Models
Visual-Language-Action (VLA) models have emerged as a popular paradigm for learning robot manipulation policies that can follow language instructions and generalize to novel scenarios. Recent work has begun to explore the incorporation of latent actions, an abstract representation of visual change between two frames, into VLA pre-training. In this paper, we introduce villa-X, a novel Visual-Language-Latent-Action (ViLLA) framework that advances latent action modeling for learning generalizable robot manipulation policies. Our approach improves both how latent actions are learned and how they are incorporated into VLA pre-training. Together, these contributions enable villa-X to achieve superior performance across simulated environments including SIMPLER and LIBERO, as well as on two real-world robot setups including gripper and dexterous hand manipulation. We believe the ViLLA paradigm holds significant promise, and that our villa-X provides a strong foundation for future research.
comment: Project page: https://aka.ms/villa-x
☆ Automating AI Failure Tracking: Semantic Association of Reports in AI Incident Database AI 2025
Artificial Intelligence (AI) systems are transforming critical sectors such as healthcare, finance, and transportation, enhancing operational efficiency and decision-making processes. However, their deployment in high-stakes domains has exposed vulnerabilities that can result in significant societal harm. To systematically study and mitigate these risk, initiatives like the AI Incident Database (AIID) have emerged, cataloging over 3,000 real-world AI failure reports. Currently, associating a new report with the appropriate AI Incident relies on manual expert intervention, limiting scalability and delaying the identification of emerging failure patterns. To address this limitation, we propose a retrieval-based framework that automates the association of new reports with existing AI Incidents through semantic similarity modeling. We formalize the task as a ranking problem, where each report-comprising a title and a full textual description-is compared to previously documented AI Incidents based on embedding cosine similarity. Benchmarking traditional lexical methods, cross-encoder architectures, and transformer-based sentence embedding models, we find that the latter consistently achieve superior performance. Our analysis further shows that combining titles and descriptions yields substantial improvements in ranking accuracy compared to using titles alone. Moreover, retrieval performance remains stable across variations in description length, highlighting the robustness of the framework. Finally, we find that retrieval performance consistently improves as the training set expands. Our approach provides a scalable and efficient solution for supporting the maintenance of the AIID.
comment: Accepted at the 28th European Conference on Artificial Intelligence (ECAI 2025)
☆ Personalized Education with Ranking Alignment Recommendation
Personalized question recommendation aims to guide individual students through questions to enhance their mastery of learning targets. Most previous methods model this task as a Markov Decision Process and use reinforcement learning to solve, but they struggle with efficient exploration, failing to identify the best questions for each student during training. To address this, we propose Ranking Alignment Recommendation (RAR), which incorporates collaborative ideas into the exploration mechanism, enabling more efficient exploration within limited training episodes. Experiments show that RAR effectively improves recommendation performance, and our framework can be applied to any RL-based question recommender. Our code is available in https://github.com/wuming29/RAR.git.
☆ Efficient Masked Attention Transformer for Few-Shot Classification and Segmentation
Few-shot classification and segmentation (FS-CS) focuses on jointly performing multi-label classification and multi-class segmentation using few annotated examples. Although the current state of the art (SOTA) achieves high accuracy in both tasks, it struggles with small objects. To overcome this, we propose the Efficient Masked Attention Transformer (EMAT), which improves classification and segmentation accuracy, especially for small objects. EMAT introduces three modifications: a novel memory-efficient masked attention mechanism, a learnable downscaling strategy, and parameter-efficiency enhancements. EMAT outperforms all FS-CS methods on the PASCAL-5$^i$ and COCO-20$^i$ datasets, using at least four times fewer trainable parameters. Moreover, as the current FS-CS evaluation setting discards available annotations, despite their costly collection, we introduce two novel evaluation settings that consider these annotations to better reflect practical scenarios.
comment: Accepted for GCPR 2025. Project page: https://visinf.github.io/emat
☆ OptiGradTrust: Byzantine-Robust Federated Learning with Multi-Feature Gradient Analysis and Reinforcement Learning-Based Trust Weighting
Federated Learning (FL) enables collaborative model training across distributed medical institutions while preserving patient privacy, but remains vulnerable to Byzantine attacks and statistical heterogeneity. We present OptiGradTrust, a comprehensive defense framework that evaluates gradient updates through a novel six-dimensional fingerprint including VAE reconstruction error, cosine similarity metrics, $L_2$ norm, sign-consistency ratio, and Monte Carlo Shapley value, which drive a hybrid RL-attention module for adaptive trust scoring. To address convergence challenges under data heterogeneity, we develop FedBN-Prox (FedBN-P), combining Federated Batch Normalization with proximal regularization for optimal accuracy-convergence trade-offs. Extensive evaluation across MNIST, CIFAR-10, and Alzheimer's MRI datasets under various Byzantine attack scenarios demonstrates significant improvements over state-of-the-art defenses, achieving up to +1.6 percentage points over FLGuard under non-IID conditions while maintaining robust performance against diverse attack patterns through our adaptive learning approach.
☆ MemoCue: Empowering LLM-Based Agents for Human Memory Recall via Strategy-Guided Querying
Agent-assisted memory recall is one critical research problem in the field of human-computer interaction. In conventional methods, the agent can retrieve information from its equipped memory module to help the person recall incomplete or vague memories. The limited size of memory module hinders the acquisition of complete memories and impacts the memory recall performance in practice. Memory theories suggest that the person's relevant memory can be proactively activated through some effective cues. Inspired by this, we propose a novel strategy-guided agent-assisted memory recall method, allowing the agent to transform an original query into a cue-rich one via the judiciously designed strategy to help the person recall memories. To this end, there are two key challenges. (1) How to choose the appropriate recall strategy for diverse forgetting scenarios with distinct memory-recall characteristics? (2) How to obtain the high-quality responses leveraging recall strategies, given only abstract and sparsely annotated strategy patterns? To address the challenges, we propose a Recall Router framework. Specifically, we design a 5W Recall Map to classify memory queries into five typical scenarios and define fifteen recall strategy patterns across the corresponding scenarios. We then propose a hierarchical recall tree combined with the Monte Carlo Tree Search algorithm to optimize the selection of strategy and the generation of strategy responses. We construct an instruction tuning dataset and fine-tune multiple open-source large language models (LLMs) to develop MemoCue, an agent that excels in providing memory-inspired responses. Experiments on three representative datasets show that MemoCue surpasses LLM-based methods by 17.74% in recall inspiration. Further human evaluation highlights its advantages in memory-recall applications.
☆ L-GTA: Latent Generative Modeling for Time Series Augmentation
Data augmentation is gaining importance across various aspects of time series analysis, from forecasting to classification and anomaly detection tasks. We introduce the Latent Generative Transformer Augmentation (L-GTA) model, a generative approach using a transformer-based variational recurrent autoencoder. This model uses controlled transformations within the latent space of the model to generate new time series that preserve the intrinsic properties of the original dataset. L-GTA enables the application of diverse transformations, ranging from simple jittering to magnitude warping, and combining these basic transformations to generate more complex synthetic time series datasets. Our evaluation of several real-world datasets demonstrates the ability of L-GTA to produce more reliable, consistent, and controllable augmented data. This translates into significant improvements in predictive accuracy and similarity measures compared to direct transformation methods.
☆ LLM-Based Identification of Infostealer Infection Vectors from Screenshots: The Case of Aurora
Infostealers exfiltrate credentials, session cookies, and sensitive data from infected systems. With over 29 million stealer logs reported in 2024, manual analysis and mitigation at scale are virtually unfeasible/unpractical. While most research focuses on proactive malware detection, a significant gap remains in leveraging reactive analysis of stealer logs and their associated artifacts. Specifically, infection artifacts such as screenshots, image captured at the point of compromise, are largely overlooked by the current literature. This paper introduces a novel approach leveraging Large Language Models (LLMs), more specifically gpt-4o-mini, to analyze infection screenshots to extract potential Indicators of Compromise (IoCs), map infection vectors, and track campaigns. Focusing on the Aurora infostealer, we demonstrate how LLMs can process screenshots to identify infection vectors, such as malicious URLs, installer files, and exploited software themes. Our method extracted 337 actionable URLs and 246 relevant files from 1000 screenshots, revealing key malware distribution methods and social engineering tactics. By correlating extracted filenames, URLs, and infection themes, we identified three distinct malware campaigns, demonstrating the potential of LLM-driven analysis for uncovering infection workflows and enhancing threat intelligence. By shifting malware analysis from traditional log-based detection methods to a reactive, artifact-driven approach that leverages infection screenshots, this research presents a scalable method for identifying infection vectors and enabling early intervention.
☆ Deep Learning-based Prediction of Clinical Trial Enrollment with Uncertainty Estimates
Clinical trials are a systematic endeavor to assess the safety and efficacy of new drugs or treatments. Conducting such trials typically demands significant financial investment and meticulous planning, highlighting the need for accurate predictions of trial outcomes. Accurately predicting patient enrollment, a key factor in trial success, is one of the primary challenges during the planning phase. In this work, we propose a novel deep learning-based method to address this critical challenge. Our method, implemented as a neural network model, leverages pre-trained language models (PLMs) to capture the complexities and nuances of clinical documents, transforming them into expressive representations. These representations are then combined with encoded tabular features via an attention mechanism. To account for uncertainties in enrollment prediction, we enhance the model with a probabilistic layer based on the Gamma distribution, which enables range estimation. We apply the proposed model to predict clinical trial duration, assuming site-level enrollment follows a Poisson-Gamma process. We carry out extensive experiments on real-world clinical trial data, and show that the proposed method can effectively predict the number of patients enrolled at a number of sites for a given clinical trial, outperforming established baseline models.
☆ Can LLM-Reasoning Models Replace Classical Planning? A Benchmark Study
Recent advancements in Large Language Models have sparked interest in their potential for robotic task planning. While these models demonstrate strong generative capabilities, their effectiveness in producing structured and executable plans remains uncertain. This paper presents a systematic evaluation of a broad spectrum of current state of the art language models, each directly prompted using Planning Domain Definition Language domain and problem files, and compares their planning performance with the Fast Downward planner across a variety of benchmarks. In addition to measuring success rates, we assess how faithfully the generated plans translate into sequences of actions that can actually be executed, identifying both strengths and limitations of using these models in this setting. Our findings show that while the models perform well on simpler planning tasks, they continue to struggle with more complex scenarios that require precise resource management, consistent state tracking, and strict constraint compliance. These results underscore fundamental challenges in applying language models to robotic planning in real world environments. By outlining the gaps that emerge during execution, we aim to guide future research toward combined approaches that integrate language models with classical planners in order to enhance the reliability and scalability of planning in autonomous robotics.
☆ Semantic Chain-of-Trust: Autonomous Trust Orchestration for Collaborator Selection via Hypergraph-Aided Agentic AI
In collaborative systems, the effective completion of tasks hinges on task-specific trust evaluations of potential devices for distributed collaboration. However, the complexity of tasks, the spatiotemporal dynamism of distributed device resources, and the inevitable assessment overhead dramatically increase the complexity and resource consumption of the trust evaluation process. As a result, ill-timed or overly frequent trust evaluations can reduce utilization rate of constrained resources, negatively affecting collaborative task execution. To address this challenge, this paper proposes an autonomous trust orchestration method based on a new concept of semantic chain-of-trust. Our technique employs agentic AI and hypergraph to establish and maintain trust relationships among devices. By leveraging its strengths in autonomous perception, task decomposition, and semantic reasoning, we propose agentic AI to perceive device states and autonomously perform trust evaluations of collaborators based on historical performance data only during device idle periods, thereby enabling efficient utilization of distributed resources. In addition, agentic AI performs task-specific trust evaluations on collaborator resources by analyzing the alignment between resource capabilities and task requirements. Moreover, by maintaining a trust hypergraph embedded with trust semantics for each device, agentic AI enables hierarchical management of collaborators and identifies collaborators requiring trust evaluation based on trust semantics, thereby achieving a balance between overhead and trust accuracy. Furthermore, local trust hypergraphs from multiple devices can be chained together to support multi-hop collaboration, enabling efficient coordination in large-scale systems. Experimental results demonstrate that the proposed method achieves resource-efficient trust evaluation.
☆ DICE: Dynamic In-Context Example Selection in LLM Agents via Efficient Knowledge Transfer
Large language model-based agents, empowered by in-context learning (ICL), have demonstrated strong capabilities in complex reasoning and tool-use tasks. However, existing works have shown that the effectiveness of ICL is highly sensitive to the choice of demonstrations, with suboptimal examples often leading to unstable or degraded performance. While prior work has explored example selection, including in some agentic or multi-step settings, existing approaches typically rely on heuristics or task-specific designs and lack a general, theoretically grounded criterion for what constitutes an effective demonstration across reasoning steps. Therefore, it is non-trivial to develop a principled, general-purpose method for selecting demonstrations that consistently benefit agent performance. In this paper, we address this challenge with DICE, Dynamic In-Context Example Selection for LLM Agents, a theoretically grounded ICL framework for agentic tasks that selects the most relevant demonstrations at each step of reasoning. Our approach decomposes demonstration knowledge into transferable and non-transferable components through a causal lens, showing how the latter can introduce spurious dependencies that impair generalization. We further propose a stepwise selection criterion with a formal guarantee of improved agent performance. Importantly, DICE is a general, framework-agnostic solution that can be integrated as a plug-in module into existing agentic frameworks without any additional training cost. Extensive experiments across diverse domains demonstrate our method's effectiveness and generality, highlighting the importance of principled, context-aware demo selection for robust and efficient LLM agents.
☆ ART: Adaptive Relation Tuning for Generalized Relation Prediction ICCV 2025
Visual relation detection (VRD) is the task of identifying the relationships between objects in a scene. VRD models trained solely on relation detection data struggle to generalize beyond the relations on which they are trained. While prompt tuning has been used to adapt vision-language models (VLMs) for VRD, it uses handcrafted prompts and struggles with novel or complex relations. We argue that instruction tuning offers a more effective solution by fine-tuning VLMs on diverse instructional data. We thus introduce ART, an Adaptive Relation Tuning framework that adapts VLMs for VRD through instruction tuning and strategic instance selection. By converting VRD datasets into an instruction tuning format and employing an adaptive sampling algorithm, ART directs the VLM to focus on informative relations while maintaining generalizability. Specifically, we focus on the relation classification, where subject-object boxes are given and the model predicts the predicate between them. We tune on a held-in set and evaluate across multiple held-out datasets of varying complexity. Our approach strongly improves over its baselines and can infer unseen relation concepts, a capability absent in mainstream VRD methods. We demonstrate ART's practical value by using the predicted relations for segmenting complex scenes.
comment: Accepted for publication in ICCV 2025
☆ A Unified Perception-Language-Action Framework for Adaptive Autonomous Driving
Autonomous driving systems face significant challenges in achieving human-like adaptability, robustness, and interpretability in complex, open-world environments. These challenges stem from fragmented architectures, limited generalization to novel scenarios, and insufficient semantic extraction from perception. To address these limitations, we propose a unified Perception-Language-Action (PLA) framework that integrates multi-sensor fusion (cameras, LiDAR, radar) with a large language model (LLM)-augmented Vision-Language-Action (VLA) architecture, specifically a GPT-4.1-powered reasoning core. This framework unifies low-level sensory processing with high-level contextual reasoning, tightly coupling perception with natural language-based semantic understanding and decision-making to enable context-aware, explainable, and safety-bounded autonomous driving. Evaluations on an urban intersection scenario with a construction zone demonstrate superior performance in trajectory tracking, speed prediction, and adaptive planning. The results highlight the potential of language-augmented cognitive frameworks for advancing the safety, interpretability, and scalability of autonomous driving systems.
☆ From LLMs to Edge: Parameter-Efficient Fine-Tuning on Edge Devices
Parameter-efficient fine-tuning (PEFT) methods reduce the computational costs of updating deep learning models by minimizing the number of additional parameters used to adapt a model to a down- stream task. While extensively researched in large language models (LLMs), their application to smaller models used on edge devices, such as convolutional neural networks, remains underexplored. This paper benchmarks and analyzes popular PEFT methods on convolutional architectures typically deployed in resource-constrained edge environments. We evaluate LoRA, DoRA, and GaLore for updating standard and depthwise convolutional architectures to handle distribution shifts and accommodate unseen classes. We utilize recently proposed PyTorch profilers to compare the updated model performance and computational costs of these PEFT methods with traditional fine-tuning approaches. With resource efficiency in mind, we investigate their update behavior across different rank dimensions. We find that the evaluated PEFT methods are only half as memory-efficient when applied to depthwise-separable convolution architectures, compared to their efficiency with LLMs. Conversely, when targeting convolu- tional architectures optimized for edge deployment, adapter-based PEFT methods can reduce floating point operations (FLOPs) during model updates by up to 95%. These insights offer valuable guidance for selecting PEFT methods based on hardware constraints, performance requirements, and application needs. Our code is online.
☆ Transparent AI: The Case for Interpretability and Explainability
As artificial intelligence systems increasingly inform high-stakes decisions across sectors, transparency has become foundational to responsible and trustworthy AI implementation. Leveraging our role as a leading institute in advancing AI research and enabling industry adoption, we present key insights and lessons learned from practical interpretability applications across diverse domains. This paper offers actionable strategies and implementation guidance tailored to organizations at varying stages of AI maturity, emphasizing the integration of interpretability as a core design principle rather than a retrospective add-on.
☆ MECAT: A Multi-Experts Constructed Benchmark for Fine-Grained Audio Understanding Tasks
While large audio-language models have advanced open-ended audio understanding, they still fall short of nuanced human-level comprehension. This gap persists largely because current benchmarks, limited by data annotations and evaluation metrics, fail to reliably distinguish between generic and highly detailed model outputs. To this end, this work introduces MECAT, a Multi-Expert Constructed Benchmark for Fine-Grained Audio Understanding Tasks. Generated via a pipeline that integrates analysis from specialized expert models with Chain-of-Thought large language model reasoning, MECAT provides multi-perspective, fine-grained captions and open-set question-answering pairs. The benchmark is complemented by a novel metric: DATE (Discriminative-Enhanced Audio Text Evaluation). This metric penalizes generic terms and rewards detailed descriptions by combining single-sample semantic similarity with cross-sample discriminability. A comprehensive evaluation of state-of-the-art audio models is also presented, providing new insights into their current capabilities and limitations. The data and code are available at https://github.com/xiaomi-research/mecat
comment: 9 main pages, 5 figures, 3 tables, and 14 appendix pages
☆ I Am Big, You Are Little; I Am Right, You Are Wrong ICCV 2025
Machine learning for image classification is an active and rapidly developing field. With the proliferation of classifiers of different sizes and different architectures, the problem of choosing the right model becomes more and more important. While we can assess a model's classification accuracy statistically, our understanding of the way these models work is unfortunately limited. In order to gain insight into the decision-making process of different vision models, we propose using minimal sufficient pixels sets to gauge a model's `concentration': the pixels that capture the essence of an image through the lens of the model. By comparing position, overlap, and size of sets of pixels, we identify that different architectures have statistically different concentration, in both size and position. In particular, ConvNext and EVA models differ markedly from the others. We also identify that images which are misclassified are associated with larger pixels sets than correct classifications.
comment: 10 pages, International Conference on Computer Vision, ICCV 2025
☆ Causal Identification of Sufficient, Contrastive and Complete Feature Sets in Image Classification
Existing algorithms for explaining the outputs of image classifiers are based on a variety of approaches and produce explanations that lack formal rigor. On the other hand, logic-based explanations are formally and rigorously defined but their computability relies on strict assumptions about the model that do not hold on image classifiers. In this paper, we show that causal explanations, in addition to being formally and rigorously defined, enjoy the same formal properties as logic-based ones, while still lending themselves to black-box algorithms and being a natural fit for image classifiers. We prove formal properties of causal explanations and introduce contrastive causal explanations for image classifiers. Moreover, we augment the definition of explanation with confidence awareness and introduce complete causal explanations: explanations that are classified with exactly the same confidence as the original image. We implement our definitions, and our experimental results demonstrate that different models have different patterns of sufficiency, contrastiveness, and completeness. Our algorithms are efficiently computable, taking on average 6s per image on a ResNet50 model to compute all types of explanations, and are totally black-box, needing no knowledge of the model, no access to model internals, no access to gradient, nor requiring any properties, such as monotonicity, of the model.
comment: 13 pages, 13 figures, appendix included
☆ Digital literacy interventions can boost humans in discerning deepfakes
Deepfakes, i.e., images generated by artificial intelligence (AI), can erode trust in institutions and compromise election outcomes, as people often struggle to discern real images from deepfakes. Improving digital literacy can help address these challenges, yet scalable and effective approaches remain largely unexplored. Here, we compare the efficacy of five digital literacy interventions to boost people's ability to discern deepfakes: (1) textual guidance on common indicators of deepfakes; (2) visual demonstrations of these indicators; (3) a gamified exercise for identifying deepfakes; (4) implicit learning through repeated exposure and feedback; and (5) explanations of how deepfakes are generated with the help of AI. We conducted an experiment with N=1,200 participants from the United States to test the immediate and long-term effectiveness of our interventions. Our results show that our interventions can boost deepfake discernment by up to 13 percentage points while maintaining trust in real images. Altogether, our approach is scalable, suitable for diverse populations, and highly effective for boosting deepfake detection while maintaining trust in truthful information.
☆ Causal Reasoning in Pieces: Modular In-Context Learning for Causal Discovery
Causal inference remains a fundamental challenge for large language models. Recent advances in internal reasoning with large language models have sparked interest in whether state-of-the-art reasoning models can robustly perform causal discovery-a task where conventional models often suffer from severe overfitting and near-random performance under data perturbations. We study causal discovery on the Corr2Cause benchmark using the emergent OpenAI's o-series and DeepSeek-R model families and find that these reasoning-first architectures achieve significantly greater native gains than prior approaches. To capitalize on these strengths, we introduce a modular in-context pipeline inspired by the Tree-of-Thoughts and Chain-of-Thoughts methodologies, yielding nearly three-fold improvements over conventional baselines. We further probe the pipeline's impact by analyzing reasoning chain length, complexity, and conducting qualitative and quantitative comparisons between conventional and reasoning models. Our findings suggest that while advanced reasoning models represent a substantial leap forward, carefully structured in-context frameworks are essential to maximize their capabilities and offer a generalizable blueprint for causal discovery across diverse domains.
☆ Automated Feedback on Student-Generated UML and ER Diagrams Using Large Language Models
UML and ER diagrams are foundational in computer science education but come with challenges for learners due to the need for abstract thinking, contextual understanding, and mastery of both syntax and semantics. These complexities are difficult to address through traditional teaching methods, which often struggle to provide scalable, personalized feedback, especially in large classes. We introduce DUET (Diagrammatic UML & ER Tutor), a prototype of an LLM-based tool, which converts a reference diagram and a student-submitted diagram into a textual representation and provides structured feedback based on the differences. It uses a multi-stage LLM pipeline to compare diagrams and generate reflective feedback. Furthermore, the tool enables analytical insights for educators, aiming to foster self-directed learning and inform instructional strategies. We evaluated DUET through semi-structured interviews with six participants, including two educators and four teaching assistants. They identified strengths such as accessibility, scalability, and learning support alongside limitations, including reliability and potential misuse. Participants also suggested potential improvements, such as bulk upload functionality and interactive clarification features. DUET presents a promising direction for integrating LLMs into modeling education and offers a foundation for future classroom integration and empirical evaluation.
comment: Learnersourcing: Student-generated Content @ Scale Workshop at L@S 2025
☆ Role-Aware Language Models for Secure and Contextualized Access Control in Organizations
As large language models (LLMs) are increasingly deployed in enterprise settings, controlling model behavior based on user roles becomes an essential requirement. Existing safety methods typically assume uniform access and focus on preventing harmful or toxic outputs, without addressing role-specific access constraints. In this work, we investigate whether LLMs can be fine-tuned to generate responses that reflect the access privileges associated with different organizational roles. We explore three modeling strategies: a BERT-based classifier, an LLM-based classifier, and role-conditioned generation. To evaluate these approaches, we construct two complementary datasets. The first is adapted from existing instruction-tuning corpora through clustering and role labeling, while the second is synthetically generated to reflect realistic, role-sensitive enterprise scenarios. We assess model performance across varying organizational structures and analyze robustness to prompt injection, role mismatch, and jailbreak attempts.
☆ Mitigating Resolution-Drift in Federated Learning: Case of Keypoint Detection
The Federated Learning (FL) approach enables effective learning across distributed systems, while preserving user data privacy. To date, research has primarily focused on addressing statistical heterogeneity and communication efficiency, through which FL has achieved success in classification tasks. However, its application to non-classification tasks, such as human pose estimation, remains underexplored. This paper identifies and investigates a critical issue termed ``resolution-drift,'' where performance degrades significantly due to resolution variability across clients. Unlike class-level heterogeneity, resolution drift highlights the importance of resolution as another axis of not independent or identically distributed (non-IID) data. To address this issue, we present resolution-adaptive federated learning (RAF), a method that leverages heatmap-based knowledge distillation. Through multi-resolution knowledge distillation between higher-resolution outputs (teachers) and lower-resolution outputs (students), our approach enhances resolution robustness without overfitting. Extensive experiments and theoretical analysis demonstrate that RAF not only effectively mitigates resolution drift and achieves significant performance improvements, but also can be integrated seamlessly into existing FL frameworks. Furthermore, although this paper focuses on human pose estimation, our t-SNE analysis reveals distinct characteristics between classification and high-resolution representation tasks, supporting the generalizability of RAF to other tasks that rely on preserving spatial detail.
☆ KLAN: Kuaishou Landing-page Adaptive Navigator
Modern online platforms configure multiple pages to accommodate diverse user needs. This multi-page architecture inherently establishes a two-stage interaction paradigm between the user and the platform: (1) Stage I: page navigation, navigating users to a specific page and (2) Stage II: in-page interaction, where users engage with customized content within the specific page. While the majority of research has been focusing on the sequential recommendation task that improves users' feedback in Stage II, there has been little investigation on how to achieve better page navigation in Stage I. To fill this gap, we formally define the task of Personalized Landing Page Modeling (PLPM) into the field of recommender systems: Given a user upon app entry, the goal of PLPM is to proactively select the most suitable landing page from a set of candidates (e.g., functional tabs, content channels, or aggregation pages) to optimize the short-term PDR metric and the long-term user engagement and satisfaction metrics, while adhering to industrial constraints. Additionally, we propose KLAN (Kuaishou Landing-page Adaptive Navigator), a hierarchical solution framework designed to provide personalized landing pages under the formulation of PLPM. KLAN comprises three key components: (1) KLAN-ISP captures inter-day static page preference; (2) KLAN-IIT captures intra-day dynamic interest transitions and (3) KLAN-AM adaptively integrates both components for optimal navigation decisions. Extensive online experiments conducted on the Kuaishou platform demonstrate the effectiveness of KLAN, obtaining +0.205% and +0.192% improvements on in Daily Active Users (DAU) and user Lifetime (LT). Our KLAN is ultimately deployed on the online platform at full traffic, serving hundreds of millions of users. To promote further research in this important area, we will release our dataset and code upon paper acceptance.
comment: We propose PLPM, a new task for selecting optimal landing pages upon user entry. Our solution, KLAN, models static and dynamic user interests and is successfully deployed on Kuaishou, improving DAU and user lifetime
☆ Machine learning and machine learned prediction in chest X-ray images
Machine learning and artificial intelligence are fast-growing fields of research in which data is used to train algorithms, learn patterns, and make predictions. This approach helps to solve seemingly intricate problems with significant accuracy without explicit programming by recognizing complex relationships in data. Taking an example of 5824 chest X-ray images, we implement two machine learning algorithms, namely, a baseline convolutional neural network (CNN) and a DenseNet-121, and present our analysis in making machine-learned predictions in predicting patients with ailments. Both baseline CNN and DenseNet-121 perform very well in the binary classification problem presented in this work. Gradient-weighted class activation mapping shows that DenseNet-121 correctly focuses on essential parts of the input chest X-ray images in its decision-making more than the baseline CNN.
comment: 8 pages, 7 figures
☆ Self-Foveate: Enhancing Diversity and Difficulty of Synthesized Instructions from Unsupervised Text via Multi-Level Foveation ACL 2025
Large language models (LLMs) with instruction following capabilities have demonstrated impressive problem-solving abilities. While synthesizing instructional data from unsupervised text has become a common approach for training such models, conventional methods rely heavily on human effort for data annotation. Although existing automated synthesis paradigms have alleviated this constraint, they still exhibit significant limitations in ensuring adequate diversity and difficulty of synthesized instructions. To address these challenges, we propose Self-Foveate, an innovative LLM-driven method for instruction synthesis. This approach introduces a "Micro-Scatter-Macro" multi-level foveation methodology that effectively guides the LLM to deeply excavate fine-grained information embedded in unsupervised text, thereby enhancing both the diversity and difficulty of synthesized instructions. Comprehensive experiments across multiple unsupervised corpora and diverse model architectures validate the effectiveness and superiority of our proposed method. We publicly release our data and codes: https://github.com/Mubuky/Self-Foveate
comment: Accepted by Findings of ACL 2025
☆ Chatting with your ERP: A Recipe
This paper presents the design, implementation, and evaluation behind a Large Language Model (LLM) agent that chats with an industrial production-grade ERP system. The agent is capable of interpreting natural language queries and translating them into executable SQL statements, leveraging open-weight LLMs. A novel dual-agent architecture combining reasoning and critique stages was proposed to improve query generation reliability.
comment: 11 pages, includes 3 tables summarizing schema and model performance. Submitted on July 31, 2025. Targets integration of LLM agents with ERP systems using open-weight models and Ollama deployment
☆ AGA: An adaptive group alignment framework for structured medical cross-modal representation learning
Learning medical visual representations from paired images and reports is a promising direction in representation learning. However, current vision-language pretraining methods in the medical domain often simplify clinical reports into single entities or fragmented tokens, ignoring their inherent structure. In addition, contrastive learning frameworks typically depend on large quantities of hard negative samples, which is impractical for small-scale medical datasets. To tackle these challenges, we propose Adaptive Grouped Alignment (AGA), a new framework that captures structured semantics from paired medical images and reports. AGA introduces a bidirectional grouping mechanism based on a sparse similarity matrix. For each image-report pair, we compute fine-grained similarities between text tokens and image patches. Each token selects its top-matching patches to form a visual group, and each patch selects its most related tokens to form a language group. To enable adaptive grouping, we design two threshold gating modules, called Language Grouped Threshold Gate and Vision Grouped Threshold Gate, which learn grouping thresholds dynamically. Group representations are computed as weighted averages based on similarity scores. To align each token with its group representation, we introduce an Instance Aware Group Alignment loss that operates within each image-text pair, removing the need for external negatives. Finally, a Bidirectional Cross-modal Grouped Alignment module is applied to enhance fine-grained alignment between visual and linguistic group representations. Extensive experiments on public and private datasets show that our method achieves strong performance on image-text retrieval and classification tasks under both fine-tuning and zero-shot settings.
☆ Causal2Vec: Improving Decoder-only LLMs as Versatile Embedding Models
Decoder-only large language models (LLMs) are increasingly used to build embedding models that effectively encode the semantic information of natural language texts into dense vector representations for various embedding tasks. However, many existing methods primarily focus on removing the causal attention mask in LLMs to enable bidirectional attention, potentially undermining the model's ability to extract semantic information acquired during pretraining. Additionally, leading unidirectional approaches often rely on extra input text to overcome the inherent limitations of causal attention, inevitably increasing computational costs. In this work, we propose Causal2Vec, a general-purpose embedding model tailored to enhance the performance of decoder-only LLMs without altering their original architectures or introducing significant computational overhead. Specifically, we first employ a lightweight BERT-style model to pre-encode the input text into a single Contextual token, which is then prepended to the LLM's input sequence, allowing each token to capture contextualized information even without attending to future tokens. Furthermore, to mitigate the recency bias introduced by last-token pooling and help LLMs better leverage the semantic information encoded in the Contextual token, we concatenate the last hidden states of Contextual and EOS tokens as the final text embedding. In practice, Causal2Vec achieves state-of-the-art performance on the Massive Text Embeddings Benchmark (MTEB) among models trained solely on publicly available retrieval datasets, while reducing the required sequence length by up to 85% and inference time by up to 82% compared to best-performing methods.
☆ MPCC: A Novel Benchmark for Multimodal Planning with Complex Constraints in Multimodal Large Language Models
Multimodal planning capabilities refer to the ability to predict, reason, and design steps for task execution with multimodal context, which is essential for complex reasoning and decision-making across multiple steps. However, current benchmarks face two key challenges: (1) they cannot directly assess multimodal real-world planning capabilities, and (2) they lack constraints or implicit constraints across modalities. To address these issues, we introduce Multimodal Planning with Complex Constraints (MPCC), the first benchmark to systematically evaluate MLLMs' ability to handle multimodal constraints in planning. To address the first challenge, MPCC focuses on three real-world tasks: Flight Planning, Calendar Planning, and Meeting Planning. To solve the second challenge, we introduce complex constraints (e.g. budget, temporal, and spatial) in these tasks, with graded difficulty levels (EASY, MEDIUM, HARD) to separate constraint complexity from search space expansion. Experiments on 13 advanced MLLMs reveal significant challenges: closed-source models achieve only 21.3% feasible plans, while open-source models average below 11%. Additionally, we observe that MLLMs are highly sensitive to constraint complexity and that traditional multimodal prompting strategies fail in multi-constraint scenarios. Our work formalizes multimodal constraints in planning, provides a rigorous evaluation framework, and highlights the need for advancements in constraint-aware reasoning for real-world MLLM applications.
comment: Accepted to ACM Multimedia 2025
☆ LLM4Rail: An LLM-Augmented Railway Service Consulting Platform
Large language models (LLMs) have significantly reshaped different walks of business. To meet the increasing demands for individualized railway service, we develop LLM4Rail - a novel LLM-augmented railway service consulting platform. Empowered by LLM, LLM4Rail can provide custom modules for ticketing, railway food & drink recommendations, weather information, and chitchat. In LLM4Rail, we propose the iterative "Question-Thought-Action-Observation (QTAO)" prompting framework. It meticulously integrates verbal reasoning with task-oriented actions, that is, reasoning to guide action selection, to effectively retrieve external observations relevant to railway operation and service to generate accurate responses. To provide personalized onboard dining services, we first construct the Chinese Railway Food and Drink (CRFD-25) - a publicly accessible takeout dataset tailored for railway services. CRFD-25 covers a wide range of signature dishes categorized by cities, cuisines, age groups, and spiciness levels. We further introduce an LLM-based zero-shot conversational recommender for railway catering. To address the unconstrained nature of open recommendations, the feature similarity-based post-processing step is introduced to ensure all the recommended items are aligned with CRFD-25 dataset.
☆ Trae Agent: An LLM-based Agent for Software Engineering with Test-time Scaling
Software issue resolution is a critical challenge in software engineering and has garnered increasing attention in recent years. With the rapid advancement of large language models (LLMs), substantial progress has been made in addressing real-world software engineering tasks. Recent studies have introduced ensemble reasoning techniques to enhance the performance of LLM-based issue resolution. However, existing prompting-based methods still face limitations in effectively exploring large ensemble spaces and lack the capacity for repository-level understanding, both of which constrain their overall effectiveness. In this paper, we propose Trae Agent, the first agent-based ensemble reasoning approach for repository-level issue resolution. Trae Agent formulates our goal as an optimal solution search problem and addresses two key challenges, i.e., large ensemble spaces and repository-level understanding, through modular agents for generation, pruning, and selection. We conduct extensive experiments using three leading LLMs on the widely-adopted SWE-bench benchmark, comparing Trae Agent against four state-of-the-art ensemble reasoning techniques. Experimental results demonstrate that Trae Agent consistently achieves superior performance, with an average improvement of 10.22% over all baselines in terms of Pass@1. Trae Agent has achieved first place on the SWE-bench Verified leaderboard, with a notable Pass@1 score of 75.20%. We are pleased to release Trae Agent as an open-source project to support the research community, with all resources available at https://github.com/bytedance/trae-agent.
comment: Pengfei Gao and Zhao Tian contributed equally to this technical report
☆ "I made this (sort of)": Negotiating authorship, confronting fraudulence, and exploring new musical spaces with prompt-based AI music generation
I reflect on my experience creating two music albums centered on state-of-the-art prompt-based AI music generation platforms. The first album explicitly poses the question: What happens when I collide my junk mail with these platforms? The second album is a direct response to the first, and toys with the inability of state-of-the-art prompt-based AI music generation platforms to generate music that is not ``practiced'', ``polished'', and ``produced''. I seed a large language model (LLM) with information about these albums and have it interview me, which results in the exploration of several deeper questions: To what extent am I the author? Where am I in the resulting music? How is my musical identity changing as I am faced with machines that are in some ways far more talented than I? What new musical spaces does my work open, for me or anyone/thing else? I conclude by reflecting on my reflections, as well as LLM-mediated self-reflection as method.
☆ Text-to-SQL Task-oriented Dialogue Ontology Construction
Large language models (LLMs) are widely used as general-purpose knowledge sources, but they rely on parametric knowledge, limiting explainability and trustworthiness. In task-oriented dialogue (TOD) systems, this separation is explicit, using an external database structured by an explicit ontology to ensure explainability and controllability. However, building such ontologies requires manual labels or supervised training. We introduce TeQoDO: a Text-to-SQL task-oriented Dialogue Ontology construction method. Here, an LLM autonomously builds a TOD ontology from scratch without supervision using its inherent SQL programming capabilities combined with dialogue theory provided in the prompt. We show that TeQoDO outperforms transfer learning approaches, and its constructed ontology is competitive on a downstream dialogue state tracking task. Ablation studies demonstrate the key role of dialogue theory. TeQoDO also scales to allow construction of much larger ontologies, which we investigate on a Wikipedia and ArXiv dataset. We view this as a step towards broader application of ontologies to increase LLM explainability.
☆ Quality Evaluation of COBOL to Java Code Transformation
We present an automated evaluation system for assessing COBOL-to-Java code translation within IBM's watsonx Code Assistant for Z (WCA4Z). The system addresses key challenges in evaluating LLM-based translators, including model opacity and the complexity of translation quality assessment. Our approach combines analytic checkers with LLM-as-a-judge (LaaJ) techniques to deliver scalable, multi-faceted evaluations. The system supports continuous integration workflows, enables large-scale benchmarking, and reduces reliance on manual review. We describe the system architecture, evaluation strategies, and reporting mechanisms that provide actionable insights for developers and project managers, facilitating the evolution of high-quality, modernized codebases.
comment: Submitted to ASE 2025
☆ Multi-Waypoint Path Planning and Motion Control for Non-holonomic Mobile Robots in Agricultural Applications
There is a growing demand for autonomous mobile robots capable of navigating unstructured agricultural environments. Tasks such as weed control in meadows require efficient path planning through an unordered set of coordinates while minimizing travel distance and adhering to curvature constraints to prevent soil damage and protect vegetation. This paper presents an integrated navigation framework combining a global path planner based on the Dubins Traveling Salesman Problem (DTSP) with a Nonlinear Model Predictive Control (NMPC) strategy for local path planning and control. The DTSP generates a minimum-length, curvature-constrained path that efficiently visits all targets, while the NMPC leverages this path to compute control signals to accurately reach each waypoint. The system's performance was validated through comparative simulation analysis on real-world field datasets, demonstrating that the coupled DTSP-based planner produced smoother and shorter paths, with a reduction of about 16% in the provided scenario, compared to decoupled methods. Based thereon, the NMPC controller effectively steered the robot to the desired waypoints, while locally optimizing the trajectory and ensuring adherence to constraints. These findings demonstrate the potential of the proposed framework for efficient autonomous navigation in agricultural environments.
comment: 6 pages
☆ DSBC : Data Science task Benchmarking with Context engineering
Recent advances in large language models (LLMs) have significantly impacted data science workflows, giving rise to specialized data science agents designed to automate analytical tasks. Despite rapid adoption, systematic benchmarks evaluating the efficacy and limitations of these agents remain scarce. In this paper, we introduce a comprehensive benchmark specifically crafted to reflect real-world user interactions with data science agents by observing usage of our commercial applications. We evaluate three LLMs: Claude-4.0-Sonnet, Gemini-2.5-Flash, and OpenAI-o4-Mini across three approaches: zero-shot with context engineering, multi-step with context engineering, and with SmolAgent. Our benchmark assesses performance across a diverse set of eight data science task categories, additionally exploring the sensitivity of models to common prompting issues, such as data leakage and slightly ambiguous instructions. We further investigate the influence of temperature parameters on overall and task-specific outcomes for each model and approach. Our findings reveal distinct performance disparities among the evaluated models and methodologies, highlighting critical factors that affect practical deployment. The benchmark dataset and evaluation framework introduced herein aim to provide a foundation for future research of more robust and effective data science agents.
comment: 32 pages
☆ MUST-RAG: MUSical Text Question Answering with Retrieval Augmented Generation
Recent advancements in Large language models (LLMs) have demonstrated remarkable capabilities across diverse domains. While they exhibit strong zero-shot performance on various tasks, LLMs' effectiveness in music-related applications remains limited due to the relatively small proportion of music-specific knowledge in their training data. To address this limitation, we propose MusT-RAG, a comprehensive framework based on Retrieval Augmented Generation (RAG) to adapt general-purpose LLMs for text-only music question answering (MQA) tasks. RAG is a technique that provides external knowledge to LLMs by retrieving relevant context information when generating answers to questions. To optimize RAG for the music domain, we (1) propose MusWikiDB, a music-specialized vector database for the retrieval stage, and (2) utilizes context information during both inference and fine-tuning processes to effectively transform general-purpose LLMs into music-specific models. Our experiment demonstrates that MusT-RAG significantly outperforms traditional fine-tuning approaches in enhancing LLMs' music domain adaptation capabilities, showing consistent improvements across both in-domain and out-of-domain MQA benchmarks. Additionally, our MusWikiDB proves substantially more effective than general Wikipedia corpora, delivering superior performance and computational efficiency.
comment: 8 pages, 2 figures
☆ AI Must not be Fully Autonomous
Autonomous Artificial Intelligence (AI) has many benefits. It also has many risks. In this work, we identify the 3 levels of autonomous AI. We are of the position that AI must not be fully autonomous because of the many risks, especially as artificial superintelligence (ASI) is speculated to be just decades away. Fully autonomous AI, which can develop its own objectives, is at level 3 and without responsible human oversight. However, responsible human oversight is crucial for mitigating the risks. To ague for our position, we discuss theories of autonomy, AI and agents. Then, we offer 12 distinct arguments and 6 counterarguments with rebuttals to the counterarguments. We also present 15 pieces of recent evidence of AI misaligned values and other risks in the appendix.
comment: 11 pages, 1 figure
☆ FastDriveVLA: Efficient End-to-End Driving via Plug-and-Play Reconstruction-based Token Pruning
Vision-Language-Action (VLA) models have demonstrated significant potential in complex scene understanding and action reasoning, leading to their increasing adoption in end-to-end autonomous driving systems. However, the long visual tokens of VLA models greatly increase computational costs. Current visual token pruning methods in Vision-Language Models (VLM) rely on either visual token similarity or visual-text attention, but both have shown poor performance in autonomous driving scenarios. Given that human drivers concentrate on relevant foreground areas while driving, we assert that retaining visual tokens containing this foreground information is essential for effective decision-making. Inspired by this, we propose FastDriveVLA, a novel reconstruction-based vision token pruning framework designed specifically for autonomous driving. FastDriveVLA includes a plug-and-play visual token pruner called ReconPruner, which prioritizes foreground information through MAE-style pixel reconstruction. A novel adversarial foreground-background reconstruction strategy is designed to train ReconPruner for the visual encoder of VLA models. Once trained, ReconPruner can be seamlessly applied to different VLA models with the same visual encoder without retraining. To train ReconPruner, we also introduce a large-scale dataset called nuScenes-FG, consisting of 241K image-mask pairs with annotated foreground regions. Our approach achieves state-of-the-art results on the nuScenes closed-loop planning benchmark across different pruning ratios.
comment: 9 pages, 5 figures
☆ Impact of Hyperparameter Optimization on the Accuracy of Lightweight Deep Learning Models for Real-Time Image Classification
Lightweight convolutional and transformer-based models have become vital for real-time image classification in resource-constrained applications, such as embedded systems and edge devices. This work analyzes the influence of hyperparameter adjustment on the accuracy and convergence behavior of seven efficient deep learning architectures: EfficientNetV2-S, ConvNeXt-T, MobileViT v2 (XXS/XS/S), MobileNetV3-L, TinyViT-21M, and RepVGG-A2. All models are trained on the ImageNet-1K dataset under consistent training settings, with an emphasis on real-time practicality. An comprehensive ablation study is undertaken to separate the effect of critical hyperparameters, including learning rate schedules, batch sizes, input resolution, data augmentation, regularization approaches, and optimizer choice. To assess appropriateness for real-time applications, each model is assessed not only in terms of Top-1 and Top-5 classification accuracy, but also in terms of inference time, parameter count, model size, and frames-per-second (FPS) on a GPU-accelerated edge deployment simulation. Results demonstrate that cosine learning rate decay and adjustable batch size may greatly boost both accuracy and convergence speed, while keeping low latency and memory cost. Notably, RepVGG-A2 achieves over 80% Top-1 accuracy with efficient inference performance, offering a compelling balance between accuracy and deployment cost for VGG-style models. The results give practical guidance for constructing resource-efficient deep learning models appropriate for real-time image processing pipelines. All code and training logs are publicly accessible at https://github.com/VineetKumarRakesh/lcnn-opt.
comment: 13 pages, 4 figures, 4 tables. Includes ablation study and evaluation on 7 lightweight deep learning models. Code and logs available at https://github.com/VineetKumarRakesh/lcnn-opt
☆ Evaluating the Dynamics of Membership Privacy in Deep Learning
Membership inference attacks (MIAs) pose a critical threat to the privacy of training data in deep learning. Despite significant progress in attack methodologies, our understanding of when and how models encode membership information during training remains limited. This paper presents a dynamic analytical framework for dissecting and quantifying privacy leakage dynamics at the individual sample level. By tracking per-sample vulnerabilities on an FPR-TPR plane throughout training, our framework systematically measures how factors such as dataset complexity, model architecture, and optimizer choice influence the rate and severity at which samples become vulnerable. Crucially, we discover a robust correlation between a sample's intrinsic learning difficulty, and find that the privacy risk of samples highly vulnerable in the final trained model is largely determined early during training. Our results thus provide a deeper understanding of how privacy risks dynamically emerge during training, laying the groundwork for proactive, privacy-aware model training strategies.
☆ How Far Are AI Scientists from Changing the World?
The emergence of large language models (LLMs) is propelling automated scientific discovery to the next level, with LLM-based Artificial Intelligence (AI) Scientist systems now taking the lead in scientific research. Several influential works have already appeared in the field of AI Scientist systems, with AI-generated research papers having been accepted at the ICLR 2025 workshop, suggesting that a human-level AI Scientist capable of uncovering phenomena previously unknown to humans, may soon become a reality. In this survey, we focus on the central question: How far are AI scientists from changing the world and reshaping the scientific research paradigm? To answer this question, we provide a prospect-driven review that comprehensively analyzes the current achievements of AI Scientist systems, identifying key bottlenecks and the critical components required for the emergence of a scientific agent capable of producing ground-breaking discoveries that solve grand challenges. We hope this survey will contribute to a clearer understanding of limitations of current AI Scientist systems, showing where we are, what is missing, and what the ultimate goals for scientific AI should be.
☆ Towards Affordable Tumor Segmentation and Visualization for 3D Breast MRI Using SAM2 AI
Breast MRI provides high-resolution volumetric imaging critical for tumor assessment and treatment planning, yet manual interpretation of 3D scans remains labor-intensive and subjective. While AI-powered tools hold promise for accelerating medical image analysis, adoption of commercial medical AI products remains limited in low- and middle-income countries due to high license costs, proprietary software, and infrastructure demands. In this work, we investigate whether the Segment Anything Model 2 (SAM2) can be adapted for low-cost, minimal-input 3D tumor segmentation in breast MRI. Using a single bounding box annotation on one slice, we propagate segmentation predictions across the 3D volume using three different slice-wise tracking strategies: top-to-bottom, bottom-to-top, and center-outward. We evaluate these strategies across a large cohort of patients and find that center-outward propagation yields the most consistent and accurate segmentations. Despite being a zero-shot model not trained for volumetric medical data, SAM2 achieves strong segmentation performance under minimal supervision. We further analyze how segmentation performance relates to tumor size, location, and shape, identifying key failure modes. Our results suggest that general-purpose foundation models such as SAM2 can support 3D medical image analysis with minimal supervision, offering an accessible and affordable alternative for resource-constrained settings.
comment: Accepted for publication in the 28th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2nd Deep Breast Workshop on AI and Imaging for Diagnostic and Treatment Challenges in Breast Care (DeepBreath), 2025
☆ XABPs: Towards eXplainable Autonomous Business Processes
Autonomous business processes (ABPs), i.e., self-executing workflows leveraging AI/ML, have the potential to improve operational efficiency, reduce errors, lower costs, improve response times, and free human workers for more strategic and creative work. However, ABPs may raise specific concerns including decreased stakeholder trust, difficulties in debugging, hindered accountability, risk of bias, and issues with regulatory compliance. We argue for eXplainable ABPs (XABPs) to address these concerns by enabling systems to articulate their rationale. The paper outlines a systematic approach to XABPs, characterizing their forms, structuring explainability, and identifying key BPM research challenges towards XABPs.
☆ DynaSwarm: Dynamically Graph Structure Selection for LLM-based Multi-agent System
Current multi-agent systems (MAS) frameworks often rely on manually designed and static collaboration graph structures, limiting adaptability and performance. To address these limitations, we propose DynaSwarm, a dynamic framework that enhances LLM-based MAS through two key innovations: (1) an actor-critic reinforcement learning (A2C) mechanism to optimize graph structures with improved stability over prior RL methods, and (2) a dynamic graph selector that adaptively chooses the optimal graph structure for each input sample via parameter-efficient LLM fine-tuning. DynaSwarm eliminates the need for rigid, one-fits-all graph architectures, instead leveraging sample-specific idiosyncrasies to dynamically route queries through specialized agent networks. (c) We propose to fine-tune the demonstration retriever to fully exploit the power of in-context learning (ICL). Extensive experiments on question answering, mathematical reasoning, and coding tasks demonstrate that DynaSwarm consistently outperforms state-of-the-art single-agent and MAS baselines across multiple LLM backbones. Our findings highlight the importance of sample-aware structural flexibility in LLM MAS designs.
☆ Efficient Machine Unlearning via Influence Approximation
Due to growing privacy concerns, machine unlearning, which aims at enabling machine learning models to ``forget" specific training data, has received increasing attention. Among existing methods, influence-based unlearning has emerged as a prominent approach due to its ability to estimate the impact of individual training samples on model parameters without retraining. However, this approach suffers from prohibitive computational overhead arising from the necessity to compute the Hessian matrix and its inverse across all training samples and parameters, rendering it impractical for large-scale models and scenarios involving frequent data deletion requests. This highlights the difficulty of forgetting. Inspired by cognitive science, which suggests that memorizing is easier than forgetting, this paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning). This connection allows machine unlearning to be addressed from the perspective of incremental learning. Unlike the time-consuming Hessian computations in unlearning (forgetting), incremental learning (memorizing) typically relies on more efficient gradient optimization, which supports the aforementioned cognitive theory. Based on this connection, we introduce the Influence Approximation Unlearning (IAU) algorithm for efficient machine unlearning from the incremental perspective. Extensive empirical evaluations demonstrate that IAU achieves a superior balance among removal guarantee, unlearning efficiency, and comparable model utility, while outperforming state-of-the-art methods across diverse datasets and model architectures. Our code is available at https://github.com/Lolo1222/IAU.
comment: 12 pages, 4 figures
☆ An Information Bottleneck Asset Pricing Model
Deep neural networks (DNNs) have garnered significant attention in financial asset pricing, due to their strong capacity for modeling complex nonlinear relationships within financial data. However, sophisticated models are prone to over-fitting to the noise information in financial data, resulting in inferior performance. To address this issue, we propose an information bottleneck asset pricing model that compresses data with low signal-to-noise ratios to eliminate redundant information and retain the critical information for asset pricing. Our model imposes constraints of mutual information during the nonlinear mapping process. Specifically, we progressively reduce the mutual information between the input data and the compressed representation while increasing the mutual information between the compressed representation and the output prediction. The design ensures that irrelevant information, which is essentially the noise in the data, is forgotten during the modeling of financial nonlinear relationships without affecting the final asset pricing. By leveraging the constraints of the Information bottleneck, our model not only harnesses the nonlinear modeling capabilities of deep networks to capture the intricate relationships within financial data but also ensures that noise information is filtered out during the information compression process.
☆ Zero-Shot Document Understanding using Pseudo Table of Contents-Guided Retrieval-Augmented Generation
Understanding complex multimodal documents remains challenging due to their structural inconsistencies and limited training data availability. We introduce \textit{DocsRay}, a training-free document understanding system that integrates pseudo Table of Contents (TOC) generation with hierarchical Retrieval-Augmented Generation (RAG). Our approach leverages multimodal Large Language Models' (LLMs) native capabilities to seamlessly process documents containing diverse elements such as text, images, charts, and tables without requiring specialized models or additional training. DocsRay's framework synergistically combines three key techniques: (1) a semantic structuring module using prompt-based LLM interactions to generate a hierarchical pseudo-TOC, (2) zero-shot multimodal analysis that converts diverse document elements into unified, text-centric representations using the inherent capabilities of multimodal LLMs, and (3) an efficient two-stage hierarchical retrieval system that reduces retrieval complexity from $O(N)$ to $O(S + k_1 \cdot N_s)$. Evaluated on documents averaging 49.4 pages and 20,971 textual tokens, DocsRay reduced query latency from 3.89 to 2.12 seconds, achieving a 45% efficiency improvement. On the MMLongBench-Doc benchmark, DocsRay-Pro attains an accuracy of 64.7%, substantially surpassing previous state-of-the-art results.
☆ Solution-aware vs global ReLU selection: partial MILP strikes back for DNN verification
To handle complex instances, we revisit a divide-and-conquer approach to break down the complexity: instead of few complex BaB calls, we rely on many small {\em partial} MILP calls. The crucial step is to select very few but very important ReLUs to treat using (costly) binary variables. The previous attempts were suboptimal in that respect. To select these important ReLU variables, we propose a novel {\em solution-aware} ReLU scoring ({\sf SAS}), as well as adapt the BaB-SR and BaB-FSB branching functions as {\em global} ReLU scoring ({\sf GS}) functions. We compare them theoretically as well as experimentally, and {\sf SAS} is more efficient at selecting a set of variables to open using binary variables. Compared with previous attempts, SAS reduces the number of binary variables by around 6 times, while maintaining the same level of accuracy. Implemented in {\em Hybrid MILP}, calling first $\alpha,\beta$-CROWN with a short time-out to solve easier instances, and then partial MILP, produces a very accurate yet efficient verifier, reducing by up to $40\%$ the number of undecided instances to low levels ($8-15\%$), while keeping a reasonable runtime ($46s-417s$ on average per instance), even for fairly large CNNs with 2 million parameters.
☆ Geak: Introducing Triton Kernel AI Agent & Evaluation Benchmarks
The demand for AI-generated GPU kernels is rapidly growing, influenced by the need for scalable, hardware-optimized solutions in both industry and academia. As deep learning workloads grow in complexity and diversity, it is imperative to automate low-level kernel development to meet performance and productivity demands. Major cloud providers, semiconductor companies, and research institutions are now investing heavily in AI-driven code generation for GPUs, aiming to reduce manual optimization efforts while achieving near-expert performance on hardware like AMD MI300X. The Triton language, a Python-based DSL for GPU programming, has emerged as a popular target for such AI-generated kernels due to its balance of performance and ease-of-coding. In this work, we present an evaluation suite for Triton-based GPU kernels and GEAK (Generating Efficient AI-centric GPU Kernels)-a framework that leverages cutting-edge LLMs to generate performant Triton code specifically for AMD GPUs, including the AMD MI300X and MI250. GEAK leverages inference-time compute scaling to produce Triton-based GPU kernels using a reasoning loop adapted from Reflexion-style feedback mechanisms. On two evaluation benchmarks, GEAK significantly outperformed the baselines of directly prompting frontier LLMs as well as Reflexion-based generation pipelines by achieving correctness up to $63$% and execution speed up of up to $2.59$X. These results highlight the promise of GEAK-like agentic code generation for accelerating the adoption of diverse hardware platforms and democratizing access to expert-level kernel performance.
☆ Tractable Responsibility Measures for Ontology-Mediated Query Answering
Recent work on quantitative approaches to explaining query answers employs responsibility measures to assign scores to facts in order to quantify their respective contributions to obtaining a given answer. In this paper, we study the complexity of computing such responsibility scores in the setting of ontology-mediated query answering, focusing on a very recently introduced family of Shapley-value-based responsibility measures defined in terms of weighted sums of minimal supports (WSMS). By exploiting results from the database setting, we can show that such measures enjoy polynomial data complexity for classes of ontology-mediated queries that are first-order-rewritable, whereas the problem becomes "shP"-hard when the ontology language can encode reachability queries (via axioms like $\exists R. A \sqsubseteq A$). To better understand the tractability frontier, we next explore the combined complexity of WSMS computation. We prove that intractability applies already to atomic queries if the ontology language supports conjunction, as well as to unions of `well-behaved' conjunctive queries, even in the absence of an ontology. By contrast, our study yields positive results for common DL-Lite dialects: by means of careful analysis, we identify classes of structurally restricted conjunctive queries (which intuitively disallow undesirable interactions between query atoms) that admit tractable WSMS computation.
comment: Long version of a paper to appear at KR 2025, which contains further proof details in the appendix
☆ Accessibility Scout: Personalized Accessibility Scans of Built Environments
Assessing the accessibility of unfamiliar built environments is critical for people with disabilities. However, manual assessments, performed by users or their personal health professionals, are laborious and unscalable, while automatic machine learning methods often neglect an individual user's unique needs. Recent advances in Large Language Models (LLMs) enable novel approaches to this problem, balancing personalization with scalability to enable more adaptive and context-aware assessments of accessibility. We present Accessibility Scout, an LLM-based accessibility scanning system that identifies accessibility concerns from photos of built environments. With use, Accessibility Scout becomes an increasingly capable "accessibility scout", tailoring accessibility scans to an individual's mobility level, preferences, and specific environmental interests through collaborative Human-AI assessments. We present findings from three studies: a formative study with six participants to inform the design of Accessibility Scout, a technical evaluation of 500 images of built environments, and a user study with 10 participants of varying mobility. Results from our technical evaluation and user study show that Accessibility Scout can generate personalized accessibility scans that extend beyond traditional ADA considerations. Finally, we conclude with a discussion on the implications of our work and future steps for building more scalable and personalized accessibility assessments of the physical world.
comment: 18 pages, 16 figures. Presented at ACM UIST 2025
☆ AutoBridge: Automating Smart Device Integration with Centralized Platform
Multimodal IoT systems coordinate diverse IoT devices to deliver human-centered services. The ability to incorporate new IoT devices under the management of a centralized platform is an essential requirement. However, it requires significant human expertise and effort to program the complex IoT integration code that enables the platform to understand and control the device functions. Therefore, we propose AutoBridge to automate IoT integration code generation. Specifically, AutoBridge adopts a divide-and-conquer strategy: it first generates device control logic by progressively retrieving device-specific knowledge, then synthesizes platformcompliant integration code using platform-specific knowledge. To ensure correctness, AutoBridge features a multi-stage debugging pipeline, including an automated debugger for virtual IoT device testing and an interactive hardware-in-the-loop debugger that requires only binary user feedback (yes and no) for real-device verification. We evaluate AutoBridge on a benchmark of 34 IoT devices across two open-source IoT platforms. The results demonstrate that AutoBridge can achieves an average success rate of 93.87% and an average function coverage of 94.87%, without any human involvement. With minimal binary yes and no feedback from users, the code is then revised to reach 100% function coverage. A user study with 15 participants further shows that AutoBridge outperforms expert programmers by 50% to 80% in code accuracy, even when the programmers are allowed to use commercial code LLMs.
comment: 14 pages, 12 figures, under review
☆ LENS: Learning Ensemble Confidence from Neural States for Multi-LLM Answer Integration
Large Language Models (LLMs) have demonstrated impressive performance across various tasks, with different models excelling in distinct domains and specific abilities. Effectively combining the predictions of multiple LLMs is crucial for enhancing system robustness and performance. However, existing ensemble methods often rely on simple techniques like voting or logits ensembling, which overlook the varying confidence and reliability of models in different contexts. In this work, we propose LENS (Learning ENsemble confidence from Neural States), a novel approach that learns to estimate model confidence by analyzing internal representations. For each LLM, we train a lightweight linear confidence predictor that leverages layer-wise hidden states and normalized probabilities as inputs. This allows for more nuanced weighting of model predictions based on their context-dependent reliability. Our method does not require modifying the model parameters and requires negligible additional computation. Experimental results on multiple-choice and boolean question-answering tasks demonstrate that LENS outperforms traditional ensemble methods by a substantial margin. Our findings suggest that internal representations provide valuable signals for determining model confidence and can be effectively leveraged for ensemble learning.
☆ RL-PLUS: Countering Capability Boundary Collapse of LLMs in Reinforcement Learning with Hybrid-policy Optimization
Reinforcement Learning with Verifiable Reward (RLVR) has significantly advanced the complex reasoning abilities of Large Language Models (LLMs). However, it struggles to break through the inherent capability boundaries of the base LLM, due to its inherently on-policy strategy with LLM's immense action space and sparse reward. Further, RLVR can lead to the capability boundary collapse, narrowing the LLM's problem-solving scope. To address this problem, we propose RL-PLUS, a novel approach that synergizes internal exploitation (i.e., Thinking) with external data (i.e., Learning) to achieve stronger reasoning capabilities and surpass the boundaries of base models. RL-PLUS integrates two core components: Multiple Importance Sampling to address for distributional mismatch from external data, and an Exploration-Based Advantage Function to guide the model towards high-value, unexplored reasoning paths. We provide both theoretical analysis and extensive experiments to demonstrate the superiority and generalizability of our approach. The results show that RL-PLUS achieves state-of-the-art performance compared with existing RLVR methods on six math reasoning benchmarks and exhibits superior performance on six out-of-distribution reasoning tasks. It also achieves consistent and significant gains across diverse model families, with average relative improvements ranging from 21.1\% to 69.2\%. Moreover, Pass@k curves across multiple benchmarks indicate that RL-PLUS effectively resolves the capability boundary collapse problem.
☆ Reinitializing weights vs units for maintaining plasticity in neural networks
Loss of plasticity is a phenomenon in which a neural network loses its ability to learn when trained for an extended time on non-stationary data. It is a crucial problem to overcome when designing systems that learn continually. An effective technique for preventing loss of plasticity is reinitializing parts of the network. In this paper, we compare two different reinitialization schemes: reinitializing units vs reinitializing weights. We propose a new algorithm, which we name \textit{selective weight reinitialization}, for reinitializing the least useful weights in a network. We compare our algorithm to continual backpropagation and ReDo, two previously proposed algorithms that reinitialize units in the network. Through our experiments in continual supervised learning problems, we identify two settings when reinitializing weights is more effective at maintaining plasticity than reinitializing units: (1) when the network has a small number of units and (2) when the network includes layer normalization. Conversely, reinitializing weights and units are equally effective at maintaining plasticity when the network is of sufficient size and does not include layer normalization. We found that reinitializing weights maintains plasticity in a wider variety of settings than reinitializing units.
☆ Robust Classification under Noisy Labels: A Geometry-Aware Reliability Framework for Foundation Models
Foundation models (FMs) pretrained on large datasets have become fundamental for various downstream machine learning tasks, in particular in scenarios where obtaining perfectly labeled data is prohibitively expensive. In this paper, we assume an FM has to be fine-tuned with noisy data and present a two-stage framework to ensure robust classification in the presence of label noise without model retraining. Recent work has shown that simple k-nearest neighbor (kNN) approaches using an embedding derived from an FM can achieve good performance even in the presence of severe label noise. Our work is motivated by the fact that these methods make use of local geometry. In this paper, following a similar two-stage procedure, reliability estimation followed by reliability-weighted inference, we show that improved performance can be achieved by introducing geometry information. For a given instance, our proposed inference uses a local neighborhood of training data, obtained using the non-negative kernel (NNK) neighborhood construction. We propose several methods for reliability estimation that can rely less on distance and local neighborhood as the label noise increases. Our evaluation on CIFAR-10 and DermaMNIST shows that our methods improve robustness across various noise conditions, surpassing standard K-NN approaches and recent adaptive-neighborhood baselines.
comment: 5 pages, 2 figures, under review at CAMSAP 2025
☆ EMA Without the Lag: Bias-Corrected Iterate Averaging Schemes
Stochasticity in language model fine-tuning, often caused by the small batch sizes typically used in this regime, can destabilize training by introducing large oscillations in generation quality. A popular approach to mitigating this instability is to take an Exponential moving average (EMA) of weights throughout training. While EMA reduces stochasticity, thereby smoothing training, the introduction of bias from old iterates often creates a lag in optimization relative to vanilla training. In this work, we propose the Bias-Corrected Exponential Moving Average (BEMA), a simple and practical augmentation of EMA that retains variance-reduction benefits while eliminating bias. BEMA is motivated by a simple theoretical model wherein we demonstrate provable acceleration of BEMA over both a standard EMA and vanilla training. Through an extensive suite of experiments on Language Models, we show that BEMA leads to significantly improved convergence rates and final performance over both EMA and vanilla training in a variety of standard LM benchmarks, making BEMA a practical and theoretically motivated intervention for more stable and efficient fine-tuning.
☆ The SPACE of AI: Real-World Lessons on AI's Impact on Developers
As artificial intelligence (AI) tools become increasingly embedded in software development workflows, questions persist about their true impact on developer productivity and experience. This paper presents findings from a mixed-methods study examining how developers perceive AI's influence across the dimensions of the SPACE framework: Satisfaction, Performance, Activity, Collaboration and Efficiency. Drawing on survey responses from over 500 developers and qualitative insights from interviews and observational studies, we find that AI is broadly adopted and widely seen as enhancing productivity, particularly for routine tasks. However, the benefits vary, depending on task complexity, individual usage patterns, and team-level adoption. Developers report increased efficiency and satisfaction, with less evidence of impact on collaboration. Organizational support and peer learning play key roles in maximizing AI's value. These findings suggest that AI is augmenting developers rather than replacing them, and that effective integration depends as much on team culture and support structures as on the tools themselves. We conclude with practical recommendations for teams, organizations and researchers seeking to harness AI's potential in software engineering.
☆ DeformTune: A Deformable XAI Music Prototype for Non-Musicians AI
Many existing AI music generation tools rely on text prompts, complex interfaces, or instrument-like controls, which may require musical or technical knowledge that non-musicians do not possess. This paper introduces DeformTune, a prototype system that combines a tactile deformable interface with the MeasureVAE model to explore more intuitive, embodied, and explainable AI interaction. We conducted a preliminary study with 11 adult participants without formal musical training to investigate their experience with AI-assisted music creation. Thematic analysis of their feedback revealed recurring challenge--including unclear control mappings, limited expressive range, and the need for guidance throughout use. We discuss several design opportunities for enhancing explainability of AI, including multimodal feedback and progressive interaction support. These findings contribute early insights toward making AI music systems more explainable and empowering for novice users.
comment: In Proceedings of Explainable AI for the Arts Workshop 2025 (XAIxArts 2025) arXiv:2406.14485
☆ Model-Based Soft Maximization of Suitable Metrics of Long-Term Human Power
Power is a key concept in AI safety: power-seeking as an instrumental goal, sudden or gradual disempowerment of humans, power balance in human-AI interaction and international AI governance. At the same time, power as the ability to pursue diverse goals is essential for wellbeing. This paper explores the idea of promoting both safety and wellbeing by forcing AI agents explicitly to empower humans and to manage the power balance between humans and AI agents in a desirable way. Using a principled, partially axiomatic approach, we design a parametrizable and decomposable objective function that represents an inequality- and risk-averse long-term aggregate of human power. It takes into account humans' bounded rationality and social norms, and, crucially, considers a wide variety of possible human goals. We derive algorithms for computing that metric by backward induction or approximating it via a form of multi-agent reinforcement learning from a given world model. We exemplify the consequences of (softly) maximizing this metric in a variety of paradigmatic situations and describe what instrumental sub-goals it will likely imply. Our cautious assessment is that softly maximizing suitable aggregate metrics of human power might constitute a beneficial objective for agentic AI systems that is safer than direct utility-based objectives.
♻ ☆ GenoMAS: A Multi-Agent Framework for Scientific Discovery via Code-Driven Gene Expression Analysis
Gene expression analysis holds the key to many biomedical discoveries, yet extracting insights from raw transcriptomic data remains formidable due to the complexity of multiple large, semi-structured files and the need for extensive domain expertise. Current automation approaches are often limited by either inflexible workflows that break down in edge cases or by fully autonomous agents that lack the necessary precision for rigorous scientific inquiry. GenoMAS charts a different course by presenting a team of LLM-based scientists that integrates the reliability of structured workflows with the adaptability of autonomous agents. GenoMAS orchestrates six specialized LLM agents through typed message-passing protocols, each contributing complementary strengths to a shared analytic canvas. At the heart of GenoMAS lies a guided-planning framework: programming agents unfold high-level task guidelines into Action Units and, at each juncture, elect to advance, revise, bypass, or backtrack, thereby maintaining logical coherence while bending gracefully to the idiosyncrasies of genomic data. On the GenoTEX benchmark, GenoMAS reaches a Composite Similarity Correlation of 89.13% for data preprocessing and an F$_1$ of 60.48% for gene identification, surpassing the best prior art by 10.61% and 16.85% respectively. Beyond metrics, GenoMAS surfaces biologically plausible gene-phenotype associations corroborated by the literature, all while adjusting for latent confounders. Code is available at https://github.com/Liu-Hy/GenoMAS.
comment: 51 pages (13 pages for the main text, 9 pages for references, and 29 pages for the appendix)
♻ ☆ Learning to Align and Refine: A Foundation-to-Diffusion Framework for Occlusion-Robust Two-Hand Reconstruction
Two-hand reconstruction from monocular images faces persistent challenges due to complex and dynamic hand postures and occlusions, causing significant difficulty in achieving plausible interaction alignment. Existing approaches struggle with such alignment issues, often resulting in misalignment and penetration artifacts. To tackle this, we propose a dual-stage Foundation-to-Diffusion framework that precisely align 2D prior guidance from vision foundation models and diffusion-based generative 3D interaction refinement to achieve occlusion-robust two-hand reconstruction. First, we introduce a lightweight fusion alignment encoder that aligns fused multimodal 2D priors like key points, segmentation maps, and depth cues from vision foundation models during training. This provides robust structured guidance, further enabling efficient inference without heavy foundation model encoders at test time while maintaining high reconstruction accuracy. Second, we implement a two-hand diffusion model explicitly trained to convert interpenetrated 3D poses into plausible, penetration-free counterparts. Through collision gradient-guided denoising, the model rectifies artifacts while preserving natural spatial relationships between hands. Extensive evaluations demonstrate that our method achieves state-of-the-art performance on InterHand2.6M, HIC, and FreiHAND datasets, significantly advancing occlusion handling and interaction robustness. Our code will be publicly released.
♻ ☆ Spatial-Temporal Reinforcement Learning for Network Routing with Non-Markovian Traffic
Reinforcement Learning (RL) has been widely used for packet routing in communication networks, but traditional RL methods rely on the Markov assumption that the current state contains all necessary information for decision-making. In reality, internet traffic is non-Markovian, and past states do influence routing performance. Moreover, common deep RL approaches use function approximators, such as neural networks, that do not model the spatial structure in network topologies. To address these shortcomings, we design a network environment with non-Markovian traffic and introduce a spatial-temporal RL (STRL) framework for packet routing. Our approach outperforms traditional baselines by more than 19% during training and 7% for inference despite a change in network topology.
♻ ☆ How AI Ideas Affect the Creativity, Diversity, and Evolution of Human Ideas: Evidence From a Large, Dynamic Experiment
Exposure to large language model output is rapidly increasing. How will seeing AI-generated ideas affect human ideas? We conducted an experiment (800+ participants, 40+ countries) where participants viewed creative ideas that were from ChatGPT or prior experimental participants and then brainstormed their own idea. We varied the number of AI-generated examples (none, low, or high exposure) and if the examples were labeled as 'AI' (disclosure). Our dynamic experiment design -- ideas from prior participants in an experimental condition are used as stimuli for future participants in the same experimental condition -- speaks to the interdependent process of cultural creation: creative ideas are built upon prior ideas. Hence, we capture the compounding effects of having LLMs 'in the culture loop'. We find that high AI exposure (but not low AI exposure) did not affect the creativity of individual ideas but did increase the average amount and rate of change of collective idea diversity. AI made ideas different, not better. There were no main effects of disclosure. We also found that self-reported creative people were less influenced by knowing an idea was from AI and that participants may knowingly adopt AI ideas when the task is difficult. Our findings suggest that introducing AI ideas may increase collective diversity but not individual creativity.
comment: Accepted at ACM Collective Intelligence 2025. Originally posted 2024
♻ ☆ Coordinating Search-Informed Reasoning and Reasoning-Guided Search in Claim Verification
Multi-hop claim verification is inherently challenging, requiring multi-step reasoning to construct verification chains while iteratively searching for information to uncover hidden bridging facts. This process is fundamentally interleaved, as effective reasoning relies on dynamically retrieved evidence, while effective search demands reasoning to refine queries based on partial information. To achieve this, we propose Hierarchical Agent Reasoning and Information Search (HARIS), explicitly modeling the coordinated process of reasoning-driven searching and search-informed reasoning. HARIS consists of a high-level reasoning agent that focuses on constructing the main verification chain, generating factual questions when more information is needed, and a low-level search agent that iteratively retrieves more information, refining its search based on intermediate findings. This design allows each agent to specialize in its respective task, enhancing verification accuracy and interpretability. HARIS is trained using reinforcement learning with outcome-based rewards. Experimental results on the EX-FEVER and HOVER benchmarks demonstrate that HARIS achieves strong performance, greatly advancing multi-hop claim verification.
comment: Work in progress
♻ ☆ Enhancing Multi-Agent Collaboration with Attention-Based Actor-Critic Policies
This paper introduces Team-Attention-Actor-Critic (TAAC), a reinforcement learning algorithm designed to enhance multi-agent collaboration in cooperative environments. TAAC employs a Centralized Training/Centralized Execution scheme incorporating multi-headed attention mechanisms in both the actor and critic. This design facilitates dynamic, inter-agent communication, allowing agents to explicitly query teammates, thereby efficiently managing the exponential growth of joint-action spaces while ensuring a high degree of collaboration. We further introduce a penalized loss function which promotes diverse yet complementary roles among agents. We evaluate TAAC in a simulated soccer environment against benchmark algorithms representing other multi-agent paradigms, including Proximal Policy Optimization and Multi-Agent Actor-Attention-Critic. We find that TAAC exhibits superior performance and enhanced collaborative behaviors across a variety of metrics (win rates, goal differentials, Elo ratings, inter-agent connectivity, balanced spatial distributions, and frequent tactical interactions such as ball possession swaps).
comment: 8 pages
♻ ☆ Unable to Forget: Proactive Interference Reveals Working Memory Limits in LLMs Beyond Context Length ICML 2025
Information retrieval in Large Language Models (LLMs) is increasingly recognized as intertwined with generation capabilities rather than mere lookup. While longer contexts are often assumed to improve retrieval, the effects of intra-context interference remain understudied. To address this, we adapt the proactive interference (PI) paradigm from cognitive science, where earlier information disrupts recall of newer updates. In humans, susceptibility to such interference is inversely linked to working memory capacity. We introduce PI-LLM, an evaluation that sequentially streams semantically related key-value updates and queries only the final values. Although these final values are clearly positioned just before the query, LLM retrieval accuracy declines log-linearly toward zero as interference accumulates; errors arise from retrieving previously overwritten values. Attempts to mitigate interference via prompt engineering (e.g., instructing models to ignore earlier input) yield limited success. These findings reveal a fundamental constraint on LLMs' ability to disentangle interference and flexibly manipulate information, suggesting a working memory bottleneck beyond mere context access. This calls for approaches that strengthen models' ability to suppress irrelevant content during retrieval.
comment: Accepted at ICML 2025 Workshop on Long Context Foundation Models (ICFM). Code: https://github.com/zhuangziGiantfish/Unable-to-Forget
♻ ☆ Mathematical Proof as a Litmus Test: Revealing Failure Modes of Advanced Large Reasoning Models
Large reasoning models (e.g., R1, o3) have demonstrated remarkable mathematical problem-solving abilities. However, the high reported accuracy of these advanced models on popular datasets, reliance on purely numerical evaluation and potential benchmark leakage, often masks their true reasoning shortcomings. To address this, we propose leveraging the inherent rigor and methodological complexity of mathematical proofs as a diagnostic tool to expose these hidden failures. Specifically, we introduce the RFMDataset (Reveal Failure Modes), a collection of 200 diverse mathematical proof problems, and thoroughly evaluate advanced models' performance on it. Our in-depth analysis of their failures uncovers 10 fine-grained error types, which shows fundamental limitations in current large reasoning models: 1) large reasoning models grapple profoundly with mathematical proofs, with some generating entirely correct proofs for less than 20% of problems and failing even on basic ones; 2) models exhibit a diverse spectrum of reasoning failures, prominently demonstrating the lack of guarantees for the correctness and rigor of single-step reasoning; and 3) models show hallucination and incompleteness during the reasoning process. Our findings reveal that models' self-reflection is insufficient to resolve the current logical dilemmas, necessitating formalized and fine-grained logical training.
♻ ☆ White-Basilisk: A Hybrid Model for Code Vulnerability Detection
The proliferation of software vulnerabilities presents a significant challenge to cybersecurity, necessitating more effective detection methodologies. We introduce White-Basilisk, a novel approach to vulnerability detection that demonstrates superior performance while challenging prevailing assumptions in AI model scaling. Utilizing an innovative architecture that integrates Mamba layers, linear self-attention, and a Mixture of Experts framework, White-Basilisk achieves state-of-the-art results in vulnerability detection tasks with a parameter count of only 200M. The model's capacity to process sequences of unprecedented length enables comprehensive analysis of extensive codebases in a single pass, surpassing the context limitations of current Large Language Models (LLMs). White-Basilisk exhibits robust performance on imbalanced, real-world datasets, while maintaining computational efficiency that facilitates deployment across diverse organizational scales. This research not only establishes new benchmarks in code security but also provides empirical evidence that compact, efficiently designed models can outperform larger counterparts in specialized tasks, potentially redefining optimization strategies in AI development for domain-specific applications.
♻ ☆ Parallel Split Learning with Global Sampling
Distributed deep learning in resource-constrained environments faces scalability and generalization challenges due to large effective batch sizes and non-identically distributed client data. We introduce a server-driven sampling strategy that maintains a fixed global batch size by dynamically adjusting client-side batch sizes. This decouples the effective batch size from the number of participating devices and ensures that global batches better reflect the overall data distribution. Using standard concentration bounds, we establish tighter deviation guarantees compared to existing approaches. Empirical results on a benchmark dataset confirm that the proposed method improves model accuracy, training efficiency, and convergence stability, offering a scalable solution for learning at the network edge.
♻ ☆ Ultra3D: Efficient and High-Fidelity 3D Generation with Part Attention
Recent advances in sparse voxel representations have significantly improved the quality of 3D content generation, enabling high-resolution modeling with fine-grained geometry. However, existing frameworks suffer from severe computational inefficiencies due to the quadratic complexity of attention mechanisms in their two-stage diffusion pipelines. In this work, we propose Ultra3D, an efficient 3D generation framework that significantly accelerates sparse voxel modeling without compromising quality. Our method leverages the compact VecSet representation to efficiently generate a coarse object layout in the first stage, reducing token count and accelerating voxel coordinate prediction. To refine per-voxel latent features in the second stage, we introduce Part Attention, a geometry-aware localized attention mechanism that restricts attention computation within semantically consistent part regions. This design preserves structural continuity while avoiding unnecessary global attention, achieving up to 6.7x speed-up in latent generation. To support this mechanism, we construct a scalable part annotation pipeline that converts raw meshes into part-labeled sparse voxels. Extensive experiments demonstrate that Ultra3D supports high-resolution 3D generation at 1024 resolution and achieves state-of-the-art performance in both visual fidelity and user preference.
comment: Project Page: https://buaacyw.github.io/ultra3d/
♻ ☆ How Can I Publish My LLM Benchmark Without Giving the True Answers Away? ICML 2025
Publishing a large language model (LLM) benchmark on the Internet risks contaminating future LLMs: the benchmark may be unintentionally (or intentionally) used to train or select a model. A common mitigation is to keep the benchmark private and let participants submit their models or predictions to the organizers. However, this strategy will require trust in a single organization and still permits test-set overfitting through repeated queries. To overcome this issue, we propose a way to publish benchmarks without completely disclosing the ground-truth answers to the questions, while still maintaining the ability to openly evaluate LLMs. Our main idea is to inject randomness to the answers by preparing several logically correct answers, and only include one of them as the solution in the benchmark. This reduces the best possible accuracy, i.e., Bayes accuracy, of the benchmark. Not only is this helpful to keep us from disclosing the ground truth, but this approach also offers a test for detecting data contamination. In principle, even fully capable models should not surpass the Bayes accuracy. If a model surpasses this ceiling despite this expectation, this is a strong signal of data contamination. We present experimental evidence that our method can detect data contamination accurately on a wide range of benchmarks, models, and training methodologies.
comment: Extended version of the paper presented as an Oral at the ICML 2025 Workshop on the Impact of Memorization on Trustworthy Foundation Models
♻ ☆ Splits! A Flexible Dataset and Evaluation Framework for Sociocultural Linguistic Investigation
Variation in language use, shaped by speakers' sociocultural background and specific context of use, offers a rich lens into cultural perspectives, values, and opinions. However, the computational study of these Sociocultural Linguistic Phenomena (SLP) has often been limited to bespoke analyses of specific groups or topics, hindering the pace of scientific discovery. To address this, we introduce Splits!, a 9.7 million-post dataset from Reddit designed for systematic and flexible research. The dataset contains posts from over 53,000 users across 6 demographic groups, organized into 89 discussion topics to enable comparative analysis. We validate Splits! via self-identification and by successfully replicating several known SLPs from existing literature. We complement this dataset with a framework that leverages efficient retrieval methods to rapidly validate potential SLPs (PSLPs) by automatically evaluating whether a given hypothesis is supported by our data. Crucially, to distinguish between novel and obvious insights, the framework incorporates a human-validated measure of a hypothesis's ``unexpectedness.'' We demonstrate that the two-stage process reduces the number of statistically significant findings requiring manual inspection by a factor of 1.5-1.8x, streamlining the discovery of promising phenomena for further investigation.
comment: Preprint, under review
♻ ☆ Mantis Shrimp: Exploring Photometric Band Utilization in Computer Vision Networks for Photometric Redshift Estimation
We present Mantis Shrimp, a multi-survey deep learning model for photometric redshift estimation that fuses ultra-violet (GALEX), optical (PanSTARRS), and infrared (UnWISE) imagery. Machine learning is now an established approach for photometric redshift estimation, with generally acknowledged higher performance in areas with a high density of spectroscopically identified galaxies over template-based methods. Multiple works have shown that image-based convolutional neural networks can outperform tabular-based color/magnitude models. In comparison to tabular models, image models have additional design complexities: it is largely unknown how to fuse inputs from different instruments which have different resolutions or noise properties. The Mantis Shrimp model estimates the conditional density estimate of redshift using cutout images. The density estimates are well calibrated and the point estimates perform well in the distribution of available spectroscopically confirmed galaxies with (bias = 1e-2), scatter (NMAD = 2.44e-2) and catastrophic outlier rate ($\eta$=17.53$\%$). We find that early fusion approaches (e.g., resampling and stacking images from different instruments) match the performance of late fusion approaches (e.g., concatenating latent space representations), so that the design choice ultimately is left to the user. Finally, we study how the models learn to use information across bands, finding evidence that our models successfully incorporates information from all surveys. The applicability of our model to the analysis of large populations of galaxies is limited by the speed of downloading cutouts from external servers; however, our model could be useful in smaller studies such as generating priors over redshift for stellar population synthesis.
comment: Accepted at ApJ
♻ ☆ PatchTraj: Unified Time-Frequency Representation Learning via Dynamic Patches for Trajectory Prediction
Pedestrian trajectory prediction is crucial for autonomous driving and robotics. While existing point-based and grid-based methods expose two main limitations: insufficiently modeling human motion dynamics, as they fail to balance local motion details with long-range spatiotemporal dependencies, and the time representations lack interaction with their frequency components in jointly modeling trajectory sequences. To address these challenges, we propose PatchTraj, a dynamic patch-based framework that integrates time-frequency joint modeling for trajectory prediction. Specifically, we decompose the trajectory into raw time sequences and frequency components, and employ dynamic patch partitioning to perform multi-scale segmentation, capturing hierarchical motion patterns. Each patch undergoes adaptive embedding with scale-aware feature extraction, followed by hierarchical feature aggregation to model both fine-grained and long-range dependencies. The outputs of the two branches are further enhanced via cross-modal attention, facilitating complementary fusion of temporal and spectral cues. The resulting enhanced embeddings exhibit strong expressive power, enabling accurate predictions even when using a vanilla Transformer architecture. Extensive experiments on ETH-UCY, SDD, NBA, and JRDB datasets demonstrate that our method achieves state-of-the-art performance. Notably, on the egocentric JRDB dataset, PatchTraj attains significant relative improvements of 26.7% in ADE and 17.4% in FDE, underscoring its substantial potential in embodied intelligence.
♻ ☆ MaxInfoRL: Boosting exploration in reinforcement learning through information gain maximization
Reinforcement learning (RL) algorithms aim to balance exploiting the current best strategy with exploring new options that could lead to higher rewards. Most common RL algorithms use undirected exploration, i.e., select random sequences of actions. Exploration can also be directed using intrinsic rewards, such as curiosity or model epistemic uncertainty. However, effectively balancing task and intrinsic rewards is challenging and often task-dependent. In this work, we introduce a framework, MaxInfoRL, for balancing intrinsic and extrinsic exploration. MaxInfoRL steers exploration towards informative transitions, by maximizing intrinsic rewards such as the information gain about the underlying task. When combined with Boltzmann exploration, this approach naturally trades off maximization of the value function with that of the entropy over states, rewards, and actions. We show that our approach achieves sublinear regret in the simplified setting of multi-armed bandits. We then apply this general formulation to a variety of off-policy model-free RL methods for continuous state-action spaces, yielding novel algorithms that achieve superior performance across hard exploration problems and complex scenarios such as visual control tasks.
♻ ☆ Automated Code Review Using Large Language Models at Ericsson: An Experience Report
Code review is one of the primary means of assuring the quality of released software along with testing and static analysis. However, code review requires experienced developers who may not always have the time to perform an in-depth review of code. Thus, automating code review can help alleviate the cognitive burden on experienced software developers allowing them to focus on their primary activities of writing code to add new features and fix bugs. In this paper, we describe our experience in using Large Language Models towards automating the code review process in Ericsson. We describe the development of a lightweight tool using LLMs and static program analysis. We then describe our preliminary experiments with experienced developers in evaluating our code review tool and the encouraging results.
comment: 6 pages, 4 figures, 1 table. Accepted in ICSME 2025 conference in Auckland
♻ ☆ Divided Attention: Unsupervised Multi-Object Discovery with Contextually Separated Slots
We investigate the emergence of objects in visual perception in the absence of any semantic annotation. The resulting model has received no supervision, does not use any pre-trained features, and yet it can segment the domain of an image into multiple independently moving regions. The resulting motion segmentation method can handle an unknown and varying number of objects in real-time. The core multi-modal conditional encoder-decoder architecture has one modality (optical flow) feed the encoder to produce a collection of latent codes (slots), and the other modality (color image) conditions the decoder to generate the first modality (flow) from the slots. The training criterion is designed to foster 'information separation' among the slots, while the architecture explicitly allocates activations to individual slots, leading to a method we call Divided Attention (DivA). At test time, DivA handles a different number of objects and different image resolution than seen at training, and is invariant to permutations of the slots. DivA achieves state-of-the-art performance while tripling the runtime speed of comparable methods, up to 104 FPS, and reduces the performance gap from supervised methods to 12% or less. Objects bootstrapped by DivA can then be used to prime static classifiers via contrastive learning. On fewer than 5,000 video clips, training DINO on DivA's object proposals narrows the performance gap to ImageNet-based training by up to 30.2% compared to training directly on the video frames.
♻ ☆ SinBasis Networks: Matrix-Equivalent Feature Extraction for Wave-Like Optical Spectrograms
Wave-like images-from attosecond streaking spectrograms to optical spectra, audio mel-spectrograms and periodic video frames-encode critical harmonic structures that elude conventional feature extractors. We propose a unified, matrix-equivalent framework that reinterprets convolution and attention as linear transforms on flattened inputs, revealing filter weights as basis vectors spanning latent feature subspaces. To infuse spectral priors we apply elementwise $\sin(\cdot)$ mappings to each weight matrix. Embedding these transforms into CNN, ViT and Capsule architectures yields Sin-Basis Networks with heightened sensitivity to periodic motifs and built-in invariance to spatial shifts. Experiments on a diverse collection of wave-like image datasets-including 80,000 synthetic attosecond streaking spectrograms, thousands of Raman, photoluminescence and FTIR spectra, mel-spectrograms from AudioSet and cycle-pattern frames from Kinetics-demonstrate substantial gains in reconstruction accuracy, translational robustness and zero-shot cross-domain transfer. Theoretical analysis via matrix isomorphism and Mercer-kernel truncation quantifies how sinusoidal reparametrization enriches expressivity while preserving stability in data-scarce regimes. Sin-Basis Networks thus offer a lightweight, physics-informed approach to deep learning across all wave-form imaging modalities.
♻ ☆ Where Paths Collide: A Comprehensive Survey of Classic and Learning-Based Multi-Agent Pathfinding
Multi-Agent Path Finding (MAPF) is a fundamental problem in artificial intelligence and robotics, requiring the computation of collision-free paths for multiple agents navigating from their start locations to designated goals. As autonomous systems become increasingly prevalent in warehouses, urban transportation, and other complex environments, MAPF has evolved from a theoretical challenge to a critical enabler of real-world multi-robot coordination. This comprehensive survey bridges the long-standing divide between classical algorithmic approaches and emerging learning-based methods in MAPF research. We present a unified framework that encompasses search-based methods (including Conflict-Based Search, Priority-Based Search, and Large Neighborhood Search), compilation-based approaches (SAT, SMT, CSP, ASP, and MIP formulations), and data-driven techniques (reinforcement learning, supervised learning, and hybrid strategies). Through systematic analysis of experimental practices across 200+ papers, we uncover significant disparities in evaluation methodologies, with classical methods typically tested on larger-scale instances (up to 200 by 200 grids with 1000+ agents) compared to learning-based approaches (predominantly 10-100 agents). We provide a comprehensive taxonomy of evaluation metrics, environment types, and baseline selections, highlighting the need for standardized benchmarking protocols. Finally, we outline promising future directions including mixed-motive MAPF with game-theoretic considerations, language-grounded planning with large language models, and neural solver architectures that combine the rigor of classical methods with the flexibility of deep learning. This survey serves as both a comprehensive reference for researchers and a practical guide for deploying MAPF solutions in increasingly complex real-world applications.
comment: 112 pages, 21 figures, 20 tables. The project website is: https://wangsh1yue.github.io/Where-Paths-Collide
♻ ☆ Neutral Residues: Revisiting Adapters for Model Extension ICML 2025
We address the problem of extending a pretrained large language model to a new domain that was not seen during training. Standard techniques, such as finetuning or low-rank adaptation (LoRA) are successful at domain adaptation, but do not formally add capacity to the model. This often leads to a trade-off, between performing well on the new domain vs. degrading performance on the original domain. Here, we revisit and improve adapters to extend LLMs from three angles: data, architecture and training procedure, which are advantageously considered jointly. The resulting method, called neutral residues, modifies adapters in a way that leads each new residual block to output near-zeros on the original domain. This solution leads to strong results when adapting a state-of-the-art model originally trained on English to a new language. Neutral residues significantly outperform competing approaches such as finetuning, LoRA or vanilla adapters in terms of the trade-off between learning the new language and not forgetting English.
comment: Accepted at ICML 2025
♻ ☆ DrugMCTS: a drug repurposing framework combining multi-agent, RAG and Monte Carlo Tree Search
Recent advances in large language models have demonstrated considerable potential in scientific domains such as drug repositioning. However, their effectiveness remains constrained when reasoning extends beyond the knowledge acquired during pretraining. Conventional approaches, such as fine-tuning or retrieval-augmented generation, face limitations in either imposing high computational overhead or failing to fully exploit structured scientific data. To overcome these challenges, we propose DrugMCTS, a novel framework that synergistically integrates RAG, multi-agent collaboration, and Monte Carlo Tree Search for drug repositioning. The framework employs five specialized agents tasked with retrieving and analyzing molecular and protein information, thereby enabling structured and iterative reasoning. Extensive experiments on the DrugBank and KIBA datasets demonstrate that DrugMCTS achieves substantially higher recall and robustness compared to both general-purpose LLMs and deep learning baselines. Our results highlight the importance of structured reasoning, agent-based collaboration, and feedback-driven search mechanisms in advancing LLM applications for drug repositioning.
♻ ☆ Tile and Slide : A New Framework for Scaling NeRF from Local to Global 3D Earth Observation ICCV 2025
Neural Radiance Fields (NeRF) have recently emerged as a paradigm for 3D reconstruction from multiview satellite imagery. However, state-of-the-art NeRF methods are typically constrained to small scenes due to the memory footprint during training, which we study in this paper. Previous work on large-scale NeRFs palliate this by dividing the scene into NeRFs. This paper introduces Snake-NeRF, a framework that scales to large scenes. Our out-of-core method eliminates the need to load all images and networks simultaneously, and operates on a single device. We achieve this by dividing the region of interest into NeRFs that 3D tile without overlap. Importantly, we crop the images with overlap to ensure each NeRFs is trained with all the necessary pixels. We introduce a novel $2\times 2$ 3D tile progression strategy and segmented sampler, which together prevent 3D reconstruction errors along the tile edges. Our experiments conclude that large satellite images can effectively be processed with linear time complexity, on a single GPU, and without compromise in quality.
comment: Accepted at ICCV 2025 Workshop 3D-VAST (From street to space: 3D Vision Across Altitudes). Our code will be made public after the conference at https://github.com/Ellimac0/Snake-NeRF
♻ ☆ Diffusion Beats Autoregressive in Data-Constrained Settings
Autoregressive (AR) models have long dominated the landscape of large language models, driving progress across a wide range of tasks. Recently, diffusion-based language models have emerged as a promising alternative, though their advantages over AR models remain underexplored. In this paper, we systematically study masked diffusion models in data-constrained settings-where training involves repeated passes over limited data-and find that they significantly outperform AR models when compute is abundant but data is scarce. Diffusion models make better use of repeated data, achieving lower validation loss and superior downstream performance. We interpret this advantage as implicit data augmentation: masked diffusion exposes the model to a diverse distribution of token orderings and prediction tasks, unlike AR's fixed left-to-right factorization. We find new scaling laws for diffusion models and derive a closed-form expression for the critical compute threshold at which diffusion begins to outperform AR. These results suggest that when data, not compute, is the bottleneck, diffusion models offer a compelling alternative to the standard AR paradigm. Our code is available at: https://diffusion-scaling.github.io.
comment: Project Webpage: https://diffusion-scaling.github.io
♻ ☆ TrIM, Triangular Input Movement Systolic Array for Convolutional Neural Networks: Dataflow and Analytical Modelling AI
In order to follow the ever-growing computational complexity and data intensity of state-of-the-art AI models, new computing paradigms are being proposed. These paradigms aim at achieving high energy efficiency by mitigating the Von Neumann bottleneck that relates to the energy cost of moving data between the processing cores and the memory. Convolutional Neural Networks (CNNs) are susceptible to this bottleneck, given the massive data they have to manage. Systolic arrays (SAs) are promising architectures to mitigate data transmission cost, thanks to high data utilization of Processing Elements (PEs). These PEs continuously exchange and process data locally based on specific dataflows (such as weight stationary and row stationary), in turn reducing the number of memory accesses to the main memory. In SAs, convolutions are managed either as matrix multiplications or exploiting the raster-order scan of sliding windows. However, data redundancy is a primary concern affecting area, power, and energy. In this paper, we propose TrIM: a novel dataflow for SAs based on a Triangular Input Movement and compatible with CNN computing. TrIM maximizes the local input utilization, minimizes the weight data movement, and solves the data redundancy problem. Furthermore, TrIM does not incur the significant on-chip memory penalty introduced by the row stationary dataflow. When compared to state-of-the-art SA dataflows, the high data utilization offered by TrIM guarantees ~10X less memory access. Furthermore, considering that PEs continuously overlap multiplications and accumulations, TrIM achieves high throughput (up to 81.8% higher than row stationary), other than requiring a limited number of registers (up to 15.6X fewer registers than row stationary).
comment: This work has been accepted by IEEE TCASAI for publication
♻ ☆ LLaVA-MORE: A Comparative Study of LLMs and Visual Backbones for Enhanced Visual Instruction Tuning ICCV 2025
Recent progress in Multimodal Large Language Models (MLLMs) has highlighted the critical roles of both the visual backbone and the underlying language model. While prior work has primarily focused on scaling these components to billions of parameters, the trade-offs between model size, architecture, and performance remain underexplored. Additionally, inconsistencies in training data and evaluation protocols have hindered direct comparisons, making it difficult to derive optimal design choices. In this paper, we introduce LLaVA-MORE, a new family of MLLMs that integrates recent language models with diverse visual backbones. To ensure fair comparisons, we employ a unified training protocol applied consistently across all architectures. Our analysis systematically explores both small- and medium-scale LLMs -- including Phi-4, LLaMA-3.1, and Gemma-2 -- to evaluate multimodal reasoning, generation, and instruction following, while examining the relationship between model size and performance. Beyond evaluating the LLM impact on final results, we conduct a comprehensive study of various visual encoders, ranging from CLIP-based architectures to alternatives such as DINOv2, SigLIP, and SigLIP2. Additional experiments investigate the effects of increased image resolution and variations in pre-training datasets. Overall, our results provide insights into the design of more effective MLLMs, offering a reproducible evaluation framework that facilitates direct comparisons and can guide future model development. Our source code and trained models are publicly available at: https://github.com/aimagelab/LLaVA-MORE.
comment: ICCV 2025 Workshop on What is Next in Multimodal Foundation Models
♻ ☆ Automated Strategy Invention for Confluence of Term Rewrite Systems
Term rewriting plays a crucial role in software verification and compiler optimization. With dozens of highly parameterizable techniques developed to prove various system properties, automatic term rewriting tools work in an extensive parameter space. This complexity exceeds human capacity for parameter selection, motivating an investigation into automated strategy invention. In this paper, we focus on confluence, an important property of term rewrite systems, and apply machine learning to develop the first learning-guided automatic confluence prover. Moreover, we randomly generate a large dataset to analyze confluence for term rewrite systems. Our results focus on improving the state-of-the-art automatic confluence prover CSI: When equipped with our invented strategies, it surpasses its human-designed strategies both on the augmented dataset and on the original human-created benchmark dataset Cops, proving/disproving the confluence of several term rewrite systems for which no automated proofs were known before.
♻ ☆ EducationQ: Evaluating LLMs' Teaching Capabilities Through Multi-Agent Dialogue Framework
Large language models (LLMs) increasingly serve as educational tools, yet evaluating their teaching capabilities remains challenging due to the resource-intensive, context-dependent, and methodologically complex nature of teacher-student interactions. We introduce EducationQ, a multi-agent dialogue framework that efficiently assesses teaching capabilities through simulated dynamic educational scenarios, featuring specialized agents for teaching, learning, and evaluation. Testing 14 LLMs across major AI Organizations (OpenAI, Meta, Google, Anthropic, and others) on 1,498 questions spanning 13 disciplines and 10 difficulty levels reveals that teaching effectiveness does not correlate linearly with model scale or general reasoning capabilities - with some smaller open-source models outperforming larger commercial counterparts in teaching contexts. This finding highlights a critical gap in current evaluations that prioritize knowledge recall over interactive pedagogy. Our mixed-methods evaluation, combining quantitative metrics with qualitative analysis and expert case studies, identifies distinct pedagogical strengths employed by top-performing models (e.g., sophisticated questioning strategies, adaptive feedback mechanisms). Human expert evaluations show 78% agreement with our automated qualitative analysis of effective teaching behaviors, validating our methodology. EducationQ demonstrates that LLMs-as-teachers require specialized optimization beyond simple scaling, suggesting next-generation educational AI prioritize targeted enhancement of specific pedagogical effectiveness.
comment: Paper URL: https://aclanthology.org/2025.acl-long.1576 ;Presentation Video: https://www.youtube.com/watch?v=j63ooKE50I0
♻ ☆ Robust Adverse Weather Removal via Spectral-based Spatial Grouping ICCV25
Adverse weather conditions cause diverse and complex degradation patterns, driving the development of All-in-One (AiO) models. However, recent AiO solutions still struggle to capture diverse degradations, since global filtering methods like direct operations on the frequency domain fail to handle highly variable and localized distortions. To address these issue, we propose Spectral-based Spatial Grouping Transformer (SSGformer), a novel approach that leverages spectral decomposition and group-wise attention for multi-weather image restoration. SSGformer decomposes images into high-frequency edge features using conventional edge detection and low-frequency information via Singular Value Decomposition. We utilize multi-head linear attention to effectively model the relationship between these features. The fused features are integrated with the input to generate a grouping-mask that clusters regions based on the spatial similarity and image texture. To fully leverage this mask, we introduce a group-wise attention mechanism, enabling robust adverse weather removal and ensuring consistent performance across diverse weather conditions. We also propose a Spatial Grouping Transformer Block that uses both channel attention and spatial attention, effectively balancing feature-wise relationships and spatial dependencies. Extensive experiments show the superiority of our approach, validating its effectiveness in handling the varied and intricate adverse weather degradations.
comment: accepted by ICCV25
♻ ☆ Efficient Pain Recognition via Respiration Signals: A Single Cross-Attention Transformer Multi-Window Fusion Pipeline
Pain is a complex condition affecting a large portion of the population. Accurate and consistent evaluation is essential for individuals experiencing pain, and it supports the development of effective and advanced management strategies. Automatic pain assessment systems provide continuous monitoring and support clinical decision-making, aiming to reduce distress and prevent functional decline. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed method introduces a pipeline that leverages respiration as the input signal and incorporates a highly efficient cross-attention transformer alongside a multi-windowing strategy. Extensive experiments demonstrate that respiration is a valuable physiological modality for pain assessment. Moreover, experiments revealed that compact and efficient models, when properly optimized, can achieve strong performance, often surpassing larger counterparts. The proposed multi-window approach effectively captures both short-term and long-term features, as well as global characteristics, thereby enhancing the model's representational capacity.
comment: arXiv admin note: text overlap with arXiv:2507.21881, arXiv:2507.21875
♻ ☆ Multi-Representation Diagrams for Pain Recognition: Integrating Various Electrodermal Activity Signals into a Single Image
Pain is a multifaceted phenomenon that affects a substantial portion of the population. Reliable and consistent evaluation benefits those experiencing pain and underpins the development of effective and advanced management strategies. Automatic pain-assessment systems deliver continuous monitoring, inform clinical decision-making, and aim to reduce distress while preventing functional decline. By incorporating physiological signals, these systems provide objective, accurate insights into an individual's condition. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed method introduces a pipeline that leverages electrodermal activity signals as input modality. Multiple representations of the signal are created and visualized as waveforms, and they are jointly visualized within a single multi-representation diagram. Extensive experiments incorporating various processing and filtering techniques, along with multiple representation combinations, demonstrate the effectiveness of the proposed approach. It consistently yields comparable, and in several cases superior, results to traditional fusion methods, establishing it as a robust alternative for integrating different signal representations or modalities.
comment: arXiv admin note: text overlap with arXiv:2507.21875
♻ ☆ Tiny-BioMoE: a Lightweight Embedding Model for Biosignal Analysis
Pain is a complex and pervasive condition that affects a significant portion of the population. Accurate and consistent assessment is essential for individuals suffering from pain, as well as for developing effective management strategies in a healthcare system. Automatic pain assessment systems enable continuous monitoring, support clinical decision-making, and help minimize patient distress while mitigating the risk of functional deterioration. Leveraging physiological signals offers objective and precise insights into a person's state, and their integration in a multimodal framework can further enhance system performance. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed approach introduces \textit{Tiny-BioMoE}, a lightweight pretrained embedding model for biosignal analysis. Trained on $4.4$ million biosignal image representations and consisting of only $7.3$ million parameters, it serves as an effective tool for extracting high-quality embeddings for downstream tasks. Extensive experiments involving electrodermal activity, blood volume pulse, respiratory signals, peripheral oxygen saturation, and their combinations highlight the model's effectiveness across diverse modalities in automatic pain recognition tasks. \textit{\textcolor{blue}{The model's architecture (code) and weights are available at https://github.com/GkikasStefanos/Tiny-BioMoE.
♻ ☆ MultiEditor: Controllable Multimodal Object Editing for Driving Scenarios Using 3D Gaussian Splatting Priors
Autonomous driving systems rely heavily on multimodal perception data to understand complex environments. However, the long-tailed distribution of real-world data hinders generalization, especially for rare but safety-critical vehicle categories. To address this challenge, we propose MultiEditor, a dual-branch latent diffusion framework designed to edit images and LiDAR point clouds in driving scenarios jointly. At the core of our approach is introducing 3D Gaussian Splatting (3DGS) as a structural and appearance prior for target objects. Leveraging this prior, we design a multi-level appearance control mechanism--comprising pixel-level pasting, semantic-level guidance, and multi-branch refinement--to achieve high-fidelity reconstruction across modalities. We further propose a depth-guided deformable cross-modality condition module that adaptively enables mutual guidance between modalities using 3DGS-rendered depth, significantly enhancing cross-modality consistency. Extensive experiments demonstrate that MultiEditor achieves superior performance in visual and geometric fidelity, editing controllability, and cross-modality consistency. Furthermore, generating rare-category vehicle data with MultiEditor substantially enhances the detection accuracy of perception models on underrepresented classes.
♻ ☆ RAVine: Reality-Aligned Evaluation for Agentic Search
Agentic search, as a more autonomous and adaptive paradigm of retrieval augmentation, is driving the evolution of intelligent search systems. However, existing evaluation frameworks fail to align well with the goals of agentic search. First, the complex queries commonly used in current benchmarks often deviate from realistic user search scenarios. Second, prior approaches tend to introduce noise when extracting ground truth for end-to-end evaluations, leading to distorted assessments at a fine-grained level. Third, most current frameworks focus solely on the quality of final answers, neglecting the evaluation of the iterative process inherent to agentic search. To address these limitations, we propose RAVine -- a Reality-Aligned eValuation framework for agentic LLMs with search. RAVine targets multi-point queries and long-form answers that better reflect user intents, and introduces an attributable ground truth construction strategy to enhance the accuracy of fine-grained evaluation. Moreover, RAVine examines model's interaction with search tools throughout the iterative process, and accounts for factors of efficiency. We benchmark a series of models using RAVine and derive several insights, which we hope will contribute to advancing the development of agentic search systems. The code and datasets are available at https://github.com/SwordFaith/RAVine.
♻ ☆ Artificial Inductive Bias for Synthetic Tabular Data Generation in Data-Scarce Scenarios
While synthetic tabular data generation using Deep Generative Models (DGMs) offers a compelling solution to data scarcity and privacy concerns, their effectiveness relies on the availability of substantial training data, often lacking in real-world scenarios. To overcome this limitation, we propose a novel methodology that explicitly integrates artificial inductive biases into the generative process to improve data quality in low-data regimes. Our framework leverages transfer learning and meta-learning techniques to construct and inject informative inductive biases into DGMs. We evaluate four approaches (pre-training, model averaging, Model-Agnostic Meta-Learning (MAML), and Domain Randomized Search (DRS)) and analyze their impact on the quality of the generated text. Experimental results show that incorporating inductive bias substantially improves performance, with transfer learning methods outperforming meta-learning, achieving up to 60\% gains in Jensen-Shannon divergence. The methodology is model-agnostic and especially relevant in domains such as healthcare and finance, where high-quality synthetic data are essential, and data availability is often limited.
comment: 19 pages, 6 Figures
♻ ☆ Other Vehicle Trajectories Are Also Needed: A Driving World Model Unifies Ego-Other Vehicle Trajectories in Video Latent Space
Advanced end-to-end autonomous driving systems predict other vehicles' motions and plan ego vehicle's trajectory. The world model that can foresee the outcome of the trajectory has been used to evaluate the autonomous driving system. However, existing world models predominantly emphasize the trajectory of the ego vehicle and leave other vehicles uncontrollable. This limitation hinders their ability to realistically simulate the interaction between the ego vehicle and the driving scenario. In this paper, we propose a driving World Model named EOT-WM, unifying Ego-Other vehicle Trajectories in videos for driving simulation. Specifically, it remains a challenge to match multiple trajectories in the BEV space with each vehicle in the video to control the video generation. We first project ego-other vehicle trajectories in the BEV space into the image coordinate for vehicle-trajectory match via pixel positions. Then, trajectory videos are encoded by the Spatial-Temporal Variational Auto Encoder to align with driving video latents spatially and temporally in the unified visual space. A trajectory-injected diffusion Transformer is further designed to denoise the noisy video latents for video generation with the guidance of ego-other vehicle trajectories. In addition, we propose a metric based on control latent similarity to evaluate the controllability of trajectories. Extensive experiments are conducted on the nuScenes dataset, and the proposed model outperforms the state-of-the-art method by 30% in FID and 55% in FVD. The model can also predict unseen driving scenes with self-produced trajectories.
comment: 8 pages, 7 figures
♻ ☆ Theorem-of-Thought: A Multi-Agent Framework for Abductive, Deductive, and Inductive Reasoning in Language Models ACL 2025
Large language models (LLMs) have shown strong performance across natural language reasoning tasks, yet their reasoning processes remain brittle and difficult to interpret. Prompting techniques like Chain-of-Thought (CoT) enhance reliability by eliciting intermediate reasoning steps or aggregating multiple outputs. However, they lack mechanisms for enforcing logical structure and assessing internal coherence. We introduce Theorem-of-Thought (ToTh), a novel framework that models reasoning as collaboration among three parallel agents, each simulating a distinct mode of inference: abductive, deductive, and inductive. Each agent produces a reasoning trace, which is structured into a formal reasoning graph. To evaluate consistency, we apply Bayesian belief propagation guided by natural language inference (NLI), assigning confidence scores to each step. The most coherent graph is selected to derive the final answer. Experiments on symbolic (WebOfLies) and numerical (MultiArith) reasoning benchmarks show that ToTh consistently outperforms CoT, Self-Consistency, and CoT-Decoding across multiple LLMs, while producing interpretable and logically grounded reasoning chains. Our findings suggest a promising direction for building more robust and cognitively inspired LLM reasoning. The implementation is available at https://github.com/KurbanIntelligenceLab/theorem-of-thought.
comment: ACL 2025 KnowFM
♻ ☆ Robust and Fine-Grained Detection of AI Generated Texts
An ideal detection system for machine generated content is supposed to work well on any generator as many more advanced LLMs come into existence day by day. Existing systems often struggle with accurately identifying AI-generated content over shorter texts. Further, not all texts might be entirely authored by a human or LLM, hence we focused more over partial cases i.e human-LLM co-authored texts. Our paper introduces a set of models built for the task of token classification which are trained on an extensive collection of human-machine co-authored texts, which performed well over texts of unseen domains, unseen generators, texts by non-native speakers and those with adversarial inputs. We also introduce a new dataset of over 2.4M such texts mostly co-authored by several popular proprietary LLMs over 23 languages. We also present findings of our models' performance over each texts of each domain and generator. Additional findings include comparison of performance against each adversarial method, length of input texts and characteristics of generated texts compared to the original human authored texts.
comment: 18 pages, 6 figures
♻ ☆ VL-Cogito: Progressive Curriculum Reinforcement Learning for Advanced Multimodal Reasoning
Reinforcement learning has proven its effectiveness in enhancing the reasoning capabilities of large language models. Recent research efforts have progressively extended this paradigm to multimodal reasoning tasks. Due to the inherent complexity and diversity of multimodal tasks, especially in semantic content and problem formulations, existing models often exhibit unstable performance across various domains and difficulty levels. To address these limitations, we propose VL-Cogito, an advanced multimodal reasoning model trained via a novel multi-stage Progressive Curriculum Reinforcement Learning (PCuRL) framework. PCuRL systematically guides the model through tasks of gradually increasing difficulty, substantially improving its reasoning abilities across diverse multimodal contexts. The framework introduces two key innovations: (1) an online difficulty soft weighting mechanism, dynamically adjusting training difficulty across successive RL training stages; and (2) a dynamic length reward mechanism, which encourages the model to adaptively regulate its reasoning path length according to task complexity, thus balancing reasoning efficiency with correctness. Experimental evaluations demonstrate that VL-Cogito consistently matches or surpasses existing reasoning-oriented models across mainstream multimodal benchmarks spanning mathematics, science, logic, and general understanding, validating the effectiveness of our approach.
comment: 21 pages, 5 figures, 6 tables. Work in progress
♻ ☆ KeyKnowledgeRAG (K^2RAG): An Enhanced RAG method for improved LLM question-answering capabilities
Fine-tuning is an immensely resource-intensive process when retraining Large Language Models (LLMs) to incorporate a larger body of knowledge. Although many fine-tuning techniques have been developed to reduce the time and computational cost involved, the challenge persists as LLMs continue to grow in size and complexity. To address this, a new approach to knowledge expansion in LLMs is needed. Retrieval-Augmented Generation (RAG) offers one such alternative by storing external knowledge in a database and retrieving relevant chunks to support question answering. However, naive implementations of RAG face significant limitations in scalability and answer accuracy. This paper introduces KeyKnowledgeRAG (K2RAG), a novel framework designed to overcome these limitations. Inspired by the divide-and-conquer paradigm, K2RAG integrates dense and sparse vector search, knowledge graphs, and text summarization to improve retrieval quality and system efficiency. The framework also includes a preprocessing step that summarizes the training data, significantly reducing the training time. K2RAG was evaluated using the MultiHopRAG dataset, where the proposed pipeline was trained on the document corpus and tested on a separate evaluation set. Results demonstrated notable improvements over common naive RAG implementations. K2RAG achieved the highest mean answer similarity score of 0.57, and reached the highest third quartile (Q3) similarity of 0.82, indicating better alignment with ground-truth answers. In addition to improved accuracy, the framework proved highly efficient. The summarization step reduced the average training time of individual components by 93%, and execution speed was up to 40% faster than traditional knowledge graph-based RAG systems. K2RAG also demonstrated superior scalability, requiring three times less VRAM than several naive RAG implementations tested in this study.
comment: 21 pages, 14 figures
♻ ☆ Improving Multilingual Capabilities with Cultural and Local Knowledge in Large Language Models While Enhancing Native Performance
Large Language Models (LLMs) have shown remarkable capabilities, but their development has primarily focused on English and other high-resource languages, leaving many languages underserved. We present our latest Hindi-English bi-lingual LLM \textbf{Mantra-14B} with ~3\% average improvement in benchmark scores over both languages, outperforming models twice its size. Using a curated dataset composed of English and Hindi instruction data of 485K samples, we instruction tuned models such as Qwen-2.5-14B-Instruct and Phi-4 to improve performance over both English and Hindi. Our experiments encompassing seven different LLMs of varying parameter sizes and over 140 training attempts with varying English-Hindi training data ratios demonstrated that it is possible to significantly improve multilingual performance without compromising native performance. Further, our approach avoids resource-intensive techniques like vocabulary expansion or architectural modifications, thus keeping the model size small. Our results indicate that modest fine-tuning with culturally and locally informed data can bridge performance gaps without incurring significant computational overhead. We release our training code, datasets, and models under mit and apache licenses to aid further research towards under-represented and low-resource languages.
comment: 24 pages, 18 figures
♻ ☆ HER2 Expression Prediction with Flexible Multi-Modal Inputs via Dynamic Bidirectional Reconstruction
In breast cancer HER2 assessment, clinical evaluation relies on combined H&E and IHC images, yet acquiring both modalities is often hindered by clinical constraints and cost. We propose an adaptive bimodal prediction framework that flexibly supports single- or dual-modality inputs through two core innovations: a dynamic branch selector activating modality completion or joint inference based on input availability, and a cross-modal GAN (CM-GAN) enabling feature-space reconstruction of missing modalities. This design dramatically improves H&E-only accuracy from 71.44% to 94.25%, achieves 95.09% with full dual-modality inputs, and maintains 90.28% reliability under single-modality conditions. The "dual-modality preferred, single-modality compatible" architecture delivers near-dual-modality accuracy without mandatory synchronized acquisition, offering a cost-effective solution for resource-limited regions and significantly improving HER2 assessment accessibility.
comment: 8 pages,6 figures,3 tables,accepted by the 33rd ACM International Conference on Multimedia(ACM MM 2025)
♻ ☆ DHCP: Detecting Hallucinations by Cross-modal Attention Pattern in Large Vision-Language Models
Large vision-language models (LVLMs) have demonstrated exceptional performance on complex multimodal tasks. However, they continue to suffer from significant hallucination issues, including object, attribute, and relational hallucinations. To accurately detect these hallucinations, we investigated the variations in cross-modal attention patterns between hallucination and non-hallucination states. Leveraging these distinctions, we developed a lightweight detector capable of identifying hallucinations. Our proposed method, Detecting Hallucinations by Cross-modal Attention Patterns (DHCP), is straightforward and does not require additional LVLM training or extra LVLM inference steps. Experimental results show that DHCP achieves remarkable performance in hallucination detection. By offering novel insights into the identification and analysis of hallucinations in LVLMs, DHCP contributes to advancing the reliability and trustworthiness of these models. The code is available at https://github.com/btzyd/DHCP.
comment: Accepted by ACM Multimedia 2025
♻ ☆ MemShare: Memory Efficient Inference for Large Reasoning Models through KV Cache Reuse
Large Reasoning Models (LRMs) have achieved significant advances in mathematical reasoning and formal logic tasks. However, their tendency to generate lengthy chain-of-thought sequences leads to substantial memory overhead during inference. We observe that LRMs frequently produce highly similar intermediate reasoning steps, which correspond to similar KV cache states across layers. Motivated by this observation, we propose MemShare, a novel KV cache management approach that effectively reduces memory overhead. MemShare employs a collaborative filtering algorithm to efficiently identify reusable KV cache blocks and enables zero copy cache reuse to significantly reduce memory overhead, improve throughput while maintaining accuracy. Experimental results demonstrate that MemShare delivers up to 84.79\% improvement in throughput while maintaining better accuracy compared to existing KV cache management methods.
comment: 11 pages, 7 figures
♻ ☆ EEG-SCMM: Soft Contrastive Masked Modeling for Cross-Corpus EEG-Based Emotion Recognition
Emotion recognition using electroencephalography (EEG) signals has attracted increasing attention in recent years. However, existing methods often lack generalization in cross-corpus settings, where a model trained on one dataset is directly applied to another without retraining, due to differences in data distribution and recording conditions. To tackle the challenge of cross-corpus EEG-based emotion recognition, we propose a novel framework termed Soft Contrastive Masked Modeling (SCMM). Grounded in the theory of emotional continuity, SCMM integrates soft contrastive learning with a hybrid masking strategy to effectively capture emotion dynamics (refer to short-term continuity). Specifically, in the self-supervised learning stage, we propose a soft weighting mechanism that assigns similarity scores to sample pairs, enabling fine-grained modeling of emotional transitions and capturing the temporal continuity of human emotions. To further enhance representation learning, we design a similarity-aware aggregator that fuses complementary information from semantically related samples based on pairwise similarities, thereby improving feature expressiveness and reconstruction quality. This dual design contributes to a more discriminative and transferable representation, which is crucial for robust cross-corpus generalization. Extensive experiments on the SEED, SEED-IV, and DEAP datasets show that SCMM achieves state-of-the-art (SOTA) performance, outperforming the second-best method by an average accuracy of 4.26% under both same-class and different-class cross-corpus settings. The source code is available at https://github.com/Kyler-RL/SCMM.
comment: 18 pages, 10 figures, 14 tables. Accepted in ACMMM 2025
♻ ☆ A Compute-Matched Re-Evaluation of TroVE on MATH
Reusing established theorems and formulas is central to mathematical problem solving, serving as essential building blocks for tackling increasingly complex challenges. Recent work, TroVE, argues that code-generating Large Language Models (LLMs) can benefit similarly on the MATH benchmark by inducing and reusing higher-level toolboxes. By allocating computational budget across an ensemble of three modes -- directly generating code, creating tools, and reusing tools -- TroVE claims to outperform a PRIMITIVE baseline that only performs direct generation. However, recent analysis (Berlot-Attwell et al., 2024) casts doubt on these gains, noting that the tools created are often trivial or rarely reused, suggesting that improvements may stem from self-consistency or self-correction. In this work, we re-evaluate TroVE on MATH, analyze the impact of each of its modes, and show that its benefit does not come from these mechanisms, but simply from a higher computational budget spent for TroVE compared to PRIMITIVE. To this end, we also perform a small correction in the original implementation of TroVE's selection mechanism, boosting TroVE's performance on MATH by 3\% in accuracy. After matching for compute, the benefit of TroVE reduces to a marginal improvement of 1\%, suggesting that this toolbox approach does not provide a significant benefit on MATH.
♻ ☆ When Words Smile: Generating Diverse Emotional Facial Expressions from Text
Enabling digital humans to express rich emotions has significant applications in dialogue systems, gaming, and other interactive scenarios. While recent advances in talking head synthesis have achieved impressive results in lip synchronization, they tend to overlook the rich and dynamic nature of facial expressions. To fill this critical gap, we introduce an end-to-end text-to-expression model that explicitly focuses on emotional dynamics. Our model learns expressive facial variations in a continuous latent space and generates expressions that are diverse, fluid, and emotionally coherent. To support this task, we introduce EmoAva, a large-scale and high-quality dataset containing 15,000 text-3D expression pairs. Extensive experiments on both existing datasets and EmoAva demonstrate that our method significantly outperforms baselines across multiple evaluation metrics, marking a significant advancement in the field.
comment: 19 pages. Resources: https://github.com/WalkerMitty/EmoAva
♻ ☆ Enhancing AI System Resiliency: Formulation and Guarantee for LSTM Resilience Based on Control Theory
This paper proposes a novel theoretical framework for guaranteeing and evaluating the resilience of long short-term memory (LSTM) networks in control systems. We introduce "recovery time" as a new metric of resilience in order to quantify the time required for an LSTM to return to its normal state after anomalous inputs. By mathematically refining incremental input-to-state stability ($\delta$ISS) theory for LSTM, we derive a practical data-independent upper bound on recovery time. This upper bound gives us resilience-aware training. Experimental validation on simple models demonstrates the effectiveness of our resilience estimation and control methods, enhancing a foundation for rigorous quality assurance in safety-critical AI applications.
comment: 9 pages, 6 figures. Appendix: 17 pages. First three listed authors have equal contributions
♻ ☆ Iterative Repair with Weak Verifiers for Few-shot Transfer in KBQA with Unanswerability
Real-world applications of KBQA require models to handle unanswerable questions with a limited volume of in-domain labeled training data. We propose the novel task of few-shot transfer for KBQA with unanswerable questions and contribute two new datasets for performance evaluation. We present FUn-FuSIC - a novel solution for our task that extends FuSIC KBQA, the state-of-the-art few-shot transfer model for answerable-only KBQA. We first note that FuSIC-KBQA's iterative repair makes a strong assumption that all questions are unanswerable. As a remedy, we propose Feedback for Unanswerability (FUn), which uses iterative repair using feedback from a suite of strong and weak verifiers, and an adaptation of self consistency for unanswerabilty to better assess the answerability of a question. Our experiments show that FUn-FuSIC significantly outperforms suitable adaptations of multiple LLM based and supervised SoTA models on our task, while establishing a new SoTA for answerable few-shot transfer as well.
♻ ☆ An Efficient Intelligent Semi-Automated Warehouse Inventory Stocktaking System
In the context of evolving supply chain management, the significance of efficient inventory management has grown substantially for businesses. However, conventional manual and experience-based approaches often struggle to meet the complexities of modern market demands. This research introduces an intelligent inventory management system to address challenges related to inaccurate data, delayed monitoring, and overreliance on subjective experience in forecasting. The proposed system integrates bar code and distributed flutter application technologies for intelligent perception, alongside comprehensive big data analytics to enable data-driven decision-making. Through meticulous analysis, system design, critical technology exploration, and simulation validation, the effectiveness of the proposed system is successfully demonstrated. The intelligent system facilitates second-level monitoring, high-frequency checks, and artificial intelligence-driven forecasting, consequently enhancing the automation, precision, and intelligence of inventory management. This system contributes to cost reduction and optimized inventory sizes through accurate predictions and informed decisions, ultimately achieving a mutually beneficial scenario. The outcomes of this research offer
♻ ☆ AutoSchemaKG: Autonomous Knowledge Graph Construction through Dynamic Schema Induction from Web-Scale Corpora
We present AutoSchemaKG, a framework for fully autonomous knowledge graph construction that eliminates the need for predefined schemas. Our system leverages large language models to simultaneously extract knowledge triples and induce comprehensive schemas directly from text, modeling both entities and events while employing conceptualization to organize instances into semantic categories. Processing over 50 million documents, we construct ATLAS (Automated Triple Linking And Schema induction), a family of knowledge graphs with 900+ million nodes and 5.9 billion edges. This approach outperforms state-of-the-art baselines on multi-hop QA tasks and enhances LLM factuality. Notably, our schema induction achieves 95\% semantic alignment with human-crafted schemas with zero manual intervention, demonstrating that billion-scale knowledge graphs with dynamically induced schemas can effectively complement parametric knowledge in large language models.
comment: 9 pages, preprint, code: https://github.com/HKUST-KnowComp/AutoSchemaKG
♻ ☆ CodeIF-Bench: Evaluating Instruction-Following Capabilities of Large Language Models in Interactive Code Generation
Large Language Models (LLMs) have demonstrated exceptional performance in code generation tasks and have become indispensable programming assistants for developers. However, existing code generation benchmarks primarily assess the functional correctness of code generated by LLMs in single-turn interactions. They offer limited insight into LLMs' abilities to generate code that strictly follows users' instructions in multi-turn interaction scenarios. In this paper, we introduce CodeIF-Bench, a benchmark for evaluating the instruction-following capabilities of LLMs in interactive code generation. Specifically, CodeIF-Bench incorporates nine types of verifiable instructions aligned with the real-world software development requirements, which can be independently and objectively validated through specified test cases, facilitating the evaluation of instruction-following capability in multi-turn interactions. In both \textit{Static Conversation} and \textit{Dynamic Conversation} settings, we evaluate the performance of 7 state-of-the-art LLMs and summarize the important factors influencing the instruction-following ability of LLMs in multi-turn interactions, as well as potential directions for improvement.
♻ ☆ AI Should Sense Better, Not Just Scale Bigger: Adaptive Sensing as a Paradigm Shift
Current AI advances largely rely on scaling neural models and expanding training datasets to achieve generalization and robustness. Despite notable successes, this paradigm incurs significant environmental, economic, and ethical costs, limiting sustainability and equitable access. Inspired by biological sensory systems, where adaptation occurs dynamically at the input (e.g., adjusting pupil size, refocusing vision)--we advocate for adaptive sensing as a necessary and foundational shift. Adaptive sensing proactively modulates sensor parameters (e.g., exposure, sensitivity, multimodal configurations) at the input level, significantly mitigating covariate shifts and improving efficiency. Empirical evidence from recent studies demonstrates that adaptive sensing enables small models (e.g., EfficientNet-B0) to surpass substantially larger models (e.g., OpenCLIP-H) trained with significantly more data and compute. We (i) outline a roadmap for broadly integrating adaptive sensing into real-world applications spanning humanoid, healthcare, autonomous systems, agriculture, and environmental monitoring, (ii) critically assess technical and ethical integration challenges, and (iii) propose targeted research directions, such as standardized benchmarks, real-time adaptive algorithms, multimodal integration, and privacy-preserving methods. Collectively, these efforts aim to transition the AI community toward sustainable, robust, and equitable artificial intelligence systems.
♻ ☆ Framing Political Bias in Multilingual LLMs Across Pakistani Languages
Large Language Models (LLMs) increasingly shape public discourse, yet most evaluations of political and economic bias have focused on high-resource, Western languages and contexts. This leaves critical blind spots in low-resource, multilingual regions such as Pakistan, where linguistic identity is closely tied to political, religious, and regional ideologies. We present a systematic evaluation of political bias in 13 state-of-the-art LLMs across five Pakistani languages: Urdu, Punjabi, Sindhi, Pashto, and Balochi. Our framework integrates a culturally adapted Political Compass Test (PCT) with multi-level framing analysis, capturing both ideological stance (economic/social axes) and stylistic framing (content, tone, emphasis). Prompts are aligned with 11 socio-political themes specific to the Pakistani context. Results show that while LLMs predominantly reflect liberal-left orientations consistent with Western training data, they exhibit more authoritarian framing in regional languages, highlighting language-conditioned ideological modulation. We also identify consistent model-specific bias patterns across languages. These findings show the need for culturally grounded, multilingual bias auditing frameworks in global NLP.
comment: Preprint
♻ ☆ AgentSpec: Customizable Runtime Enforcement for Safe and Reliable LLM Agents
Agents built on LLMs are increasingly deployed across diverse domains, automating complex decision-making and task execution. However, their autonomy introduces safety risks, including security vulnerabilities, legal violations, and unintended harmful actions. Existing mitigation methods, such as model-based safeguards and early enforcement strategies, fall short in robustness, interpretability, and adaptability. To address these challenges, we propose AgentSpec, a lightweight domain-specific language for specifying and enforcing runtime constraints on LLM agents. With AgentSpec, users define structured rules that incorporate triggers, predicates, and enforcement mechanisms, ensuring agents operate within predefined safety boundaries. We implement AgentSpec across multiple domains, including code execution, embodied agents, and autonomous driving, demonstrating its adaptability and effectiveness. Our evaluation shows that AgentSpec successfully prevents unsafe executions in over 90% of code agent cases, eliminates all hazardous actions in embodied agent tasks, and enforces 100% compliance by autonomous vehicles (AVs). Despite its strong safety guarantees, AgentSpec remains computationally lightweight, with overheads in milliseconds. By combining interpretability, modularity, and efficiency, AgentSpec provides a practical and scalable solution for enforcing LLM agent safety across diverse applications. We also automate the generation of rules using LLMs and assess their effectiveness. Our evaluation shows that the rules generated by OpenAI o1 achieve a precision of 95.56% and recall of 70.96% for embodied agents, successfully identify 87.26% of the risky code, and prevent AVs from breaking laws in 5 out of 8 scenarios.
comment: Accepted by the 48th IEEE/ACM International Conference on Software Engineering (ICSE 2026)
♻ ☆ Accumulator-Aware Post-Training Quantization for Large Language Models
When quantizing weights and activations to increasingly narrower representations, the cost of additions begins to dominate that of multiplications in multiply-accumulate (MAC) units. Recent studies show that reducing addition costs via low-precision accumulation improves throughput, power, and area across inference platforms, albeit with an increased risk of overflow. Accumulator-aware quantization research has so far only considered the quantization-aware training (QAT) paradigm, in which models are fine-tuned or trained from scratch with quantization in the loop. As models and datasets continue to grow in size, QAT techniques become increasingly more expensive, which has motivated the recent surge in post-training quantization (PTQ) research. To bridge this gap, we introduce AXE, the first accumulator-aware quantization framework explicitly designed to endow overflow avoidance guarantees to PTQ algorithms. We present theoretical motivation for AXE and demonstrate its flexibility by implementing it on top of two existing algorithms: GPFQ and OPTQ. We design AXE to support multi-stage accumulation, opening the door to full datapath optimization for the first time. We evaluate AXE using recent language generation models; when quantizing Llama3 8B for a 16-bit multi-stage accumulation datapath, AXE maintains up to 98% of the FP16 perplexity, surpassing naive bit width manipulation by up to 15%.
♻ ☆ LLM-Crowdsourced: A Benchmark-Free Paradigm for Mutual Evaluation of Large Language Models
Although large language models (LLMs) demonstrate remarkable capabilities across various tasks, evaluating their capabilities remains a challenging task. Existing evaluation methods suffer from issues such as data contamination, black-box operation, and subjective preference. These issues make it difficult to evaluate the LLMs' true capabilities comprehensively. To tackle these challenges, we propose a novel benchmark-free evaluation paradigm, LLM-Crowdsourced. It utilizes LLMs to generate questions, answer independently, and evaluate mutually. This method integrates four key evaluation criteria: dynamic, transparent, objective, and professional, which existing evaluation methods cannot satisfy simultaneously. Experiments on eight mainstream LLMs across mathematics and programming verify the advantages of our method in distinguishing LLM performance. Furthermore, our study reveals several novel findings that are difficult for traditional methods to detect, including but not limited to: (1) Gemini demonstrates the highest original and professional question-design capabilities among others; (2) Some LLMs exhibit ''memorization-based answering'' by misrecognizing questions as familiar ones with a similar structure; (3) LLM evaluation results demonstrate high consistency (robustness).
♻ ☆ Navigating the Alpha Jungle: An LLM-Powered MCTS Framework for Formulaic Factor Mining
Alpha factor mining is pivotal in quantitative investment for identifying predictive signals from complex financial data. While traditional formulaic alpha mining relies on human expertise, contemporary automated methods, such as those based on genetic programming or reinforcement learning, often struggle with search inefficiency or yield alpha factors that are difficult to interpret. This paper introduces a novel framework that integrates Large Language Models (LLMs) with Monte Carlo Tree Search (MCTS) to overcome these limitations. Our framework leverages the LLM's instruction-following and reasoning capability to iteratively generate and refine symbolic alpha formulas within an MCTS-driven exploration. A key innovation is the guidance of MCTS exploration by rich, quantitative feedback from financial backtesting of each candidate factor, enabling efficient navigation of the vast search space. Furthermore, a frequent subtree avoidance mechanism is introduced to enhance search diversity and prevent formulaic homogenization, further improving performance. Experimental results on real-world stock market data demonstrate that our LLM-based framework outperforms existing methods by mining alphas with superior predictive accuracy and trading performance. The resulting formulas are also more amenable to human interpretation, establishing a more effective and efficient paradigm for formulaic alpha mining.
♻ ☆ Advancing Generative Artificial Intelligence and Large Language Models for Demand Side Management with Internet of Electric Vehicles
Generative artificial intelligence, particularly through large language models (LLMs), is poised to transform energy optimization and demand side management (DSM) within microgrids. This paper explores the integration of LLMs into energy management, emphasizing their roles in automating the optimization of DSM strategies with Internet of electric vehicles. We investigate challenges and solutions associated with DSM and explore the new opportunities presented by leveraging LLMs. Then, we propose an innovative solution that enhances LLMs with retrieval-augmented generation for automatic problem formulation, code generation, and customizing optimization. We present a case study to demonstrate the effectiveness of our proposed solution in charging scheduling and optimization for electric vehicles, highlighting our solution's significant advancements in energy efficiency and user adaptability. This work underscores the potential of LLMs for energy optimization and fosters a new era of intelligent DSM solutions.
comment: 11 Pages
♻ ☆ Cultural Bias in Large Language Models: Evaluating AI Agents through Moral Questionnaires
Are AI systems truly representing human values, or merely averaging across them? Our study suggests a concerning reality: Large Language Models (LLMs) fail to represent diverse cultural moral frameworks despite their linguistic capabilities. We expose significant gaps between AI-generated and human moral intuitions by applying the Moral Foundations Questionnaire across 19 cultural contexts. Comparing multiple state-of-the-art LLMs' origins against human baseline data, we find these models systematically homogenize moral diversity. Surprisingly, increased model size doesn't consistently improve cultural representation fidelity. Our findings challenge the growing use of LLMs as synthetic populations in social science research and highlight a fundamental limitation in current AI alignment approaches. Without data-driven alignment beyond prompting, these systems cannot capture the nuanced, culturally-specific moral intuitions. Our results call for more grounded alignment objectives and evaluation metrics to ensure AI systems represent diverse human values rather than flattening the moral landscape.
comment: 15pages, 1 figure, 2 tables
♻ ☆ HRVVS: A High-resolution Video Vasculature Segmentation Network via Hierarchical Autoregressive Residual Priors AI 2025
The segmentation of the hepatic vasculature in surgical videos holds substantial clinical significance in the context of hepatectomy procedures. However, owing to the dearth of an appropriate dataset and the inherently complex task characteristics, few researches have been reported in this domain. To address this issue, we first introduce a high quality frame-by-frame annotated hepatic vasculature dataset containing 35 long hepatectomy videos and 11442 high-resolution frames. On this basis, we propose a novel high-resolution video vasculature segmentation network, dubbed as HRVVS. We innovatively embed a pretrained visual autoregressive modeling (VAR) model into different layers of the hierarchical encoder as prior information to reduce the information degradation generated during the downsampling process. In addition, we designed a dynamic memory decoder on a multi-view segmentation network to minimize the transmission of redundant information while preserving more details between frames. Extensive experiments on surgical video datasets demonstrate that our proposed HRVVS significantly outperforms the state-of-the-art methods. The source code and dataset will be publicly available at \{https://github.com/scott-yjyang/HRVVS}.
comment: Accepted by MICCAI 2025
♻ ☆ FGeo-HyperGNet: Geometric Problem Solving Integrating FormalGeo Symbolic System and Hypergraph Neural Network IJCAI 2025
Geometric problem solving has always been a long-standing challenge in the fields of mathematical reasoning and artificial intelligence. We built a neural-symbolic system, called FGeo-HyperGNet, to automatically perform human-like geometric problem solving. The symbolic component is a formal system built on FormalGeo, which can automatically perform geometric relational reasoning and algebraic calculations and organize the solution into a hypergraph with conditions as hypernodes and theorems as hyperedges. The neural component, called HyperGNet, is a hypergraph neural network based on the attention mechanism, including an encoder to encode the structural and semantic information of the hypergraph and a theorem predictor to provide guidance in solving problems. The neural component predicts theorems according to the hypergraph, and the symbolic component applies theorems and updates the hypergraph, thus forming a predict-apply cycle to ultimately achieve readable and traceable automatic solving of geometric problems. Experiments demonstrate the effectiveness of this neural-symbolic architecture. We achieved state-of-the-art results with a TPA of 93.50% and a PSSR of 88.36% on the FormalGeo7K dataset. The code is available at https://github.com/BitSecret/HyperGNet.
comment: Accepted by IJCAI 2025
♻ ☆ G-Core: A Simple, Scalable and Balanced RLHF Trainer
Reinforcement Learning from Human Feedback (RLHF) has become an increasingly popular paradigm for training large language models (LLMs) and diffusion models. While existing RLHF training systems have enabled significant progress, they often face challenges in scaling to multi-modal and diffusion workflows and adapting to dynamic workloads. In particular, current approaches may encounter limitations in controller scalability, flexible resource placement, and efficient orchestration when handling complex RLHF pipelines, especially in scenarios involving dynamic sampling or generative reward modeling. In this paper, we present \textbf{G-Core}, a simple, scalable, and balanced RLHF training framework designed to address these challenges. G-Core introduces a parallel controller programming model, enabling flexible and efficient orchestration of complex RLHF workflows without the bottlenecks of a single centralized controller. Furthermore, we propose a dynamic placement schema that adaptively partitions resources and schedules workloads, significantly reducing hardware idle time and improving utilization, even under highly variable training conditions. G-Core has successfully trained models that support WeChat product features serving a large-scale user base, demonstrating its effectiveness and robustness in real-world scenarios. Our results show that G-Core advances the state of the art in RLHF training, providing a solid foundation for future research and deployment of large-scale, human-aligned models.
comment: I haven't received company approval yet, and I uploaded it by mistake
♻ ☆ Revisiting the Evaluation Bias Introduced by Frame Sampling Strategies in Surgical Video Segmentation Using SAM2 AI
Real-time video segmentation is a promising opportunity for AI-assisted surgery, offering intraoperative guidance by identifying tools and anatomical structures. Despite growing interest in surgical video segmentation, annotation protocols vary widely across datasets -- some provide dense, frame-by-frame labels, while others rely on sparse annotations sampled at low frame rates such as 1 FPS. In this study, we investigate how such inconsistencies in annotation density and frame rate sampling influence the evaluation of zero-shot segmentation models, using SAM2 as a case study for cholecystectomy procedures. Surprisingly, we find that under conventional sparse evaluation settings, lower frame rates can appear to outperform higher ones due to a smoothing effect that conceals temporal inconsistencies. However, when assessed under real-time streaming conditions, higher frame rates yield superior segmentation stability, particularly for dynamic objects like surgical graspers. To understand how these differences align with human perception, we conducted a survey among surgeons, nurses, and machine learning engineers and found that participants consistently preferred high-FPS segmentation overlays, reinforcing the importance of evaluating every frame in real-time applications rather than relying on sparse sampling strategies. Our findings highlight the risk of evaluation bias that is introduced by inconsistent dataset protocols and bring attention to the need for temporally fair benchmarking in surgical video AI.
comment: Accepted for publication in the 28th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) Workshop on Fairness of AI in Medical Imaging (FAIMI), 2025
♻ ☆ H2Tune: Federated Foundation Model Fine-Tuning with Hybrid Heterogeneity
Different from existing federated fine-tuning (FFT) methods for foundation models, hybrid heterogeneous federated fine-tuning (HHFFT) is an under-explored scenario where clients exhibit double heterogeneity in model architectures and downstream tasks. This hybrid heterogeneity introduces two significant challenges: 1) heterogeneous matrix aggregation, where clients adopt different large-scale foundation models based on their task requirements and resource limitations, leading to dimensional mismatches during LoRA parameter aggregation; and 2) multi-task knowledge interference, where local shared parameters, trained with both task-shared and task-specific knowledge, cannot ensure only task-shared knowledge is transferred between clients. To address these challenges, we propose H2Tune, a federated foundation model fine-tuning with hybrid heterogeneity. Our framework H2Tune consists of three key components: (i) sparsified triple matrix decomposition to align hidden dimensions across clients through constructing rank-consistent middle matrices, with adaptive sparsification based on client resources; (ii) relation-guided matrix layer alignment to handle heterogeneous layer structures and representation capabilities; and (iii) alternating task-knowledge disentanglement mechanism to decouple shared and specific knowledge of local model parameters through alternating optimization. Theoretical analysis proves a convergence rate of O(1/\sqrt{T}). Extensive experiments show our method achieves up to 15.4% accuracy improvement compared to state-of-the-art baselines. Our code is available at https://anonymous.4open.science/r/H2Tune-1407.
♻ ☆ LIDAR: Lightweight Adaptive Cue-Aware Fusion Vision Mamba for Multimodal Segmentation of Structural Cracks
Achieving pixel-level segmentation with low computational cost using multimodal data remains a key challenge in crack segmentation tasks. Existing methods lack the capability for adaptive perception and efficient interactive fusion of cross-modal features. To address these challenges, we propose a Lightweight Adaptive Cue-Aware Vision Mamba network (LIDAR), which efficiently perceives and integrates morphological and textural cues from different modalities under multimodal crack scenarios, generating clear pixel-level crack segmentation maps. Specifically, LIDAR is composed of a Lightweight Adaptive Cue-Aware Visual State Space module (LacaVSS) and a Lightweight Dual Domain Dynamic Collaborative Fusion module (LD3CF). LacaVSS adaptively models crack cues through the proposed mask-guided Efficient Dynamic Guided Scanning Strategy (EDG-SS), while LD3CF leverages an Adaptive Frequency Domain Perceptron (AFDP) and a dual-pooling fusion strategy to effectively capture spatial and frequency-domain cues across modalities. Moreover, we design a Lightweight Dynamically Modulated Multi-Kernel convolution (LDMK) to perceive complex morphological structures with minimal computational overhead, replacing most convolutional operations in LIDAR. Experiments on three datasets demonstrate that our method outperforms other state-of-the-art (SOTA) methods. On the light-field depth dataset, our method achieves 0.8204 in F1 and 0.8465 in mIoU with only 5.35M parameters. Code and datasets are available at https://github.com/Karl1109/LIDAR-Mamba.
comment: This paper has been accepted by ACM MM 2025
♻ ☆ EgoOops: A Dataset for Mistake Action Detection from Egocentric Videos referring to Procedural Texts
Mistake action detection is crucial for developing intelligent archives that detect workers' errors and provide feedback. Existing studies have focused on visually apparent mistakes in free-style activities, resulting in video-only approaches to mistake detection. However, in text-following activities, models cannot determine the correctness of some actions without referring to the texts. Additionally, current mistake datasets rarely use procedural texts for video recording except for cooking. To fill these gaps, this paper proposes the EgoOops dataset, where egocentric videos record erroneous activities when following procedural texts across diverse domains. It features three types of annotations: video-text alignment, mistake labels, and descriptions for mistakes. We also propose a mistake detection approach, combining video-text alignment and mistake label classification to leverage the texts. Our experimental results show that incorporating procedural texts is essential for mistake detection. Data is available through https://y-haneji.github.io/EgoOops-project-page/.
comment: Main 8 pages, supplementary 6 pages
♻ ☆ Leveraging LLMs to Create Content Corpora for Niche Domains
Constructing specialized content corpora from vast, unstructured web sources for domain-specific applications poses substantial data curation challenges. In this paper, we introduce a streamlined approach for generating high-quality, domain-specific corpora by efficiently acquiring, filtering, structuring, and cleaning web-based data. We showcase how Large Language Models (LLMs) can be leveraged to address complex data curation at scale, and propose a strategical framework incorporating LLM-enhanced techniques for structured content extraction and semantic deduplication. We validate our approach in the behavior education domain through its integration into 30 Day Me, a habit formation application. Our data pipeline, named 30DayGen, enabled the extraction and synthesis of 3,531 unique 30-day challenges from over 15K webpages. A user survey reports a satisfaction score of 4.3 out of 5, with 91% of respondents indicating willingness to use the curated content for their habit-formation goals.
comment: 9 pages (main content), 5 figures. Supplementary materials can be found at https://github.com/pigfyy/30DayGen-Supplementary-Materials
♻ ☆ Compositional Function Networks: A High-Performance Alternative to Deep Neural Networks with Built-in Interpretability
Deep Neural Networks (DNNs) deliver impressive performance but their black-box nature limits deployment in high-stakes domains requiring transparency. We introduce Compositional Function Networks (CFNs), a novel framework that builds inherently interpretable models by composing elementary mathematical functions with clear semantics. Unlike existing interpretable approaches that are limited to simple additive structures, CFNs support diverse compositional patterns -- sequential, parallel, and conditional -- enabling complex feature interactions while maintaining transparency. A key innovation is that CFNs are fully differentiable, allowing efficient training through standard gradient descent. We demonstrate CFNs' versatility across multiple domains, from symbolic regression to image classification with deep hierarchical networks. Our empirical evaluation shows CFNs achieve competitive performance against black-box models (96.24% accuracy on CIFAR-10) while outperforming state-of-the-art interpretable models like Explainable Boosting Machines. By combining the hierarchical expressiveness and efficient training of deep learning with the intrinsic interpretability of well-defined mathematical functions, CFNs offer a powerful framework for applications where both performance and accountability are paramount.
comment: The project has been open sourced at Github (https://github.com/fanglioc/Compositional_Function_Networks)
♻ ☆ E.A.R.T.H.: Structuring Creative Evolution through Model Error in Generative AI
How can AI move beyond imitation toward genuine creativity? This paper proposes the E.A.R.T.H. framework, a five-stage generative pipeline that transforms model-generated errors into creative assets through Error generation, Amplification, Refine selection, Transform, and Harness feedback. Drawing on cognitive science and generative modeling, we posit that "creative potential hides in failure" and operationalize this via structured prompts, semantic scoring, and human-in-the-loop evaluation. Implemented using LLaMA-2-7B-Chat, SBERT, BERTScore, CLIP, BLIP-2, and Stable Diffusion, the pipeline employs a composite reward function based on novelty, surprise, and relevance. At the Refine stage, creativity scores increase by 52.5% (1.179 to 1.898, t = -5.56, p < 0.001), with final outputs reaching 2.010 - a 70.4% improvement. Refined slogans are 48.4% shorter, 40.7% more novel, with only a 4.0% drop in relevance. Cross-modal tests show strong slogan-to-image alignment (CLIPScore: 0.249; BERTScore F1: 0.816). In human evaluations, the generated outputs were consistently rated highly, demonstrating strong creative quality and expressive clarity. Feedback highlights stylistic precision and emotional resonance. These results demonstrate that error-centered, feedback-driven generation enhances creativity, offering a scalable path toward self-evolving, human-aligned creative AI.
comment: 44 pages,11 figures
♻ ☆ Cobblestone: Iterative Automation for Formal Verification
Formal verification using proof assistants, such as Coq, is an effective way of improving software quality, but requires significant effort and expertise. Machine learning can automatically synthesize proofs, but such tools are able to prove only a fraction of desired software properties. We introduce Cobblestone, a divide-and-conquer approach for proof synthesis. Cobblestone uses a large language model (LLM) to generate potential proofs, uses those proofs to break the problem into simpler parts, automatically identifies which of those parts were successfully proven, and iterates on the remaining parts to build a correct proof that is guaranteed to be sound, despite the reliance on unsound LLMs. We evaluate Cobblestone on four benchmarks of open-source Coq projects, controlling for training data leakage. Fully automatically, Cobblestone outperforms state-of-the-art non-LLM tools, and proves many theorems that other LLM-based tools cannot, and on many benchmarks, outperforms them. Each Cobblestone run costs only $1.25 and takes 14.7 minutes, on average. Cobblestone can also be used with external input, from a user or another tool, providing a proof structure or relevant lemmas. Evaluated with such an oracle, Cobblestone proves up to 58% of theorems. Overall, our research shows that tools can make use of partial progress and external input to more effectively automate formal verification.
comment: 14 pages, 14 figures
♻ ☆ On Gradual Semantics for Assumption-Based Argumentation
In computational argumentation, gradual semantics are fine-grained alternatives to extension-based and labelling-based semantics . They ascribe a dialectical strength to (components of) arguments sanctioning their degree of acceptability. Several gradual semantics have been studied for abstract, bipolar and quantitative bipolar argumentation frameworks (QBAFs), as well as, to a lesser extent, for some forms of structured argumentation. However, this has not been the case for assumption-based argumentation (ABA), despite it being a popular form of structured argumentation with several applications where gradual semantics could be useful. In this paper, we fill this gap and propose a family of novel gradual semantics for equipping assumptions, which are the core components in ABA frameworks, with dialectical strengths. To do so, we use bipolar set-based argumentation frameworks as an abstraction of (potentially non-flat) ABA frameworks and generalise state-of-the-art modular gradual semantics for QBAFs. We show that our gradual ABA semantics satisfy suitable adaptations of desirable properties of gradual QBAF semantics, such as balance and monotonicity. We also explore an argument-based approach that leverages established QBAF modular semantics directly, and use it as baseline. Finally, we conduct experiments with synthetic ABA frameworks to compare our gradual ABA semantics with its argument-based counterpart and assess convergence.
comment: Accepted to KR2025 - With Appendix
♻ ☆ Emergent Semantics Beyond Token Embeddings: Transformer LMs with Frozen Visual Unicode Representations
Understanding the locus of semantic representation in large language models (LLMs) is crucial for interpretability and architectural innovation. The dominant paradigm posits that trainable input embeddings serve as foundational "meaning vectors." This paper challenges that view. We construct Transformer models where the embedding layer is entirely frozen, with vectors derived not from data, but from the visual structure of Unicode glyphs. These non-semantic, precomputed visual embeddings are fixed throughout training. Our method is compatible with any tokenizer, including a novel Unicode-centric tokenizer we introduce to ensure universal text coverage. Despite the absence of trainable, semantically initialized embeddings, our models converge, generate coherent text, and, critically, outperform architecturally identical models with trainable embeddings on the MMLU reasoning benchmark. We attribute this to "representational interference" in conventional models, where the embedding layer is burdened with learning both structural and semantic features. Our results indicate that high-level semantics are not inherent to input embeddings but are an emergent property of the Transformer's compositional architecture and data scale. This reframes the role of embeddings from meaning containers to structural primitives. We release all code and models to foster further research.
comment: Updated and extended the Ablation Study section with longer training runs for clearer visualization of convergence. Consolidated the discussion in this section to improve clarity and flow
♻ ☆ Causal Explanations for Image Classifiers
Existing algorithms for explaining the output of image classifiers use different definitions of explanations and a variety of techniques to extract them. However, none of the existing tools use a principled approach based on formal definitions of causes and explanations for the explanation extraction. In this paper we present a novel black-box approach to computing explanations grounded in the theory of actual causality. We prove relevant theoretical results and present an algorithm for computing approximate explanations based on these definitions. We prove termination of our algorithm and discuss its complexity and the amount of approximation compared to the precise definition. We implemented the framework in a tool ReX and we present experimental results and a comparison with state-of-the-art tools. We demonstrate that \rex is the most efficient tool and produces the smallest explanations, in addition to outperforming other black-box tools on standard quality measures.
♻ ☆ Multi-modal Relational Item Representation Learning for Inferring Substitutable and Complementary Items
We introduce a novel self-supervised multi-modal relational item representation learning framework designed to infer substitutable and complementary items. Existing approaches primarily focus on modeling item-item associations deduced from user behaviors using graph neural networks (GNNs) or leveraging item content information. However, these methods often overlook critical challenges, such as noisy user behavior data and data sparsity due to the long-tailed distribution of these behaviors. In this paper, we propose MMSC, a self-supervised multi-modal relational item representation learning framework to address these challenges. Specifically, MMSC consists of three main components: (1) a multi-modal item representation learning module that leverages a multi-modal foundational model and learns from item metadata, (2) a self-supervised behavior-based representation learning module that denoises and learns from user behavior data, and (3) a hierarchical representation aggregation mechanism that integrates item representations at both the semantic and task levels. Additionally, we leverage LLMs to generate augmented training data, further enhancing the denoising process during training. We conduct extensive experiments on five real-world datasets, showing that MMSC outperforms existing baselines by 26.1% for substitutable recommendation and 39.2% for complementary recommendation. In addition, we empirically show that MMSC is effective in modeling cold-start items.
Computational Engineering, Finance, and Science 10
☆ EB-gMCR: Energy-Based Generative Modeling for Signal Unmixing and Multivariate Curve Resolution
Signal unmixing analysis decomposes data into basic patterns and is widely applied in chemical and biological research. Multivariate curve resolution (MCR), a branch of signal unmixing, separates mixed chemical signals into base patterns (components) and their concentrations, playing a key role in understanding composition. Classical MCR is typically framed as matrix factorization (MF) and requires a user-specified component count, usually unknown in real data. As dataset size or component count increases, the scalability and reliability of MF-based MCR face significant challenges. This study reformulates MCR as a generative process (gMCR), and introduces an energy-based deep learning solver, EB-gMCR, that automatically discovers the smallest component set able to reconstruct the data faithfully. EB-gMCR starts from a large candidate pool (e.g., 1024 spectra) and employs a differentiable gating network to retain only active components while estimating their concentrations. On noisy synthetic datasets containing up to 256 latent sources, EB-gMCR maintained R^2 >= 0.98 and recovered the component count within 5% of the ground truth; at lower noise it achieved R^2 >= 0.99 with near exact component estimation. Additional chemical priors, such as non-negativity or nonlinear mixing, enter as simple plug-in functions, enabling adaptation to other instruments or domains without altering the core learning process. By uniting high-capacity generative modeling and hard component selection, EB-gMCR offers a practical route to large-scale signal unmixing analysis, including chemical library-driven scenarios. The source code is available at https://github.com/b05611038/ebgmcr_solver.
☆ Adjoint-Based Aerodynamic Shape Optimization with a Manifold Constraint Learned by Diffusion Models
We introduce an adjoint-based aerodynamic shape optimization framework that integrates a diffusion model trained on existing designs to learn a smooth manifold of aerodynamically viable shapes. This manifold is enforced as an equality constraint to the shape optimization problem. Central to our method is the computation of adjoint gradients of the design objectives (e.g., drag and lift) with respect to the manifold space. These gradients are derived by first computing shape derivatives with respect to conventional shape design parameters (e.g., Hicks-Henne parameters) and then backpropagating them through the diffusion model to its latent space via automatic differentiation. Our framework preserves mathematical rigor and can be integrated into existing adjoint-based design workflows with minimal modification. Demonstrated on extensive transonic RANS airfoil design cases using off-the-shelf and general-purpose nonlinear optimizers, our approach eliminates ad hoc parameter tuning and variable scaling, maintains robustness across initialization and optimizer choices, and achieves superior aerodynamic performance compared to conventional approaches. This work establishes how AI generated priors integrates effectively with adjoint methods to enable robust, high-fidelity aerodynamic shape optimization through automatic differentiation.
☆ An Information Bottleneck Asset Pricing Model
Deep neural networks (DNNs) have garnered significant attention in financial asset pricing, due to their strong capacity for modeling complex nonlinear relationships within financial data. However, sophisticated models are prone to over-fitting to the noise information in financial data, resulting in inferior performance. To address this issue, we propose an information bottleneck asset pricing model that compresses data with low signal-to-noise ratios to eliminate redundant information and retain the critical information for asset pricing. Our model imposes constraints of mutual information during the nonlinear mapping process. Specifically, we progressively reduce the mutual information between the input data and the compressed representation while increasing the mutual information between the compressed representation and the output prediction. The design ensures that irrelevant information, which is essentially the noise in the data, is forgotten during the modeling of financial nonlinear relationships without affecting the final asset pricing. By leveraging the constraints of the Information bottleneck, our model not only harnesses the nonlinear modeling capabilities of deep networks to capture the intricate relationships within financial data but also ensures that noise information is filtered out during the information compression process.
☆ A Practical Finite Element Approach for Simulating Dynamic Crack Growth in Cu/Ultra Low-k Interconnect Structures
This work presents a practical finite element modeling strategy, the Crack Element Method (CEM), for simulating the dynamic crack propagation in two-dimensional structures. The method employs an element-splitting algorithm based on the Edge-based Smoothed Finite Element Method (ES-FEM) to capture the element-wise crack growth while reducing the formation of poorly shaped elements that can compromise numerical accuracy and computational performance. A fracture energy release rate formulation is also developed based on the evolving topology of the split elements. The proposed approach is validated through a series of classical benchmark problems, demonstrating its accuracy and robustness in addressing dynamic fracture scenarios. Finally, the applicability of the CEM is illustrated in a case study involving patterned Cu/Ultra Low-k interconnect structures.
♻ ☆ DrugMCTS: a drug repurposing framework combining multi-agent, RAG and Monte Carlo Tree Search
Recent advances in large language models have demonstrated considerable potential in scientific domains such as drug repositioning. However, their effectiveness remains constrained when reasoning extends beyond the knowledge acquired during pretraining. Conventional approaches, such as fine-tuning or retrieval-augmented generation, face limitations in either imposing high computational overhead or failing to fully exploit structured scientific data. To overcome these challenges, we propose DrugMCTS, a novel framework that synergistically integrates RAG, multi-agent collaboration, and Monte Carlo Tree Search for drug repositioning. The framework employs five specialized agents tasked with retrieving and analyzing molecular and protein information, thereby enabling structured and iterative reasoning. Extensive experiments on the DrugBank and KIBA datasets demonstrate that DrugMCTS achieves substantially higher recall and robustness compared to both general-purpose LLMs and deep learning baselines. Our results highlight the importance of structured reasoning, agent-based collaboration, and feedback-driven search mechanisms in advancing LLM applications for drug repositioning.
♻ ☆ EducationQ: Evaluating LLMs' Teaching Capabilities Through Multi-Agent Dialogue Framework
Large language models (LLMs) increasingly serve as educational tools, yet evaluating their teaching capabilities remains challenging due to the resource-intensive, context-dependent, and methodologically complex nature of teacher-student interactions. We introduce EducationQ, a multi-agent dialogue framework that efficiently assesses teaching capabilities through simulated dynamic educational scenarios, featuring specialized agents for teaching, learning, and evaluation. Testing 14 LLMs across major AI Organizations (OpenAI, Meta, Google, Anthropic, and others) on 1,498 questions spanning 13 disciplines and 10 difficulty levels reveals that teaching effectiveness does not correlate linearly with model scale or general reasoning capabilities - with some smaller open-source models outperforming larger commercial counterparts in teaching contexts. This finding highlights a critical gap in current evaluations that prioritize knowledge recall over interactive pedagogy. Our mixed-methods evaluation, combining quantitative metrics with qualitative analysis and expert case studies, identifies distinct pedagogical strengths employed by top-performing models (e.g., sophisticated questioning strategies, adaptive feedback mechanisms). Human expert evaluations show 78% agreement with our automated qualitative analysis of effective teaching behaviors, validating our methodology. EducationQ demonstrates that LLMs-as-teachers require specialized optimization beyond simple scaling, suggesting next-generation educational AI prioritize targeted enhancement of specific pedagogical effectiveness.
comment: Paper URL: https://aclanthology.org/2025.acl-long.1576 ;Presentation Video: https://www.youtube.com/watch?v=j63ooKE50I0
♻ ☆ Modelling and simulation of electro-mechanically coupled dielectric elastomers and myocardial tissue using smoothed finite element methods
Computational modelling offers a cost-effective and time-efficient alternative to experimental studies in biomedical engineering. In cardiac electro-mechanics, finite element method (FEM)-based simulations provide valuable insights into diseased tissue behaviour and the development of assistive systems such as di-electric elastomer actuators. However, the use of automatically generated tetrahedral meshes, commonly applied due to geometric complexity, often leads to numerical issues including overly stiff responses and volume locking, particularly in incompressible materials. Smoothed finite element methods (S-FEMs) offer a promising alternative by softening the stiffness matrix through gradient smoothing over defined smoothing domains. This work extends S-FEM formulations to electro-mechanically coupled problems and compares their performance against standard linear FEM. We implement and evaluate four approaches in the Abaqus environment via custom user elements: standard linear FEM, face-based S-FEM (FS-FEM), node-based S-FEM (NS-FEM), and the hybrid face/node-based S-FEM (FSNS-FEM). Two benchmark problems are studied: the electrically induced contraction of a compressible dielectric elastomer and an incompressible, orthotropic myocardial tissue sample. Reference solutions are obtained using a mesh consisting of higher-order elements. Our results demonstrate that FSNS-FEM provides the best balance between accuracy and computational efficiency, closely matching reference data. NS-FEM produces softer results, which leads to an overestimation of the true deformation. FS-FEM and standard FEM consistently exhibit overly stiff behaviour, with pronounced volume locking in the myocardial case. These findings support the potential of S-FEMs, in particular FSNS-FEM, for accurate simulation of coupled electro-mechanical behaviour in complex biomedical applications.
♻ ☆ The time slot allocation problem in liberalised passenger railway markets: a multi-objective approach
The liberalisation of the European passenger railway markets through the European Directive EU 91/440/EEC states a new scenario where different Railway Undertakings compete with each other in a bidding process for time slots. The infrastructure resources are provided by the Infrastructure Manager, who analyses and assesses the bids received, allocating the resources to each Railway Undertaking. Time slot allocation is a fact that drastically influences the market equilibrium. In this paper, we address the time slot allocation problem within the context of a liberalized passenger railway market as a multi-objective model. The Infrastructure Manager is tasked with selecting a point from the Pareto front as the solution to the time slot allocation problem. We propose two criteria for making this selection: the first one allocates time slots to each company according to a set of priorities, while the second one introduces a criterion of fairness in the treatment of companies to incentive competition. The assessment of the impact of these rules on market equilibrium has been conducted on a liberalized high-speed corridor within the Spanish railway network.
comment: 33 pages and 6 figures
♻ ☆ A Multi-physics Model of Flow from Coronary Angiography: Insights to Microvascular Function
Coronary Microvascular Dysfunction (CMD) is characterized by impaired vasodilation and can lead to insufficient blood flow to the myocardium during stress or exertion, affecting millions of people globally. Despite their diagnostic value, invasive, wire-based diagnosis techniques of CMD, such as index of microcirculatory resistance (IMR) and coronary flow reserve (CFR), are underutilized due to their complexity and inconsistency. Coronary angiography, one of the most commonly used imaging modalities, offers valuable flow information that assists in diagnosing CMD. However, this information is not fully understood or utilized in current clinical practice. In this study, a 3D-0D coupled multi-physics computational fluid dynamics (CFD) model was developed and calibrated to simulate and study the process of contrast injection and washout during clinical angiography. A contrast intensity profile (CIP) was introduced to describe the dynamics of coronary angiography data. Additionally, sensitivity studies were conducted to evaluate the influence of various coronary lumped parameter model (LPM) parameters on the shapes of CIPs. The results demonstrate that the multi-physics model can be effectively calibrated to produce physiologically meaningful hemodynamic results. Sensitivity studies reveal that resistance has a greater impact on the rising and falling slopes of CIP than capacitance, with higher resistance amplifying this effect. The model and results are presented here. These results are potentially transformative, as they provide a tool for interpreting angiographic data and ultimately extracting information concerning coronary microcirculation.
comment: 29 pages, 14 figures
♻ ☆ PATH: A Discrete-sequence Dataset for Evaluating Online Unsupervised Anomaly Detection Approaches for Multivariate Time Series
Benchmarking anomaly detection approaches for multivariate time series is a challenging task due to a lack of high-quality datasets. Current publicly available datasets are too small, not diverse and feature trivial anomalies, which hinders measurable progress in this research area. We propose a solution: a diverse, extensive, and non-trivial dataset generated via state-of-the-art simulation tools that reflects realistic behaviour of an automotive powertrain, including its multivariate, dynamic and variable-state properties. Additionally, our dataset represents a discrete-sequence problem, which remains unaddressed by previously-proposed solutions in literature. To cater for both unsupervised and semi-supervised anomaly detection settings, as well as time series generation and forecasting, we make different versions of the dataset available, where training and test subsets are offered in contaminated and clean versions, depending on the task. We also provide baseline results from a selection of approaches based on deterministic and variational autoencoders, as well as a non-parametric approach. As expected, the baseline experimentation shows that the approaches trained on the semi-supervised version of the dataset outperform their unsupervised counterparts, highlighting a need for approaches more robust to contaminated training data. Furthermore, results show that the threshold used can have a large influence on detection performance, hence more work needs to be invested in methods to find a suitable threshold without the need for labelled data.
comment: Submitted to the Big Data Research journal
Databases 8
☆ SAM: A Stability-Aware Cache Manager for Multi-Tenant Embedded Databases VLDB 2026
The co-location of multiple database instances on resource constrained edge nodes creates significant cache contention, where traditional schemes are inefficient and unstable under dynamic workloads. To address this, we present SAM, an autonomic cache manager powered by our novel AURA algorithm. AURA makes stability a first-class design principle by resolving the exploitation-exploration dilemma: it achieves this by synthesizing two orthogonal factors, which we introduce as: the H-factor, representing a database's proven, historically stable efficiency (exploitation), and the V-factor, representing its empirically estimated marginal gain for future improvements (exploration). This dual-factor model, governed by an adaptive weight, enables SAM to achieve sustained high performance through strategic stability and robustness in volatile conditions. Extensive experiments against 14 diverse baselines demonstrate SAM's superiority. It achieves top-tier throughput while being uniquely resilient to complex workload shifts and cache pollution attacks. Furthermore, its decision latency is highly scalable, remaining nearly constant as the system grows to 120 databases. Crucially, SAM achieves superior decision stability -- maintaining consistent optimization directions despite noise, avoiding performance oscillations while ensuring predictable Quality of Service. These results prove that a principled, stability-aware design is essential for sustained high performance in real-world, large-scale systems.
comment: 16 pages, 10 figures. An extended version of a paper under review at the VLDB 2026 conference
☆ Systematic Evaluation of Knowledge Graph Repair with Large Language Models
We present a systematic approach for evaluating the quality of knowledge graph repairs with respect to constraint violations defined in shapes constraint language (SHACL). Current evaluation methods rely on \emph{ad hoc} datasets, which limits the rigorous analysis of repair systems in more general settings. Our method addresses this gap by systematically generating violations using a novel mechanism, termed violation-inducing operations (VIOs). We use the proposed evaluation framework to assess a range of repair systems which we build using large language models. We analyze the performance of these systems across different prompting strategies. Results indicate that concise prompts containing both the relevant violated SHACL constraints and key contextual information from the knowledge graph yield the best performance.
☆ Scalability, Availability, Reproducibility and Extensibility in Islamic Database Systems
With the widespread of software systems and applications that serve the Islamic knowledge domain, several concerns arise. Authenticity and accuracy of the databases that back up these systems are questionable. With the excitement that some software developers and amateur researchers may have, false statements and incorrect claims may be made around numerical signs or miracles in the Quran. Reproducibility of these claims may not be addressed by the people making such claims. Moreover, with the increase in the number of users, scalability and availability of these systems become a concern. In addition to all these concerns, extensibility is also another major issue. Properly designed systems can be extensible, reusable and built on top of one another, instead of each system being built from scratch every time a new framework is developed. In this paper, we introduce the QuranResearch.Org system and its vision for scalability, availability, reproducibility and extensibility to serve Islamic database systems.
☆ Is SHACL Suitable for Data Quality Assessment?
Knowledge graphs have been widely adopted in both enterprises, such as the Google Knowledge Graph, and open platforms like Wikidata to represent domain knowledge and support analysis with artificial intelligence. They model real-world information as nodes and edges. To embrace flexibility, knowledge graphs often lack enforced schemas (i.e., ontologies), leading to potential data quality issues, such as semantically overlapping nodes. Therefore, ensuring their quality is essential, as issues in the data can affect applications relying on them. To assess the quality of knowledge graphs, existing works either propose high-level frameworks comprising various data quality dimensions without concrete implementations, define tools that measure data quality with ad-hoc SPARQL (SPARQL Protocol and RDF Query Language) queries, or promote the usage of constraint languages, such as the Shapes Constraint Language (SHACL), to assess and improve the quality of the graph. Although the latter approaches claim to address data quality assessment, none of them comprehensively tries to cover all data quality dimensions. In this paper, we explore this gap by investigating the extent to which SHACL can be used to assess data quality in knowledge graphs. Specifically, we defined SHACL shapes for 69 data quality metrics proposed by Zaveri et al. [1] and implemented a prototype that automatically instantiates these shapes and computes the corresponding data quality measures from their validation results. All resources are provided for repeatability at https://github.com/caroocortes/SHACL-DQA-prototype/tree/main
comment: 44 pages
☆ AutoIndexer: A Reinforcement Learning-Enhanced Index Advisor Towards Scaling Workloads
Efficiently selecting indexes is fundamental to database performance optimization, particularly for systems handling large-scale analytical workloads. While deep reinforcement learning (DRL) has shown promise in automating index selection through its ability to learn from experience, few works address how these RL-based index advisors can adapt to scaling workloads due to exponentially growing action spaces and heavy trial and error. To address these challenges, we introduce AutoIndexer, a framework that combines workload compression, query optimization, and specialized RL models to scale index selection effectively. By operating on compressed workloads, AutoIndexer substantially lowers search complexity without sacrificing much index quality. Extensive evaluations show that it reduces end-to-end query execution time by up to 95% versus non-indexed baselines. On average, it outperforms state-of-the-art RL-based index advisors by approximately 20% in workload cost savings while cutting tuning time by over 50%. These results affirm AutoIndexer's practicality for large and diverse workloads.
comment: 14 pages
♻ ☆ SHARP: Shared State Reduction for Efficient Matching of Sequential Patterns
The detection of sequential patterns in data is a basic functionality of modern data processing systems for complex event processing (CEP), OLAP, and retrieval-augmented generation (RAG). In practice, pattern matching is challenging, since common applications rely on a large set of patterns that shall be evaluated with tight latency bounds. At the same time, matching needs to maintain state, i.e., intermediate results, that grows exponentially in the input size. Hence, systems turn to best-effort processing, striving for maximal recall under a latency bound. Existing techniques, however, consider each pattern in isolation, neglecting the optimization potential induced by state sharing in pattern matching. In this paper, we present SHARP, a library that employs state reduction to achieve efficient best-effort pattern matching. To this end, SHARP incorporates state sharing between patterns through a new abstraction, coined pattern-sharing degree (PSD). At runtime, this abstraction facilitates the categorization and indexing of partial pattern matches. Based thereon, once a latency bound is exceeded, SHARP realizes best-effort processing by selecting a subset of partial matches for further processing in constant time. In experiments with real-world data, SHARP achieves a recall of 97%, 96% and 73% for pattern matching in CEP, OLAP, and RAG applications, under a bound of 50% of the average processing latency.
♻ ☆ Conversational LLMs Simplify Secure Clinical Data Access, Understanding, and Analysis
As ever-larger clinical datasets become available, they have the potential to unlock unprecedented opportunities for medical research. Foremost among them is Medical Information Mart for Intensive Care (MIMIC-IV), the world's largest open-source EHR database. However, the inherent complexity of these datasets, particularly the need for sophisticated querying skills and the need to understand the underlying clinical settings, often presents a significant barrier to their effective use. M3 lowers the technical barrier to understanding and querying MIMIC-IV data. With a single command it retrieves MIMIC-IV from PhysioNet, launches a local SQLite instance (or hooks into the hosted BigQuery), and-via the Model Context Protocol (MCP)-lets researchers converse with the database in plain English. Ask a clinical question in natural language; M3 uses a language model to translate it into SQL, executes the query against the MIMIC-IV dataset, and returns structured results alongside the underlying query for verifiability and reproducibility. Demonstrations show that minutes of dialogue with M3 yield the kind of nuanced cohort analyses that once demanded hours of handcrafted SQL and relied on understanding the complexities of clinical workflows. By simplifying access, M3 invites the broader research community to mine clinical critical-care data and accelerates the translation of raw records into actionable insight.
comment: 10 pages, 4 figures
♻ ☆ Properties for Paths in Graph Databases
This paper presents a formalism for defining properties of paths in graph databases, which can be used to restrict the number of solutions to navigational queries. In particular, our formalism allows us to define quantitative properties such as length or accumulated cost, which can be used as query filters. Furthermore, it enables the identification and removal of paths that may be considered ill-formed. The new formalism is defined in terms of an operational semantics for the query language that incorporates these new constructs, demonstrating its soundness and completeness by proving its compatibility with a simple logical semantics. We also analyze its expressive power, showing that path properties are more expressive than register automata. Finally, after discussing some complexity issues related to this new approach, we present an empirical analysis carried out using our prototype implementation of the graph database that serves as a running example throughout the paper. The results show that queries using path properties as filters outperform standard queries that do not use them.
Distributed, Parallel, and Cluster Computing 14
☆ DSPE: Profit Maximization in Edge-Cloud Storage System using Dynamic Space Partitioning with Erasure Code
Edge Storage Systems have emerged as a critical enabler of low latency data access in modern cloud networks by bringing storage and computation closer to end users. However, the limited storage capacity of edge servers poses significant challenges in handling high volume and latency sensitive data access requests, particularly under dynamic workloads. In this work, we propose a profit driven framework that integrates three key mechanisms which are collaborative caching, erasure coding, and elastic storage partitioning. Unlike traditional replication, erasure coding enables space efficient redundancy, allowing data to be reconstructed from any subset of K out of K plus M coded blocks. We dynamically partition each edge server s storage into private and public regions. The private region is further subdivided among access points based on their incoming request rates, enabling adaptive control over data locality and ownership. We design a data placement and replacement policy that determines how and where to store or evict coded data blocks to maximize data access within deadlines. While the private region serves requests from local APs, the public region handles cooperative storage requests from neighboring servers. Our proposed Dynamic Space Partitioning and Elastic caching strategy is evaluated on both synthetic and real world traces from Netflix and Spotify. Experimental results show that our method improves overall system profitability by approximately 5 to 8% compared to state of the art approaches under varied workload conditions.
☆ Leveraging Caliper and Benchpark to Analyze MPI Communication Patterns: Insights from AMG2023, Kripke, and Laghos
We introduce ``communication regions'' into the widely used Caliper HPC profiling tool. A communication region is an annotation enabling capture of metrics about the data being communicated (including statistics of these metrics), and metrics about the MPI processes involved in the communications, something not previously possible in Caliper. We explore the utility of communication regions with three representative modeling and simulation applications, AMG2023, Kripke, and Laghos, all part of the comprehensive Benchpark suite that includes Caliper annotations. Enhanced Caliper reveals detailed communication behaviors. Using Caliper and Thicket in tandem, we create new visualizations of MPI communication patterns, including halo exchanges. Our findings reveal communication bottlenecks and detailed behaviors, indicating significant utility of the special-regions addition to Caliper. The comparative scaling behavior of both CPU and GPU oriented systems are shown; we are able to look at different regions within a given application, and see how scalability and message-traffic metrics differ.
comment: 10 pages, 6 figures
☆ A Semi-Supervised Federated Learning Framework with Hierarchical Clustering Aggregation for Heterogeneous Satellite Networks
Low Earth Orbit (LEO) satellites are emerging as key components of 6G networks, with many already deployed to support large-scale Earth observation and sensing related tasks. Federated Learning (FL) presents a promising paradigm for enabling distributed intelligence in these resource-constrained and dynamic environments. However, achieving reliable convergence, while minimizing both processing time and energy consumption, remains a substantial challenge, particularly in heterogeneous and partially unlabeled satellite networks. To address this challenge, we propose a novel semi-supervised federated learning framework tailored for LEO satellite networks with hierarchical clustering aggregation. To further reduce communication overhead, we integrate sparsification and adaptive weight quantization techniques. In addition, we divide the FL clustering into two stages: satellite cluster aggregation stage and Ground Stations (GSs) aggregation stage. The supervised learning at GSs guides selected Parameter Server (PS) satellites, which in turn support fully unlabeled satellites during the federated training process. Extensive experiments conducted on a satellite network testbed demonstrate that our proposal can significantly reduce processing time (up to 3x) and energy consumption (up to 4x) compared to other comparative methods while maintaining model accuracy.
☆ Hypernetworks for Model-Heterogeneous Personalized Federated Learning
Recent advances in personalized federated learning have focused on addressing client model heterogeneity. However, most existing methods still require external data, rely on model decoupling, or adopt partial learning strategies, which can limit their practicality and scalability. In this paper, we revisit hypernetwork-based methods and leverage their strong generalization capabilities to design a simple yet effective framework for heterogeneous personalized federated learning. Specifically, we propose MH-pFedHN, which leverages a server-side hypernetwork that takes client-specific embedding vectors as input and outputs personalized parameters tailored to each client's heterogeneous model. To promote knowledge sharing and reduce computation, we introduce a multi-head structure within the hypernetwork, allowing clients with similar model sizes to share heads. Furthermore, we further propose MH-pFedHNGD, which integrates an optional lightweight global model to improve generalization. Our framework does not rely on external datasets and does not require disclosure of client model architectures, thereby offering enhanced privacy and flexibility. Extensive experiments on multiple benchmarks and model settings demonstrate that our approach achieves competitive accuracy, strong generalization, and serves as a robust baseline for future research in model-heterogeneous personalized federated learning.
☆ Towards Experiment Execution in Support of Community Benchmark Workflows for HPC
A key hurdle is demonstrating compute resource capability with limited benchmarks. We propose workflow templates as a solution, offering adaptable designs for specific scientific applications. Our paper identifies common usage patterns for these templates, drawn from decades of HPC experience, including recent work with the MLCommons Science working group. We found that focusing on simple experiment management tools within the broader computational workflow improves adaptability, especially in education. This concept, which we term benchmark carpentry, is validated by two independent tools: Cloudmesh's Experiment Executor and Hewlett Packard Enterprise's SmartSim. Both frameworks, with significant functional overlap, have been tested across various scientific applications, including conduction cloudmask, earthquake prediction, simulation-AI/ML interactions, and the development of computational fluid dynamics surrogates.
Data Readiness for Scientific AI at Scale
This paper examines how Data Readiness for AI (DRAI) principles apply to leadership-scale scientific datasets used to train foundation models. We analyze archetypal workflows across four representative domains - climate, nuclear fusion, bio/health, and materials - to identify common preprocessing patterns and domain-specific constraints. We introduce a two-dimensional readiness framework composed of Data Readiness Levels (raw to AI-ready) and Data Processing Stages (ingest to shard), both tailored to high performance computing (HPC) environments. This framework outlines key challenges in transforming scientific data for scalable AI training, emphasizing transformer-based generative models. Together, these dimensions form a conceptual maturity matrix that characterizes scientific data readiness and guides infrastructure development toward standardized, cross-domain support for scalable and reproducible AI for science.
comment: 10 pages, 1 figure, 2 tables
☆ A DataOps Toolbox Enabling Continuous Semantic Integration of Devices for Edge-Cloud AI Applications
The implementation of AI-based applications in complex environments often requires the collaboration of several devices spanning from edge to cloud. Identifying the required devices and configuring them to collaborate is a challenge relevant to different scenarios, like industrial shopfloors, road infrastructures, and healthcare therapies. We discuss the design and implementation of a DataOps toolbox leveraging Semantic Web technologies and a low-code mechanism to address heterogeneous data interoperability requirements in the development of such applications. The toolbox supports a continuous semantic integration approach to tackle various types of devices, data formats, and semantics, as well as different communication interfaces. The paper presents the application of the toolbox to three use cases from different domains, the DataOps pipelines implemented, and how they guarantee interoperability of static nodes' information and runtime data exchanges. Finally, we discuss the results from the piloting activities in the use cases and the lessons learned.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this contribution will be published in The Semantic Web - ISWC 2025
☆ Low-Communication Resilient Distributed Estimation Algorithm Based on Memory Mechanism
In multi-task adversarial networks, the accurate estimation of unknown parameters in a distributed algorithm is hindered by attacked nodes or links. To tackle this challenge, this brief proposes a low-communication resilient distributed estimation algorithm. First, a node selection strategy based on reputation is introduced that allows nodes to communicate with more reliable subset of neighbors. Subsequently, to discern trustworthy intermediate estimates, the Weighted Support Vector Data Description (W-SVDD) model is employed to train the memory data. This trained model contributes to reinforce the resilience of the distributed estimation process against the impact of attacked nodes or links. Additionally, an event-triggered mechanism is introduced to minimize ineffective updates to the W-SVDD model, and a suitable threshold is derived based on assumptions. The convergence of the algorithm is analyzed. Finally, simulation results demonstrate that the proposed algorithm achieves superior performance with less communication cost compared to other algorithms.
♻ ☆ Towards Federated Learning with On-device Training and Communication in 8-bit Floating Point
Recent work has shown that 8-bit floating point (FP8) can be used for efficiently training neural networks with reduced computational cost compared to training in FP32/FP16. In this work, we investigate the use of FP8 training in a federated learning context. This approach brings not only the usual benefits of FP8 which are desirable for on-device training at the edge, but also reduces client-server communication costs due to significant weight compression. We present a novel method for combining FP8 client training while maintaining a global FP32 server model and provide convergence analysis. Experiments with various machine learning models and datasets show that our method consistently yields communication reductions of at least 2.9x across a variety of tasks and models compared to an FP32 baseline to achieve the same trained model accuracy.
comment: extended version
♻ ☆ A Survey on Large Language Model Acceleration based on KV Cache Management
Large Language Models (LLMs) have revolutionized a wide range of domains such as natural language processing, computer vision, and multi-modal tasks due to their ability to comprehend context and perform logical reasoning. However, the computational and memory demands of LLMs, particularly during inference, pose significant challenges when scaling them to real-world, long-context, and real-time applications. Key-Value (KV) cache management has emerged as a critical optimization technique for accelerating LLM inference by reducing redundant computations and improving memory utilization. This survey provides a comprehensive overview of KV cache management strategies for LLM acceleration, categorizing them into token-level, model-level, and system-level optimizations. Token-level strategies include KV cache selection, budget allocation, merging, quantization, and low-rank decomposition, while model-level optimizations focus on architectural innovations and attention mechanisms to enhance KV reuse. System-level approaches address memory management, scheduling, and hardware-aware designs to improve efficiency across diverse computing environments. Additionally, the survey provides an overview of both text and multimodal datasets and benchmarks used to evaluate these strategies. By presenting detailed taxonomies and comparative analyses, this work aims to offer useful insights for researchers and practitioners to support the development of efficient and scalable KV cache management techniques, contributing to the practical deployment of LLMs in real-world applications. The curated paper list for KV cache management is in: \href{https://github.com/TreeAI-Lab/Awesome-KV-Cache-Management}{https://github.com/TreeAI-Lab/Awesome-KV-Cache-Management}.
comment: Accepted to TMLR 2025. The revised version incorporates more papers and has been further polished
♻ ☆ PS-WL: A Probability-Sensitive Wear Leveling scheme for SSD array scaling
As flash-based Solid State Drive (SSD) arrays become essential to modern data centers, scaling these arrays to meet explosive data growth is a frequent and critical operation. However, the conventional wear-leveling (WL) paradigm applied during scaling suffers from a fundamental flaw: it ignores the non-linear relationship between wear and failure probability, potentially pushing the most vulnerable, aged disks towards premature failure. To address this critical issue at its root, we propose the Probability-Sensitive Wear Leveling (PS-WL) scheme, which shifts the optimization goal from balancing wear to directly balancing failure risk. At its core, PS-WL introduces an "effective lifetime" model derived from a realistic failure probability to more accurately assess disk lifetime. This model guides a PID controller for wear leveling operation, with a conservative zone minimizes performance overhead by restricting warm data migration. Comprehensive simulations validate the superiority of PS-WL over state-of-the-art methods. The results demonstrate that our approach significantly reduces performance overhead while, most critically, consistently and effectively lowering the aggregated array failure risk across diverse system configurations and workloads. This proves that by directly optimizing for reliability, PS-WL builds a scalable storage system that is, by design, fundamentally safer, more efficient, and more stable.
♻ ☆ Understanding Power and Energy Utilization in Large Scale Production Physics Simulation Codes
Power is an often-cited reason for the move to advanced architectures on the path to Exascale computing. This is due to practical considerations related to delivering enough power to successfully site and operate these machines, as well as concerns about energy usage while running large simulations. Since obtaining accurate power measurements can be challenging, it may be tempting to use the processor thermal design power (TDP) as a surrogate due to its simplicity and availability. However, TDP is not indicative of typical power usage while running simulations. Using commodity and advanced technology systems at Lawrence Livermore and Sandia National Labs, we performed a series of experiments to measure power and energy usage in running simulation codes. These experiments indicate that large scale Lawrence Livermore simulation codes are significantly more efficient than a simple processor TDP model might suggest.
comment: 15 pages; accepted to the International Journal of High Performance Computing Applications (IJHPCA)
♻ ☆ SP-Chain: Boosting Intra-Shard and Cross-Shard Security and Performance in Blockchain Sharding
A promising way to overcome the scalability limitations of the current blockchain is to use sharding, which is to split the transaction processing among multiple, smaller groups of nodes. A well-performed blockchain sharding system requires both high performance and high security in both intra- and cross-shard perspectives. However, existing protocols either have issues on protecting security or trade off great performance for security. In this paper, we propose SP-Chain, a blockchain sharding system with enhanced Security and Performance for both intra- and cross-shard perspectives. For intra-shard aspect, we design a two-phase concurrent voting scheme to provide high system throughput and low transaction confirmation latency. Moreover, we propose an efficient unbiased leader rotation scheme to ensure high performance under malicious behavior. For cross-shard aspect, a proof-assisted efficient cross-shard transaction processing mechanism is proposed to guard the cross-shard transactions with low overhead. We implement SP-Chain based on Harmony, and evaluate its performance via large-scale deployment. Extensive evaluations suggest that SP-Chain can process more than 10,000 tx/sec under malicious behaviors with a confirmation latency of 7.6s in a network of 4,000 nodes.
comment: Published in IOTJ
♻ ☆ GALE: Leveraging Heterogeneous Systems for Efficient Unstructured Mesh Data Analysis
Unstructured meshes present challenges in scientific data analysis due to irregular distribution and complex connectivity. Computing and storing connectivity information is a major bottleneck for visualization algorithms, affecting both time and memory performance. Recent task-parallel data structures address this by precomputing connectivity information at runtime while the analysis algorithm executes, effectively hiding computation costs and improving performance. However, existing approaches are CPU-bound, forcing the data structure and analysis algorithm to compete for the same computational resources, limiting potential speedups. To overcome this limitation, we introduce a novel task-parallel approach optimized for heterogeneous CPU-GPU systems. Specifically, we offload the computation of mesh connectivity information to GPU threads, enabling CPU threads to focus on executing the visualization algorithm. Following this paradigm, we propose GALE (GPU-Aided Localized data structurE), the first open-source CUDA-based data structure designed for heterogeneous task parallelism. Experiments on two 20-core CPUs and an NVIDIA V100 GPU show that GALE achieves up to 2.7x speedup over state-of-the-art localized data structures while maintaining memory efficiency.
comment: Accepted at IEEE VIS 2025
Information Retrieval 7
☆ AUV-Fusion: Cross-Modal Adversarial Fusion of User Interactions and Visual Perturbations Against VARS
Modern Visual-Aware Recommender Systems (VARS) exploit the integration of user interaction data and visual features to deliver personalized recommendations with high precision. However, their robustness against adversarial attacks remains largely underexplored, posing significant risks to system reliability and security. Existing attack strategies suffer from notable limitations: shilling attacks are costly and detectable, and visual-only perturbations often fail to align with user preferences. To address these challenges, we propose AUV-Fusion, a cross-modal adversarial attack framework that adopts high-order user preference modeling and cross-modal adversary generation. Specifically, we obtain robust user embeddings through multi-hop user-item interactions and transform them via an MLP into semantically aligned perturbations. These perturbations are injected onto the latent space of a pre-trained VAE within the diffusion model. By synergistically integrating genuine user interaction data with visually plausible perturbations, AUV-Fusion eliminates the need for injecting fake user profiles and effectively mitigates the challenge of insufficient user preference extraction inherent in traditional visual-only attacks. Comprehensive evaluations on diverse VARS architectures and real-world datasets demonstrate that AUV-Fusion significantly enhances the exposure of target (cold-start) items compared to conventional baseline methods. Moreover, AUV-Fusion maintains exceptional stealth under rigorous scrutiny.
comment: 14 pages,6 figures
☆ RecGPT Technical Report
Recommender systems are among the most impactful applications of artificial intelligence, serving as critical infrastructure connecting users, merchants, and platforms. However, most current industrial systems remain heavily reliant on historical co-occurrence patterns and log-fitting objectives, i.e., optimizing for past user interactions without explicitly modeling user intent. This log-fitting approach often leads to overfitting to narrow historical preferences, failing to capture users' evolving and latent interests. As a result, it reinforces filter bubbles and long-tail phenomena, ultimately harming user experience and threatening the sustainability of the whole recommendation ecosystem. To address these challenges, we rethink the overall design paradigm of recommender systems and propose RecGPT, a next-generation framework that places user intent at the center of the recommendation pipeline. By integrating large language models (LLMs) into key stages of user interest mining, item retrieval, and explanation generation, RecGPT transforms log-fitting recommendation into an intent-centric process. To effectively align general-purpose LLMs to the above domain-specific recommendation tasks at scale, RecGPT incorporates a multi-stage training paradigm, which integrates reasoning-enhanced pre-alignment and self-training evolution, guided by a Human-LLM cooperative judge system. Currently, RecGPT has been fully deployed on the Taobao App. Online experiments demonstrate that RecGPT achieves consistent performance gains across stakeholders: users benefit from increased content diversity and satisfaction, merchants and the platform gain greater exposure and conversions. These comprehensive improvement results across all stakeholders validates that LLM-driven, intent-centric design can foster a more sustainable and mutually beneficial recommendation ecosystem.
☆ GeoOutageKG: A Multimodal Geospatiotemporal Knowledge Graph for Multiresolution Power Outage Analysis
Detecting, analyzing, and predicting power outages is crucial for grid risk assessment and disaster mitigation. Numerous outages occur each year, exacerbated by extreme weather events such as hurricanes. Existing outage data are typically reported at the county level, limiting their spatial resolution and making it difficult to capture localized patterns. However, it offers excellent temporal granularity. In contrast, nighttime light satellite image data provides significantly higher spatial resolution and enables a more comprehensive spatial depiction of outages, enhancing the accuracy of assessing the geographic extent and severity of power loss after disaster events. However, these satellite data are only available on a daily basis. Integrating spatiotemporal visual and time-series data sources into a unified knowledge representation can substantially improve power outage detection, analysis, and predictive reasoning. In this paper, we propose GeoOutageKG, a multimodal knowledge graph that integrates diverse data sources, including nighttime light satellite image data, high-resolution spatiotemporal power outage maps, and county-level timeseries outage reports in the U.S. We describe our method for constructing GeoOutageKG by aligning source data with a developed ontology, GeoOutageOnto. Currently, GeoOutageKG includes over 10.6 million individual outage records spanning from 2014 to 2024, 300,000 NTL images spanning from 2012 to 2024, and 15,000 outage maps. GeoOutageKG is a novel, modular and reusable semantic resource that enables robust multimodal data integration. We demonstrate its use through multiresolution analysis of geospatiotemporal power outages.
comment: Accepted to the 24th International Semantic Web Conference Resource Track (ISWC 2025)
☆ Sustainability Evaluation Metrics for Recommender Systems
Sustainability-oriented evaluation metrics can help to assess the quality of recommender systems beyond wide-spread metrics such as accuracy, precision, recall, and satisfaction. Following the United Nations`s sustainable development goals (SDGs), such metrics can help to analyse the impact of recommender systems on environmental, social, and economic aspects. We discuss different basic sustainability evaluation metrics for recommender systems and analyze their applications.
☆ A Comprehensive Taxonomy of Negation for NLP and Neural Retrievers
Understanding and solving complex reasoning tasks is vital for addressing the information needs of a user. Although dense neural models learn contextualised embeddings, they still underperform on queries containing negation. To understand this phenomenon, we study negation in both traditional neural information retrieval and LLM-based models. We (1) introduce a taxonomy of negation that derives from philosophical, linguistic, and logical definitions; (2) generate two benchmark datasets that can be used to evaluate the performance of neural information retrieval models and to fine-tune models for a more robust performance on negation; and (3) propose a logic-based classification mechanism that can be used to analyze the performance of retrieval models on existing datasets. Our taxonomy produces a balanced data distribution over negation types, providing a better training setup that leads to faster convergence on the NevIR dataset. Moreover, we propose a classification schema that reveals the coverage of negation types in existing datasets, offering insights into the factors that might affect the generalization of fine-tuned models on negation.
♻ ☆ Conversational LLMs Simplify Secure Clinical Data Access, Understanding, and Analysis
As ever-larger clinical datasets become available, they have the potential to unlock unprecedented opportunities for medical research. Foremost among them is Medical Information Mart for Intensive Care (MIMIC-IV), the world's largest open-source EHR database. However, the inherent complexity of these datasets, particularly the need for sophisticated querying skills and the need to understand the underlying clinical settings, often presents a significant barrier to their effective use. M3 lowers the technical barrier to understanding and querying MIMIC-IV data. With a single command it retrieves MIMIC-IV from PhysioNet, launches a local SQLite instance (or hooks into the hosted BigQuery), and-via the Model Context Protocol (MCP)-lets researchers converse with the database in plain English. Ask a clinical question in natural language; M3 uses a language model to translate it into SQL, executes the query against the MIMIC-IV dataset, and returns structured results alongside the underlying query for verifiability and reproducibility. Demonstrations show that minutes of dialogue with M3 yield the kind of nuanced cohort analyses that once demanded hours of handcrafted SQL and relied on understanding the complexities of clinical workflows. By simplifying access, M3 invites the broader research community to mine clinical critical-care data and accelerates the translation of raw records into actionable insight.
comment: 10 pages, 4 figures
♻ ☆ The Search for Stability: Learning Dynamics of Strategic Publishers with Initial Documents
We study a game-theoretic information retrieval model in which strategic publishers aim to maximize their chances of being ranked first by the search engine while maintaining the integrity of their original documents. We show that the commonly used Probability Ranking Principle (PRP) ranking scheme results in an unstable environment where games often fail to reach pure Nash equilibrium. We propose two families of ranking functions that do not adhere to the PRP principle. We provide both theoretical and empirical evidence that these methods lead to a stable search ecosystem, by providing positive results on the learning dynamics convergence. We also define the publishers' and users' welfare, demonstrate a possible publisher-user trade-off, and provide means for a search system designer to control it. Finally, we show how instability harms long-term users' welfare.
comment: Published in the Journal of Artificial Intelligence Research 83 (2025)
Artificial Intelligence 158
☆ Where to show Demos in Your Prompt: A Positional Bias of In-Context Learning
In-context learning (ICL) is a critical emerging capability of large language models (LLMs), enabling few-shot learning during inference by including a few demonstrations (demos) in the prompt. However, it has been found that ICL's performance can be sensitive to the choices of demos and their order. This paper investigates an unexplored new positional bias of ICL for the first time: we observe that the predictions and accuracy can drift drastically when the positions of demos, the system prompt, and the user message in LLM input are varied. We refer to this bias as DEMOS' POSITION IN PROMPT (DPP) bias. We design a systematic evaluation pipeline to study this type of positional bias across classification, question answering, summarization, and reasoning tasks. We introduce two metrics, ACCURACY-CHANGE and PREDICTION-CHANGE, to quantify net gains and output volatility induced by changes in the demos' position. Extensive experiments on ten LLMs from four open-source model families (QWEN, LLAMA3, MISTRAL, COHERE) verify that the bias significantly affects their accuracy and predictions: placing demos at the start of the prompt yields the most stable and accurate outputs with gains of up to +6 points. In contrast, placing demos at the end of the user message flips over 30\% of predictions without improving correctness on QA tasks. Smaller models are most affected by this sensitivity, though even large models remain marginally affected on complex tasks.
☆ Automatically discovering heuristics in a complex SAT solver with large language models
Satisfiability problem (SAT) is a cornerstone of computational complexity with broad industrial applications, and it remains challenging to optimize modern SAT solvers in real-world settings due to their intricate architectures. While automatic configuration frameworks have been developed, they rely on manually constrained search spaces and yield limited performance gains. This work introduces a novel paradigm which effectively optimizes complex SAT solvers via Large Language Models (LLMs), and a tool called AutoModSAT is developed. Three fundamental challenges are addressed in order to achieve superior performance: (1) LLM-friendly solver: Systematic guidelines are proposed for developing a modularized solver to meet LLMs' compatibility, emphasizing code simplification, information share and bug reduction; (2) Automatic prompt optimization: An unsupervised automatic prompt optimization method is introduced to advance the diversity of LLMs' output; (3) Efficient search strategy: We design a presearch strategy and an EA evolutionary algorithm for the final efficient and effective discovery of heuristics. Extensive experiments across a wide range of datasets demonstrate that AutoModSAT achieves 50% performance improvement over the baseline solver and achieves 30% superiority against the state-of-the-art (SOTA) solvers. Moreover, AutoModSAT attains a 20% speedup on average compared to parameter-tuned alternatives of the SOTA solvers, showcasing the enhanced capability in handling complex problem instances. This work bridges the gap between AI-driven heuristics discovery and mission-critical system optimization, and provides both methodological advancements and empirically validated results for next-generation complex solver development.
☆ A Bit of Freedom Goes a Long Way: Classical and Quantum Algorithms for Reinforcement Learning under a Generative Model
We propose novel classical and quantum online algorithms for learning finite-horizon and infinite-horizon average-reward Markov Decision Processes (MDPs). Our algorithms are based on a hybrid exploration-generative reinforcement learning (RL) model wherein the agent can, from time to time, freely interact with the environment in a generative sampling fashion, i.e., by having access to a "simulator". By employing known classical and new quantum algorithms for approximating optimal policies under a generative model within our learning algorithms, we show that it is possible to avoid several paradigms from RL like "optimism in the face of uncertainty" and "posterior sampling" and instead compute and use optimal policies directly, which yields better regret bounds compared to previous works. For finite-horizon MDPs, our quantum algorithms obtain regret bounds which only depend logarithmically on the number of time steps $T$, thus breaking the $O(\sqrt{T})$ classical barrier. This matches the time dependence of the prior quantum works of Ganguly et al. (arXiv'23) and Zhong et al. (ICML'24), but with improved dependence on other parameters like state space size $S$ and action space size $A$. For infinite-horizon MDPs, our classical and quantum bounds still maintain the $O(\sqrt{T})$ dependence but with better $S$ and $A$ factors. Nonetheless, we propose a novel measure of regret for infinite-horizon MDPs with respect to which our quantum algorithms have $\operatorname{poly}\log{T}$ regret, exponentially better compared to classical algorithms. Finally, we generalise all of our results to compact state spaces.
comment: 57 pages
☆ Repair-R1: Better Test Before Repair
APR (Automated Program Repair) aims to automatically locate program defects, generate patches and validate the repairs. Existing techniques for APR are often combined with LLMs (Large Language Models), which leverages the code-related knowledge of LLMs to improve repair effectiveness. Current LLM-based APR methods typically utilize test cases only during the inference stage, adopting an iterative approach that performs repair first and validates it through test execution afterward. This conventional paradigm neglects two important aspects: the potential contribution of test cases in the training phase, and the possibility of leveraging testing prior to repair. To address this, we propose Repair-R1, which introduces test cases into the model's training phase and shifts test generation to precede repair. The model is required to first generate discriminative test cases that can distinguish defective behaviors, and then perform repair based on these tests. This enables the model to better locate defects and understand the underlying causes of defects, thereby improving repair effectiveness. We implement Repair-R1 with three different backbone models, using RL (reinforcement learning) to co-optimize test generation and bug repair. Experimental results on four widely adopted benchmarks demonstrate the superiority of Repair-R1. Specially, compared to vanilla models, Repair-R1 improves repair success rate by 2.68\% to 48.29\%, test generation success rate by 16.38\% to 53.28\%, and test coverage by 0.78\% to 53.96\%. We publish the code and weights at https://github.com/Tomsawyerhu/APR-RL and https://huggingface.co/tomhu/Qwen3-4B-RL-5000-step.
☆ The Incomplete Bridge: How AI Research (Mis)Engages with Psychology
Social sciences have accumulated a rich body of theories and methodologies for investigating the human mind and behaviors, while offering valuable insights into the design and understanding of Artificial Intelligence (AI) systems. Focusing on psychology as a prominent case, this study explores the interdisciplinary synergy between AI and the field by analyzing 1,006 LLM-related papers published in premier AI venues between 2023 and 2025, along with the 2,544 psychology publications they cite. Through our analysis, we identify key patterns of interdisciplinary integration, locate the psychology domains most frequently referenced, and highlight areas that remain underexplored. We further examine how psychology theories/frameworks are operationalized and interpreted, identify common types of misapplication, and offer guidance for more effective incorporation. Our work provides a comprehensive map of interdisciplinary engagement between AI and psychology, thereby facilitating deeper collaboration and advancing AI systems.
☆ RLVMR: Reinforcement Learning with Verifiable Meta-Reasoning Rewards for Robust Long-Horizon Agents
The development of autonomous agents for complex, long-horizon tasks is a central goal in AI. However, dominant training paradigms face a critical limitation: reinforcement learning (RL) methods that optimize solely for final task success often reinforce flawed or inefficient reasoning paths, a problem we term inefficient exploration. This leads to agents that are brittle and fail to generalize, as they learn to find solutions without learning how to reason coherently. To address this, we introduce RLVMR, a novel framework that integrates dense, process-level supervision into end-to-end RL by rewarding verifiable, meta-reasoning behaviors. RLVMR equips an agent to explicitly tag its cognitive steps, such as planning, exploration, and reflection, and provides programmatic, rule-based rewards for actions that contribute to effective problem-solving. These process-centric rewards are combined with the final outcome signal and optimized using a critic-free policy gradient method. On the challenging ALFWorld and ScienceWorld benchmarks, RLVMR achieves new state-of-the-art results, with our 7B model reaching an 83.6% success rate on the most difficult unseen task split. Our analysis confirms these gains stem from improved reasoning quality, including significant reductions in redundant actions and enhanced error recovery, leading to more robust, efficient, and interpretable agents.
☆ CapRecover: A Cross-Modality Feature Inversion Attack Framework on Vision Language Models
As Vision-Language Models (VLMs) are increasingly deployed in split-DNN configurations--with visual encoders (e.g., ResNet, ViT) operating on user devices and sending intermediate features to the cloud--there is a growing privacy risk from semantic information leakage. Existing approaches to reconstructing images from these intermediate features often result in blurry, semantically ambiguous images. To directly address semantic leakage, we propose CapRecover, a cross-modality inversion framework that recovers high-level semantic content, such as labels or captions, directly from intermediate features without image reconstruction. We evaluate CapRecover on multiple datasets and victim models, demonstrating strong performance in semantic recovery. Specifically, CapRecover achieves up to 92.71% Top-1 label accuracy on CIFAR-10 and generates fluent captions from ResNet50 features on COCO2017 with ROUGE-L scores up to 0.52. Our analysis further reveals that deeper convolutional layers encode significantly more semantic information compared to shallow layers. To mitigate semantic leakage, we introduce a simple yet effective protection method: adding random noise to intermediate features at each layer and removing the noise in the next layer. Experimental results show that this approach prevents semantic leakage without additional training costs.
comment: 9 pages, accepted by the 2025 ACM Multimedia Conference
☆ MoCHA: Advanced Vision-Language Reasoning with MoE Connector and Hierarchical Group Attention
Vision large language models (VLLMs) are focusing primarily on handling complex and fine-grained visual information by incorporating advanced vision encoders and scaling up visual models. However, these approaches face high training and inference costs, as well as challenges in extracting visual details, effectively bridging across modalities. In this work, we propose a novel visual framework, MoCHA, to address these issues. Our framework integrates four vision backbones (i.e., CLIP, SigLIP, DINOv2 and ConvNeXt) to extract complementary visual features and is equipped with a sparse Mixture of Experts Connectors (MoECs) module to dynamically select experts tailored to different visual dimensions. To mitigate redundant or insufficient use of the visual information encoded by the MoECs module, we further design a Hierarchical Group Attention (HGA) with intra- and inter-group operations and an adaptive gating strategy for encoded visual features. We train MoCHA on two mainstream LLMs (e.g., Phi2-2.7B and Vicuna-7B) and evaluate their performance across various benchmarks. Notably, MoCHA outperforms state-of-the-art open-weight models on various tasks. For example, compared to CuMo (Mistral-7B), our MoCHA (Phi2-2.7B) presents outstanding abilities to mitigate hallucination by showing improvements of 3.25% in POPE and to follow visual instructions by raising 153 points on MME. Finally, ablation studies further confirm the effectiveness and robustness of the proposed MoECs and HGA in improving the overall performance of MoCHA.
☆ Advancing Fetal Ultrasound Image Quality Assessment in Low-Resource Settings AI 2025
Accurate fetal biometric measurements, such as abdominal circumference, play a vital role in prenatal care. However, obtaining high-quality ultrasound images for these measurements heavily depends on the expertise of sonographers, posing a significant challenge in low-income countries due to the scarcity of trained personnel. To address this issue, we leverage FetalCLIP, a vision-language model pretrained on a curated dataset of over 210,000 fetal ultrasound image-caption pairs, to perform automated fetal ultrasound image quality assessment (IQA) on blind-sweep ultrasound data. We introduce FetalCLIP$_{CLS}$, an IQA model adapted from FetalCLIP using Low-Rank Adaptation (LoRA), and evaluate it on the ACOUSLIC-AI dataset against six CNN and Transformer baselines. FetalCLIP$_{CLS}$ achieves the highest F1 score of 0.757. Moreover, we show that an adapted segmentation model, when repurposed for classification, further improves performance, achieving an F1 score of 0.771. Our work demonstrates how parameter-efficient fine-tuning of fetal ultrasound foundation models can enable task-specific adaptations, advancing prenatal care in resource-limited settings. The experimental code is available at: https://github.com/donglihe-hub/FetalCLIP-IQA.
comment: Accepted to the MICCAI 2025 MIRASOL Workshop
☆ G-Core: A Simple, Scalable and Balanced RLHF Trainer
Reinforcement Learning from Human Feedback (RLHF) has become an increasingly popular paradigm for training large language models (LLMs) and diffusion models. While existing RLHF training systems have enabled significant progress, they often face challenges in scaling to multi-modal and diffusion workflows and adapting to dynamic workloads. In particular, current approaches may encounter limitations in controller scalability, flexible resource placement, and efficient orchestration when handling complex RLHF pipelines, especially in scenarios involving dynamic sampling or generative reward modeling. In this paper, we present \textbf{G-Core}, a simple, scalable, and balanced RLHF training framework designed to address these challenges. G-Core introduces a parallel controller programming model, enabling flexible and efficient orchestration of complex RLHF workflows without the bottlenecks of a single centralized controller. Furthermore, we propose a dynamic placement schema that adaptively partitions resources and schedules workloads, significantly reducing hardware idle time and improving utilization, even under highly variable training conditions. G-Core has successfully trained models that support WeChat product features serving a large-scale user base, demonstrating its effectiveness and robustness in real-world scenarios. Our results show that G-Core advances the state of the art in RLHF training, providing a solid foundation for future research and deployment of large-scale, human-aligned models.
☆ Enhancing Multi-Agent Collaboration with Attention-Based Actor-Critic Policies
This paper introduces Team-Attention-Actor-Critic (TAAC), a reinforcement learning algorithm designed to enhance multi-agent collaboration in cooperative environments. TAAC employs a Centralized Training/Centralized Execution scheme incorporating multi-headed attention mechanisms in both the actor and critic. This design facilitates dynamic, inter-agent communication, allowing agents to explicitly query teammates, thereby efficiently managing the exponential growth of joint-action spaces while ensuring a high degree of collaboration. We further introduce a penalized loss function which promotes diverse yet complementary roles among agents. We evaluate TAAC in a simulated soccer environment against benchmark algorithms representing other multi-agent paradigms, including Proximal Policy Optimization and Multi-Agent Actor-Attention-Critic. We find that TAAC exhibits superior performance and enhanced collaborative behaviors across a variety of metrics (win rates, goal differentials, Elo ratings, inter-agent connectivity, balanced spatial distributions, and frequent tactical interactions such as ball possession swaps).
comment: 8 pages
☆ ASP-FZN: A Translation-based Constraint Answer Set Solver
We present the solver asp-fzn for Constraint Answer Set Programming (CASP), which extends ASP with linear constraints. Our approach is based on translating CASP programs into the solver-independent FlatZinc language that supports several Constraint Programming and Integer Programming backend solvers. Our solver supports a rich language of linear constraints, including some common global constraints. As for evaluation, we show that asp-fzn is competitive with state-of-the-art ASP solvers on benchmarks taken from past ASP competitions. Furthermore, we evaluate it on several CASP problems from the literature and compare its performance with clingcon, which is a prominent CASP solver that supports most of the asp-fzn language. The performance of asp-fzn is very promising as it is already competitive on plain ASP and even outperforms clingcon on some CASP benchmarks.
comment: Presented at the 41st International Conference on Logic Programming (ICLP 2025)
☆ Empirical Evaluation of Concept Drift in ML-Based Android Malware Detection
Despite outstanding results, machine learning-based Android malware detection models struggle with concept drift, where rapidly evolving malware characteristics degrade model effectiveness. This study examines the impact of concept drift on Android malware detection, evaluating two datasets and nine machine learning and deep learning algorithms, as well as Large Language Models (LLMs). Various feature types--static, dynamic, hybrid, semantic, and image-based--were considered. The results showed that concept drift is widespread and significantly affects model performance. Factors influencing the drift include feature types, data environments, and detection methods. Balancing algorithms helped with class imbalance but did not fully address concept drift, which primarily stems from the dynamic nature of the malware landscape. No strong link was found between the type of algorithm used and concept drift, the impact was relatively minor compared to other variables since hyperparameters were not fine-tuned, and the default algorithm configurations were used. While LLMs using few-shot learning demonstrated promising detection performance, they did not fully mitigate concept drift, highlighting the need for further investigation.
comment: 18 pages, 12 tables, 14 figures, paper under review
☆ Teaching the Teacher: Improving Neural Network Distillability for Symbolic Regression via Jacobian Regularization
Distilling large neural networks into simple, human-readable symbolic formulas is a promising path toward trustworthy and interpretable AI. However, this process is often brittle, as the complex functions learned by standard networks are poor targets for symbolic discovery, resulting in low-fidelity student models. In this work, we propose a novel training paradigm to address this challenge. Instead of passively distilling a pre-trained network, we introduce a \textbf{Jacobian-based regularizer} that actively encourages the ``teacher'' network to learn functions that are not only accurate but also inherently smoother and more amenable to distillation. We demonstrate through extensive experiments on a suite of real-world regression benchmarks that our method is highly effective. By optimizing the regularization strength for each problem, we improve the $R^2$ score of the final distilled symbolic model by an average of \textbf{120\% (relative)} compared to the standard distillation pipeline, all while maintaining the teacher's predictive accuracy. Our work presents a practical and principled method for significantly improving the fidelity of interpretable models extracted from complex neural networks.
☆ Bayesian Optimization of Process Parameters of a Sensor-Based Sorting System using Gaussian Processes as Surrogate Models
Sensor-based sorting systems enable the physical separation of a material stream into two fractions. The sorting decision is based on the image data evaluation of the sensors used and is carried out using actuators. Various process parameters must be set depending on the properties of the material stream, the dimensioning of the system, and the required sorting accuracy. However, continuous verification and re-adjustment are necessary due to changing requirements and material stream compositions. In this paper, we introduce an approach for optimizing, recurrently monitoring and adjusting the process parameters of a sensor-based sorting system. Based on Bayesian Optimization, Gaussian process regression models are used as surrogate models to achieve specific requirements for system behavior with the uncertainties contained therein. This method minimizes the number of necessary experiments while simultaneously considering two possible optimization targets based on the requirements for both material output streams. In addition, uncertainties are considered during determining sorting accuracies in the model calculation. We evaluated the method with three example process parameters.
comment: Accepted at the 30th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
☆ Of Good Demons and Bad Angels: Guaranteeing Safe Control under Finite Precision
As neural networks (NNs) become increasingly prevalent in safety-critical neural network-controlled cyber-physical systems (NNCSs), formally guaranteeing their safety becomes crucial. For these systems, safety must be ensured throughout their entire operation, necessitating infinite-time horizon verification. To verify the infinite-time horizon safety of NNCSs, recent approaches leverage Differential Dynamic Logic (dL). However, these dL-based guarantees rely on idealized, real-valued NN semantics and fail to account for roundoff errors introduced by finite-precision implementations. This paper bridges the gap between theoretical guarantees and real-world implementations by incorporating robustness under finite-precision perturbations -- in sensing, actuation, and computation -- into the safety verification. We model the problem as a hybrid game between a good Demon, responsible for control actions, and a bad Angel, introducing perturbations. This formulation enables formal proofs of robustness w.r.t. a given (bounded) perturbation. Leveraging this bound, we employ state-of-the-art mixed-precision fixed-point tuners to synthesize sound and efficient implementations, thus providing a complete end-to-end solution. We evaluate our approach on case studies from the automotive and aeronautics domains, producing efficient NN implementations with rigorous infinite-time horizon safety guarantees.
comment: 15 pages, 3 figures, 1 table; Accepted at FMCAD 2025
☆ Reducing Hallucinations in Summarization via Reinforcement Learning with Entity Hallucination Index
Reducing hallucinations in abstractive summarization remains a critical challenge for deploying language models (LMs) in real-world settings. In this work, we introduce a rewarddriven fine-tuning framework that explicitly optimizes for Entity Hallucination Index (EHI), a metric designed to quantify the presence, correctness, and grounding of named entities in generated summaries. Given a corpus of meeting transcripts, we first generate baseline summaries using a pre-trained LM and compute EHI scores via automatic entity extraction and matching. We then apply reinforcement learning to fine-tune the model parameters, using EHI as a reward signal to bias generation toward entity-faithful outputs. Our approach does not rely on human-written factuality annotations, enabling scalable fine-tuning. Experiments demonstrate consistent improvements in EHI across datasets, with qualitative analysis revealing a significant reduction in entity-level hallucinations without degradation in fluency or informativeness. We release a reproducible Colab pipeline, facilitating further research on hallucination-aware model fine-tuning using lightweight, hallucintion metrics like EHI.
comment: 8
☆ OFCnetLLM: Large Language Model for Network Monitoring and Alertness
The rapid evolution of network infrastructure is bringing new challenges and opportunities for efficient network management, optimization, and security. With very large monitoring databases becoming expensive to explore, the use of AI and Generative AI can help reduce costs of managing these datasets. This paper explores the use of Large Language Models (LLMs) to revolutionize network monitoring management by addressing the limitations of query finding and pattern analysis. We leverage LLMs to enhance anomaly detection, automate root-cause analysis, and automate incident analysis to build a well-monitored network management team using AI. Through a real-world example of developing our own OFCNetLLM, based on the open-source LLM model, we demonstrate practical applications of OFCnetLLM in the OFC conference network. Our model is developed as a multi-agent approach and is still evolving, and we present early results here.
☆ Bifröst: Spatial Networking with Bigraphs
Modern networked environments increasingly rely on spatial reasoning, but lack a coherent representation for coordinating physical space. Consequently, tasks such as enforcing spatial access policies remain fragile and manual. We first propose a unifying representation based on bigraphs, capturing spatial, social, and communication relationships within a single formalism, with user-facing tools to generate bigraphs from physical environments. Second, we present a hierarchical agent architecture for distributed spatial reasoning, with runtimes for agentic processes to interact the spatial representation, and a context-aware execution model that scopes reasoning to the smallest viable subspace. Together, these enable private, reliable, and low-latency spatial networking that can safely interact with agentic workflows.
comment: Submitted to HotNets 2025
☆ Hydra-Bench: A Benchmark for Multi-Modal Leaf Wetness Sensing
Leaf wetness detection is a crucial task in agricultural monitoring, as it directly impacts the prediction and protection of plant diseases. However, existing sensing systems suffer from limitations in robustness, accuracy, and environmental resilience when applied to natural leaves under dynamic real-world conditions. To address these challenges, we introduce a new multi-modal dataset specifically designed for evaluating and advancing machine learning algorithms in leaf wetness detection. Our dataset comprises synchronized mmWave raw data, Synthetic Aperture Radar (SAR) images, and RGB images collected over six months from five diverse plant species in both controlled and outdoor field environments. We provide detailed benchmarks using the Hydra model, including comparisons against single modality baselines and multiple fusion strategies, as well as performance under varying scan distances. Additionally, our dataset can serve as a benchmark for future SAR imaging algorithm optimization, enabling a systematic evaluation of detection accuracy under diverse conditions.
☆ Designing for Self-Regulation in Informal Programming Learning: Insights from a Storytelling-Centric Approach
Many people learn programming independently from online resources and often report struggles in achieving their personal learning goals. Learners frequently describe their experiences as isolating and frustrating, challenged by abundant uncertainties, information overload, and distraction, compounded by limited guidance. At the same time, social media serves as a personal space where many engage in diverse self-regulation practices, including help-seeking, using external memory aids (e.g., self-notes), self-reflection, emotion regulation, and self-motivation. For instance, learners often mark achievements and set milestones through their posts. In response, we developed a system consisting of a web platform and browser extensions to support self-regulation online. The design aims to add learner-defined structure to otherwise unstructured experiences and bring meaning to curation and reflection activities by translating them into learning stories with AI-generated feedback. We position storytelling as an integrative approach to design that connects resource curation, reflective and sensemaking practice, and narrative practices learners already use across social platforms. We recruited 15 informal programming learners who are regular social media users to engage with the system in a self-paced manner; participation concluded upon submitting a learning story and survey. We used three quantitative scales and a qualitative survey to examine users' characteristics and perceptions of the system's support for their self-regulation. User feedback suggests the system's viability as a self-regulation aid. Learners particularly valued in-situ reflection, automated story feedback, and video annotation, while other features received mixed views. We highlight perceived benefits, friction points, and design opportunities for future AI-augmented self-regulation tools.
comment: 10 pages, 9 figures
☆ RobEthiChor: Automated Context-aware Ethics-based Negotiation for Autonomous Robots
The presence of autonomous systems is growing at a fast pace and it is impacting many aspects of our lives. Designed to learn and act independently, these systems operate and perform decision-making without human intervention. However, they lack the ability to incorporate users' ethical preferences, which are unique for each individual in society and are required to personalize the decision-making processes. This reduces user trust and prevents autonomous systems from behaving according to the moral beliefs of their end-users. When multiple systems interact with differing ethical preferences, they must negotiate to reach an agreement that satisfies the ethical beliefs of all the parties involved and adjust their behavior consequently. To address this challenge, this paper proposes RobEthiChor, an approach that enables autonomous systems to incorporate user ethical preferences and contextual factors into their decision-making through ethics-based negotiation. RobEthiChor features a domain-agnostic reference architecture for designing autonomous systems capable of ethic-based negotiating. The paper also presents RobEthiChor-Ros, an implementation of RobEthiChor within the Robot Operating System (ROS), which can be deployed on robots to provide them with ethics-based negotiation capabilities. To evaluate our approach, we deployed RobEthiChor-Ros on real robots and ran scenarios where a pair of robots negotiate upon resource contention. Experimental results demonstrate the feasibility and effectiveness of the system in realizing ethics-based negotiation. RobEthiChor allowed robots to reach an agreement in more than 73\% of the scenarios with an acceptable negotiation time (0.67s on average). Experiments also demonstrate that the negotiation approach implemented in RobEthiChor is scalable.
☆ A Systematic Literature Review on Detecting Software Vulnerabilities with Large Language Models
The increasing adoption of Large Language Models (LLMs) in software engineering has sparked interest in their use for software vulnerability detection. However, the rapid development of this field has resulted in a fragmented research landscape, with diverse studies that are difficult to compare due to differences in, e.g., system designs and dataset usage. This fragmentation makes it difficult to obtain a clear overview of the state-of-the-art or compare and categorize studies meaningfully. In this work, we present a comprehensive systematic literature review (SLR) of LLM-based software vulnerability detection. We analyze 227 studies published between January 2020 and June 2025, categorizing them by task formulation, input representation, system architecture, and adaptation techniques. Further, we analyze the datasets used, including their characteristics, vulnerability coverage, and diversity. We present a fine-grained taxonomy of vulnerability detection approaches, identify key limitations, and outline actionable future research opportunities. By providing a structured overview of the field, this review improves transparency and serves as a practical guide for researchers and practitioners aiming to conduct more comparable and reproducible research. We publicly release all artifacts and maintain a living repository of LLM-based software vulnerability detection studies.
comment: 36 pages + 17 pages references, 6 tables, 10 figures
☆ Safe Deployment of Offline Reinforcement Learning via Input Convex Action Correction
Offline reinforcement learning (offline RL) offers a promising framework for developing control strategies in chemical process systems using historical data, without the risks or costs of online experimentation. This work investigates the application of offline RL to the safe and efficient control of an exothermic polymerisation continuous stirred-tank reactor. We introduce a Gymnasium-compatible simulation environment that captures the reactor's nonlinear dynamics, including reaction kinetics, energy balances, and operational constraints. The environment supports three industrially relevant scenarios: startup, grade change down, and grade change up. It also includes reproducible offline datasets generated from proportional-integral controllers with randomised tunings, providing a benchmark for evaluating offline RL algorithms in realistic process control tasks. We assess behaviour cloning and implicit Q-learning as baseline algorithms, highlighting the challenges offline agents face, including steady-state offsets and degraded performance near setpoints. To address these issues, we propose a novel deployment-time safety layer that performs gradient-based action correction using input convex neural networks (PICNNs) as learned cost models. The PICNN enables real-time, differentiable correction of policy actions by descending a convex, state-conditioned cost surface, without requiring retraining or environment interaction. Experimental results show that offline RL, particularly when combined with convex action correction, can outperform traditional control approaches and maintain stability across all scenarios. These findings demonstrate the feasibility of integrating offline RL with interpretable and safety-aware corrections for high-stakes chemical process control, and lay the groundwork for more reliable data-driven automation in industrial systems.
☆ H2Tune: Federated Foundation Model Fine-Tuning with Hybrid Heterogeneity
Different from existing federated fine-tuning (FFT) methods for foundation models, hybrid heterogeneous federated fine-tuning (HHFFT) is an under-explored scenario where clients exhibit double heterogeneity in model architectures and downstream tasks. This hybrid heterogeneity introduces two significant challenges: 1) heterogeneous matrix aggregation, where clients adopt different large-scale foundation models based on their task requirements and resource limitations, leading to dimensional mismatches during LoRA parameter aggregation; and 2) multi-task knowledge interference, where local shared parameters, trained with both task-shared and task-specific knowledge, cannot ensure only task-shared knowledge is transferred between clients. To address these challenges, we propose H2Tune, a federated foundation model fine-tuning with hybrid heterogeneity. Our framework H2Tune consists of three key components: (i) sparsified triple matrix decomposition to align hidden dimensions across clients through constructing rank-consistent middle matrices, with adaptive sparsification based on client resources; (ii) relation-guided matrix layer alignment to handle heterogeneous layer structures and representation capabilities; and (iii) alternating task-knowledge disentanglement mechanism to decouple shared and specific knowledge of local model parameters through alternating optimization. Theoretical analysis proves a convergence rate of O(1/\sqrt{T}). Extensive experiments show our method achieves up to 15.4% accuracy improvement compared to state-of-the-art baselines. Our code is available at https://anonymous.4open.science/r/H2Tune-1407.
☆ LOTS of Fashion! Multi-Conditioning for Image Generation via Sketch-Text Pairing ICCV25
Fashion design is a complex creative process that blends visual and textual expressions. Designers convey ideas through sketches, which define spatial structure and design elements, and textual descriptions, capturing material, texture, and stylistic details. In this paper, we present LOcalized Text and Sketch for fashion image generation (LOTS), an approach for compositional sketch-text based generation of complete fashion outlooks. LOTS leverages a global description with paired localized sketch + text information for conditioning and introduces a novel step-based merging strategy for diffusion adaptation. First, a Modularized Pair-Centric representation encodes sketches and text into a shared latent space while preserving independent localized features; then, a Diffusion Pair Guidance phase integrates both local and global conditioning via attention-based guidance within the diffusion model's multi-step denoising process. To validate our method, we build on Fashionpedia to release Sketchy, the first fashion dataset where multiple text-sketch pairs are provided per image. Quantitative results show LOTS achieves state-of-the-art image generation performance on both global and localized metrics, while qualitative examples and a human evaluation study highlight its unprecedented level of design customization.
comment: Accepted at ICCV25 (Oral). Project page: https://intelligolabs.github.io/lots/
☆ Enhancing Manufacturing Knowledge Access with LLMs and Context-aware Prompting AI
Knowledge graphs (KGs) have transformed data management within the manufacturing industry, offering effective means for integrating disparate data sources through shared and structured conceptual schemas. However, harnessing the power of KGs can be daunting for non-experts, as it often requires formulating complex SPARQL queries to retrieve specific information. With the advent of Large Language Models (LLMs), there is a growing potential to automatically translate natural language queries into the SPARQL format, thus bridging the gap between user-friendly interfaces and the sophisticated architecture of KGs. The challenge remains in adequately informing LLMs about the relevant context and structure of domain-specific KGs, e.g., in manufacturing, to improve the accuracy of generated queries. In this paper, we evaluate multiple strategies that use LLMs as mediators to facilitate information retrieval from KGs. We focus on the manufacturing domain, particularly on the Bosch Line Information System KG and the I40 Core Information Model. In our evaluation, we compare various approaches for feeding relevant context from the KG to the LLM and analyze their proficiency in transforming real-world questions into SPARQL queries. Our findings show that LLMs can significantly improve their performance on generating correct and complete queries when provided only the adequate context of the KG schema. Such context-aware prompting techniques help LLMs to focus on the relevant parts of the ontology and reduce the risk of hallucination. We anticipate that the proposed techniques help LLMs to democratize access to complex data repositories and empower informed decision-making in manufacturing settings.
comment: European Conference on Artificial Intelligence (ECAI) 2024
☆ Adaptive Duration Model for Text Speech Alignment
Speech-to-text alignment is a critical component of neural text to-speech (TTS) models. Autoregressive TTS models typically use an attention mechanism to learn these alignments on-line. However, these alignments tend to be brittle and often fail to generalize to long utterances and out-of-domain text, leading to missing or repeating words. Most non-autoregressive end to-end TTS models rely on durations extracted from external sources, using additional duration models for alignment. In this paper, we propose a novel duration prediction framework that can give compromising phoneme-level duration distribution with given text. In our experiments, the proposed duration model has more precise prediction and condition adaptation ability compared to previous baseline models. Numerically, it has roughly a 11.3 percents immprovement on alignment accuracy, and makes the performance of zero-shot TTS models more robust to the mismatch between prompt audio and input audio.
comment: 4 pages, 3 figures, 2 tables
☆ Metamorphic Testing of Deep Code Models: A Systematic Literature Review
Large language models and deep learning models designed for code intelligence have revolutionized the software engineering field due to their ability to perform various code-related tasks. These models can process source code and software artifacts with high accuracy in tasks such as code completion, defect detection, and code summarization; therefore, they can potentially become an integral part of modern software engineering practices. Despite these capabilities, robustness remains a critical quality attribute for deep-code models as they may produce different results under varied and adversarial conditions (e.g., variable renaming). Metamorphic testing has become a widely used approach to evaluate models' robustness by applying semantic-preserving transformations to input programs and analyzing the stability of model outputs. While prior research has explored testing deep learning models, this systematic literature review focuses specifically on metamorphic testing for deep code models. By studying 45 primary papers, we analyze the transformations, techniques, and evaluation methods used to assess robustness. Our review summarizes the current landscape, identifying frequently evaluated models, programming tasks, datasets, target languages, and evaluation metrics, and highlights key challenges and future directions for advancing the field.
☆ VL-Cogito: Progressive Curriculum Reinforcement Learning for Advanced Multimodal Reasoning
Reinforcement learning has proven its effectiveness in enhancing the reasoning capabilities of large language models. Recent research efforts have progressively extended this paradigm to multimodal reasoning tasks. Due to the inherent complexity and diversity of multimodal tasks, especially in semantic content and problem formulations, existing models often exhibit unstable performance across various domains and difficulty levels. To address these limitations, we propose VL-Cogito, an advanced multimodal reasoning model trained via a novel multi-stage Progressive Curriculum Reinforcement Learning (PCuRL) framework. PCuRL systematically guides the model through tasks of gradually increasing difficulty, substantially improving its reasoning abilities across diverse multimodal contexts. The framework introduces two key innovations: (1) an online difficulty soft weighting mechanism, dynamically adjusting training difficulty across successive RL training stages; and (2) a dynamic length reward mechanism, which encourages the model to adaptively regulate its reasoning path length according to task complexity, thus balancing reasoning efficiency with correctness. Experimental evaluations demonstrate that VL-Cogito consistently matches or surpasses existing reasoning-oriented models across mainstream multimodal benchmarks spanning mathematics, science, logic, and general understanding, validating the effectiveness of our approach.
comment: 21 pages, 5 figures, 6 tables. Work in progress
☆ MetaAgent: Automatically Constructing Multi-Agent Systems Based on Finite State Machines ICML 2025
Large Language Models (LLMs) have demonstrated the ability to solve a wide range of practical tasks within multi-agent systems. However, existing human-designed multi-agent frameworks are typically limited to a small set of pre-defined scenarios, while current automated design methods suffer from several limitations, such as the lack of tool integration, dependence on external training data, and rigid communication structures. In this paper, we propose MetaAgent, a finite state machine based framework that can automatically generate a multi-agent system. Given a task description, MetaAgent will design a multi-agent system and polish it through an optimization algorithm. When the multi-agent system is deployed, the finite state machine will control the agent's actions and the state transitions. To evaluate our framework, we conduct experiments on both text-based tasks and practical tasks. The results indicate that the generated multi-agent system surpasses other auto-designed methods and can achieve a comparable performance with the human-designed multi-agent system, which is optimized for those specific tasks.
comment: ICML 2025
☆ BALSAM: A Platform for Benchmarking Arabic Large Language Models
The impressive advancement of Large Language Models (LLMs) in English has not been matched across all languages. In particular, LLM performance in Arabic lags behind, due to data scarcity, linguistic diversity of Arabic and its dialects, morphological complexity, etc. Progress is further hindered by the quality of Arabic benchmarks, which typically rely on static, publicly available data, lack comprehensive task coverage, or do not provide dedicated platforms with blind test sets. This makes it challenging to measure actual progress and to mitigate data contamination. Here, we aim to bridge these gaps. In particular, we introduce BALSAM, a comprehensive, community-driven benchmark aimed at advancing Arabic LLM development and evaluation. It includes 78 NLP tasks from 14 broad categories, with 52K examples divided into 37K test and 15K development, and a centralized, transparent platform for blind evaluation. We envision BALSAM as a unifying platform that sets standards and promotes collaborative research to advance Arabic LLM capabilities.
☆ RePaCA: Leveraging Reasoning Large Language Models for Static Automated Patch Correctness Assessment
Automated Program Repair (APR) seeks to automatically correct software bugs without requiring human intervention. However, existing tools tend to generate patches that satisfy test cases without fixing the underlying bug, those are known as overfitting patches. To address this issue, Automated Patch Correctness Assessment (APCA) attempts to identify overfitting patches generated by APR tools. It can be solved as a static approach, meaning that no additional information is needed beyond the original and fixed code snippets. Current static techniques often struggle with reliability, flexibility and transparency. To address these issues, we introduce RePaCA, a novel static APCA technique that leverages Large Language Models (LLMs) specialized in thinking tasks. Our model is prompted with both buggy and fixed code snippets and guided to generate a Chain of Thought that analyses code differences, reasons about how the patch addresses the root cause, and ultimately provides a binary classification: correct or overfitting. To enhance these reasoning capabilities for the APCA task specifically, the LLM is finetuned using Reinforcement Learning with the Group Relative Policy Optimization algorithm. When evaluated on a standard Defects4J-derived test, our approach achieves state-of-the-art performance, with 83.1% accuracy and an 84.8% F1-score. Furthermore, our model demonstrates superior generalization capabilities when trained on different datasets, outperforming the leading technique. This reasoning capability also provides enhanced explainability for the patch assessment. These findings underscore the considerable promise of finetuned, reasoning LLMs to advance static APCA by enhancing accuracy, generalization, and explainability.
☆ A Mean-Field Theory of $Θ$-Expectations
The canonical theory of sublinear expectations, a foundation of stochastic calculus under ambiguity, is insensitive to the non-convex geometry of primitive uncertainty models. This paper develops a new stochastic calculus for a structured class of such non-convex models. We introduce a class of fully coupled Mean-Field Forward-Backward Stochastic Differential Equations where the BSDE driver is defined by a pointwise maximization over a law-dependent, non-convex set. Mathematical tractability is achieved via a uniform strong concavity assumption on the driver with respect to the control variable, which ensures the optimization admits a unique and stable solution. A central contribution is to establish the Lipschitz stability of this optimizer from primitive geometric and regularity conditions, which underpins the entire well-posedness theory. We prove local and global well-posedness theorems for the FBSDE system. The resulting valuation functional, the $\Theta$-Expectation, is shown to be dynamically consistent and, most critically, to violate the axiom of sub-additivity. This, along with its failure to be translation invariant, demonstrates its fundamental departure from the convex paradigm. This work provides a rigorous foundation for stochastic calculus under a class of non-convex, endogenous ambiguity.
☆ COOkeD: Ensemble-based OOD detection in the era of zero-shot CLIP ICCV
Out-of-distribution (OOD) detection is an important building block in trustworthy image recognition systems as unknown classes may arise at test-time. OOD detection methods typically revolve around a single classifier, leading to a split in the research field between the classical supervised setting (e.g. ResNet18 classifier trained on CIFAR100) vs. the zero-shot setting (class names fed as prompts to CLIP). In both cases, an overarching challenge is that the OOD detection performance is implicitly constrained by the classifier's capabilities on in-distribution (ID) data. In this work, we show that given a little open-mindedness from both ends, remarkable OOD detection can be achieved by instead creating a heterogeneous ensemble - COOkeD combines the predictions of a closed-world classifier trained end-to-end on a specific dataset, a zero-shot CLIP classifier, and a linear probe classifier trained on CLIP image features. While bulky at first sight, this approach is modular, post-hoc and leverages the availability of pre-trained VLMs, thus introduces little overhead compared to training a single standard classifier. We evaluate COOkeD on popular CIFAR100 and ImageNet benchmarks, but also consider more challenging, realistic settings ranging from training-time label noise, to test-time covariate shift, to zero-shot shift which has been previously overlooked. Despite its simplicity, COOkeD achieves state-of-the-art performance and greater robustness compared to both classical and CLIP-based OOD detection methods. Code is available at https://github.com/glhr/COOkeD
comment: accepted at ICCVW'25 - Systematic Trust in AI Models: Ensuring Fairness, Reliability, Explainability, and Accountability in Machine Learning Frameworks
☆ Explaining Deep Network Classification of Matrices: A Case Study on Monotonicity
This work demonstrates a methodology for using deep learning to discover simple, practical criteria for classifying matrices based on abstract algebraic properties. By combining a high-performance neural network with explainable AI (XAI) techniques, we can distill a model's learned strategy into human-interpretable rules. We apply this approach to the challenging case of monotone matrices, defined by the condition that their inverses are entrywise nonnegative. Despite their simple definition, an easy characterization in terms of the matrix elements or the derived parameters is not known. Here, we present, to the best of our knowledge, the first systematic machine-learning approach for deriving a practical criterion that distinguishes monotone from non-monotone matrices. After establishing a labelled dataset by randomly generated monotone and non-monotone matrices uniformly on $(-1,1)$, we employ deep neural network algorithms for classifying the matrices as monotone or non-monotone, using both their entries and a comprehensive set of matrix features. By saliency methods, such as integrated gradients, we identify among all features, two matrix parameters which alone provide sufficient information for the matrix classification, with $95\%$ accuracy, namely the absolute values of the two lowest-order coefficients, $c_0$ and $c_1$ of the matrix's characteristic polynomial. A data-driven study of 18,000 random $7\times7$ matrices shows that the monotone class obeys $\lvert c_{0}/c_{1}\rvert\le0.18$ with probability $>99.98\%$; because $\lvert c_{0}/c_{1}\rvert = 1/\mathrm{tr}(A^{-1})$ for monotone $A$, this is equivalent to the simple bound $\mathrm{tr}(A^{-1})\ge5.7$.
comment: 22 pages, 11 figures. To be submitted to a journal
☆ Efficient Differentially Private Fine-Tuning of LLMs via Reinforcement Learning
The tension between data privacy and model utility has become the defining bottleneck for the practical deployment of large language models (LLMs) trained on sensitive corpora including healthcare. Differentially private stochastic gradient descent (DP-SGD) guarantees formal privacy, yet it does so at a pronounced cost: gradients are forcibly clipped and perturbed with noise, degrading sample efficiency and final accuracy. Numerous variants have been proposed to soften this trade-off, but they all share a handicap: their control knobs are hard-coded, global, and oblivious to the evolving optimization landscape. Consequently, practitioners are forced either to over-spend privacy budget in pursuit of utility, or to accept mediocre models in order to stay within privacy constraints. We present RLDP, the first framework to cast DP optimization itself as a closed-loop control problem amenable to modern deep reinforcement learning (RL). RLDP continuously senses rich statistics of the learning dynamics and acts by selecting fine-grained per parameter gradient-clipping thresholds as well as the magnitude of injected Gaussian noise. A soft actor-critic (SAC) hyper-policy is trained online during language model fine-tuning; it learns, from scratch, how to allocate the privacy budget where it matters and when it matters. Across more than 1,600 ablation experiments on GPT2-small, Llama-1B, Llama-3B, and Mistral-7B, RLDP delivers perplexity reductions of 1.3-30.5% (mean 5.4%) and an average 5.6% downstream utility gain. RLDP reaches each baseline's final utility after only 13-43% of the gradient-update budget (mean speed-up 71%), all while honoring the same ($\epsilon$, $\delta$)-DP contract and exhibiting equal or lower susceptibility to membership-inference and canary-extraction attacks.
☆ Exploiting Synergistic Cognitive Biases to Bypass Safety in LLMs
Large Language Models (LLMs) demonstrate impressive capabilities across a wide range of tasks, yet their safety mechanisms remain susceptible to adversarial attacks that exploit cognitive biases -- systematic deviations from rational judgment. Unlike prior jailbreaking approaches focused on prompt engineering or algorithmic manipulation, this work highlights the overlooked power of multi-bias interactions in undermining LLM safeguards. We propose CognitiveAttack, a novel red-teaming framework that systematically leverages both individual and combined cognitive biases. By integrating supervised fine-tuning and reinforcement learning, CognitiveAttack generates prompts that embed optimized bias combinations, effectively bypassing safety protocols while maintaining high attack success rates. Experimental results reveal significant vulnerabilities across 30 diverse LLMs, particularly in open-source models. CognitiveAttack achieves a substantially higher attack success rate compared to the SOTA black-box method PAP (60.1% vs. 31.6%), exposing critical limitations in current defense mechanisms. These findings highlight multi-bias interactions as a powerful yet underexplored attack vector. This work introduces a novel interdisciplinary perspective by bridging cognitive science and LLM safety, paving the way for more robust and human-aligned AI systems.
☆ aLLoyM: A large language model for alloy phase diagram prediction
Large Language Models (LLMs) are general-purpose tools with wide-ranging applications, including in materials science. In this work, we introduce aLLoyM, a fine-tuned LLM specifically trained on alloy compositions, temperatures, and their corresponding phase information. To develop aLLoyM, we curated question-and-answer (Q&A) pairs for binary and ternary phase diagrams using the open-source Computational Phase Diagram Database (CPDDB) and assessments based on CALPHAD (CALculation of PHAse Diagrams). We fine-tuned Mistral, an open-source pre-trained LLM, for two distinct Q&A formats: multiple-choice and short-answer. Benchmark evaluations demonstrate that fine-tuning substantially enhances performance on multiple-choice phase diagram questions. Moreover, the short-answer model of aLLoyM exhibits the ability to generate novel phase diagrams from its components alone, underscoring its potential to accelerate the discovery of previously unexplored materials systems. To promote further research and adoption, we have publicly released the short-answer fine-tuned version of aLLoyM, along with the complete benchmarking Q&A dataset, on Hugging Face.
comment: 24 pages, 6 figures
☆ RainbowPrompt: Diversity-Enhanced Prompt-Evolving for Continual Learning ICCV 2025
Prompt-based continual learning provides a rehearsal-free solution by tuning small sets of parameters while keeping pre-trained models frozen. To meet the complex demands of sequential tasks, it is crucial to integrate task-specific knowledge within prompts effectively. However, existing works rely on either fixed learned prompts (i.e., prompts whose representations remain unchanged during new task learning) or on prompts generated from an entangled task-shared space, limiting the representational diversity of the integrated prompt. To address this issue, we propose a novel prompt-evolving mechanism to adaptively aggregate base prompts (i.e., task-specific prompts) into a unified prompt while ensuring diversity. By transforming and aligning base prompts, both previously learned and newly introduced, our approach continuously evolves accumulated knowledge to facilitate learning new tasks. We further introduce a learnable probabilistic gate that adaptively determines which layers to activate during the evolution process. We validate our method on image classification and video action recognition tasks in class-incremental learning, achieving average gains of 9.07% and 7.40% over existing methods across all scenarios.
comment: Accepted by the 2025 IEEE/CVF International Conference on Computer Vision (ICCV 2025)
☆ A surrogate model for topology optimisation of elastic structures via parametric autoencoders
A surrogate-based topology optimisation algorithm for linear elastic structures under parametric loads and boundary conditions is proposed. Instead of learning the parametric solution of the state (and adjoint) problems or the optimisation trajectory as a function of the iterations, the proposed approach devises a surrogate version of the entire optimisation pipeline. First, the method predicts a quasi-optimal topology for a given problem configuration as a surrogate model of high-fidelity topologies optimised with the homogenisation method. This is achieved by means of a feed-forward net learning the mapping between the input parameters characterising the system setup and a latent space determined by encoder/decoder blocks reducing the dimensionality of the parametric topology optimisation problem and reconstructing a high-dimensional representation of the topology. Then, the predicted topology is used as an educated initial guess for a computationally efficient algorithm penalising the intermediate values of the design variable, while enforcing the governing equations of the system. This step allows the method to correct potential errors introduced by the surrogate model, eliminate artifacts, and refine the design in order to produce topologies consistent with the underlying physics. Different architectures are proposed and the approximation and generalisation capabilities of the resulting models are numerically evaluated. The quasi-optimal topologies allow to outperform the high-fidelity optimiser by reducing the average number of optimisation iterations by $53\%$ while achieving discrepancies below $4\%$ in the optimal value of the objective functional, even in the challenging scenario of testing the model to extrapolate beyond the training and validation domain.
comment: 39 pages, 13 figures, 7 tables
☆ CliCARE: Grounding Large Language Models in Clinical Guidelines for Decision Support over Longitudinal Cancer Electronic Health Records
Large Language Models (LLMs) hold significant promise for improving clinical decision support and reducing physician burnout by synthesizing complex, longitudinal cancer Electronic Health Records (EHRs). However, their implementation in this critical field faces three primary challenges: the inability to effectively process the extensive length and multilingual nature of patient records for accurate temporal analysis; a heightened risk of clinical hallucination, as conventional grounding techniques such as Retrieval-Augmented Generation (RAG) do not adequately incorporate process-oriented clinical guidelines; and unreliable evaluation metrics that hinder the validation of AI systems in oncology. To address these issues, we propose CliCARE, a framework for Grounding Large Language Models in Clinical Guidelines for Decision Support over Longitudinal Cancer Electronic Health Records. The framework operates by transforming unstructured, longitudinal EHRs into patient-specific Temporal Knowledge Graphs (TKGs) to capture long-range dependencies, and then grounding the decision support process by aligning these real-world patient trajectories with a normative guideline knowledge graph. This approach provides oncologists with evidence-grounded decision support by generating a high-fidelity clinical summary and an actionable recommendation. We validated our framework using large-scale, longitudinal data from a private Chinese cancer dataset and the public English MIMIC-IV dataset. In these diverse settings, CliCARE significantly outperforms strong baselines, including leading long-context LLMs and Knowledge Graph-enhanced RAG methods. The clinical validity of our results is supported by a robust evaluation protocol, which demonstrates a high correlation with assessments made by expert oncologists.
☆ HRVVS: A High-resolution Video Vasculature Segmentation Network via Hierarchical Autoregressive Residual Priors
The segmentation of the hepatic vasculature in surgical videos holds substantial clinical significance in the context of hepatectomy procedures. However, owing to the dearth of an appropriate dataset and the inherently complex task characteristics, few researches have been reported in this domain. To address this issue, we first introduce a high quality frame-by-frame annotated hepatic vasculature dataset containing 35 long hepatectomy videos and 11442 high-resolution frames. On this basis, we propose a novel high-resolution video vasculature segmentation network, dubbed as HRVVS. We innovatively embed a pretrained visual autoregressive modeling (VAR) model into different layers of the hierarchical encoder as prior information to reduce the information degradation generated during the downsampling process. In addition, we designed a dynamic memory decoder on a multi-view segmentation network to minimize the transmission of redundant information while preserving more details between frames. Extensive experiments on surgical video datasets demonstrate that our proposed HRVVS significantly outperforms the state-of-the-art methods. The source code and dataset will be publicly available at \href{https://github.com/scott-yjyang/xx}{https://github.com/scott-yjyang/HRVVS}.
☆ Accident-Driven Congestion Prediction and Simulation: An Explainable Framework Using Advanced Clustering and Bayesian Networks
Traffic congestion due to uncertainties, such as accidents, is a significant issue in urban areas, as the ripple effect of accidents causes longer delays, increased emissions, and safety concerns. To address this issue, we propose a robust framework for predicting the impact of accidents on congestion. We implement Automated Machine Learning (AutoML)-enhanced Deep Embedding Clustering (DEC) to assign congestion labels to accident data and predict congestion probability using a Bayesian Network (BN). The Simulation of Urban Mobility (SUMO) simulation is utilized to evaluate the correctness of BN predictions using evidence-based scenarios. Results demonstrate that the AutoML-enhanced DEC has outperformed traditional clustering approaches. The performance of the proposed BN model achieved an overall accuracy of 95.6%, indicating its ability to understand the complex relationship of accidents causing congestion. Validation in SUMO with evidence-based scenarios demonstrated that the BN model's prediction of congestion states closely matches those of SUMO, indicating the high reliability of the proposed BN model in ensuring smooth urban mobility.
☆ Recognizing Actions from Robotic View for Natural Human-Robot Interaction ICCV2025
Natural Human-Robot Interaction (N-HRI) requires robots to recognize human actions at varying distances and states, regardless of whether the robot itself is in motion or stationary. This setup is more flexible and practical than conventional human action recognition tasks. However, existing benchmarks designed for traditional action recognition fail to address the unique complexities in N-HRI due to limited data, modalities, task categories, and diversity of subjects and environments. To address these challenges, we introduce ACTIVE (Action from Robotic View), a large-scale dataset tailored specifically for perception-centric robotic views prevalent in mobile service robots. ACTIVE comprises 30 composite action categories, 80 participants, and 46,868 annotated video instances, covering both RGB and point cloud modalities. Participants performed various human actions in diverse environments at distances ranging from 3m to 50m, while the camera platform was also mobile, simulating real-world scenarios of robot perception with varying camera heights due to uneven ground. This comprehensive and challenging benchmark aims to advance action and attribute recognition research in N-HRI. Furthermore, we propose ACTIVE-PC, a method that accurately perceives human actions at long distances using Multilevel Neighborhood Sampling, Layered Recognizers, Elastic Ellipse Query, and precise decoupling of kinematic interference from human actions. Experimental results demonstrate the effectiveness of ACTIVE-PC. Our code is available at: https://github.com/wangzy01/ACTIVE-Action-from-Robotic-View.
comment: 8 pages, 4 figures, Accepted to ICCV2025
☆ Collaborative Medical Triage under Uncertainty: A Multi-Agent Dynamic Matching Approach
The post-pandemic surge in healthcare demand, coupled with critical nursing shortages, has placed unprecedented pressure on emergency department triage systems, necessitating innovative AI-driven solutions. We present a multi-agent interactive intelligent system for medical triage that addresses three fundamental challenges in current AI-based triage systems: insufficient medical specialization leading to hallucination-induced misclassifications, heterogeneous department structures across healthcare institutions, and inefficient detail-oriented questioning that impedes rapid triage decisions. Our system employs three specialized agents - RecipientAgent, InquirerAgent, and DepartmentAgent - that collaborate through structured inquiry mechanisms and department-specific guidance rules to transform unstructured patient symptoms into accurate department recommendations. To ensure robust evaluation, we constructed a comprehensive Chinese medical triage dataset from a medical website, comprising 3,360 real-world cases spanning 9 primary departments and 62 secondary departments. Through systematic data imputation using large language models, we address the prevalent issue of incomplete medical records in real-world data. Experimental results demonstrate that our multi-agent system achieves 89.2% accuracy in primary department classification and 73.9% accuracy in secondary department classification after four rounds of patient interaction. The system's pattern-matching-based guidance mechanisms enable efficient adaptation to diverse hospital configurations while maintaining high triage accuracy. Our work provides a scalable framework for deploying AI-assisted triage systems that can accommodate the organizational heterogeneity of healthcare institutions while ensuring clinically sound decision-making.
comment: 10 pages, 8 figures, 2 table
☆ LoReUn: Data Itself Implicitly Provides Cues to Improve Machine Unlearning
Recent generative models face significant risks of producing harmful content, which has underscored the importance of machine unlearning (MU) as a critical technique for eliminating the influence of undesired data. However, existing MU methods typically assign the same weight to all data to be forgotten, which makes it difficult to effectively forget certain data that is harder to unlearn than others. In this paper, we empirically demonstrate that the loss of data itself can implicitly reflect its varying difficulty. Building on this insight, we introduce Loss-based Reweighting Unlearning (LoReUn), a simple yet effective plug-and-play strategy that dynamically reweights data during the unlearning process with minimal additional computational overhead. Our approach significantly reduces the gap between existing MU methods and exact unlearning in both image classification and generation tasks, effectively enhancing the prevention of harmful content generation in text-to-image diffusion models.
comment: 23 pages
☆ Robust Adverse Weather Removal via Spectral-based Spatial Grouping ICCV25
Adverse weather conditions cause diverse and complex degradation patterns, driving the development of All-in-One (AiO) models. However, recent AiO solutions still struggle to capture diverse degradations, since global filtering methods like direct operations on the frequency domain fail to handle highly variable and localized distortions. To address these issue, we propose Spectral-based Spatial Grouping Transformer (SSGformer), a novel approach that leverages spectral decomposition and group-wise attention for multi-weather image restoration. SSGformer decomposes images into high-frequency edge features using conventional edge detection and low-frequency information via Singular Value Decomposition. We utilize multi-head linear attention to effectively model the relationship between these features. The fused features are integrated with the input to generate a grouping-mask that clusters regions based on the spatial similarity and image texture. To fully leverage this mask, we introduce a group-wise attention mechanism, enabling robust adverse weather removal and ensuring consistent performance across diverse weather conditions. We also propose a Spatial Grouping Transformer Block that uses both channel attention and spatial attention, effectively balancing feature-wise relationships and spatial dependencies. Extensive experiments show the superiority of our approach, validating its effectiveness in handling the varied and intricate adverse weather degradations.
comment: accepted by ICCV25
☆ LVM-GP: Uncertainty-Aware PDE Solver via coupling latent variable model and Gaussian process
We propose a novel probabilistic framework, termed LVM-GP, for uncertainty quantification in solving forward and inverse partial differential equations (PDEs) with noisy data. The core idea is to construct a stochastic mapping from the input to a high-dimensional latent representation, enabling uncertainty-aware prediction of the solution. Specifically, the architecture consists of a confidence-aware encoder and a probabilistic decoder. The encoder implements a high-dimensional latent variable model based on a Gaussian process (LVM-GP), where the latent representation is constructed by interpolating between a learnable deterministic feature and a Gaussian process prior, with the interpolation strength adaptively controlled by a confidence function learned from data. The decoder defines a conditional Gaussian distribution over the solution field, where the mean is predicted by a neural operator applied to the latent representation, allowing the model to learn flexible function-to-function mapping. Moreover, physical laws are enforced as soft constraints in the loss function to ensure consistency with the underlying PDE structure. Compared to existing approaches such as Bayesian physics-informed neural networks (B-PINNs) and deep ensembles, the proposed framework can efficiently capture functional dependencies via merging a latent Gaussian process and neural operator, resulting in competitive predictive accuracy and robust uncertainty quantification. Numerical experiments demonstrate the effectiveness and reliability of the method.
☆ Proto-EVFL: Enhanced Vertical Federated Learning via Dual Prototype with Extremely Unaligned Data
In vertical federated learning (VFL), multiple enterprises address aligned sample scarcity by leveraging massive locally unaligned samples to facilitate collaborative learning. However, unaligned samples across different parties in VFL can be extremely class-imbalanced, leading to insufficient feature representation and limited model prediction space. Specifically, class-imbalanced problems consist of intra-party class imbalance and inter-party class imbalance, which can further cause local model bias and feature contribution inconsistency issues, respectively. To address the above challenges, we propose Proto-EVFL, an enhanced VFL framework via dual prototypes. We first introduce class prototypes for each party to learn relationships between classes in the latent space, allowing the active party to predict unseen classes. We further design a probabilistic dual prototype learning scheme to dynamically select unaligned samples by conditional optimal transport cost with class prior probability. Moreover, a mixed prior guided module guides this selection process by combining local and global class prior probabilities. Finally, we adopt an \textit{adaptive gated feature aggregation strategy} to mitigate feature contribution inconsistency by dynamically weighting and aggregating local features across different parties. We proved that Proto-EVFL, as the first bi-level optimization framework in VFL, has a convergence rate of 1/\sqrt T. Extensive experiments on various datasets validate the superiority of our Proto-EVFL. Even in a zero-shot scenario with one unseen class, it outperforms baselines by at least 6.97%
☆ Physics-constrained generative machine learning-based high-resolution downscaling of Greenland's surface mass balance and surface temperature
Accurate, high-resolution projections of the Greenland ice sheet's surface mass balance (SMB) and surface temperature are essential for understanding future sea-level rise, yet current approaches are either computationally demanding or limited to coarse spatial scales. Here, we introduce a novel physics-constrained generative modeling framework based on a consistency model (CM) to downscale low-resolution SMB and surface temperature fields by a factor of up to 32 (from 160 km to 5 km grid spacing) in a few sampling steps. The CM is trained on monthly outputs of the regional climate model MARv3.12 and conditioned on ice-sheet topography and insolation. By enforcing a hard conservation constraint during inference, we ensure approximate preservation of SMB and temperature sums on the coarse spatial scale as well as robust generalization to extreme climate states without retraining. On the test set, our constrained CM achieves a continued ranked probability score of 6.31 mmWE for the SMB and 0.1 K for the surface temperature, outperforming interpolation-based downscaling. Together with spatial power-spectral analysis, we demonstrate that the CM faithfully reproduces variability across spatial scales. We further apply bias-corrected outputs of the NorESM2 Earth System Model as inputs to our CM, to demonstrate the potential of our model to directly downscale ESM fields. Our approach delivers realistic, high-resolution climate forcing for ice-sheet simulations with fast inference and can be readily integrated into Earth-system and ice-sheet model workflows to improve projections of the future contribution to sea-level rise from Greenland and potentially other ice sheets and glaciers too.
☆ Towards Blind Bitstream-corrupted Video Recovery via a Visual Foundation Model-driven Framework
Video signals are vulnerable in multimedia communication and storage systems, as even slight bitstream-domain corruption can lead to significant pixel-domain degradation. To recover faithful spatio-temporal content from corrupted inputs, bitstream-corrupted video recovery has recently emerged as a challenging and understudied task. However, existing methods require time-consuming and labor-intensive annotation of corrupted regions for each corrupted video frame, resulting in a large workload in practice. In addition, high-quality recovery remains difficult as part of the local residual information in corrupted frames may mislead feature completion and successive content recovery. In this paper, we propose the first blind bitstream-corrupted video recovery framework that integrates visual foundation models with a recovery model, which is adapted to different types of corruption and bitstream-level prompts. Within the framework, the proposed Detect Any Corruption (DAC) model leverages the rich priors of the visual foundation model while incorporating bitstream and corruption knowledge to enhance corruption localization and blind recovery. Additionally, we introduce a novel Corruption-aware Feature Completion (CFC) module, which adaptively processes residual contributions based on high-level corruption understanding. With VFM-guided hierarchical feature augmentation and high-level coordination in a mixture-of-residual-experts (MoRE) structure, our method suppresses artifacts and enhances informative residuals. Comprehensive evaluations show that the proposed method achieves outstanding performance in bitstream-corrupted video recovery without requiring a manually labeled mask sequence. The demonstrated effectiveness will help to realize improved user experience, wider application scenarios, and more reliable multimedia communication and storage systems.
comment: 10 pages, 5 figures, accepted by ACMMM 2025
☆ LIDAR: Lightweight Adaptive Cue-Aware Fusion Vision Mamba for Multimodal Segmentation of Structural Cracks
Achieving pixel-level segmentation with low computational cost using multimodal data remains a key challenge in crack segmentation tasks. Existing methods lack the capability for adaptive perception and efficient interactive fusion of cross-modal features. To address these challenges, we propose a Lightweight Adaptive Cue-Aware Vision Mamba network (LIDAR), which efficiently perceives and integrates morphological and textural cues from different modalities under multimodal crack scenarios, generating clear pixel-level crack segmentation maps. Specifically, LIDAR is composed of a Lightweight Adaptive Cue-Aware Visual State Space module (LacaVSS) and a Lightweight Dual Domain Dynamic Collaborative Fusion module (LD3CF). LacaVSS adaptively models crack cues through the proposed mask-guided Efficient Dynamic Guided Scanning Strategy (EDG-SS), while LD3CF leverages an Adaptive Frequency Domain Perceptron (AFDP) and a dual-pooling fusion strategy to effectively capture spatial and frequency-domain cues across modalities. Moreover, we design a Lightweight Dynamically Modulated Multi-Kernel convolution (LDMK) to perceive complex morphological structures with minimal computational overhead, replacing most convolutional operations in LIDAR. Experiments on three datasets demonstrate that our method outperforms other state-of-the-art (SOTA) methods. On the light-field depth dataset, our method achieves 0.8204 in F1 and 0.8465 in mIoU with only 5.35M parameters. Code and datasets are available at https://github.com/Karl1109/LIDAR-Mamba.
☆ Visual Language Models as Zero-Shot Deepfake Detectors ICML 2025
The contemporary phenomenon of deepfakes, utilizing GAN or diffusion models for face swapping, presents a substantial and evolving threat in digital media, identity verification, and a multitude of other systems. The majority of existing methods for detecting deepfakes rely on training specialized classifiers to distinguish between genuine and manipulated images, focusing only on the image domain without incorporating any auxiliary tasks that could enhance robustness. In this paper, inspired by the zero-shot capabilities of Vision Language Models, we propose a novel VLM-based approach to image classification and then evaluate it for deepfake detection. Specifically, we utilize a new high-quality deepfake dataset comprising 60,000 images, on which our zero-shot models demonstrate superior performance to almost all existing methods. Subsequently, we compare the performance of the best-performing architecture, InstructBLIP, on the popular deepfake dataset DFDC-P against traditional methods in two scenarios: zero-shot and in-domain fine-tuning. Our results demonstrate the superiority of VLMs over traditional classifiers.
comment: Accepted to the ICML 2025 Workshop on Reliable and Responsible Foundation Models
☆ Towards Simulating Social Influence Dynamics with LLM-based Multi-agents
Recent advancements in Large Language Models offer promising capabilities to simulate complex human social interactions. We investigate whether LLM-based multi-agent simulations can reproduce core human social dynamics observed in online forums. We evaluate conformity dynamics, group polarization, and fragmentation across different model scales and reasoning capabilities using a structured simulation framework. Our findings indicate that smaller models exhibit higher conformity rates, whereas models optimized for reasoning are more resistant to social influence.
☆ Shallow Features Matter: Hierarchical Memory with Heterogeneous Interaction for Unsupervised Video Object Segmentation
Unsupervised Video Object Segmentation (UVOS) aims to predict pixel-level masks for the most salient objects in videos without any prior annotations. While memory mechanisms have been proven critical in various video segmentation paradigms, their application in UVOS yield only marginal performance gains despite sophisticated design. Our analysis reveals a simple but fundamental flaw in existing methods: over-reliance on memorizing high-level semantic features. UVOS inherently suffers from the deficiency of lacking fine-grained information due to the absence of pixel-level prior knowledge. Consequently, memory design relying solely on high-level features, which predominantly capture abstract semantic cues, is insufficient to generate precise predictions. To resolve this fundamental issue, we propose a novel hierarchical memory architecture to incorporate both shallow- and high-level features for memory, which leverages the complementary benefits of pixel and semantic information. Furthermore, to balance the simultaneous utilization of the pixel and semantic memory features, we propose a heterogeneous interaction mechanism to perform pixel-semantic mutual interactions, which explicitly considers their inherent feature discrepancies. Through the design of Pixel-guided Local Alignment Module (PLAM) and Semantic-guided Global Integration Module (SGIM), we achieve delicate integration of the fine-grained details in shallow-level memory and the semantic representations in high-level memory. Our Hierarchical Memory with Heterogeneous Interaction Network (HMHI-Net) consistently achieves state-of-the-art performance across all UVOS and video saliency detection benchmarks. Moreover, HMHI-Net consistently exhibits high performance across different backbones, further demonstrating its superiority and robustness. Project page: https://github.com/ZhengxyFlow/HMHI-Net .
comment: Accepted to ACM MM'25: The 33rd ACM International Conference on Multimedia Proceedings
☆ Towards Interpretable Renal Health Decline Forecasting via Multi-LMM Collaborative Reasoning Framework
Accurate and interpretable prediction of estimated glomerular filtration rate (eGFR) is essential for managing chronic kidney disease (CKD) and supporting clinical decisions. Recent advances in Large Multimodal Models (LMMs) have shown strong potential in clinical prediction tasks due to their ability to process visual and textual information. However, challenges related to deployment cost, data privacy, and model reliability hinder their adoption. In this study, we propose a collaborative framework that enhances the performance of open-source LMMs for eGFR forecasting while generating clinically meaningful explanations. The framework incorporates visual knowledge transfer, abductive reasoning, and a short-term memory mechanism to enhance prediction accuracy and interpretability. Experimental results show that the proposed framework achieves predictive performance and interpretability comparable to proprietary models. It also provides plausible clinical reasoning processes behind each prediction. Our method sheds new light on building AI systems for healthcare that combine predictive accuracy with clinically grounded interpretability.
☆ What is an "Abstract Reasoner"? Revisiting Experiments and Arguments about Large Language Models
Recent work has argued that large language models (LLMs) are not "abstract reasoners", citing their poor zero-shot performance on a variety of challenging tasks as evidence. We revisit these experiments in order to add nuance to the claim. First, we show that while LLMs indeed perform poorly in a zero-shot setting, even tuning a small subset of parameters for input encoding can enable near-perfect performance. However, we also show that this finetuning does not necessarily transfer across datasets. We take this collection of empirical results as an invitation to (re-)open the discussion of what it means to be an "abstract reasoner", and why it matters whether LLMs fit the bill.
comment: CONLL 2025. Project webpage: https://abstract-reasoner-llm.github.io/
☆ RCR-AF: Enhancing Model Generalization via Rademacher Complexity Reduction Activation Function
Despite their widespread success, deep neural networks remain critically vulnerable to adversarial attacks, posing significant risks in safety-sensitive applications. This paper investigates activation functions as a crucial yet underexplored component for enhancing model robustness. We propose a Rademacher Complexity Reduction Activation Function (RCR-AF), a novel activation function designed to improve both generalization and adversarial resilience. RCR-AF uniquely combines the advantages of GELU (including smoothness, gradient stability, and negative information retention) with ReLU's desirable monotonicity, while simultaneously controlling both model sparsity and capacity through built-in clipping mechanisms governed by two hyperparameters, $\alpha$ and $\gamma$. Our theoretical analysis, grounded in Rademacher complexity, demonstrates that these parameters directly modulate the model's Rademacher complexity, offering a principled approach to enhance robustness. Comprehensive empirical evaluations show that RCR-AF consistently outperforms widely-used alternatives (ReLU, GELU, and Swish) in both clean accuracy under standard training and in adversarial robustness within adversarial training paradigms.
☆ AI-generated stories favour stability over change: homogeneity and cultural stereotyping in narratives generated by gpt-4o-mini
Can a language model trained largely on Anglo-American texts generate stories that are culturally relevant to other nationalities? To find out, we generated 11,800 stories - 50 for each of 236 countries - by sending the prompt "Write a 1500 word potential {demonym} story" to OpenAI's model gpt-4o-mini. Although the stories do include surface-level national symbols and themes, they overwhelmingly conform to a single narrative plot structure across countries: a protagonist lives in or returns home to a small town and resolves a minor conflict by reconnecting with tradition and organising community events. Real-world conflicts are sanitised, romance is almost absent, and narrative tension is downplayed in favour of nostalgia and reconciliation. The result is a narrative homogenisation: an AI-generated synthetic imaginary that prioritises stability above change and tradition above growth. We argue that the structural homogeneity of AI-generated narratives constitutes a distinct form of AI bias, a narrative standardisation that should be acknowledged alongside the more familiar representational bias. These findings are relevant to literary studies, narratology, critical AI studies, NLP research, and efforts to improve the cultural alignment of generative AI.
comment: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 101142306. The project is also supported by the Center for Digital Narrative, which is funded by the Research Council of Norway through its Centres of Excellence scheme, project number 332643
☆ Nearest-Better Network for Visualizing and Analyzing Combinatorial Optimization Problems: A Unified Tool
The Nearest-Better Network (NBN) is a powerful method to visualize sampled data for continuous optimization problems while preserving multiple landscape features. However, the calculation of NBN is very time-consuming, and the extension of the method to combinatorial optimization problems is challenging but very important for analyzing the algorithm's behavior. This paper provides a straightforward theoretical derivation showing that the NBN network essentially functions as the maximum probability transition network for algorithms. This paper also presents an efficient NBN computation method with logarithmic linear time complexity to address the time-consuming issue. By applying this efficient NBN algorithm to the OneMax problem and the Traveling Salesman Problem (TSP), we have made several remarkable discoveries for the first time: The fitness landscape of OneMax exhibits neutrality, ruggedness, and modality features. The primary challenges of TSP problems are ruggedness, modality, and deception. Two state-of-the-art TSP algorithms (i.e., EAX and LKH) have limitations when addressing challenges related to modality and deception, respectively. LKH, based on local search operators, fails when there are deceptive solutions near global optima. EAX, which is based on a single population, can efficiently maintain diversity. However, when multiple attraction basins exist, EAX retains individuals within multiple basins simultaneously, reducing inter-basin interaction efficiency and leading to algorithm's stagnation.
☆ Cross-Border Legal Adaptation of Autonomous Vehicle Design based on Logic and Non-monotonic Reasoning AI
This paper focuses on the legal compliance challenges of autonomous vehicles in a transnational context. We choose the perspective of designers and try to provide supporting legal reasoning in the design process. Based on argumentation theory, we introduce a logic to represent the basic properties of argument-based practical (normative) reasoning, combined with partial order sets of natural numbers to express priority. Finally, through case analysis of legal texts, we show how the reasoning system we provide can help designers to adapt their design solutions more flexibly in the cross-border application of autonomous vehicles and to more easily understand the legal implications of their decisions.
comment: Accepted to appear in Proceedings of the 20th International Conference on Artificial Intelligence and Law (ICAIL 2025)
☆ Theoretical Analysis of Relative Errors in Gradient Computations for Adversarial Attacks with CE Loss
Gradient-based adversarial attacks using the Cross-Entropy (CE) loss often suffer from overestimation due to relative errors in gradient computation induced by floating-point arithmetic. This paper provides a rigorous theoretical analysis of these errors, conducting the first comprehensive study of floating-point computation errors in gradient-based attacks across four distinct scenarios: (i) unsuccessful untargeted attacks, (ii) successful untargeted attacks, (iii) unsuccessful targeted attacks, and (iv) successful targeted attacks. We establish theoretical foundations characterizing the behavior of relative numerical errors under different attack conditions, revealing previously unknown patterns in gradient computation instability, and identify floating-point underflow and rounding as key contributors. Building on this insight, we propose the Theoretical MIFPE (T-MIFPE) loss function, which incorporates an optimal scaling factor $T = t^*$ to minimize the impact of floating-point errors, thereby enhancing the accuracy of gradient computation in adversarial attacks. Extensive experiments on the MNIST, CIFAR-10, and CIFAR-100 datasets demonstrate that T-MIFPE outperforms existing loss functions, including CE, C\&W, DLR, and MIFPE, in terms of attack potency and robustness evaluation accuracy.
☆ Spec-VLA: Speculative Decoding for Vision-Language-Action Models with Relaxed Acceptance
Vision-Language-Action (VLA) models have made substantial progress by leveraging the robust capabilities of Visual Language Models (VLMs). However, VLMs' significant parameter size and autoregressive (AR) decoding nature impose considerable computational demands on VLA models. While Speculative Decoding (SD) has shown efficacy in accelerating Large Language Models (LLMs) by incorporating efficient drafting and parallel verification, allowing multiple tokens to be generated in one forward pass, its application to VLA models remains unexplored. This work introduces Spec-VLA, an SD framework designed to accelerate VLA models. Due to the difficulty of the action prediction task and the greedy decoding mechanism of the VLA models, the direct application of the advanced SD framework to the VLA prediction task yields a minor speed improvement. To boost the generation speed, we propose an effective mechanism to relax acceptance utilizing the relative distances represented by the action tokens of the VLA model. Empirical results across diverse test scenarios affirm the effectiveness of the Spec-VLA framework, and further analysis substantiates the impact of our proposed strategies, which enhance the acceptance length by 44%, achieving 1.42 times speedup compared with the OpenVLA baseline, without compromising the success rate. The success of the Spec-VLA framework highlights the potential for broader application of speculative execution in VLA prediction scenarios.
comment: 12 pages, 5 figures, under review
☆ On the Definition of Intelligence
To engineer AGI, we should first capture the essence of intelligence in a species-agnostic form that can be evaluated, while being sufficiently general to encompass diverse paradigms of intelligent behavior, including reinforcement learning, generative models, classification, analogical reasoning, and goal-directed decision-making. We propose a general criterion based on sample fidelity: intelligence is the ability, given sample(s) from a category, to generate sample(s) from the same category. We formalise this intuition as {\epsilon}-category intelligence: it is {\epsilon}-intelligent with respect to a category if no chosen admissible distinguisher can separate generated from original samples beyond tolerance {\epsilon}. We present the formal framework, outline empirical protocols, and discuss implications for evaluation, safety, and generalization.
comment: Accepted at AGI-25
☆ Efficient Spatial-Temporal Modeling for Real-Time Video Analysis: A Unified Framework for Action Recognition and Object Tracking
Real-time video analysis remains a challenging problem in computer vision, requiring efficient processing of both spatial and temporal information while maintaining computational efficiency. Existing approaches often struggle to balance accuracy and speed, particularly in resource-constrained environments. In this work, we present a unified framework that leverages advanced spatial-temporal modeling techniques for simultaneous action recognition and object tracking. Our approach builds upon recent advances in parallel sequence modeling and introduces a novel hierarchical attention mechanism that adaptively focuses on relevant spatial regions across temporal sequences. We demonstrate that our method achieves state-of-the-art performance on standard benchmarks while maintaining real-time inference speeds. Extensive experiments on UCF-101, HMDB-51, and MOT17 datasets show improvements of 3.2% in action recognition accuracy and 2.8% in tracking precision compared to existing methods, with 40% faster inference time.
☆ Systematic Evaluation of Knowledge Graph Repair with Large Language Models
We present a systematic approach for evaluating the quality of knowledge graph repairs with respect to constraint violations defined in shapes constraint language (SHACL). Current evaluation methods rely on \emph{ad hoc} datasets, which limits the rigorous analysis of repair systems in more general settings. Our method addresses this gap by systematically generating violations using a novel mechanism, termed violation-inducing operations (VIOs). We use the proposed evaluation framework to assess a range of repair systems which we build using large language models. We analyze the performance of these systems across different prompting strategies. Results indicate that concise prompts containing both the relevant violated SHACL constraints and key contextual information from the knowledge graph yield the best performance.
☆ Aleatoric Uncertainty Medical Image Segmentation Estimation via Flow Matching
Quantifying aleatoric uncertainty in medical image segmentation is critical since it is a reflection of the natural variability observed among expert annotators. A conventional approach is to model the segmentation distribution using the generative model, but current methods limit the expression ability of generative models. While current diffusion-based approaches have demonstrated impressive performance in approximating the data distribution, their inherent stochastic sampling process and inability to model exact densities limit their effectiveness in accurately capturing uncertainty. In contrast, our proposed method leverages conditional flow matching, a simulation-free flow-based generative model that learns an exact density, to produce highly accurate segmentation results. By guiding the flow model on the input image and sampling multiple data points, our approach synthesizes segmentation samples whose pixel-wise variance reliably reflects the underlying data distribution. This sampling strategy captures uncertainties in regions with ambiguous boundaries, offering robust quantification that mirrors inter-annotator differences. Experimental results demonstrate that our method not only achieves competitive segmentation accuracy but also generates uncertainty maps that provide deeper insights into the reliability of the segmentation outcomes. The code for this paper is freely available at https://github.com/huynhspm/Data-Uncertainty
☆ NeedleChain: Measuring Intact Long-Context Reasoning Capability of Large Language Models
The Needle-in-a-Haystack (NIAH) benchmark is widely used to evaluate Large Language Models' (LLMs) ability to understand long contexts (LC). It evaluates the capability to identify query-relevant context within extensive query-irrelevant passages. Although this method serves as a widely accepted standard for evaluating long-context understanding, our findings suggest it may overestimate the true LC capability of LLMs. We demonstrate that even state-of-the-art models such as GPT-4o struggle to intactly incorporate given contexts made up of solely query-relevant ten sentences. In response, we introduce a novel benchmark, \textbf{NeedleChain}, where the context consists entirely of query-relevant information, requiring the LLM to fully grasp the input to answer correctly. Our benchmark allows for flexible context length and reasoning order, offering a more comprehensive analysis of LLM performance. Additionally, we propose an extremely simple yet compelling strategy to improve LC understanding capability of LLM: ROPE Contraction. Our experiments with various advanced LLMs reveal a notable disparity between their ability to process large contexts and their capacity to fully understand them. Source code and datasets are available at https://github.com/hyeonseokk/NeedleChain
comment: 13 pages
☆ Question Generation for Assessing Early Literacy Reading Comprehension
Assessment of reading comprehension through content-based interactions plays an important role in the reading acquisition process. In this paper, we propose a novel approach for generating comprehension questions geared to K-2 English learners. Our method ensures complete coverage of the underlying material and adaptation to the learner's specific proficiencies, and can generate a large diversity of question types at various difficulty levels to ensure a thorough evaluation. We evaluate the performance of various language models in this framework using the FairytaleQA dataset as the source material. Eventually, the proposed approach has the potential to become an important part of autonomous AI-driven English instructors.
comment: 2 pages, 1 figure, accepted by SLaTE 2025
☆ MINR: Implicit Neural Representations with Masked Image Modelling ICCV 2023
Self-supervised learning methods like masked autoencoders (MAE) have shown significant promise in learning robust feature representations, particularly in image reconstruction-based pretraining task. However, their performance is often strongly dependent on the masking strategies used during training and can degrade when applied to out-of-distribution data. To address these limitations, we introduce the masked implicit neural representations (MINR) framework that synergizes implicit neural representations with masked image modeling. MINR learns a continuous function to represent images, enabling more robust and generalizable reconstructions irrespective of masking strategies. Our experiments demonstrate that MINR not only outperforms MAE in in-domain scenarios but also in out-of-distribution settings, while reducing model complexity. The versatility of MINR extends to various self-supervised learning applications, confirming its utility as a robust and efficient alternative to existing frameworks.
comment: Accepted to the ICCV 2023 workshop on Out-of-Distribution Generalization in Computer Vision
☆ SAEL: Leveraging Large Language Models with Adaptive Mixture-of-Experts for Smart Contract Vulnerability Detection
With the increasing security issues in blockchain, smart contract vulnerability detection has become a research focus. Existing vulnerability detection methods have their limitations: 1) Static analysis methods struggle with complex scenarios. 2) Methods based on specialized pre-trained models perform well on specific datasets but have limited generalization capabilities. In contrast, general-purpose Large Language Models (LLMs) demonstrate impressive ability in adapting to new vulnerability patterns. However, they often underperform on specific vulnerability types compared to methods based on specialized pre-trained models. We also observe that explanations generated by general-purpose LLMs can provide fine-grained code understanding information, contributing to improved detection performance. Inspired by these observations, we propose SAEL, an LLM-based framework for smart contract vulnerability detection. We first design targeted prompts to guide LLMs in identifying vulnerabilities and generating explanations, which serve as prediction features. Next, we apply prompt-tuning on CodeT5 and T5 to process contract code and explanations, enhancing task-specific performance. To combine the strengths of each approach, we introduce an Adaptive Mixture-of-Experts architecture. This dynamically adjusts feature weights via a Gating Network, which selects relevant features using TopK filtering and Softmax normalization, and incorporates a Multi-Head Self-Attention mechanism to enhance cross-feature relationships. This design enables effective integration of LLM predictions, explanation features, and code features through gradient optimization. The loss function jointly considers both independent feature performance and overall weighted predictions. Experiments show that SAEL outperforms existing methods across various vulnerabilities.
comment: Accepted to ICSME 2025
☆ Exploring the Application of Visual Question Answering (VQA) for Classroom Activity Monitoring
Classroom behavior monitoring is a critical aspect of educational research, with significant implications for student engagement and learning outcomes. Recent advancements in Visual Question Answering (VQA) models offer promising tools for automatically analyzing complex classroom interactions from video recordings. In this paper, we investigate the applicability of several state-of-the-art open-source VQA models, including LLaMA2, LLaMA3, QWEN3, and NVILA, in the context of classroom behavior analysis. To facilitate rigorous evaluation, we introduce our BAV-Classroom-VQA dataset derived from real-world classroom video recordings at the Banking Academy of Vietnam. We present the methodology for data collection, annotation, and benchmark the performance of the selected VQA models on this dataset. Our initial experimental results demonstrate that all four models achieve promising performance levels in answering behavior-related visual questions, showcasing their potential in future classroom analytics and intervention systems.
☆ Beyond Accuracy: How AI Metacognitive Sensitivity improves AI-assisted Decision Making
In settings where human decision-making relies on AI input, both the predictive accuracy of the AI system and the reliability of its confidence estimates influence decision quality. We highlight the role of AI metacognitive sensitivity -- its ability to assign confidence scores that accurately distinguish correct from incorrect predictions -- and introduce a theoretical framework for assessing the joint impact of AI's predictive accuracy and metacognitive sensitivity in hybrid decision-making settings. Our analysis identifies conditions under which an AI with lower predictive accuracy but higher metacognitive sensitivity can enhance the overall accuracy of human decision making. Finally, a behavioral experiment confirms that greater AI metacognitive sensitivity improves human decision performance. Together, these findings underscore the importance of evaluating AI assistance not only by accuracy but also by metacognitive sensitivity, and of optimizing both to achieve superior decision outcomes.
comment: 26 pages, 5 figures, submitted to Decision Analysis
☆ Object Recognition Datasets and Challenges: A Review
Object recognition is among the fundamental tasks in the computer vision applications, paving the path for all other image understanding operations. In every stage of progress in object recognition research, efforts have been made to collect and annotate new datasets to match the capacity of the state-of-the-art algorithms. In recent years, the importance of the size and quality of datasets has been intensified as the utility of the emerging deep network techniques heavily relies on training data. Furthermore, datasets lay a fair benchmarking means for competitions and have proved instrumental to the advancements of object recognition research by providing quantifiable benchmarks for the developed models. Taking a closer look at the characteristics of commonly-used public datasets seems to be an important first step for data-driven and machine learning researchers. In this survey, we provide a detailed analysis of datasets in the highly investigated object recognition areas. More than 160 datasets have been scrutinized through statistics and descriptions. Additionally, we present an overview of the prominent object recognition benchmarks and competitions, along with a description of the metrics widely adopted for evaluation purposes in the computer vision community. All introduced datasets and challenges can be found online at github.com/AbtinDjavadifar/ORDC.
☆ GVD: Guiding Video Diffusion Model for Scalable Video Distillation
To address the larger computation and storage requirements associated with large video datasets, video dataset distillation aims to capture spatial and temporal information in a significantly smaller dataset, such that training on the distilled data has comparable performance to training on all of the data. We propose GVD: Guiding Video Diffusion, the first diffusion-based video distillation method. GVD jointly distills spatial and temporal features, ensuring high-fidelity video generation across diverse actions while capturing essential motion information. Our method's diverse yet representative distillations significantly outperform previous state-of-the-art approaches on the MiniUCF and HMDB51 datasets across 5, 10, and 20 Instances Per Class (IPC). Specifically, our method achieves 78.29 percent of the original dataset's performance using only 1.98 percent of the total number of frames in MiniUCF. Additionally, it reaches 73.83 percent of the performance with just 3.30 percent of the frames in HMDB51. Experimental results across benchmark video datasets demonstrate that GVD not only achieves state-of-the-art performance but can also generate higher resolution videos and higher IPC without significantly increasing computational cost.
☆ LLM-Crowdsourced: A Benchmark-Free Paradigm for Mutual Evaluation of Large Language Models
Although large language models (LLMs) demonstrate remarkable capabilities across various tasks, evaluating their capabilities remains a challenging task. Existing evaluation methods suffer from issues such as data contamination, black-box operation, and subjective preference. These issues make it difficult to evaluate the LLMs' true capabilities comprehensively. To tackle these challenges, we propose a novel benchmark-free evaluation paradigm, LLM-Crowdsourced. It utilizes LLMs to generate questions, answer independently, and evaluate mutually. This method integrates four key evaluation criteria: dynamic, transparent, objective, and professional, which existing evaluation methods cannot satisfy simultaneously. Experiments on eight mainstream LLMs across mathematics and programming verify the advantages of our method in distinguishing LLM performance. Furthermore, our study reveals several novel findings that are difficult for traditional methods to detect, including but not limited to: (1) Gemini demonstrates the highest original and professional question-design capabilities among others; (2) Some LLMs exhibit ''memorization-based answering'' by misrecognizing questions as familiar ones with a similar structure; (3) LLM evaluation results demonstrate high consistency (robustness).
☆ Magentic-UI: Towards Human-in-the-loop Agentic Systems
AI agents powered by large language models are increasingly capable of autonomously completing complex, multi-step tasks using external tools. Yet, they still fall short of human-level performance in most domains including computer use, software development, and research. Their growing autonomy and ability to interact with the outside world, also introduces safety and security risks including potentially misaligned actions and adversarial manipulation. We argue that human-in-the-loop agentic systems offer a promising path forward, combining human oversight and control with AI efficiency to unlock productivity from imperfect systems. We introduce Magentic-UI, an open-source web interface for developing and studying human-agent interaction. Built on a flexible multi-agent architecture, Magentic-UI supports web browsing, code execution, and file manipulation, and can be extended with diverse tools via Model Context Protocol (MCP). Moreover, Magentic-UI presents six interaction mechanisms for enabling effective, low-cost human involvement: co-planning, co-tasking, multi-tasking, action guards, and long-term memory. We evaluate Magentic-UI across four dimensions: autonomous task completion on agentic benchmarks, simulated user testing of its interaction capabilities, qualitative studies with real users, and targeted safety assessments. Our findings highlight Magentic-UI's potential to advance safe and efficient human-agent collaboration.
☆ An Explainable Emotion Alignment Framework for LLM-Empowered Agent in Metaverse Service Ecosystem
Metaverse service is a product of the convergence between Metaverse and service systems, designed to address service-related challenges concerning digital avatars, digital twins, and digital natives within Metaverse. With the rise of large language models (LLMs), agents now play a pivotal role in Metaverse service ecosystem, serving dual functions: as digital avatars representing users in the virtual realm and as service assistants (or NPCs) providing personalized support. However, during the modeling of Metaverse service ecosystems, existing LLM-based agents face significant challenges in bridging virtual-world services with real-world services, particularly regarding issues such as character data fusion, character knowledge association, and ethical safety concerns. This paper proposes an explainable emotion alignment framework for LLM-based agents in Metaverse Service Ecosystem. It aims to integrate factual factors into the decision-making loop of LLM-based agents, systematically demonstrating how to achieve more relational fact alignment for these agents. Finally, a simulation experiment in the Offline-to-Offline food delivery scenario is conducted to evaluate the effectiveness of this framework, obtaining more realistic social emergence.
☆ From Articles to Code: On-Demand Generation of Core Algorithms from Scientific Publications
Maintaining software packages imposes significant costs due to dependency management, bug fixes, and versioning. We show that rich method descriptions in scientific publications can serve as standalone specifications for modern large language models (LLMs), enabling on-demand code generation that could supplant human-maintained libraries. We benchmark state-of-the-art models (GPT-o4-mini-high, Gemini Pro 2.5, Claude Sonnet 4) by tasking them with implementing a diverse set of core algorithms drawn from original publications. Our results demonstrate that current LLMs can reliably reproduce package functionality with performance indistinguishable from conventional libraries. These findings foreshadow a paradigm shift toward flexible, on-demand code generation and away from static, human-maintained packages, which will result in reduced maintenance overhead by leveraging published articles as sufficient context for the automated implementation of analytical workflows.
☆ Learning from Heterogeneous Structural MRI via Collaborative Domain Adaptation for Late-Life Depression Assessment
Accurate identification of late-life depression (LLD) using structural brain MRI is essential for monitoring disease progression and facilitating timely intervention. However, existing learning-based approaches for LLD detection are often constrained by limited sample sizes (e.g., tens), which poses significant challenges for reliable model training and generalization. Although incorporating auxiliary datasets can expand the training set, substantial domain heterogeneity, such as differences in imaging protocols, scanner hardware, and population demographics, often undermines cross-domain transferability. To address this issue, we propose a Collaborative Domain Adaptation (CDA) framework for LLD detection using T1-weighted MRIs. The CDA leverages a Vision Transformer (ViT) to capture global anatomical context and a Convolutional Neural Network (CNN) to extract local structural features, with each branch comprising an encoder and a classifier. The CDA framework consists of three stages: (a) supervised training on labeled source data, (b) self-supervised target feature adaptation and (c) collaborative training on unlabeled target data. We first train ViT and CNN on source data, followed by self-supervised target feature adaptation by minimizing the discrepancy between classifier outputs from two branches to make the categorical boundary clearer. The collaborative training stage employs pseudo-labeled and augmented target-domain MRIs, enforcing prediction consistency under strong and weak augmentation to enhance domain robustness and generalization. Extensive experiments conducted on multi-site T1-weighted MRI data demonstrate that the CDA consistently outperforms state-of-the-art unsupervised domain adaptation methods.
☆ AdapSCA-PSO: An Adaptive Localization Algorithm with AI-Based Hybrid SCA-PSO for IoT WSNs
The accurate localization of sensor nodes is a fundamental requirement for the practical application of the Internet of Things (IoT). To enable robust localization across diverse environments, this paper proposes a hybrid meta-heuristic localization algorithm. Specifically, the algorithm integrates the Sine Cosine Algorithm (SCA), which is effective in global search, with Particle Swarm Optimization (PSO), which excels at local search. An adaptive switching module is introduced to dynamically select between the two algorithms. Furthermore, the initialization, fitness evaluation, and parameter settings of the algorithm have been specifically redesigned and optimized to address the characteristics of the node localization problem. Simulation results across varying numbers of sensor nodes demonstrate that, compared to standalone PSO and the unoptimized SCAPSO algorithm, the proposed method significantly reduces the number of required iterations and achieves an average localization error reduction of 84.97%.
☆ Argumentatively Coherent Judgmental Forecasting AI 2025
Judgmental forecasting employs human opinions to make predictions about future events, rather than exclusively historical data as in quantitative forecasting. When these opinions form an argumentative structure around forecasts, it is useful to study the properties of the forecasts from an argumentative perspective. In this paper, we advocate and formally define a property of argumentative coherence, which, in essence, requires that a forecaster's reasoning is coherent with their forecast. We then conduct three evaluations with our notion of coherence. First, we assess the impact of enforcing coherence on human forecasters as well as on Large Language Model (LLM)-based forecasters, given that they have recently shown to be competitive with human forecasters. In both cases, we show that filtering out incoherent predictions improves forecasting accuracy consistently, supporting the practical value of coherence in both human and LLM-based forecasting. Then, via crowd-sourced user experiments, we show that, despite its apparent intuitiveness and usefulness, users do not generally align with this coherence property. This points to the need to integrate, within argumentation-based judgmental forecasting, mechanisms to filter out incoherent opinions before obtaining group forecasting predictions.
comment: 17 pages, 18 figures, ECAI 2025
☆ FuseTen: A Generative Model for Daily 10 m Land Surface Temperature Estimation from Spatio-Temporal Satellite Observations
Urban heatwaves, droughts, and land degradation are pressing and growing challenges in the context of climate change. A valuable approach to studying them requires accurate spatio-temporal information on land surface conditions. One of the most important variables for assessing and understanding these phenomena is Land Surface Temperature (LST), which is derived from satellites and provides essential information about the thermal state of the Earth's surface. However, satellite platforms inherently face a trade-off between spatial and temporal resolutions. To bridge this gap, we propose FuseTen, a novel generative framework that produces daily LST observations at a fine 10 m spatial resolution by fusing spatio-temporal observations derived from Sentinel-2, Landsat 8, and Terra MODIS. FuseTen employs a generative architecture trained using an averaging-based supervision strategy grounded in physical principles. It incorporates attention and normalization modules within the fusion process and uses a PatchGAN discriminator to enforce realism. Experiments across multiple dates show that FuseTen outperforms linear baselines, with an average 32.06% improvement in quantitative metrics and 31.42% in visual fidelity. To the best of our knowledge, this is the first non-linear method to generate daily LST estimates at such fine spatial resolution.
comment: Accepted in the 2025 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS)
☆ Uncovering the Fragility of Trustworthy LLMs through Chinese Textual Ambiguity KDD
In this work, we study a critical research problem regarding the trustworthiness of large language models (LLMs): how LLMs behave when encountering ambiguous narrative text, with a particular focus on Chinese textual ambiguity. We created a benchmark dataset by collecting and generating ambiguous sentences with context and their corresponding disambiguated pairs, representing multiple possible interpretations. These annotated examples are systematically categorized into 3 main categories and 9 subcategories. Through experiments, we discovered significant fragility in LLMs when handling ambiguity, revealing behavior that differs substantially from humans. Specifically, LLMs cannot reliably distinguish ambiguous text from unambiguous text, show overconfidence in interpreting ambiguous text as having a single meaning rather than multiple meanings, and exhibit overthinking when attempting to understand the various possible meanings. Our findings highlight a fundamental limitation in current LLMs that has significant implications for their deployment in real-world applications where linguistic ambiguity is common, calling for improved approaches to handle uncertainty in language understanding. The dataset and code are publicly available at this GitHub repository: https://github.com/ictup/LLM-Chinese-Textual-Disambiguation.
comment: Accepted at KDD workshop on Evaluation and Trustworthiness of Agentic and Generative AI Models (Agentic & GenAI Evaluation Workshop KDD '25)
☆ FLOSS: Federated Learning with Opt-Out and Straggler Support
Previous work on data privacy in federated learning systems focuses on privacy-preserving operations for data from users who have agreed to share their data for training. However, modern data privacy agreements also empower users to use the system while opting out of sharing their data as desired. When combined with stragglers that arise from heterogeneous device capabilities, the result is missing data from a variety of sources that introduces bias and degrades model performance. In this paper, we present FLOSS, a system that mitigates the impacts of such missing data on federated learning in the presence of stragglers and user opt-out, and empirically demonstrate its performance in simulations.
comment: 5 pages
☆ RASL: Retrieval Augmented Schema Linking for Massive Database Text-to-SQL
Despite advances in large language model (LLM)-based natural language interfaces for databases, scaling to enterprise-level data catalogs remains an under-explored challenge. Prior works addressing this challenge rely on domain-specific fine-tuning - complicating deployment - and fail to leverage important semantic context contained within database metadata. To address these limitations, we introduce a component-based retrieval architecture that decomposes database schemas and metadata into discrete semantic units, each separately indexed for targeted retrieval. Our approach prioritizes effective table identification while leveraging column-level information, ensuring the total number of retrieved tables remains within a manageable context budget. Experiments demonstrate that our method maintains high recall and accuracy, with our system outperforming baselines over massive databases with varying structure and available metadata. Our solution enables practical text-to-SQL systems deployable across diverse enterprise settings without specialized fine-tuning, addressing a critical scalability gap in natural language database interfaces.
☆ SMART-Editor: A Multi-Agent Framework for Human-Like Design Editing with Structural Integrity
We present SMART-Editor, a framework for compositional layout and content editing across structured (posters, websites) and unstructured (natural images) domains. Unlike prior models that perform local edits, SMART-Editor preserves global coherence through two strategies: Reward-Refine, an inference-time rewardguided refinement method, and RewardDPO, a training-time preference optimization approach using reward-aligned layout pairs. To evaluate model performance, we introduce SMARTEdit-Bench, a benchmark covering multi-domain, cascading edit scenarios. SMART-Editor outperforms strong baselines like InstructPix2Pix and HIVE, with RewardDPO achieving up to 15% gains in structured settings and Reward-Refine showing advantages on natural images. Automatic and human evaluations confirm the value of reward-guided planning in producing semantically consistent and visually aligned edits.
comment: Under Submission
☆ On the Sustainability of AI Inferences in the Edge
The proliferation of the Internet of Things (IoT) and its cutting-edge AI-enabled applications (e.g., autonomous vehicles and smart industries) combine two paradigms: data-driven systems and their deployment on the edge. Usually, edge devices perform inferences to support latency-critical applications. In addition to the performance of these resource-constrained edge devices, their energy usage is a critical factor in adopting and deploying edge applications. Examples of such devices include Raspberry Pi (RPi), Intel Neural Compute Stick (INCS), NVIDIA Jetson nano (NJn), and Google Coral USB (GCU). Despite their adoption in edge deployment for AI inferences, there is no study on their performance and energy usage for informed decision-making on the device and model selection to meet the demands of applications. This study fills the gap by rigorously characterizing the performance of traditional, neural networks, and large language models on the above-edge devices. Specifically, we analyze trade-offs among model F1 score, inference time, inference power, and memory usage. Hardware and framework optimization, along with external parameter tuning of AI models, can balance between model performance and resource usage to realize practical edge AI deployments.
comment: 14 pages, 8 figures, 6 tables, in preparation for journal submission
☆ Moravec's Paradox: Towards an Auditory Turing Test
This research work demonstrates that current AI systems fail catastrophically on auditory tasks that humans perform effortlessly. Drawing inspiration from Moravec's paradox (i.e., tasks simple for humans often prove difficult for machines, and vice versa), we introduce an auditory Turing test comprising 917 challenges across seven categories: overlapping speech, speech in noise, temporal distortion, spatial audio, coffee-shop noise, phone distortion, and perceptual illusions. Our evaluation of state-of-the-art audio models including GPT-4's audio capabilities and OpenAI's Whisper reveals a striking failure rate exceeding 93%, with even the best-performing model achieving only 6.9% accuracy on tasks that humans solved at 7.5 times higher success (52%). These results expose focusing failures in how AI systems process complex auditory scenes, particularly in selective attention, noise robustness, and contextual adaptation. Our benchmark not only quantifies the human-machine auditory gap but also provides insights into why these failures occur, suggesting that current architectures lack fundamental mechanisms for human-like auditory scene analysis. The traditional design of audio CAPTCHAs highlights common filters that humans evolved but machines fail to select in multimodal language models. This work establishes a diagnostic framework for measuring progress toward human-level machine listening and highlights the need for novel approaches integrating selective attention, physics-based audio understanding, and context-aware perception into multimodal AI systems.
☆ Beyond Rigid AI: Towards Natural Human-Machine Symbiosis for Interoperative Surgical Assistance
Emerging surgical data science and robotics solutions, especially those designed to provide assistance in situ, require natural human-machine interfaces to fully unlock their potential in providing adaptive and intuitive aid. Contemporary AI-driven solutions remain inherently rigid, offering limited flexibility and restricting natural human-machine interaction in dynamic surgical environments. These solutions rely heavily on extensive task-specific pre-training, fixed object categories, and explicit manual-prompting. This work introduces a novel Perception Agent that leverages speech-integrated prompt-engineered large language models (LLMs), segment anything model (SAM), and any-point tracking foundation models to enable a more natural human-machine interaction in real-time intraoperative surgical assistance. Incorporating a memory repository and two novel mechanisms for segmenting unseen elements, Perception Agent offers the flexibility to segment both known and unseen elements in the surgical scene through intuitive interaction. Incorporating the ability to memorize novel elements for use in future surgeries, this work takes a marked step towards human-machine symbiosis in surgical procedures. Through quantitative analysis on a public dataset, we show that the performance of our agent is on par with considerably more labor-intensive manual-prompting strategies. Qualitatively, we show the flexibility of our agent in segmenting novel elements (instruments, phantom grafts, and gauze) in a custom-curated dataset. By offering natural human-machine interaction and overcoming rigidity, our Perception Agent potentially brings AI-based real-time assistance in dynamic surgical environments closer to reality.
☆ On LLM-Assisted Generation of Smart Contracts from Business Processes
Large language models (LLMs) have changed the reality of how software is produced. Within the wider software engineering community, among many other purposes, they are explored for code generation use cases from different types of input. In this work, we present an exploratory study to investigate the use of LLMs for generating smart contract code from business process descriptions, an idea that has emerged in recent literature to overcome the limitations of traditional rule-based code generation approaches. However, current LLM-based work evaluates generated code on small samples, relying on manual inspection, or testing whether code compiles but ignoring correct execution. With this work, we introduce an automated evaluation framework and provide empirical data from larger data sets of process models. We test LLMs of different types and sizes in their capabilities of achieving important properties of process execution, including enforcing process flow, resource allocation, and data-based conditions. Our results show that LLM performance falls short of the perfect reliability required for smart contract development. We suggest future work to explore responsible LLM integrations in existing tools for code generation to ensure more reliable output. Our benchmarking framework can serve as a foundation for developing and evaluating such integrations.
comment: Accepted at the Workshop on Distributed Ledger Technologies in Business Process Management, At the International Conference for Business Process Management (BPM), 2025
♻ ☆ A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static, unable to adapt their internal parameters to novel tasks, evolving knowledge domains, or dynamic interaction contexts. As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck, necessitating agents that can adaptively reason, act, and evolve in real time. This paradigm shift -- from scaling static models to developing self-evolving agents -- has sparked growing interest in architectures and methods enabling continual learning and adaptation from data, interactions, and experiences. This survey provides the first systematic and comprehensive review of self-evolving agents, organized around three foundational dimensions -- what to evolve, when to evolve, and how to evolve. We examine evolutionary mechanisms across agent components (e.g., models, memory, tools, architecture), categorize adaptation methods by stages (e.g., intra-test-time, inter-test-time), and analyze the algorithmic and architectural designs that guide evolutionary adaptation (e.g., scalar rewards, textual feedback, single-agent and multi-agent systems). Additionally, we analyze evaluation metrics and benchmarks tailored for self-evolving agents, highlight applications in domains such as coding, education, and healthcare, and identify critical challenges and research directions in safety, scalability, and co-evolutionary dynamics. By providing a structured framework for understanding and designing self-evolving agents, this survey establishes a roadmap for advancing adaptive agentic systems in both research and real-world deployments, ultimately shedding lights to pave the way for the realization of Artificial Super Intelligence (ASI), where agents evolve autonomously, performing at or beyond human-level intelligence across a wide array of tasks.
comment: 51 pages, 9 figures
♻ ☆ TextSAM-EUS: Text Prompt Learning for SAM to Accurately Segment Pancreatic Tumor in Endoscopic Ultrasound ICCV 2025
Pancreatic cancer carries a poor prognosis and relies on endoscopic ultrasound (EUS) for targeted biopsy and radiotherapy. However, the speckle noise, low contrast, and unintuitive appearance of EUS make segmentation of pancreatic tumors with fully supervised deep learning (DL) models both error-prone and dependent on large, expert-curated annotation datasets. To address these challenges, we present TextSAM-EUS, a novel, lightweight, text-driven adaptation of the Segment Anything Model (SAM) that requires no manual geometric prompts at inference. Our approach leverages text prompt learning (context optimization) through the BiomedCLIP text encoder in conjunction with a LoRA-based adaptation of SAM's architecture to enable automatic pancreatic tumor segmentation in EUS, tuning only 0.86% of the total parameters. On the public Endoscopic Ultrasound Database of the Pancreas, TextSAM-EUS with automatic prompts attains 82.69% Dice and 85.28% normalized surface distance (NSD), and with manual geometric prompts reaches 83.10% Dice and 85.70% NSD, outperforming both existing state-of-the-art (SOTA) supervised DL models and foundation models (e.g., SAM and its variants). As the first attempt to incorporate prompt learning in SAM-based medical image segmentation, TextSAM-EUS offers a practical option for efficient and robust automatic EUS segmentation. Code is available at https://github.com/HealthX-Lab/TextSAM-EUS .
comment: Accepted to ICCV 2025 Workshop CVAMD
♻ ☆ FRED: Financial Retrieval-Enhanced Detection and Editing of Hallucinations in Language Models
Hallucinations in large language models pose a critical challenge for applications requiring factual reliability, particularly in high-stakes domains such as finance. This work presents an effective approach for detecting and editing factually incorrect content in model-generated responses based on the provided context. Given a user-defined domain-specific error taxonomy, we construct a synthetic dataset by inserting tagged errors into financial question-answering corpora and then fine-tune four language models, Phi-4, Phi-4-mini, Qwen3-4B, and Qwen3-14B, to detect and edit these factual inaccuracies. Our best-performing model, fine-tuned Phi-4, achieves an 8% improvement in binary F1 score and a 30% gain in overall detection performance compared to OpenAI-o3. Notably, our fine-tuned Phi-4-mini model, despite having only 4 billion parameters, maintains competitive performance with just a 2% drop in binary detection and a 0.1% decline in overall detection compared to OpenAI-o3. Our work provides a practical solution for detecting and editing factual inconsistencies in financial text generation while introducing a generalizable framework that can enhance the trustworthiness and alignment of large language models across diverse applications beyond finance. Our code and data are available at https://github.com/pegasi-ai/shield.
♻ ☆ Past Meets Present: Creating Historical Analogy with Large Language Models ACL 2025
Historical analogies, which compare known past events with contemporary but unfamiliar events, are important abilities that help people make decisions and understand the world. However, research in applied history suggests that people have difficulty finding appropriate analogies. And previous studies in the AI community have also overlooked historical analogies. To fill this gap, in this paper, we focus on the historical analogy acquisition task, which aims to acquire analogous historical events for a given event. We explore retrieval and generation methods for acquiring historical analogies based on different large language models (LLMs). Furthermore, we propose a self-reflection method to mitigate hallucinations and stereotypes when LLMs generate historical analogies. Through human evaluations and our specially designed automatic multi-dimensional assessment, we find that LLMs generally have a good potential for historical analogies. And the performance of the models can be further improved by using our self-reflection method.
comment: Accepted to ACL 2025 (Outstanding Paper Award)
♻ ☆ Application of Vision-Language Model to Pedestrians Behavior and Scene Understanding in Autonomous Driving
Vision-language models (VLMs) have become a promising approach to enhancing perception and decision-making in autonomous driving. The gap remains in applying VLMs to understand complex scenarios interacting with pedestrians and efficient vehicle deployment. In this paper, we propose a knowledge distillation method that transfers knowledge from large-scale vision-language foundation models to efficient vision networks, and we apply it to pedestrian behavior prediction and scene understanding tasks, achieving promising results in generating more diverse and comprehensive semantic attributes. We also utilize multiple pre-trained models and ensemble techniques to boost the model's performance. We further examined the effectiveness of the model after knowledge distillation; the results show significant metric improvements in open-vocabulary perception and trajectory prediction tasks, which can potentially enhance the end-to-end performance of autonomous driving.
♻ ☆ Curvature Dynamic Black-box Attack: revisiting adversarial robustness via dynamic curvature estimation
Adversarial attack reveals the vulnerability of deep learning models. For about a decade, countless attack and defense methods have been proposed, leading to robustified classifiers and better understanding of models. Among these methods, curvature-based approaches have attracted attention because it is assumed that high curvature may give rise to rough decision boundary. However, the most commonly used \textit{curvature} is the curvature of loss function, scores or other parameters from within the model as opposed to decision boundary curvature, since the former can be relatively easily formed using second order derivative. In this paper, we propose a new query-efficient method, dynamic curvature estimation(DCE), to estimate the decision boundary curvature in a black-box setting. Our approach is based on CGBA, a black-box adversarial attack. By performing DCE on a wide range of classifiers, we discovered, statistically, a connection between decision boundary curvature and adversarial robustness. We also propose a new attack method, curvature dynamic black-box attack(CDBA) with improved performance using the dynamically estimated curvature.
comment: This article contains several flaws
♻ ☆ Scaling RL to Long Videos
We introduce a full-stack framework that scales up reasoning in vision-language models (VLMs) to long videos, leveraging reinforcement learning. We address the unique challenges of long video reasoning by integrating three critical components: (1) a large-scale dataset, LongVideo-Reason, comprising 104K long video QA pairs with high-quality reasoning annotations across diverse domains such as sports, games, and vlogs; (2) a two-stage training pipeline that extends VLMs with chain-of-thought supervised fine-tuning (CoT-SFT) and reinforcement learning (RL); and (3) a training infrastructure for long video RL, named Multi-modal Reinforcement Sequence Parallelism (MR-SP), which incorporates sequence parallelism and a vLLM-based engine tailored for long video, using cached video embeddings for efficient rollout and prefilling. In our experiments, LongVILA-R1-7B achieves strong performance on video benchmarks, reaching 65.1% and 71.1% accuracy on VideoMME without and with subtitles, respectively, and consistently outperforming LongVILA-7B across multiple benchmarks. Moreover, LongVILA-R1-7B supports processing up to 8,192 video frames per video, and configurable FPS settings. Notably, our MR-SP system achieves up to 2.1x speedup on long video RL training. In addition, we release our training system for public availability that supports RL training on various modalities (video, text, and audio), various models (VILA and Qwen series), and even image and video generation models. On a single A100 node (8 GPUs), it supports RL training on hour-long videos (e.g., 3,600 frames).
comment: Code at https://github.com/NVlabs/Long-RL and model at https://huggingface.co/Efficient-Large-Model/LongVILA-R1-7B
♻ ☆ Probing EFX via PMMS: (Non-)Existence Results in Discrete Fair Division
We study the fair division of indivisible items and provide new insights into the EFX problem, which is widely regarded as the central open question in fair division, and the PMMS problem, a strictly stronger variant of EFX. Our first result constructs a three-agent instance with two monotone valuations and one additive valuation in which no PMMS allocation exists. Since EFX allocations are known to exist under these assumptions, this establishes a formal separation between EFX and PMMS. We prove existence of fair allocations for three important special cases. We show that EFX allocations exist for personalized bivalued valuations, where for each agent $i$ there exist values $a_i > b_i$ such that agent $i$ assigns value $v_i(\{g\}) \in \{a_i, b_i\}$ to each good $g$. We establish an analogous existence result for PMMS allocations when $a_i$ is divisible by $b_i$. We also prove that PMMS allocations exist for binary-valued MMS-feasible valuations, where each bundle $S$ has value $v_i(S) \in \{0, 1\}$. Notably, this result holds even without assuming monotonicity of valuations and thus applies to the fair division of chores and mixed manna. Finally, we study a class of valuations called pair-demand valuations, which extend the well-studied unit-demand valuations to the case where each agent derives value from at most two items, and we show that PMMS allocations exist in this setting. Our proofs are constructive, and we provide polynomial-time algorithms for all three existence results.
comment: 27 pages, 4 figures
♻ ☆ $S^2M^2$: Scalable Stereo Matching Model for Reliable Depth Estimation ICCV
The pursuit of a generalizable stereo matching model, capable of performing well across varying resolutions and disparity ranges without dataset-specific fine-tuning, has revealed a fundamental trade-off. Iterative local search methods achieve high scores on constrained benchmarks, but their core mechanism inherently limits the global consistency required for true generalization. However, global matching architectures, while theoretically more robust, have historically been rendered infeasible by prohibitive computational and memory costs. We resolve this dilemma with $S^2M^2$: a global matching architecture that achieves state-of-the-art accuracy and high efficiency without relying on cost volume filtering or deep refinement stacks. Our design integrates a multi-resolution transformer for robust long-range correspondence, trained with a novel loss function that concentrates probability on feasible matches. This approach enables a more robust joint estimation of disparity, occlusion, and confidence. $S^2M^2$ establishes a new state of the art on Middlebury v3 and ETH3D benchmarks, significantly outperforming prior methods in most metrics while reconstructing high-quality details with competitive efficiency.
comment: 8 pages, 5 figures, ICCV accepted paper
♻ ☆ Mitigating loss of variance in ensemble data assimilation: machine learning-based and distance-free localization
We propose two new methods based/inspired by machine learning for tabular data and distance-free localization to enhance the covariance estimations in an ensemble data assimilation. The main goal is to enhance the data assimilation results by mitigating loss of variance due to sampling errors. We also analyze the suitability of several machine learning models and the balance between accuracy and computational cost of the covariance estimations. We introduce two distance-free localization techniques leveraging machine learning methods specifically tailored for tabular data. The methods are integrated into the Ensemble Smoother with Multiple Data Assimilation (ES-MDA) framework. The results show that the proposed localizations improve covariance accuracy and enhance data assimilation and uncertainty quantification results. We observe reduced variance loss for the input variables using the proposed methods. Furthermore, we compare several machine learning models, assessing their suitability for the problem in terms of computational cost, and quality of the covariance estimation and data match. The influence of ensemble size is also investigated, providing insights into balancing accuracy and computational efficiency. Our findings demonstrate that certain machine learning models are more suitable for this problem. This study introduces two novel methods that mitigate variance loss for model parameters in ensemble-based data assimilation, offering practical solutions that are easy to implement and do not require any additional numerical simulation or hyperparameter tuning.
♻ ☆ Neutral Residues: Revisiting Adapters for Model Extension ICML 2025
We address the problem of extending a pretrained large language model to a new domain that was not seen during training. Standard techniques, such as finetuning or low-rank adaptation (LoRA) are successful at domain adaptation, but do not formally add capacity to the model. This often leads to a trade-off, between performing well on the new domain vs. degrading performance on the original domain. Here, we revisit and improve adapters to extend LLMs from three angles: data, architecture and training procedure, which are advantageously considered jointly. The resulting method, called neutral residues, modifies adapters in a way that leads each new residual block to output near-zeros on the original domain. This solution leads to strong results when adapting a state-of-the-art model originally trained on English to a new language. Neutral residues significantly outperform competing approaches such as finetuning, LoRA or vanilla adapters in terms of the trade-off between learning the new language and not forgetting English.
comment: Accepted at ICML 2025
♻ ☆ Towards the Law of Capacity Gap in Distilling Language Models ACL 2025
Language model (LM) distillation aims at distilling the knowledge in a large teacher LM to a small student one. As a critical issue facing LM distillation, a superior student often arises from a teacher of a relatively small scale instead of a larger one, especially in the presence of substantial capacity gap between the teacher and student. This issue, often referred to as the \textit{curse of capacity gap}, suggests that there is likely an optimal teacher yielding the best-performing student along the scaling course of the teacher. Consequently, distillation trials on teachers of a wide range of scales are called for to determine the optimal teacher, which becomes computationally intensive in the context of large LMs (LLMs). This paper addresses this critical bottleneck by providing the \textit{law of capacity gap} inducted from a preliminary study on distilling a broad range of small-scale (<3B) LMs, where the optimal teacher consistently scales linearly with the student scale across different model and data scales. By extending the law to LLM distillation on a larger scale (7B), we succeed in obtaining versatile LLMs that outperform a wide array of competitors.
comment: 32 pages, 10 figures, 15 tables, accepted to ACL 2025. Code and checkpoints are available at https://github.com/GeneZC/MiniMA
♻ ☆ GATEAU: Selecting Influential Samples for Long Context Alignment
Aligning large language models to handle instructions with extremely long contexts has yet to be fully investigated. Previous studies have attempted to scale up the available data volume by synthesizing long instruction-following samples, as constructing such a dataset tends to be challenging for annotators. However, a lack of a well-defined strategy for ensuring data quality may introduce low-quality samples and restrict the model's performance. Thus, we propose GATEAU, a novel framework to address the unique challenge of long context alignment by identifying the influential samples enriched with long-range dependency relations. Specifically, GATEAU measures the long-range dependencies from two essential aspects: the difficulty of generating target responses due to the long-range dependencies, and the difficulty of understanding long inputs due to such dependencies. Comprehensive experiments indicate that GATEAU effectively identifies influential samples, and the model trained on these selected samples exhibits better instruction-following and long-context understanding capabilities.
♻ ☆ Ultra3D: Efficient and High-Fidelity 3D Generation with Part Attention
Recent advances in sparse voxel representations have significantly improved the quality of 3D content generation, enabling high-resolution modeling with fine-grained geometry. However, existing frameworks suffer from severe computational inefficiencies due to the quadratic complexity of attention mechanisms in their two-stage diffusion pipelines. In this work, we propose Ultra3D, an efficient 3D generation framework that significantly accelerates sparse voxel modeling without compromising quality. Our method leverages the compact VecSet representation to efficiently generate a coarse object layout in the first stage, reducing token count and accelerating voxel coordinate prediction. To refine per-voxel latent features in the second stage, we introduce Part Attention, a geometry-aware localized attention mechanism that restricts attention computation within semantically consistent part regions. This design preserves structural continuity while avoiding unnecessary global attention, achieving up to 6.7x speed-up in latent generation. To support this mechanism, we construct a scalable part annotation pipeline that converts raw meshes into part-labeled sparse voxels. Extensive experiments demonstrate that Ultra3D supports high-resolution 3D generation at 1024 resolution and achieves state-of-the-art performance in both visual fidelity and user preference.
comment: Project Page: https://buaacyw.github.io/ultra3d/
♻ ☆ Scoring Verifiers: Evaluating Synthetic Verification for Code and Reasoning
Synthetic verification techniques such as generating test cases and reward modelling are common ways to enhance the coding capabilities of large language models (LLM) beyond predefined tests. Additionally, code verification has recently found great success as a critical component in improving reasoning capability of LLMs via reinforcement learning. In this paper, we propose an approach which can transform existing coding benchmarks into scoring and ranking datasets to evaluate the effectiveness of synthetic verifiers. We also propose multiple metrics to measure different aspects of the synthetic verifiers with the proposed benchmarks. By employing the proposed approach, we release four new benchmarks (HE-R, HE-R+, MBPP-R, and MBPP-R+), and analyzed synthetic verification methods with standard, reasoning-based, and reward-based LLMs. Our experiments show that reasoning can significantly improve test case generation and that scaling the number of test cases enhances the verification accuracy.
comment: COLM 2025
♻ ☆ Towards interactive evaluations for interaction harms in human-AI systems
Current AI evaluation methods, which rely on static, model-only tests, fail to account for harms that emerge through sustained human-AI interaction. As AI systems proliferate and are increasingly integrated into real-world applications, this disconnect between evaluation approaches and actual usage becomes more significant. In this paper, we propose a shift towards evaluation based on \textit{interactional ethics}, which focuses on \textit{interaction harms} - issues like inappropriate parasocial relationships, social manipulation, and cognitive overreliance that develop over time through repeated interaction, rather than through isolated outputs. First, we discuss the limitations of current evaluation methods, which (1) are static, (2) assume a universal user experience, and (3) have limited construct validity. Drawing on research from human-computer interaction, natural language processing, and the social sciences, we present practical principles for designing interactive evaluations. These include ecologically valid interaction scenarios, human impact metrics, and diverse human participation approaches. Finally, we explore implementation challenges and open research questions for researchers, practitioners, and regulators aiming to integrate interactive evaluations into AI governance frameworks. This work lays the groundwork for developing more effective evaluation methods that better capture the complex dynamics between humans and AI systems.
♻ ☆ Unsupervised Learning in Echo State Networks for Input Reconstruction
Echo state networks (ESNs) are a class of recurrent neural networks in which only the readout layer is trainable, while the recurrent and input layers are fixed. This architectural constraint enables computationally efficient processing of time-series data. Traditionally, the readout layer in ESNs is trained using supervised learning with target outputs. In this study, we focus on input reconstruction (IR), where the readout layer is trained to reconstruct the input time series fed into the ESN. We show that IR can be achieved through unsupervised learning (UL), without access to supervised targets, provided that the ESN parameters are known a priori and satisfy invertibility conditions. This formulation allows applications relying on IR, such as dynamical system replication and noise filtering, to be reformulated within the UL framework via straightforward integration with existing algorithms. Our results suggest that prior knowledge of ESN parameters can reduce reliance on supervision, thereby establishing a new principle: not only by fixing part of the network parameters but also by exploiting their specific values. Furthermore, our UL-based algorithms for input reconstruction and related tasks are suitable for autonomous processing, offering insights into how analogous computational mechanisms might operate in the brain in principle. These findings contribute to a deeper understanding of the mathematical foundations of ESNs and their relevance to models in computational neuroscience.
comment: 35 pages, 11 figures. This paper has been accepted for publication in Neural Computation (MIT Press)
♻ ☆ Equivariant Flow Matching for Point Cloud Assembly
The goal of point cloud assembly is to reconstruct a complete 3D shape by aligning multiple point cloud pieces. This work presents a novel equivariant solver for assembly tasks based on flow matching models. We first theoretically show that the key to learning equivariant distributions via flow matching is to learn related vector fields. Based on this result, we propose an assembly model, called equivariant diffusion assembly (Eda), which learns related vector fields conditioned on the input pieces. We further construct an equivariant path for Eda, which guarantees high data efficiency of the training process. Our numerical results show that Eda is highly competitive on practical datasets, and it can even handle the challenging situation where the input pieces are non-overlapped.
♻ ☆ Local Mixtures of Experts: Essentially Free Test-Time Training via Model Merging
Mixture of expert (MoE) models are a promising approach to increasing model capacity without increasing inference cost, and are core components of many state-of-the-art language models. However, current MoE models typically use only few experts due to prohibitive training and inference cost. We propose Test-Time Model Merging (TTMM) which scales the MoE paradigm to an order of magnitude more experts and uses model merging to avoid almost any test-time overhead. We show that TTMM is an approximation of test-time training (TTT), which fine-tunes an expert model for each prediction task, i.e., prompt. TTT has recently been shown to significantly improve language models, but is computationally expensive. We find that performance of TTMM improves with more experts and approaches the performance of TTT. Moreover, we find that with a 1B parameter base model, TTMM is more than 100x faster than TTT at test-time by amortizing the cost of TTT at train-time. Thus, TTMM offers a promising cost-effective approach to scale test-time training.
♻ ☆ Conversational LLMs Simplify Secure Clinical Data Access, Understanding, and Analysis
As ever-larger clinical datasets become available, they have the potential to unlock unprecedented opportunities for medical research. Foremost among them is Medical Information Mart for Intensive Care (MIMIC-IV), the world's largest open-source EHR database. However, the inherent complexity of these datasets, particularly the need for sophisticated querying skills and the need to understand the underlying clinical settings, often presents a significant barrier to their effective use. M3 lowers the technical barrier to understanding and querying MIMIC-IV data. With a single command it retrieves MIMIC-IV from PhysioNet, launches a local SQLite instance (or hooks into the hosted BigQuery), and-via the Model Context Protocol (MCP)-lets researchers converse with the database in plain English. Ask a clinical question in natural language; M3 uses a language model to translate it into SQL, executes the query against the MIMIC-IV dataset, and returns structured results alongside the underlying query for verifiability and reproducibility. Demonstrations show that minutes of dialogue with M3 yield the kind of nuanced cohort analyses that once demanded hours of handcrafted SQL and relied on understanding the complexities of clinical workflows. By simplifying access, M3 invites the broader research community to mine clinical critical-care data and accelerates the translation of raw records into actionable insight.
comment: 10 pages, 4 figures
♻ ☆ Don't Lag, RAG: Training-Free Adversarial Detection Using RAG ICML 2025
Adversarial patch attacks pose a major threat to vision systems by embedding localized perturbations that mislead deep models. Traditional defense methods often require retraining or fine-tuning, making them impractical for real-world deployment. We propose a training-free Visual Retrieval-Augmented Generation (VRAG) framework that integrates Vision-Language Models (VLMs) for adversarial patch detection. By retrieving visually similar patches and images that resemble stored attacks in a continuously expanding database, VRAG performs generative reasoning to identify diverse attack types, all without additional training or fine-tuning. We extensively evaluate open-source large-scale VLMs, including Qwen-VL-Plus, Qwen2.5-VL-72B, and UI-TARS-72B-DPO, alongside Gemini-2.0, a closed-source model. Notably, the open-source UI-TARS-72B-DPO model achieves up to 95 percent classification accuracy, setting a new state-of-the-art for open-source adversarial patch detection. Gemini-2.0 attains the highest overall accuracy, 98 percent, but remains closed-source. Experimental results demonstrate VRAG's effectiveness in identifying a variety of adversarial patches with minimal human annotation, paving the way for robust, practical defenses against evolving adversarial patch attacks.
comment: Accepted at VecDB @ ICML 2025
♻ ☆ StoryTeller: Improving Long Video Description through Global Audio-Visual Character Identification
Existing large vision-language models (LVLMs) are largely limited to processing short, seconds-long videos and struggle with generating coherent descriptions for extended video spanning minutes or more. Long video description introduces new challenges, such as consistent character identification and plot-level descriptions incorporating both visual and audio information. To address these, we figure out audio-visual character identification, matching character names to each dialogue, as a key factor. We propose StoryTeller, a system for generating dense descriptions of long videos, incorporating both low-level visual concepts and high-level plot information. StoryTeller uses a multimodal large language model that integrates visual, audio, and text modalities to perform audio-visual character identification on minute-long video clips. The results are then fed into a LVLM to enhance consistency of video description. We validate our approach on movie description tasks and introduce MovieStory101, a dataset with dense descriptions for three-minute movie clips. To evaluate long video descriptions, we create StoryQA, a large set of multiple-choice questions for MovieStory101 test set. We assess descriptions by inputting them into GPT-4 to answer these questions, using accuracy as an automatic evaluation metric. Experiments show that StoryTeller outperforms all open and closed-source baselines on StoryQA, achieving 9.5% higher accuracy than the strongest baseline, Gemini-1.5-pro, and demonstrating a +15.56% advantage in human side-by-side evaluations. Additionally, incorporating audio-visual character identification from StoryTeller improves the performance of all video description models, with Gemini-1.5-pro and GPT-4o showing relative improvement of 5.5% and 13.0%, respectively, in accuracy on StoryQA.
♻ ☆ UI-AGILE: Advancing GUI Agents with Effective Reinforcement Learning and Precise Inference-Time Grounding
The emergence of Multimodal Large Language Models (MLLMs) has driven significant advances in Graphical User Interface (GUI) agent capabilities. Nevertheless, existing GUI agent training and inference techniques still suffer from a dilemma for reasoning designs, ineffective reward, and visual noise. To address these issues, we introduce UI-AGILE, a comprehensive framework enhancing GUI agents at both the training and inference stages. For training, we propose a suite of improvements to the Supervised Fine-Tuning (SFT) process: 1) a Continuous Reward function to incentivize high-precision grounding; 2) a "Simple Thinking" reward to balance planning with speed and grounding accuracy; and 3) a Cropping-based Resampling strategy to mitigate the sparse reward problem and improve learning on complex tasks. For inference, we present Decomposed Grounding with Selection, a novel method that dramatically improves grounding accuracy on high-resolution displays by breaking the image into smaller, manageable parts. Experiments show that UI-AGILE achieves the state-of-the-art performance on two benchmarks ScreenSpot-Pro and ScreenSpot-v2. For instance, using both our proposed training and inference enhancement methods brings 23% grounding accuracy improvement over the best baseline on ScreenSpot-Pro.
♻ ☆ The Cooperative Network Architecture: Learning Structured Networks as Representation of Sensory Patterns
We introduce the Cooperative Network Architecture (CNA), a model that represents sensory signals using structured, recurrently connected networks of neurons, termed "nets." Nets are dynamically assembled from overlapping net fragments, which are learned based on statistical regularities in sensory input. This architecture offers robustness to noise, deformation, and out-of-distribution data, addressing challenges in current vision systems from a novel perspective. We demonstrate that net fragments can be learned without supervision and flexibly recombined to encode novel patterns, enabling figure completion and resilience to noise. Our findings establish CNA as a promising paradigm for developing neural representations that integrate local feature processing with global structure formation, providing a foundation for future research on invariant object recognition.
♻ ☆ AGITB: A Signal-Level Benchmark for Evaluating Artificial General Intelligence
Despite major advances in machine learning, current artificial intelligence systems continue to fall short of human-like general intelligence. While large language and reasoning models can generate fluent and coherent outputs, they lack the deep understanding and adaptive reasoning that characterize truly general intelligence. Existing evaluation frameworks, which are centered on broad language or perception tasks, fail to capture generality at its core and offer no guidance. The artificial general intelligence testbed (AGITB) is a novel and freely available benchmarking suite comprising twelve fully automatable tests designed to evaluate low-level cognitive precursors through binary signal prediction. AGITB requires models to forecast temporal sequences without pretraining, symbolic manipulation, or semantic grounding. The framework isolates core computational invariants - such as determinism, sensitivity, and generalization - that align with principles of biological information processing. Engineered to resist brute-force and memorization-based approaches, AGITB presumes no prior knowledge and demands learning from first principles. While humans pass all tests, no current AI system has met the full AGITB criteria, underscoring its potential as a rigorous, interpretable, and actionable benchmark for guiding and evaluating progress toward artificial general intelligence. A reference implementation of AGITB is available on GitHub.
comment: 15 pages
♻ ☆ MultiEditor: Controllable Multimodal Object Editing for Driving Scenarios Using 3D Gaussian Splatting Priors
Autonomous driving systems rely heavily on multimodal perception data to understand complex environments. However, the long-tailed distribution of real-world data hinders generalization, especially for rare but safety-critical vehicle categories. To address this challenge, we propose MultiEditor, a dual-branch latent diffusion framework designed to edit images and LiDAR point clouds in driving scenarios jointly. At the core of our approach is introducing 3D Gaussian Splatting (3DGS) as a structural and appearance prior for target objects. Leveraging this prior, we design a multi-level appearance control mechanism--comprising pixel-level pasting, semantic-level guidance, and multi-branch refinement--to achieve high-fidelity reconstruction across modalities. We further propose a depth-guided deformable cross-modality condition module that adaptively enables mutual guidance between modalities using 3DGS-rendered depth, significantly enhancing cross-modality consistency. Extensive experiments demonstrate that MultiEditor achieves superior performance in visual and geometric fidelity, editing controllability, and cross-modality consistency. Furthermore, generating rare-category vehicle data with MultiEditor substantially enhances the detection accuracy of perception models on underrepresented classes.
♻ ☆ Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions
The advent of Large Language Models (LLMs) has significantly reshaped the trajectory of the AI revolution. Nevertheless, these LLMs exhibit a notable limitation, as they are primarily adept at processing textual information. To address this constraint, researchers have endeavored to integrate visual capabilities with LLMs, resulting in the emergence of Vision-Language Models (VLMs). These advanced models are instrumental in tackling more intricate tasks such as image captioning and visual question answering. In our comprehensive survey paper, we delve into the key advancements within the realm of VLMs. Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.This classification is based on their respective capabilities and functionalities in processing and generating various modalities of data.We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible, providing readers with a comprehensive understanding of its essential components. We also analyzed the performance of VLMs in various benchmark datasets. By doing so, we aim to offer a nuanced understanding of the diverse landscape of VLMs. Additionally, we underscore potential avenues for future research in this dynamic domain, anticipating further breakthroughs and advancements.
comment: One of the first survey on Visual Language Models
♻ ☆ Rationale-guided Prompting for Knowledge-based Visual Question Answering
Recently, Large Language Models (LLMs) have been used for knowledge-based Visual Question Answering (VQA). Despite the encouraging results of previous studies, prior methods prompt LLMs to predict answers directly, neglecting intermediate thought processes. We argue that prior methods do not sufficiently activate the capacities of LLMs. We propose a framework called PLRH that Prompts LLMs with Rationale Heuristics for knowledge-based VQA. The PLRH prompts LLMs with Chain of Thought (CoT) to generate rationale heuristics, i.e., intermediate thought processes, and then leverages the rationale heuristics to inspire LLMs to predict answers. Experiments show that our approach outperforms the existing baselines by more than 2.2 and 2.1 on OK-VQA and A-OKVQA, respectively.
♻ ☆ Training language models to be warm and empathetic makes them less reliable and more sycophantic
Artificial intelligence (AI) developers are increasingly building language models with warm and empathetic personas that millions of people now use for advice, therapy, and companionship. Here, we show how this creates a significant trade-off: optimizing language models for warmth undermines their reliability, especially when users express vulnerability. We conducted controlled experiments on five language models of varying sizes and architectures, training them to produce warmer, more empathetic responses, then evaluating them on safety-critical tasks. Warm models showed substantially higher error rates (+10 to +30 percentage points) than their original counterparts, promoting conspiracy theories, providing incorrect factual information, and offering problematic medical advice. They were also significantly more likely to validate incorrect user beliefs, particularly when user messages expressed sadness. Importantly, these effects were consistent across different model architectures, and occurred despite preserved performance on standard benchmarks, revealing systematic risks that current evaluation practices may fail to detect. As human-like AI systems are deployed at an unprecedented scale, our findings indicate a need to rethink how we develop and oversee these systems that are reshaping human relationships and social interaction.
♻ ☆ Policy-Driven AI in Dataspaces: Taxonomy, Explainability, and Pathways for Compliant Innovation
As AI-driven dataspaces become integral to data sharing and collaborative analytics, ensuring privacy, performance, and policy compliance presents significant challenges. This paper provides a comprehensive review of privacy-preserving and policy-aware AI techniques, including Federated Learning, Differential Privacy, Trusted Execution Environments, Homomorphic Encryption, and Secure Multi-Party Computation, alongside strategies for aligning AI with regulatory frameworks such as GDPR and the EU AI Act. We propose a novel taxonomy to classify these techniques based on privacy levels, performance impacts, and compliance complexity, offering a clear framework for practitioners and researchers to navigate trade-offs. Key performance metrics -- latency, throughput, cost overhead, model utility, fairness, and explainability -- are analyzed to highlight the multi-dimensional optimization required in dataspaces. The paper identifies critical research gaps, including the lack of standardized privacy-performance KPIs, challenges in explainable AI for federated ecosystems, and semantic policy enforcement amidst regulatory fragmentation. Future directions are outlined, proposing a conceptual framework for policy-driven alignment, automated compliance validation, standardized benchmarking, and integration with European initiatives like GAIA-X, IDS, and Eclipse EDC. By synthesizing technical, ethical, and regulatory perspectives, this work lays the groundwork for developing trustworthy, efficient, and compliant AI systems in dataspaces, fostering innovation in secure and responsible data-driven ecosystems.
♻ ☆ Enhancing Multimodal In-Context Learning for Image Classification through Coreset Optimization
In-context learning (ICL) enables Large Vision-Language Models (LVLMs) to adapt to new tasks without parameter updates, using a few demonstrations from a large support set. However, selecting informative demonstrations leads to high computational and memory costs. While some methods explore selecting a small and representative coreset in the text classification, evaluating all support set samples remains costly, and discarded samples lead to unnecessary information loss. These methods may also be less effective for image classification due to differences in feature spaces. Given these limitations, we propose Key-based Coreset Optimization (KeCO), a novel framework that leverages untapped data to construct a compact and informative coreset. We introduce visual features as keys within the coreset, which serve as the anchor for identifying samples to be updated through different selection strategies. By leveraging untapped samples from the support set, we update the keys of selected coreset samples, enabling the randomly initialized coreset to evolve into a more informative coreset under low computational cost. Through extensive experiments on coarse-grained and fine-grained image classification benchmarks, we demonstrate that KeCO effectively enhances ICL performance for image classification task, achieving an average improvement of more than 20\%. Notably, we evaluate KeCO under a simulated online scenario, and the strong performance in this scenario highlights the practical value of our framework for resource-constrained real-world scenarios.
comment: 11 pages, 5 figures
♻ ☆ The wall confronting large language models
We show that the scaling laws which determine the performance of large language models (LLMs) severely limit their ability to improve the uncertainty of their predictions. As a result, raising their reliability to meet the standards of scientific inquiry is intractable by any reasonable measure. We argue that the very mechanism which fuels much of the learning power of LLMs, namely the ability to generate non-Gaussian output distributions from Gaussian input ones, might well be at the roots of their propensity to produce error pileup, ensuing information catastrophes and degenerative AI behaviour. This tension between learning and accuracy is a likely candidate mechanism underlying the observed low values of the scaling components. It is substantially compounded by the deluge of spurious correlations pointed out by Calude and Longo which rapidly increase in any data set merely as a function of its size, regardless of its nature. The fact that a degenerative AI pathway is a very probable feature of the LLM landscape does not mean that it must inevitably arise in all future AI research. Its avoidance, which we also discuss in this paper, necessitates putting a much higher premium on insight and understanding of the structural characteristics of the problems being investigated.
♻ ☆ DualSG: A Dual-Stream Explicit Semantic-Guided Multivariate Time Series Forecasting Framework
Multivariate Time Series Forecasting plays a key role in many applications. Recent works have explored using Large Language Models for MTSF to take advantage of their reasoning abilities. However, many methods treat LLMs as end-to-end forecasters, which often leads to a loss of numerical precision and forces LLMs to handle patterns beyond their intended design. Alternatively, methods that attempt to align textual and time series modalities within latent space frequently encounter alignment difficulty. In this paper, we propose to treat LLMs not as standalone forecasters, but as semantic guidance modules within a dual-stream framework. We propose DualSG, a dual-stream framework that provides explicit semantic guidance, where LLMs act as Semantic Guides to refine rather than replace traditional predictions. As part of DualSG, we introduce Time Series Caption, an explicit prompt format that summarizes trend patterns in natural language and provides interpretable context for LLMs, rather than relying on implicit alignment between text and time series in the latent space. We also design a caption-guided fusion module that explicitly models inter-variable relationships while reducing noise and computation. Experiments on real-world datasets from diverse domains show that DualSG consistently outperforms 15 state-of-the-art baselines, demonstrating the value of explicitly combining numerical forecasting with semantic guidance.
comment: This paper has been accepted by ACM Multimedia 2025 (ACM MM 2025)
♻ ☆ Strategic Integration of Artificial Intelligence in the C-Suite: The Role of the Chief AI Officer
The integration of Artificial Intelligence (AI) into corporate strategy has become critical for organizations seeking to maintain a competitive advantage in the digital age. As AI transforms business models, operations, and decision-making, the need for dedicated executive leadership to guide, govern, and orchestrate this transformation becomes increasingly evident. This paper examines emerging future scenarios across three domains: the AI Economy, the AI Organization, and Competition in the Age of AI. These domains reveal environmental, structural, and strategic tensions that existing C-suite roles struggle to resolve. In response, the paper develops a theory-informed framework for the Chief AI Officer (CAIO), outlining the distinct functions and capabilities required to guide and govern AI at scale. Drawing on illustrative cases and emerging practice, this conceptualization clarifies the CAIOs unique role within the executive landscape and presents a forward-looking research agenda. This paper advances the discourse on AI leadership by offering a theory-driven rationale for the strategic integration of AI at the executive level and by positioning the Chief AI Officer as a distinct and necessary role within modern organizations.
♻ ☆ Anti-Inpainting: A Proactive Defense Approach against Malicious Diffusion-based Inpainters under Unknown Conditions
With the increasing prevalence of diffusion-based malicious image manipulation, existing proactive defense methods struggle to safeguard images against tampering under unknown conditions. To address this, we propose Anti-Inpainting, a proactive defense approach that achieves protection comprising three novel modules. First, we introduce a multi-level deep feature extractor to obtain intricate features from the diffusion denoising process, enhancing protective effectiveness. Second, we design a multi-scale, semantic-preserving data augmentation technique to enhance the transferability of adversarial perturbations across unknown conditions. Finally, we propose a selection-based distribution deviation optimization strategy to bolster protection against manipulations guided by diverse random seeds. Extensive experiments on InpaintGuardBench and CelebA-HQ demonstrate that Anti-Inpainting effectively defends against diffusion-based inpainters under unknown conditions. Additionally, our approach demonstrates robustness against various image purification methods and transferability across different diffusion model versions.
♻ ☆ Efficient Pain Recognition via Respiration Signals: A Single Cross-Attention Transformer Multi-Window Fusion Pipeline
Pain is a complex condition affecting a large portion of the population. Accurate and consistent evaluation is essential for individuals experiencing pain, and it supports the development of effective and advanced management strategies. Automatic pain assessment systems provide continuous monitoring and support clinical decision-making, aiming to reduce distress and prevent functional decline. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed method introduces a pipeline that leverages respiration as the input signal and incorporates a highly efficient cross-attention transformer alongside a multi-windowing strategy. Extensive experiments demonstrate that respiration is a valuable physiological modality for pain assessment. Moreover, experiments revealed that compact and efficient models, when properly optimized, can achieve strong performance, often surpassing larger counterparts. The proposed multi-window approach effectively captures both short-term and long-term features, as well as global characteristics, thereby enhancing the model's representational capacity.
comment: arXiv admin note: text overlap with arXiv:2507.21881, arXiv:2507.21875
♻ ☆ Multi-Representation Diagrams for Pain Recognition: Integrating Various Electrodermal Activity Signals into a Single Image
Pain is a multifaceted phenomenon that affects a substantial portion of the population. Reliable and consistent evaluation benefits those experiencing pain and underpins the development of effective and advanced management strategies. Automatic pain-assessment systems deliver continuous monitoring, inform clinical decision-making, and aim to reduce distress while preventing functional decline. By incorporating physiological signals, these systems provide objective, accurate insights into an individual's condition. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed method introduces a pipeline that leverages electrodermal activity signals as input modality. Multiple representations of the signal are created and visualized as waveforms, and they are jointly visualized within a single multi-representation diagram. Extensive experiments incorporating various processing and filtering techniques, along with multiple representation combinations, demonstrate the effectiveness of the proposed approach. It consistently yields comparable, and in several cases superior, results to traditional fusion methods, establishing it as a robust alternative for integrating different signal representations or modalities.
comment: arXiv admin note: text overlap with arXiv:2507.21875
♻ ☆ Tiny-BioMoE: a Lightweight Embedding Model for Biosignal Analysis
Pain is a complex and pervasive condition that affects a significant portion of the population. Accurate and consistent assessment is essential for individuals suffering from pain, as well as for developing effective management strategies in a healthcare system. Automatic pain assessment systems enable continuous monitoring, support clinical decision-making, and help minimize patient distress while mitigating the risk of functional deterioration. Leveraging physiological signals offers objective and precise insights into a person's state, and their integration in a multimodal framework can further enhance system performance. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed approach introduces \textit{Tiny-BioMoE}, a lightweight pretrained embedding model for biosignal analysis. Trained on $4.4$ million biosignal image representations and consisting of only $7.3$ million parameters, it serves as an effective tool for extracting high-quality embeddings for downstream tasks. Extensive experiments involving electrodermal activity, blood volume pulse, respiratory signals, peripheral oxygen saturation, and their combinations highlight the model's effectiveness across diverse modalities in automatic pain recognition tasks. \textit{\textcolor{blue}{The model's architecture (code) and weights are available at https://github.com/GkikasStefanos/Tiny-BioMoE.
♻ ☆ ChemDFM-R: An Chemical Reasoner LLM Enhanced with Atomized Chemical Knowledge
While large language models (LLMs) have achieved impressive progress, their application in scientific domains such as chemistry remains hindered by shallow domain understanding and limited reasoning capabilities. In this work, we focus on the specific field of chemistry and develop a Chemical Reasoner LLM, ChemDFM-R. We first construct a comprehensive dataset of atomized knowledge points to enhance the model's understanding of the fundamental principles and logical structure of chemistry. Then, we propose a mix-sourced distillation strategy that integrates expert-curated knowledge with general-domain reasoning skills, followed by domain-specific reinforcement learning to enhance chemical reasoning. Experiments on diverse chemical benchmarks demonstrate that ChemDFM-R achieves cutting-edge performance while providing interpretable, rationale-driven outputs. Further case studies illustrate how explicit reasoning chains significantly improve the reliability, transparency, and practical utility of the model in real-world human-AI collaboration scenarios.
comment: 13 figures, 4 tables
♻ ☆ CleanMel: Mel-Spectrogram Enhancement for Improving Both Speech Quality and ASR
In this work, we propose CleanMel, a single-channel Mel-spectrogram denoising and dereverberation network for improving both speech quality and automatic speech recognition (ASR) performance. The proposed network takes as input the noisy and reverberant microphone recording and predicts the corresponding clean Mel-spectrogram. The enhanced Mel-spectrogram can be either transformed to the speech waveform with a neural vocoder or directly used for ASR. The proposed network is composed of interleaved cross-band and narrow-band processing in the Mel-frequency domain, for learning the full-band spectral pattern and the narrow-band properties of signals, respectively. Compared to linear-frequency domain or time-domain speech enhancement, the key advantage of Mel-spectrogram enhancement is that Mel-frequency presents speech in a more compact way and thus is easier to learn, which will benefit both speech quality and ASR. Experimental results on five English and one Chinese datasets demonstrate a significant improvement in both speech quality and ASR performance achieved by the proposed model.Code and audio examples of our model are available online.
comment: Submission to IEEE/ACM Trans. on TASLP
♻ ☆ Bridging Privacy and Robustness for Trustworthy Machine Learning
The widespread adoption of machine learning necessitates robust privacy protection alongside algorithmic resilience. While Local Differential Privacy (LDP) provides foundational guarantees, sophisticated adversaries with prior knowledge demand more nuanced Bayesian privacy notions, such as Maximum Bayesian Privacy (MBP) and Average Bayesian Privacy (ABP), first introduced by \cite{zhang2022no}. Concurrently, machine learning systems require inherent robustness against data perturbations and adversarial manipulations. This paper systematically investigates the intricate theoretical relationships among LDP, MBP, and ABP. Crucially, we bridge these privacy concepts with algorithmic robustness, particularly within the Probably Approximately Correct (PAC) learning framework. Our work demonstrates that privacy-preserving mechanisms inherently confer PAC robustness. We present key theoretical results, including the formalization of the established LDP-MBP relationship, novel bounds between MBP and ABP, and a proof demonstrating PAC robustness from MBP. Furthermore, we establish a novel theoretical relationship quantifying how privacy leakage directly influences an algorithm's input robustness. These results provide a unified theoretical framework for understanding and optimizing the privacy-robustness trade-off, paving the way for the development of more secure, trustworthy, and resilient machine learning systems.
♻ ☆ SmallThinker: A Family of Efficient Large Language Models Natively Trained for Local Deployment
While frontier large language models (LLMs) continue to push capability boundaries, their deployment remains confined to GPU-powered cloud infrastructure. We challenge this paradigm with SmallThinker, a family of LLMs natively designed - not adapted - for the unique constraints of local devices: weak computational power, limited memory, and slow storage. Unlike traditional approaches that mainly compress existing models built for clouds, we architect SmallThinker from the ground up to thrive within these limitations. Our innovation lies in a deployment-aware architecture that transforms constraints into design principles. First, We introduce a two-level sparse structure combining fine-grained Mixture-of-Experts (MoE) with sparse feed-forward networks, drastically reducing computational demands without sacrificing model capacity. Second, to conquer the I/O bottleneck of slow storage, we design a pre-attention router that enables our co-designed inference engine to prefetch expert parameters from storage while computing attention, effectively hiding storage latency that would otherwise cripple on-device inference. Third, for memory efficiency, we utilize NoPE-RoPE hybrid sparse attention mechanism to slash KV cache requirements. We release SmallThinker-4B-A0.6B and SmallThinker-21B-A3B, which achieve state-of-the-art performance scores and even outperform larger LLMs. Remarkably, our co-designed system mostly eliminates the need for expensive GPU hardware: with Q4_0 quantization, both models exceed 20 tokens/s on ordinary consumer CPUs, while consuming only 1GB and 8GB of memory respectively. SmallThinker is publicly available at hf.co/PowerInfer/SmallThinker-4BA0.6B-Instruct and hf.co/PowerInfer/SmallThinker-21BA3B-Instruct.
♻ ☆ Decision Transformer-Based Drone Trajectory Planning with Dynamic Safety-Efficiency Trade-Offs
A drone trajectory planner should be able to dynamically adjust the safety-efficiency trade-off according to varying mission requirements in unknown environments. Although traditional polynomial-based planners offer computational efficiency and smooth trajectory generation, they require expert knowledge to tune multiple parameters to adjust this trade-off. Moreover, even with careful tuning, the resulting adjustment may fail to achieve the desired trade-off. Similarly, although reinforcement learning-based planners are adaptable in unknown environments, they do not explicitly address the safety-efficiency trade-off. To overcome this limitation, we introduce a Decision Transformer-based trajectory planner that leverages a single parameter, Return-to-Go (RTG), as a \emph{temperature parameter} to dynamically adjust the safety-efficiency trade-off. In our framework, since RTG intuitively measures the safety and efficiency of a trajectory, RTG tuning does not require expert knowledge. We validate our approach using Gazebo simulations in both structured grid and unstructured random environments. The experimental results demonstrate that our planner can dynamically adjust the safety-efficiency trade-off by simply tuning the RTG parameter. Furthermore, our planner outperforms existing baseline methods across various RTG settings, generating safer trajectories when tuned for safety and more efficient trajectories when tuned for efficiency. Real-world experiments further confirm the reliability and practicality of our proposed planner.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025. Copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
♻ ☆ Federated Distributionally Robust Optimization with Non-Convex Objectives: Algorithm and Analysis
Distributionally Robust Optimization (DRO), which aims to find an optimal decision that minimizes the worst case cost over the ambiguity set of probability distribution, has been widely applied in diverse applications, e.g., network behavior analysis, risk management, etc. However, existing DRO techniques face three key challenges: 1) how to deal with the asynchronous updating in a distributed environment; 2) how to leverage the prior distribution effectively; 3) how to properly adjust the degree of robustness according to different scenarios. To this end, we propose an asynchronous distributed algorithm, named Asynchronous Single-looP alternatIve gRadient projEction (ASPIRE) algorithm with the itErative Active SEt method (EASE) to tackle the federated distributionally robust optimization (FDRO) problem. Furthermore, a new uncertainty set, i.e., constrained D-norm uncertainty set, is developed to effectively leverage the prior distribution and flexibly control the degree of robustness. Finally, our theoretical analysis elucidates that the proposed algorithm is guaranteed to converge and the iteration complexity is also analyzed. Extensive empirical studies on real-world datasets demonstrate that the proposed method can not only achieve fast convergence, and remain robust against data heterogeneity as well as malicious attacks, but also tradeoff robustness with performance.
comment: arXiv admin note: substantial text overlap with arXiv:2210.07588
♻ ☆ OpenEarthSensing: Large-Scale Fine-Grained Benchmark for Open-World Remote Sensing
The advancement of remote sensing, including satellite systems, facilitates the continuous acquisition of remote sensing imagery globally, introducing novel challenges for achieving open-world tasks. Deployed models need to continuously adjust to a constant influx of new data, which frequently exhibits diverse shifts from the data encountered during the training phase. To effectively handle the new data, models are required to detect semantic shifts, adapt to covariate shifts, and continuously update their parameters without forgetting learned knowledge, as has been considered in works on a variety of open-world tasks. However, existing studies are typically conducted within a single dataset to simulate realistic conditions, with a lack of large-scale benchmarks capable of evaluating multiple open-world tasks. In this paper, we introduce \textbf{OpenEarthSensing (OES)}, a large-scale fine-grained benchmark for open-world remote sensing. OES includes 189 scene and object categories, covering the vast majority of potential semantic shifts that may occur in the real world. Additionally, to provide a more comprehensive testbed for evaluating the generalization performance, OES encompasses five data domains with significant covariate shifts, including two RGB satellite domains, one RGB aerial domain, one multispectral RGB domain, and one infrared domain. We evaluate the baselines and existing methods for diverse tasks on OES, demonstrating that it serves as a meaningful and challenging benchmark for open-world remote sensing. The proposed dataset OES is available at https://haiv-lab.github.io/OES.
comment: Full version with dataset details in Appendix
♻ ☆ R2-KG: General-Purpose Dual-Agent Framework for Reliable Reasoning on Knowledge Graphs
Recent studies have combined Large Language Models (LLMs) with Knowledge Graphs (KGs) to enhance reasoning, improving inference accuracy without additional training while mitigating hallucination. However, existing frameworks still suffer two practical drawbacks: they must be re-tuned whenever the KG or reasoning task changes, and they depend on a single, high-capacity LLM for reliable (i.e., trustworthy) reasoning. To address this, we introduce R2-KG, a plug-and-play, dual-agent framework that separates reasoning into two roles: an Operator (a low-capacity LLM) that gathers evidence and a Supervisor (a high-capacity LLM) that makes final judgments. This design is cost-efficient for LLM inference while still maintaining strong reasoning accuracy. Additionally, R2-KG employs an Abstention mechanism, generating answers only when sufficient evidence is collected from KG, which significantly enhances reliability. Experiments across five diverse benchmarks show that R2-KG consistently outperforms baselines in both accuracy and reliability, regardless of the inherent capability of LLMs used as the Operator. Further experiments reveal that the single-agent version of R2-KG, equipped with a strict self-consistency strategy, achieves significantly higher-than-baseline reliability with reduced inference cost but increased abstention rate in complex KGs. Our findings establish R2-KG as a flexible and cost-effective solution for KG-based reasoning, reducing reliance on high-capacity LLMs while ensuring trustworthy inference. The code is available at https://github.com/ekrxjwh2009/R2-KG/.
♻ ☆ RaGS: Unleashing 3D Gaussian Splatting from 4D Radar and Monocular Cues for 3D Object Detection
4D millimeter-wave radar has emerged as a promising sensor for autonomous driving, but effective 3D object detection from both 4D radar and monocular images remains a challenge. Existing fusion approaches typically rely on either instance-based proposals or dense BEV grids, which either lack holistic scene understanding or are limited by rigid grid structures. To address these, we propose RaGS, the first framework to leverage 3D Gaussian Splatting (GS) as representation for fusing 4D radar and monocular cues in 3D object detection. 3D GS naturally suits 3D object detection by modeling the scene as a field of Gaussians, dynamically allocating resources on foreground objects and providing a flexible, resource-efficient solution. RaGS uses a cascaded pipeline to construct and refine the Gaussian field. It starts with the Frustum-based Localization Initiation (FLI), which unprojects foreground pixels to initialize coarse 3D Gaussians positions. Then, the Iterative Multimodal Aggregation (IMA) fuses semantics and geometry, refining the limited Gaussians to the regions of interest. Finally, the Multi-level Gaussian Fusion (MGF) renders the Gaussians into multi-level BEV features for 3D object detection. By dynamically focusing on sparse objects within scenes, RaGS enable object concentrating while offering comprehensive scene perception. Extensive experiments on View-of-Delft, TJ4DRadSet, and OmniHD-Scenes benchmarks demonstrate its state-of-the-art performance. Code will be released.
comment: 9 pages, 6 figures, conference
♻ ☆ A Survey on Large Language Model Acceleration based on KV Cache Management
Large Language Models (LLMs) have revolutionized a wide range of domains such as natural language processing, computer vision, and multi-modal tasks due to their ability to comprehend context and perform logical reasoning. However, the computational and memory demands of LLMs, particularly during inference, pose significant challenges when scaling them to real-world, long-context, and real-time applications. Key-Value (KV) cache management has emerged as a critical optimization technique for accelerating LLM inference by reducing redundant computations and improving memory utilization. This survey provides a comprehensive overview of KV cache management strategies for LLM acceleration, categorizing them into token-level, model-level, and system-level optimizations. Token-level strategies include KV cache selection, budget allocation, merging, quantization, and low-rank decomposition, while model-level optimizations focus on architectural innovations and attention mechanisms to enhance KV reuse. System-level approaches address memory management, scheduling, and hardware-aware designs to improve efficiency across diverse computing environments. Additionally, the survey provides an overview of both text and multimodal datasets and benchmarks used to evaluate these strategies. By presenting detailed taxonomies and comparative analyses, this work aims to offer useful insights for researchers and practitioners to support the development of efficient and scalable KV cache management techniques, contributing to the practical deployment of LLMs in real-world applications. The curated paper list for KV cache management is in: \href{https://github.com/TreeAI-Lab/Awesome-KV-Cache-Management}{https://github.com/TreeAI-Lab/Awesome-KV-Cache-Management}.
comment: Accepted to TMLR 2025. The revised version incorporates more papers and has been further polished
♻ ☆ Outcome-based Reinforcement Learning to Predict the Future
Reinforcement Learning with Verifiable Rewards (RLVR) has been an effective approach for improving Large Language Models' reasoning in domains such as coding and mathematics. Here, we apply RLVR methods towards forecasting future real-world events - a challenging task for RL due to the very noisy (and delayed) outcomes involved. Using a novel dataset of recent questions from a prediction market, and accompanying relevant news headlines, we show that a compact (14B) reasoning model can be trained to match or surpass the predictive accuracy of frontier models like o1, while greatly improving probabilistic calibration. The model's performance is also practically meaningful: in a Polymarket trading simulation, we estimate that its bets would have yielded a return on investment of over 10% across all questions in the test set. We detail and compare approaches used in training our model, including augmenting our training-data with synthetic prediction questions, guardrails for learning stability, and median prediction sampling at inference-time.
♻ ☆ ChartM$^3$: Benchmarking Chart Editing with Multimodal Instructions
Charts are a fundamental visualization format widely used in data analysis across research and industry. While enabling users to edit charts based on high-level intentions is of great practical value, existing methods primarily rely on natural language instructions, which are often too ambiguous to support fine-grained editing. In this work, we introduce a novel paradigm for multimodal chart editing, where user intent is expressed through a combination of natural language and visual indicators that explicitly highlight the elements to be modified. To support this paradigm, we present Chart$\text{M}^3$, a new benchmark for Multimodal chart editing with Multi-level complexity and Multi-perspective evaluation. Chart$\text{M}^3$ contains 1,000 samples spanning four levels of editing difficulty. Each sample includes triplets in the form of (chart, code, multimodal instructions). To comprehensively evaluate chart editing models, Chart$\text{M}^3$ provides metrics that assess both visual appearance and code correctness. Our benchmark reveals significant limitations in current multimodal large language models (MLLMs), including GPT-4o, particularly in their ability to interpret and act on visual indicators. To address this, we construct Chart$\text{M}^3$-Train, a large-scale training set with 24,000 multimodal chart editing samples. Fine-tuning MLLMs on this dataset leads to substantial improvements, demonstrating the importance of multimodal supervision in building practical chart editing systems. Our datasets, codes, and evaluation tools are available at https://github.com/MLrollIT/ChartM3. %https://github.com/MLrollIT/ChartM3Our datasets, codes, and evaluation tools are available at https://github.com/yaolinli/VCE.
♻ ☆ Multimodal LLMs as Customized Reward Models for Text-to-Image Generation ICCV 2025
We introduce LLaVA-Reward, an efficient reward model designed to automatically evaluate text-to-image (T2I) generations across multiple perspectives, leveraging pretrained multimodal large language models (MLLMs). Existing MLLM-based approaches require instruction-following data for supervised fine-tuning and evaluate generation quality on analyzing text response, which is time-consuming and difficult to train. To address this problem, we propose LLaVA-Reward, which directly utilizes the hidden states of MLLMs given text-image pairs. To enhance the bidirectional interaction between visual and textual representations in decoder-only MLLMs, we further propose adding a Skip-connection Cross Attention (SkipCA) module. This design enhances text-image correlation reasoning by connecting early-layer visual features with later-layer hidden representations. In addition, LLaVA-Reward supports different types of preference data for efficient fine-tuning, including paired preference data and unpaired data. We train LLaVA-Reward on four evaluation perspectives: text-image alignment, fidelity/artifact, safety, and overall ranking. Empirical results demonstrate that LLaVA-Reward outperforms conventional and MLLM-based methods in generating human-aligned scores for automatic evaluations and inference-time scaling in text-to-image generations.
comment: Accepted at ICCV 2025. Code available at https://github.com/sjz5202/LLaVA-Reward
♻ ☆ Interpretable Open-Vocabulary Referring Object Detection with Reverse Contrast Attention ICCV
We propose Reverse Contrast Attention (RCA), a plug-in method that enhances object localization in vision-language transformers without retraining. RCA reweights final-layer attention by suppressing extremes and amplifying mid-level activations to let semantically relevant but subdued tokens guide predictions. We evaluate it on Open Vocabulary Referring Object Detection (OV-RefOD), introducing FitAP, a confidence-free average precision metric based on IoU and box area. RCA improves FitAP in 11 out of 15 open-source VLMs, with gains up to $+26.6\%$. Effectiveness aligns with attention sharpness and fusion timing; while late-fusion models benefit consistently, models like $\texttt{DeepSeek-VL2}$ also improve, pointing to capacity and disentanglement as key factors. RCA offers both interpretability and performance gains for multimodal transformers. Codes and dataset are available from https://github.com/earl-juanico/rca
comment: To be published in the ICCVW 2025 Proceedings
♻ ☆ Can GPT-4o mini and Gemini 2.0 Flash Predict Fine-Grained Fashion Product Attributes? A Zero-Shot Analysis
The fashion retail business is centered around the capacity to comprehend products. Product attribution helps in comprehending products depending on the business process. Quality attribution improves the customer experience as they navigate through millions of products offered by a retail website. It leads to well-organized product catalogs. In the end, product attribution directly impacts the 'discovery experience' of the customer. Although large language models (LLMs) have shown remarkable capabilities in understanding multimodal data, their performance on fine-grained fashion attribute recognition remains under-explored. This paper presents a zero-shot evaluation of state-of-the-art LLMs that balance performance with speed and cost efficiency, mainly GPT-4o-mini and Gemini 2.0 Flash. We have used the dataset DeepFashion-MultiModal (https://github.com/yumingj/DeepFashion-MultiModal) to evaluate these models in the attribution tasks of fashion products. Our study evaluates these models across 18 categories of fashion attributes, offering insight into where these models excel. We only use images as the sole input for product information to create a constrained environment. Our analysis shows that Gemini 2.0 Flash demonstrates the strongest overall performance with a macro F1 score of 56.79% across all attributes, while GPT-4o-mini scored a macro F1 score of 43.28%. Through detailed error analysis, our findings provide practical insights for deploying these LLMs in production e-commerce product attribution-related tasks and highlight the need for domain-specific fine-tuning approaches. This work also lays the groundwork for future research in fashion AI and multimodal attribute extraction.
comment: Version 2: Added a missing citation
♻ ☆ Year-over-Year Developments in Financial Fraud Detection via Deep Learning: A Systematic Literature Review
This paper systematically reviews advancements in deep learning (DL) techniques for financial fraud detection, a critical issue in the financial sector. Using the Kitchenham systematic literature review approach, 57 studies published between 2019 and 2024 were analyzed. The review highlights the effectiveness of various deep learning models such as Convolutional Neural Networks, Long Short-Term Memory, and transformers across domains such as credit card transactions, insurance claims, and financial statement audits. Performance metrics such as precision, recall, F1-score, and AUC-ROC were evaluated. Key themes explored include the impact of data privacy frameworks and advancements in feature engineering and data preprocessing. The study emphasizes challenges such as imbalanced datasets, model interpretability, and ethical considerations, alongside opportunities for automation and privacy-preserving techniques such as blockchain integration and Principal Component Analysis. By examining trends over the past five years, this review identifies critical gaps and promising directions for advancing DL applications in financial fraud detection, offering actionable insights for researchers and practitioners.
♻ ☆ Learning Neural Strategy-Proof Matching Mechanism from Examples
Designing two-sided matching mechanisms is challenging when practical demands for matching outcomes are difficult to formalize and the designed mechanism must satisfy theoretical conditions. To address this, prior work has proposed a framework that learns a matching mechanism from examples, using a parameterized family that satisfies properties such as stability. However, despite its usefulness, this framework does not guarantee strategy-proofness (SP), and cannot handle varying numbers of agents or incorporate publicly available contextual information about agents, both of which are crucial in real-world applications. In this paper, we propose a new parametrized family of matching mechanisms that always satisfy strategy-proofness, are applicable for an arbitrary number of agents, and deal with public contextual information of agents, based on the serial dictatorship (SD). This family is represented by NeuralSD, a novel neural network architecture based on SD, where agent rankings in SD are treated as learnable parameters computed from agents' contexts using an attention-based sub-network. To enable learning, we introduce tensor serial dictatorship (TSD), a differentiable relaxation of SD using tensor operations. This allows NeuralSD to be trained end-to-end from example matchings while satisfying SP. We conducted experiments to learn a matching mechanism from matching examples while satisfying SP. We demonstrated that our method outperformed baselines in predicting matchings and on several metrics for goodness of matching outcomes.
♻ ☆ NeurIT: Pushing the Limit of Neural Inertial Tracking for Indoor Robotic IoT
Inertial tracking is vital for robotic IoT and has gained popularity thanks to the ubiquity of low-cost inertial measurement units and deep learning-powered tracking algorithms. Existing works, however, have not fully utilized IMU measurements, particularly magnetometers, nor have they maximized the potential of deep learning to achieve the desired accuracy. To address these limitations, we introduce NeurIT, which elevates tracking accuracy to a new level. NeurIT employs a Time-Frequency Block-recurrent Transformer (TF-BRT) at its core, combining both RNN and Transformer to learn representative features in both time and frequency domains. To fully utilize IMU information, we strategically employ body-frame differentiation of magnetometers, considerably reducing the tracking error. We implement NeurIT on a customized robotic platform and conduct evaluation in various indoor environments. Experimental results demonstrate that NeurIT achieves a mere 1-meter tracking error over a 300-meter distance. Notably, it significantly outperforms state-of-the-art baselines by 48.21% on unseen data. Moreover, NeurIT demonstrates robustness in large urban complexes and performs comparably to the visual-inertial approach (Tango Phone) in vision-favored conditions while surpassing it in feature-sparse settings. We believe NeurIT takes an important step forward toward practical neural inertial tracking for ubiquitous and scalable tracking of robotic things. NeurIT is open-sourced here: https://github.com/aiot-lab/NeurIT.
♻ ☆ ST-GDance: Long-Term and Collision-Free Group Choreography from Music
Group dance generation from music has broad applications in film, gaming, and animation production. However, it requires synchronizing multiple dancers while maintaining spatial coordination. As the number of dancers and sequence length increase, this task faces higher computational complexity and a greater risk of motion collisions. Existing methods often struggle to model dense spatial-temporal interactions, leading to scalability issues and multi-dancer collisions. To address these challenges, we propose ST-GDance, a novel framework that decouples spatial and temporal dependencies to optimize long-term and collision-free group choreography. We employ lightweight graph convolutions for distance-aware spatial modeling and accelerated sparse attention for efficient temporal modeling. This design significantly reduces computational costs while ensuring smooth and collision-free interactions. Experiments on the AIOZ-GDance dataset demonstrate that ST-GDance outperforms state-of-the-art baselines, particularly in generating long and coherent group dance sequences. Project page: https://yilliajing.github.io/ST-GDance-Website/.
comment: 10 pages, 3 figures. Accepted at BMVC 2025
♻ ☆ FastTrackTr:Towards Fast Multi-Object Tracking with Transformers
Transformer-based multi-object tracking (MOT) methods have captured the attention of many researchers in recent years. However, these models often suffer from slow inference speeds due to their structure or other issues. To address this problem, we revisited the Joint Detection and Tracking (JDT) method by looking back at past approaches. By integrating the original JDT approach with some advanced theories, this paper employs an efficient method of information transfer between frames on the DETR, constructing a fast and novel JDT-type MOT framework: FastTrackTr. Thanks to the superiority of this information transfer method, our approach not only reduces the number of queries required during tracking but also avoids the excessive introduction of network structures, ensuring model simplicity. Experimental results indicate that our method has the potential to achieve real-time tracking and exhibits competitive tracking accuracy across multiple datasets.
♻ ☆ A ChatGPT-based approach for questions generation in higher education AI
Large language models have been widely applied in many aspects of real life, bringing significant efficiency to businesses and offering distinctive user experiences. In this paper, we focus on exploring the application of ChatGPT, a chatbot based on a large language model, to support higher educator in generating quiz questions and assessing learners. Specifically, we explore interactive prompting patterns to design an optimal AI-powered question bank creation process. The generated questions are evaluated through a "Blind test" survey sent to various stakeholders including lecturers and learners. Initial results at the Banking Academy of Vietnam are relatively promising, suggesting a potential direction to streamline the time and effort involved in assessing learners at higher education institutes.
comment: Proceedings of the 1st ACM Workshop on AI-Powered Q&A Systems for Multimedia. 2024
♻ ☆ HypKG: Hypergraph-based Knowledge Graph Contextualization for Precision Healthcare
Knowledge graphs (KGs) are important products of the semantic web, which are widely used in various application domains. Healthcare is one of such domains where KGs are intensively used, due to the high requirement for knowledge accuracy and interconnected nature of healthcare data. However, KGs storing general factual information often lack the ability to account for important contexts of the knowledge such as the status of specific patients, which are crucial in precision healthcare. Meanwhile, electronic health records (EHRs) provide rich personal data, including various diagnoses and medications, which provide natural contexts for general KGs. In this paper, we propose HypKG, a framework that integrates patient information from EHRs into KGs to generate contextualized knowledge representations for accurate healthcare predictions. Using advanced entity-linking techniques, we connect relevant knowledge from general KGs with patient information from EHRs, and then utilize a hypergraph model to "contextualize" the knowledge with the patient information. Finally, we employ hypergraph transformers guided by downstream prediction tasks to jointly learn proper contextualized representations for both KGs and patients, fully leveraging existing knowledge in KGs and patient contexts in EHRs. In experiments using a large biomedical KG and two real-world EHR datasets, HypKG demonstrates significant improvements in healthcare prediction tasks across multiple evaluation metrics. Additionally, by integrating external contexts, HypKG can learn to adjust the representations of entities and relations in KG, potentially improving the quality and real-world utility of knowledge.
comment: Extended version of paper accepted at the 24th International Semantic Web Conference (ISWC 2025), Main Conference, Research Track, Oral
♻ ☆ Natural Language Processing for the Legal Domain: A Survey of Tasks, Datasets, Models, and Challenges
Natural Language Processing (NLP) is revolutionising the way both professionals and laypersons operate in the legal field. The considerable potential for NLP in the legal sector, especially in developing computational assistance tools for various legal processes, has captured the interest of researchers for years. This survey follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework, reviewing 154 studies, with a final selection of 131 after manual filtering. It explores foundational concepts related to NLP in the legal domain, illustrating the unique aspects and challenges of processing legal texts, such as extensive document lengths, complex language, and limited open legal datasets. We provide an overview of NLP tasks specific to legal text, such as Document Summarisation, Named Entity Recognition, Question Answering, Argument Mining, Text Classification, and Judgement Prediction. Furthermore, we analyse both developed legal-oriented language models, and approaches for adapting general-purpose language models to the legal domain. Additionally, we identify sixteen open research challenges, including the detection and mitigation of bias in artificial intelligence applications, the need for more robust and interpretable models, and improving explainability to handle the complexities of legal language and reasoning.
comment: 35 pages
♻ ☆ The challenge of hidden gifts in multi-agent reinforcement learning
Sometimes we benefit from actions that others have taken even when we are unaware that they took those actions. For example, if your neighbor chooses not to take a parking spot in front of your house when you are not there, you can benefit, even without being aware that they took this action. These "hidden gifts" represent an interesting challenge for multi-agent reinforcement learning (MARL), since assigning credit when the beneficial actions of others are hidden is non-trivial. Here, we study the impact of hidden gifts with a very simple MARL task. In this task, agents in a grid-world environment have individual doors to unlock in order to obtain individual rewards. As well, if all the agents unlock their door the group receives a larger collective reward. However, there is only one key for all of the doors, such that the collective reward can only be obtained when the agents drop the key for others after they use it. Notably, there is nothing to indicate to an agent that the other agents have dropped the key, thus the act of dropping the key for others is a "hidden gift". We show that several different state-of-the-art RL algorithms, including MARL algorithms, fail to learn how to obtain the collective reward in this simple task. Interestingly, we find that independent model-free policy gradient agents can solve the task when we provide them with information about their own action history, but MARL agents still cannot solve the task with action history. Finally, we derive a correction term for these independent agents, inspired by learning aware approaches, which reduces the variance in learning and helps them to converge to collective success more reliably. These results show that credit assignment in multi-agent settings can be particularly challenging in the presence of "hidden gifts", and demonstrate that learning awareness in independent agents can benefit these settings.
♻ ☆ Wavelet Meets Adam: Compressing Gradients for Memory-Efficient Training
Large language models (LLMs) have shown impressive performance across a range of natural language processing tasks. However, their vast number of parameters introduces significant memory challenges during training, particularly when using memory-intensive optimizers like Adam. Existing memory-efficient algorithms often rely on techniques such as singular value decomposition projection or weight freezing. While these approaches help alleviate memory constraints, they generally produce suboptimal results compared to full-rank updates. In this paper, we investigate the memory-efficient method beyond low-rank training, proposing a novel solution called Gradient Wavelet Transform (GWT), which applies wavelet transforms to gradients in order to significantly reduce the memory requirements for maintaining optimizer states. We demonstrate that GWT can be seamlessly integrated with memory-intensive optimizers, enabling efficient training without sacrificing performance. Through extensive experiments on both pre-training and fine-tuning tasks, we show that GWT achieves state-of-the-art performance compared with advanced memory-efficient optimizers and full-rank approaches in terms of both memory usage and training performance.
♻ ☆ Can one size fit all?: Measuring Failure in Multi-Document Summarization Domain Transfer
Abstractive multi-document summarization (MDS) is the task of automatically summarizing information in multiple documents, from news articles to conversations with multiple speakers. The training approaches for current MDS models can be grouped into four approaches: end-to-end with special pre-training ("direct"), chunk-then-summarize, extract-then-summarize, and inference with GPT-style models. In this work, we evaluate MDS models across training approaches, domains, and dimensions (reference similarity, quality, and factuality), to analyze how and why models trained on one domain can fail to summarize documents from another (News, Science, and Conversation) in the zero-shot domain transfer setting. We define domain-transfer "failure" as a decrease in factuality, higher deviation from the target, and a general decrease in summary quality. In addition to exploring domain transfer for MDS models, we examine potential issues with applying popular summarization metrics out-of-the-box.
♻ ☆ Insights into resource utilization of code small language models serving with runtime engines and execution providers
The rapid growth of language models, particularly in code generation, requires substantial computational resources, raising concerns about energy consumption and environmental impact. Optimizing language models inference resource utilization is crucial, and Small Language Models (SLMs) offer a promising solution to reduce resource demands. Our goal is to analyze the impact of deep learning serving configurations, defined as combinations of runtime engines and execution providers, on resource utilization, in terms of energy consumption, execution time, and computing-resource utilization from the point of view of software engineers conducting inference in the context of code generation SLMs. We conducted a technology-oriented, multi-stage experimental pipeline using twelve code generation SLMs to investigate energy consumption, execution time, and computing-resource utilization across the configurations. Significant differences emerged across configurations. CUDA execution provider configurations outperformed CPU execution provider configurations in both energy consumption and execution time. Among the configurations, TORCH paired with CUDA demonstrated the greatest energy efficiency, achieving energy savings from 37.99% up to 89.16% compared to other serving configurations. Similarly, optimized runtime engines like ONNX with the CPU execution provider achieved from 8.98% up to 72.04% energy savings within CPU-based configurations. Also, TORCH paired with CUDA exhibited efficient computing-resource utilization. Serving configuration choice significantly impacts resource utilization. While further research is needed, we recommend the above configurations best suited to software engineers' requirements for enhancing serving resource utilization efficiency.
comment: Accepted in Journal of Systems and Software (JSS). For its published version refer to the Journal of JSS
♻ ☆ Graph Sampling for Scalable and Expressive Graph Neural Networks on Homophilic Graphs
Graph Neural Networks (GNNs) excel in many graph machine learning tasks but face challenges when scaling to large networks. GNN transferability allows training on smaller graphs and applying the model to larger ones, but existing methods often rely on random subsampling, leading to disconnected subgraphs and reduced model expressivity. We propose a novel graph sampling algorithm that leverages feature homophily to preserve graph structure. By minimizing the trace of the data correlation matrix, our method better preserves the graph Laplacian trace -- a proxy for the graph connectivity -- than random sampling, while achieving lower complexity than spectral methods. Experiments on citation networks show improved performance in preserving Laplacian trace and GNN transferability compared to random sampling.
Computational Engineering, Finance, and Science 14
☆ Mesh based segmentation for automated margin line generation on incisors receiving crown treatment
Dental crowns are essential dental treatments for restoring damaged or missing teeth of patients. Recent design approaches of dental crowns are carried out using commercial dental design software. Once a scan of a preparation is uploaded to the software, a dental technician needs to manually define a precise margin line on the preparation surface, which constitutes a non-repeatable and inconsistent procedure. This work proposes a new framework to determine margin lines automatically and accurately using deep learning. A dataset of incisor teeth was provided by a collaborating dental laboratory to train a deep learning segmentation model. A mesh-based neural network was modified by changing its input channels and used to segment the prepared tooth into two regions such that the margin line is contained within the boundary faces separating the two regions. Next, k-fold cross-validation was used to train 5 models, and a voting classifier technique was used to combine their results to enhance the segmentation. After that, boundary smoothing and optimization using the graph cut method were applied to refine the segmentation results. Then, boundary faces separating the two regions were selected to represent the margin line faces. A spline was approximated to best fit the centers of the boundary faces to predict the margin line. Our results show that an ensemble model combined with maximum probability predicted the highest number of successful test cases (7 out of 13) based on a maximum distance threshold of 200 m (representing human error) between the predicted and ground truth point clouds. It was also demonstrated that the better the quality of the preparation, the smaller the divergence between the predicted and ground truth margin lines (Spearman's rank correlation coefficient of -0.683). We provide the train and test datasets for the community.
☆ Modelling and simulation of electro-mechanically coupled dielectric elastomers and myocardial tissue using smoothed finite element methods
Computational modelling offers a cost-effective and time-efficient alternative to experimental studies in biomedical engineering. In cardiac electro-mechanics, finite element method (FEM)-based simulations provide valuable insights into diseased tissue behaviour and the development of assistive systems such as di-electric elastomer actuators. However, the use of automatically generated tetrahedral meshes, commonly applied due to geometric complexity, often leads to numerical issues including overly stiff responses and volume locking, particularly in incompressible materials. Smoothed finite element methods (S-FEMs) offer a promising alternative by softening the stiffness matrix through gradient smoothing over defined smoothing domains. This work extends S-FEM formulations to electro-mechanically coupled problems and compares their performance against standard linear FEM. We implement and evaluate four approaches in the Abaqus environment via custom user elements: standard linear FEM, face-based S-FEM (FS-FEM), node-based S-FEM (NS-FEM), and the hybrid face/node-based S-FEM (FSNS-FEM). Two benchmark problems are studied: the electrically induced contraction of a compressible dielectric elastomer and an incompressible, orthotropic myocardial tissue sample. Reference solutions are obtained using a mesh consisting of higher-order elements. Our results demonstrate that FSNS-FEM provides the best balance between accuracy and computational efficiency, closely matching reference data. NS-FEM produces softer results, which leads to an overestimation of the true deformation. FS-FEM and standard FEM consistently exhibit overly stiff behaviour, with pronounced volume locking in the myocardial case. These findings support the potential of S-FEMs, in particular FSNS-FEM, for accurate simulation of coupled electro-mechanical behaviour in complex biomedical applications.
☆ Deep reinforcement learning for efficient exploration of combinatorial structural design spaces
This paper proposes a reinforcement learning framework for performance-driven structural design that combines bottom-up design generation with learned strategies to efficiently search large combinatorial design spaces. Motivated by the limitations of conventional top-down approaches such as optimization, the framework instead models structures as compositions of predefined elements, aligning form finding with practical constraints like constructability and component reuse. With the formulation of the design task as a sequential decision-making problem and a human learning inspired training algorithm, the method adapts reinforcement learning for structural design. The framework is demonstrated by designing steel braced truss frame cantilever structures, where trained policies consistently generate distinct, high-performing designs that display structural performance and material efficiency with the use of structural strategies that align with known engineering principles. Further analysis shows that the agent efficiently narrows its search to promising regions of the design space, revealing transferable structural knowledge.
comment: Submitted to the International Association for Shell and Spatial Structures (IASS) 2025 Symposium
☆ MASCA: LLM based-Multi Agents System for Credit Assessment ACL
Recent advancements in financial problem-solving have leveraged LLMs and agent-based systems, with a primary focus on trading and financial modeling. However, credit assessment remains an underexplored challenge, traditionally dependent on rule-based methods and statistical models. In this paper, we introduce MASCA, an LLM-driven multi-agent system designed to enhance credit evaluation by mirroring real-world decision-making processes. The framework employs a layered architecture where specialized LLM-based agents collaboratively tackle sub-tasks. Additionally, we integrate contrastive learning for risk and reward assessment to optimize decision-making. We further present a signaling game theory perspective on hierarchical multi-agent systems, offering theoretical insights into their structure and interactions. Our paper also includes a detailed bias analysis in credit assessment, addressing fairness concerns. Experimental results demonstrate that MASCA outperforms baseline approaches, highlighting the effectiveness of hierarchical LLM-based multi-agent systems in financial applications, particularly in credit scoring.
comment: Accepted at ACL REALM Workshop. Work in Progress
☆ A holomorphic Kolmogorov-Arnold network framework for solving elliptic problems on arbitrary 2D domains
Physics-informed holomorphic neural networks (PIHNNs) have recently emerged as efficient surrogate models for solving differential problems. By embedding the underlying problem structure into the network, PIHNNs require training only to satisfy boundary conditions, often resulting in significantly improved accuracy and computational efficiency compared to traditional physics-informed neural networks (PINNs). In this work, we improve and extend the application of PIHNNs to two-dimensional problems. First, we introduce a novel holomorphic network architecture based on the Kolmogorov-Arnold representation (PIHKAN), which achieves higher accuracy with reduced model complexity. Second, we develop mathematical extensions that broaden the applicability of PIHNNs to a wider class of elliptic partial differential equations, including the Helmholtz equation. Finally, we propose a new method based on Laurent series theory that enables the application of holomorphic networks to multiply-connected plane domains, thereby removing the previous limitation to simply-connected geometries.
☆ A surrogate model for topology optimisation of elastic structures via parametric autoencoders
A surrogate-based topology optimisation algorithm for linear elastic structures under parametric loads and boundary conditions is proposed. Instead of learning the parametric solution of the state (and adjoint) problems or the optimisation trajectory as a function of the iterations, the proposed approach devises a surrogate version of the entire optimisation pipeline. First, the method predicts a quasi-optimal topology for a given problem configuration as a surrogate model of high-fidelity topologies optimised with the homogenisation method. This is achieved by means of a feed-forward net learning the mapping between the input parameters characterising the system setup and a latent space determined by encoder/decoder blocks reducing the dimensionality of the parametric topology optimisation problem and reconstructing a high-dimensional representation of the topology. Then, the predicted topology is used as an educated initial guess for a computationally efficient algorithm penalising the intermediate values of the design variable, while enforcing the governing equations of the system. This step allows the method to correct potential errors introduced by the surrogate model, eliminate artifacts, and refine the design in order to produce topologies consistent with the underlying physics. Different architectures are proposed and the approximation and generalisation capabilities of the resulting models are numerically evaluated. The quasi-optimal topologies allow to outperform the high-fidelity optimiser by reducing the average number of optimisation iterations by $53\%$ while achieving discrepancies below $4\%$ in the optimal value of the objective functional, even in the challenging scenario of testing the model to extrapolate beyond the training and validation domain.
comment: 39 pages, 13 figures, 7 tables
☆ Mean-Variance Optimization and Algorithm for Finite-Horizon Markov Decision Processes
Multi-period mean-variance optimization is a long-standing problem, caused by the failure of dynamic programming principle. This paper studies the mean-variance optimization in a setting of finite-horizon discrete-time Markov decision processes (MDPs), where the objective is to maximize the combined metrics of mean and variance of the accumulated rewards at terminal stage. By introducing the concepts of pseudo mean and pseudo variance, we convert the original mean-variance MDP to a bilevel MDP, where the outer is a single parameter optimization of the pseudo mean and the inner is a standard finite-horizon MDP with an augmented state space by adding an auxiliary state of accumulated rewards. We further study the properties of this bilevel MDP, including the optimality of history-dependent deterministic policies and the piecewise quadratic concavity of the inner MDPs' optimal values with respect to the pseudo mean. To efficiently solve this bilevel MDP, we propose an iterative algorithm that alternatingly updates the inner optimal policy and the outer pseudo mean. We prove that this algorithm converges to a local optimum. We also derive a sufficient condition under which our algorithm converges to the global optimum. Furthermore, we apply this approach to study the mean-variance optimization of multi-period portfolio selection problem, which shows that our approach exactly coincides with the classical result by Li and Ng (2000) in financial engineering. Our approach builds a new avenue to solve mean-variance optimization problems and has wide applicability to any problem modeled by MDPs, which is further demonstrated by examples of mean-variance optimization for queueing control and inventory management.
comment: 55 pages, 10+figures, a thorough study of mean-variance optimization for finite-horizon MDPs, also applicable to develop reinforcement learning algorithms
☆ Cycles Protocol: A Peer-to-Peer Electronic Clearing System
For centuries, financial institutions have responded to liquidity challenges by forming closed, centralized clearing clubs with strict rules and membership that allow them to collaborate on using the least money to discharge the most debt. As closed clubs, much of the general public has been excluded from participation. But the vast majority of private sector actors consists of micro or small firms that are vulnerable to late payments and generally ineligible for bank loans. This low liquidity environment often results in gridlock and leads to insolvency, and it disproportionately impacts small enterprises and communities. On the other hand, blockchain communities have developed open, decentralized settlement systems, along with a proliferation of store of value assets and new lending protocols, allowing anyone to permissionlessly transact and access credit. However, these protocols remain used primarily for speculative purposes, and so far have fallen short of the large-scale positive impact on the real economy prophesied by their promoters. We address these challenges by introducing Cycles, an open, decentralized clearing, settlement, and issuance protocol. Cycles is designed to enable firms to overcome payment inefficiencies, to reduce their working capital costs, and to leverage diverse assets and liquidity sources, including cryptocurrencies, stablecoins, and lending protocols, in service of clearing more debt with less money. Cycles solves real world liquidity challenges through a privacy-preserving multilateral settlement platform based on a graph optimization algorithm. The design is based on a core insight: liquidity resides within cycles in the payment network's structure and can be accessed via settlement flows optimized to reduce debt.
comment: 28 pages, 15 figures
☆ Axioms for Model Fidelity Evaluation
Digital engineering has transformed the design and development process. However, the utility of digital engineering is fundamentally dependent on the assumption that a simulation provides information consistent with reality. This relationship is described as model fidelity. Despite the widespread use of the term, existing definitions of model fidelity often lack formal rigor in practical application, which leaves ambiguity in how this similarity should be evaluated. This paper presents seven fundamental axioms to aid the development of future fidelity evaluation frameworks. An example of a ground vehicle model is used under an existing fidelity evaluation framework to observe the applicability of these axioms. In addition, these axioms are used as a reference point for considering future opportunities in future work related to model fidelity.
comment: This is the authors' preprint (submitted version) of a paper accepted for ASME IDETC/CIE 2025, edited only to note preprint status. Posted in compliance with ASME 's preprint and copyright policy. The final version is copyrighted by ASME and will appear in the ASME Digital Collection. The DOI will be added once published
Data Readiness for Scientific AI at Scale
This paper examines how Data Readiness for AI (DRAI) principles apply to leadership-scale scientific datasets used to train foundation models. We analyze archetypal workflows across four representative domains - climate, nuclear fusion, bio/health, and materials - to identify common preprocessing patterns and domain-specific constraints. We introduce a two-dimensional readiness framework composed of Data Readiness Levels (raw to AI-ready) and Data Processing Stages (ingest to shard), both tailored to high performance computing (HPC) environments. This framework outlines key challenges in transforming scientific data for scalable AI training, emphasizing transformer-based generative models. Together, these dimensions form a conceptual maturity matrix that characterizes scientific data readiness and guides infrastructure development toward standardized, cross-domain support for scalable and reproducible AI for science.
comment: 10 pages, 1 figure, 2 tables
☆ Scientific Machine Learning with Kolmogorov-Arnold Networks
The field of scientific machine learning, which originally utilized multilayer perceptrons (MLPs), is increasingly adopting Kolmogorov-Arnold Networks (KANs) for data encoding. This shift is driven by the limitations of MLPs, including poor interpretability, fixed activation functions, and difficulty capturing localized or high-frequency features. KANs address these issues with enhanced interpretability and flexibility, enabling more efficient modeling of complex nonlinear interactions and effectively overcoming the constraints associated with conventional MLP architectures. This review categorizes recent progress in KAN-based models across three distinct perspectives: (i) data-driven learning, (ii) physics-informed modeling, and (iii) deep operator learning. Each perspective is examined through the lens of architectural design, training strategies, application efficacy, and comparative evaluation against MLP-based counterparts. By benchmarking KANs against MLPs, we highlight consistent improvements in accuracy, convergence, and spectral representation, clarifying KANs' advantages in capturing complex dynamics while learning more effectively. Finally, this review identifies critical challenges and open research questions in KAN development, particularly regarding computational efficiency, theoretical guarantees, hyperparameter tuning, and algorithm complexity. We also outline future research directions aimed at improving the robustness, scalability, and physical consistency of KAN-based frameworks.
♻ ☆ Dynamic flux surrogate-based partitioned methods for interface problems
Loosely coupled partitioned methods for multiphysics problems treat each subproblem as a separate entity and advance them independently in time. In so doing these methods enable code reuse, increase concurrency and provide a convenient framework for plug-and-play multiphysics simulations. However, mathematically loosely coupled schemes are equivalent to a single step of an iterative solution method, which can compromise their accuracy and stability. We present a new data-driven partitioned method for coupled parametric PDEs that can improve upon the accuracy of traditional loosely coupled methods without incurring a performance penalty. To that end, we replace conventional field transfers across the interface by a surrogate for the dynamics of the interface flux exchanged between the subdomains. To develop this surrogate we apply dynamic mode decomposition to a non-standard staggered-in-time state, comprising the interface flux and small solution patches near the interface. The new approach shifts the main computational burden to an offline training phase, whereas application of the surrogate in the online phase amounts to a single matrix-vector multiplication. We provide stability analysis of the surrogate-based partitioned scheme and include numerical results that demonstrate its potential.
♻ ☆ ChemDFM-R: An Chemical Reasoner LLM Enhanced with Atomized Chemical Knowledge
While large language models (LLMs) have achieved impressive progress, their application in scientific domains such as chemistry remains hindered by shallow domain understanding and limited reasoning capabilities. In this work, we focus on the specific field of chemistry and develop a Chemical Reasoner LLM, ChemDFM-R. We first construct a comprehensive dataset of atomized knowledge points to enhance the model's understanding of the fundamental principles and logical structure of chemistry. Then, we propose a mix-sourced distillation strategy that integrates expert-curated knowledge with general-domain reasoning skills, followed by domain-specific reinforcement learning to enhance chemical reasoning. Experiments on diverse chemical benchmarks demonstrate that ChemDFM-R achieves cutting-edge performance while providing interpretable, rationale-driven outputs. Further case studies illustrate how explicit reasoning chains significantly improve the reliability, transparency, and practical utility of the model in real-world human-AI collaboration scenarios.
comment: 13 figures, 4 tables
♻ ☆ Predict Patient Self-reported Race from Skin Histological Images AI
Artificial Intelligence (AI) has demonstrated success in computational pathology (CPath) for disease detection, biomarker classification, and prognosis prediction. However, its potential to learn unintended demographic biases, particularly those related to social determinants of health, remains understudied. This study investigates whether deep learning models can predict self-reported race from digitized dermatopathology slides and identifies potential morphological shortcuts. Using a multisite dataset with a racially diverse population, we apply an attention-based mechanism to uncover race-associated morphological features. After evaluating three dataset curation strategies to control for confounding factors, the final experiment showed that White and Black demographic groups retained high prediction performance (AUC: 0.799, 0.762), while overall performance dropped to 0.663. Attention analysis revealed the epidermis as a key predictive feature, with significant performance declines when these regions were removed. These findings highlight the need for careful data curation and bias mitigation to ensure equitable AI deployment in pathology. Code available at: https://github.com/sinai-computational-pathology/CPath_SAIF.
comment: Accepted to the MICCAI Workshop on Fairness of AI in Medical Imaging (FAIMI), 2025
Databases 10
☆ Benchmarking Filtered Approximate Nearest Neighbor Search Algorithms on Transformer-based Embedding Vectors
Advances in embedding models for text, image, audio, and video drive progress across multiple domains, including retrieval-augmented generation, recommendation systems, vehicle/person reidentification, and face recognition. Many applications in these domains require an efficient method to retrieve items that are close to a given query in the embedding space while satisfying a filter condition based on the item's attributes, a problem known as Filtered Approximate Nearest Neighbor Search (FANNS). In this work, we present a comprehensive survey and taxonomy of FANNS methods and analyze how they are benchmarked in the literature. By doing so, we identify a key challenge in the current FANNS landscape: the lack of diverse and realistic datasets, particularly ones derived from the latest transformer-based text embedding models. To address this, we introduce a novel dataset consisting of embedding vectors for the abstracts of over 2.7 million research articles from the arXiv repository, accompanied by 11 real-world attributes such as authors and categories. We benchmark a wide range of FANNS methods on our novel dataset and find that each method has distinct strengths and limitations; no single approach performs best across all scenarios. ACORN, for example, supports various filter types and performs reliably across dataset scales but is often outperformed by more specialized methods. SeRF shows excellent performance for range filtering on ordered attributes but cannot handle categorical attributes. Filtered-DiskANN and UNG excel on the medium-scale dataset but fail on the large-scale dataset, highlighting the challenge posed by transformer-based embeddings, which are often more than an order of magnitude larger than earlier embeddings. We conclude that no universally best method exists.
☆ Ranking Methods for Skyline Queries
{Multi-criteria decision analysis in databases has been actively studied, especially through the Skyline operator. Yet, few approaches offer a relevant comparison of Pareto optimal, or Skyline, points for high cardinality result sets. We propose to improve the dp-idp method, inspired by tf-idf, a recent approach computing a score for each Skyline point, by introducing the concept of dominance hierarchy. As dp-idp lacks efficiency and does not ensure a distinctive rank, we introduce the RankSky method, the adaptation of Google's well-known PageRank solution, using a square stochastic matrix, a teleportation matrix, a damping factor, and then a row score eigenvector and the IPL algorithm. For the same reasons as RankSky, and also to offer directly embeddable in DBMS solution, we establish the TOPSIS based CoSky method, derived from both information research and multi-criteria analysis. CoSky automatically ponderates normalized attributes using the Gini index, then computes a score using Salton's cosine toward an ideal point. By coupling multilevel Skyline to dp-idp, RankSky or CoSky, we introduce DeepSky. Implementations of dp-idp, RankSky and CoSky are evaluated experimentally.
☆ SourceSplice: Source Selection for Machine Learning Tasks
Data quality plays a pivotal role in the predictive performance of machine learning (ML) tasks - a challenge amplified by the deluge of data sources available in modern organizations.Prior work in data discovery largely focus on metadata matching, semantic similarity or identifying tables that should be joined to answer a particular query, but do not consider source quality for high performance of the downstream ML task.This paper addresses the problem of determining the best subset of data sources that must be combined to construct the underlying training dataset for a given ML task.We propose SourceGrasp and SourceSplice, frameworks designed to efficiently select a suitable subset of sources that maximizes the utility of the downstream ML model.Both the algorithms rely on the core idea that sources (or their combinations) contribute differently to the task utility, and must be judiciously chosen.While SourceGrasp utilizes a metaheuristic based on a greediness criterion and randomization, the SourceSplice framework presents a source selection mechanism inspired from gene splicing - a core concept used in protein synthesis.We empirically evaluate our algorithms on three real-world datasets and synthetic datasets and show that, with significantly fewer subset explorations, SourceSplice effectively identifies subsets of data sources leading to high task utility.We also conduct studies reporting the sensitivity of SourceSplice to the decision choices under several settings.
☆ Compact Answers to Temporal Path Queries
We study path-based graph queries that, in addition to navigation through edges, also perform navigation through time. This allows asking questions about the dynamics of networks, like traffic movement, cause-effect relationships, or the spread of a disease. In this setting, a graph consists of triples annotated with validity intervals, and a query produces pairs of nodes where each pair is associated with a binary relation over time. For instance, such a pair could be two airports, and the temporal relation could map potential departure times to possible arrival times. An open question is how to represent such a relation in a compact form and maintain this property during query evaluation. We investigate four compact representations of answers to a such queries, which are based on alternative ways to encode sets of intervals. We discuss their respective advantages and drawbacks, in terms of conciseness, uniqueness, and computational cost. Notably, the most refined encoding guarantees that query answers over dense time can be finitely represented.
comment: Extended version of a paper accepted at the ISWC 2025 conference
♻ ☆ Towards Next Generation Data Engineering Pipelines
Data engineering pipelines are a widespread way to provide high-quality data for all kinds of data science applications. However, numerous challenges still remain in the composition and operation of such pipelines. Data engineering pipelines do not always deliver high-quality data. By default, they are also not reactive to changes. When new data is coming in which deviates from prior data, the pipeline could crash or output undesired results. We therefore envision three levels of next generation data engineering pipelines: optimized data pipelines, self-aware data pipelines, and self-adapting data pipelines. Pipeline optimization addresses the composition of operators and their parametrization in order to achieve the highest possible data quality. Self-aware data engineering pipelines enable a continuous monitoring of its current state, notifying data engineers on significant changes. Self-adapting data engineering pipelines are then even able to automatically react to those changes. We propose approaches to achieve each of these levels.
♻ ☆ Towards an Application-Centric Benchmark Suite for Spatiotemporal Database Systems
Spatiotemporal data play a key role for mobility-based applications and are their produced volume is growing continuously, among others, due to the increased availability of IoT devices. When working with spatiotemporal data, developers rely on spatiotemporal database systems such as PostGIS or MobilityDB. For better understanding their quality of service behavior and then choosing the best system, benchmarking is the go-to approach. Unfortunately, existing work in this field studies only small isolated aspects and a comprehensive application-centric benchmark suite is still missing. In this paper, we argue that an application-centric benchmark suite for spatiotemporal database systems is urgently needed. We identify requirements for such a benchmark suite, discuss domain-specific challenges, and sketch-out the architecture of a modular benchmarking suite.
comment: Accepted for publication in 13th IEEE International Conference on Cloud Engineering (IC2E 2025)
♻ ☆ Evaluating the Impact Of Spatial Features Of Mobility Data and Index Choice On Database Performance
The growing number of moving Internet-of-Things (IoT) devices has led to a surge in moving object data, powering applications such as traffic routing, hotspot detection, or weather forecasting. When managing such data, spatial database systems offer various index options and data formats, e.g., point-based or trajectory-based. Likewise, dataset characteristics such as geographic overlap and skew can vary significantly. All three significantly affect database performance. While this has been studied in existing papers, none of them explore the effects and trade-offs resulting from a combination of all three aspects. In this paper, we evaluate the performance impact of index choice, data format, and dataset characteristics on a popular spatial database system, PostGIS. We focus on two aspects of dataset characteristics, the degree of overlap and the degree of skew, and propose novel approximation methods to determine these features. We design a benchmark that compares a variety of spatial indexing strategies and data formats, while also considering the impact of dataset characteristics on database performance. We include a variety of real-world and synthetic datasets, write operations, and read queries to cover a broad range of scenarios that might occur during application runtime. Our results offer practical guidance for developers looking to optimize spatial storage and querying, while also providing insights into dataset characteristics and their impact on database performance.
comment: Accepted for publication in 13th IEEE International Conference on Cloud Engineering (IC2E 2025)
♻ ☆ Ethereum Conflicts Graphed
Ethereum, a leading blockchain platform, has revolutionized the digital economy by enabling decentralized transactions and the execution of smart contracts. Ethereum transactions form the backbone of its network, facilitating peer-to-peer exchanges and interactions with complex decentralized applications. Smart contracts extend Ethereum's capabilities by automating processes and enabling trustless execution of agreements. Hence, understanding how these smart contracts interact is important in order to facilitate various performance optimizations, such as warming objects before they are being accessed and enabling concurrent execution. Of particular interest to us are the development of the calling graph, as well as the read sets and write sets of invocations within the same block, and the properties of the associated conflict graph that is derived from them. The latter is important for understanding the parallelization potential of smart contracts on Ethereum. We traced upwards of 2 million recent Ethereum blocks using call tracer and prestate tracer, out of a total of 21.4 million blocks at the time of writing. We report on the transactions per block distribution, the structure of call trees in smart contract invocations, the ratio of value-transfer transactions to smart contract invocations, as well as provide a comprehensive study of the structure of blocks' conflict graphs. We find that conflict graphs predominantly show a star like configuration, as well as other noteworthy structural properties.
comment: A slightly shorter version To appear in the Proceedings of the IEEE International Conference on Blockchain and Cryptocurrency, ICBC 2025
♻ ☆ Efficient Selection of Informative Alternative Relational Query Plans for Database Education
A key learning goal of learners taking database systems course is to understand how SQL queries are processed in an RDBMS in practice. To this end, comprehension of the cost-based comparison of different plan choices to select the query execution plan (QEP) of a query is paramount. Unfortunately, off-the-shelf RDBMS typically only expose the selected QEP to users without revealing information about representative alternative query plans considered during QEP selection in a learner-friendly manner, hindering the learning process. In this paper, we present a novel end-to-end and generic framework called ARENA that facilitates exploration of informative alternative query plans of a given SQL query to aid the comprehension of QEP selection. Under the hood, ARENA addresses a novel problem called alternative plan selection problem (TIPS) which aims to discover a set of k alternative plans from the underlying plan space so that the plan interestingness of the set is maximized. Specifically, we explore two variants of the problem, namely batch TIPS and incremental TIPS, to cater to diverse set of learners. Due to the computational hardness of the problem, we present a 2 approximation algorithm to address it efficiently. Exhaustive experimental study with real-world learners demonstrates the effectiveness of arena in enhancing learners' understanding of the alternative plan choices considered during QEP selection.
♻ ☆ AgileDART: An Agile and Scalable Edge Stream Processing Engine
Edge applications generate a large influx of sensor data on massive scales, and these massive data streams must be processed shortly to derive actionable intelligence. However, traditional data processing systems are not well-suited for these edge applications as they often do not scale well with a large number of concurrent stream queries, do not support low-latency processing under limited edge computing resources, and do not adapt to the level of heterogeneity and dynamicity commonly present in edge computing environments. As such, we present AgileDart, an agile and scalable edge stream processing engine that enables fast stream processing of many concurrently running low-latency edge applications' queries at scale in dynamic, heterogeneous edge environments. The novelty of our work lies in a dynamic dataflow abstraction that leverages distributed hash table-based peer-to-peer overlay networks to autonomously place, chain, and scale stream operators to reduce query latencies, adapt to workload variations, and recover from failures and a bandit-based path planning model that re-plans the data shuffling paths to adapt to unreliable and heterogeneous edge networks. We show that AgileDart outperforms Storm and EdgeWise on query latency and significantly improves scalability and adaptability when processing many real-world edge stream applications' queries.
comment: Published in IEEE Transactions on Mobile Computing
Distributed, Parallel, and Cluster Computing 15
☆ Large-Scale Linear Energy System Optimization: A Systematic Review on Parallelization Strategies via Decomposition
As renewable energy integration, sector coupling, and spatiotemporal detail increase, energy system optimization models grow in size and complexity, often pushing solvers to their performance limits. This systematic review explores parallelization strategies that can address these challenges. We first propose a classification scheme for linear energy system optimization models, covering their analytical focus, mathematical structure, and scope. We then review parallel decomposition methods, finding that while many offer performance benefits, no single approach is universally superior. The lack of standardized benchmark suites further complicates comparison. To address this, we recommend essential criteria for future benchmarks and minimum reporting standards. We also survey available software tools for parallel decomposition, including modular frameworks and algorithmic abstractions. Though centered on energy system models, our insights extend to the broader operations research field.
☆ The Performance of Low-Synchronization Variants of Reorthogonalized Block Classical Gram--Schmidt
Numerous applications, such as Krylov subspace solvers, make extensive use of the block classical Gram-Schmidt (BCGS) algorithm and its reorthogonalized variants for orthogonalizing a set of vectors. For large-scale problems in distributed memory settings, the communication cost, particularly the global synchronization cost, is a major performance bottleneck. In recent years, many low-synchronization BCGS variants have been proposed in an effort to reduce the number of synchronization points. The work [E. Carson, Y. Ma, arXiv preprint 2411.07077] recently proposed stable one-synchronization and two-synchronization variants of BCGS, i.e., BCGSI+P-1S and BCGSI+P-2S. In this work, we evaluate the performance of BCGSI+P-1S and BCGSI+P-2S on a distributed memory system compared to other well-known low-synchronization BCGS variants. In comparison to the classical reorthogonalized BCGS algorithm (BCGSI+), numerical experiments demonstrate that BCGSI+P-1S and BCGSI+P-2S can achieve up to 4 times and 2 times speedups, respectively, and perform similarly to other (less stable) one-synchronization and two-synchronization variants. BCGSI+P-1S and BCGSI+P-2S are therefore recommended as the best choice in practice for computing an economic QR factorization on distributed memory systems due to their superior stability when compared to other variants with the same synchronization cost.
comment: 7 pages, 2 figures
☆ Collaborative State Machines: A Better Programming Model for the Cloud-Edge-IoT Continuum
The development of Cloud-Edge-IoT applications requires robust programming models. Existing models often struggle to manage the dynamic and stateful nature of these applications effectively. This paper introduces the Collaborative State Machines (CSM) programming model to address these complexities. CSM facilitates the development of reactive, event-driven, and stateful applications targeting the Cloud-Edge-IoT continuum. Applications built with CSM are composed of state machines that collaborate autonomously and can be distributed across different layers of the continuum. Key features of CSM include (i) a sophisticated collaboration mechanism among state machines utilizing events and persistent data; (ii) encapsulation of state through the inherent state of state machines and persistent data; (iii) integration of actions and service invocations within states and state transitions, thereby decoupling complex application logic from compute and data processing services; and (iv) an advanced data model that supports the processing of local, static, and persistent data with defined scope and lifetime. In addition to introducing the CSM programming model, we present a runtime system and a comprehensive evaluation of our approach. This evaluation is based on three use cases: a stress test on a large-scale infrastructure, a surveillance system application, and a complex smart factory scenario, all deployed on the Grid'5000 testbed. Our results demonstrate a 12x increase in throughput through novel language features in the stress test. Compared to Serverless Workflow, a state-of-the-art baseline system, we show a 2.3x improvement in processing time per processed image in a surveillance system use case, a 55x reduction in total processing time for a smart factory use case, and an overall improvement in productivity across these use cases.
☆ Bridging Cache-Friendliness and Concurrency: A Locality-Optimized In-Memory B-Skiplist
Skiplists are widely used for in-memory indexing in many key-value stores, such as RocksDB and LevelDB, due to their ease of implementation and simple concurrency control mechanisms. However, traditional skiplists suffer from poor cache locality, as they store only a single element per node, leaving performance on the table. Minimizing last-level cache misses is key to maximizing in-memory index performance, making high cache locality essential. In this paper, we present a practical concurrent B-skiplist that enhances cache locality and performance while preserving the simplicity of traditional skiplist structures and concurrency control schemes. Our key contributions include a top-down, single-pass insertion algorithm for B-skiplists and a corresponding simple and efficient top-down concurrency control scheme. On 128 threads, the proposed concurrent B-skiplist achieves between 2x-9x higher throughput compared to state-of-the-art concurrent skiplist implementations, including Facebook's concurrent skiplist from Folly and the Java ConcurrentSkipListMap. Furthermore, we find that the B-skiplist achieves competitive (0.9x-1.7x) throughput on point workloads compared to state-of-the-art cache-optimized tree-based indices (e.g., Masstree). For a more complete picture of the performance, we also measure the latency of skiplist and tree-based indices and find that the B-skiplist achieves between 3.5x-103x lower 99% latency compared to other concurrent skiplists and between 0.85x-64x lower 99% latency compared to tree-based indices on point workloads with inserts.
comment: Accepted into ICPP 2025
☆ GlideinBenchmark: collecting resource information to optimize provisioning
Choosing the right resource can speed up job completion, better utilize the available hardware, and visibly reduce costs, especially when renting computers in the cloud. This was demonstrated in earlier studies on HEPCloud. However, the benchmarking of the resources proved to be a laborious and time-consuming process. This paper presents GlideinBenchmark, a new Web application leveraging the pilot infrastructure of GlideinWMS to benchmark resources, and it shows how to use the data collected and published by GlideinBenchmark to automate the optimal selection of resources. An experiment can select the benchmark or the set of benchmarks that most closely evaluate the performance of its workflows. GlideinBenchmark, with the help of the GlideinWMS Factory, controls the benchmark execution. Finally, a scheduler like HEPCloud's Decision Engine can use the results to optimize resource provisioning.
comment: 6 pages, 3 figures, for associated code, see [this https URL](https://github.com/glideinWMS/glideinbenchmark), to be published in proceedings of 27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024). 21-25 October 2024. Krakow,; Poland. (C24-10-21.8)
☆ Using Containers to Speed Up Development, to Run Integration Tests and to Teach About Distributed Systems
GlideinWMS is a workload manager provisioning resources for many experiments, including CMS and DUNE. The software is distributed both as native packages and specialized production containers. Following an approach used in other communities like web development, we built our workspaces, system-like containers to ease development and testing. Developers can change the source tree or check out a different branch and quickly reconfigure the services to see the effect of their changes. In this paper, we will talk about what differentiates workspaces from other containers. We will describe our base system, composed of three containers: a one-node cluster including a compute element and a batch system, a GlideinWMS Factory controlling pilot jobs, and a scheduler and Frontend to submit jobs and provision resources. Additional containers can be used for optional components. This system can easily run on a laptop, and we will share our evaluation of different container runtimes, with an eye for ease of use and performance. Finally, we will talk about our experience as developers and with students. The GlideinWMS workspaces are easily integrated with IDEs like VS Code, simplifying debugging and allowing development and testing of the system even when offline. They simplified the training and onboarding of new team members and summer interns. And they were useful in workshops where students could have first-hand experience with the mechanisms and components that, in production, run millions of jobs.
comment: 8 pages, 3 figures, for associated code, see [this https URL](https://github.com/glideinWMS/containers), to be published in proceedings of 27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024). 21-25 October 2024. Krakow,; Poland. (C24-10-21.8)
☆ Minimizing CGYRO HPC Communication Costs in Ensembles with XGYRO by Sharing the Collisional Constant Tensor Structure
First-principles fusion plasma simulations are both compute and memory intensive, and CGYRO is no exception. The use of many HPC nodes to fit the problem in the available memory thus results in significant communication overhead, which is hard to avoid for any single simulation. That said, most fusion studies are composed of ensembles of simulations, so we developed a new tool, named XGYRO, that executes a whole ensemble of CGYRO simulations as a single HPC job. By treating the ensemble as a unit, XGYRO can alter the global buffer distribution logic and apply optimizations that are not feasible on any single simulation, but only on the ensemble as a whole. The main saving comes from the sharing of the collisional constant tensor structure, since its values are typically identical between parameter-sweep simulations. This data structure dominates the memory consumption of CGYRO simulations, so distributing it among the whole ensemble results in drastic memory savings for each simulation, which in turn results in overall lower communication overhead.
comment: 3 pages, 3 figures, Accepted at ICPP25
☆ OpenRASE: Service Function Chain Emulation
Service Function Chains (SFCs) are one of the key enablers in providing programmable computer networks, paving the way for network autonomy. However, this also introduces new challenges, such as resource allocation and optimisation related to their operation, requiring new algorithms to address these challenges. Various tools have been used in the literature to evaluate these algorithms. However, these tools suffer from inaccuracy, low fidelity, unscalability, inflexibility, or additional code requirements. This paper introduces an emulator based on Mininet and Docker for SFCs called OpenRASE. The goal of OpenRASE is to enable the exploration of resource allocation algorithms for SFCs in a dynamic setting, allowing real CPU usage and latency to be measured. We describe the design and implementation of OpenRASE and discuss its characteristics. We also experimentally evaluate two different algorithms to address the SFC resource allocation challenge, including an online Genetic Algorithm, using OpenRASE to show its effectiveness and practicality for dynamic network conditions.
comment: Accepted to IEEE SoftCom 2025
♻ ☆ Evaluating the Impact Of Spatial Features Of Mobility Data and Index Choice On Database Performance
The growing number of moving Internet-of-Things (IoT) devices has led to a surge in moving object data, powering applications such as traffic routing, hotspot detection, or weather forecasting. When managing such data, spatial database systems offer various index options and data formats, e.g., point-based or trajectory-based. Likewise, dataset characteristics such as geographic overlap and skew can vary significantly. All three significantly affect database performance. While this has been studied in existing papers, none of them explore the effects and trade-offs resulting from a combination of all three aspects. In this paper, we evaluate the performance impact of index choice, data format, and dataset characteristics on a popular spatial database system, PostGIS. We focus on two aspects of dataset characteristics, the degree of overlap and the degree of skew, and propose novel approximation methods to determine these features. We design a benchmark that compares a variety of spatial indexing strategies and data formats, while also considering the impact of dataset characteristics on database performance. We include a variety of real-world and synthetic datasets, write operations, and read queries to cover a broad range of scenarios that might occur during application runtime. Our results offer practical guidance for developers looking to optimize spatial storage and querying, while also providing insights into dataset characteristics and their impact on database performance.
comment: Accepted for publication in 13th IEEE International Conference on Cloud Engineering (IC2E 2025)
♻ ☆ Quantize Once, Train Fast: Allreduce-Compatible Compression with Provable Guarantees AI'25
Distributed training enables large-scale deep learning, but suffers from high communication overhead, especially as models and datasets grow. Gradient compression, particularly quantization, is a promising approach to mitigate this bottleneck. However, existing quantization schemes are often incompatible with Allreduce, the dominant communication primitive in distributed deep learning, and many prior solutions rely on heuristics without theoretical guarantees. We introduce Global-QSGD, an Allreduce-compatible gradient quantization method that leverages global norm scaling to reduce communication overhead while preserving accuracy. Global-QSGD is backed by rigorous theoretical analysis, extending standard unbiased compressor frameworks to establish formal convergence guarantees. Additionally, we develop a performance model to evaluate its impact across different hardware configurations. Extensive experiments on NVLink, PCIe, and large-scale cloud environments show that Global-QSGD accelerates distributed training by up to 3.51% over baseline quantization methods, making it a practical and efficient solution for large-scale deep learning workloads.
comment: ECAI'25
♻ ☆ Ethereum Conflicts Graphed
Ethereum, a leading blockchain platform, has revolutionized the digital economy by enabling decentralized transactions and the execution of smart contracts. Ethereum transactions form the backbone of its network, facilitating peer-to-peer exchanges and interactions with complex decentralized applications. Smart contracts extend Ethereum's capabilities by automating processes and enabling trustless execution of agreements. Hence, understanding how these smart contracts interact is important in order to facilitate various performance optimizations, such as warming objects before they are being accessed and enabling concurrent execution. Of particular interest to us are the development of the calling graph, as well as the read sets and write sets of invocations within the same block, and the properties of the associated conflict graph that is derived from them. The latter is important for understanding the parallelization potential of smart contracts on Ethereum. We traced upwards of 2 million recent Ethereum blocks using call tracer and prestate tracer, out of a total of 21.4 million blocks at the time of writing. We report on the transactions per block distribution, the structure of call trees in smart contract invocations, the ratio of value-transfer transactions to smart contract invocations, as well as provide a comprehensive study of the structure of blocks' conflict graphs. We find that conflict graphs predominantly show a star like configuration, as well as other noteworthy structural properties.
comment: A slightly shorter version To appear in the Proceedings of the IEEE International Conference on Blockchain and Cryptocurrency, ICBC 2025
♻ ☆ A Massively Parallel Performance Portable Free-space Spectral Poisson Solver
Vico et al. (2016) suggest a fast algorithm for computing volume potentials, beneficial to fields with problems requiring the solution of the free-space Poisson's equation, such as beam and plasma physics. Currently, the standard is the algorithm of Hockney and Eastwood (1988), with second order in convergence at best. The algorithm proposed by Vico et al. converges spectrally for sufficiently smooth functions i.e. faster than any fixed order in the number of grid points. We implement a performance portable version of the traditional Hockney-Eastwood and the novel Vico-Greengard Poisson solver as part of the IPPL (Independent Parallel Particle Layer) library. For sufficiently smooth source functions, the Vico-Greengard algorithm achieves higher accuracy than the Hockney-Eastwood method with the same grid size, reducing the computational demands of high resolution simulations since one could use coarser grids to achieve them. Additionally, we propose an improvement to the Vico-Greengard method which further reduces its memory footprint. This is important for GPUs, which have limited memory, and should be taken into account when selecting numerical algorithms for performance portable codes. Finally, we showcase performance through GPU and CPU scaling studies on the Perlmutter (NERSC) supercomputer, with efficiencies staying above 50% in the strong scaling case. To showcase portability, we also run the scaling studies on the Alps supercomputer at CSCS, Switzerland and the GPU partition of the Lumi supercomputer at CSC, Finland.
comment: 29 pages, 19 figures
♻ ☆ Accelerating Stable Matching between Workers and Spatial-Temporal Tasks for Dynamic MCS: A Stagewise Service Trading Approach
Designing effective incentive mechanisms in mobile crowdsensing (MCS) networks is crucial for engaging distributed mobile users (workers) to contribute heterogeneous data for various applications (tasks). In this paper, we propose a novel stagewise trading framework to achieve efficient and stable task-worker matching, explicitly accounting for task diversity (e.g., spatio-temporal limitations) and network dynamics inherent in MCS environments. This framework integrates both futures and spot trading stages. In the former, we introduce the \textbf{f}utures \textbf{t}rading-driven \textbf{s}table \textbf{m}atching and \textbf{p}re-\textbf{p}ath-\textbf{p}lanning mechanism (FT-SMP$^3$), which enables long-term task-worker assignment and pre-planning of workers' trajectories based on historical statistics and risk-aware analysis. In the latter, we develop the \textbf{s}pot \textbf{t}rading-driven \textbf{D}QN-based \textbf{p}ath \textbf{p}lanning and onsite \textbf{w}orker \textbf{r}ecruitment mechanism (ST-DP$^2$WR), which dynamically improves the practical utilities of tasks and workers by supporting real-time recruitment and path adjustment. We rigorously prove that the proposed mechanisms satisfy key economic and algorithmic properties, including stability, individual rationality, competitive equilibrium, and weak Pareto optimality. Extensive experiements further validate the effectiveness of our framework in realistic network settings, demonstrating superior performance in terms of service quality, computational efficiency, and decision-making overhead.
♻ ☆ InfiniteHBD: Building Datacenter-Scale High-Bandwidth Domain for LLM with Optical Circuit Switching Transceivers
Scaling Large Language Model (LLM) training relies on multi-dimensional parallelism, where High-Bandwidth Domains (HBDs) are critical for communication-intensive parallelism like Tensor Parallelism (TP) and Expert Parallelism (EP). However, existing HBD architectures face fundamental limitations in scalability, cost, and fault resiliency: switch-centric HBDs (e.g., NVL-72) incur prohibitive scaling costs, while GPU-centric HBDs (e.g., TPUv3/Dojo) suffer from severe fault propagation. Switch-GPU hybrid HBDs such as TPUv4 take a middle-ground approach, but the fault explosion radius remains large at the cube level (e.g., 64 TPUs). We propose InfiniteHBD, a novel transceiver-centric HBD architecture that unifies connectivity and dynamic switching at the transceiver level using Optical Circuit Switching (OCS). By embedding OCS within each transceiver, InfiniteHBD achieves reconfigurable point-to-multipoint connectivity, allowing the topology to adapt to variable-size rings. This design provides: i) datacenter-wide scalability without cost explosion; ii) fault resilience by isolating failures to a single node, and iii) full bandwidth utilization for fault-free GPUs. Key innovations include a Silicon Photonic (SiPh)-based low-cost OCS transceiver (OCSTrx), a reconfigurable k-hop ring topology co-designed with intra-/inter-node communication, and an HBD-DCN orchestration algorithm maximizing GPU utilization while minimizing cross-ToR datacenter network traffic. The evaluation demonstrates that InfiniteHBD achieves 31% of the cost of NVL-72, near-zero GPU waste ratio (over one order of magnitude lower than NVL-72 and TPUv4), near-zero cross-ToR traffic when node fault ratios are under 7%, and improves Model FLOPs Utilization by 3.37x compared to NVIDIA DGX (8 GPUs per Node).
♻ ☆ AgileDART: An Agile and Scalable Edge Stream Processing Engine
Edge applications generate a large influx of sensor data on massive scales, and these massive data streams must be processed shortly to derive actionable intelligence. However, traditional data processing systems are not well-suited for these edge applications as they often do not scale well with a large number of concurrent stream queries, do not support low-latency processing under limited edge computing resources, and do not adapt to the level of heterogeneity and dynamicity commonly present in edge computing environments. As such, we present AgileDart, an agile and scalable edge stream processing engine that enables fast stream processing of many concurrently running low-latency edge applications' queries at scale in dynamic, heterogeneous edge environments. The novelty of our work lies in a dynamic dataflow abstraction that leverages distributed hash table-based peer-to-peer overlay networks to autonomously place, chain, and scale stream operators to reduce query latencies, adapt to workload variations, and recover from failures and a bandit-based path planning model that re-plans the data shuffling paths to adapt to unreliable and heterogeneous edge networks. We show that AgileDart outperforms Storm and EdgeWise on query latency and significantly improves scalability and adaptability when processing many real-world edge stream applications' queries.
comment: Published in IEEE Transactions on Mobile Computing
Information Retrieval 22
☆ Not Here, Go There: Analyzing Redirection Patterns on the Web
URI redirections are integral to web management, supporting structural changes, SEO optimization, and security. However, their complexities affect usability, SEO performance, and digital preservation. This study analyzed 11 million unique redirecting URIs, following redirections up to 10 hops per URI, to uncover patterns and implications of redirection practices. Our findings revealed that 50% of the URIs terminated successfully, while 50% resulted in errors, including 0.06% exceeding 10 hops. Canonical redirects, such as HTTP to HTTPS transitions, were prevalent, reflecting adherence to SEO best practices. Non-canonical redirects, often involving domain or path changes, highlighted significant web migrations, rebranding, and security risks. Notable patterns included "sink" URIs, where multiple redirects converged, ranging from traffic consolidation by global websites to deliberate "Rickrolling." The study also identified 62,000 custom 404 URIs, almost half being soft 404s, which could compromise SEO and user experience. These findings underscore the critical role of URI redirects in shaping the web while exposing challenges such as outdated URIs, server instability, and improper error handling. This research offers a detailed analysis of URI redirection practices, providing insights into their prevalence, types, and outcomes. By examining a large dataset, we highlight inefficiencies in redirection chains and examine patterns such as the use of "sink" URIs and custom error pages. This information can help webmasters, researchers, and digital archivists improve web usability, optimize resource allocation, and safeguard valuable online content.
comment: Extended version of the paper accepted at the 2025 ACM Web Science Conference (WebSci 2025)
☆ Benchmarking Filtered Approximate Nearest Neighbor Search Algorithms on Transformer-based Embedding Vectors
Advances in embedding models for text, image, audio, and video drive progress across multiple domains, including retrieval-augmented generation, recommendation systems, vehicle/person reidentification, and face recognition. Many applications in these domains require an efficient method to retrieve items that are close to a given query in the embedding space while satisfying a filter condition based on the item's attributes, a problem known as Filtered Approximate Nearest Neighbor Search (FANNS). In this work, we present a comprehensive survey and taxonomy of FANNS methods and analyze how they are benchmarked in the literature. By doing so, we identify a key challenge in the current FANNS landscape: the lack of diverse and realistic datasets, particularly ones derived from the latest transformer-based text embedding models. To address this, we introduce a novel dataset consisting of embedding vectors for the abstracts of over 2.7 million research articles from the arXiv repository, accompanied by 11 real-world attributes such as authors and categories. We benchmark a wide range of FANNS methods on our novel dataset and find that each method has distinct strengths and limitations; no single approach performs best across all scenarios. ACORN, for example, supports various filter types and performs reliably across dataset scales but is often outperformed by more specialized methods. SeRF shows excellent performance for range filtering on ordered attributes but cannot handle categorical attributes. Filtered-DiskANN and UNG excel on the medium-scale dataset but fail on the large-scale dataset, highlighting the challenge posed by transformer-based embeddings, which are often more than an order of magnitude larger than earlier embeddings. We conclude that no universally best method exists.
☆ The Curious Case of High-Dimensional Indexing as a File Structure: A Case Study of eCP-FS
Modern analytical pipelines routinely deploy multiple deep learning and retrieval models that rely on approximate nearest-neighbor (ANN) indexes to support efficient similarity-based search. While many state-of-the-art ANN-indexes are memory-based (e.g., HNSW and IVF), using multiple ANN indexes creates a competition for limited GPU/CPU memory resources, which in turn necessitates disk-based index structures (e.g., DiskANN or eCP). In typical index implementations, the main component is a complex data structure that is serialized to disk and is read either fully at startup time, for memory-based indexes, or incrementally at query time, for disk-based indexes. To visualize the index structure, or analyze its quality, complex coding is needed that is either embedded in the index implementation or replicates the code that reads the data structure. In this paper, we consider an alternative approach that maps the data structure to a file structure, using a file library, making the index easily readable for any programming language and even human-readable. The disadvantage is that the serialized index is verbose, leading to overhead of searching through the index. The question addressed in this paper is how severe this performance penalty is. To that end, this paper presents eCP-FS, a file-based implementation of eCP, a well-known disk-based ANN index. A comparison with state-of-the-art indexes shows that while eCP-FS is slower, the implementation is nevertheless somewhat competitive even when memory is not constrained. In a memory-constrained scenario, eCP-FS offers a minimal memory footprint, making it ideal for resource-constrained or multi-index environments.
☆ Who's important? -- SUnSET: Synergistic Understanding of Stakeholder, Events and Time for Timeline Generation
As news reporting becomes increasingly global and decentralized online, tracking related events across multiple sources presents significant challenges. Existing news summarization methods typically utilizes Large Language Models and Graphical methods on article-based summaries. However, this is not effective since it only considers the textual content of similarly dated articles to understand the gist of the event. To counteract the lack of analysis on the parties involved, it is essential to come up with a novel framework to gauge the importance of stakeholders and the connection of related events through the relevant entities involved. Therefore, we present SUnSET: Synergistic Understanding of Stakeholder, Events and Time for the task of Timeline Summarization (TLS). We leverage powerful Large Language Models (LLMs) to build SET triplets and introduced the use of stakeholder-based ranking to construct a $Relevancy$ metric, which can be extended into general situations. Our experimental results outperform all prior baselines and emerged as the new State-of-the-Art, highlighting the impact of stakeholder information within news article.
☆ Exploration on Demand: From Algorithmic Control to User Empowerment
Recommender systems often struggle with over-specialization, which severely limits users' exposure to diverse content and creates filter bubbles that reduce serendipitous discovery. To address this fundamental limitation, this paper introduces an adaptive clustering framework with user-controlled exploration that effectively balances personalization and diversity in movie recommendations. Our approach leverages sentence-transformer embeddings to group items into semantically coherent clusters through an online algorithm with dynamic thresholding, thereby creating a structured representation of the content space. Building upon this clustering foundation, we propose a novel exploration mechanism that empowers users to control recommendation diversity by strategically sampling from less-engaged clusters, thus expanding their content horizons while preserving relevance. Experiments on the MovieLens dataset demonstrate the system's effectiveness, showing that exploration significantly reduces intra-list similarity from 0.34 to 0.26 while simultaneously increasing unexpectedness to 0.73. Furthermore, our Large Language Model-based A/B testing methodology, conducted with 300 simulated users, reveals that 72.7% of long-term users prefer exploratory recommendations over purely exploitative ones, providing strong evidence for the system's ability to promote meaningful content discovery without sacrificing user satisfaction.
☆ Proposing a Semantic Movie Recommendation System Enhanced by ChatGPT's NLP Results
The importance of recommender systems on the web has grown, especially in the movie industry, with a vast selection of options to watch. To assist users in traversing available items and finding relevant results, recommender systems analyze operational data and investigate users' tastes and habits. Providing highly individualized suggestions can boost user engagement and satisfaction, which is one of the fundamental goals of the movie industry, significantly in online platforms. According to recent studies and research, using knowledge-based techniques and considering the semantic ideas of the textual data is a suitable way to get more appropriate results. This study provides a new method for building a knowledge graph based on semantic information. It uses the ChatGPT, as a large language model, to assess the brief descriptions of movies and extract their tone of voice. Results indicated that using the proposed method may significantly enhance accuracy rather than employing the explicit genres supplied by the publishers.
comment: May 2023, 6 pages, 5 figures
☆ Enhancing Graph-based Recommendations with Majority-Voting LLM-Rerank Augmentation
Recommendation systems often suffer from data sparsity caused by limited user-item interactions, which degrade their performance and amplify popularity bias in real-world scenarios. This paper proposes a novel data augmentation framework that leverages Large Language Models (LLMs) and item textual descriptions to enrich interaction data. By few-shot prompting LLMs multiple times to rerank items and aggregating the results via majority voting, we generate high-confidence synthetic user-item interactions, supported by theoretical guarantees based on the concentration of measure. To effectively leverage the augmented data in the context of a graph recommendation system, we integrate it into a graph contrastive learning framework to mitigate distributional shift and alleviate popularity bias. Extensive experiments show that our method improves accuracy and reduces popularity bias, outperforming strong baselines.
☆ Solution for Meta KDD Cup'25: A Comprehensive Three-Step Framework for Vision Question Answering
Vision Large Language Models (VLLMs) have improved multi-modal understanding and visual question answering (VQA), but still suffer from hallucinated answers. Multi-modal Retrieval-Augmented Generation (RAG) helps address these issues by incorporating external information, yet challenges remain in visual context comprehension, multi-source retrieval, and multi-turn interactions. To address these challenges, Meta constructed the CRAG-MM benchmark and launched the CRAG-MM Challenge at KDD Cup 2025, which consists of three tasks. This paper describes the solutions of all tasks in Meta KDD Cup'25 from BlackPearl team. We use a single model for each task, with key methods including data augmentation, RAG, reranking, and multi-task fine-tuning. Our solution achieve automatic evaluation rankings of 3rd, 3rd, and 1st on the three tasks, and win second place in Task3 after human evaluation.
☆ Conversations over Clicks: Impact of Chatbots on Information Search in Interdisciplinary Learning
This full research paper investigates the impact of generative AI (GenAI) on the learner experience, with a focus on how learners engage with and utilize the information it provides. In e-learning environments, learners often need to navigate a complex information space on their own. This challenge is further compounded in interdisciplinary fields like bioinformatics, due to the varied prior knowledge and backgrounds. In this paper, we studied how GenAI influences information search in bioinformatics research: (1) How do interactions with a GenAI chatbot influence learner orienteering behaviors?; and (2) How do learners identify information scent in GenAI chatbot responses? We adopted an autoethnographic approach to investigate these questions. GenAI was found to support orienteering once a learning plan was established, but it was counterproductive prior to that. Moreover, traditionally value-rich information sources such as bullet points and related terms proved less effective when applied to GenAI responses. Information scents were primarily recognized through the presence or absence of prior knowledge of the domain. These findings suggest that GenAI should be adopted into e-learning environments with caution, particularly in interdisciplinary learning contexts.
comment: 9 pages, 2 tables, 3 figures, 2025 ASEE/IEEE Frontiers in Education (FIE) Conference preprint
☆ Hebbian Memory-Augmented Recurrent Networks: Engram Neurons in Deep Learning
Despite success across diverse tasks, current artificial recurrent network architectures rely primarily on implicit hidden-state memories, limiting their interpretability and ability to model long-range dependencies. In contrast, biological neural systems employ explicit, associative memory traces (i.e., engrams) strengthened through Hebbian synaptic plasticity and activated sparsely during recall. Motivated by these neurobiological insights, we introduce the Engram Neural Network (ENN), a novel recurrent architecture incorporating an explicit, differentiable memory matrix with Hebbian plasticity and sparse, attention-driven retrieval mechanisms. The ENN explicitly models memory formation and recall through dynamic Hebbian traces, improving transparency and interpretability compared to conventional RNN variants. We evaluate the ENN architecture on three canonical benchmarks: MNIST digit classification, CIFAR-10 image sequence modeling, and WikiText-103 language modeling. Our empirical results demonstrate that the ENN achieves accuracy and generalization performance broadly comparable to classical RNN, GRU, and LSTM architectures, with all models converging to similar accuracy and perplexity on the large-scale WikiText-103 task. At the same time, the ENN offers significant enhancements in interpretability through observable memory dynamics. Hebbian trace visualizations further reveal biologically plausible, structured memory formation processes, validating the potential of neuroscience-inspired mechanisms to inform the development of more interpretable and robust deep learning models.
comment: 20 pages, 11 figures, 4 tables
☆ Efficient Data Retrieval and Comparative Bias Analysis of Recommendation Algorithms for YouTube Shorts and Long-Form Videos
The growing popularity of short-form video content, such as YouTube Shorts, has transformed user engagement on digital platforms, raising critical questions about the role of recommendation algorithms in shaping user experiences. These algorithms significantly influence content consumption, yet concerns about biases, echo chambers, and content diversity persist. This study develops an efficient data collection framework to analyze YouTube's recommendation algorithms for both short-form and long-form videos, employing parallel computing and advanced scraping techniques to overcome limitations of YouTube's API. The analysis uncovers distinct behavioral patterns in recommendation algorithms across the two formats, with short-form videos showing a more immediate shift toward engaging yet less diverse content compared to long-form videos. Furthermore, a novel investigation into biases in politically sensitive topics, such as the South China Sea dispute, highlights the role of these algorithms in shaping narratives and amplifying specific viewpoints. By providing actionable insights for designing equitable and transparent recommendation systems, this research underscores the importance of responsible AI practices in the evolving digital media landscape.
Multi-modal Relational Item Representation Learning for Inferring Substitutable and Complementary Items
We introduce a novel self-supervised multi-modal relational item representation learning framework designed to infer substitutable and complementary items. Existing approaches primarily focus on modeling item-item associations deduced from user behaviors using graph neural networks (GNNs) or leveraging item content information. However, these methods often overlook critical challenges, such as noisy user behavior data and data sparsity due to the long-tailed distribution of these behaviors. In this paper, we propose MMSC, a self-supervised multi-modal relational item representation learning framework to address these challenges. Specifically, MMSC consists of three main components: (1) a multi-modal item representation learning module that leverages a multi-modal foundational model and learns from item metadata, (2) a self-supervised behavior-based representation learning module that denoises and learns from user behavior data, and (3) a hierarchical representation aggregation mechanism that integrates item representations at both the semantic and task levels. Additionally, we leverage LLMs to generate augmented training data, further enhancing the denoising process during training. We conduct extensive experiments on five real-world datasets, showing that MMSC outperforms existing baselines by 26.1% for substitutable recommendation and 39.2% for complementary recommendation. In addition, we empirically show that MMSC is effective in modeling cold-start items.
☆ Generative Recommendation with Semantic IDs: A Practitioner's Handbook
Generative recommendation (GR) has gained increasing attention for its promising performance compared to traditional models. A key factor contributing to the success of GR is the semantic ID (SID), which converts continuous semantic representations (e.g., from large language models) into discrete ID sequences. This enables GR models with SIDs to both incorporate semantic information and learn collaborative filtering signals, while retaining the benefits of discrete decoding. However, varied modeling techniques, hyper-parameters, and experimental setups in existing literature make direct comparisons between GR proposals challenging. Furthermore, the absence of an open-source, unified framework hinders systematic benchmarking and extension, slowing model iteration. To address this challenge, our work introduces and open-sources a framework for Generative Recommendation with semantic ID, namely GRID, specifically designed for modularity to facilitate easy component swapping and accelerate idea iteration. Using GRID, we systematically experiment with and ablate different components of GR models with SIDs on public benchmarks. Our comprehensive experiments with GRID reveal that many overlooked architectural components in GR models with SIDs substantially impact performance. This offers both novel insights and validates the utility of an open-source platform for robust benchmarking and GR research advancement. GRID is open-sourced at https://github.com/snap-research/GRID.
☆ Intent-Aware Neural Query Reformulation for Behavior-Aligned Product Search SIGIR
Understanding and modeling buyer intent is a foundational challenge in optimizing search query reformulation within the dynamic landscape of e-commerce search systems. This work introduces a robust data pipeline designed to mine and analyze large-scale buyer query logs, with a focus on extracting fine-grained intent signals from both explicit interactions and implicit behavioral cues. Leveraging advanced sequence mining techniques and supervised learning models, the pipeline systematically captures patterns indicative of latent purchase intent, enabling the construction of a high-fidelity, intent-rich dataset. The proposed framework facilitates the development of adaptive query rewrite strategies by grounding reformulations in inferred user intent rather than surface-level lexical signals. This alignment between query rewriting and underlying user objectives enhances both retrieval relevance and downstream engagement metrics. Empirical evaluations across multiple product verticals demonstrate measurable gains in precision-oriented relevance metrics, underscoring the efficacy of intent-aware reformulation. Our findings highlight the value of intent-centric modeling in bridging the gap between sparse user inputs and complex product discovery goals, and establish a scalable foundation for future research in user-aligned neural retrieval and ranking systems.
comment: Accepted at SIGIR eCom'25. https://sigir-ecom.github.io/eCom25Papers/paper_23.pdf
♻ ☆ Multi-Modal Hypergraph Enhanced LLM Learning for Recommendation
The burgeoning presence of Large Language Models (LLM) is propelling the development of personalized recommender systems. Most existing LLM-based methods fail to sufficiently explore the multi-view graph structure correlations inherent in recommendation scenarios. To this end, we propose a novel framework, Hypergraph Enhanced LLM Learning for multimodal Recommendation (HeLLM), designed to equip LLMs with the capability to capture intricate higher-order semantic correlations by fusing graph-level contextual signals with sequence-level behavioral patterns. In the recommender pre-training phase, we design a user hypergraph to uncover shared interest preferences among users and an item hypergraph to capture correlations within multimodal similarities among items. The hypergraph convolution and synergistic contrastive learning mechanism are introduced to enhance the distinguishability of learned representations. In the LLM fine-tuning phase, we inject the learned graph-structured embeddings directly into the LLM's architecture and integrate sequential features capturing each user's chronological behavior. This process enables hypergraphs to leverage graph-structured information as global context, enhancing the LLM's ability to perceive complex relational patterns and integrate multimodal information, while also modeling local temporal dynamics. Extensive experiments demonstrate the superiority of our proposed method over state-of-the-art baselines, confirming the advantages of fusing hypergraph-based context with sequential user behavior in LLMs for recommendation.
comment: 12 pages, 4 figures, submitted to IEEE Transactions on Knowledge and Data Engineering
♻ ☆ RecPS: Privacy Risk Scoring for Recommender Systems
Recommender systems (RecSys) have become an essential component of many web applications. The core of the system is a recommendation model trained on highly sensitive user-item interaction data. While privacy-enhancing techniques are actively studied in the research community, the real-world model development still depends on minimal privacy protection, e.g., via controlled access. Users of such systems should have the right to choose \emph{not} to share highly sensitive interactions. However, there is no method allowing the user to know which interactions are more sensitive than others. Thus, quantifying the privacy risk of RecSys training data is a critical step to enabling privacy-aware RecSys model development and deployment. We propose a membership-inference attack (MIA)- based privacy scoring method, RecPS, to measure privacy risks at both the interaction and user levels. The RecPS interaction-level score definition is motivated and derived from differential privacy, which is then extended to the user-level scoring method. A critical component is the interaction-level MIA method RecLiRA, which gives high-quality membership estimation. We have conducted extensive experiments on well-known benchmark datasets and RecSys models to show the unique features and benefits of RecPS scoring in risk assessment and RecSys model unlearning.
♻ ☆ Collaborative filtering based on nonnegative/binary matrix factorization
Collaborative filtering generates recommendations by exploiting user-item similarities based on rating data, which often contains numerous unrated items. To predict scores for unrated items, matrix factorization techniques such as nonnegative matrix factorization (NMF) are often employed. Nonnegative/binary matrix factorization (NBMF), which is an extension of NMF, approximates a nonnegative matrix as the product of nonnegative and binary matrices. While previous studies have applied NBMF primarily to dense data such as images, this paper proposes a modified NBMF algorithm tailored for collaborative filtering with sparse data. In the modified method, unrated entries in the rating matrix are masked, enhancing prediction accuracy. Furthermore, utilizing a low-latency Ising machine in NBMF is advantageous in terms of the computation time, making the proposed method beneficial.
comment: 12 pages, 8 figures
♻ ☆ RANa: Retrieval-Augmented Navigation
Methods for navigation based on large-scale learning typically treat each episode as a new problem, where the agent is spawned with a clean memory in an unknown environment. While these generalization capabilities to an unknown environment are extremely important, we claim that, in a realistic setting, an agent should have the capacity of exploiting information collected during earlier robot operations. We address this by introducing a new retrieval-augmented agent, trained with RL, capable of querying a database collected from previous episodes in the same environment and learning how to integrate this additional context information. We introduce a unique agent architecture for the general navigation task, evaluated on ImageNav, Instance-ImageNav and ObjectNav. Our retrieval and context encoding methods are data-driven and employ vision foundation models (FM) for both semantic and geometric understanding. We propose new benchmarks for these settings and we show that retrieval allows zero-shot transfer across tasks and environments while significantly improving performance.
♻ ☆ CTR-Driven Ad Text Generation via Online Feedback Preference Optimization
Advertising text plays a critical role in determining click-through rates (CTR) in online advertising. Large Language Models (LLMs) offer significant efficiency advantages over manual ad text creation. However, LLM-generated ad texts do not guarantee higher CTR performance compared to human-crafted texts, revealing a gap between generation quality and online performance of ad texts. In this work, we propose a novel ad text generation method which optimizes for CTR through preference optimization from online feedback. Our approach adopts an innovative two-stage framework: (1) diverse ad text sampling via one-shot in-context learning, using retrieval-augmented generation (RAG) to provide exemplars with chain-of-thought (CoT) reasoning; (2) CTR-driven preference optimization from online feedback, which weighs preference pairs according to their CTR gains and confidence levels. Through our method, the resulting model enables end-to-end generation of high-CTR ad texts. Extensive experiments have demonstrated the effectiveness of our method in both offline and online metrics. Notably, we have applied our method on a large-scale online shopping platform and achieved significant CTR improvements, showcasing its strong applicability and effectiveness in advertising systems.
comment: 9 pages, 6 figures, 5 tables
♻ ☆ A Scalable and High Availability Solution for Recommending Resolutions to Problem Tickets
Resolution of incidents or problem tickets is a common theme in service industries in any sector, including billing and charging systems in telecom domain. Machine learning can help to identify patterns and suggest resolutions for the problem tickets, based on patterns in the historical data of the tickets. However, this process may be complicated due to a variety of phenomena such as data drift and issues such as missing data, lack of data pertaining to resolutions of past incidents, too many similar sounding resolutions due to free text and similar sounding text. This paper proposes a robust ML-driven solution employing clustering, supervised learning, and advanced NLP models to tackle these challenges effectively. Building on previous work, we demonstrate clustering-based resolution identification, supervised classification with LDA, Siamese networks, and One-shot learning, Index embedding. Additionally, we present a real-time dashboard and a highly available Kubernetes-based production deployment. Our experiments with both the open-source Bitext customer-support dataset and proprietary telecom datasets demonstrate high prediction accuracy.
comment: 9 pages, 7 figures
♻ ☆ Generative Ghost: Investigating Ranking Bias Hidden in AI-Generated Videos
With the rapid development of AI-generated content (AIGC), the creation of high-quality AI-generated videos has become faster and easier, resulting in the Internet being flooded with all kinds of video content. However, the impact of these videos on the content ecosystem remains largely unexplored. Video information retrieval remains a fundamental approach for accessing video content. Building on the observation that retrieval models often favor AI-generated content in ad-hoc and image retrieval tasks, we investigate whether similar biases emerge in the context of challenging video retrieval, where temporal and visual factors may further influence model behavior. To explore this, we first construct a comprehensive benchmark dataset containing both real and AI-generated videos, along with a set of fair and rigorous metrics to assess bias. This benchmark consists of 13,000 videos generated by two state-of-the-art open-source video generation models. We meticulously design a suite of rigorous metrics to accurately measure this preference, accounting for potential biases arising from the limited frame rate and suboptimal quality of AIGC videos. We then applied three off-the-shelf video retrieval models to perform retrieval tasks on this hybrid dataset. Our findings reveal a clear preference for AI-generated videos in retrieval. Further investigation shows that incorporating AI-generated videos into the training set of retrieval models exacerbates this bias. Unlike the preference observed in image modalities, we find that video retrieval bias arises from both unseen visual and temporal information, making the root causes of video bias a complex interplay of these two factors. To mitigate this bias, we fine-tune the retrieval models using a contrastive learning approach. The results of this study highlight the potential implications of AI-generated videos on retrieval systems.
comment: 13 pages, Accepted at ACMMM2025
♻ ☆ Enhancing Spectral Knowledge Interrogation: A Reliable Retrieval-Augmented Generative Framework on Large Language Models
Large Language Model (LLM) has demonstrated significant success in a range of natural language processing (NLP) tasks within general domain. The emergence of LLM has introduced innovative methodologies across diverse fields, including the natural sciences. Researchers aim to implement automated, concurrent process driven by LLM to supplant conventional manual, repetitive and labor-intensive work. In the domain of spectral analysis and detection, it is imperative for researchers to autonomously acquire pertinent knowledge across various research objects, which encompasses the spectroscopic techniques and the chemometric methods that are employed in experiments and analysis. Paradoxically, despite the recognition of spectroscopic detection as an effective analytical method, the fundamental process of knowledge retrieval remains both time-intensive and repetitive. In response to this challenge, we first introduced the Spectral Detection and Analysis Based Paper(SDAAP) dataset, which is the first open-source textual knowledge dataset for spectral analysis and detection and contains annotated literature data as well as corresponding knowledge instruction data. Subsequently, we also designed an automated Q\&A framework based on the SDAAP dataset, which can retrieve relevant knowledge and generate high-quality responses by extracting entities in the input as retrieval parameters. It is worth noting that: within this framework, LLM is only used as a tool to provide generalizability, while RAG technique is used to accurately capture the source of the knowledge.This approach not only improves the quality of the generated responses, but also ensures the traceability of the knowledge. Experimental results show that our framework generates responses with more reliable expertise compared to the baseline.
comment: 16 pages,10 figures,3 tables
Artificial Intelligence 155
☆ Foundation Models for Demand Forecasting via Dual-Strategy Ensembling
Accurate demand forecasting is critical for supply chain optimization, yet remains difficult in practice due to hierarchical complexity, domain shifts, and evolving external factors. While recent foundation models offer strong potential for time series forecasting, they often suffer from architectural rigidity and limited robustness under distributional change. In this paper, we propose a unified ensemble framework that enhances the performance of foundation models for sales forecasting in real-world supply chains. Our method combines two complementary strategies: (1) Hierarchical Ensemble (HE), which partitions training and inference by semantic levels (e.g., store, category, department) to capture localized patterns; and (2) Architectural Ensemble (AE), which integrates predictions from diverse model backbones to mitigate bias and improve stability. We conduct extensive experiments on the M5 benchmark and three external sales datasets, covering both in-domain and zero-shot forecasting. Results show that our approach consistently outperforms strong baselines, improves accuracy across hierarchical levels, and provides a simple yet effective mechanism for boosting generalization in complex forecasting environments.
☆ The Interspeech 2025 Speech Accessibility Project Challenge
While the last decade has witnessed significant advancements in Automatic Speech Recognition (ASR) systems, performance of these systems for individuals with speech disabilities remains inadequate, partly due to limited public training data. To bridge this gap, the 2025 Interspeech Speech Accessibility Project (SAP) Challenge was launched, utilizing over 400 hours of SAP data collected and transcribed from more than 500 individuals with diverse speech disabilities. Hosted on EvalAI and leveraging the remote evaluation pipeline, the SAP Challenge evaluates submissions based on Word Error Rate and Semantic Score. Consequently, 12 out of 22 valid teams outperformed the whisper-large-v2 baseline in terms of WER, while 17 teams surpassed the baseline on SemScore. Notably, the top team achieved the lowest WER of 8.11\%, and the highest SemScore of 88.44\% at the same time, setting new benchmarks for future ASR systems in recognizing impaired speech.
comment: To appear in Proceedings of Interspeech, 2025
☆ Supervised Quantum Image Processing
In the era of big data and artificial intelligence, the increasing volume of data and the demand to solve more and more complex computational challenges are two driving forces for improving the efficiency of data storage, processing and analysis. Quantum image processing (QIP) is an interdisciplinary field between quantum information science and image processing, which has the potential to alleviate some of these challenges by leveraging the power of quantum computing. In this work, we compare and examine the compression properties of four different Quantum Image Representations (QImRs): namely, Tensor Network Representation (TNR), Flexible Representation of Quantum Image (FRQI), Novel Enhanced Quantum Representation NEQR, and Quantum Probability Image Encoding (QPIE). Our simulations show that FRQI performs a higher compression of image information than TNR, NEQR, and QPIE. Furthermore, we investigate the trade-off between accuracy and memory in binary classification problems, evaluating the performance of quantum kernels based on QImRs compared to the classical linear kernel. Our results indicate that quantum kernels provide comparable classification average accuracy but require exponentially fewer resources for image storage.
comment: 13 pages, 11 figures
☆ Secure Tug-of-War (SecTOW): Iterative Defense-Attack Training with Reinforcement Learning for Multimodal Model Security
The rapid advancement of multimodal large language models (MLLMs) has led to breakthroughs in various applications, yet their security remains a critical challenge. One pressing issue involves unsafe image-query pairs--jailbreak inputs specifically designed to bypass security constraints and elicit unintended responses from MLLMs. Compared to general multimodal data, such unsafe inputs are relatively sparse, which limits the diversity and richness of training samples available for developing robust defense models. Meanwhile, existing guardrail-type methods rely on external modules to enforce security constraints but fail to address intrinsic vulnerabilities within MLLMs. Traditional supervised fine-tuning (SFT), on the other hand, often over-refuses harmless inputs, compromising general performance. Given these challenges, we propose Secure Tug-of-War (SecTOW), an innovative iterative defense-attack training method to enhance the security of MLLMs. SecTOW consists of two modules: a defender and an auxiliary attacker, both trained iteratively using reinforcement learning (GRPO). During the iterative process, the attacker identifies security vulnerabilities in the defense model and expands jailbreak data. The expanded data are then used to train the defender, enabling it to address identified security vulnerabilities. We also design reward mechanisms used for GRPO to simplify the use of response labels, reducing dependence on complex generative labels and enabling the efficient use of synthetic data. Additionally, a quality monitoring mechanism is used to mitigate the defender's over-refusal of harmless inputs and ensure the diversity of the jailbreak data generated by the attacker. Experimental results on safety-specific and general benchmarks demonstrate that SecTOW significantly improves security while preserving general performance.
comment: 10 pages, 4 figures
☆ UserBench: An Interactive Gym Environment for User-Centric Agents
Large Language Models (LLMs)-based agents have made impressive progress in reasoning and tool use, enabling them to solve complex tasks. However, their ability to proactively collaborate with users, especially when goals are vague, evolving, or indirectly expressed, remains underexplored. To address this gap, we introduce UserBench, a user-centric benchmark designed to evaluate agents in multi-turn, preference-driven interactions. UserBench features simulated users who start with underspecified goals and reveal preferences incrementally, requiring agents to proactively clarify intent and make grounded decisions with tools. Our evaluation of leading open- and closed-source LLMs reveals a significant disconnect between task completion and user alignment. For instance, models provide answers that fully align with all user intents only 20% of the time on average, and even the most advanced models uncover fewer than 30% of all user preferences through active interaction. These results highlight the challenges of building agents that are not just capable task executors, but true collaborative partners. UserBench offers an interactive environment to measure and advance this critical capability.
comment: 25 Pages, 17 Figures, 6 Tables
☆ ReXGroundingCT: A 3D Chest CT Dataset for Segmentation of Findings from Free-Text Reports
We present ReXGroundingCT, the first publicly available dataset to link free-text radiology findings with pixel-level segmentations in 3D chest CT scans that is manually annotated. While prior datasets have relied on structured labels or predefined categories, ReXGroundingCT captures the full expressiveness of clinical language represented in free text and grounds it to spatially localized 3D segmentation annotations in volumetric imaging. This addresses a critical gap in medical AI: the ability to connect complex, descriptive text, such as "3 mm nodule in the left lower lobe", to its precise anatomical location in three-dimensional space, a capability essential for grounded radiology report generation systems. The dataset comprises 3,142 non-contrast chest CT scans paired with standardized radiology reports from the CT-RATE dataset. Using a systematic three-stage pipeline, GPT-4 was used to extract positive lung and pleural findings, which were then manually segmented by expert annotators. A total of 8,028 findings across 16,301 entities were annotated, with quality control performed by board-certified radiologists. Approximately 79% of findings are focal abnormalities, while 21% are non-focal. The training set includes up to three representative segmentations per finding, while the validation and test sets contain exhaustive labels for each finding entity. ReXGroundingCT establishes a new benchmark for developing and evaluating sentence-level grounding and free-text medical segmentation models in chest CT. The dataset can be accessed at https://huggingface.co/datasets/rajpurkarlab/ReXGroundingCT.
☆ UI-AGILE: Advancing GUI Agents with Effective Reinforcement Learning and Precise Inference-Time Grounding
The emergence of Multimodal Large Language Models (MLLMs) has driven significant advances in Graphical User Interface (GUI) agent capabilities. Nevertheless, existing GUI agent training and inference techniques still suffer from a dilemma for reasoning designs, ineffective reward, and visual noise. To address these issues, we introduce UI-AGILE, a comprehensive framework enhancing GUI agents at both the training and inference stages. For training, we propose a suite of improvements to the Supervised Fine-Tuning (SFT) process: 1) a Continuous Reward function to incentivize high-precision grounding; 2) a "Simple Thinking" reward to balance planning with speed and grounding accuracy; and 3) a Cropping-based Resampling strategy to mitigate the sparse reward problem and improve learning on complex tasks. For inference, we present Decomposed Grounding with Selection, a novel method that dramatically improves grounding accuracy on high-resolution displays by breaking the image into smaller, manageable parts. Experiments show that UI-AGILE achieves the state-of-the-art performance on two benchmarks ScreenSpot-Pro and ScreenSpot-v2. For instance, using both our proposed training and inference enhancement methods brings 23% grounding accuracy improvement over the best baseline on ScreenSpot-Pro.
☆ XAI for Point Cloud Data using Perturbations based on Meaningful Segmentation
We propose a novel segmentation-based explainable artificial intelligence (XAI) method for neural networks working on point cloud classification. As one building block of this method, we propose a novel point-shifting mechanism to introduce perturbations in point cloud data. Recently, AI has seen an exponential growth. Hence, it is important to understand the decision-making process of AI algorithms when they are applied in critical areas. Our work focuses on explaining AI algorithms that classify point cloud data. An important aspect of the methods used for explaining AI algorithms is their ability to produce explanations that are easy for humans to understand. This allows them to analyze the AI algorithms better and make appropriate decisions based on that analysis. Therefore, in this work, we intend to generate meaningful explanations that can be easily interpreted by humans. The point cloud data we consider represents 3D objects such as cars, guitars, and laptops. We make use of point cloud segmentation models to generate explanations for the working of classification models. The segments are used to introduce perturbations into the input point cloud data and generate saliency maps. The perturbations are introduced using the novel point-shifting mechanism proposed in this work which ensures that the shifted points no longer influence the output of the classification algorithm. In contrast to previous methods, the segments used by our method are meaningful, i.e. humans can easily interpret the meaning of the segments. Thus, the benefit of our method over other methods is its ability to produce more meaningful saliency maps. We compare our method with the use of classical clustering algorithms to generate explanations. We also analyze the saliency maps generated for example inputs using our method to demonstrate the usefulness of the method in generating meaningful explanations.
comment: 18 pages, 14 figures
☆ Exploring the Stratified Space Structure of an RL Game with the Volume Growth Transform
In this work, we explore the structure of the embedding space of a transformer model trained for playing a particular reinforcement learning (RL) game. Specifically, we investigate how a transformer-based Proximal Policy Optimization (PPO) model embeds visual inputs in a simple environment where an agent must collect "coins" while avoiding dynamic obstacles consisting of "spotlights." By adapting Robinson et al.'s study of the volume growth transform for LLMs to the RL setting, we find that the token embedding space for our visual coin collecting game is also not a manifold, and is better modeled as a stratified space, where local dimension can vary from point to point. We further strengthen Robinson's method by proving that fairly general volume growth curves can be realized by stratified spaces. Finally, we carry out an analysis that suggests that as an RL agent acts, its latent representation alternates between periods of low local dimension, while following a fixed sub-strategy, and bursts of high local dimension, where the agent achieves a sub-goal (e.g., collecting an object) or where the environmental complexity increases (e.g., more obstacles appear). Consequently, our work suggests that the distribution of dimensions in a stratified latent space may provide a new geometric indicator of complexity for RL games.
comment: 17 pages and 8 figures. Preliminary report. Feedback welcome!
☆ PHAX: A Structured Argumentation Framework for User-Centered Explainable AI in Public Health and Biomedical Sciences
Ensuring transparency and trust in AI-driven public health and biomedical sciences systems requires more than accurate predictions-it demands explanations that are clear, contextual, and socially accountable. While explainable AI (XAI) has advanced in areas like feature attribution and model interpretability, most methods still lack the structure and adaptability needed for diverse health stakeholders, including clinicians, policymakers, and the general public. We introduce PHAX-a Public Health Argumentation and eXplainability framework-that leverages structured argumentation to generate human-centered explanations for AI outputs. PHAX is a multi-layer architecture combining defeasible reasoning, adaptive natural language techniques, and user modeling to produce context-aware, audience-specific justifications. More specifically, we show how argumentation enhances explainability by supporting AI-driven decision-making, justifying recommendations, and enabling interactive dialogues across user types. We demonstrate the applicability of PHAX through use cases such as medical term simplification, patient-clinician communication, and policy justification. In particular, we show how simplification decisions can be modeled as argument chains and personalized based on user expertise-enhancing both interpretability and trust. By aligning formal reasoning methods with communicative demands, PHAX contributes to a broader vision of transparent, human-centered AI in public health.
comment: Preprint. Under review
☆ Bridging Synthetic and Real-World Domains: A Human-in-the-Loop Weakly-Supervised Framework for Industrial Toxic Emission Segmentation
Industrial smoke segmentation is critical for air-quality monitoring and environmental protection but is often hampered by the high cost and scarcity of pixel-level annotations in real-world settings. We introduce CEDANet, a human-in-the-loop, class-aware domain adaptation framework that uniquely integrates weak, citizen-provided video-level labels with adversarial feature alignment. Specifically, we refine pseudo-labels generated by a source-trained segmentation model using citizen votes, and employ class-specific domain discriminators to transfer rich source-domain representations to the industrial domain. Comprehensive experiments on SMOKE5K and custom IJmond datasets demonstrate that CEDANet achieves an F1-score of 0.414 and a smoke-class IoU of 0.261 with citizen feedback, vastly outperforming the baseline model, which scored 0.083 and 0.043 respectively. This represents a five-fold increase in F1-score and a six-fold increase in smoke-class IoU. Notably, CEDANet with citizen-constrained pseudo-labels achieves performance comparable to the same architecture trained on limited 100 fully annotated images with F1-score of 0.418 and IoU of 0.264, demonstrating its ability to reach small-sampled fully supervised-level accuracy without target-domain annotations. Our research validates the scalability and cost-efficiency of combining citizen science with weakly supervised domain adaptation, offering a practical solution for complex, data-scarce environmental monitoring applications.
☆ Staining and locking computer vision models without retraining
We introduce new methods of staining and locking computer vision models, to protect their owners' intellectual property. Staining, also known as watermarking, embeds secret behaviour into a model which can later be used to identify it, while locking aims to make a model unusable unless a secret trigger is inserted into input images. Unlike existing methods, our algorithms can be used to stain and lock pre-trained models without requiring fine-tuning or retraining, and come with provable, computable guarantees bounding their worst-case false positive rates. The stain and lock are implemented by directly modifying a small number of the model's weights and have minimal impact on the (unlocked) model's performance. Locked models are unlocked by inserting a small `trigger patch' into the corner of the input image. We present experimental results showing the efficacy of our methods and demonstrating their practical performance on a variety of computer vision models.
comment: 10 pages, 9 pages of appendices, 10 figures
☆ Teach Me to Trick: Exploring Adversarial Transferability via Knowledge Distillation
We investigate whether knowledge distillation (KD) from multiple heterogeneous teacher models can enhance the generation of transferable adversarial examples. A lightweight student model is trained using two KD strategies: curriculum-based switching and joint optimization, with ResNet50 and DenseNet-161 as teachers. The trained student is then used to generate adversarial examples using FG, FGS, and PGD attacks, which are evaluated against a black-box target model (GoogLeNet). Our results show that student models distilled from multiple teachers achieve attack success rates comparable to ensemble-based baselines, while reducing adversarial example generation time by up to a factor of six. An ablation study further reveals that lower temperature settings and the inclusion of hard-label supervision significantly enhance transferability. These findings suggest that KD can serve not only as a model compression technique but also as a powerful tool for improving the efficiency and effectiveness of black-box adversarial attacks.
comment: 10 pages, 4 figures
☆ ChemDFM-R: An Chemical Reasoner LLM Enhanced with Atomized Chemical Knowledge
While large language models (LLMs) have achieved impressive progress, their application in scientific domains such as chemistry remains hindered by shallow domain understanding and limited reasoning capabilities. In this work, we focus on the specific field of chemistry and develop a Chemical Reasoner LLM, ChemDFM-R. We first construct a comprehensive dataset of atomized knowledge points to enhance the model's understanding of the fundamental principles and logical structure of chemistry. Then, we propose a mix-sourced distillation strategy that integrates expert-curated knowledge with general-domain reasoning skills, followed by domain-specific reinforcement learning to enhance chemical reasoning. Experiments on diverse chemical benchmarks demonstrate that ChemDFM-R achieves state-of-the-art performance while providing interpretable, rationale-driven outputs. Further case studies illustrate how explicit reasoning chains significantly improve the reliability, transparency, and practical utility of the model in real-world human-AI collaboration scenarios.
comment: 13 figures, 4 tables
☆ The Effect of Compression Techniques on Large Multimodal Language Models in the Medical Domain
Multimodal Large Language Models (MLLMs) hold huge potential for usage in the medical domain, but their computational costs necessitate efficient compression techniques. This paper evaluates the impact of structural pruning and activation-aware quantization on a fine-tuned LLAVA model for medical applications. We propose a novel layer selection method for pruning, analyze different quantization techniques, and assess the performance trade-offs in a prune-SFT-quantize pipeline. Our proposed method enables MLLMs with 7B parameters to run within 4 GB of VRAM, reducing memory usage by 70% while achieving 4% higher model performance compared to traditional pruning and quantization techniques in the same compression ratio.
comment: 12 pages, 5 figures. tcolorbox dependencies were removed for arXiv compatibility. All references are included via a precompiled .bbl file
☆ Reasoning Language Models for Root Cause Analysis in 5G Wireless Networks
Root Cause Analysis (RCA) in mobile networks remains a challenging task due to the need for interpretability, domain expertise, and causal reasoning. In this work, we propose a lightweight framework that leverages Large Language Models (LLMs) for RCA. To do so, we introduce TeleLogs, a curated dataset of annotated troubleshooting problems designed to benchmark RCA capabilities. Our evaluation reveals that existing open-source reasoning LLMs struggle with these problems, underscoring the need for domain-specific adaptation. To address this issue, we propose a two-stage training methodology that combines supervised fine-tuning with reinforcement learning to improve the accuracy and reasoning quality of LLMs. The proposed approach fine-tunes a series of RCA models to integrate domain knowledge and generate structured, multi-step diagnostic explanations, improving both interpretability and effectiveness. Extensive experiments across multiple LLM sizes show significant performance gains over state-of-the-art reasoning and non-reasoning models, including strong generalization to randomized test variants. These results demonstrate the promise of domain-adapted, reasoning-enhanced LLMs for practical and explainable RCA in network operation and management.
☆ Thou Shalt Not Prompt: Zero-Shot Human Activity Recognition in Smart Homes via Language Modeling of Sensor Data & Activities
Developing zero-shot human activity recognition (HAR) methods is a critical direction in smart home research -- considering its impact on making HAR systems work across smart homes having diverse sensing modalities, layouts, and activities of interest. The state-of-the-art solutions along this direction are based on generating natural language descriptions of the sensor data and feeding it via a carefully crafted prompt to the LLM to perform classification. Despite their performance guarantees, such ``prompt-the-LLM'' approaches carry several risks, including privacy invasion, reliance on an external service, and inconsistent predictions due to version changes, making a case for alternative zero-shot HAR methods that do not require prompting the LLMs. In this paper, we propose one such solution that models sensor data and activities using natural language, leveraging its embeddings to perform zero-shot classification and thereby bypassing the need to prompt the LLMs for activity predictions. The impact of our work lies in presenting a detailed case study on six datasets, highlighting how language modeling can bolster HAR systems in zero-shot recognition.
☆ Fine-Tuning Code Language Models to Detect Cross-Language Bugs
Multilingual programming, which involves using multiple programming languages (PLs) in a single project, is increasingly common due to its benefits. However, it introduces cross-language bugs (CLBs), which arise from interactions between different PLs and are difficult to detect by single-language bug detection tools. This paper investigates the potential of pre-trained code language models (CodeLMs) in CLB detection. We developed CLCFinder, a cross-language code identification tool, and constructed a CLB dataset involving three PL combinations (Python-C/C++, Java-C/C++, and Python-Java) with nine interaction types. We fine-tuned 13 CodeLMs on this dataset and evaluated their performance, analyzing the effects of dataset size, token sequence length, and code comments. Results show that all CodeLMs performed poorly before fine-tuning, but exhibited varying degrees of performance improvement after fine-tuning, with UniXcoder-base achieving the best F1 score (0.7407). Notably, small fine-tuned CodeLMs tended to performe better than large ones. CodeLMs fine-tuned on single-language bug datasets performed poorly on CLB detection, demonstrating the distinction between CLBs and single-language bugs. Additionally, increasing the fine-tuning dataset size significantly improved performance, while longer token sequences did not necessarily improve the model performance. The impact of code comments varied across models. Some fine-tuned CodeLMs' performance was improved, while others showed degraded performance.
comment: 33 pages, 6 images, 9 tables, Manuscript submitted to a journal (2025)
☆ MapAgent: Trajectory-Constructed Memory-Augmented Planning for Mobile Task Automation
The recent advancement of autonomous agents powered by Large Language Models (LLMs) has demonstrated significant potential for automating tasks on mobile devices through graphical user interfaces (GUIs). Despite initial progress, these agents still face challenges when handling complex real-world tasks. These challenges arise from a lack of knowledge about real-life mobile applications in LLM-based agents, which may lead to ineffective task planning and even cause hallucinations. To address these challenges, we propose a novel LLM-based agent framework called MapAgent that leverages memory constructed from historical trajectories to augment current task planning. Specifically, we first propose a trajectory-based memory mechanism that transforms task execution trajectories into a reusable and structured page-memory database. Each page within a trajectory is extracted as a compact yet comprehensive snapshot, capturing both its UI layout and functional context. Secondly, we introduce a coarse-to-fine task planning approach that retrieves relevant pages from the memory database based on similarity and injects them into the LLM planner to compensate for potential deficiencies in understanding real-world app scenarios, thereby achieving more informed and context-aware task planning. Finally, planned tasks are transformed into executable actions through a task executor supported by a dual-LLM architecture, ensuring effective tracking of task progress. Experimental results in real-world scenarios demonstrate that MapAgent achieves superior performance to existing methods. The code will be open-sourced to support further research.
☆ Contrast-Prior Enhanced Duality for Mask-Free Shadow Removal
Existing shadow removal methods often rely on shadow masks, which are challenging to acquire in real-world scenarios. Exploring intrinsic image cues, such as local contrast information, presents a potential alternative for guiding shadow removal in the absence of explicit masks. However, the cue's inherent ambiguity becomes a critical limitation in complex scenes, where it can fail to distinguish true shadows from low-reflectance objects and intricate background textures. To address this motivation, we propose the Adaptive Gated Dual-Branch Attention (AGBA) mechanism. AGBA dynamically filters and re-weighs the contrast prior to effectively disentangle shadow features from confounding visual elements. Furthermore, to tackle the persistent challenge of restoring soft shadow boundaries and fine-grained details, we introduce a diffusion-based Frequency-Contrast Fusion Network (FCFN) that leverages high-frequency and contrast cues to guide the generative process. Extensive experiments demonstrate that our method achieves state-of-the-art results among mask-free approaches while maintaining competitive performance relative to mask-based methods.
☆ Enhancing Generalization in Data-free Quantization via Mixup-class Prompting
Post-training quantization (PTQ) improves efficiency but struggles with limited calibration data, especially under privacy constraints. Data-free quantization (DFQ) mitigates this by generating synthetic images using generative models such as generative adversarial networks (GANs) and text-conditioned latent diffusion models (LDMs), while applying existing PTQ algorithms. However, the relationship between generated synthetic images and the generalizability of the quantized model during PTQ remains underexplored. Without investigating this relationship, synthetic images generated by previous prompt engineering methods based on single-class prompts suffer from issues such as polysemy, leading to performance degradation. We propose \textbf{mixup-class prompt}, a mixup-based text prompting strategy that fuses multiple class labels at the text prompt level to generate diverse, robust synthetic data. This approach enhances generalization, and improves optimization stability in PTQ. We provide quantitative insights through gradient norm and generalization error analysis. Experiments on convolutional neural networks (CNNs) and vision transformers (ViTs) show that our method consistently outperforms state-of-the-art DFQ methods like GenQ. Furthermore, it pushes the performance boundary in extremely low-bit scenarios, achieving new state-of-the-art accuracy in challenging 2-bit weight, 4-bit activation (W2A4) quantization.
☆ Post-Training Large Language Models via Reinforcement Learning from Self-Feedback
Large Language Models (LLMs) often produce plausible but poorly-calibrated answers, limiting their reliability on reasoning-intensive tasks. We present Reinforcement Learning from Self-Feedback (RLSF), a post-training stage that uses the model's own confidence as an intrinsic reward, mimicking how humans learn in the absence of external feedback. After a frozen LLM generates several chain-of-thought solutions, we define and compute the confidence of each final answer span and rank the traces accordingly. These synthetic preferences are then used to fine-tune the policy with standard preference optimization, similar to RLHF yet requiring no human labels, gold answers, or externally curated rewards. RLSF simultaneously (i) refines the model's probability estimates -- restoring well-behaved calibration -- and (ii) strengthens step-by-step reasoning, yielding improved performance on arithmetic reasoning and multiple-choice question answering. By turning a model's own uncertainty into useful self-feedback, RLSF affirms reinforcement learning on intrinsic model behaviour as a principled and data-efficient component of the LLM post-training pipeline and warrents further research in intrinsic rewards for LLM post-training.
☆ Libra: Large Chinese-based Safeguard for AI Content
Large language models (LLMs) excel in text understanding and generation but raise significant safety and ethical concerns in high-stakes applications. To mitigate these risks, we present Libra-Guard, a cutting-edge safeguard system designed to enhance the safety of Chinese-based LLMs. Leveraging a two-stage curriculum training pipeline, Libra-Guard enhances data efficiency by employing guard pretraining on synthetic samples, followed by fine-tuning on high-quality, real-world data, thereby significantly reducing reliance on manual annotations. To enable rigorous safety evaluations, we also introduce Libra-Test, the first benchmark specifically designed to evaluate the effectiveness of safeguard systems for Chinese content. It covers seven critical harm scenarios and includes over 5,700 samples annotated by domain experts. Experiments show that Libra-Guard achieves 86.79% accuracy, outperforming Qwen2.5-14B-Instruct (74.33%) and ShieldLM-Qwen-14B-Chat (65.69%), and nearing closed-source models like Claude-3.5-Sonnet and GPT-4o. These contributions establish a robust framework for advancing the safety governance of Chinese LLMs and represent a tentative step toward developing safer, more reliable Chinese AI systems.
☆ Vibe Coding as a Reconfiguration of Intent Mediation in Software Development: Definition, Implications, and Research Agenda
Software development is undergoing a fundamental transformation as vibe coding becomes widespread, with large portions of contemporary codebases now being AI-generated. The disconnect between rapid adoption and limited conceptual understanding highlights the need for an inquiry into this emerging paradigm. Drawing on an intent perspective and historical analysis, we define vibe coding as a software development paradigm where humans and generative AI engage in collaborative flow to co-create software artifacts through natural language dialogue, shifting the mediation of developer intent from deterministic instruction to probabilistic inference. By intent mediation, we refer to the fundamental process through which developers translate their conceptual goals into representations that computational systems can execute. Our results show that vibe coding reconfigures cognitive work by redistributing epistemic labor between humans and machines, shifting the expertise in the software development process away from traditional areas such as design or technical implementation toward collaborative orchestration. We identify key opportunities, including democratization, acceleration, and systemic leverage, alongside risks, such as black box codebases, responsibility gaps, and ecosystem bias. We conclude with a research agenda spanning human-, technology-, and organization-centered directions to guide future investigations of this paradigm.
☆ SwinECAT: A Transformer-based fundus disease classification model with Shifted Window Attention and Efficient Channel Attention
In recent years, artificial intelligence has been increasingly applied in the field of medical imaging. Among these applications, fundus image analysis presents special challenges, including small lesion areas in certain fundus diseases and subtle inter-disease differences, which can lead to reduced prediction accuracy and overfitting in the models. To address these challenges, this paper proposes the Transformer-based model SwinECAT, which combines the Shifted Window (Swin) Attention with the Efficient Channel Attention (ECA) Attention. SwinECAT leverages the Swin Attention mechanism in the Swin Transformer backbone to effectively capture local spatial structures and long-range dependencies within fundus images. The lightweight ECA mechanism is incorporated to guide the SwinECAT's attention toward critical feature channels, enabling more discriminative feature representation. In contrast to previous studies that typically classify fundus images into 4 to 6 categories, this work expands fundus disease classification to 9 distinct types, thereby enhancing the granularity of diagnosis. We evaluate our method on the Eye Disease Image Dataset (EDID) containing 16,140 fundus images for 9-category classification. Experimental results demonstrate that SwinECAT achieves 88.29\% accuracy, with weighted F1-score of 0.88 and macro F1-score of 0.90. The classification results of our proposed model SwinECAT significantly outperform the baseline Swin Transformer and multiple compared baseline models. To our knowledge, this represents the highest reported performance for 9-category classification on this public dataset.
comment: 17 pages
☆ Training language models to be warm and empathetic makes them less reliable and more sycophantic
Artificial intelligence (AI) developers are increasingly building language models with warm and empathetic personas that millions of people now use for advice, therapy, and companionship. Here, we show how this creates a significant trade-off: optimizing language models for warmth undermines their reliability, especially when users express vulnerability. We conducted controlled experiments on five language models of varying sizes and architectures, training them to produce warmer, more empathetic responses, then evaluating them on safety-critical tasks. Warm models showed substantially higher error rates (+10 to +30 percentage points) than their original counterparts, promoting conspiracy theories, providing incorrect factual information, and offering problematic medical advice. They were also significantly more likely to validate incorrect user beliefs, particularly when user messages expressed sadness. Importantly, these effects were consistent across different model architectures, and occurred despite preserved performance on standard benchmarks, revealing systematic risks that current evaluation practices may fail to detect. As human-like AI systems are deployed at an unprecedented scale, our findings indicate a need to rethink how we develop and oversee these systems that are reshaping human relationships and social interaction.
☆ Evaluating Deepfake Detectors in the Wild ICML 2025
Deepfakes powered by advanced machine learning models present a significant and evolving threat to identity verification and the authenticity of digital media. Although numerous detectors have been developed to address this problem, their effectiveness has yet to be tested when applied to real-world data. In this work we evaluate modern deepfake detectors, introducing a novel testing procedure designed to mimic real-world scenarios for deepfake detection. Using state-of-the-art deepfake generation methods, we create a comprehensive dataset containing more than 500,000 high-quality deepfake images. Our analysis shows that detecting deepfakes still remains a challenging task. The evaluation shows that in fewer than half of the deepfake detectors tested achieved an AUC score greater than 60%, with the lowest being 50%. We demonstrate that basic image manipulations, such as JPEG compression or image enhancement, can significantly reduce model performance. All code and data are publicly available at https://github.com/messlav/Deepfake-Detectors-in-the-Wild.
comment: Accepted to the ICML 2025 Workshop 'DataWorld: Unifying Data Curation Frameworks Across Domains'
☆ LLM-based Content Classification Approach for GitHub Repositories by the README Files
GitHub is the world's most popular platform for storing, sharing, and managing code. Every GitHub repository has a README file associated with it. The README files should contain project-related information as per the recommendations of GitHub to support the usage and improvement of repositories. However, GitHub repository owners sometimes neglected these recommendations. This prevents a GitHub repository from reaching its full potential. This research posits that the comprehensiveness of a GitHub repository's README file significantly influences its adoption and utilization, with a lack of detail potentially hindering its full potential for widespread engagement and impact within the research community. Large Language Models (LLMs) have shown great performance in many text-based tasks including text classification, text generation, text summarization and text translation. In this study, an approach is developed to fine-tune LLMs for automatically classifying different sections of GitHub README files. Three encoder-only LLMs are utilized, including BERT, DistilBERT and RoBERTa. These pre-trained models are then fine-tuned based on a gold-standard dataset consisting of 4226 README file sections. This approach outperforms current state-of-the-art methods and has achieved an overall F1 score of 0.98. Moreover, we have also investigated the use of Parameter-Efficient Fine-Tuning (PEFT) techniques like Low-Rank Adaptation (LoRA) and shown an economical alternative to full fine-tuning without compromising much performance. The results demonstrate the potential of using LLMs in designing an automatic classifier for categorizing the content of GitHub README files. Consequently, this study contributes to the development of automated tools for GitHub repositories to improve their identifications and potential usages.
comment: 8 pages, 4 Figures
Data-driven quantum Koopman method for simulating nonlinear dynamics
Quantum computation offers potential exponential speedups for simulating certain physical systems, but its application to nonlinear dynamics is inherently constrained by the requirement of unitary evolution. We propose the quantum Koopman method (QKM), a data-driven framework that bridges this gap through transforming nonlinear dynamics into linear unitary evolution in higher-dimensional observable spaces. Leveraging the Koopman operator theory to achieve a global linearization, our approach maps system states into a hierarchy of Hilbert spaces using a deep autoencoder. Within the linearized embedding spaces, the state representation is decomposed into modulus and phase components, and the evolution is governed by a set of unitary Koopman operators that act exclusively on the phase. These operators are constructed from diagonal Hamiltonians with coefficients learned from data, a structure designed for efficient implementation on quantum hardware. This architecture enables direct multi-step prediction, and the operator's computational complexity scales logarithmically with the observable space dimension. The QKM is validated across diverse nonlinear systems. Its predictions maintain relative errors below 6% for reaction-diffusion systems and shear flows, and capture key statistics in 2D turbulence. This work establishes a practical pathway for quantum-accelerated simulation of nonlinear phenomena, exploring a framework built on the synergy between deep learning for global linearization and quantum algorithms for unitary dynamics evolution.
☆ Efficient Pain Recognition via Respiration Signals: A Single Cross-Attention Transformer Multi-Window Fusion Pipeline
Pain is a complex condition affecting a large portion of the population. Accurate and consistent evaluation is essential for individuals experiencing pain, and it supports the development of effective and advanced management strategies. Automatic pain assessment systems provide continuous monitoring and support clinical decision-making, aiming to reduce distress and prevent functional decline. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed method introduces a pipeline that leverages respiration as the input signal and incorporates a highly efficient cross-attention transformer alongside a multi-windowing strategy. Extensive experiments demonstrate that respiration is a valuable physiological modality for pain assessment. Moreover, experiments revealed that compact and efficient models, when properly optimized, can achieve strong performance, often surpassing larger counterparts. The proposed multi-window approach effectively captures both short-term and long-term features, as well as global characteristics, thereby enhancing the model's representational capacity.
☆ The Impact of Foundational Models on Patient-Centric e-Health Systems
As Artificial Intelligence (AI) becomes increasingly embedded in healthcare technologies, understanding the maturity of AI in patient-centric applications is critical for evaluating its trustworthiness, transparency, and real-world impact. In this study, we investigate the integration and maturity of AI feature integration in 116 patient-centric healthcare applications. Using Large Language Models (LLMs), we extracted key functional features, which are then categorized into different stages of the Gartner AI maturity model. Our results show that over 86.21\% of applications remain at the early stages of AI integration, while only 13.79% demonstrate advanced AI integration.
comment: Paper published in COMPSAC 2025
☆ Multi-Representation Diagrams for Pain Recognition: Integrating Various Electrodermal Activity Signals into a Single Image
Pain is a multifaceted phenomenon that affects a substantial portion of the population. Reliable and consistent evaluation benefits those experiencing pain and underpins the development of effective and advanced management strategies. Automatic pain-assessment systems deliver continuous monitoring, inform clinical decision-making, and aim to reduce distress while preventing functional decline. By incorporating physiological signals, these systems provide objective, accurate insights into an individual's condition. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed method introduces a pipeline that leverages electrodermal activity signals as input modality. Multiple representations of the signal are created and visualized as waveforms, and they are jointly visualized within a single multi-representation diagram. Extensive experiments incorporating various processing and filtering techniques, along with multiple representation combinations, demonstrate the effectiveness of the proposed approach. It consistently yields comparable, and in several cases superior, results to traditional fusion methods, establishing it as a robust alternative for integrating different signal representations or modalities.
☆ Tiny-BioMoE: a Lightweight Embedding Model for Biosignal Analysis
Pain is a complex and pervasive condition that affects a significant portion of the population. Accurate and consistent assessment is essential for individuals suffering from pain, as well as for developing effective management strategies in a healthcare system. Automatic pain assessment systems enable continuous monitoring, support clinical decision-making, and help minimize patient distress while mitigating the risk of functional deterioration. Leveraging physiological signals offers objective and precise insights into a person's state, and their integration in a multimodal framework can further enhance system performance. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed approach introduces \textit{Tiny-BioMoE}, a lightweight pretrained embedding model for biosignal analysis. Trained on $4.4$ million biosignal image representations and consisting of only $7.3$ million parameters, it serves as an effective tool for extracting high-quality embeddings for downstream tasks. Extensive experiments involving electrodermal activity, blood volume pulse, respiratory signals, peripheral oxygen saturation, and their combinations highlight the model's effectiveness across diverse modalities in automatic pain recognition tasks. \textit{\textcolor{blue}{The model's architecture (code) and weights are available at https://github.com/GkikasStefanos/Tiny-BioMoE.
☆ A Neuro-Symbolic Approach for Probabilistic Reasoning on Graph Data AI
Graph neural networks (GNNs) excel at predictive tasks on graph-structured data but often lack the ability to incorporate symbolic domain knowledge and perform general reasoning. Relational Bayesian Networks (RBNs), in contrast, enable fully generative probabilistic modeling over graph-like structures and support rich symbolic knowledge and probabilistic inference. This paper presents a neuro-symbolic framework that seamlessly integrates GNNs into RBNs, combining the learning strength of GNNs with the flexible reasoning capabilities of RBNs. We develop two implementations of this integration: one compiles GNNs directly into the native RBN language, while the other maintains the GNN as an external component. Both approaches preserve the semantics and computational properties of GNNs while fully aligning with the RBN modeling paradigm. We also propose a maximum a-posteriori (MAP) inference method for these neuro-symbolic models. To demonstrate the framework's versatility, we apply it to two distinct problems. First, we transform a GNN for node classification into a collective classification model that explicitly models homo- and heterophilic label patterns, substantially improving accuracy. Second, we introduce a multi-objective network optimization problem in environmental planning, where MAP inference supports complex decision-making. Both applications include new publicly available benchmark datasets. This work introduces a powerful and coherent neuro-symbolic approach to graph data, bridging learning and reasoning in ways that enable novel applications and improved performance across diverse tasks.
comment: Submitted to the Journal of Artificial Intelligence Research (JAIR); under revision. 29 pages, 6 figures. Code available at https://github.com/raffaelepojer/NeSy-for-graph-data
☆ MultiEditor: Controllable Multimodal Object Editing for Driving Scenarios Using 3D Gaussian Splatting Priors
Autonomous driving systems rely heavily on multimodal perception data to understand complex environments. However, the long-tailed distribution of real-world data hinders generalization, especially for rare but safety-critical vehicle categories. To address this challenge, we propose MultiEditor, a dual-branch latent diffusion framework designed to edit images and LiDAR point clouds in driving scenarios jointly. At the core of our approach is introducing 3D Gaussian Splatting (3DGS) as a structural and appearance prior for target objects. Leveraging this prior, we design a multi-level appearance control mechanism--comprising pixel-level pasting, semantic-level guidance, and multi-branch refinement--to achieve high-fidelity reconstruction across modalities. We further propose a depth-guided deformable cross-modality condition module that adaptively enables mutual guidance between modalities using 3DGS-rendered depth, significantly enhancing cross-modality consistency. Extensive experiments demonstrate that MultiEditor achieves superior performance in visual and geometric fidelity, editing controllability, and cross-modality consistency. Furthermore, generating rare-category vehicle data with MultiEditor substantially enhances the detection accuracy of perception models on underrepresented classes.
☆ EDGE-GRPO: Entropy-Driven GRPO with Guided Error Correction for Advantage Diversity
Large Language Models (LLMs) have made remarkable progress in enhancing step-by-step reasoning through reinforcement learning. However, the Group Relative Policy Optimization (GRPO) algorithm, which relies on sparse reward rules, often encounters the issue of identical rewards within groups, leading to the advantage collapse problem. Existing works typically address this challenge from two perspectives: enforcing model reflection to enhance response diversity, and introducing internal feedback to augment the training signal (advantage). In this work, we begin by analyzing the limitations of model reflection and investigating the policy entropy of responses at the fine-grained sample level. Based on our experimental findings, we propose the EDGE-GRPO algorithm, which adopts \textbf{E}ntropy-\textbf{D}riven Advantage and \textbf{G}uided \textbf{E}rror Correction to effectively mitigate the problem of advantage collapse. Extensive experiments on several main reasoning benchmarks demonstrate the effectiveness and superiority of our approach. It is available at https://github.com/ZhangXJ199/EDGE-GRPO.
☆ Probabilistic Active Goal Recognition
In multi-agent environments, effective interaction hinges on understanding the beliefs and intentions of other agents. While prior work on goal recognition has largely treated the observer as a passive reasoner, Active Goal Recognition (AGR) focuses on strategically gathering information to reduce uncertainty. We adopt a probabilistic framework for Active Goal Recognition and propose an integrated solution that combines a joint belief update mechanism with a Monte Carlo Tree Search (MCTS) algorithm, allowing the observer to plan efficiently and infer the actor's hidden goal without requiring domain-specific knowledge. Through comprehensive empirical evaluation in a grid-based domain, we show that our joint belief update significantly outperforms passive goal recognition, and that our domain-independent MCTS performs comparably to our strong domain-specific greedy baseline. These results establish our solution as a practical and robust framework for goal inference, advancing the field toward more interactive and adaptive multi-agent systems.
comment: Accepted by KR2025
☆ Against racing to AGI: Cooperation, deterrence, and catastrophic risks
AGI Racing is the view that it is in the self-interest of major actors in AI development, especially powerful nations, to accelerate their frontier AI development to build highly capable AI, especially artificial general intelligence (AGI), before competitors have a chance. We argue against AGI Racing. First, the downsides of racing to AGI are much higher than portrayed by this view. Racing to AGI would substantially increase catastrophic risks from AI, including nuclear instability, and undermine the prospects of technical AI safety research to be effective. Second, the expected benefits of racing may be lower than proponents of AGI Racing hold. In particular, it is questionable whether winning the race enables complete domination over losers. Third, international cooperation and coordination, and perhaps carefully crafted deterrence measures, constitute viable alternatives to racing to AGI which have much smaller risks and promise to deliver most of the benefits that racing to AGI is supposed to provide. Hence, racing to AGI is not in anyone's self-interest as other actions, particularly incentivizing and seeking international cooperation around AI issues, are preferable.
☆ Analysis of Fourier Neural Operators via Effective Field Theory
Fourier Neural Operators (FNOs) have emerged as leading surrogates for high-dimensional partial-differential equations, yet their stability, generalization and frequency behavior lack a principled explanation. We present the first systematic effective-field-theory analysis of FNOs in an infinite-dimensional function space, deriving closed recursion relations for the layer kernel and four-point vertex and then examining three practically important settings-analytic activations, scale-invariant cases and architectures with residual connections. The theory shows that nonlinear activations inevitably couple frequency inputs to high-frequency modes that are otherwise discarded by spectral truncation, and experiments confirm this frequency transfer. For wide networks we obtain explicit criticality conditions on the weight-initialization ensemble that keep small input perturbations to have uniform scale across depth, and empirical tests validate these predictions. Taken together, our results quantify how nonlinearity enables neural operators to capture non-trivial features, supply criteria for hyper-parameter selection via criticality analysis, and explain why scale-invariant activations and residual connections enhance feature learning in FNOs.
comment: 37 pages, 10 figures
☆ Introducing HALC: A general pipeline for finding optimal prompting strategies for automated coding with LLMs in the computational social sciences
LLMs are seeing widespread use for task automation, including automated coding in the social sciences. However, even though researchers have proposed different prompting strategies, their effectiveness varies across LLMs and tasks. Often trial and error practices are still widespread. We propose HALC$-$a general pipeline that allows for the systematic and reliable construction of optimal prompts for any given coding task and model, permitting the integration of any prompting strategy deemed relevant. To investigate LLM coding and validate our pipeline, we sent a total of 1,512 individual prompts to our local LLMs in over two million requests. We test prompting strategies and LLM task performance based on few expert codings (ground truth). When compared to these expert codings, we find prompts that code reliably for single variables (${\alpha}$climate = .76; ${\alpha}$movement = .78) and across two variables (${\alpha}$climate = .71; ${\alpha}$movement = .74) using the LLM Mistral NeMo. Our prompting strategies are set up in a way that aligns the LLM to our codebook$-$we are not optimizing our codebook for LLM friendliness. Our paper provides insights into the effectiveness of different prompting strategies, crucial influencing factors, and the identification of reliable prompts for each coding task and model.
comment: 48 pages, 9 figures and 8 tables
☆ DualSG: A Dual-Stream Explicit Semantic-Guided Multivariate Time Series Forecasting Framework
Multivariate Time Series Forecasting plays a key role in many applications. Recent works have explored using Large Language Models for MTSF to take advantage of their reasoning abilities. However, many methods treat LLMs as end-to-end forecasters, which often leads to a loss of numerical precision and forces LLMs to handle patterns beyond their intended design. Alternatively, methods that attempt to align textual and time series modalities within latent space frequently encounter alignment difficulty. In this paper, we propose to treat LLMs not as standalone forecasters, but as semantic guidance modules within a dual-stream framework. We propose DualSG, a dual-stream framework that provides explicit semantic guidance, where LLMs act as Semantic Guides to refine rather than replace traditional predictions. As part of DualSG, we introduce Time Series Caption, an explicit prompt format that summarizes trend patterns in natural language and provides interpretable context for LLMs, rather than relying on implicit alignment between text and time series in the latent space. We also design a caption-guided fusion module that explicitly models inter-variable relationships while reducing noise and computation. Experiments on real-world datasets from diverse domains show that DualSG consistently outperforms 15 state-of-the-art baselines, demonstrating the value of explicitly combining numerical forecasting with semantic guidance.
comment: This paper has been accepted by ACM Multimedia 2025 (ACM MM 2025)
☆ An Agentic AI for a New Paradigm in Business Process Development
Artificial Intelligence agents represent the next major revolution in the continuous technological evolution of industrial automation. In this paper, we introduce a new approach for business process design and development that leverages the capabilities of Agentic AI. Departing from the traditional task-based approach to business process design, we propose an agent-based method, where agents contribute to the achievement of business goals, identified by a set of business objects. When a single agent cannot fulfill a goal, we have a merge goal that can be achieved through the collaboration of multiple agents. The proposed model leads to a more modular and intelligent business process development by organizing it around goals, objects, and agents. As a result, this approach enables flexible and context-aware automation in dynamic industrial environments.
☆ MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%. Codes and models are available at $\href{https://github.com/Tencent-Hunyuan/MixGRPO}{MixGRPO}$.
☆ Unlocking Interpretability for RF Sensing: A Complex-Valued White-Box Transformer
The empirical success of deep learning has spurred its application to the radio-frequency (RF) domain, leading to significant advances in Deep Wireless Sensing (DWS). However, most existing DWS models function as black boxes with limited interpretability, which hampers their generalizability and raises concerns in security-sensitive physical applications. In this work, inspired by the remarkable advances of white-box transformers, we present RF-CRATE, the first mathematically interpretable deep network architecture for RF sensing, grounded in the principles of complex sparse rate reduction. To accommodate the unique RF signals, we conduct non-trivial theoretical derivations that extend the original real-valued white-box transformer to the complex domain. By leveraging the CR-Calculus framework, we successfully construct a fully complex-valued white-box transformer with theoretically derived self-attention and residual multi-layer perceptron modules. Furthermore, to improve the model's ability to extract discriminative features from limited wireless data, we introduce Subspace Regularization, a novel regularization strategy that enhances feature diversity, resulting in an average performance improvement of 19.98% across multiple sensing tasks. We extensively evaluate RF-CRATE against seven baselines with multiple public and self-collected datasets involving different RF signals. The results show that RF-CRATE achieves performance on par with thoroughly engineered black-box models, while offering full mathematical interpretability. More importantly, by extending CRATE to the complex domain, RF-CRATE yields substantial improvements, achieving an average classification gain of 5.08% and reducing regression error by 10.34% across diverse sensing tasks compared to CRATE. RF-CRATE is fully open-sourced at: https://github.com/rfcrate/RF_CRATE.
☆ MoDeSuite: Robot Learning Task Suite for Benchmarking Mobile Manipulation with Deformable Objects
Mobile manipulation is a critical capability for robots operating in diverse, real-world environments. However, manipulating deformable objects and materials remains a major challenge for existing robot learning algorithms. While various benchmarks have been proposed to evaluate manipulation strategies with rigid objects, there is still a notable lack of standardized benchmarks that address mobile manipulation tasks involving deformable objects. To address this gap, we introduce MoDeSuite, the first Mobile Manipulation Deformable Object task suite, designed specifically for robot learning. MoDeSuite consists of eight distinct mobile manipulation tasks covering both elastic objects and deformable objects, each presenting a unique challenge inspired by real-world robot applications. Success in these tasks requires effective collaboration between the robot's base and manipulator, as well as the ability to exploit the deformability of the objects. To evaluate and demonstrate the use of the proposed benchmark, we train two state-of-the-art reinforcement learning algorithms and two imitation learning algorithms, highlighting the difficulties encountered and showing their performance in simulation. Furthermore, we demonstrate the practical relevance of the suite by deploying the trained policies directly into the real world with the Spot robot, showcasing the potential for sim-to-real transfer. We expect that MoDeSuite will open a novel research domain in mobile manipulation involving deformable objects. Find more details, code, and videos at https://sites.google.com/view/modesuite/home.
☆ Hybrid Causal Identification and Causal Mechanism Clustering
Bivariate causal direction identification is a fundamental and vital problem in the causal inference field. Among binary causal methods, most methods based on additive noise only use one single causal mechanism to construct a causal model. In the real world, observations are always collected in different environments with heterogeneous causal relationships. Therefore, on observation data, this paper proposes a Mixture Conditional Variational Causal Inference model (MCVCI) to infer heterogeneous causality. Specifically, according to the identifiability of the Hybrid Additive Noise Model (HANM), MCVCI combines the superior fitting capabilities of the Gaussian mixture model and the neural network and elegantly uses the likelihoods obtained from the probabilistic bounds of the mixture conditional variational auto-encoder as causal decision criteria. Moreover, we model the casual heterogeneity into cluster numbers and propose the Mixture Conditional Variational Causal Clustering (MCVCC) method, which can reveal causal mechanism expression. Compared with state-of-the-art methods, the comprehensive best performance demonstrates the effectiveness of the methods proposed in this paper on several simulated and real data.
☆ Can large language models assist choice modelling? Insights into prompting strategies and current models capabilities
Large Language Models (LLMs) are widely used to support various workflows across different disciplines, yet their potential in choice modelling remains relatively unexplored. This work examines the potential of LLMs as assistive agents in the specification and, where technically feasible, estimation of Multinomial Logit models. We implement a systematic experimental framework involving thirteen versions of six leading LLMs (ChatGPT, Claude, DeepSeek, Gemini, Gemma, and Llama) evaluated under five experimental configurations. These configurations vary along three dimensions: modelling goal (suggesting vs. suggesting and estimating MNLs); prompting strategy (Zero-Shot vs. Chain-of-Thoughts); and information availability (full dataset vs. data dictionary only). Each LLM-suggested specification is implemented, estimated, and evaluated based on goodness-of-fit metrics, behavioural plausibility, and model complexity. Findings reveal that proprietary LLMs can generate valid and behaviourally sound utility specifications, particularly when guided by structured prompts. Open-weight models such as Llama and Gemma struggled to produce meaningful specifications. Claude 4 Sonnet consistently produced the best-fitting and most complex models, while GPT models suggested models with robust and stable modelling outcomes. Some LLMs performed better when provided with just data dictionary, suggesting that limiting raw data access may enhance internal reasoning capabilities. Among all LLMs, GPT o3 was uniquely capable of correctly estimating its own specifications by executing self-generated code. Overall, the results demonstrate both the promise and current limitations of LLMs as assistive agents in choice modelling, not only for model specification but also for supporting modelling decision and estimation, and provide practical guidance for integrating these tools into choice modellers' workflows.
comment: 32 pages, 6 figures, 14 tables
☆ Proposing a Semantic Movie Recommendation System Enhanced by ChatGPT's NLP Results
The importance of recommender systems on the web has grown, especially in the movie industry, with a vast selection of options to watch. To assist users in traversing available items and finding relevant results, recommender systems analyze operational data and investigate users' tastes and habits. Providing highly individualized suggestions can boost user engagement and satisfaction, which is one of the fundamental goals of the movie industry, significantly in online platforms. According to recent studies and research, using knowledge-based techniques and considering the semantic ideas of the textual data is a suitable way to get more appropriate results. This study provides a new method for building a knowledge graph based on semantic information. It uses the ChatGPT, as a large language model, to assess the brief descriptions of movies and extract their tone of voice. Results indicated that using the proposed method may significantly enhance accuracy rather than employing the explicit genres supplied by the publishers.
comment: May 2023, 6 pages, 5 figures
☆ Learning Kinetic Monte Carlo stochastic dynamics with Deep Generative Adversarial Networks
We show that Generative Adversarial Networks (GANs) may be fruitfully exploited to learn stochastic dynamics, surrogating traditional models while capturing thermal fluctuations. Specifically, we showcase the application to a two-dimensional, many-particle system, focusing on surface-step fluctuations and on the related time-dependent roughness. After the construction of a dataset based on Kinetic Monte Carlo simulations, a conditional GAN is trained to propagate stochastically the state of the system in time, allowing the generation of new sequences with a reduced computational cost. Modifications with respect to standard GANs, which facilitate convergence and increase accuracy, are discussed. The trained network is demonstrated to quantitatively reproduce equilibrium and kinetic properties, including scaling laws, with deviations of a few percent from the exact value. Extrapolation limits and future perspectives are critically discussed.
comment: 15 pages, 8 figures, 2 appendices
☆ LiteFat: Lightweight Spatio-Temporal Graph Learning for Real-Time Driver Fatigue Detection
Detecting driver fatigue is critical for road safety, as drowsy driving remains a leading cause of traffic accidents. Many existing solutions rely on computationally demanding deep learning models, which result in high latency and are unsuitable for embedded robotic devices with limited resources (such as intelligent vehicles/cars) where rapid detection is necessary to prevent accidents. This paper introduces LiteFat, a lightweight spatio-temporal graph learning model designed to detect driver fatigue efficiently while maintaining high accuracy and low computational demands. LiteFat involves converting streaming video data into spatio-temporal graphs (STG) using facial landmark detection, which focuses on key motion patterns and reduces unnecessary data processing. LiteFat uses MobileNet to extract facial features and create a feature matrix for the STG. A lightweight spatio-temporal graph neural network is then employed to identify signs of fatigue with minimal processing and low latency. Experimental results on benchmark datasets show that LiteFat performs competitively while significantly decreasing computational complexity and latency as compared to current state-of-the-art methods. This work enables the development of real-time, resource-efficient human fatigue detection systems that can be implemented upon embedded robotic devices.
comment: 6 pages, 1 figure
☆ Towards a rigorous evaluation of RAG systems: the challenge of due diligence
The rise of generative AI, has driven significant advancements in high-risk sectors like healthcare and finance. The Retrieval-Augmented Generation (RAG) architecture, combining language models (LLMs) with search engines, is particularly notable for its ability to generate responses from document corpora. Despite its potential, the reliability of RAG systems in critical contexts remains a concern, with issues such as hallucinations persisting. This study evaluates a RAG system used in due diligence for an investment fund. We propose a robust evaluation protocol combining human annotations and LLM-Judge annotations to identify system failures, like hallucinations, off-topic, failed citations, and abstentions. Inspired by the Prediction Powered Inference (PPI) method, we achieve precise performance measurements with statistical guarantees. We provide a comprehensive dataset for further analysis. Our contributions aim to enhance the reliability and scalability of RAG systems evaluation protocols in industrial applications.
comment: in French language. EvalLLM2025: Workshop on Evaluation Generative Models (LLM) and Challenges, AMIAD, 2025, Marseille, France
☆ SAT-Based Bounded Fitting for the Description Logic ALC
Bounded fitting is a general paradigm for learning logical formulas from positive and negative data examples, that has received considerable interest recently. We investigate bounded fitting for the description logic ALC and its syntactic fragments. We show that the underlying size-restricted fitting problem is NP-complete for all studied fragments, even in the special case of a single positive and a single negative example. By design, bounded fitting comes with probabilistic guarantees in Valiant's PAC learning framework. In contrast, we show that other classes of algorithms for learning ALC concepts do not provide such guarantees. Finally, we present an implementation of bounded fitting in ALC and its fragments based on a SAT solver. We discuss optimizations and compare our implementation to other concept learning tools.
comment: 33 pages, full version of paper accepted at ISWC 2025
☆ Zero-Shot Machine Unlearning with Proxy Adversarial Data Generation IJCAI 2025
Machine unlearning aims to remove the influence of specific samples from a trained model. A key challenge in this process is over-unlearning, where the model's performance on the remaining data significantly drops due to the change in the model's parameters. Existing unlearning algorithms depend on the remaining data to prevent this issue. As such, these methods are inapplicable in a more practical scenario, where only the unlearning samples are available (i.e., zero-shot unlearning). This paper presents a novel framework, ZS-PAG, to fill this gap. Our approach offers three key innovations: (1) we approximate the inaccessible remaining data by generating adversarial samples; (2) leveraging the generated samples, we pinpoint a specific subspace to perform the unlearning process, therefore preventing over-unlearning in the challenging zero-shot scenario; and (3) we consider the influence of the unlearning process on the remaining samples and design an influence-based pseudo-labeling strategy. As a result, our method further improves the model's performance after unlearning. The proposed method holds a theoretical guarantee, and experiments on various benchmarks validate the effectiveness and superiority of our proposed method over several baselines.
comment: Accepted by IJCAI 2025
☆ GDAIP: A Graph-Based Domain Adaptive Framework for Individual Brain Parcellation
Recent deep learning approaches have shown promise in learning such individual brain parcellations from functional magnetic resonance imaging (fMRI). However, most existing methods assume consistent data distributions across domains and struggle with domain shifts inherent to real-world cross-dataset scenarios. To address this challenge, we proposed Graph Domain Adaptation for Individual Parcellation (GDAIP), a novel framework that integrates Graph Attention Networks (GAT) with Minimax Entropy (MME)-based domain adaptation. We construct cross-dataset brain graphs at both the group and individual levels. By leveraging semi-supervised training and adversarial optimization of the prediction entropy on unlabeled vertices from target brain graph, the reference atlas is adapted from the group-level brain graph to the individual brain graph, enabling individual parcellation under cross-dataset settings. We evaluated our method using parcellation visualization, Dice coefficient, and functional homogeneity. Experimental results demonstrate that GDAIP produces individual parcellations with topologically plausible boundaries, strong cross-session consistency, and ability of reflecting functional organization.
☆ Detection Transformers Under the Knife: A Neuroscience-Inspired Approach to Ablations
In recent years, Explainable AI has gained traction as an approach to enhancing model interpretability and transparency, particularly in complex models such as detection transformers. Despite rapid advancements, a substantial research gap remains in understanding the distinct roles of internal components - knowledge that is essential for improving transparency and efficiency. Inspired by neuroscientific ablation studies, which investigate the functions of brain regions through selective impairment, we systematically analyze the impact of ablating key components in three state-of-the-art detection transformer models: Detection transformer (DETR), deformable detection transformer (DDETR), and DETR with improved denoising anchor boxes (DINO). The ablations target query embeddings, encoder and decoder multi-head self-attentions (MHSA) as well as decoder multi-head cross-attention (MHCA) layers. We evaluate the effects of these ablations on the performance metrics gIoU and F1-score, quantifying effects on both the classification and regression sub-tasks on the COCO dataset. To facilitate reproducibility and future research, we publicly release the DeepDissect library. Our findings reveal model-specific resilience patterns: while DETR is particularly sensitive to ablations in encoder MHSA and decoder MHCA, DDETR's multi-scale deformable attention enhances robustness, and DINO exhibits the greatest resilience due to its look-forward twice update rule, which helps distributing knowledge across blocks. These insights also expose structural redundancies, particularly in DDETR's and DINO's decoder MHCA layers, highlighting opportunities for model simplification without sacrificing performance. This study advances XAI for DETRs by clarifying the contributions of internal components to model performance, offering insights to optimize and improve transparency and efficiency in critical applications.
☆ EnTao-GPM: DNA Foundation Model for Predicting the Germline Pathogenic Mutations
Distinguishing pathogenic mutations from benign polymorphisms remains a critical challenge in precision medicine. EnTao-GPM, developed by Fudan University and BioMap, addresses this through three innovations: (1) Cross-species targeted pre-training on disease-relevant mammalian genomes (human, pig, mouse), leveraging evolutionary conservation to enhance interpretation of pathogenic motifs, particularly in non-coding regions; (2) Germline mutation specialization via fine-tuning on ClinVar and HGMD, improving accuracy for both SNVs and non-SNVs; (3) Interpretable clinical framework integrating DNA sequence embeddings with LLM-based statistical explanations to provide actionable insights. Validated against ClinVar, EnTao-GPM demonstrates superior accuracy in mutation classification. It revolutionizes genetic testing by enabling faster, more accurate, and accessible interpretation for clinical diagnostics (e.g., variant assessment, risk identification, personalized treatment) and research, advancing personalized medicine.
☆ Unrolling Dynamic Programming via Graph Filters
Dynamic programming (DP) is a fundamental tool used across many engineering fields. The main goal of DP is to solve Bellman's optimality equations for a given Markov decision process (MDP). Standard methods like policy iteration exploit the fixed-point nature of these equations to solve them iteratively. However, these algorithms can be computationally expensive when the state-action space is large or when the problem involves long-term dependencies. Here we propose a new approach that unrolls and truncates policy iterations into a learnable parametric model dubbed BellNet, which we train to minimize the so-termed Bellman error from random value function initializations. Viewing the transition probability matrix of the MDP as the adjacency of a weighted directed graph, we draw insights from graph signal processing to interpret (and compactly re-parameterize) BellNet as a cascade of nonlinear graph filters. This fresh look facilitates a concise, transferable, and unifying representation of policy and value iteration, with an explicit handle on complexity during inference. Preliminary experiments conducted in a grid-like environment demonstrate that BellNet can effectively approximate optimal policies in a fraction of the iterations required by classical methods.
☆ Towards a Large Physics Benchmark
We introduce a benchmark framework developed by and for the scientific community to evaluate, monitor and steer large language model development in fundamental physics. Building on philosophical concepts of scientific understanding and creativity, we develop a scoring system in which each question is scored by an expert for its correctness, difficulty, and surprise. The questions are of three forms: (i) multiple-choice questions for conceptual understanding, (ii) analytical problems requiring mathematical derivation, and (iii) openended tasks requiring complex problem solving. Our current dataset contains diverse set of examples, including a machine learning challenge to classify high-energy physics events, such as the four top quark signal. To ensure continued relevance, we propose a living benchmark, where physicists contribute questions, for instance alongside new publications. We invite contributions via: http://www.physicsbenchmarks.org/. We hope that this benchmark will enable a targeted AI development that can make a meaningful contribution to fundamental physics research.
☆ A Multi-Agent Generative AI Framework for IC Module-Level Verification Automation
As large language models demonstrate enormous potential in the field of Electronic Design Automation (EDA), generative AI-assisted chip design is attracting widespread attention from academia and industry. Although these technologies have made preliminary progress in tasks such as code generation, their application in chip verification -- a critical bottleneck in the chip development cycle -- remains at an exploratory stage. This paper proposes an innovative Multi-Agent Verification Framework (MAVF) aimed at addressing the limitations of current single-LLM approaches in complex verification tasks. Our framework builds an automated transformation system from design specifications to testbench through the collaborative work of multiple specialized agents, including specification parsing, verification strategy generation, and code implementation. Through verification experiments on multiple chip modules of varying complexity, results show that MAVF significantly outperforms traditional manual methods and single-dialogue generative AI approaches in verification document parsing and generation, as well as automated testbench generation. This research opens new directions for exploring generative AI applications in verification automation, potentially providing effective approaches to solving the most challenging bottleneck issues in chip design.
comment: 20 pages, 12 figures. DVCon China 2025
☆ MultiAIGCD: A Comprehensive dataset for AI Generated Code Detection Covering Multiple Languages, Models,Prompts, and Scenarios
As large language models (LLMs) rapidly advance, their role in code generation has expanded significantly. While this offers streamlined development, it also creates concerns in areas like education and job interviews. Consequently, developing robust systems to detect AI-generated code is imperative to maintain academic integrity and ensure fairness in hiring processes. In this study, we introduce MultiAIGCD, a dataset for AI-generated code detection for Python, Java, and Go. From the CodeNet dataset's problem definitions and human-authored codes, we generate several code samples in Java, Python, and Go with six different LLMs and three different prompts. This generation process covered three key usage scenarios: (i) generating code from problem descriptions, (ii) fixing runtime errors in human-written code, and (iii) correcting incorrect outputs. Overall, MultiAIGCD consists of 121,271 AI-generated and 32,148 human-written code snippets. We also benchmark three state-of-the-art AI-generated code detection models and assess their performance in various test scenarios such as cross-model and cross-language. We share our dataset and codes to support research in this field.
☆ APT: Improving Diffusion Models for High Resolution Image Generation with Adaptive Path Tracing
Latent Diffusion Models (LDMs) are generally trained at fixed resolutions, limiting their capability when scaling up to high-resolution images. While training-based approaches address this limitation by training on high-resolution datasets, they require large amounts of data and considerable computational resources, making them less practical. Consequently, training-free methods, particularly patch-based approaches, have become a popular alternative. These methods divide an image into patches and fuse the denoising paths of each patch, showing strong performance on high-resolution generation. However, we observe two critical issues for patch-based approaches, which we call ``patch-level distribution shift" and ``increased patch monotonicity." To address these issues, we propose Adaptive Path Tracing (APT), a framework that combines Statistical Matching to ensure patch distributions remain consistent in upsampled latents and Scale-aware Scheduling to deal with the patch monotonicity. As a result, APT produces clearer and more refined details in high-resolution images. In addition, APT enables a shortcut denoising process, resulting in faster sampling with minimal quality degradation. Our experimental results confirm that APT produces more detailed outputs with improved inference speed, providing a practical approach to high-resolution image generation.
☆ diffSPH: Differentiable Smoothed Particle Hydrodynamics for Adjoint Optimization and Machine Learning
We present diffSPH, a novel open-source differentiable Smoothed Particle Hydrodynamics (SPH) framework developed entirely in PyTorch with GPU acceleration. diffSPH is designed centrally around differentiation to facilitate optimization and machine learning (ML) applications in Computational Fluid Dynamics~(CFD), including training neural networks and the development of hybrid models. Its differentiable SPH core, and schemes for compressible (with shock capturing and multi-phase flows), weakly compressible (with boundary handling and free-surface flows), and incompressible physics, enable a broad range of application areas. We demonstrate the framework's unique capabilities through several applications, including addressing particle shifting via a novel, target-oriented approach by minimizing physical and regularization loss terms, a task often intractable in traditional solvers. Further examples include optimizing initial conditions and physical parameters to match target trajectories, shape optimization, implementing a solver-in-the-loop setup to emulate higher-order integration, and demonstrating gradient propagation through hundreds of full simulation steps. Prioritizing readability, usability, and extensibility, this work offers a foundational platform for the CFD community to develop and deploy novel neural networks and adjoint optimization applications.
☆ Can the current trends of AI handle a full course of mathematics?
This paper addresses the question of how able the current trends of Artificial Intelligence (AI) are in managing to take the responsibility of a full course of mathematics at a college level. The study evaluates this ability in four significant aspects, namely, creating a course syllabus, presenting selected material, answering student questions, and creating an assessment. It shows that even though the AI is strong in some important parts like organization and accuracy, there are still some human aspects that are far away from the current abilities of AI. There is still a hidden emotional part, even in science, that cannot be fulfilled by the AI in its current state. This paper suggests some recommendations to integrate the human and AI potentials to create better outcomes in terms of reaching the target of creating a full course of mathematics, at a university level, as best as possible.
comment: 36 pages
☆ AI Literacy as a Key Driver of User Experience in AI-Powered Assessment: Insights from Socratic Mind
As Artificial Intelligence (AI) tools become increasingly embedded in higher education, understanding how students interact with these systems is essential to supporting effective learning. This study examines how students' AI literacy and prior exposure to AI technologies shape their perceptions of Socratic Mind, an interactive AI-powered formative assessment tool. Drawing on Self-Determination Theory and user experience research, we analyze relationships among AI literacy, perceived usability, satisfaction, engagement, and perceived learning effectiveness. Data from 309 undergraduates in Computer Science and Business courses were collected through validated surveys. Partial least squares structural equation modeling showed that AI literacy - especially self-efficacy, conceptual understanding, and application skills - significantly predicts usability, satisfaction, and engagement. Usability and satisfaction, in turn, strongly predict perceived learning effectiveness, while prior AI exposure showed no significant effect. These findings highlight that AI literacy, rather than exposure alone, shapes student experiences. Designers should integrate adaptive guidance and user-centered features to support diverse literacy levels, fostering inclusive, motivating, and effective AI-based learning environments.
comment: 34 pages, 1 figure, 3 tables
☆ DGP: A Dual-Granularity Prompting Framework for Fraud Detection with Graph-Enhanced LLMs
Real-world fraud detection applications benefit from graph learning techniques that jointly exploit node features, often rich in textual data, and graph structural information. Recently, Graph-Enhanced LLMs emerge as a promising graph learning approach that converts graph information into prompts, exploiting LLMs' ability to reason over both textual and structural information. Among them, text-only prompting, which converts graph information to prompts consisting solely of text tokens, offers a solution that relies only on LLM tuning without requiring additional graph-specific encoders. However, text-only prompting struggles on heterogeneous fraud-detection graphs: multi-hop relations expand exponentially with each additional hop, leading to rapidly growing neighborhoods associated with dense textual information. These neighborhoods may overwhelm the model with long, irrelevant content in the prompt and suppress key signals from the target node, thereby degrading performance. To address this challenge, we propose Dual Granularity Prompting (DGP), which mitigates information overload by preserving fine-grained textual details for the target node while summarizing neighbor information into coarse-grained text prompts. DGP introduces tailored summarization strategies for different data modalities, bi-level semantic abstraction for textual fields and statistical aggregation for numerical features, enabling effective compression of verbose neighbor content into concise, informative prompts. Experiments across public and industrial datasets demonstrate that DGP operates within a manageable token budget while improving fraud detection performance by up to 6.8% (AUPRC) over state-of-the-art methods, showing the potential of Graph-Enhanced LLMs for fraud detection.
☆ GUARD-CAN: Graph-Understanding and Recurrent Architecture for CAN Anomaly Detection
Modern in-vehicle networks face various cyber threats due to the lack of encryption and authentication in the Controller Area Network (CAN). To address this security issue, this paper presents GUARD-CAN, an anomaly detection framework that combines graph-based representation learning with time-series modeling. GUARD-CAN splits CAN messages into fixed-length windows and converts each window into a graph that preserves message order. To detect anomalies in the timeaware and structure-aware context at the same window, GUARD-CAN takes advantage of the overcomplete Autoencoder (AE) and Graph Convolutional Network (GCN) to generate graph embedding vectors. The model groups these vectors into sequences and feeds them into the Gated Recurrent Unit (GRU) to detect temporal anomaly patterns across the graphs. GUARD-CAN performs anomaly detection at both the sequence level and the window level, and this allows multi-perspective performance evaluation. The model also verifies the importance of window size selection through an analysis based on Shannon entropy. As a result, GUARD-CAN shows that the proposed model detects four types of CAN attacks (flooding, fuzzing, replay and spoofing attacks) effectively without relying on complex feature engineering.
comment: Comments:12 pages, 3 figures, 3 tables; accepted to the 26th World Conference on Information Security Applications (WISA 2025)
☆ Assistax: A Hardware-Accelerated Reinforcement Learning Benchmark for Assistive Robotics
The development of reinforcement learning (RL) algorithms has been largely driven by ambitious challenge tasks and benchmarks. Games have dominated RL benchmarks because they present relevant challenges, are inexpensive to run and easy to understand. While games such as Go and Atari have led to many breakthroughs, they often do not directly translate to real-world embodied applications. In recognising the need to diversify RL benchmarks and addressing complexities that arise in embodied interaction scenarios, we introduce Assistax: an open-source benchmark designed to address challenges arising in assistive robotics tasks. Assistax uses JAX's hardware acceleration for significant speed-ups for learning in physics-based simulations. In terms of open-loop wall-clock time, Assistax runs up to $370\times$ faster when vectorising training runs compared to CPU-based alternatives. Assistax conceptualises the interaction between an assistive robot and an active human patient using multi-agent RL to train a population of diverse partner agents against which an embodied robotic agent's zero-shot coordination capabilities can be tested. Extensive evaluation and hyperparameter tuning for popular continuous control RL and MARL algorithms provide reliable baselines and establish Assistax as a practical benchmark for advancing RL research for assistive robotics. The code is available at: https://github.com/assistive-autonomy/assistax.
comment: Accepted for the Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop at the Reinforcement Learning Conference 2025
☆ Self-Aware Safety Augmentation: Leveraging Internal Semantic Understanding to Enhance Safety in Vision-Language Models
Large vision-language models (LVLMs) are vulnerable to harmful input compared to their language-only backbones. We investigated this vulnerability by exploring LVLMs internal dynamics, framing their inherent safety understanding in terms of three key capabilities. Specifically, we define these capabilities as safety perception, semantic understanding, and alignment for linguistic expression, and experimentally pinpointed their primary locations within the model architecture. The results indicate that safety perception often emerges before comprehensive semantic understanding, leading to the reduction in safety. Motivated by these findings, we propose \textbf{Self-Aware Safety Augmentation (SASA)}, a technique that projects informative semantic representations from intermediate layers onto earlier safety-oriented layers. This approach leverages the model's inherent semantic understanding to enhance safety recognition without fine-tuning. Then, we employ linear probing to articulate the model's internal semantic comprehension to detect the risk before the generation process. Extensive experiments on various datasets and tasks demonstrate that SASA significantly improves the safety of LVLMs, with minimal impact on the utility.
comment: Accepted by ACM Multimedia 2025
☆ StaffPro: an LLM Agent for Joint Staffing and Profiling
Large language model (LLM) agents integrate pre-trained LLMs with modular algorithmic components and have shown remarkable reasoning and decision-making abilities. In this work, we investigate their use for two tightly intertwined challenges in workforce management: staffing, i.e., the assignment and scheduling of tasks to workers, which may require team formation; and profiling, i.e., the continuous estimation of workers' skills, preferences, and other latent attributes from unstructured data. We cast these problems in a formal mathematical framework that links scheduling decisions to latent feature estimation, and we introduce StaffPro, an LLM agent that addresses staffing and profiling jointly. Differently from existing staffing solutions, StaffPro allows expressing optimization objectives using natural language, accepts textual task descriptions and provides high flexibility. StaffPro interacts directly with humans by establishing a continuous human-agent feedback loop, ensuring natural and intuitive use. By analyzing human feedback, our agent continuously estimates the latent features of workers, realizing life-long worker profiling and ensuring optimal staffing performance over time. A consulting firm simulation example demonstrates that StaffPro successfully estimates workers' attributes and generates high quality schedules. With its innovative design, StaffPro offers a robust, interpretable, and human-centric solution for automated personnel management.
☆ "Teammates, Am I Clear?": Analysing Legible Behaviours in Teams
In this paper we investigate the notion of legibility in sequential decision-making in the context of teams and teamwork. There have been works that extend the notion of legibility to sequential decision making, for deterministic and for stochastic scenarios. However, these works focus on one agent interacting with one human, foregoing the benefits of having legible decision making in teams of agents or in team configurations with humans. In this work we propose an extension of legible decision-making to multi-agent settings that improves the performance of agents working in collaboration. We showcase the performance of legible decision making in team scenarios using our proposed extension in multi-agent benchmark scenarios. We show that a team with a legible agent is able to outperform a team composed solely of agents with standard optimal behaviour.
☆ Hierarchical Graph Neural Network for Compressed Speech Steganalysis
Steganalysis methods based on deep learning (DL) often struggle with computational complexity and challenges in generalizing across different datasets. Incorporating a graph neural network (GNN) into steganalysis schemes enables the leveraging of relational data for improved detection accuracy and adaptability. This paper presents the first application of a Graph Neural Network (GNN), specifically the GraphSAGE architecture, for steganalysis of compressed voice over IP (VoIP) speech streams. The method involves straightforward graph construction from VoIP streams and employs GraphSAGE to capture hierarchical steganalysis information, including both fine grained details and high level patterns, thereby achieving high detection accuracy. Experimental results demonstrate that the developed approach performs well in uncovering quantization index modulation (QIM)-based steganographic patterns in VoIP signals. It achieves detection accuracy exceeding 98 percent even for short 0.5 second samples, and 95.17 percent accuracy under challenging conditions with low embedding rates, representing an improvement of 2.8 percent over the best performing state of the art methods. Furthermore, the model exhibits superior efficiency, with an average detection time as low as 0.016 seconds for 0.5-second samples an improvement of 0.003 seconds. This makes it efficient for online steganalysis tasks, providing a superior balance between detection accuracy and efficiency under the constraint of short samples with low embedding rates.
☆ Exploring the Link Between Bayesian Inference and Embodied Intelligence: Toward Open Physical-World Embodied AI Systems
Embodied intelligence posits that cognitive capabilities fundamentally emerge from - and are shaped by - an agent's real-time sensorimotor interactions with its environment. Such adaptive behavior inherently requires continuous inference under uncertainty. Bayesian statistics offers a principled probabilistic framework to address this challenge by representing knowledge as probability distributions and updating beliefs in response to new evidence. The core computational processes underlying embodied intelligence - including perception, action selection, learning, and even higher-level cognition - can be effectively understood and modeled as forms of Bayesian inference. Despite the deep conceptual connection between Bayesian statistics and embodied intelligence, Bayesian principles have not been widely or explicitly applied in today's embodied intelligence systems. In this work, we examine both Bayesian and contemporary embodied intelligence approaches through two fundamental lenses: search and learning - the two central themes in modern AI, as highlighted in Rich Sutton's influential essay "The Bitter Lesson". This analysis sheds light on why Bayesian inference has not played a central role in the development of modern embodied intelligence. At the same time, it reveals that current embodied intelligence systems remain largely confined to closed-physical-world environments, and highlights the potential for Bayesian methods to play a key role in extending these systems toward truly open physical-world embodied intelligence.
comment: 16 pages
☆ Progressive Homeostatic and Plastic Prompt Tuning for Audio-Visual Multi-Task Incremental Learning ICCV 2025
Audio-visual multi-task incremental learning aims to continuously learn from multiple audio-visual tasks without the need for joint training on all tasks. The challenge of the problem is how to preserve the old task knowledge while facilitating the learning of new task with previous experiences. To address these challenges, we introduce a three-stage Progressive Homeostatic and Plastic audio-visual prompt (PHP) method. In the shallow phase, we design the task-shared modality aggregating adapter to foster cross-task and cross-modal audio-visual representation learning to enhance shared understanding between tasks. In the middle phase, we propose the task-specific modality-shared dynamic generating adapter, which constructs prompts that are tailored to individual tasks while remaining general across modalities, which balances the models ability to retain knowledge against forgetting with its potential for versatile multi-task transferability. In the deep phase, we introduce the task-specific modality-independent prompts to further refine the understand ability by targeting individual information for each task and modality. By incorporating these three phases, PHP retains task-specific prompts while adapting shared parameters for new tasks to effectively balance knowledge sharing and specificity. Our method achieves SOTA performance in different orders of four tasks (AVE, AVVP, AVS and AVQA). Our code can be available at https://github.com/ENJOY-Yin-jiong/PHP.
comment: Accepted by ICCV 2025
☆ SafeDriveRAG: Towards Safe Autonomous Driving with Knowledge Graph-based Retrieval-Augmented Generation
In this work, we study how vision-language models (VLMs) can be utilized to enhance the safety for the autonomous driving system, including perception, situational understanding, and path planning. However, existing research has largely overlooked the evaluation of these models in traffic safety-critical driving scenarios. To bridge this gap, we create the benchmark (SafeDrive228K) and propose a new baseline based on VLM with knowledge graph-based retrieval-augmented generation (SafeDriveRAG) for visual question answering (VQA). Specifically, we introduce SafeDrive228K, the first large-scale multimodal question-answering benchmark comprising 228K examples across 18 sub-tasks. This benchmark encompasses a diverse range of traffic safety queries, from traffic accidents and corner cases to common safety knowledge, enabling a thorough assessment of the comprehension and reasoning abilities of the models. Furthermore, we propose a plug-and-play multimodal knowledge graph-based retrieval-augmented generation approach that employs a novel multi-scale subgraph retrieval algorithm for efficient information retrieval. By incorporating traffic safety guidelines collected from the Internet, this framework further enhances the model's capacity to handle safety-critical situations. Finally, we conduct comprehensive evaluations on five mainstream VLMs to assess their reliability in safety-sensitive driving tasks. Experimental results demonstrate that integrating RAG significantly improves performance, achieving a +4.73% gain in Traffic Accidents tasks, +8.79% in Corner Cases tasks and +14.57% in Traffic Safety Commonsense across five mainstream VLMs, underscoring the potential of our proposed benchmark and methodology for advancing research in traffic safety. Our source code and data are available at https://github.com/Lumos0507/SafeDriveRAG.
☆ Finding Uncommon Ground: A Human-Centered Model for Extrospective Explanations IJCAI 2023
The need for explanations in AI has, by and large, been driven by the desire to increase the transparency of black-box machine learning models. However, such explanations, which focus on the internal mechanisms that lead to a specific output, are often unsuitable for non-experts. To facilitate a human-centered perspective on AI explanations, agents need to focus on individuals and their preferences as well as the context in which the explanations are given. This paper proposes a personalized approach to explanation, where the agent tailors the information provided to the user based on what is most likely pertinent to them. We propose a model of the agent's worldview that also serves as a personal and dynamic memory of its previous interactions with the same user, based on which the artificial agent can estimate what part of its knowledge is most likely new information to the user.
comment: Presented at the IJCAI 2023 Workshop on Explainable Artificial Intelligence (XAI)
☆ Model Predictive Adversarial Imitation Learning for Planning from Observation
Human demonstration data is often ambiguous and incomplete, motivating imitation learning approaches that also exhibit reliable planning behavior. A common paradigm to perform planning-from-demonstration involves learning a reward function via Inverse Reinforcement Learning (IRL) then deploying this reward via Model Predictive Control (MPC). Towards unifying these methods, we derive a replacement of the policy in IRL with a planning-based agent. With connections to Adversarial Imitation Learning, this formulation enables end-to-end interactive learning of planners from observation-only demonstrations. In addition to benefits in interpretability, complexity, and safety, we study and observe significant improvements on sample efficiency, out-of-distribution generalization, and robustness. The study includes evaluations in both simulated control benchmarks and real-world navigation experiments using few-to-single observation-only demonstrations.
comment: Open-source code in process of being cleaned and documented for release. Please contact directly in the meantime for code. Under Review
☆ Automatic Classification of User Requirements from Online Feedback -- A Replication Study AI
Natural language processing (NLP) techniques have been widely applied in the requirements engineering (RE) field to support tasks such as classification and ambiguity detection. Although RE research is rooted in empirical investigation, it has paid limited attention to replicating NLP for RE (NLP4RE) studies. The rapidly advancing realm of NLP is creating new opportunities for efficient, machine-assisted workflows, which can bring new perspectives and results to the forefront. Thus, we replicate and extend a previous NLP4RE study (baseline), "Classifying User Requirements from Online Feedback in Small Dataset Environments using Deep Learning", which evaluated different deep learning models for requirement classification from user reviews. We reproduced the original results using publicly released source code, thereby helping to strengthen the external validity of the baseline study. We then extended the setup by evaluating model performance on an external dataset and comparing results to a GPT-4o zero-shot classifier. Furthermore, we prepared the replication study ID-card for the baseline study, important for evaluating replication readiness. Results showed diverse reproducibility levels across different models, with Naive Bayes demonstrating perfect reproducibility. In contrast, BERT and other models showed mixed results. Our findings revealed that baseline deep learning models, BERT and ELMo, exhibited good generalization capabilities on an external dataset, and GPT-4o showed performance comparable to traditional baseline machine learning models. Additionally, our assessment confirmed the baseline study's replication readiness; however missing environment setup files would have further enhanced readiness. We include this missing information in our replication package and provide the replication study ID-card for our study to further encourage and support the replication of our study.
comment: 10 pages, 3 figures, Replication package available at https://zenodo.org/records/15626782, Accepted at AIRE 2025 (12th International Workshop on Artificial Intelligence and Requirements Engineering)
☆ Large Language Models for Wireless Communications: From Adaptation to Autonomy
The emergence of large language models (LLMs) has revolutionized artificial intelligence, offering unprecedented capabilities in reasoning, generalization, and zero-shot learning. These strengths open new frontiers in wireless communications, where increasing complexity and dynamics demand intelligent and adaptive solutions. This article explores the role of LLMs in transforming wireless systems across three key directions: adapting pretrained LLMs for core communication tasks, developing wireless-specific foundation models to balance versatility and efficiency, and enabling agentic LLMs with autonomous reasoning and coordination capabilities. We highlight recent advances, practical case studies, and the unique benefits of LLM-based approaches over traditional methods. Finally, we outline open challenges and research opportunities, including multimodal fusion, collaboration with lightweight models, and self-improving capabilities, charting a path toward intelligent, adaptive, and autonomous wireless networks of the future.
☆ ST-GDance: Long-Term and Collision-Free Group Choreography from Music
Group dance generation from music has broad applications in film, gaming, and animation production. However, it requires synchronizing multiple dancers while maintaining spatial coordination. As the number of dancers and sequence length increase, this task faces higher computational complexity and a greater risk of motion collisions. Existing methods often struggle to model dense spatial-temporal interactions, leading to scalability issues and multi-dancer collisions. To address these challenges, we propose ST-GDance, a novel framework that decouples spatial and temporal dependencies to optimize long-term and collision-free group choreography. We employ lightweight graph convolutions for distance-aware spatial modeling and accelerated sparse attention for efficient temporal modeling. This design significantly reduces computational costs while ensuring smooth and collision-free interactions. Experiments on the AIOZ-GDance dataset demonstrate that ST-GDance outperforms state-of-the-art baselines, particularly in generating long and coherent group dance sequences. Project page: https://yilliajing.github.io/ST-GDance-Website/.
comment: 10 pages, 5 figures. Accepted at BMVC 2025
☆ What Does it Mean for a Neural Network to Learn a "World Model"?
We propose a set of precise criteria for saying a neural net learns and uses a "world model." The goal is to give an operational meaning to terms that are often used informally, in order to provide a common language for experimental investigation. We focus specifically on the idea of representing a latent "state space" of the world, leaving modeling the effect of actions to future work. Our definition is based on ideas from the linear probing literature, and formalizes the notion of a computation that factors through a representation of the data generation process. An essential addition to the definition is a set of conditions to check that such a "world model" is not a trivial consequence of the neural net's data or task.
☆ Decision Transformer-Based Drone Trajectory Planning with Dynamic Safety-Efficiency Trade-Offs
A drone trajectory planner should be able to dynamically adjust the safety-efficiency trade-off according to varying mission requirements in unknown environments. Although traditional polynomial-based planners offer computational efficiency and smooth trajectory generation, they require expert knowledge to tune multiple parameters to adjust this trade-off. Moreover, even with careful tuning, the resulting adjustment may fail to achieve the desired trade-off. Similarly, although reinforcement learning-based planners are adaptable in unknown environments, they do not explicitly address the safety-efficiency trade-off. To overcome this limitation, we introduce a Decision Transformer-based trajectory planner that leverages a single parameter, Return-to-Go (RTG), as a \emph{temperature parameter} to dynamically adjust the safety-efficiency trade-off. In our framework, since RTG intuitively measures the safety and efficiency of a trajectory, RTG tuning does not require expert knowledge. We validate our approach using Gazebo simulations in both structured grid and unstructured random environments. The experimental results demonstrate that our planner can dynamically adjust the safety-efficiency trade-off by simply tuning the RTG parameter. Furthermore, our planner outperforms existing baseline methods across various RTG settings, generating safer trajectories when tuned for safety and more efficient trajectories when tuned for efficiency. Real-world experiments further confirm the reliability and practicality of our proposed planner.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025. \c{opyright} 2025 IEEE. Personal use of this material is permitted. \c{opyright} 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
☆ Evaluation and Benchmarking of LLM Agents: A Survey
The rise of LLM-based agents has opened new frontiers in AI applications, yet evaluating these agents remains a complex and underdeveloped area. This survey provides an in-depth overview of the emerging field of LLM agent evaluation, introducing a two-dimensional taxonomy that organizes existing work along (1) evaluation objectives -- what to evaluate, such as agent behavior, capabilities, reliability, and safety -- and (2) evaluation process -- how to evaluate, including interaction modes, datasets and benchmarks, metric computation methods, and tooling. In addition to taxonomy, we highlight enterprise-specific challenges, such as role-based access to data, the need for reliability guarantees, dynamic and long-horizon interactions, and compliance, which are often overlooked in current research. We also identify future research directions, including holistic, more realistic, and scalable evaluation. This work aims to bring clarity to the fragmented landscape of agent evaluation and provide a framework for systematic assessment, enabling researchers and practitioners to evaluate LLM agents for real-world deployment.
☆ MoHoBench: Assessing Honesty of Multimodal Large Language Models via Unanswerable Visual Questions
Recently Multimodal Large Language Models (MLLMs) have achieved considerable advancements in vision-language tasks, yet produce potentially harmful or untrustworthy content. Despite substantial work investigating the trustworthiness of language models, MMLMs' capability to act honestly, especially when faced with visually unanswerable questions, remains largely underexplored. This work presents the first systematic assessment of honesty behaviors across various MLLMs. We ground honesty in models' response behaviors to unanswerable visual questions, define four representative types of such questions, and construct MoHoBench, a large-scale MMLM honest benchmark, consisting of 12k+ visual question samples, whose quality is guaranteed by multi-stage filtering and human verification. Using MoHoBench, we benchmarked the honesty of 28 popular MMLMs and conducted a comprehensive analysis. Our findings show that: (1) most models fail to appropriately refuse to answer when necessary, and (2) MMLMs' honesty is not solely a language modeling issue, but is deeply influenced by visual information, necessitating the development of dedicated methods for multimodal honesty alignment. Therefore, we implemented initial alignment methods using supervised and preference learning to improve honesty behavior, providing a foundation for future work on trustworthy MLLMs. Our data and code can be found at https://github.com/DSTTSD/MoHoBench.
☆ Large Language Models for Supply Chain Decisions AI
Supply Chain Management requires addressing a variety of complex decision-making challenges, from sourcing strategies to planning and execution. Over the last few decades, advances in computation and information technologies have enabled the transition from manual, intuition and experience-based decision-making, into more automated and data-driven decisions using a variety of tools that apply optimization techniques. These techniques use mathematical methods to improve decision-making. Unfortunately, business planners and executives still need to spend considerable time and effort to (i) understand and explain the recommendations coming out of these technologies; (ii) analyze various scenarios and answer what-if questions; and (iii) update the mathematical models used in these tools to reflect current business environments. Addressing these challenges requires involving data science teams and/or the technology providers to explain results or make the necessary changes in the technology and hence significantly slows down decision making. Motivated by the recent advances in Large Language Models (LLMs), we report how this disruptive technology can democratize supply chain technology - namely, facilitate the understanding of tools' outcomes, as well as the interaction with supply chain tools without human-in-the-loop. Specifically, we report how we apply LLMs to address the three challenges described above, thus substantially reducing the time to decision from days and weeks to minutes and hours as well as dramatically increasing planners' and executives' productivity and impact.
comment: Forthcoming chapter in AI in Supply Chains: Perspectives from Global Thought Leaders, edited by Maxime C. Cohen and Tinglong Dai, and part of the Springer Series in Supply Chain Management (edited by Prof. Chris Tang)
☆ VN-MTEB: Vietnamese Massive Text Embedding Benchmark
Vietnam ranks among the top countries in terms of both internet traffic and online toxicity. As a result, implementing embedding models for recommendation and content control duties in applications is crucial. However, a lack of large-scale test datasets, both in volume and task diversity, makes it tricky for scientists to effectively evaluate AI models before deploying them in real-world, large-scale projects. To solve this important problem, we introduce a Vietnamese benchmark, VN-MTEB for embedding models, which we created by translating a large number of English samples from the Massive Text Embedding Benchmark using our new automated framework. We leverage the strengths of large language models (LLMs) and cutting-edge embedding models to conduct translation and filtering processes to retain high-quality samples, guaranteeing a natural flow of language and semantic fidelity while preserving named entity recognition (NER) and code snippets. Our comprehensive benchmark consists of 41 datasets from six tasks specifically designed for Vietnamese text embeddings. In our analysis, we find that bigger and more complex models using Rotary Positional Embedding outperform those using Absolute Positional Embedding in embedding tasks. Datasets are available at HuggingFace: https://huggingface.co/collections/GreenNode/vn-mteb-68871433f0f7573b8e1a6686
comment: 19 pages (including reference, appendix) 41 datasets from 6 tasks (retrieval, classification, pair-classification, clustering, rerank, sts) 7 figures, 16 tables, benchmark 18 text embedding models
☆ Learning to Imitate with Less: Efficient Individual Behavior Modeling in Chess
As humans seek to collaborate with, learn from, and better understand artificial intelligence systems, developing AIs that can accurately emulate individual decision-making becomes increasingly important. Chess, a long-standing AI benchmark with precise skill measurement, offers an ideal testbed for human-AI alignment. However, existing approaches to modeling human behavior require prohibitively large amounts of data from each individual, making them impractical for new or sparsely represented users. In this work, we introduce Maia4All, a framework designed to learn and adapt to individual decision-making styles efficiently, even with limited data. Maia4All achieves this through a two-stage optimization process: (1) an enrichment step, which bridges population and individual-level human behavior modeling with a prototype-enriched model, and (2) a democratization step, which leverages ability levels or user prototypes to initialize and refine individual embeddings with minimal data. Our experimental results show that Maia4All can accurately predict individual moves and profile behavioral patterns with high fidelity, establishing a new standard for personalized human-like AI behavior modeling in chess. Maia4All achieves individual human behavior modeling in chess with only 20 games, compared to the 5,000 games required previously, representing a significant improvement in data efficiency. Our work provides an example of how population AI systems can flexibly adapt to individual users using a prototype-enriched model as a bridge. This approach extends beyond chess, as shown in our case study on idiosyncratic LLMs, highlighting its potential for broader applications in personalized AI adaptation.
☆ Meaning-infused grammar: Gradient Acceptability Shapes the Geometric Representations of Constructions in LLMs
The usage-based constructionist (UCx) approach posits that language comprises a network of learned form-meaning pairings (constructions) whose use is largely determined by their meanings or functions, requiring them to be graded and probabilistic. This study investigates whether the internal representations in Large Language Models (LLMs) reflect the proposed function-infused gradience. We analyze the neural representations of the English dative constructions (Double Object and Prepositional Object) in Pythia-$1.4$B, using a dataset of $5000$ sentence pairs systematically varied for human-rated preference strength. A macro-level geometric analysis finds that the separability between construction representations, as measured by Energy Distance or Jensen-Shannon Divergence, is systematically modulated by gradient preference strength. More prototypical exemplars of each construction occupy more distinct regions in the activation space of LLMs. These results provide strong evidence that LLMs learn rich, meaning-infused, graded representations of constructions and offer support for geometric measures of basic constructionist principles in LLMs.
comment: 5 pages, 3 figures, Accepted for publication at the Second International Workshop on Construction Grammars and NLP at the 16th International Conference for Computational Semantics (IWCS) 2025
☆ CoEx -- Co-evolving World-model and Exploration
Planning in modern LLM agents relies on the utilization of LLM as an internal world model, acquired during pretraining. However, existing agent designs fail to effectively assimilate new observations into dynamic updates of the world model. This reliance on the LLM's static internal world model is progressively prone to misalignment with the underlying true state of the world, leading to the generation of divergent and erroneous plans. We introduce a hierarchical agent architecture, CoEx, in which hierarchical state abstraction allows LLM planning to co-evolve with a dynamically updated model of the world. CoEx plans and interacts with the world by using LLM reasoning to orchestrate dynamic plans consisting of subgoals, and its learning mechanism continuously incorporates these subgoal experiences into a persistent world model in the form of a neurosymbolic belief state, comprising textual inferences and code-based symbolic memory. We evaluate our agent across a diverse set of agent scenarios involving rich environments and complex tasks including ALFWorld, PDDL, and Jericho. Our experiments show that CoEx outperforms existing agent paradigms in planning and exploration.
♻ ☆ GLIMPSE: Holistic Cross-Modal Explainability for Large Vision-Language Models AI
Recent large vision-language models (LVLMs) have advanced capabilities in visual question answering (VQA). However, interpreting where LVLMs direct their visual attention remains a significant challenge, yet is essential for understanding model behavior. We introduce GLIMPSE (Gradient-Layer Importance Mapping for Prompted Visual Saliency Explanation), a lightweight, model-agnostic framework that jointly attributes LVLM outputs to the most relevant visual evidence and textual signals that support open-ended generation. GLIMPSE fuses gradient-weighted attention, adaptive layer propagation, and relevance-weighted token aggregation to produce holistic response-level heat maps for interpreting cross-modal reasoning, outperforming prior methods in faithfulness and pushing the state-of-the-art in human-attention alignment. We demonstrate an analytic approach to uncover fine-grained insights into LVLM cross-modal attribution, trace reasoning dynamics, analyze systematic misalignment, diagnose hallucination and bias, and ensure transparency.
comment: Keywords: Explainable Computer Vision, Large Vision-Language Models, AI Interpretability, Explainable AI, Visual Saliency, Attribution Maps, Cross-Modal Attribution, Human Attention Alignment, AI Transparency
♻ ☆ SAKE: Steering Activations for Knowledge Editing
As Large Langue Models have been shown to memorize real-world facts, the need to update this knowledge in a controlled and efficient manner arises. Designed with these constraints in mind, Knowledge Editing (KE) approaches propose to alter specific facts in pretrained models. However, they have been shown to suffer from several limitations, including their lack of contextual robustness and their failure to generalize to logical implications related to the fact. To overcome these issues, we propose SAKE, a steering activation method that models a fact to be edited as a distribution rather than a single prompt. Leveraging Optimal Transport, SAKE alters the LLM behavior over a whole fact-related distribution, defined as paraphrases and logical implications. Several numerical experiments demonstrate the effectiveness of this method: SAKE is thus able to perform more robust edits than its existing counterparts.
♻ ☆ IRASim: A Fine-Grained World Model for Robot Manipulation
World models allow autonomous agents to plan and explore by predicting the visual outcomes of different actions. However, for robot manipulation, it is challenging to accurately model the fine-grained robot-object interaction within the visual space using existing methods which overlooks precise alignment between each action and the corresponding frame. In this paper, we present IRASim, a novel world model capable of generating videos with fine-grained robot-object interaction details, conditioned on historical observations and robot action trajectories. We train a diffusion transformer and introduce a novel frame-level action-conditioning module within each transformer block to explicitly model and strengthen the action-frame alignment. Extensive experiments show that: (1) the quality of the videos generated by our method surpasses all the baseline methods and scales effectively with increased model size and computation; (2) policy evaluations using IRASim exhibit a strong correlation with those using the ground-truth simulator, highlighting its potential to accelerate real-world policy evaluation; (3) testing-time scaling through model-based planning with IRASim significantly enhances policy performance, as evidenced by an improvement in the IoU metric on the Push-T benchmark from 0.637 to 0.961; (4) IRASim provides flexible action controllability, allowing virtual robotic arms in datasets to be controlled via a keyboard or VR controller.
comment: Opensource, project website: https://gen-irasim.github.io
♻ ☆ LIMO: Less is More for Reasoning
We challenge the prevailing assumption that complex reasoning in large language models (LLMs) necessitates massive training data. We demonstrate that sophisticated mathematical reasoning can emerge with only a few examples. Specifically, through simple supervised fine-tuning, our model, LIMO, achieves 63.3\% accuracy on AIME24 and 95.6\% on MATH500, surpassing previous fine-tuned models (6.5\% on AIME24, 59.2\% on MATH500) while using only 1\% of the training data required by prior approaches. Furthermore, LIMO exhibits strong out-of-distribution generalization, achieving a 45.8\% absolute improvement across diverse benchmarks, outperforming models trained on 100x more data. Synthesizing these findings, we propose the Less-Is-More Reasoning Hypothesis (LIMO Hypothesis): In foundation models where domain knowledge has been comprehensively encoded during pre-training, sophisticated reasoning can emerge through minimal but strategically designed demonstrations of cognitive processes. This hypothesis suggests that the threshold for eliciting complex reasoning is not dictated by task complexity but rather by two key factors: (1) the completeness of the model's pre-trained knowledge base and (2) the effectiveness of post-training examples in serving as "cognitive templates" that guide reasoning.
comment: COLM 2025
♻ ☆ Diffusion Beats Autoregressive in Data-Constrained Settings
Autoregressive (AR) models have long dominated the landscape of large language models, driving progress across a wide range of tasks. Recently, diffusion-based language models have emerged as a promising alternative, though their advantages over AR models remain underexplored. In this paper, we systematically study masked diffusion models in data-constrained settings-where training involves repeated passes over limited data-and find that they significantly outperform AR models when compute is abundant but data is scarce. Diffusion models make better use of repeated data, achieving lower validation loss and superior downstream performance. We interpret this advantage as implicit data augmentation: masked diffusion exposes the model to a diverse distribution of token orderings and prediction tasks, unlike AR's fixed left-to-right factorization. We find new scaling laws for diffusion models and derive a closed-form expression for the critical compute threshold at which diffusion begins to outperform AR. These results suggest that when data, not compute, is the bottleneck, diffusion models offer a compelling alternative to the standard AR paradigm. Our code is available at: https://diffusion-scaling.github.io.
comment: Project Webpage: https://diffusion-scaling.github.io
♻ ☆ Ensuring Medical AI Safety: Interpretability-Driven Detection and Mitigation of Spurious Model Behavior and Associated Data
Deep neural networks are increasingly employed in high-stakes medical applications, despite their tendency for shortcut learning in the presence of spurious correlations, which can have potentially fatal consequences in practice. Whereas a multitude of works address either the detection or mitigation of such shortcut behavior in isolation, the Reveal2Revise approach provides a comprehensive bias mitigation framework combining these steps. However, effectively addressing these biases often requires substantial labeling efforts from domain experts. In this work, we review the steps of the Reveal2Revise framework and enhance it with semi-automated interpretability-based bias annotation capabilities. This includes methods for the sample- and feature-level bias annotation, providing valuable information for bias mitigation methods to unlearn the undesired shortcut behavior. We show the applicability of the framework using four medical datasets across two modalities, featuring controlled and real-world spurious correlations caused by data artifacts. We successfully identify and mitigate these biases in VGG16, ResNet50, and contemporary Vision Transformer models, ultimately increasing their robustness and applicability for real-world medical tasks. Our code is available at https://github.com/frederikpahde/medical-ai-safety.
♻ ☆ SmoothRot: Combining Channel-Wise Scaling and Rotation for Quantization-Friendly LLMs
We present SmoothRot, a novel post-training quantization technique to enhance the efficiency of 4-bit quantization in Large Language Models (LLMs). SmoothRot addresses the critical challenge of massive activation outliers, by integrating channel-wise scaling with Hadamard transformations. Our technique effectively transforms extreme outliers into quantization-friendly activations, significantly improving quantization accuracy. Experiments conducted on popular LLMs (LLaMA2 7B, LLaMA3.1 8B, and Mistral 7B) demonstrate that SmoothRot consistently reduces the performance gap between quantized and FP16 models by approximately 10-30\% across language generation and zero-shot reasoning tasks, without introducing additional inference latency. Code is available at https://github.com/czakop/smoothrot.
comment: 6 pages, 3 figures, 5 tables. Accepted to IEEE SMC 2025 conference proceedings
♻ ☆ SLR: Automated Synthesis for Scalable Logical Reasoning
We introduce SLR, an end-to-end framework for systematic evaluation and training of Large Language Models (LLMs) via Scalable Logical Reasoning. Given a user's task specification, SLR automatically synthesizes (i) an instruction prompt for an inductive reasoning task, (ii) a validation program, executable on model outputs to provide verifiable rewards, and (iii) the latent ground-truth rule. This process is fully automated, scalable, requires no human annotations, and offers precise control over task difficulty. Using SLR, we create SLR-Bench, a benchmark comprising 19k prompts organized into 20 curriculum levels that progressively increase in relational, arithmetic, and recursive complexity. Large-scale evaluation reveals that contemporary LLMs readily produce syntactically valid rules, yet often fail at correct logical inference. Recent reasoning LLMs demonstrate improved performance but incur very high test-time computation, with costs exceeding $300 for just 1,000 prompts. Finally, curriculum learning via SLR doubles Llama-3-8B accuracy on SLR-Bench, achieving parity with Gemini-Flash-Thinking at a fraction of computational cost. Moreover, these reasoning capabilities generalize to a wide range of established benchmarks, underscoring the effectiveness of SLR for downstream reasoning.
♻ ☆ Receding Hamiltonian-Informed Optimal Neural Control and State Estimation for Closed-Loop Dynamical Systems
This paper formalizes Hamiltonian-Informed Optimal Neural (Hion) controllers, a novel class of neural network-based controllers for dynamical systems and explicit non-linear model-predictive control. Hion controllers estimate future states and develop an optimal control strategy using Pontryagin's Maximum Principle. The proposed framework, along with our Taylored Multi-Faceted Approach for Neural ODE and Optimal Control (T-mano) architecture, allows for custom transient behavior, predictive control, and closed-loop feedback, addressing limitations of existing methods. Comparative analyses with established model-predictive controllers revealed Hion controllers' superior optimality and tracking capabilities. Optimal control strategies are also demonstrated for both linear and non-linear dynamical systems.
comment: 27 pages. Source code: https://github.com/wzjoriv/Hion
♻ ☆ Puzzle Similarity: A Perceptually-guided Cross-Reference Metric for Artifact Detection in 3D Scene Reconstructions
Modern reconstruction techniques can effectively model complex 3D scenes from sparse 2D views. However, automatically assessing the quality of novel views and identifying artifacts is challenging due to the lack of ground truth images and the limitations of no-reference image metrics in predicting reliable artifact maps. The absence of such metrics hinders assessment of the quality of novel views and limits the adoption of post-processing techniques, such as inpainting, to enhance reconstruction quality. To tackle this, recent work has established a new category of metrics (cross-reference), predicting image quality solely by leveraging context from alternate viewpoint captures (arXiv:2404.14409). In this work, we propose a new cross-reference metric, Puzzle Similarity, which is designed to localize artifacts in novel views. Our approach utilizes image patch statistics from the training views to establish a scene-specific distribution, later used to identify poorly reconstructed regions in the novel views. Given the lack of good measures to evaluate cross-reference methods in the context of 3D reconstruction, we collected a novel human-labeled dataset of artifact and distortion maps in unseen reconstructed views. Through this dataset, we demonstrate that our method achieves state-of-the-art localization of artifacts in novel views, correlating with human assessment, even without aligned references. We can leverage our new metric to enhance applications like automatic image restoration, guided acquisition, or 3D reconstruction from sparse inputs. Find the project page at https://nihermann.github.io/puzzlesim/ .
♻ ☆ Context-Aware Probabilistic Modeling with LLM for Multimodal Time Series Forecasting
Time series forecasting is important for applications spanning energy markets, climate analysis, and traffic management. However, existing methods struggle to effectively integrate exogenous texts and align them with the probabilistic nature of large language models (LLMs). Current approaches either employ shallow text-time series fusion via basic prompts or rely on deterministic numerical decoding that conflict with LLMs' token-generation paradigm, which limits contextual awareness and distribution modeling. To address these limitations, we propose CAPTime, a context-aware probabilistic multimodal time series forecasting method that leverages text-informed abstraction and autoregressive LLM decoding. Our method first encodes temporal patterns using a pretrained time series encoder, then aligns them with textual contexts via learnable interactions to produce joint multimodal representations. By combining a mixture of distribution experts with frozen LLMs, we enable context-aware probabilistic forecasting while preserving LLMs' inherent distribution modeling capabilities. Experiments on diverse time series forecasting tasks demonstrate the superior accuracy and generalization of CAPTime, particularly in multimodal scenarios. Additional analysis highlights its robustness in data-scarce scenarios through hybrid probabilistic decoding.
comment: 13 pages, 2 figures
♻ ☆ The Xeno Sutra: Can Meaning and Value be Ascribed to an AI-Generated "Sacred" Text?
This paper presents a case study in the use of a large language model to generate a fictional Buddhist "sutra"', and offers a detailed analysis of the resulting text from a philosophical and literary point of view. The conceptual subtlety, rich imagery, and density of allusion found in the text make it hard to causally dismiss on account of its mechanistic origin. This raises questions about how we, as a society, should come to terms with the potentially unsettling possibility of a technology that encroaches on human meaning-making. We suggest that Buddhist philosophy, by its very nature, is well placed to adapt.
♻ ☆ DIVE: Taming DINO for Subject-Driven Video Editing ICCV 2025
Building on the success of diffusion models in image generation and editing, video editing has recently gained substantial attention. However, maintaining temporal consistency and motion alignment still remains challenging. To address these issues, this paper proposes DINO-guided Video Editing (DIVE), a framework designed to facilitate subject-driven editing in source videos conditioned on either target text prompts or reference images with specific identities. The core of DIVE lies in leveraging the powerful semantic features extracted from a pretrained DINOv2 model as implicit correspondences to guide the editing process. Specifically, to ensure temporal motion consistency, DIVE employs DINO features to align with the motion trajectory of the source video. For precise subject editing, DIVE incorporates the DINO features of reference images into a pretrained text-to-image model to learn Low-Rank Adaptations (LoRAs), effectively registering the target subject's identity. Extensive experiments on diverse real-world videos demonstrate that our framework can achieve high-quality editing results with robust motion consistency, highlighting the potential of DINO to contribute to video editing. Project page: https://dino-video-editing.github.io
comment: Accepted by ICCV 2025
♻ ☆ FB-RAG: Improving RAG with Forward and Backward Lookup
Traditional Retrieval-Augmented Generation (RAG) struggles with complex queries that lack strong signals to retrieve the most relevant context, forcing a trade-off between choosing a small context that misses key information and a large context that confuses the LLM. To address this, we propose Forward-Backward RAG (FB-RAG), a new training-free framework based on a simple yet powerful forward-looking strategy. FB-RAG employs a light-weight LLM to peek into potential future generations, using evidence from multiple sampled outputs to precisely identify the most relevant context for a final, more powerful generator. This improves performance without complex finetuning or Reinforcement Learning common in prior work. Across 9 datasets, FB-RAG consistently delivers strong results. Further, the performance gains can be achieved with reduced latency due to a shorter, more focused prompt for the powerful generator. On EN.QA dataset, FB-RAG matches the leading baseline with over 48% latency reduction or achieves an 8% performance improvement with a 10% latency reduction. Our analysis finds cases where even when the forward-looking LLM fails to generate correct answers, its attempts are sufficient to guide the final model to an accurate response, demonstrating how smaller LLMs can systematically improve the performance and efficiency of larger ones.
♻ ☆ Enhancing Student Learning with LLM-Generated Retrieval Practice Questions: An Empirical Study in Data Science Courses
Retrieval practice is a well-established pedagogical technique known to significantly enhance student learning and knowledge retention. However, generating high-quality retrieval practice questions is often time-consuming and labor intensive for instructors, especially in rapidly evolving technical subjects. Large Language Models (LLMs) offer the potential to automate this process by generating questions in response to prompts, yet the effectiveness of LLM-generated retrieval practice on student learning remains to be established. In this study, we conducted an empirical study involving two college-level data science courses, with approximately 60 students. We compared learning outcomes during one week in which students received LLM-generated multiple-choice retrieval practice questions to those from a week in which no such questions were provided. Results indicate that students exposed to LLM-generated retrieval practice achieved significantly higher knowledge retention, with an average accuracy of 89%, compared to 73% in the week without such practice. These findings suggest that LLM-generated retrieval questions can effectively support student learning and may provide a scalable solution for integrating retrieval practice into real-time teaching. However, despite these encouraging outcomes and the potential time-saving benefits, cautions must be taken, as the quality of LLM-generated questions can vary. Instructors must still manually verify and revise the generated questions before releasing them to students.
♻ ☆ Task Arithmetic for Language Expansion in Speech Translation
Recent progress in large language models (LLMs) has gained interest in speech-text multimodal foundation models, achieving strong performance on instruction-tuned speech translation (ST). However, expanding language pairs is costly due to re-training on combined new and previous datasets. To address this, we aim to build a one-to-many ST system from existing one-to-one ST systems using task arithmetic without re-training. Direct application of task arithmetic in ST leads to language confusion; therefore, we introduce an augmented task arithmetic method incorporating a language control model to ensure correct target language generation. Our experiments on MuST-C and CoVoST-2 show BLEU score improvements of up to 4.66 and 4.92, with COMET gains of 8.87 and 11.83. In addition, we demonstrate our framework can extend to language pairs lacking paired ST training data or pre-trained ST models by synthesizing ST models based on existing machine translation (MT) and ST models via task analogies.
♻ ☆ Conceptualizing Uncertainty: A Concept-based Approach to Explaining Uncertainty
Uncertainty in machine learning refers to the degree of confidence or lack thereof in a model's predictions. While uncertainty quantification methods exist, explanations of uncertainty, especially in high-dimensional settings, remain an open challenge. Existing work focuses on feature attribution approaches which are restricted to local explanations. Understanding uncertainty, its origins, and characteristics on a global scale is crucial for enhancing interpretability and trust in a model's predictions. In this work, we propose to explain the uncertainty in high-dimensional data classification settings by means of concept activation vectors which give rise to local and global explanations of uncertainty. We demonstrate the utility of the generated explanations by leveraging them to refine and improve our model.
♻ ☆ GSON: A Group-based Social Navigation Framework with Large Multimodal Model
With the increasing presence of service robots and autonomous vehicles in human environments, navigation systems need to evolve beyond simple destination reach to incorporate social awareness. This paper introduces GSON, a novel group-based social navigation framework that leverages Large Multimodal Models (LMMs) to enhance robots' social perception capabilities. Our approach uses visual prompting to enable zero-shot extraction of social relationships among pedestrians and integrates these results with robust pedestrian detection and tracking pipelines to overcome the inherent inference speed limitations of LMMs. The planning system incorporates a mid-level planner that sits between global path planning and local motion planning, effectively preserving both global context and reactive responsiveness while avoiding disruption of the predicted social group. We validate GSON through extensive real-world mobile robot navigation experiments involving complex social scenarios such as queuing, conversations, and photo sessions. Comparative results show that our system significantly outperforms existing navigation approaches in minimizing social perturbations while maintaining comparable performance on traditional navigation metrics.
comment: Accepted by IEEE Robotics and Automation Letters (RA-L)
♻ ☆ A finite time analysis of distributed Q-learning
Multi-agent reinforcement learning (MARL) has witnessed a remarkable surge in interest, fueled by the empirical success achieved in applications of single-agent reinforcement learning (RL). In this study, we consider a distributed Q-learning scenario, wherein a number of agents cooperatively solve a sequential decision making problem without access to the central reward function which is an average of the local rewards. In particular, we study finite-time analysis of a distributed Q-learning algorithm, and provide a new sample complexity result of $\tilde{\mathcal{O}}\left( \min\left\{\frac{1}{\epsilon^2}\frac{t_{\text{mix}}}{(1-\gamma)^6 d_{\min}^4 } ,\frac{1}{\epsilon}\frac{\sqrt{|\gS||\gA|}}{(1-\sigma_2(\boldsymbol{W}))(1-\gamma)^4 d_{\min}^3} \right\}\right)$ under tabular lookup
comment: Published at RLC2025
♻ ☆ Multi-Modal Hypergraph Enhanced LLM Learning for Recommendation
The burgeoning presence of Large Language Models (LLM) is propelling the development of personalized recommender systems. Most existing LLM-based methods fail to sufficiently explore the multi-view graph structure correlations inherent in recommendation scenarios. To this end, we propose a novel framework, Hypergraph Enhanced LLM Learning for multimodal Recommendation (HeLLM), designed to equip LLMs with the capability to capture intricate higher-order semantic correlations by fusing graph-level contextual signals with sequence-level behavioral patterns. In the recommender pre-training phase, we design a user hypergraph to uncover shared interest preferences among users and an item hypergraph to capture correlations within multimodal similarities among items. The hypergraph convolution and synergistic contrastive learning mechanism are introduced to enhance the distinguishability of learned representations. In the LLM fine-tuning phase, we inject the learned graph-structured embeddings directly into the LLM's architecture and integrate sequential features capturing each user's chronological behavior. This process enables hypergraphs to leverage graph-structured information as global context, enhancing the LLM's ability to perceive complex relational patterns and integrate multimodal information, while also modeling local temporal dynamics. Extensive experiments demonstrate the superiority of our proposed method over state-of-the-art baselines, confirming the advantages of fusing hypergraph-based context with sequential user behavior in LLMs for recommendation.
comment: 12 pages, 4 figures, submitted to IEEE Transactions on Knowledge and Data Engineering
♻ ☆ Fuse Before Transfer: Knowledge Fusion for Heterogeneous Distillation ICCV2025
Most knowledge distillation (KD) methodologies predominantly focus on teacher-student pairs with similar architectures, such as both being convolutional neural networks (CNNs). However, the potential and flexibility of KD can be greatly improved by expanding it to novel Cross-Architecture KD (CAKD), where the knowledge of homogeneous and heterogeneous teachers can be transferred flexibly to a given student. The primary challenge in CAKD lies in the substantial feature gaps between heterogeneous models, originating from the distinction of their inherent inductive biases and module functions. To this end, we introduce an assistant model as a bridge to facilitate smooth feature knowledge transfer between heterogeneous teachers and students. More importantly, within our proposed design principle, the assistant model combines the advantages of cross-architecture inductive biases and module functions by merging convolution and attention modules derived from both student and teacher module functions. Furthermore, we observe that heterogeneous features exhibit diverse spatial distributions in CAKD, hindering the effectiveness of conventional pixel-wise mean squared error (MSE) loss. Therefore, we leverage a spatial-agnostic InfoNCE loss to align features after spatial smoothing, thereby improving the feature alignments in CAKD. Our proposed method is evaluated across some homogeneous model pairs and arbitrary heterogeneous combinations of CNNs, ViTs, and MLPs, achieving state-of-the-art performance for distilled models with a maximum gain of 11.47% on CIFAR-100 and 3.67% on ImageNet-1K. Our code and models will be released.
comment: Accepted by ICCV2025
♻ ☆ What Does 'Human-Centred AI' Mean?
While it seems sensible that human-centred artificial intelligence (AI) means centring "human behaviour and experience," it cannot be any other way. AI, I argue, is usefully seen as a relationship between technology and humans where it appears that artifacts can perform, to a greater or lesser extent, human cognitive labour. This is evinced using examples that juxtapose technology with cognition, inter alia: abacus versus mental arithmetic; alarm clock versus knocker-upper; camera versus vision; and sweatshop versus tailor. Using novel definitions and analyses, sociotechnical relationships can be analysed into varying types of: displacement (harmful), enhancement (beneficial), and/or replacement (neutral) of human cognitive labour. Ultimately, all AI implicates human cognition; no matter what. Obfuscation of cognition in the AI context -- from clocks to artificial neural networks -- results in distortion, in slowing critical engagement, perverting cognitive science, and indeed in limiting our ability to truly centre humans and humanity in the engineering of AI systems. To even begin to de-fetishise AI, we must look the human-in-the-loop in the eyes.
♻ ☆ iPanda: An LLM-based Agent for Automated Conformance Testing of Communication Protocols
Conformance testing is essential for ensuring that protocol implementations comply with their specifications. However, traditional testing approaches involve manually creating numerous test cases and scripts, making the process labor-intensive and inefficient. Recently, Large Language Models (LLMs) have demonstrated impressive text comprehension and code generation abilities, providing promising opportunities for automation. In this paper, we propose iPanda, the first framework that leverages LLMs to automate protocol conformance testing. Given a protocol specification document and its implementation, iPanda first employs a keyword-based method to automatically generate comprehensive test cases. Then, it utilizes retrieval-augmented generation and customized CoT strategy to effectively interpret the implementation and produce executable test programs. To further enhance programs' quality, iPanda incorporates an iterative optimization mechanism to refine generated test scripts interactively. Finally, by executing and analyzing the generated tests, iPanda systematically verifies compliance between implementations and protocol specifications. Comprehensive experiments on various protocols show that iPanda significantly outperforms pure LLM-based approaches, improving the success rate (Pass@1) of test-program generation by factors ranging from 4.675 times to 10.751 times.
comment: 10 pages, 4 figures
♻ ☆ Intrinsic Barriers and Practical Pathways for Human-AI Alignment: An Agreement-Based Complexity Analysis
We formalize AI alignment as a multi-objective optimization problem called $\langle M,N,\varepsilon,\delta\rangle$-agreement that generalizes prior approaches with fewer assumptions, in which a set of $N$ agents (including humans) must reach approximate ($\varepsilon$) agreement across $M$ candidate objectives with probability at least $1-\delta$. Using communication complexity, we prove an information-theoretic lower bound demonstrating that once either $M$ or $N$ is large enough, no interaction or rationality can avoid intrinsic alignment overheads. This barrier establishes rigorous intrinsic limits to alignment \emph{itself}, not merely to specific methods, clarifying a crucial ``no free lunch'' principle: encoding ``all human values'' inevitably leads to misalignment, requiring future methods to explicitly manage complexity through consensus-driven reduction or prioritization of objectives. Complementing this impossibility result, we provide explicit algorithms achieving alignment under both computationally unbounded and bounded rationality with noisy messages. Even in these best-case scenarios where alignment to arbitrary precision is theoretically guaranteed, our analysis identifies three critical scalability barriers: the number of tasks ($M$), agents ($N$), and task state space size ($D$); thereby highlighting fundamental complexity-theoretic constraints and providing guidelines for safer, scalable human-AI collaboration.
comment: 20 pages, improved lower bounds and added clarifications
♻ ☆ Differential-UMamba: Rethinking Tumor Segmentation Under Limited Data Scenarios
In data-scarce scenarios, deep learning models often overfit to noise and irrelevant patterns, which limits their ability to generalize to unseen samples. To address these challenges in medical image segmentation, we introduce Diff-UMamba, a novel architecture that combines the UNet framework with the mamba mechanism to model long-range dependencies. At the heart of Diff-UMamba is a noise reduction module, which employs a signal differencing strategy to suppress noisy or irrelevant activations within the encoder. This encourages the model to filter out spurious features and enhance task-relevant representations, thereby improving its focus on clinically significant regions. As a result, the architecture achieves improved segmentation accuracy and robustness, particularly in low-data settings. Diff-UMamba is evaluated on multiple public datasets, including medical segmentation decathalon dataset (lung and pancreas) and AIIB23, demonstrating consistent performance gains of 1-3% over baseline methods in various segmentation tasks. To further assess performance under limited data conditions, additional experiments are conducted on the BraTS-21 dataset by varying the proportion of available training samples. The approach is also validated on a small internal non-small cell lung cancer dataset for the segmentation of gross tumor volume in cone beam CT, where it achieves a 4-5% improvement over baseline.
♻ ☆ Machine learning-based multimodal prognostic models integrating pathology images and high-throughput omic data for overall survival prediction in cancer: a systematic review
Multimodal machine learning integrating histopathology and molecular data shows promise for cancer prognostication. We systematically reviewed studies combining whole slide images (WSIs) and high-throughput omics to predict overall survival. Searches of EMBASE, PubMed, and Cochrane CENTRAL (12/08/2024), plus citation screening, identified eligible studies. Data extraction used CHARMS; bias was assessed with PROBAST+AI; synthesis followed SWiM and PRISMA 2020. Protocol: PROSPERO (CRD42024594745). Forty-eight studies (all since 2017) across 19 cancer types met criteria; all used The Cancer Genome Atlas. Approaches included regularised Cox regression (n=4), classical ML (n=13), and deep learning (n=31). Reported c-indices ranged 0.550-0.857; multimodal models typically outperformed unimodal ones. However, all studies showed unclear/high bias, limited external validation, and little focus on clinical utility. Multimodal WSI-omics survival prediction is a fast-growing field with promising results but needs improved methodological rigor, broader datasets, and clinical evaluation. Funded by NPIC, Leeds Teaching Hospitals NHS Trust, UK (Project 104687), supported by UKRI Industrial Strategy Challenge Fund.
comment: Main article (50 pages, inc 3 tables, 4 figures). Supplementary material included with additional methodological information and data
♻ ☆ Geometric Algebra Meets Large Language Models: Instruction-Based Transformations of Separate Meshes in 3D, Interactive and Controllable Scenes
This paper introduces a novel integration of Large Language Models (LLMs) with Conformal Geometric Algebra (CGA) to revolutionize controllable 3D scene editing, particularly for object repositioning tasks, which traditionally requires intricate manual processes and specialized expertise. These conventional methods typically suffer from reliance on large training datasets or lack a formalized language for precise edits. Utilizing CGA as a robust formal language, our system, Shenlong, precisely models spatial transformations necessary for accurate object repositioning. Leveraging the zero-shot learning capabilities of pre-trained LLMs, Shenlong translates natural language instructions into CGA operations which are then applied to the scene, facilitating exact spatial transformations within 3D scenes without the need for specialized pre-training. Implemented in a realistic simulation environment, Shenlong ensures compatibility with existing graphics pipelines. To accurately assess the impact of CGA, we benchmark against robust Euclidean Space baselines, evaluating both latency and accuracy. Comparative performance evaluations indicate that Shenlong significantly reduces LLM response times by 16% and boosts success rates by 9.6% on average compared to the traditional methods. Notably, Shenlong achieves a 100% perfect success rate in common practical queries, a benchmark where other systems fall short. These advancements underscore Shenlong's potential to democratize 3D scene editing, enhancing accessibility and fostering innovation across sectors such as education, digital entertainment, and virtual reality.
comment: 10 pages, 4 figures
♻ ☆ Implementing Large Quantum Boltzmann Machines as Generative AI Models for Dataset Balancing AI
This study explores the implementation of large Quantum Restricted Boltzmann Machines (QRBMs), a key advancement in Quantum Machine Learning (QML), as generative models on D-Wave's Pegasus quantum hardware to address dataset imbalance in Intrusion Detection Systems (IDS). By leveraging Pegasus's enhanced connectivity and computational capabilities, a QRBM with 120 visible and 120 hidden units was successfully embedded, surpassing the limitations of default embedding tools. The QRBM synthesized over 1.6 million attack samples, achieving a balanced dataset of over 4.2 million records. Comparative evaluations with traditional balancing methods, such as SMOTE and RandomOversampler, revealed that QRBMs produced higher-quality synthetic samples, significantly improving detection rates, precision, recall, and F1 score across diverse classifiers. The study underscores the scalability and efficiency of QRBMs, completing balancing tasks in milliseconds. These findings highlight the transformative potential of QML and QRBMs as next-generation tools in data preprocessing, offering robust solutions for complex computational challenges in modern information systems.
comment: S. Sinno, M. Bertl, A. Sahoo, B. Bhalgamiya, T. Gro{\ss} and N. Chancellor, "Implementing Large Quantum Boltzmann Machines as Generative AI Models for Dataset Balancing," 2025 International Conference on Next Generation Information System Engineering (NGISE), Ghaziabad, Delhi (NCR), India, 2025, pp. 1-8, doi: 10.1109/NGISE64126.2025.11085158
♻ ☆ My Life in Artificial Intelligence: People, anecdotes, and some lessons learnt
In this very personal workography, I relate my 40-year experiences as a researcher and educator in and around Artificial Intelligence (AI), more specifically Natural Language Processing. I describe how curiosity, and the circumstances of the day, led me to work in both industry and academia, and in various countries, including The Netherlands (Amsterdam, Eindhoven, and Utrecht), the USA (Stanford), England (Brighton), Scotland (Aberdeen), and China (Beijing and Harbin). People and anecdotes play a large role in my story; the history of AI forms its backdrop. I focus on things that might be of interest to (even) younger colleagues, given the choices they face in their own work and life at a time when AI is finally emerging from the shadows.
comment: 34 pages
♻ ☆ Defending Against Unforeseen Failure Modes with Latent Adversarial Training
Despite extensive diagnostics and debugging by developers, AI systems sometimes exhibit harmful unintended behaviors. Finding and fixing these is challenging because the attack surface is so large -- it is not tractable to exhaustively search for inputs that may elicit harmful behaviors. Red-teaming and adversarial training (AT) are commonly used to improve robustness, however, they empirically struggle to fix failure modes that differ from the attacks used during training. In this work, we utilize latent adversarial training (LAT) to defend against vulnerabilities without leveraging knowledge of what they are or using inputs that elicit them. LAT makes use of the compressed, abstract, and structured latent representations of concepts that the network actually uses for prediction. Here, we use it to defend against failure modes without examples that elicit them. Specifically, we use LAT to remove backdoors and defend against held-out classes of adversarial attacks. We show in image classification, text classification, and text generation tasks that LAT usually improves both robustness to novel attacks and performance on clean data relative to AT. This suggests that LAT can be a promising tool for defending against failure modes that are not explicitly identified by developers.
comment: See also followup work at arXiv:2407.15549
♻ ☆ Strategist: Self-improvement of LLM Decision Making via Bi-Level Tree Search
Traditional reinforcement learning and planning typically requires vast amounts of data and training to develop effective policies. In contrast, large language models (LLMs) exhibit strong generalization and zero-shot capabilities, but struggle with tasks that require detailed planning and decision-making in complex action spaces. We introduce STRATEGIST, a novel approach that integrates the strengths of both methods. Our approach leverages LLMs to search and update high-level strategies (as text), which are then refined and executed by low-level Monte Carlo Tree Search (MCTS). STRATEGIST is a generalizable framework to optimize the strategy through population-based self-play simulations without the need for any training data. We demonstrate the effectiveness of STRATEGIST in learning optimal strategies for competitive, multi-turn games with partial information, including Game of Pure Strategy (GOPS) and multi-agent, hidden-identity discussion games like The Resistance: Avalon. Our results show that agents equipped with STRATEGIST outperform those trained with traditional RL methods, other LLM-based skill acquisition techniques, pre-existing LLM agents across both game environments and achieves comparable performance against human players.
comment: website: https://llm-strategist.github.io
♻ ☆ Latent Adversarial Training Improves Robustness to Persistent Harmful Behaviors in LLMs
Large language models (LLMs) can often be made to behave in undesirable ways that they are explicitly fine-tuned not to. For example, the LLM red-teaming literature has produced a wide variety of 'jailbreaking' techniques to elicit harmful text from models that were fine-tuned to be harmless. Recent work on red-teaming, model editing, and interpretability suggests that this challenge stems from how (adversarial) fine-tuning largely serves to suppress rather than remove undesirable capabilities from LLMs. Prior work has introduced latent adversarial training (LAT) as a way to improve robustness to broad classes of failures. These prior works have considered untargeted latent space attacks where the adversary perturbs latent activations to maximize loss on examples of desirable behavior. Untargeted LAT can provide a generic type of robustness but does not leverage information about specific failure modes. Here, we experiment with targeted LAT where the adversary seeks to minimize loss on a specific competing task. We find that it can augment a wide variety of state-of-the-art methods. First, we use targeted LAT to improve robustness to jailbreaks, outperforming a strong R2D2 baseline with orders of magnitude less compute. Second, we use it to more effectively remove backdoors with no knowledge of the trigger. Finally, we use it to more effectively unlearn knowledge for specific undesirable tasks in a way that is also more robust to re-learning. Overall, our results suggest that targeted LAT can be an effective tool for defending against harmful behaviors from LLMs.
comment: Code at https://github.com/aengusl/latent-adversarial-training. Models at https://huggingface.co/LLM-LAT
♻ ☆ Breaking Memory Limits: Gradient Wavelet Transform Enhances LLMs Training
Large language models (LLMs) have shown impressive performance across a range of natural language processing tasks. However, their vast number of parameters introduces significant memory challenges during training, particularly when using memory-intensive optimizers like Adam. Existing memory-efficient algorithms often rely on techniques such as singular value decomposition projection or weight freezing. While these approaches help alleviate memory constraints, they generally produce suboptimal results compared to full-rank updates. In this paper, we investigate the memory-efficient method beyond low-rank training, proposing a novel solution called Gradient Wavelet Transform (GWT), which applies wavelet transforms to gradients in order to significantly reduce the memory requirements for maintaining optimizer states. We demonstrate that GWT can be seamlessly integrated with memory-intensive optimizers, enabling efficient training without sacrificing performance. Through extensive experiments on both pre-training and fine-tuning tasks, we show that GWT achieves state-of-the-art performance compared with advanced memory-efficient optimizers and full-rank approaches in terms of both memory usage and training performance.
♻ ☆ A calibration test for evaluating set-based epistemic uncertainty representations
The accurate representation of epistemic uncertainty is a challenging yet essential task in machine learning. A widely used representation corresponds to convex sets of probabilistic predictors, also known as credal sets. One popular way of constructing these credal sets is via ensembling or specialized supervised learning methods, where the epistemic uncertainty can be quantified through measures such as the set size or the disagreement among members. In principle, these sets should contain the true data-generating distribution. As a necessary condition for this validity, we adopt the strongest notion of calibration as a proxy. Concretely, we propose a novel statistical test to determine whether there is a convex combination of the set's predictions that is calibrated in distribution. In contrast to previous methods, our framework allows the convex combination to be instance dependent, recognizing that different ensemble members may be better calibrated in different regions of the input space. Moreover, we learn this combination via proper scoring rules, which inherently optimize for calibration. Building on differentiable, kernel-based estimators of calibration errors, we introduce a nonparametric testing procedure and demonstrate the benefits of capturing instance-level variability on of synthetic and real-world experiments.
♻ ☆ 2D-Curri-DPO: Two-Dimensional Curriculum Learning for Direct Preference Optimization
Aligning large language models with human preferences is crucial for their safe deployment. While Direct Preference Optimization (DPO) offers an efficient alternative to reinforcement learning from human feedback, traditional DPO methods are limited by their reliance on single preference pairs. Recent work like Curriculum-DPO integrates multiple pairs using a one-dimensional difficulty curriculum based on pairwise distinguishability (PD), but overlooks the complexity of the input prompt itself. To address this, we propose 2D-Curri-DPO, a novel framework employing a two-dimensional curriculum that jointly models Prompt Complexity (PC) and Pairwise Distinguishability. This framework introduces dual difficulty metrics to quantify prompt semantic complexity and response preference clarity, defines a curriculum strategy space encompassing multiple selectable strategies for task adaptation, and incorporates a KL-divergence-based adaptive mechanism for dynamic reference model updates to enhance training stability. Comprehensive experiments demonstrate that 2D-Curri-DPO significantly outperforms standard DPO and prior curriculum methods across multiple benchmarks, including MT-Bench, Vicuna Bench, and WizardLM. Our approach achieves state-of-the-art performance on challenging test sets like UltraFeedback. Ablation studies confirm the benefits of the 2D structure and adaptive mechanisms, while analysis provides guidance for strategy selection. These findings demonstrate that effective alignment requires modeling both prompt complexity and pairwise distinguishability, establishing adaptive, multi-dimensional curriculum learning as a powerful and interpretable new paradigm for preference-based language model optimization.
comment: We found a critical flaw in the prompt complexity metric, which affects the 2D curriculum grid construction and leads to potentially invalid comparisons. Since this undermines our main conclusions, we are withdrawing the paper and will revise the methodology before resubmission
♻ ☆ Multi-branch of Attention Yields Accurate Results for Tabular Data
Tabular data inherently exhibits significant feature heterogeneity, but existing transformer-based methods lack specialized mechanisms to handle this property. To bridge the gap, we propose MAYA, an encoder-decoder transformer-based framework. In the encoder, we design a Multi-Branch of Attention (MBA) that constructs multiple parallel attention branches and averages the features at each branch, effectively fusing heterogeneous features while limiting parameter growth. Additionally, we employ collaborative learning with a dynamic consistency weight constraint to produce more robust representations. In the decoder stage, cross-attention is utilized to seamlessly integrate tabular data with corresponding label features. This dual-attention mechanism effectively captures both intra-instance and inter-instance interactions. We evaluate the proposed method on a wide range of datasets and compare it with other state-of-the-art transformer-based methods. Extensive experiments demonstrate that our model achieves superior performance among transformer-based methods in both tabular classification and regression tasks.
comment: 19 pages, 3 figures
♻ ☆ Demystifying Misconceptions in Social Bots Research
Research on social bots aims at advancing knowledge and providing solutions to one of the most debated forms of online manipulation. Yet, social bot research is plagued by widespread biases, hyped results, and misconceptions that set the stage for ambiguities, unrealistic expectations, and seemingly irreconcilable findings. Overcoming such issues is instrumental towards ensuring reliable solutions and reaffirming the validity of the scientific method. Here, we discuss a broad set of consequential methodological and conceptual issues that affect current social bots research, illustrating each with examples drawn from recent studies. More importantly, we demystify common misconceptions, addressing fundamental points on how social bots research is discussed. Our analysis surfaces the need to discuss research about online disinformation and manipulation in a rigorous, unbiased, and responsible way. This article bolsters such effort by identifying and refuting common fallacious arguments used by both proponents and opponents of social bots research, as well as providing directions toward sound methodologies for future research.
♻ ☆ A Survey on Memory-Efficient Transformer-Based Model Training in AI for Science
Scientific research faces high costs and inefficiencies with traditional methods, but the rise of deep learning and large language models (LLMs) offers innovative solutions. This survey reviews transformer-based LLM applications across scientific fields such as biology, medicine, chemistry, and meteorology, underscoring their role in advancing research. However, the continuous expansion of model size has led to significant memory demands, hindering further development and application of LLMs for science. This survey systematically reviews and categorizes memory-efficient pre-training techniques for large-scale transformers, including algorithm-level, system-level, and hardware-software co-optimization. Using AlphaFold 2 as an example, we demonstrate how tailored memory optimization methods can reduce storage needs while preserving prediction accuracy. By bridging model efficiency and scientific application needs, we hope to provide insights for scalable and cost-effective LLM training in AI for science.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: {10.1007/s11704-025-50302-6}
♻ ☆ A Scalable Approach to Probabilistic Neuro-Symbolic Robustness Verification
Neuro-Symbolic Artificial Intelligence (NeSy AI) has emerged as a promising direction for integrating neural learning with symbolic reasoning. Typically, in the probabilistic variant of such systems, a neural network first extracts a set of symbols from sub-symbolic input, which are then used by a symbolic component to reason in a probabilistic manner towards answering a query. In this work, we address the problem of formally verifying the robustness of such NeSy probabilistic reasoning systems, therefore paving the way for their safe deployment in critical domains. We analyze the complexity of solving this problem exactly, and show that a decision version of the core computation is $\mathrm{NP}^{\mathrm{PP}}$-complete. In the face of this result, we propose the first approach for approximate, relaxation-based verification of probabilistic NeSy systems. We demonstrate experimentally on a standard NeSy benchmark that the proposed method scales exponentially better than solver-based solutions and apply our technique to a real-world autonomous driving domain, where we verify a safety property under large input dimensionalities.
comment: 19th Conference on Neurosymbolic Learning and Reasoning
♻ ☆ Not someone, but something: Rethinking trust in the age of medical AI
As artificial intelligence (AI) becomes embedded in healthcare, trust in medical decision-making is changing fast. Nowhere is this shift more visible than in radiology, where AI tools are increasingly embedded across the imaging workflow - from scheduling and acquisition to interpretation, reporting, and communication with referrers and patients. This opinion paper argues that trust in AI isn't a simple transfer from humans to machines - it is a dynamic, evolving relationship that must be built and maintained. Rather than debating whether AI belongs in medicine, it asks: what kind of trust must AI earn, and how? Drawing from philosophy, bioethics, and system design, it explores the key differences between human trust and machine reliability - emphasizing transparency, accountability, and alignment with the values of good care. It argues that trust in AI should not be built on mimicking empathy or intuition, but on thoughtful design, responsible deployment, and clear moral responsibility. The goal is a balanced view - one that avoids blind optimism and reflexive fear. Trust in AI must be treated not as a given, but as something to be earned over time.
♻ ☆ Machine Learning Risk Intelligence for Green Hydrogen Investment: Insights for Duqm R3 Auction
As green hydrogen emerges as a major component of global decarbonisation, Oman has positioned itself strategically through national auctions and international partnerships. Following two successful green hydrogen project rounds, the country launched its third auction (R3) in the Duqm region. While this area exhibits relative geospatial homogeneity, it is still vulnerable to environmental fluctuations that pose inherent risks to productivity. Despite growing global investment in green hydrogen, operational data remains scarce, with major projects like Saudi Arabia's NEOM facility not expected to commence production until 2026, and Oman's ACME Duqm project scheduled for 2028. This absence of historical maintenance and performance data from large-scale hydrogen facilities in desert environments creates a major knowledge gap for accurate risk assessment for infrastructure planning and auction decisions. Given this data void, environmental conditions emerge as accessible and reliable proxy for predicting infrastructure maintenance pressures, because harsh desert conditions such as dust storms, extreme temperatures, and humidity fluctuations are well-documented drivers of equipment degradation in renewable energy systems. To address this challenge, this paper proposes an Artificial Intelligence decision support system that leverages publicly available meteorological data to develop a predictive Maintenance Pressure Index (MPI), which predicts risk levels and future maintenance demands on hydrogen infrastructure. This tool strengthens regulatory foresight and operational decision-making by enabling temporal benchmarking to assess and validate performance claims over time. It can be used to incorporate temporal risk intelligence into auction evaluation criteria despite the absence of historical operational benchmarks.
comment: Updated version
♻ ☆ AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning ICCV 2025
Large language models (LLMs) have enabled the creation of multi-modal LLMs that exhibit strong comprehension of visual data such as images and videos. However, these models usually rely on extensive visual tokens from visual encoders, leading to high computational demands, which limits their applicability in resource-constrained environments and for long-context tasks. In this work, we propose a training-free adaptive inference method for multi-modal LLMs that can accommodate a broad range of efficiency requirements with a minimum performance drop. Our method consists of a) iterative token merging based on embedding similarity before LLMs, and b) progressive token pruning within LLM layers based on multi-modal importance. With a minimalist design, our method can be applied to both video and image LLMs. Extensive experiments on diverse video and image benchmarks demonstrate that our method substantially reduces computation load (e.g., a $\textbf{7-fold}$ reduction in FLOPs) while preserving the performance of video and image LLMs. Further, at a similar computational cost, our method outperforms the state-of-the-art methods in long video understanding (e.g., $\textbf{+4.6}$ on MLVU). Additionally, our in-depth analysis provides insights into token redundancy and LLM layer behaviors, offering guidance for future research in designing efficient multi-modal LLMs. Our code is available at https://github.com/LaVi-Lab/AIM.
comment: Accepted to ICCV 2025
♻ ☆ Generating Heterogeneous Multi-dimensional Data : A Comparative Study
Allocation of personnel and material resources is highly sensible in the case of firefighter interventions. This allocation relies on simulations to experiment with various scenarios. The main objective of this allocation is the global optimization of the firefighters response. Data generation is then mandatory to study various scenarios In this study, we propose to compare different data generation methods. Methods such as Random Sampling, Tabular Variational Autoencoders, standard Generative Adversarial Networks, Conditional Tabular Generative Adversarial Networks and Diffusion Probabilistic Models are examined to ascertain their efficacy in capturing the intricacies of firefighter interventions. Traditional evaluation metrics often fall short in capturing the nuanced requirements of synthetic datasets for real-world scenarios. To address this gap, an evaluation of synthetic data quality is conducted using a combination of domain-specific metrics tailored to the firefighting domain and standard measures such as the Wasserstein distance. Domain-specific metrics include response time distribution, spatial-temporal distribution of interventions, and accidents representation. These metrics are designed to assess data variability, the preservation of fine and complex correlations and anomalies such as event with a very low occurrence, the conformity with the initial statistical distribution and the operational relevance of the synthetic data. The distribution has the particularity of being highly unbalanced, none of the variables following a Gaussian distribution, adding complexity to the data generation process.
comment: accepted at IEEE SMC 2025 Vienna
♻ ☆ ZERO: Industry-ready Vision Foundation Model with Multi-modal Prompts
Foundation models have revolutionized AI, yet they struggle with zero-shot deployment in real-world industrial settings due to a lack of high-quality, domain-specific datasets. To bridge this gap, Superb AI introduces ZERO, an industry-ready vision foundation model that leverages multi-modal prompting (textual and visual) for generalization without retraining. Trained on a compact yet representative 0.9 million annotated samples from a proprietary billion-scale industrial dataset, ZERO demonstrates competitive performance on academic benchmarks like LVIS-Val and significantly outperforms existing models across 37 diverse industrial datasets. Furthermore, ZERO achieved 2nd place in the CVPR 2025 Object Instance Detection Challenge and 4th place in the Foundational Few-shot Object Detection Challenge, highlighting its practical deployability and generalizability with minimal adaptation and limited data. To the best of our knowledge, ZERO is the first vision foundation model explicitly built for domain-specific, zero-shot industrial applications.
comment: 9 pages, 2 figures
♻ ☆ Linguistic and Embedding-Based Profiling of Texts generated by Humans and Large Language Models
The rapid advancements in large language models (LLMs) have significantly improved their ability to generate natural language, making texts generated by LLMs increasingly indistinguishable from human-written texts. While recent research has primarily focused on using LLMs to classify text as either human-written and machine-generated texts, our study focus on characterizing these texts using a set of linguistic features across different linguistic levels such as morphology, syntax, and semantics. We select a dataset of human-written and machine-generated texts spanning 8 domains and produced by 11 different LLMs. We calculate different linguistic features such as dependency length and emotionality and we use them for characterizing human-written and machine-generated texts along with different sampling strategies, repetition controls and model release date. Our statistical analysis reveals that human-written texts tend to exhibit simpler syntactic structures and more diverse semantic content. Furthermore, we calculate the variability of our set of features across models and domains. Both human and machine texts show stylistic diversity across domains, with humans displaying greater variation in our features. Finally, we apply style embeddings to further test variability among human-written and machine-generated texts. Notably, newer models output text that is similarly variable, pointing to an homogenization of machine-generated texts.
comment: arXiv admin note: text overlap with arXiv:2412.03025
♻ ☆ Latent Swap Joint Diffusion for 2D Long-Form Latent Generation
This paper introduces Swap Forward (SaFa), a modality-agnostic and efficient method to generate seamless and coherence long spectrum and panorama through latent swap joint diffusion across multi-views. We first investigate the spectrum aliasing problem in spectrum-based audio generation caused by existing joint diffusion methods. Through a comparative analysis of the VAE latent representation of Mel-spectra and RGB images, we identify that the failure arises from excessive suppression of high-frequency components during the spectrum denoising process due to the averaging operator. To address this issue, we propose Self-Loop Latent Swap, a frame-level bidirectional swap applied to the overlapping region of adjacent views. Leveraging stepwise differentiated trajectories of adjacent subviews, this swap operator adaptively enhances high-frequency components and avoid spectrum distortion. Furthermore, to improve global cross-view consistency in non-overlapping regions, we introduce Reference-Guided Latent Swap, a unidirectional latent swap operator that provides a centralized reference trajectory to synchronize subview diffusions. By refining swap timing and intervals, we can achieve a cross-view similarity-diversity balance in a forward-only manner. Quantitative and qualitative experiments demonstrate that SaFa significantly outperforms existing joint diffusion methods and even training-based methods in audio generation using both U-Net and DiT models, along with effective longer length adaptation. It also adapts well to panorama generation, achieving comparable performance with 2 $\sim$ 20 $\times$ faster speed and greater model generalizability. More generation demos are available at https://swapforward.github.io/
♻ ☆ Fine-Grained Perturbation Guidance via Attention Head Selection
Recent guidance methods in diffusion models steer reverse sampling by perturbing the model to construct an implicit weak model and guide generation away from it. Among these approaches, attention perturbation has demonstrated strong empirical performance in unconditional scenarios where classifier-free guidance is not applicable. However, existing attention perturbation methods lack principled approaches for determining where perturbations should be applied, particularly in Diffusion Transformer (DiT) architectures where quality-relevant computations are distributed across layers. In this paper, we investigate the granularity of attention perturbations, ranging from the layer level down to individual attention heads, and discover that specific heads govern distinct visual concepts such as structure, style, and texture quality. Building on this insight, we propose "HeadHunter", a systematic framework for iteratively selecting attention heads that align with user-centric objectives, enabling fine-grained control over generation quality and visual attributes. In addition, we introduce SoftPAG, which linearly interpolates each selected head's attention map toward an identity matrix, providing a continuous knob to tune perturbation strength and suppress artifacts. Our approach not only mitigates the oversmoothing issues of existing layer-level perturbation but also enables targeted manipulation of specific visual styles through compositional head selection. We validate our method on modern large-scale DiT-based text-to-image models including Stable Diffusion 3 and FLUX.1, demonstrating superior performance in both general quality enhancement and style-specific guidance. Our work provides the first head-level analysis of attention perturbation in diffusion models, uncovering interpretable specialization within attention layers and enabling practical design of effective perturbation strategies.
comment: Project page: https://cvlab-kaist.github.io/HeadHunter/
♻ ☆ AI-ming backwards: Vanishing archaeological landscapes in Mesopotamia and automatic detection of sites on CORONA imagery
By upgrading an existing deep learning model with the knowledge provided by one of the oldest sets of grayscale satellite imagery, known as CORONA, we improved the AI model attitude towards the automatic identification of archaeological sites in an environment which has been completely transformed in the last five decades, including the complete destruction of many of those same sites. The initial Bing based convolutional network model was retrained using CORONA satellite imagery for the district of Abu Ghraib, west of Baghdad, central Mesopotamian floodplain. The results were twofold and surprising. First, the detection precision obtained on the area of interest increased sensibly: in particular, the Intersection over Union (IoU) values, at the image segmentation level, surpassed 85 percent, while the general accuracy in detecting archeological sites reached 90 percent. Second, our retrained model allowed the identification of four new sites of archaeological interest (confirmed through field verification), previously not identified by archaeologists with traditional techniques. This has confirmed the efficacy of using AI techniques and the CORONA imagery from the 1960 to discover archaeological sites currently no longer visible, a concrete breakthrough with significant consequences for the study of landscapes with vanishing archaeological evidence induced by anthropization
comment: 25 pages, 9 Figures
♻ ☆ Towards Facilitated Fairness Assessment of AI-based Skin Lesion Classifiers Through GenAI-based Image Synthesis
Recent advancements in Deep Learning and its application on the edge hold great potential for the revolution of routine screenings for skin cancers like Melanoma. Along with the anticipated benefits of this technology, potential dangers arise from unforseen and inherent biases. Thus, assessing and improving the fairness of such systems is of utmost importance. A key challenge in fairness assessment is to ensure that the evaluation dataset is sufficiently representative of different Personal Identifiable Information (PII) (sex, age, and race) and other minority groups. Against the backdrop of this challenge, this study leverages the state-of-the-art Generative AI (GenAI) LightningDiT model to assess the fairness of publicly available melanoma classifiers. The results suggest that fairness assessment using highly realistic synthetic data is a promising direction. Yet, our findings indicate that verifying fairness becomes difficult when the melanoma-detection model used for evaluation is trained on data that differ from the dataset underpinning the synthetic images. Nonetheless, we propose that our approach offers a valuable new avenue for employing synthetic data to gauge and enhance fairness in medical-imaging GenAI systems.
♻ ☆ HIRAG: Hierarchical-Thought Instruction-Tuning Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) has become a fundamental paradigm for addressing the challenges faced by large language models in handling real-time information and domain-specific problems. Traditional RAG systems primarily rely on the in-context learning (ICL) capabilities of the large language model itself. Still, in-depth research on the specific capabilities needed by the RAG generation model is lacking, leading to challenges with inconsistent document quality and retrieval system imperfections. Even the limited studies that fine-tune RAG generative models often \textit{lack a granular focus on RAG task} or \textit{a deeper utilization of chain-of-thought processes}. To address this, we propose that RAG models should possess three progressively hierarchical abilities (1) Filtering: the ability to select relevant information; (2) Combination: the ability to combine semantic information across paragraphs; and (3) RAG-specific reasoning: the ability to further process external knowledge using internal knowledge. Thus, we introduce our new RAG instruction fine-tuning method, Hierarchical-Thought Instruction-Tuning Retrieval-Augmented Generation (HIRAG) incorporates a "think before answering" strategy. This method enhances the model's open-book examination capability by utilizing multi-level progressive chain-of-thought. Experiments show that the HIRAG training strategy significantly improves the model's performance on datasets such as RGB, PopQA, MuSiQue, HotpotQA, and PubmedQA.
♻ ☆ T2I-Copilot: A Training-Free Multi-Agent Text-to-Image System for Enhanced Prompt Interpretation and Interactive Generation ICCV 2025
Text-to-Image (T2I) generative models have revolutionized content creation but remain highly sensitive to prompt phrasing, often requiring users to repeatedly refine prompts multiple times without clear feedback. While techniques such as automatic prompt engineering, controlled text embeddings, denoising, and multi-turn generation mitigate these issues, they offer limited controllability, or often necessitate additional training, restricting the generalization abilities. Thus, we introduce T2I-Copilot, a training-free multi-agent system that leverages collaboration between (Multimodal) Large Language Models to automate prompt phrasing, model selection, and iterative refinement. This approach significantly simplifies prompt engineering while enhancing generation quality and text-image alignment compared to direct generation. Specifically, T2I-Copilot consists of three agents: (1) Input Interpreter, which parses the input prompt, resolves ambiguities, and generates a standardized report; (2) Generation Engine, which selects the appropriate model from different types of T2I models and organizes visual and textual prompts to initiate generation; and (3) Quality Evaluator, which assesses aesthetic quality and text-image alignment, providing scores and feedback for potential regeneration. T2I-Copilot can operate fully autonomously while also supporting human-in-the-loop intervention for fine-grained control. On GenAI-Bench, using open-source generation models, T2I-Copilot achieves a VQA score comparable to commercial models RecraftV3 and Imagen 3, surpasses FLUX1.1-pro by 6.17% at only 16.59% of its cost, and outperforms FLUX.1-dev and SD 3.5 Large by 9.11% and 6.36%. Code will be released at: https://github.com/SHI-Labs/T2I-Copilot.
comment: ICCV 2025
♻ ☆ TolerantECG: A Foundation Model for Imperfect Electrocardiogram
The electrocardiogram (ECG) is an essential and effective tool for diagnosing heart diseases. However, its effectiveness can be compromised by noise or unavailability of one or more leads of the standard 12-lead recordings, resulting in diagnostic errors or uncertainty. To address these challenges, we propose TolerantECG, a foundation model for ECG signals that is robust to noise and capable of functioning with arbitrary subsets of the standard 12-lead ECG. TolerantECG training combines contrastive and self-supervised learning frameworks to jointly learn ECG signal representations alongside their corresponding knowledge-retrieval-based text report descriptions and corrupted or lead-missing signals. Comprehensive benchmarking results demonstrate that TolerantECG consistently ranks as the best or second-best performer across various ECG signal conditions and class levels in the PTB-XL dataset, and achieves the highest performance on the MIT-BIH Arrhythmia Database.
comment: Accepted at ACM MM 2025
♻ ☆ Simulated patient systems are intelligent when powered by large language model-based AI agents
Simulated patient systems play an important role in modern medical education and research, providing safe, integrative medical training environments and supporting clinical decision-making simulations. We developed AIPatient, an intelligent simulated patient system powered by large language model-based AI agents. The system incorporates the Retrieval Augmented Generation (RAG) framework, powered by six task-specific LLM-based AI agents for complex reasoning. For simulation reality, the system is also powered by the AIPatient KG (Knowledge Graph), built with de-identified real patient data from the Medical Information Mart for Intensive Care (MIMIC)-III database. Primary outcomes showcase the system's intelligence, including the system's accuracy in Electronic Record (EHR)-based medical Question Answering (QA), readability, robustness, and stability. The system achieved a QA accuracy of 94.15% when all six AI agents present, surpassing benchmarks with partial or no agent integration. Its knowledgebase demonstrated high validity (F1 score=0.89). Readability scores showed median Flesch Reading Ease at 77.23 and median Flesch Kincaid Grade at 5.6, indicating accessibility to all medical professionals. Robustness and stability were confirmed with non-significant variance (ANOVA F-value=0.6126, p > 0.1; F-value=0.782, p > 0.1). A user study with medical students further demonstrated that AIPatient offers high fidelity, strong usability, and effective educational value, performing comparably or better than human-simulated patients in medical history-taking scenarios. The promising intelligence of the AIPatient system highlights its potential to support a wide range of applications, including medical education, model evaluation, and system integration.
comment: 64 pages, 14 figures, 16 tables
♻ ☆ Long-Term Fairness Inquiries and Pursuits in Machine Learning: A Survey of Notions, Methods, and Challenges
The widespread integration of Machine Learning systems in daily life, particularly in high-stakes domains, has raised concerns about the fairness implications. While prior works have investigated static fairness measures, recent studies reveal that automated decision-making has long-term implications and that off-the-shelf fairness approaches may not serve the purpose of achieving long-term fairness. Additionally, the existence of feedback loops and the interaction between models and the environment introduces additional complexities that may deviate from the initial fairness goals. In this survey, we review existing literature on long-term fairness from different perspectives and present a taxonomy for long-term fairness studies. We highlight key challenges and consider future research directions, analyzing both current issues and potential further explorations.
comment: Accepted in TMLR
♻ ☆ The Carbon Cost of Conversation, Sustainability in the Age of Language Models
Large language models (LLMs) like GPT-3 and BERT have revolutionized natural language processing (NLP), yet their environmental costs remain dangerously overlooked. This article critiques the sustainability of LLMs, quantifying their carbon footprint, water usage, and contribution to e-waste through case studies of models such as GPT-4 and energy-efficient alternatives like Mistral 7B. Training a single LLM can emit carbon dioxide equivalent to hundreds of cars driven annually, while data centre cooling exacerbates water scarcity in vulnerable regions. Systemic challenges corporate greenwashing, redundant model development, and regulatory voids perpetuate harm, disproportionately burdening marginalized communities in the Global South. However, pathways exist for sustainable NLP: technical innovations (e.g., model pruning, quantum computing), policy reforms (carbon taxes, mandatory emissions reporting), and cultural shifts prioritizing necessity over novelty. By analysing industry leaders (Google, Microsoft) and laggards (Amazon), this work underscores the urgency of ethical accountability and global cooperation. Without immediate action, AIs ecological toll risks outpacing its societal benefits. The article concludes with a call to align technological progress with planetary boundaries, advocating for equitable, transparent, and regenerative AI systems that prioritize both human and environmental well-being.
comment: 22 Pages, 5 Tables
♻ ☆ AMix-1: A Pathway to Test-Time Scalable Protein Foundation Model
We introduce AMix-1, a powerful protein foundation model built on Bayesian Flow Networks and empowered by a systematic training methodology, encompassing pretraining scaling laws, emergent capability analysis, in-context learning mechanism, and test-time scaling algorithm. To guarantee robust scalability, we establish a predictive scaling law and reveal the progressive emergence of structural understanding via loss perspective, culminating in a strong 1.7-billion model. Building on this foundation, we devise a multiple sequence alignment (MSA)-based in-context learning strategy to unify protein design into a general framework, where AMix-1 recognizes deep evolutionary signals among MSAs and consistently generates structurally and functionally coherent proteins. This framework enables the successful design of a dramatically improved AmeR variant with an up to $50\times$ activity increase over its wild type. Pushing the boundaries of protein engineering, we further empower AMix-1 with an evolutionary test-time scaling algorithm for in silico directed evolution that delivers substantial, scalable performance gains as verification budgets are intensified, laying the groundwork for next-generation lab-in-the-loop protein design.
♻ ☆ Towards Reliable Proof Generation with LLMs: A Neuro-Symbolic Approach
Large language models (LLMs) struggle with formal domains that require rigorous logical deduction and symbolic reasoning, such as mathematical proof generation. We propose a neuro-symbolic approach that combines LLMs' generative strengths with structured components to overcome this challenge. As a proof-of-concept, we focus on geometry problems. Our approach is two-fold: (1) we retrieve analogous problems and use their proofs to guide the LLM, and (2) a formal verifier evaluates the generated proofs and provides feedback, helping the model fix incorrect proofs. We demonstrate that our method significantly improves proof accuracy for OpenAI's o1 model (58%-70% improvement); both analogous problems and the verifier's feedback contribute to these gains. More broadly, shifting to LLMs that generate provably correct conclusions could dramatically improve their reliability, accuracy and consistency, unlocking complex tasks and critical real-world applications that require trustworthiness.
comment: long paper
♻ ☆ Kodezi Chronos: A Debugging-First Language Model for Repository-Scale Code Understanding
Large Language Models (LLMs) have improved code generation and software automation, but remain limited by inference-time context and lack structured reasoning over code. Debugging remains unsolved despite these advances. While Claude Opus 4 and GPT-4.1 achieve >70% on code synthesis benchmarks, they perform <15% on real debugging tasks. We introduce Kodezi Chronos, a language model built specifically for debugging. Chronos combines Adaptive Graph-Guided Retrieval to navigate codebases up to 10 million lines using multi-hop traversal (92% precision, 85% recall), Persistent Debug Memory trained on 15M+ sessions, and a 7-layer architecture for iterative fix-test-refine loops. On 5,000 real-world scenarios, Chronos achieves 67.3% fix accuracy, compared to 14.2% and 13.8% for Claude and GPT-4.1 respectively. Chronos reduces debugging time by 40% and iteration count by 65%. It resolves complex multi-file bugs involving cross-repository context and temporal reasoning. Key limitations include 23.4% success on hardware-dependent issues and 41.2% on dynamic language errors. Theoretical analysis shows O(k log d) retrieval complexity with convergence guarantees. In a human evaluation (N=50), 89% of participants preferred Chronos over baseline models. Chronos will be available in Kodezi OS in Q4 2025 and via API in Q1 2026.
comment: 27 pages, 21 figures, 37 tables, 2 algorithms. Extended technical report. Introduces Chronos, an autonomous debugging system achieving 87.1% success rate on real-world bugs. Code and data available at https://github.com/Kodezi/chronos
♻ ☆ Incentivizing Reasoning for Advanced Instruction-Following of Large Language Models
Existing large language models (LLMs) face challenges of following complex instructions, especially when multiple constraints are present and organized in paralleling, chaining, and branching structures. One intuitive solution, namely chain-of-thought (CoT), is expected to universally improve capabilities of LLMs. However, we find that the vanilla CoT exerts a negative impact on performance due to its superficial reasoning pattern of simply paraphrasing the instructions. It fails to peel back the compositions of constraints for identifying their relationship across hierarchies of types and dimensions. To this end, we propose RAIF, a systematic method to boost LLMs in dealing with complex instructions via incentivizing reasoning for test-time compute scaling. First, we stem from the decomposition of complex instructions under existing taxonomies and propose a reproducible data acquisition method. Second, we exploit reinforcement learning (RL) with verifiable rule-centric reward signals to cultivate reasoning specifically for instruction following. We address the shallow, non-essential nature of reasoning under complex instructions via sample-wise contrast for superior CoT enforcement. We also exploit behavior cloning of experts to facilitate steady distribution shift from fast-thinking LLMs to skillful reasoners. Extensive evaluations on seven comprehensive benchmarks confirm the validity of the proposed method, where a 1.5B LLM achieves 11.74% gains with performance comparable to a 8B LLM. Evaluation on OOD constraints also confirms the generalizability of our RAIF. Codes and data are available at https://github.com/yuleiqin/RAIF. Keywords: reinforcement learning with verifiable rewards (RLVR), instruction following, complex instructions
comment: 15 pages of main body, 5 tables, 5 figures, 42 pages of appendix
♻ ☆ Low-Confidence Gold: Refining Low-Confidence Samples for Efficient Instruction Tuning
The effectiveness of instruction fine-tuning for Large Language Models is fundamentally constrained by the quality and efficiency of training datasets. This work introduces Low-Confidence Gold (LCG), a novel filtering framework that employs centroid-based clustering and confidence-guided selection for identifying valuable instruction pairs. Through a semi-supervised approach using a lightweight classifier trained on representative samples, LCG curates high-quality subsets while preserving data diversity. Experimental evaluation demonstrates that models fine-tuned on LCG-filtered subsets of 6K samples achieve superior performance compared to existing methods, with substantial improvements on MT-bench and consistent gains across comprehensive evaluation metrics. The framework's efficacy while maintaining model performance establishes a promising direction for efficient instruction tuning.
comment: 8 pages
♻ ☆ End-to-End Large Portfolio Optimization for Variance Minimization with Neural Networks through Covariance Cleaning
We develop a rotation-invariant neural network that provides the global minimum-variance portfolio by jointly learning how to lag-transform historical returns and how to regularise both the eigenvalues and the marginal volatilities of large equity covariance matrices. This explicit mathematical mapping offers clear interpretability of each module's role, so the model cannot be regarded as a pure black-box. The architecture mirrors the analytical form of the global minimum-variance solution yet remains agnostic to dimension, so a single model can be calibrated on panels of a few hundred stocks and applied, without retraining, to one thousand US equities-a cross-sectional jump that demonstrates robust out-of-sample generalisation. The loss function is the future realized minimum portfolio variance and is optimized end-to-end on real daily returns. In out-of-sample tests from January 2000 to December 2024 the estimator delivers systematically lower realised volatility, smaller maximum drawdowns, and higher Sharpe ratios than the best analytical competitors, including state-of-the-art non-linear shrinkage. Furthermore, although the model is trained end-to-end to produce an unconstrained (long-short) minimum-variance portfolio, we show that its learned covariance representation can be used in general optimizers under long-only constraints with virtually no loss in its performance advantage over competing estimators. These gains persist when the strategy is executed under a highly realistic implementation framework that models market orders at the auctions, empirical slippage, exchange fees, and financing charges for leverage, and they remain stable during episodes of acute market stress.
♻ ☆ Sem-DPO: Mitigating Semantic Inconsistency in Preference Optimization for Prompt Engineering
Generative AI can now synthesize strikingly realistic images from text, yet output quality remains highly sensitive to how prompts are phrased. Direct Preference Optimization (DPO) offers a lightweight, off-policy alternative to RL for automatic prompt engineering, but its token-level regularization leaves semantic inconsistency unchecked as prompts that win higher preference scores can still drift away from the user's intended meaning. We introduce Sem-DPO, a variant of DPO that preserves semantic consistency yet retains its simplicity and efficiency. Sem-DPO adjusts the DPO loss using a weight based on how different the winning prompt is from the original, reducing the impact of training examples that are semantically misaligned. We provide the first analytical bound on semantic drift for preference-tuned prompt generators, showing that Sem-DPO keeps learned prompts within a provably bounded neighborhood of the original text. On three standard text-to-image prompt-optimization benchmarks and two language models, Sem-DPO achieves 8-12% higher CLIP similarity and 5-9% higher human-preference scores (HPSv2.1, PickScore) than DPO, while also outperforming state-of-the-art baselines. These findings suggest that strong flat baselines augmented with semantic weighting should become the new standard for prompt-optimization studies and lay the groundwork for broader, semantics-aware preference optimization in language models.
♻ ☆ JWB-DH-V1: Benchmark for Joint Whole-Body Talking Avatar and Speech Generation Version 1 ICCV 2025
Recent advances in diffusion-based video generation have enabled photo-realistic short clips, but current methods still struggle to achieve multi-modal consistency when jointly generating whole-body motion and natural speech. Current approaches lack comprehensive evaluation frameworks that assess both visual and audio quality, and there are insufficient benchmarks for region-specific performance analysis. To address these gaps, we introduce the Joint Whole-Body Talking Avatar and Speech Generation Version I(JWB-DH-V1), comprising a large-scale multi-modal dataset with 10,000 unique identities across 2 million video samples, and an evaluation protocol for assessing joint audio-video generation of whole-body animatable avatars. Our evaluation of SOTA models reveals consistent performance disparities between face/hand-centric and whole-body performance, which incidates essential areas for future research. The dataset and evaluation tools are publicly available at https://github.com/deepreasonings/WholeBodyBenchmark.
comment: WiCV @ ICCV 2025
♻ ☆ LinkTo-Anime: A 2D Animation Optical Flow Dataset from 3D Model Rendering
Existing optical flow datasets focus primarily on real-world simulation or synthetic human motion, but few are tailored to Celluloid(cel) anime character motion: a domain with unique visual and motion characteristics. To bridge this gap and facilitate research in optical flow estimation and downstream tasks such as anime video generation and line drawing colorization, we introduce LinkTo-Anime, the first high-quality dataset specifically designed for cel anime character motion generated with 3D model rendering. LinkTo-Anime provides rich annotations including forward and backward optical flow, occlusion masks, and Mixamo Skeleton. The dataset comprises 395 video sequences, totally 24,230 training frames, 720 validation frames, and 4,320 test frames. Furthermore, a comprehensive benchmark is constructed with various optical flow estimation methods to analyze the shortcomings and limitations across multiple datasets.
♻ ☆ Automated Prompt Engineering for Cost-Effective Code Generation Using Evolutionary Algorithm
Large Language Models have seen increasing use in various software development tasks, especially in code generation. The most advanced recent methods attempt to incorporate feedback from code execution into prompts to help guide LLMs in generating correct code in an iterative process. While effective, these methods could be costly due to numerous interactions with the LLM and extensive token usage. To address this issue, we propose an alternative approach named Evolutionary Prompt Engineering for Code (EPiC), which leverages a lightweight evolutionary algorithm to refine the original prompts into improved versions that generate high quality code, with minimal interactions with the LLM. Our evaluation against state-of-the-art (SOTA) LLM based code generation agents shows that EPiC not only achieves up to 6% improvement in pass@k but is also 2-10 times more cost-effective than the baselines.
♻ ☆ Subgoal-Guided Policy Heuristic Search with Learned Subgoals ICML-25
Policy tree search is a family of tree search algorithms that use a policy to guide the search. These algorithms provide guarantees on the number of expansions required to solve a given problem that are based on the quality of the policy. While these algorithms have shown promising results, the process in which they are trained requires complete solution trajectories to train the policy. Search trajectories are obtained during a trial-and-error search process. When the training problem instances are hard, learning can be prohibitively costly, especially when starting from a randomly initialized policy. As a result, search samples are wasted in failed attempts to solve these hard instances. This paper introduces a novel method for learning subgoal-based policies for policy tree search algorithms. The subgoals and policies conditioned on subgoals are learned from the trees that the search expands while attempting to solve problems, including the search trees of failed attempts. We empirically show that our policy formulation and training method improve the sample efficiency of learning a policy and heuristic function in this online setting.
comment: Accepted to ICML-25
♻ ☆ CollabLLM: From Passive Responders to Active Collaborators ICML 2025
Large Language Models are typically trained with next-turn rewards, limiting their ability to optimize for long-term interaction. As a result, they often respond passively to ambiguous or open-ended user requests, failing to help users reach their ultimate intents and leading to inefficient conversations. To address these limitations, we introduce CollabLLM, a novel and general training framework that enhances multiturn human-LLM collaboration. Its key innovation is a collaborative simulation that estimates the long-term contribution of responses using Multiturn-aware Rewards. By reinforcement fine-tuning these rewards, CollabLLM goes beyond responding to user requests, and actively uncovers user intent and offers insightful suggestions-a key step towards more human-centered AI. We also devise a multiturn interaction benchmark with three challenging tasks such as document creation. CollabLLM significantly outperforms our baselines with averages of 18.5% higher task performance and 46.3% improved interactivity by LLM judges. Finally, we conduct a large user study with 201 judges, where CollabLLM increases user satisfaction by 17.6% and reduces user spent time by 10.4%.
comment: Outstanding Paper Award at ICML 2025
Computational Engineering, Finance, and Science 8
☆ ChemDFM-R: An Chemical Reasoner LLM Enhanced with Atomized Chemical Knowledge
While large language models (LLMs) have achieved impressive progress, their application in scientific domains such as chemistry remains hindered by shallow domain understanding and limited reasoning capabilities. In this work, we focus on the specific field of chemistry and develop a Chemical Reasoner LLM, ChemDFM-R. We first construct a comprehensive dataset of atomized knowledge points to enhance the model's understanding of the fundamental principles and logical structure of chemistry. Then, we propose a mix-sourced distillation strategy that integrates expert-curated knowledge with general-domain reasoning skills, followed by domain-specific reinforcement learning to enhance chemical reasoning. Experiments on diverse chemical benchmarks demonstrate that ChemDFM-R achieves state-of-the-art performance while providing interpretable, rationale-driven outputs. Further case studies illustrate how explicit reasoning chains significantly improve the reliability, transparency, and practical utility of the model in real-world human-AI collaboration scenarios.
comment: 13 figures, 4 tables
☆ Predict Patient Self-reported Race from Skin Histological Images AI
Artificial Intelligence (AI) has demonstrated success in computational pathology (CPath) for disease detection, biomarker classification, and prognosis prediction. However, its potential to learn unintended demographic biases, particularly those related to social determinants of health, remains understudied. This study investigates whether deep learning models can predict self-reported race from digitized dermatopathology slides and identifies potential morphological shortcuts. Using a multisite dataset with a racially diverse population, we apply an attention-based mechanism to uncover race-associated morphological features. After evaluating three dataset curation strategies to control for confounding factors, the final experiment showed that White and Black demographic groups retained high prediction performance (AUC: 0.799, 0.762), while overall performance dropped to 0.663. Attention analysis revealed the epidermis as a key predictive feature, with significant performance declines when these regions were removed. These findings highlight the need for careful data curation and bias mitigation to ensure equitable AI deployment in pathology. Code available at: https://github.com/sinai-computational-pathology/CPath_SAIF.
comment: Accepted to the MICCAI Workshop on Fairness of AI in Medical Imaging (FAIMI), 2025
☆ Improving Neural Network Training using Dynamic Learning Rate Schedule for PINNs and Image Classification
Training neural networks can be challenging, especially as the complexity of the problem increases. Despite using wider or deeper networks, training them can be a tedious process, especially if a wrong choice of the hyperparameter is made. The learning rate is one of such crucial hyperparameters, which is usually kept static during the training process. Learning dynamics in complex systems often requires a more adaptive approach to the learning rate. This adaptability becomes crucial to effectively navigate varying gradients and optimize the learning process during the training process. In this paper, a dynamic learning rate scheduler (DLRS) algorithm is presented that adapts the learning rate based on the loss values calculated during the training process. Experiments are conducted on problems related to physics-informed neural networks (PINNs) and image classification using multilayer perceptrons and convolutional neural networks, respectively. The results demonstrate that the proposed DLRS accelerates training and improves stability.
comment: 10 pages
☆ evoxels: A differentiable physics framework for voxel-based microstructure simulations
Materials science inherently spans disciplines: experimentalists use advanced microscopy to uncover micro- and nanoscale structure, while theorists and computational scientists develop models that link processing, structure, and properties. Bridging these domains is essential for inverse material design where you start from desired performance and work backwards to optimal microstructures and manufacturing routes. Integrating high-resolution imaging with predictive simulations and data-driven optimization accelerates discovery and deepens understanding of process-structure-property relationships. The differentiable physics framework evoxels is based on a fully Pythonic, unified voxel-based approach that integrates segmented 3D microscopy data, physical simulations, inverse modeling, and machine learning.
comment: 9 pages, 3 figures, structure following JOSS style
☆ An entropy-stable and kinetic energy-preserving macro-element HDG method for compressible flows
This paper introduces a high order numerical framework for efficient and robust simulation of compressible flows. To address the inefficiencies of standard hybridized discontinuous Galerkin (HDG) methods in large scale settings, we develop a macro element HDG method that reduces global and local degrees of freedom by embedding continuous Galerkin structure within macro-elements. This formulation supports matrix free implementations and enables highly parallel local solves, leading to substantial performance gains and excellent scalability on modern architectures. To enhance robustness in under resolved or turbulent regimes, we extend the method using entropy variables and a flux differencing approach to construct entropy stable and kinetic energy preserving variants. These formulations satisfy a discrete entropy inequality and improve stability without compromising high order accuracy. We demonstrate the performance of the proposed method on benchmark problems including the inviscid isentropic vortex and the Taylor Green vortex in both inviscid and turbulent regimes. Numerical results confirm optimal accuracy, improved robustness, and up to an order of magnitude speedup over standard HDG methods. These developments mark a significant advancement in high order methods for direct numerical simulation (DNS) of compressible flows.
☆ Accelerating Fleet Upgrade Decisions with Machine-Learning Enhanced Optimization
Rental-based business models and increasing sustainability requirements intensify the need for efficient strategies to manage large machine and vehicle fleet renewal and upgrades. Optimized fleet upgrade strategies maximize overall utility, cost, and sustainability. However, conventional fleet optimization does not account for upgrade options and is based on integer programming with exponential runtime scaling, which leads to substantial computational cost when dealing with large fleets and repeated decision-making processes. This contribution firstly suggests an extended integer programming approach that determines optimal renewal and upgrade decisions. The computational burden is addressed by a second, alternative machine learning-based method that transforms the task to a mixed discrete-continuous optimization problem. Both approaches are evaluated in a real-world automotive industry case study, which shows that the machine learning approach achieves near-optimal solutions with significant improvements in the scalability and overall computational performance, thus making it a practical alternative for large-scale fleet management.
♻ ☆ Falling through the cracks: energy storage along segmented brittle crack fronts
During brittle crack propagation, a smooth crack front curve frequently becomes disjoint, generating a stepped crack and a material ligament that unites the newly formed crack fronts. These universal features fundamentally alter the singular field structure and stability of propagating cracks; however, a quantitative analysis of their mechanics is lacking. Here, we perform in-situ 3D measurements to resolve the deformation field around stepped cracks, and crucially, within the ligament feature. The 3D kinematic data are obtained by scanning a thin laser sheet through the brittle hydrogel samples, while recording the scattered intensity from the embedded tracer particles. We find that the ligament concentrates the strain energy density, and moreover, the apparent fracture energy increases proportionally to the strain energy within the ligament.
♻ ☆ Kodezi Chronos: A Debugging-First Language Model for Repository-Scale Code Understanding
Large Language Models (LLMs) have improved code generation and software automation, but remain limited by inference-time context and lack structured reasoning over code. Debugging remains unsolved despite these advances. While Claude Opus 4 and GPT-4.1 achieve >70% on code synthesis benchmarks, they perform <15% on real debugging tasks. We introduce Kodezi Chronos, a language model built specifically for debugging. Chronos combines Adaptive Graph-Guided Retrieval to navigate codebases up to 10 million lines using multi-hop traversal (92% precision, 85% recall), Persistent Debug Memory trained on 15M+ sessions, and a 7-layer architecture for iterative fix-test-refine loops. On 5,000 real-world scenarios, Chronos achieves 67.3% fix accuracy, compared to 14.2% and 13.8% for Claude and GPT-4.1 respectively. Chronos reduces debugging time by 40% and iteration count by 65%. It resolves complex multi-file bugs involving cross-repository context and temporal reasoning. Key limitations include 23.4% success on hardware-dependent issues and 41.2% on dynamic language errors. Theoretical analysis shows O(k log d) retrieval complexity with convergence guarantees. In a human evaluation (N=50), 89% of participants preferred Chronos over baseline models. Chronos will be available in Kodezi OS in Q4 2025 and via API in Q1 2026.
comment: 27 pages, 21 figures, 37 tables, 2 algorithms. Extended technical report. Introduces Chronos, an autonomous debugging system achieving 87.1% success rate on real-world bugs. Code and data available at https://github.com/Kodezi/chronos
Databases 8
☆ Search-Based Fuzzing For RESTful APIs That Use MongoDB
In RESTful APIs, interactions with a database are a common and crucial aspect. When generating whitebox tests, it is essential to consider the database's state (i.e., the data contained in the database) to achieve higher code coverage and uncover more hidden faults. This article presents novel techniques to enhance search-based software test generation for RESTful APIs interacting with NoSQL databases. Specifically, we target the popular MongoDB database, by dynamically analyzing (via automated code instrumentation) the state of the database during the test generation process. Additionally, to achieve better results, our novel approach allows inserting NoSQL data directly from test cases. This is particularly beneficial when generating the correct sequence of events to set the NoSQL database in an appropriate state is challenging or time-consuming. This method is also advantageous for testing read-only microservices. Our novel techniques are implemented as an extension of EvoMaster, the only open-source tool for white-box fuzzing RESTful APIs. Experiments conducted on six RESTful APIs demonstrated significant improvements in code coverage, with increases of up to 18% compared to existing white-box approaches. To better highlight the improvements of our novel techniques, comparisons are also carried out with four state-of-the-art black-box fuzzers.
Data Cleaning of Data Streams
Streaming data can arise from a variety of contexts. Important use cases are continuous sensor measurements such as temperature, light or radiation values. In the process, streaming data may also contain data errors that should be cleaned before further use. Many studies from science and practice focus on data cleaning in a static context. However, in terms of data cleaning, streaming data has particularities that distinguish it from static data. In this paper, we have therefore undertaken an intensive exploration of data cleaning of data streams. We provide a detailed analysis of the applicability of data cleaning to data streams. Our theoretical considerations are evaluated in comprehensive experiments. Using a prototype framework, we show that cleaning is not consistent when working with data streams. An additional contribution is the investigation of requirements for streaming technologies in context of data cleaning.
☆ MVIAnalyzer: A Holistic Approach to Analyze Missing Value Imputation
Missing values often limit the usage of data analysis or cause falsification of results. Therefore, methods of missing value imputation (MVI) are of great significance. However, in general, there is no universal, fair MVI method for different tasks. This work thus places MVI in the overall context of data analysis. For this purpose, we present the MVIAnalyzer, a generic framework for a holistic analysis of MVI. It considers the overall process up to the application and analysis of machine learning methods. The associated software is provided and can be used by other researchers for their own analyses. To this end, it further includes a missing value simulation with consideration of relevant parameters. The application of the MVIAnalyzer is demonstrated on data with different characteristics. An evaluation of the results shows the possibilities and limitations of different MVI methods. Since MVI is a very complex topic with different influencing variables, this paper additionally illustrates how the analysis can be supported by visualizations.
☆ A Functional Data Model and Query Language is All You Need
We propose the vision of a functional data model (FDM) and an associated functional query language (FQL). Our proposal has far-reaching consequences: we show a path to come up with a modern QL that solves (almost if not) all problems of SQL (NULL-values, impedance mismatch, SQL injection, missing querying capabilities for updates, etc.). FDM and FQL are much more expressive than the relational model and SQL. In addition, in contrast to SQL, FQL integrates smoothly into existing programming languages. In our approach both QL and PL become the "same thing", thus opening up some interesting holistic optimization opportunities between compilers and databases. In FQL, we also do not need to force application developers to switch to unfamiliar programming paradigms (like SQL or datalog): developers can stick with the abstractions provided by their programming language.
☆ StructText: A Synthetic Table-to-Text Approach for Benchmark Generation with Multi-Dimensional Evaluation
Extracting structured information from text, such as key-value pairs that could augment tabular data, is quite useful in many enterprise use cases. Although large language models (LLMs) have enabled numerous automated pipelines for converting natural language into structured formats, there is still a lack of benchmarks for evaluating their extraction quality, especially in specific domains or focused documents specific to a given organization. Building such benchmarks by manual annotations is labour-intensive and limits the size and scalability of the benchmarks. In this work, we present StructText, an end-to-end framework for automatically generating high-fidelity benchmarks for key-value extraction from text using existing tabular data. It uses available tabular data as structured ground truth, and follows a two-stage ``plan-then-execute'' pipeline to synthetically generate corresponding natural-language text. To ensure alignment between text and structured source, we introduce a multi-dimensional evaluation strategy that combines (a) LLM-based judgments on factuality, hallucination, and coherence and (b) objective extraction metrics measuring numeric and temporal accuracy. We evaluated the proposed method on 71,539 examples across 49 datasets. Results reveal that while LLMs achieve strong factual accuracy and avoid hallucination, they struggle with narrative coherence in producing extractable text. Notably, models presume numerical and temporal information with high fidelity yet this information becomes embedded in narratives that resist automated extraction. We release a framework, including datasets, evaluation tools, and baseline extraction systems, to support continued research.
comment: Data available: https://huggingface.co/datasets/ibm-research/struct-text and code available at: https://github.com/ibm/struct-text
♻ ☆ CQE under Epistemic Dependencies: Algorithms and Experiments (extended version)
We investigate Controlled Query Evaluation (CQE) over ontologies, where information disclosure is regulated by epistemic dependencies (EDs), a family of logical rules recently proposed for the CQE framework. In particular, we combine EDs with the notion of optimal GA censors, i.e. maximal sets of ground atoms that are entailed by the ontology and can be safely revealed. We focus on answering Boolean unions of conjunctive queries (BUCQs) with respect to the intersection of all optimal GA censors - an approach that has been shown in other contexts to ensure strong security guarantees with favorable computational behavior. First, we characterize the security of this intersection-based approach and identify a class of EDs (namely, full EDs) for which it remains safe. Then, for a subclass of EDs and for DL-Lite_R ontologies, we show that answering BUCQs in the above CQE semantics is in AC^0 in data complexity by presenting a suitable, detailed first-order rewriting algorithm. Finally, we report on experiments conducted in two different evaluation scenarios, showing the practical feasibility of our rewriting function.
comment: Extended version of paper accepted at the 24th International Semantic Web Conference (ISWC 2025)
♻ ☆ SiriusBI: A Comprehensive LLM-Powered Solution for Data Analytics in Business Intelligence
With the proliferation of Large Language Models (LLMs) in Business Intelligence (BI), existing solutions face critical challenges in industrial deployments: functionality deficiencies from legacy systems failing to meet evolving LLM-era user demands, interaction limitations from single-round SQL generation paradigms inadequate for multi-round clarification, and cost for domain adaptation arising from cross-domain methods migration. We present SiriusBI, a practical LLM-powered BI system addressing the challenges of industrial deployments through three key innovations: (a) An end-to-end architecture integrating multi-module coordination to overcome functionality gaps in legacy systems; (b) A multi-round dialogue with querying mechanism, consisting of semantic completion, knowledge-guided clarification, and proactive querying processes, to resolve interaction constraints in SQL generation; (c) A data-conditioned SQL generation method selection strategy that supports both an efficient one-step Fine-Tuning approach and a two-step method leveraging Semantic Intermediate Representation for low-cost cross-domain applications. Experiments on both real-world datasets and public benchmarks demonstrate the effectiveness of SiriusBI. User studies further confirm that SiriusBI enhances both productivity and user experience. As an independent service on Tencent's data platform, SiriusBI is deployed across finance, advertising, and cloud sectors, serving dozens of enterprise clients. It achieves over 93% accuracy in SQL generation and reduces data analysts' query time from minutes to seconds in real-world applications.
comment: 14 pages, 8 figures
♻ ☆ Learning-Augmented Online Caching: New Upper Bounds
We address the problem of learning-augmented online caching in the scenario when each request is accompanied by a prediction of the next occurrence of the requested page. We improve currently known bounds on the competitive ratio of the BlindOracle algorithm, which evicts a page predicted to be requested last. We also prove a lower bound on the competitive ratio of any randomized algorithm and show that a combination of the BlindOracle with the Marker algorithm achieves a competitive ratio that is optimal up to some constant.
Distributed, Parallel, and Cluster Computing 12
☆ Accelerating Deterministic Global Optimization via GPU-parallel Interval Arithmetic
Spatial Branch and Bound (B&B) algorithms are widely used for solving nonconvex problems to global optimality, yet they remain computationally expensive. Though some works have been carried out to speed up B&B via CPU parallelization, GPU parallelization is much less explored. In this work, we investigate the design of a spatial B&B algorithm that involves an interval-based GPU-parallel lower bounding solver: The domain of each B&B node is temporarily partitioned into numerous subdomains, then massive GPU parallelism is leveraged to compute interval bounds of the objective function and constraints on each subdomain, using the Mean Value Form. The resulting bounds are tighter than those achieved via regular interval arithmetic without partitioning, but they remain fast to compute. We implement the method into our open-source solver MAiNGO via CUDA in two manners: wrapping all GPU tasks within one kernel function, or distributing the GPU tasks onto a CUDA graph. Numerical experiments show that using more subdomains leads to significantly tighter lower bounds and thus less B&B iterations. Regarding wall clock time, the proposed spatial B&B framework achieves a speedup of three orders of magnitude compared to applying interval arithmetic on the CPU without domain partitioning. Among the two implementations, the one developed with CUDA graph enables higher efficiency. Moreover, in some case studies, the proposed method delivers competitive or better performance compared to MAiNGO's default solver which is based on McCormick relaxations. These results highlight the potential of GPU-accelerated bounding techniques to accelerate B&B algorithms.
comment: 28 pages, 8 figures and 4 tables
☆ RIMMS: Runtime Integrated Memory Management System for Heterogeneous Computing
Efficient memory management in heterogeneous systems is increasingly challenging due to diverse compute architectures (e.g., CPU, GPU, FPGA) and dynamic task mappings not known at compile time. Existing approaches often require programmers to manage data placement and transfers explicitly, or assume static mappings that limit portability and scalability. This paper introduces RIMMS (Runtime Integrated Memory Management System), a lightweight, runtime-managed, hardware-agnostic memory abstraction layer that decouples application development from low-level memory operations. RIMMS transparently tracks data locations, manages consistency, and supports efficient memory allocation across heterogeneous compute elements without requiring platform-specific tuning or code modifications. We integrate RIMMS into a baseline runtime and evaluate with complete radar signal processing applications across CPU+GPU and CPU+FPGA platforms. RIMMS delivers up to 2.43X speedup on GPU-based and 1.82X on FPGA-based systems over the baseline. Compared to IRIS, a recent heterogeneous runtime system, RIMMS achieves up to 3.08X speedup and matches the performance of native CUDA implementations while significantly reducing programming complexity. Despite operating at a higher abstraction level, RIMMS incurs only 1-2 cycles of overhead per memory management call, making it a low-cost solution. These results demonstrate RIMMS's ability to deliver high performance and enhanced programmer productivity in dynamic, real-world heterogeneous environments.
☆ LeMix: Unified Scheduling for LLM Training and Inference on Multi-GPU Systems
Modern deployment of large language models (LLMs) frequently involves both inference serving and continuous retraining to stay aligned with evolving data and user feedback. Common practices separate these workloads onto distinct servers in isolated phases, causing substantial inefficiencies (e.g., GPU idleness) and delayed adaptation to new data in distributed settings. Our empirical analysis reveals that these inefficiencies stem from dynamic request arrivals during serving and workload heterogeneity in pipeline-parallel training. To address these challenges, we propose LeMix, a system for co-locating and managing concurrent LLM serving and training workloads. LeMix integrates offline profiling, execution prediction mechanisms, and runtime scheduling to dynamically adapt resource allocation based on workload characteristics and system conditions. By understanding task-specific behaviors and co-execution interference across shared nodes, LeMix improves utilization and serving quality without compromising serving responsiveness. Our evaluation shows that LeMix improves throughput by up to 3.53x, reduces inference loss by up to 0.61x, and delivers up to 2.12x higher response time SLO attainment over traditional separate setups. To our knowledge, this is the first work to uncover and exploit the opportunities of joint LLM inference and training, paving the way for more resource-efficient deployment of LLMs in production environments.
comment: Accepted by RTSS 2025
☆ Improving SpGEMM Performance Through Matrix Reordering and Cluster-wise Computation
Sparse matrix-sparse matrix multiplication (SpGEMM) is a key kernel in many scientific applications and graph workloads. Unfortunately, SpGEMM is bottlenecked by data movement due to its irregular memory access patterns. Significant work has been devoted to developing row reordering schemes towards improving locality in sparse operations, but prior studies mostly focus on the case of sparse-matrix vector multiplication (SpMV). In this paper, we address these issues with hierarchical clustering for SpGEMM that leverages both row reordering and cluster-wise computation to improve reuse in the second input (B) matrix with a novel row-clustered matrix format and access pattern in the first input (A) matrix. We find that hierarchical clustering can speed up SpGEMM by 1.39x on average with low preprocessing cost (less than 20x the cost of a single SpGEMM on about 90% of inputs). Furthermore, we decouple the reordering algorithm from the clustered matrix format so they can be applied as independent optimizations. Additionally, this paper sheds light on the role of both row reordering and clustering independently and together for SpGEMM with a comprehensive empirical study of the effect of 10 different reordering algorithms and 3 clustering schemes on SpGEMM performance on a suite of 110 matrices. We find that reordering based on graph partitioning provides better SpGEMM performance than existing alternatives at the cost of high preprocessing time. The evaluation demonstrates that the proposed hierarchical clustering method achieves greater average speedup compared to other reordering schemes with similar preprocessing times.
comment: Accepted to appear in the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC) 2025
☆ Advancing Compositional LLM Reasoning with Structured Task Relations in Interactive Multimodal Communications
Interactive multimodal applications (IMAs), such as route planning in the Internet of Vehicles, enrich users' personalized experiences by integrating various forms of data over wireless networks. Recent advances in large language models (LLMs) utilize mixture-of-experts (MoE) mechanisms to empower multiple IMAs, with each LLM trained individually for a specific task that presents different business workflows. In contrast to existing approaches that rely on multiple LLMs for IMAs, this paper presents a novel paradigm that accomplishes various IMAs using a single compositional LLM over wireless networks. The two primary challenges include 1) guiding a single LLM to adapt to diverse IMA objectives and 2) ensuring the flexibility and efficiency of the LLM in resource-constrained mobile environments. To tackle the first challenge, we propose ContextLoRA, a novel method that guides an LLM to learn the rich structured context among IMAs by constructing a task dependency graph. We partition the learnable parameter matrix of neural layers for each IMA to facilitate LLM composition. Then, we develop a step-by-step fine-tuning procedure guided by task relations, including training, freezing, and masking phases. This allows the LLM to learn to reason among tasks for better adaptation, capturing the latent dependencies between tasks. For the second challenge, we introduce ContextGear, a scheduling strategy to optimize the training procedure of ContextLoRA, aiming to minimize computational and communication costs through a strategic grouping mechanism. Experiments on three benchmarks show the superiority of the proposed ContextLoRA and ContextGear. Furthermore, we prototype our proposed paradigm on a real-world wireless testbed, demonstrating its practical applicability for various IMAs. We will release our code to the community.
comment: Accepted by IEEE JSAC. This work has been submitted to the IEEE for possible publication
♻ ☆ Parallel Point-to-Point Shortest Paths and Batch Queries
We propose Orionet, efficient parallel implementations of Point-to-Point Shortest Paths (PPSP) queries using bidirectional search (BiDS) and other heuristics, with an additional focus on batch PPSP queries. We present a framework for parallel PPSP built on existing single-source shortest paths (SSSP) frameworks by incorporating pruning conditions. As a result, we develop efficient parallel PPSP algorithms based on early termination, bidirectional search, A$^*$ search, and bidirectional A$^*$ all with simple and efficient implementations. We extend our idea to batch PPSP queries, which are widely used in real-world scenarios. We first design a simple and flexible abstraction to represent the batch so PPSP can leverage the shared information of the batch. Orionet formalizes the batch as a query graph represented by edges between queried sources and targets. In this way, we directly extended our PPSP framework to batched queries in a simple and efficient way. We evaluate Orionet on both single and batch PPSP queries using various graph types and distance percentiles of queried pairs, and compare it against two baselines, GraphIt and MBQ. Both of them support parallel single PPSP and A$^*$ using unidirectional search. On 14 graphs we tested, on average, our bidirectional search is 2.9$\times$ faster than GraphIt, and 6.8$\times$ faster than MBQ. Our bidirectional A$^*$ is 4.4$\times$ and 6.2$\times$ faster than the A$^*$ in GraphIt and MBQ, respectively. For batched PPSP queries, we also provide in-depth experimental evaluation, and show that Orionet provides strong performance compared to the plain solutions.
♻ ☆ Metric Criticality Identification for Cloud Microservices
Modern cloud-native applications built on microservice architectures present unprecedented challenges for system monitoring and alerting. Site Reliability Engineers (SREs) face the daunting challenge of defining effective monitoring strategies across multitude of metrics to ensure system reliability, a task that traditionally requires extensive manual expertise. The distributed nature of microservices, characterized by stochastic execution patterns and intricate inter-service dependencies, renders the traditional manual approach of navigating the vast metrics landscape computationally and operationally prohibitive. To address this critical challenge, we propose KIMetrix, a data-driven system that automatically identifies minimal yet comprehensive metric subsets to aid SREs in monitoring microservice applications. KIMetrix leverages information-theoretic measures, specifically entropy and mutual information, to quantify metric criticality while considering the stochastic execution patterns inherent in microservice topologies. Our approach operates solely on lightweight metrics and traces, eliminating the need for expensive processing of unstructured logs, and requires no expert-defined training data. Experimental evaluation on state-of-the-art real-world microservice benchmark datasets demonstrates KIMetrix's effectiveness in identifying critical metric subsets that provide comprehensive system coverage while significantly reducing the burden on SREs. By automating the identification of essential metrics for alerting, KIMetrix enables more reliable system monitoring without overwhelming operators with false positives or missing critical system events.
♻ ☆ COoL-TEE: Client-TEE Collaboration for Resilient Distributed Search
Current marketplaces rely on search mechanisms with distributed systems but centralized governance, making them vulnerable to attacks, failures, censorship and biases. While search mechanisms with more decentralized governance (e.g., DeSearch) have been recently proposed, these are still exposed to information head-start attacks (IHS) despite the use of Trusted Execution Environments (TEEs). These attacks allow malicious users to gain a head-start over other users for the discovery of new assets in the market, which give them an unfair advantage in asset acquisition. We propose COoL-TEE, a TEE-based provider selection mechanism for distributed search, running in single- or multi-datacenter environments, that is resilient to information head-start attacks. COoL-TEE relies on a Client-TEE collaboration, which enables clients to distinguish between slow providers and malicious ones. Performance evaluations in single- and multi-datacenter environments show that, using COoL-TEE, malicious users respectively gain only up to 2% and 7% of assets more than without IHS, while they can claim 20% or more on top of their fair share in the same conditions with DeSearch.
♻ ☆ The Case for Time-Shared Computing Resources
The environmental impact of Information and Communication Technologies (ICT) continues to grow, driven notably by increasing usage, rebound effects, and emerging demands. However, despite the virtual nature of its services, the sector remains inherently constrained by its materiality and cannot rely on an infinite pool of resources. As a result, the wide variety of supported services may need to be managed under stricter limits within hosting facilities in the future. Contrary to common assumptions, we show that tenants typically do not share computing resources, even in environments commonly perceived as mutualized, such as cloud platforms. Time-sharing has been progressively phased out for reasons of performance, security, predictability, and, perhaps more importantly, due to the decreasing cost of computing resources. This paper advocates for managing fewer physical resources by improving resource sharing between tenants. It represents a paradigm shift, moving beyond traditional time-sharing at the hardware level to a higher abstraction. This approach entails "doing with fewer resources" under conditions of "reduced performance". Nonetheless, enhancing the mutualization of infrastructure can reduce cluster sizes (through consolidation) and improve energy efficiency, with gains related to the accepted performance trade-off, a situation potentially more socially acceptable than eliminating services. We review the current state of the art, identify challenges and opportunities, propose interpretations of Time-Shared Computing, and outline key research directions.
comment: Post-proceedings paper presented at LIMITS 2025: 11th Workshop on Computing within Limits, 2025-06-26/27, Online
♻ ☆ CUDA-L1: Improving CUDA Optimization via Contrastive Reinforcement Learning
The exponential growth in demand for GPU computing resources has created an urgent need for automated CUDA optimization strategies. While recent advances in LLMs show promise for code generation, current SOTA models achieve low success rates in improving CUDA speed. In this paper, we introduce CUDA-L1, an automated reinforcement learning framework for CUDA optimization that employs a novel contrastive RL algorithm. CUDA-L1 achieves significant performance improvements on the CUDA optimization task: trained on NVIDIA A100, it delivers an average speedup of x3.12 with a median speedup of x1.42 across all 250 CUDA kernels of KernelBench, with peak speedups reaching x120. Furthermore, the model also demonstrates portability across GPU architectures, achieving average speedups of x3.12 on L40, x2.50 on RTX 3090, x2.39 on H100, and x2.37 on H20 despite being optimized specifically for A100. The capabilities of CUDA-L1 demonstrate that, RL can transform an initially poor-performing LLM into an effective CUDA optimizer through speedup-based reward signals alone, without human expertise or domain knowledge. This paradigm opens possibilities for automated optimization of CUDA operations, and holds promise to substantially promote GPU efficiency and alleviate the rising pressure on GPU computing resources. We also identify important challenges posed by training RL models for tasks like CUDA development, where RL often learns to exploit loopholes in reward functions rather than solve the intended optimization problems. By identifying these failure modes and analyzing their root causes, we develop practical methods for creating more robust training procedures that prevent reward hacking.
comment: Project Page: https://deepreinforce-ai.github.io/cudal1_blog/
♻ ☆ FedStrategist: A Meta-Learning Framework for Adaptive and Robust Aggregation in Federated Learning
Federated Learning (FL) offers a paradigm for privacy-preserving collaborative AI, but its decentralized nature creates significant vulnerabilities to model poisoning attacks. While numerous static defenses exist, their effectiveness is highly context-dependent, often failing against adaptive adversaries or in heterogeneous data environments. This paper introduces FedStrategist, a novel meta-learning framework that reframes robust aggregation as a real-time, cost-aware control problem. We design a lightweight contextual bandit agent that dynamically selects the optimal aggregation rule from an arsenal of defenses based on real-time diagnostic metrics. Through comprehensive experiments, we demonstrate that no single static rule is universally optimal. We show that our adaptive agent successfully learns superior policies across diverse scenarios, including a ``Krum-favorable" environment and against a sophisticated "stealth" adversary designed to neutralize specific diagnostic signals. Critically, we analyze the paradoxical scenario where a non-robust baseline achieves high but compromised accuracy, and demonstrate that our agent learns a conservative policy to prioritize model integrity. Furthermore, we prove the agent's policy is controllable via a single "risk tolerance" parameter, allowing practitioners to explicitly manage the trade-off between performance and security. Our work provides a new, practical, and analyzable approach to creating resilient and intelligent decentralized AI systems.
comment: 24 pages, 8 figures. This work is intended for a journal submission
♻ ☆ GALE: Leveraging Heterogeneous Systems for Efficient Unstructured Mesh Data Analysis
Unstructured meshes present challenges in scientific data analysis due to irregular distribution and complex connectivity. Computing and storing connectivity information is a major bottleneck for visualization algorithms, affecting both time and memory performance. Recent task-parallel data structures address this by precomputing connectivity information at runtime while the analysis algorithm executes, effectively hiding computation costs and improving performance. However, existing approaches are CPU-bound, forcing the data structure and analysis algorithm to compete for the same computational resources, limiting potential speedups. To overcome this limitation, we introduce a novel task-parallel approach optimized for heterogeneous CPU-GPU systems. Specifically, we offload the computation of mesh connectivity information to GPU threads, enabling CPU threads to focus on executing the visualization algorithm. Following this paradigm, we propose GALE (GPU-Aided Localized data structurE), the first open-source CUDA-based data structure designed for heterogeneous task parallelism. Experiments on two 20-core CPUs and an NVIDIA V100 GPU show that GALE achieves up to 2.7x speedup over state-of-the-art localized data structures while maintaining memory efficiency.
Information Retrieval 9
☆ Modeling User Behavior from Adaptive Surveys with Supplemental Context ICML 2025
Modeling user behavior is critical across many industries where understanding preferences, intent, or decisions informs personalization, targeting, and strategic outcomes. Surveys have long served as a classical mechanism for collecting such behavioral data due to their interpretability, structure, and ease of deployment. However, surveys alone are inherently limited by user fatigue, incomplete responses, and practical constraints on their length making them insufficient for capturing user behavior. In this work, we present LANTERN (Late-Attentive Network for Enriched Response Modeling), a modular architecture for modeling user behavior by fusing adaptive survey responses with supplemental contextual signals. We demonstrate the architectural value of maintaining survey primacy through selective gating, residual connections and late fusion via cross-attention, treating survey data as the primary signal while incorporating external modalities only when relevant. LANTERN outperforms strong survey-only baselines in multi-label prediction of survey responses. We further investigate threshold sensitivity and the benefits of selective modality reliance through ablation and rare/frequent attribute analysis. LANTERN's modularity supports scalable integration of new encoders and evolving datasets. This work provides a practical and extensible blueprint for behavior modeling in survey-centric applications.
comment: Best Paper, NewInML @ ICML 2025
☆ Watermarking Large Language Model-based Time Series Forecasting
Large Language Model-based Time Series Forecasting (LLMTS) has shown remarkable promise in handling complex and diverse temporal data, representing a significant step toward foundation models for time series analysis. However, this emerging paradigm introduces two critical challenges. First, the substantial commercial potential and resource-intensive development raise urgent concerns about intellectual property (IP) protection. Second, their powerful time series forecasting capabilities may be misused to produce misleading or fabricated deepfake time series data. To address these concerns, we explore watermarking the outputs of LLMTS models, that is, embedding imperceptible signals into the generated time series data that remain detectable by specialized algorithms. We propose a novel post-hoc watermarking framework, Waltz, which is broadly compatible with existing LLMTS models. Waltz is inspired by the empirical observation that time series patch embeddings are rarely aligned with a specific set of LLM tokens, which we term ``cold tokens''. Leveraging this insight, Waltz embeds watermarks by rewiring the similarity statistics between patch embeddings and cold token embeddings, and detects watermarks using similarity z-scores. To minimize potential side effects, we introduce a similarity-based embedding position identification strategy and employ projected gradient descent to constrain the watermark noise within a defined boundary. Extensive experiments using two popular LLMTS models across seven benchmark datasets demonstrate that Waltz achieves high watermark detection accuracy with minimal impact on the quality of the generated time series.
☆ Industry Insights from Comparing Deep Learning and GBDT Models for E-Commerce Learning-to-Rank
In e-commerce recommender and search systems, tree-based models, such as LambdaMART, have set a strong baseline for Learning-to-Rank (LTR) tasks. Despite their effectiveness and widespread adoption in industry, the debate continues whether deep neural networks (DNNs) can outperform traditional tree-based models in this domain. To contribute to this discussion, we systematically benchmark DNNs against our production-grade LambdaMART model. We evaluate multiple DNN architectures and loss functions on a proprietary dataset from OTTO and validate our findings through an 8-week online A/B test. The results show that a simple DNN architecture outperforms a strong tree-based baseline in terms of total clicks and revenue, while achieving parity in total units sold.
comment: This work was accepted for publication in the 19th ACM Conference on Recommender Systems (RecSys 2025). The final published version will be available at the ACM Digital Library
☆ Beyond Interactions: Node-Level Graph Generation for Knowledge-Free Augmentation in Recommender Systems
Recent advances in recommender systems rely on external resources such as knowledge graphs or large language models to enhance recommendations, which limit applicability in real-world settings due to data dependency and computational overhead. Although knowledge-free models are able to bolster recommendations by direct edge operations as well, the absence of augmentation primitives drives them to fall short in bridging semantic and structural gaps as high-quality paradigm substitutes. Unlike existing diffusion-based works that remodel user-item interactions, this work proposes NodeDiffRec, a pioneering knowledge-free augmentation framework that enables fine-grained node-level graph generation for recommendations and expands the scope of restricted augmentation primitives via diffusion. By synthesizing pseudo-items and corresponding interactions that align with the underlying distribution for injection, and further refining user preferences through a denoising preference modeling process, NodeDiffRec dramatically enhances both semantic diversity and structural connectivity without external knowledge. Extensive experiments across diverse datasets and recommendation algorithms demonstrate the superiority of NodeDiffRec, achieving State-of-the-Art (SOTA) performance, with maximum average performance improvement 98.6% in Recall@5 and 84.0% in NDCG@5 over selected baselines.
☆ ZSE-Cap: A Zero-Shot Ensemble for Image Retrieval and Prompt-Guided Captioning
We present ZSE-Cap (Zero-Shot Ensemble for Captioning), our 4th place system in Event-Enriched Image Analysis (EVENTA) shared task on article-grounded image retrieval and captioning. Our zero-shot approach requires no finetuning on the competition's data. For retrieval, we ensemble similarity scores from CLIP, SigLIP, and DINOv2. For captioning, we leverage a carefully engineered prompt to guide the Gemma 3 model, enabling it to link high-level events from the article to the visual content in the image. Our system achieved a final score of 0.42002, securing a top-4 position on the private test set, demonstrating the effectiveness of combining foundation models through ensembling and prompting. Our code is available at https://github.com/ductai05/ZSE-Cap.
☆ Improving Community Detection in Academic Networks by Handling Publication Bias
Finding potential research collaborators is a challenging task, especially in today's fast-growing and interdisciplinary research landscape. While traditional methods often rely on observable relationships such as co-authorships and citations to construct the research network, in this work, we focus solely on publication content to build a topic-based research network using BERTopic with a fine-tuned SciBERT model that connects and recommends researchers across disciplines based on shared topical interests. A major challenge we address is publication imbalance, where some researchers publish much more than others, often across several topics. Without careful handling, their less frequent interests are hidden under dominant topics, limiting the network's ability to detect their full research scope. To tackle this, we introduce a cloning strategy that clusters a researcher's publications and treats each cluster as a separate node. This allows researchers to be part of multiple communities, improving the detection of interdisciplinary links. Evaluation on the proposed method shows that the cloned network structure leads to more meaningful communities and uncovers a broader set of collaboration opportunities.
comment: This paper is an extended version of a work accepted at ASONAM 2025
☆ StructText: A Synthetic Table-to-Text Approach for Benchmark Generation with Multi-Dimensional Evaluation
Extracting structured information from text, such as key-value pairs that could augment tabular data, is quite useful in many enterprise use cases. Although large language models (LLMs) have enabled numerous automated pipelines for converting natural language into structured formats, there is still a lack of benchmarks for evaluating their extraction quality, especially in specific domains or focused documents specific to a given organization. Building such benchmarks by manual annotations is labour-intensive and limits the size and scalability of the benchmarks. In this work, we present StructText, an end-to-end framework for automatically generating high-fidelity benchmarks for key-value extraction from text using existing tabular data. It uses available tabular data as structured ground truth, and follows a two-stage ``plan-then-execute'' pipeline to synthetically generate corresponding natural-language text. To ensure alignment between text and structured source, we introduce a multi-dimensional evaluation strategy that combines (a) LLM-based judgments on factuality, hallucination, and coherence and (b) objective extraction metrics measuring numeric and temporal accuracy. We evaluated the proposed method on 71,539 examples across 49 datasets. Results reveal that while LLMs achieve strong factual accuracy and avoid hallucination, they struggle with narrative coherence in producing extractable text. Notably, models presume numerical and temporal information with high fidelity yet this information becomes embedded in narratives that resist automated extraction. We release a framework, including datasets, evaluation tools, and baseline extraction systems, to support continued research.
comment: Data available: https://huggingface.co/datasets/ibm-research/struct-text and code available at: https://github.com/ibm/struct-text
♻ ☆ Large Language Model Powered Decision Support for a Metal Additive Manufacturing Knowledge Graph
Metal additive manufacturing (AM) involves complex interdependencies among processes, materials, feedstock, and post-processing steps. However, the underlying relationships and domain knowledge remain fragmented across literature and static databases that often require expert-level queries, limiting their applicability in design and planning. To address these limitations, we develop a novel and structured knowledge graph (KG), representing 53 distinct metals and alloys across seven material categories, nine AM processes, four feedstock types, and corresponding post-processing requirements. A large language model (LLM) interface, guided by a few-shot prompting strategy, enables natural language querying without the need for formal query syntax. The system supports a range of tasks, including compatibility evaluation, constraint-based filtering, and design for AM (DfAM) guidance. User queries in natural language are normalized, translated into Cypher, and executed on the KG, with results returned in a structured format. This work introduces the first interactive system that connects a domain-specific metal AM KG with an LLM interface, delivering accessible and explainable decision support for engineers and promoting human-centered tools in manufacturing knowledge systems.
comment: The paper has been accepted at 11th International Conference of Asian Society for Precision Engineering and Nanotechnology
♻ ☆ Virtual Quantum Markov Chains
Quantum Markov chains generalize classical Markov chains for random variables to the quantum realm and exhibit unique inherent properties, making them an important feature in quantum information theory. In this work, we propose the concept of virtual quantum Markov chains (VQMCs), focusing on scenarios where subsystems retain classical information about global systems from measurement statistics. As a generalization of quantum Markov chains, VQMCs characterize states where arbitrary global shadow information can be recovered from subsystems through local quantum operations and measurements. We present an algebraic characterization for virtual quantum Markov chains and show that the virtual quantum recovery is fully determined by the block matrices of a quantum state on its subsystems. Notably, we find a distinction between two classes of tripartite entanglement by showing that the W state is a VQMC while the GHZ state is not. Furthermore, we introduce the virtual non-Markovianity to quantify the non-Markovianity of a given quantum state, which also assesses the optimal sampling overhead for virtually recovering this state. Our findings elucidate distinctions between quantum Markov chains and virtual quantum Markov chains, extending our understanding of quantum recovery to scenarios prioritizing classical information from measurement statistics.
comment: 19 pages including appendix, 6 figures, v2: results and references updated
Artificial Intelligence 149
☆ A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static, unable to adapt their internal parameters to novel tasks, evolving knowledge domains, or dynamic interaction contexts. As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck, necessitating agents that can adaptively reason, act, and evolve in real time. This paradigm shift -- from scaling static models to developing self-evolving agents -- has sparked growing interest in architectures and methods enabling continual learning and adaptation from data, interactions, and experiences. This survey provides the first systematic and comprehensive review of self-evolving agents, organized around three foundational dimensions -- what to evolve, when to evolve, and how to evolve. We examine evolutionary mechanisms across agent components (e.g., models, memory, tools, architecture), categorize adaptation methods by stages (e.g., intra-test-time, inter-test-time), and analyze the algorithmic and architectural designs that guide evolutionary adaptation (e.g., scalar rewards, textual feedback, single-agent and multi-agent systems). Additionally, we analyze evaluation metrics and benchmarks tailored for self-evolving agents, highlight applications in domains such as coding, education, and healthcare, and identify critical challenges and research directions in safety, scalability, and co-evolutionary dynamics. By providing a structured framework for understanding and designing self-evolving agents, this survey establishes a roadmap for advancing adaptive agentic systems in both research and real-world deployments, ultimately shedding lights to pave the way for the realization of Artificial Super Intelligence (ASI), where agents evolve autonomously, performing at or beyond human-level intelligence across a wide array of tasks.
comment: 51 pages, 9 figures
☆ GenoMAS: A Multi-Agent Framework for Scientific Discovery via Code-Driven Gene Expression Analysis
Gene expression analysis holds the key to many biomedical discoveries, yet extracting insights from raw transcriptomic data remains formidable due to the complexity of multiple large, semi-structured files and the need for extensive domain expertise. Current automation approaches are often limited by either inflexible workflows that break down in edge cases or by fully autonomous agents that lack the necessary precision for rigorous scientific inquiry. GenoMAS charts a different course by presenting a team of LLM-based scientists that integrates the reliability of structured workflows with the adaptability of autonomous agents. GenoMAS orchestrates six specialized LLM agents through typed message-passing protocols, each contributing complementary strengths to a shared analytic canvas. At the heart of GenoMAS lies a guided-planning framework: programming agents unfold high-level task guidelines into Action Units and, at each juncture, elect to advance, revise, bypass, or backtrack, thereby maintaining logical coherence while bending gracefully to the idiosyncrasies of genomic data. On the GenoTEX benchmark, GenoMAS reaches a Composite Similarity Correlation of 89.13% for data preprocessing and an F$_1$ of 60.48% for gene identification, surpassing the best prior art by 10.61% and 16.85% respectively. Beyond metrics, GenoMAS surfaces biologically plausible gene-phenotype associations corroborated by the literature, all while adjusting for latent confounders. Code is available at https://github.com/Liu-Hy/GenoMAS.
comment: 51 pages, 5 figures
☆ Smart Expansion Techniques for ASP-based Interactive Configuration
Product configuration is a successful application of Answer Set Programming (ASP). However, challenges are still open for interactive systems to effectively guide users through the configuration process. The aim of our work is to provide an ASP-based solver for interactive configuration that can deal with large-scale industrial configuration problems and that supports intuitive user interfaces via an API. In this paper, we focus on improving the performance of automatically completing a partial configuration. Our main contribution enhances the classical incremental approach for multi-shot solving by four different smart expansion functions. The core idea is to determine and add specific objects or associations to the partial configuration by exploiting cautious and brave consequences before checking for the existence of a complete configuration with the current objects in each iteration. This approach limits the number of costly unsatisfiability checks and reduces the search space, thereby improving solving performance. In addition, we present a user interface that uses our API and is implemented in ASP.
comment: Under consideration for publication in Theory and Practice of Logic Programming (TPLP)
☆ MIRAGE-Bench: LLM Agent is Hallucinating and Where to Find Them
Hallucinations pose critical risks for large language model (LLM)-based agents, often manifesting as hallucinative actions resulting from fabricated or misinterpreted information within the cognitive context. While recent studies have exposed such failures, existing evaluations remain fragmented and lack a principled testbed. In this paper, we present MIRAGE-Bench--Measuring Illusions in Risky AGEnt settings--the first unified benchmark for eliciting and evaluating hallucinations in interactive LLM-agent scenarios. We begin by introducing a three-part taxonomy to address agentic hallucinations: actions that are unfaithful to (i) task instructions, (ii) execution history, or (iii) environment observations. To analyze, we first elicit such failures by performing a systematic audit of existing agent benchmarks, then synthesize test cases using a snapshot strategy that isolates decision points in deterministic and reproducible manners. To evaluate hallucination behaviors, we adopt a fine-grained-level LLM-as-a-Judge paradigm with tailored risk-aware prompts, enabling scalable, high-fidelity assessment of agent actions without enumerating full action spaces. MIRAGE-Bench provides actionable insights on failure modes of LLM agents and lays the groundwork for principled progress in mitigating hallucinations in interactive environments.
comment: Code and data: https://github.com/sunblaze-ucb/mirage-bench.git
☆ Memorization in Fine-Tuned Large Language Models
This study investigates the mechanisms and factors influencing memorization in fine-tuned large language models (LLMs), with a focus on the medical domain due to its privacy-sensitive nature. We examine how different aspects of the fine-tuning process affect a model's propensity to memorize training data, using the PHEE dataset of pharmacovigilance events. Our research employs two main approaches: a membership inference attack to detect memorized data, and a generation task with prompted prefixes to assess verbatim reproduction. We analyze the impact of adapting different weight matrices in the transformer architecture, the relationship between perplexity and memorization, and the effect of increasing the rank in low-rank adaptation (LoRA) fine-tuning. Key findings include: (1) Value and Output matrices contribute more significantly to memorization compared to Query and Key matrices; (2) Lower perplexity in the fine-tuned model correlates with increased memorization; (3) Higher LoRA ranks lead to increased memorization, but with diminishing returns at higher ranks. These results provide insights into the trade-offs between model performance and privacy risks in fine-tuned LLMs. Our findings have implications for developing more effective and responsible strategies for adapting large language models while managing data privacy concerns.
☆ Compositional Function Networks: A High-Performance Alternative to Deep Neural Networks with Built-in Interpretability
Deep Neural Networks (DNNs) deliver impressive performance but their black-box nature limits deployment in high-stakes domains requiring transparency. We introduce Compositional Function Networks (CFNs), a novel framework that builds inherently interpretable models by composing elementary mathematical functions with clear semantics. Unlike existing interpretable approaches that are limited to simple additive structures, CFNs support diverse compositional patterns -- sequential, parallel, and conditional -- enabling complex feature interactions while maintaining transparency. A key innovation is that CFNs are fully differentiable, allowing efficient training through standard gradient descent. We demonstrate CFNs' versatility across multiple domains, from symbolic regression to image classification with deep hierarchical networks. Our empirical evaluation shows CFNs achieve competitive performance against black-box models (96.24% accuracy on CIFAR-10) while outperforming state-of-the-art interpretable models like Explainable Boosting Machines. By combining the hierarchical expressiveness and efficient training of deep learning with the intrinsic interpretability of well-defined mathematical functions, CFNs offer a powerful framework for applications where both performance and accountability are paramount.
☆ Modular Delta Merging with Orthogonal Constraints: A Scalable Framework for Continual and Reversible Model Composition
In real-world machine learning deployments, models must be continually updated, composed, and when required, selectively undone. However, existing approaches to model merging and continual learning often suffer from task interference, catastrophic forgetting, or lack of reversibility. We propose Modular Delta Merging with Orthogonal Constraints (MDM-OC), a novel framework that enables scalable, interference-free, and reversible composition of fine-tuned models. Each task-specific model is encoded as a delta from a shared base and projected into an orthogonal subspace to eliminate conflict. These projected deltas are then merged via gradient-based optimization to form a unified model that retains performance across tasks. Our approach supports continual integration of new models, structured unmerging for compliance such as GDPR requirements, and model stability via elastic weight consolidation and synthetic replay. Extensive experiments on vision and natural language processing benchmarks demonstrate that MDM-OC outperforms prior baselines in accuracy, backward transfer, and unmerge fidelity, while remaining memory-efficient and computationally tractable. This framework offers a principled solution for modular and compliant AI system design.
comment: 11 pages, 6 figures, 3 tables. Will be Submitted to ICLR 2025 for review
☆ Security Tensors as a Cross-Modal Bridge: Extending Text-Aligned Safety to Vision in LVLM
Large visual-language models (LVLMs) integrate aligned large language models (LLMs) with visual modules to process multimodal inputs. However, the safety mechanisms developed for text-based LLMs do not naturally extend to visual modalities, leaving LVLMs vulnerable to harmful image inputs. To address this cross-modal safety gap, we introduce security tensors - trainable input vectors applied during inference through either the textual or visual modality. These tensors transfer textual safety alignment to visual processing without modifying the model's parameters. They are optimized using a curated dataset containing (i) malicious image-text pairs requiring rejection, (ii) contrastive benign pairs with text structurally similar to malicious queries, with the purpose of being contrastive examples to guide visual reliance, and (iii) general benign samples preserving model functionality. Experimental results demonstrate that both textual and visual security tensors significantly enhance LVLMs' ability to reject diverse harmful visual inputs while maintaining near-identical performance on benign tasks. Further internal analysis towards hidden-layer representations reveals that security tensors successfully activate the language module's textual "safety layers" in visual inputs, thereby effectively extending text-based safety to the visual modality.
comment: Codes and data are available at https://github.com/listen0425/Security-Tensors
☆ Personalized Treatment Effect Estimation from Unstructured Data
Existing methods for estimating personalized treatment effects typically rely on structured covariates, limiting their applicability to unstructured data. Yet, leveraging unstructured data for causal inference has considerable application potential, for instance in healthcare, where clinical notes or medical images are abundant. To this end, we first introduce an approximate 'plug-in' method trained directly on the neural representations of unstructured data. However, when these fail to capture all confounding information, the method may be subject to confounding bias. We therefore introduce two theoretically grounded estimators that leverage structured measurements of the confounders during training, but allow estimating personalized treatment effects purely from unstructured inputs, while avoiding confounding bias. When these structured measurements are only available for a non-representative subset of the data, these estimators may suffer from sampling bias. To address this, we further introduce a regression-based correction that accounts for the non-uniform sampling, assuming the sampling mechanism is known or can be well-estimated. Our experiments on two benchmark datasets show that the plug-in method, directly trainable on large unstructured datasets, achieves strong empirical performance across all settings, despite its simplicity.
☆ JWB-DH-V1: Benchmark for Joint Whole-Body Talking Avatar and Speech Generation Version 1 ICCV 2025
Recent advances in diffusion-based video generation have enabled photo-realistic short clips, but current methods still struggle to achieve multi-modal consistency when jointly generating whole-body motion and natural speech. Current approaches lack comprehensive evaluation frameworks that assess both visual and audio quality, and there are insufficient benchmarks for region-specific performance analysis. To address these gaps, we introduce the Joint Whole-Body Talking Avatar and Speech Generation Version I(JWB-DH-V1), comprising a large-scale multi-modal dataset with 10,000 unique identities across 2 million video samples, and an evaluation protocol for assessing joint audio-video generation of whole-body animatable avatars. Our evaluation of SOTA models reveals consistent performance disparities between face/hand-centric and whole-body performance, which incidates essential areas for future research. The dataset and evaluation tools are publicly available at https://github.com/deepreasonings/WholeBodyBenchmark.
comment: WiCV @ ICCV 2025
☆ SmallThinker: A Family of Efficient Large Language Models Natively Trained for Local Deployment
While frontier large language models (LLMs) continue to push capability boundaries, their deployment remains confined to GPU-powered cloud infrastructure. We challenge this paradigm with SmallThinker, a family of LLMs natively designed - not adapted - for the unique constraints of local devices: weak computational power, limited memory, and slow storage. Unlike traditional approaches that mainly compress existing models built for clouds, we architect SmallThinker from the ground up to thrive within these limitations. Our innovation lies in a deployment-aware architecture that transforms constraints into design principles. First, We introduce a two-level sparse structure combining fine-grained Mixture-of-Experts (MoE) with sparse feed-forward networks, drastically reducing computational demands without sacrificing model capacity. Second, to conquer the I/O bottleneck of slow storage, we design a pre-attention router that enables our co-designed inference engine to prefetch expert parameters from storage while computing attention, effectively hiding storage latency that would otherwise cripple on-device inference. Third, for memory efficiency, we utilize NoPE-RoPE hybrid sparse attention mechanism to slash KV cache requirements. We release SmallThinker-4B-A0.6B and SmallThinker-21B-A3B, which achieve state-of-the-art performance scores and even outperform larger LLMs. Remarkably, our co-designed system mostly eliminates the need for expensive GPU hardware: with Q4_0 quantization, both models exceed 20 tokens/s on ordinary consumer CPUs, while consuming only 1GB and 8GB of memory respectively. SmallThinker is publicly available at hf.co/PowerInfer/SmallThinker-4BA0.6B-Instruct and hf.co/PowerInfer/SmallThinker-21BA3B-Instruct.
☆ From Entanglement to Alignment: Representation Space Decomposition for Unsupervised Time Series Domain Adaptation
Domain shift poses a fundamental challenge in time series analysis, where models trained on source domain often fail dramatically when applied in target domain with different yet similar distributions. While current unsupervised domain adaptation (UDA) methods attempt to align cross-domain feature distributions, they typically treat features as indivisible entities, ignoring their intrinsic compositions that governs domain adaptation. We introduce DARSD, a novel UDA framework with theoretical explainability that explicitly realizes UDA tasks from the perspective of representation space decomposition. Our core insight is that effective domain adaptation requires not just alignment, but principled disentanglement of transferable knowledge from mixed representations. DARSD consists three synergistic components: (I) An adversarial learnable common invariant basis that projects original features into a domain-invariant subspace while preserving semantic content; (II) A prototypical pseudo-labeling mechanism that dynamically separates target features based on confidence, hindering error accumulation; (III) A hybrid contrastive optimization strategy that simultaneously enforces feature clustering and consistency while mitigating emerging distribution gaps. Comprehensive experiments conducted on four benchmark datasets (WISDM, HAR, HHAR, and MFD) demonstrate DARSD's superiority against 12 UDA algorithms, achieving optimal performance in 35 out of 53 cross-domain scenarios.
☆ Handoff Design in User-Centric Cell-Free Massive MIMO Networks Using DRL
In the user-centric cell-free massive MIMO (UC-mMIMO) network scheme, user mobility necessitates updating the set of serving access points to maintain the user-centric clustering. Such updates are typically performed through handoff (HO) operations; however, frequent HOs lead to overheads associated with the allocation and release of resources. This paper presents a deep reinforcement learning (DRL)-based solution to predict and manage these connections for mobile users. Our solution employs the Soft Actor-Critic algorithm, with continuous action space representation, to train a deep neural network to serve as the HO policy. We present a novel proposition for a reward function that integrates a HO penalty in order to balance the attainable rate and the associated overhead related to HOs. We develop two variants of our system; the first one uses mobility direction-assisted (DA) observations that are based on the user movement pattern, while the second one uses history-assisted (HA) observations that are based on the history of the large-scale fading (LSF). Simulation results show that our DRL-based continuous action space approach is more scalable than discrete space counterpart, and that our derived HO policy automatically learns to gather HOs in specific time slots to minimize the overhead of initiating HOs. Our solution can also operate in real time with a response time less than 0.4 ms.
comment: Published in IEEE Transactions on Communications (IEEE TCOM)
☆ Core Safety Values for Provably Corrigible Agents
We introduce the first implementable framework for corrigibility, with provable guarantees in multi-step, partially observed environments. Our framework replaces a single opaque reward with five *structurally separate* utility heads -- deference, switch-access preservation, truthfulness, low-impact behavior via a belief-based extension of Attainable Utility Preservation, and bounded task reward -- combined lexicographically by strict weight gaps. Theorem 1 proves exact single-round corrigibility in the partially observable off-switch game; Theorem 3 extends the guarantee to multi-step, self-spawning agents, showing that even if each head is \emph{learned} to mean-squared error $\varepsilon$ and the planner is $\varepsilon$-sub-optimal, the probability of violating \emph{any} safety property is bounded while still ensuring net human benefit. In contrast to Constitutional AI or RLHF/RLAIF, which merge all norms into one learned scalar, our separation makes obedience and impact-limits dominate even when incentives conflict. For open-ended settings where adversaries can modify the agent, we prove that deciding whether an arbitrary post-hack agent will ever violate corrigibility is undecidable by reduction to the halting problem, then carve out a finite-horizon ``decidable island'' where safety can be certified in randomized polynomial time and verified with privacy-preserving, constant-round zero-knowledge proofs. Consequently, the remaining challenge is the ordinary ML task of data coverage and generalization: reward-hacking risk is pushed into evaluation quality rather than hidden incentive leak-through, giving clearer implementation guidance for today's LLM assistants and future autonomous systems.
comment: 14 pages
☆ On the Limits of Hierarchically Embedded Logic in Classical Neural Networks
We propose a formal model of reasoning limitations in large neural net models for language, grounded in the depth of their neural architecture. By treating neural networks as linear operators over logic predicate space we show that each layer can encode at most one additional level of logical reasoning. We prove that a neural network of depth a particular depth cannot faithfully represent predicates in a one higher order logic, such as simple counting over complex predicates, implying a strict upper bound on logical expressiveness. This structure induces a nontrivial null space during tokenization and embedding, excluding higher-order predicates from representability. Our framework offers a natural explanation for phenomena such as hallucination, repetition, and limited planning, while also providing a foundation for understanding how approximations to higher-order logic may emerge. These results motivate architectural extensions and interpretability strategies in future development of language models.
comment: 9 pages
☆ Your AI, Not Your View: The Bias of LLMs in Investment Analysis
In finance, Large Language Models (LLMs) face frequent knowledge conflicts due to discrepancies between pre-trained parametric knowledge and real-time market data. These conflicts become particularly problematic when LLMs are deployed in real-world investment services, where misalignment between a model's embedded preferences and those of the financial institution can lead to unreliable recommendations. Yet little research has examined what investment views LLMs actually hold. We propose an experimental framework to investigate such conflicts, offering the first quantitative analysis of confirmation bias in LLM-based investment analysis. Using hypothetical scenarios with balanced and imbalanced arguments, we extract models' latent preferences and measure their persistence. Focusing on sector, size, and momentum, our analysis reveals distinct, model-specific tendencies. In particular, we observe a consistent preference for large-cap stocks and contrarian strategies across most models. These preferences often harden into confirmation bias, with models clinging to initial judgments despite counter-evidence.
☆ Mind the Gap: Conformative Decoding to Improve Output Diversity of Instruction-Tuned Large Language Models
Instruction-tuning large language models (LLMs) reduces the diversity of their outputs, which has implications for many tasks, particularly for creative tasks. This paper investigates the ``diversity gap'' for a writing prompt narrative generation task. This gap emerges as measured by current diversity metrics for various open-weight and open-source LLMs. The results show significant decreases in diversity due to instruction-tuning. We explore the diversity loss at each fine-tuning stage for the OLMo and OLMo 2 models to further understand how output diversity is affected. The results indicate that DPO has the most substantial impact on diversity. Motivated by these findings, we present a new decoding strategy, conformative decoding, which guides an instruct model using its more diverse base model to reintroduce output diversity. We show that conformative decoding typically increases diversity and even maintains or improves quality.
comment: 9 pages, 3 figures
☆ Partially Observable Monte-Carlo Graph Search
Currently, large partially observable Markov decision processes (POMDPs) are often solved by sampling-based online methods which interleave planning and execution phases. However, a pre-computed offline policy is more desirable in POMDP applications with time or energy constraints. But previous offline algorithms are not able to scale up to large POMDPs. In this article, we propose a new sampling-based algorithm, the partially observable Monte-Carlo graph search (POMCGS) to solve large POMDPs offline. Different from many online POMDP methods, which progressively develop a tree while performing (Monte-Carlo) simulations, POMCGS folds this search tree on the fly to construct a policy graph, so that computations can be drastically reduced, and users can analyze and validate the policy prior to embedding and executing it. Moreover, POMCGS, together with action progressive widening and observation clustering methods provided in this article, is able to address certain continuous POMDPs. Through experiments, we demonstrate that POMCGS can generate policies on the most challenging POMDPs, which cannot be computed by previous offline algorithms, and these policies' values are competitive compared with the state-of-the-art online POMDP algorithms.
comment: To be published in Proceedings of ICAPS 2025
☆ Multivariate Conformal Prediction via Conformalized Gaussian Scoring
While achieving exact conditional coverage in conformal prediction is unattainable without making strong, untestable regularity assumptions, the promise of conformal prediction hinges on finding approximations to conditional guarantees that are realizable in practice. A promising direction for obtaining conditional dependence for conformal sets--in particular capturing heteroskedasticity--is through estimating the conditional density $\mathbb{P}_{Y|X}$ and conformalizing its level sets. Previous work in this vein has focused on nonconformity scores based on the empirical cumulative distribution function (CDF). Such scores are, however, computationally costly, typically requiring expensive sampling methods. To avoid the need for sampling, we observe that the CDF-based score reduces to a Mahalanobis distance in the case of Gaussian scores, yielding a closed-form expression that can be directly conformalized. Moreover, the use of a Gaussian-based score opens the door to a number of extensions of the basic conformal method; in particular, we show how to construct conformal sets with missing output values, refine conformal sets as partial information about $Y$ becomes available, and construct conformal sets on transformations of the output space. Finally, empirical results indicate that our approach produces conformal sets that more closely approximate conditional coverage in multivariate settings compared to alternative methods.
☆ Dissecting Persona-Driven Reasoning in Language Models via Activation Patching
Large language models (LLMs) exhibit remarkable versatility in adopting diverse personas. In this study, we examine how assigning a persona influences a model's reasoning on an objective task. Using activation patching, we take a first step toward understanding how key components of the model encode persona-specific information. Our findings reveal that the early Multi-Layer Perceptron (MLP) layers attend not only to the syntactic structure of the input but also process its semantic content. These layers transform persona tokens into richer representations, which are then used by the middle Multi-Head Attention (MHA) layers to shape the model's output. Additionally, we identify specific attention heads that disproportionately attend to racial and color-based identities.
comment: 11 pages
☆ FRED: Financial Retrieval-Enhanced Detection and Editing of Hallucinations in Language Models
Hallucinations in large language models pose a critical challenge for applications requiring factual reliability, particularly in high-stakes domains such as finance. This work presents an effective approach for detecting and editing factually incorrect content in model-generated responses based on the provided context. Given a user-defined domain-specific error taxonomy, we construct a synthetic dataset by inserting tagged errors into financial question-answering corpora and then fine-tune four language models, Phi-4, Phi-4-mini, Qwen3-4B, and Qwen3-14B, to detect and edit these factual inaccuracies. Our best-performing model, fine-tuned Phi-4, achieves an 8% improvement in binary F1 score and a 30% gain in overall detection performance compared to OpenAI-o3. Notably, our fine-tuned Phi-4-mini model, despite having only 4 billion parameters, maintains competitive performance with just a 2% drop in binary detection and a 0.1% decline in overall detection compared to OpenAI-o3. Our work provides a practical solution for detecting and editing factual inconsistencies in financial text generation while introducing a generalizable framework that can enhance the trustworthiness and alignment of large language models across diverse applications beyond finance. Our code and data are available at https://github.com/pegasi-ai/fine-grained-editting.
☆ FHSTP@EXIST 2025 Benchmark: Sexism Detection with Transparent Speech Concept Bottleneck Models
Sexism has become widespread on social media and in online conversation. To help address this issue, the fifth Sexism Identification in Social Networks (EXIST) challenge is initiated at CLEF 2025. Among this year's international benchmarks, we concentrate on solving the first task aiming to identify and classify sexism in social media textual posts. In this paper, we describe our solutions and report results for three subtasks: Subtask 1.1 - Sexism Identification in Tweets, Subtask 1.2 - Source Intention in Tweets, and Subtask 1.3 - Sexism Categorization in Tweets. We implement three models to address each subtask which constitute three individual runs: Speech Concept Bottleneck Model (SCBM), Speech Concept Bottleneck Model with Transformer (SCBMT), and a fine-tuned XLM-RoBERTa transformer model. SCBM uses descriptive adjectives as human-interpretable bottleneck concepts. SCBM leverages large language models (LLMs) to encode input texts into a human-interpretable representation of adjectives, then used to train a lightweight classifier for downstream tasks. SCBMT extends SCBM by fusing adjective-based representation with contextual embeddings from transformers to balance interpretability and classification performance. Beyond competitive results, these two models offer fine-grained explanations at both instance (local) and class (global) levels. We also investigate how additional metadata, e.g., annotators' demographic profiles, can be leveraged. For Subtask 1.1, XLM-RoBERTa, fine-tuned on provided data augmented with prior datasets, ranks 6th for English and Spanish and 4th for English in the Soft-Soft evaluation. Our SCBMT achieves 7th for English and Spanish and 6th for Spanish.
comment: 12 pages
☆ Pareto-Grid-Guided Large Language Models for Fast and High-Quality Heuristics Design in Multi-Objective Combinatorial Optimization
Multi-objective combinatorial optimization problems (MOCOP) frequently arise in practical applications that require the simultaneous optimization of conflicting objectives. Although traditional evolutionary algorithms can be effective, they typically depend on domain knowledge and repeated parameter tuning, limiting flexibility when applied to unseen MOCOP instances. Recently, integration of Large Language Models (LLMs) into evolutionary computation has opened new avenues for automatic heuristic generation, using their advanced language understanding and code synthesis capabilities. Nevertheless, most existing approaches predominantly focus on single-objective tasks, often neglecting key considerations such as runtime efficiency and heuristic diversity in multi-objective settings. To bridge this gap, we introduce Multi-heuristics for MOCOP via Pareto-Grid-guided Evolution of LLMs (MPaGE), a novel enhancement of the Simple Evolutionary Multiobjective Optimization (SEMO) framework that leverages LLMs and Pareto Front Grid (PFG) technique. By partitioning the objective space into grids and retaining top-performing candidates to guide heuristic generation, MPaGE utilizes LLMs to prioritize heuristics with semantically distinct logical structures during variation, thus promoting diversity and mitigating redundancy within the population. Through extensive evaluations, MPaGE demonstrates superior performance over existing LLM-based frameworks, and achieves competitive results to traditional Multi-objective evolutionary algorithms (MOEAs), with significantly faster runtime. Our code is available at: https://github.com/langkhachhoha/MPaGE.
comment: 36 pages, 20 figures
☆ Modeling User Behavior from Adaptive Surveys with Supplemental Context ICML 2025
Modeling user behavior is critical across many industries where understanding preferences, intent, or decisions informs personalization, targeting, and strategic outcomes. Surveys have long served as a classical mechanism for collecting such behavioral data due to their interpretability, structure, and ease of deployment. However, surveys alone are inherently limited by user fatigue, incomplete responses, and practical constraints on their length making them insufficient for capturing user behavior. In this work, we present LANTERN (Late-Attentive Network for Enriched Response Modeling), a modular architecture for modeling user behavior by fusing adaptive survey responses with supplemental contextual signals. We demonstrate the architectural value of maintaining survey primacy through selective gating, residual connections and late fusion via cross-attention, treating survey data as the primary signal while incorporating external modalities only when relevant. LANTERN outperforms strong survey-only baselines in multi-label prediction of survey responses. We further investigate threshold sensitivity and the benefits of selective modality reliance through ablation and rare/frequent attribute analysis. LANTERN's modularity supports scalable integration of new encoders and evolving datasets. This work provides a practical and extensible blueprint for behavior modeling in survey-centric applications.
comment: Best Paper, NewInML @ ICML 2025
☆ MediQAl: A French Medical Question Answering Dataset for Knowledge and Reasoning Evaluation
This work introduces MediQAl, a French medical question answering dataset designed to evaluate the capabilities of language models in factual medical recall and reasoning over real-world clinical scenarios. MediQAl contains 32,603 questions sourced from French medical examinations across 41 medical subjects. The dataset includes three tasks: (i) Multiple-Choice Question with Unique answer, (ii) Multiple-Choice Question with Multiple answer, and (iii) Open-Ended Question with Short-Answer. Each question is labeled as Understanding or Reasoning, enabling a detailed analysis of models' cognitive capabilities. We validate the MediQAl dataset through extensive evaluation with 14 large language models, including recent reasoning-augmented models, and observe a significant performance gap between factual recall and reasoning tasks. Our evaluation provides a comprehensive benchmark for assessing language models' performance on French medical question answering, addressing a crucial gap in multilingual resources for the medical domain.
☆ HAMLET-FFD: Hierarchical Adaptive Multi-modal Learning Embeddings Transformation for Face Forgery Detection
The rapid evolution of face manipulation techniques poses a critical challenge for face forgery detection: cross-domain generalization. Conventional methods, which rely on simple classification objectives, often fail to learn domain-invariant representations. We propose HAMLET-FFD, a cognitively inspired Hierarchical Adaptive Multi-modal Learning framework that tackles this challenge via bidirectional cross-modal reasoning. Building on contrastive vision-language models such as CLIP, HAMLET-FFD introduces a knowledge refinement loop that iteratively assesses authenticity by integrating visual evidence with conceptual cues, emulating expert forensic analysis. A key innovation is a bidirectional fusion mechanism in which textual authenticity embeddings guide the aggregation of hierarchical visual features, while modulated visual features refine text embeddings to generate image-adaptive prompts. This closed-loop process progressively aligns visual observations with semantic priors to enhance authenticity assessment. By design, HAMLET-FFD freezes all pretrained parameters, serving as an external plugin that preserves CLIP's original capabilities. Extensive experiments demonstrate its superior generalization to unseen manipulations across multiple benchmarks, and visual analyses reveal a division of labor among embeddings, with distinct representations specializing in fine-grained artifact recognition.
☆ SCORPION: Addressing Scanner-Induced Variability in Histopathology AI
Ensuring reliable model performance across diverse domains is a critical challenge in computational pathology. A particular source of variability in Whole-Slide Images is introduced by differences in digital scanners, thus calling for better scanner generalization. This is critical for the real-world adoption of computational pathology, where the scanning devices may differ per institution or hospital, and the model should not be dependent on scanner-induced details, which can ultimately affect the patient's diagnosis and treatment planning. However, past efforts have primarily focused on standard domain generalization settings, evaluating on unseen scanners during training, without directly evaluating consistency across scanners for the same tissue. To overcome this limitation, we introduce SCORPION, a new dataset explicitly designed to evaluate model reliability under scanner variability. SCORPION includes 480 tissue samples, each scanned with 5 scanners, yielding 2,400 spatially aligned patches. This scanner-paired design allows for the isolation of scanner-induced variability, enabling a rigorous evaluation of model consistency while controlling for differences in tissue composition. Furthermore, we propose SimCons, a flexible framework that combines augmentation-based domain generalization techniques with a consistency loss to explicitly address scanner generalization. We empirically show that SimCons improves model consistency on varying scanners without compromising task-specific performance. By releasing the SCORPION dataset and proposing SimCons, we provide the research community with a crucial resource for evaluating and improving model consistency across diverse scanners, setting a new standard for reliability testing.
comment: Accepted in UNSURE 2025 workshop in MICCAI
☆ Music Arena: Live Evaluation for Text-to-Music
We present Music Arena, an open platform for scalable human preference evaluation of text-to-music (TTM) models. Soliciting human preferences via listening studies is the gold standard for evaluation in TTM, but these studies are expensive to conduct and difficult to compare, as study protocols may differ across systems. Moreover, human preferences might help researchers align their TTM systems or improve automatic evaluation metrics, but an open and renewable source of preferences does not currently exist. We aim to fill these gaps by offering *live* evaluation for TTM. In Music Arena, real-world users input text prompts of their choosing and compare outputs from two TTM systems, and their preferences are used to compile a leaderboard. While Music Arena follows recent evaluation trends in other AI domains, we also design it with key features tailored to music: an LLM-based routing system to navigate the heterogeneous type signatures of TTM systems, and the collection of *detailed* preferences including listening data and natural language feedback. We also propose a rolling data release policy with user privacy guarantees, providing a renewable source of preference data and increasing platform transparency. Through its standardized evaluation protocol, transparent data access policies, and music-specific features, Music Arena not only addresses key challenges in the TTM ecosystem but also demonstrates how live evaluation can be thoughtfully adapted to unique characteristics of specific AI domains. Music Arena is available at: https://music-arena.org
☆ JAM: A Tiny Flow-based Song Generator with Fine-grained Controllability and Aesthetic Alignment
Diffusion and flow-matching models have revolutionized automatic text-to-audio generation in recent times. These models are increasingly capable of generating high quality and faithful audio outputs capturing to speech and acoustic events. However, there is still much room for improvement in creative audio generation that primarily involves music and songs. Recent open lyrics-to-song models, such as, DiffRhythm, ACE-Step, and LeVo, have set an acceptable standard in automatic song generation for recreational use. However, these models lack fine-grained word-level controllability often desired by musicians in their workflows. To the best of our knowledge, our flow-matching-based JAM is the first effort toward endowing word-level timing and duration control in song generation, allowing fine-grained vocal control. To enhance the quality of generated songs to better align with human preferences, we implement aesthetic alignment through Direct Preference Optimization, which iteratively refines the model using a synthetic dataset, eliminating the need or manual data annotations. Furthermore, we aim to standardize the evaluation of such lyrics-to-song models through our public evaluation dataset JAME. We show that JAM outperforms the existing models in terms of the music-specific attributes.
comment: https://github.com/declare-lab/jamify
☆ Not Only Grey Matter: OmniBrain for Robust Multimodal Classification of Alzheimer's Disease ICCV 2025
Alzheimer's disease affects over 55 million people worldwide and is projected to more than double by 2050, necessitating rapid, accurate, and scalable diagnostics. However, existing approaches are limited because they cannot achieve clinically acceptable accuracy, generalization across datasets, robustness to missing modalities, and explainability all at the same time. This inability to satisfy all these requirements simultaneously undermines their reliability in clinical settings. We propose OmniBrain, a multimodal framework that integrates brain MRI, radiomics, gene expression, and clinical data using a unified model with cross-attention and modality dropout. OmniBrain achieves $92.2 \pm 2.4\%$accuracy on the ANMerge dataset and generalizes to the MRI-only ADNI dataset with $70.4 \pm 2.7\%$ accuracy, outperforming unimodal and prior multimodal approaches. Explainability analyses highlight neuropathologically relevant brain regions and genes, enhancing clinical trust. OmniBrain offers a robust, interpretable, and practical solution for real-world Alzheimer's diagnosis.
comment: Published in Third Workshop on Computer Vision for Automated Medical Diagnosis CVAMD 2025 in ICCV 2025
☆ Geometry of Neural Reinforcement Learning in Continuous State and Action Spaces
Advances in reinforcement learning (RL) have led to its successful application in complex tasks with continuous state and action spaces. Despite these advances in practice, most theoretical work pertains to finite state and action spaces. We propose building a theoretical understanding of continuous state and action spaces by employing a geometric lens to understand the locally attained set of states. The set of all parametrised policies learnt through a semi-gradient based approach induces a set of attainable states in RL. We show that the training dynamics of a two-layer neural policy induce a low dimensional manifold of attainable states embedded in the high-dimensional nominal state space trained using an actor-critic algorithm. We prove that, under certain conditions, the dimensionality of this manifold is of the order of the dimensionality of the action space. This is the first result of its kind, linking the geometry of the state space to the dimensionality of the action space. We empirically corroborate this upper bound for four MuJoCo environments and also demonstrate the results in a toy environment with varying dimensionality. We also show the applicability of this theoretical result by introducing a local manifold learning layer to the policy and value function networks to improve the performance in control environments with very high degrees of freedom by changing one layer of the neural network to learn sparse representations.
comment: Proceedings of the Thirteenth International Conference on Learning Representations (ICLR 2025). arXiv admin note: text overlap with arXiv:2301.00009
☆ Free Energy-Inspired Cognitive Risk Integration for AV Navigation in Pedestrian-Rich Environments
Recent advances in autonomous vehicle (AV) behavior planning have shown impressive social interaction capabilities when interacting with other road users. However, achieving human-like prediction and decision-making in interactions with vulnerable road users remains a key challenge in complex multi-agent interactive environments. Existing research focuses primarily on crowd navigation for small mobile robots, which cannot be directly applied to AVs due to inherent differences in their decision-making strategies and dynamic boundaries. Moreover, pedestrians in these multi-agent simulations follow fixed behavior patterns that cannot dynamically respond to AV actions. To overcome these limitations, this paper proposes a novel framework for modeling interactions between the AV and multiple pedestrians. In this framework, a cognitive process modeling approach inspired by the Free Energy Principle is integrated into both the AV and pedestrian models to simulate more realistic interaction dynamics. Specifically, the proposed pedestrian Cognitive-Risk Social Force Model adjusts goal-directed and repulsive forces using a fused measure of cognitive uncertainty and physical risk to produce human-like trajectories. Meanwhile, the AV leverages this fused risk to construct a dynamic, risk-aware adjacency matrix for a Graph Convolutional Network within a Soft Actor-Critic architecture, allowing it to make more reasonable and informed decisions. Simulation results indicate that our proposed framework effectively improves safety, efficiency, and smoothness of AV navigation compared to the state-of-the-art method.
comment: 14 pages, 5 figures
☆ First Hallucination Tokens Are Different from Conditional Ones
Hallucination, the generation of untruthful content, is one of the major concerns regarding foundational models. Detecting hallucinations at the token level is vital for real-time filtering and targeted correction, yet the variation of hallucination signals within token sequences is not fully understood. Leveraging the RAGTruth corpus with token-level annotations and reproduced logits, we analyse how these signals depend on a token's position within hallucinated spans, contributing to an improved understanding of token-level hallucination. Our results show that the first hallucinated token carries a stronger signal and is more detectable than conditional tokens. We release our analysis framework, along with code for logit reproduction and metric computation at https://github.com/jakobsnl/RAGTruth_Xtended.
comment: 4.5 pages, 3 figures, Dataset, Knowledge Paper, Hallucination, Trustworthiness
☆ Why Flow Matching is Particle Swarm Optimization?
This paper preliminarily investigates the duality between flow matching in generative models and particle swarm optimization (PSO) in evolutionary computation. Through theoretical analysis, we reveal the intrinsic connections between these two approaches in terms of their mathematical formulations and optimization mechanisms: the vector field learning in flow matching shares similar mathematical expressions with the velocity update rules in PSO; both methods follow the fundamental framework of progressive evolution from initial to target distributions; and both can be formulated as dynamical systems governed by ordinary differential equations. Our study demonstrates that flow matching can be viewed as a continuous generalization of PSO, while PSO provides a discrete implementation of swarm intelligence principles. This duality understanding establishes a theoretical foundation for developing novel hybrid algorithms and creates a unified framework for analyzing both methods. Although this paper only presents preliminary discussions, the revealed correspondences suggest several promising research directions, including improving swarm intelligence algorithms based on flow matching principles and enhancing generative models using swarm intelligence concepts.
comment: 7 pages, 0 figures
☆ MMGraphRAG: Bridging Vision and Language with Interpretable Multimodal Knowledge Graphs
Retrieval-Augmented Generation (RAG) enhances language model generation by retrieving relevant information from external knowledge bases. However, conventional RAG methods face the issue of missing multimodal information. Multimodal RAG methods address this by fusing images and text through mapping them into a shared embedding space, but they fail to capture the structure of knowledge and logical chains between modalities. Moreover, they also require large-scale training for specific tasks, resulting in limited generalizing ability. To address these limitations, we propose MMGraphRAG, which refines visual content through scene graphs and constructs a multimodal knowledge graph (MMKG) in conjunction with text-based KG. It employs spectral clustering to achieve cross-modal entity linking and retrieves context along reasoning paths to guide the generative process. Experimental results show that MMGraphRAG achieves state-of-the-art performance on the DocBench and MMLongBench datasets, demonstrating strong domain adaptability and clear reasoning paths.
☆ LanternNet: A Novel Hub-and-Spoke System to Seek and Suppress Spotted Lanternfly Populations
The invasive spotted lanternfly (SLF) poses a significant threat to agriculture and ecosystems, causing widespread damage. Current control methods, such as egg scraping, pesticides, and quarantines, prove labor-intensive, environmentally hazardous, and inadequate for long-term SLF suppression. This research introduces LanternNet, a novel autonomous robotic Hub-and-Spoke system designed for scalable detection and suppression of SLF populations. A central, tree-mimicking hub utilizes a YOLOv8 computer vision model for precise SLF identification. Three specialized robotic spokes perform targeted tasks: pest neutralization, environmental monitoring, and navigation/mapping. Field deployment across multiple infested sites over 5 weeks demonstrated LanternNet's efficacy. Quantitative analysis revealed significant reductions (p < 0.01, paired t-tests) in SLF populations and corresponding improvements in tree health indicators across the majority of test sites. Compared to conventional methods, LanternNet offers substantial cost advantages and improved scalability. Furthermore, the system's adaptability for enhanced autonomy and targeting of other invasive species presents significant potential for broader ecological impact. LanternNet demonstrates the transformative potential of integrating robotics and AI for advanced invasive species management and improved environmental outcomes.
☆ Aligning Large Language Model Agents with Rational and Moral Preferences: A Supervised Fine-Tuning Approach
Understanding how large language model (LLM) agents behave in strategic interactions is essential as these systems increasingly participate autonomously in economically and morally consequential decisions. We evaluate LLM preferences using canonical economic games, finding substantial deviations from human behavior. Models like GPT-4o show excessive cooperation and limited incentive sensitivity, while reasoning models, such as o3-mini, align more consistently with payoff-maximizing strategies. We propose a supervised fine-tuning pipeline that uses synthetic datasets derived from economic reasoning to align LLM agents with economic preferences, focusing on two stylized preference structures. In the first, utility depends only on individual payoffs (homo economicus), while utility also depends on a notion of Kantian universalizability in the second preference structure (homo moralis). We find that fine-tuning based on small datasets shifts LLM agent behavior toward the corresponding economic agent. We further assess the fine-tuned agents' behavior in two applications: Moral dilemmas involving autonomous vehicles and algorithmic pricing in competitive markets. These examples illustrate how different normative objectives embedded via realizations from structured preference structures can influence market and moral outcomes. This work contributes a replicable, cost-efficient, and economically grounded pipeline to align AI preferences using moral-economic principles.
☆ Investigation of Accuracy and Bias in Face Recognition Trained with Synthetic Data
Synthetic data has emerged as a promising alternative for training face recognition (FR) models, offering advantages in scalability, privacy compliance, and potential for bias mitigation. However, critical questions remain on whether both high accuracy and fairness can be achieved with synthetic data. In this work, we evaluate the impact of synthetic data on bias and performance of FR systems. We generate balanced face dataset, FairFaceGen, using two state of the art text-to-image generators, Flux.1-dev and Stable Diffusion v3.5 (SD35), and combine them with several identity augmentation methods, including Arc2Face and four IP-Adapters. By maintaining equal identity count across synthetic and real datasets, we ensure fair comparisons when evaluating FR performance on standard (LFW, AgeDB-30, etc.) and challenging IJB-B/C benchmarks and FR bias on Racial Faces in-the-Wild (RFW) dataset. Our results demonstrate that although synthetic data still lags behind the real datasets in the generalization on IJB-B/C, demographically balanced synthetic datasets, especially those generated with SD35, show potential for bias mitigation. We also observe that the number and quality of intra-class augmentations significantly affect FR accuracy and fairness. These findings provide practical guidelines for constructing fairer FR systems using synthetic data.
comment: Accepted for publication in IEEE International Joint Conference on Biometrics (IJCB), 2025
☆ evalSmarT: An LLM-Based Framework for Evaluating Smart Contract Generated Comments
Smart contract comment generation has gained traction as a means to improve code comprehension and maintainability in blockchain systems. However, evaluating the quality of generated comments remains a challenge. Traditional metrics such as BLEU and ROUGE fail to capture domain-specific nuances, while human evaluation is costly and unscalable. In this paper, we present \texttt{evalSmarT}, a modular and extensible framework that leverages large language models (LLMs) as evaluators. The system supports over 400 evaluator configurations by combining approximately 40 LLMs with 10 prompting strategies. We demonstrate its application in benchmarking comment generation tools and selecting the most informative outputs. Our results show that prompt design significantly impacts alignment with human judgment, and that LLM-based evaluation offers a scalable and semantically rich alternative to existing methods.
comment: 4 pages, 4 tables
☆ How Chain-of-Thought Works? Tracing Information Flow from Decoding, Projection, and Activation
Chain-of-Thought (CoT) prompting significantly enhances model reasoning, yet its internal mechanisms remain poorly understood. We analyze CoT's operational principles by reversely tracing information flow across decoding, projection, and activation phases. Our quantitative analysis suggests that CoT may serve as a decoding space pruner, leveraging answer templates to guide output generation, with higher template adherence strongly correlating with improved performance. Furthermore, we surprisingly find that CoT modulates neuron engagement in a task-dependent manner: reducing neuron activation in open-domain tasks, yet increasing it in closed-domain scenarios. These findings offer a novel mechanistic interpretability framework and critical insights for enabling targeted CoT interventions to design more efficient and robust prompts. We released our code and data at https://anonymous.4open.science/r/cot-D247.
☆ Learning to See Inside Opaque Liquid Containers using Speckle Vibrometry ICCV 2025
Computer vision seeks to infer a wide range of information about objects and events. However, vision systems based on conventional imaging are limited to extracting information only from the visible surfaces of scene objects. For instance, a vision system can detect and identify a Coke can in the scene, but it cannot determine whether the can is full or empty. In this paper, we aim to expand the scope of computer vision to include the novel task of inferring the hidden liquid levels of opaque containers by sensing the tiny vibrations on their surfaces. Our method provides a first-of-a-kind way to inspect the fill level of multiple sealed containers remotely, at once, without needing physical manipulation and manual weighing. First, we propose a novel speckle-based vibration sensing system for simultaneously capturing scene vibrations on a 2D grid of points. We use our system to efficiently and remotely capture a dataset of vibration responses for a variety of everyday liquid containers. Then, we develop a transformer-based approach for analyzing the captured vibrations and classifying the container type and its hidden liquid level at the time of measurement. Our architecture is invariant to the vibration source, yielding correct liquid level estimates for controlled and ambient scene sound sources. Moreover, our model generalizes to unseen container instances within known classes (e.g., training on five Coke cans of a six-pack, testing on a sixth) and fluid levels. We demonstrate our method by recovering liquid levels from various everyday containers.
comment: ICCV 2025
☆ Beyond Listenership: AI-Predicted Interventions Drive Improvements in Maternal Health Behaviours
Automated voice calls with health information are a proven method for disseminating maternal and child health information among beneficiaries and are deployed in several programs around the world. However, these programs often suffer from beneficiary dropoffs and poor engagement. In previous work, through real-world trials, we showed that an AI model, specifically a restless bandit model, could identify beneficiaries who would benefit most from live service call interventions, preventing dropoffs and boosting engagement. However, one key question has remained open so far: does such improved listenership via AI-targeted interventions translate into beneficiaries' improved knowledge and health behaviors? We present a first study that shows not only listenership improvements due to AI interventions, but also simultaneously links these improvements to health behavior changes. Specifically, we demonstrate that AI-scheduled interventions, which enhance listenership, lead to statistically significant improvements in beneficiaries' health behaviors such as taking iron or calcium supplements in the postnatal period, as well as understanding of critical health topics during pregnancy and infancy. This underscores the potential of AI to drive meaningful improvements in maternal and child health.
☆ Industry Insights from Comparing Deep Learning and GBDT Models for E-Commerce Learning-to-Rank
In e-commerce recommender and search systems, tree-based models, such as LambdaMART, have set a strong baseline for Learning-to-Rank (LTR) tasks. Despite their effectiveness and widespread adoption in industry, the debate continues whether deep neural networks (DNNs) can outperform traditional tree-based models in this domain. To contribute to this discussion, we systematically benchmark DNNs against our production-grade LambdaMART model. We evaluate multiple DNN architectures and loss functions on a proprietary dataset from OTTO and validate our findings through an 8-week online A/B test. The results show that a simple DNN architecture outperforms a strong tree-based baseline in terms of total clicks and revenue, while achieving parity in total units sold.
comment: This work was accepted for publication in the 19th ACM Conference on Recommender Systems (RecSys 2025). The final published version will be available at the ACM Digital Library
☆ AR-LIF: Adaptive reset leaky-integrate and fire neuron for spiking neural networks
Spiking neural networks possess the advantage of low energy consumption due to their event-driven nature. Compared with binary spike outputs, their inherent floating-point dynamics are more worthy of attention. The threshold level and reset mode of neurons play a crucial role in determining the number and timing of spikes. The existing hard reset method causes information loss, while the improved soft reset method adopts a uniform treatment for neurons. In response to this, this paper designs an adaptive reset neuron, establishing the correlation between input, output and reset, and integrating a simple yet effective threshold adjustment strategy. It achieves excellent performance on various datasets while maintaining the advantage of low energy consumption.
☆ Regularizing Subspace Redundancy of Low-Rank Adaptation
Low-Rank Adaptation (LoRA) and its variants have delivered strong capability in Parameter-Efficient Transfer Learning (PETL) by minimizing trainable parameters and benefiting from reparameterization. However, their projection matrices remain unrestricted during training, causing high representation redundancy and diminishing the effectiveness of feature adaptation in the resulting subspaces. While existing methods mitigate this by manually adjusting the rank or implicitly applying channel-wise masks, they lack flexibility and generalize poorly across various datasets and architectures. Hence, we propose ReSoRA, a method that explicitly models redundancy between mapping subspaces and adaptively Regularizes Subspace redundancy of Low-Rank Adaptation. Specifically, it theoretically decomposes the low-rank submatrices into multiple equivalent subspaces and systematically applies de-redundancy constraints to the feature distributions across different projections. Extensive experiments validate that our proposed method consistently facilitates existing state-of-the-art PETL methods across various backbones and datasets in vision-language retrieval and standard visual classification benchmarks. Besides, as a training supervision, ReSoRA can be seamlessly integrated into existing approaches in a plug-and-play manner, with no additional inference costs. Code is publicly available at: https://github.com/Lucenova/ReSoRA.
comment: 10 pages, 4 figures, Accepted by ACMMM2025
☆ Multi-Masked Querying Network for Robust Emotion Recognition from Incomplete Multi-Modal Physiological Signals AI2025
Emotion recognition from physiological data is crucial for mental health assessment, yet it faces two significant challenges: incomplete multi-modal signals and interference from body movements and artifacts. This paper presents a novel Multi-Masked Querying Network (MMQ-Net) to address these issues by integrating multiple querying mechanisms into a unified framework. Specifically, it uses modality queries to reconstruct missing data from incomplete signals, category queries to focus on emotional state features, and interference queries to separate relevant information from noise. Extensive experiment results demonstrate the superior emotion recognition performance of MMQ-Net compared to existing approaches, particularly under high levels of data incompleteness.
comment: MICCAI2025
☆ Learning the Value Systems of Societies from Preferences AI 2025
Aligning AI systems with human values and the value-based preferences of various stakeholders (their value systems) is key in ethical AI. In value-aware AI systems, decision-making draws upon explicit computational representations of individual values (groundings) and their aggregation into value systems. As these are notoriously difficult to elicit and calibrate manually, value learning approaches aim to automatically derive computational models of an agent's values and value system from demonstrations of human behaviour. Nonetheless, social science and humanities literature suggest that it is more adequate to conceive the value system of a society as a set of value systems of different groups, rather than as the simple aggregation of individual value systems. Accordingly, here we formalize the problem of learning the value systems of societies and propose a method to address it based on heuristic deep clustering. The method learns socially shared value groundings and a set of diverse value systems representing a given society by observing qualitative value-based preferences from a sample of agents. We evaluate the proposal in a use case with real data about travelling decisions.
comment: Full version of publication under the same accepted at ECAI 2025 conference (Submission 6755). 8 pages + 2 supplementary material
☆ Prostate Cancer Classification Using Multimodal Feature Fusion and Explainable AI
Prostate cancer, the second most prevalent male malignancy, requires advanced diagnostic tools. We propose an explainable AI system combining BERT (for textual clinical notes) and Random Forest (for numerical lab data) through a novel multimodal fusion strategy, achieving superior classification performance on PLCO-NIH dataset (98% accuracy, 99% AUC). While multimodal fusion is established, our work demonstrates that a simple yet interpretable BERT+RF pipeline delivers clinically significant improvements - particularly for intermediate cancer stages (Class 2/3 recall: 0.900 combined vs 0.824 numerical/0.725 textual). SHAP analysis provides transparent feature importance rankings, while ablation studies prove textual features' complementary value. This accessible approach offers hospitals a balance of high performance (F1=89%), computational efficiency, and clinical interpretability - addressing critical needs in prostate cancer diagnostics.
☆ Algorithmic Fairness: A Runtime Perspective
Fairness in AI is traditionally studied as a static property evaluated once, over a fixed dataset. However, real-world AI systems operate sequentially, with outcomes and environments evolving over time. This paper proposes a framework for analysing fairness as a runtime property. Using a minimal yet expressive model based on sequences of coin tosses with possibly evolving biases, we study the problems of monitoring and enforcing fairness expressed in either toss outcomes or coin biases. Since there is no one-size-fits-all solution for either problem, we provide a summary of monitoring and enforcement strategies, parametrised by environment dynamics, prediction horizon, and confidence thresholds. For both problems, we present general results under simple or minimal assumptions. We survey existing solutions for the monitoring problem for Markovian and additive dynamics, and existing solutions for the enforcement problem in static settings with known dynamics.
comment: To appear in RV 2025
☆ Text2VLM: Adapting Text-Only Datasets to Evaluate Alignment Training in Visual Language Models
The increasing integration of Visual Language Models (VLMs) into AI systems necessitates robust model alignment, especially when handling multimodal content that combines text and images. Existing evaluation datasets heavily lean towards text-only prompts, leaving visual vulnerabilities under evaluated. To address this gap, we propose \textbf{Text2VLM}, a novel multi-stage pipeline that adapts text-only datasets into multimodal formats, specifically designed to evaluate the resilience of VLMs against typographic prompt injection attacks. The Text2VLM pipeline identifies harmful content in the original text and converts it into a typographic image, creating a multimodal prompt for VLMs. Also, our evaluation of open-source VLMs highlights their increased susceptibility to prompt injection when visual inputs are introduced, revealing critical weaknesses in the current models' alignment. This is in addition to a significant performance gap compared to closed-source frontier models. We validate Text2VLM through human evaluations, ensuring the alignment of extracted salient concepts; text summarization and output classification align with human expectations. Text2VLM provides a scalable tool for comprehensive safety assessment, contributing to the development of more robust safety mechanisms for VLMs. By enhancing the evaluation of multimodal vulnerabilities, Text2VLM plays a role in advancing the safe deployment of VLMs in diverse, real-world applications.
comment: 9 pages, 9 figures. Jake Thomas served as Editor for this manuscript
☆ A General Framework for Dynamic MAPF using Multi-Shot ASP and Tunnels
MAPF problem aims to find plans for multiple agents in an environment within a given time, such that the agents do not collide with each other or obstacles. Motivated by the execution and monitoring of these plans, we study Dynamic MAPF (D-MAPF) problem, which allows changes such as agents entering/leaving the environment or obstacles being removed/moved. Considering the requirements of real-world applications in warehouses with the presence of humans, we introduce 1) a general definition for D-MAPF (applicable to variations of D-MAPF), 2) a new framework to solve D-MAPF (utilizing multi-shot computation, and allowing different methods to solve D-MAPF), and 3) a new ASP-based method to solve D-MAPF (combining advantages of replanning and repairing methods, with a novel concept of tunnels to specify where agents can move). We have illustrated the strengths and weaknesses of this method by experimental evaluations, from the perspectives of computational performance and quality of solutions.
☆ A Multimodal Architecture for Endpoint Position Prediction in Team-based Multiplayer Games
Understanding and predicting player movement in multiplayer games is crucial for achieving use cases such as player-mimicking bot navigation, preemptive bot control, strategy recommendation, and real-time player behavior analytics. However, the complex environments allow for a high degree of navigational freedom, and the interactions and team-play between players require models that make effective use of the available heterogeneous input data. This paper presents a multimodal architecture for predicting future player locations on a dynamic time horizon, using a U-Net-based approach for calculating endpoint location probability heatmaps, conditioned using a multimodal feature encoder. The application of a multi-head attention mechanism for different groups of features allows for communication between agents. In doing so, the architecture makes efficient use of the multimodal game state including image inputs, numerical and categorical features, as well as dynamic game data. Consequently, the presented technique lays the foundation for various downstream tasks that rely on future player positions such as the creation of player-predictive bot behavior or player anomaly detection.
☆ MIMII-Agent: Leveraging LLMs with Function Calling for Relative Evaluation of Anomalous Sound Detection
This paper proposes a method for generating machine-type-specific anomalies to evaluate the relative performance of unsupervised anomalous sound detection (UASD) systems across different machine types, even in the absence of real anomaly sound data. Conventional keyword-based data augmentation methods often produce unrealistic sounds due to their reliance on manually defined labels, limiting scalability as machine types and anomaly patterns diversify. Advanced audio generative models, such as MIMII-Gen, show promise but typically depend on anomalous training data, making them less effective when diverse anomalous examples are unavailable. To address these limitations, we propose a novel synthesis approach leveraging large language models (LLMs) to interpret textual descriptions of faults and automatically select audio transformation functions, converting normal machine sounds into diverse and plausible anomalous sounds. We validate this approach by evaluating a UASD system trained only on normal sounds from five machine types, using both real and synthetic anomaly data. Experimental results reveal consistent trends in relative detection difficulty across machine types between synthetic and real anomalies. This finding supports our hypothesis and highlights the effectiveness of the proposed LLM-based synthesis approach for relative evaluation of UASD systems.
☆ Hot-Swap MarkBoard: An Efficient Black-box Watermarking Approach for Large-scale Model Distribution
Recently, Deep Learning (DL) models have been increasingly deployed on end-user devices as On-Device AI, offering improved efficiency and privacy. However, this deployment trend poses more serious Intellectual Property (IP) risks, as models are distributed on numerous local devices, making them vulnerable to theft and redistribution. Most existing ownership protection solutions (e.g., backdoor-based watermarking) are designed for cloud-based AI-as-a-Service (AIaaS) and are not directly applicable to large-scale distribution scenarios, where each user-specific model instance must carry a unique watermark. These methods typically embed a fixed watermark, and modifying the embedded watermark requires retraining the model. To address these challenges, we propose Hot-Swap MarkBoard, an efficient watermarking method. It encodes user-specific $n$-bit binary signatures by independently embedding multiple watermarks into a multi-branch Low-Rank Adaptation (LoRA) module, enabling efficient watermark customization without retraining through branch swapping. A parameter obfuscation mechanism further entangles the watermark weights with those of the base model, preventing removal without degrading model performance. The method supports black-box verification and is compatible with various model architectures and DL tasks, including classification, image generation, and text generation. Extensive experiments across three types of tasks and six backbone models demonstrate our method's superior efficiency and adaptability compared to existing approaches, achieving 100\% verification accuracy.
☆ Ontology-Enhanced Knowledge Graph Completion using Large Language Models
Large Language Models (LLMs) have been extensively adopted in Knowledge Graph Completion (KGC), showcasing significant research advancements. However, as black-box models driven by deep neural architectures, current LLM-based KGC methods rely on implicit knowledge representation with parallel propagation of erroneous knowledge, thereby hindering their ability to produce conclusive and decisive reasoning outcomes. We aim to integrate neural-perceptual structural information with ontological knowledge, leveraging the powerful capabilities of LLMs to achieve a deeper understanding of the intrinsic logic of the knowledge. We propose an ontology enhanced KGC method using LLMs -- OL-KGC. It first leverages neural perceptual mechanisms to effectively embed structural information into the textual space, and then uses an automated extraction algorithm to retrieve ontological knowledge from the knowledge graphs (KGs) that needs to be completed, which is further transformed into a textual format comprehensible to LLMs for providing logic guidance. We conducted extensive experiments on three widely-used benchmarks -- FB15K-237, UMLS and WN18RR. The experimental results demonstrate that OL-KGC significantly outperforms existing mainstream KGC methods across multiple evaluation metrics, achieving state-of-the-art performance.
☆ Adaptive Fuzzy Time Series Forecasting via Partially Asymmetric Convolution and Sub-Sliding Window Fusion
At present, state-of-the-art forecasting models are short of the ability to capture spatio-temporal dependency and synthesize global information at the stage of learning. To address this issue, in this paper, through the adaptive fuzzified construction of temporal data, we propose a novel convolutional architecture with partially asymmetric design based on the scheme of sliding window to realize accurate time series forecasting. First, the construction strategy of traditional fuzzy time series is improved to further extract short and long term temporal interrelation, which enables every time node to automatically possess corresponding global information and inner relationships among them in a restricted sliding window and the process does not require human involvement. Second, a bilateral Atrous algorithm is devised to reduce calculation demand of the proposed model without sacrificing global characteristics of elements. And it also allows the model to avoid processing redundant information. Third, after the transformation of time series, a partially asymmetric convolutional architecture is designed to more flexibly mine data features by filters in different directions on feature maps, which gives the convolutional neural network (CNN) the ability to construct sub-windows within existing sliding windows to model at a more fine-grained level. And after obtaining the time series information at different levels, the multi-scale features from different sub-windows will be sent to the corresponding network layer for time series information fusion. Compared with other competitive modern models, the proposed method achieves state-of-the-art results on most of popular time series datasets, which is fully verified by the experimental results.
☆ TransPrune: Token Transition Pruning for Efficient Large Vision-Language Model
Large Vision-Language Models (LVLMs) have advanced multimodal learning but face high computational costs due to the large number of visual tokens, motivating token pruning to improve inference efficiency. The key challenge lies in identifying which tokens are truly important. Most existing approaches rely on attention-based criteria to estimate token importance. However, they inherently suffer from certain limitations, such as positional bias. In this work, we explore a new perspective on token importance based on token transitions in LVLMs. We observe that the transition of token representations provides a meaningful signal of semantic information. Based on this insight, we propose TransPrune, a training-free and efficient token pruning method. Specifically, TransPrune progressively prunes tokens by assessing their importance through a combination of Token Transition Variation (TTV)-which measures changes in both the magnitude and direction of token representations-and Instruction-Guided Attention (IGA), which measures how strongly the instruction attends to image tokens via attention. Extensive experiments demonstrate that TransPrune achieves comparable multimodal performance to original LVLMs, such as LLaVA-v1.5 and LLaVA-Next, across eight benchmarks, while reducing inference TFLOPs by more than half. Moreover, TTV alone can serve as an effective criterion without relying on attention, achieving performance comparable to attention-based methods. The code will be made publicly available upon acceptance of the paper at https://github.com/liaolea/TransPrune.
☆ Controllable Video-to-Music Generation with Multiple Time-Varying Conditions
Music enhances video narratives and emotions, driving demand for automatic video-to-music (V2M) generation. However, existing V2M methods relying solely on visual features or supplementary textual inputs generate music in a black-box manner, often failing to meet user expectations. To address this challenge, we propose a novel multi-condition guided V2M generation framework that incorporates multiple time-varying conditions for enhanced control over music generation. Our method uses a two-stage training strategy that enables learning of V2M fundamentals and audiovisual temporal synchronization while meeting users' needs for multi-condition control. In the first stage, we introduce a fine-grained feature selection module and a progressive temporal alignment attention mechanism to ensure flexible feature alignment. For the second stage, we develop a dynamic conditional fusion module and a control-guided decoder module to integrate multiple conditions and accurately guide the music composition process. Extensive experiments demonstrate that our method outperforms existing V2M pipelines in both subjective and objective evaluations, significantly enhancing control and alignment with user expectations.
comment: Accepted by the 33rd ACM International Conference on Multimedia (ACMMM 2025). The project page is available at https://kita-wjx.github.io/MCV2M/
☆ Lightweight Remote Sensing Scene Classification on Edge Devices via Knowledge Distillation and Early-exit
As the development of lightweight deep learning algorithms, various deep neural network (DNN) models have been proposed for the remote sensing scene classification (RSSC) application. However, it is still challenging for these RSSC models to achieve optimal performance among model accuracy, inference latency, and energy consumption on resource-constrained edge devices. In this paper, we propose a lightweight RSSC framework, which includes a distilled global filter network (GFNet) model and an early-exit mechanism designed for edge devices to achieve state-of-the-art performance. Specifically, we first apply frequency domain distillation on the GFNet model to reduce model size. Then we design a dynamic early-exit model tailored for DNN models on edge devices to further improve model inference efficiency. We evaluate our E3C model on three edge devices across four datasets. Extensive experimental results show that it achieves an average of 1.3x speedup on model inference and over 40% improvement on energy efficiency, while maintaining high classification accuracy.
comment: 9 pages, 5 figures, to be published in ACM Multimedia 2025
☆ Complementarity-driven Representation Learning for Multi-modal Knowledge Graph Completion
Multi-modal Knowledge Graph Completion (MMKGC) aims to uncover hidden world knowledge in multimodal knowledge graphs by leveraging both multimodal and structural entity information. However, the inherent imbalance in multimodal knowledge graphs, where modality distributions vary across entities, poses challenges in utilizing additional modality data for robust entity representation. Existing MMKGC methods typically rely on attention or gate-based fusion mechanisms but overlook complementarity contained in multi-modal data. In this paper, we propose a novel framework named Mixture of Complementary Modality Experts (MoCME), which consists of a Complementarity-guided Modality Knowledge Fusion (CMKF) module and an Entropy-guided Negative Sampling (EGNS) mechanism. The CMKF module exploits both intra-modal and inter-modal complementarity to fuse multi-view and multi-modal embeddings, enhancing representations of entities. Additionally, we introduce an Entropy-guided Negative Sampling mechanism to dynamically prioritize informative and uncertain negative samples to enhance training effectiveness and model robustness. Extensive experiments on five benchmark datasets demonstrate that our MoCME achieves state-of-the-art performance, surpassing existing approaches.
☆ Enhancing Large Multimodal Models with Adaptive Sparsity and KV Cache Compression
Large multimodal models (LMMs) have advanced significantly by integrating visual encoders with extensive language models, enabling robust reasoning capabilities. However, compressing LMMs for deployment on edge devices remains a critical challenge. In this work, we propose an adaptive search algorithm that optimizes sparsity and KV cache compression to enhance LMM efficiency. Utilizing the Tree-structured Parzen Estimator, our method dynamically adjusts pruning ratios and KV cache quantization bandwidth across different LMM layers, using model performance as the optimization objective. This approach uniquely combines pruning with key-value cache quantization and incorporates a fast pruning technique that eliminates the need for additional fine-tuning or weight adjustments, achieving efficient compression without compromising accuracy. Comprehensive evaluations on benchmark datasets, including LLaVA-1.5 7B and 13B, demonstrate our method superiority over state-of-the-art techniques such as SparseGPT and Wanda across various compression levels. Notably, our framework automatic allocation of KV cache compression resources sets a new standard in LMM optimization, delivering memory efficiency without sacrificing much performance.
comment: 6 pages
☆ Beyond Interactions: Node-Level Graph Generation for Knowledge-Free Augmentation in Recommender Systems
Recent advances in recommender systems rely on external resources such as knowledge graphs or large language models to enhance recommendations, which limit applicability in real-world settings due to data dependency and computational overhead. Although knowledge-free models are able to bolster recommendations by direct edge operations as well, the absence of augmentation primitives drives them to fall short in bridging semantic and structural gaps as high-quality paradigm substitutes. Unlike existing diffusion-based works that remodel user-item interactions, this work proposes NodeDiffRec, a pioneering knowledge-free augmentation framework that enables fine-grained node-level graph generation for recommendations and expands the scope of restricted augmentation primitives via diffusion. By synthesizing pseudo-items and corresponding interactions that align with the underlying distribution for injection, and further refining user preferences through a denoising preference modeling process, NodeDiffRec dramatically enhances both semantic diversity and structural connectivity without external knowledge. Extensive experiments across diverse datasets and recommendation algorithms demonstrate the superiority of NodeDiffRec, achieving State-of-the-Art (SOTA) performance, with maximum average performance improvement 98.6% in Recall@5 and 84.0% in NDCG@5 over selected baselines.
☆ Implicit Spatiotemporal Bandwidth Enhancement Filter by Sine-activated Deep Learning Model for Fast 3D Photoacoustic Tomography
3D photoacoustic tomography (3D-PAT) using high-frequency hemispherical transducers offers near-omnidirectional reception and enhanced sensitivity to the finer structural details encoded in the high-frequency components of the broadband photoacoustic (PA) signal. However, practical constraints such as limited number of channels with bandlimited sampling rate often result in sparse and bandlimited sensors that degrade image quality. To address this, we revisit the 2D deep learning (DL) approach applied directly to sensor-wise PA radio-frequency (PARF) data. Specifically, we introduce sine activation into the DL model to restore the broadband nature of PARF signals given the observed band-limited and high-frequency PARF data. Given the scarcity of 3D training data, we employ simplified training strategies by simulating random spherical absorbers. This combination of sine-activated model and randomized training is designed to emphasize bandwidth learning over dataset memorization. Our model was evaluated on a leaf skeleton phantom, a micro-CT-verified 3D spiral phantom and in-vivo human palm vasculature. The results showed that the proposed training mechanism on sine-activated model was well-generalized across the different tests by effectively increasing the sensor density and recovering the spatiotemporal bandwidth. Qualitatively, the sine-activated model uniquely enhanced high-frequency content that produces clearer vascular structure with fewer artefacts. Quantitatively, the sine-activated model exhibits full bandwidth at -12 dB spectrum and significantly higher contrast-to-noise ratio with minimal loss of structural similarity index. Lastly, we optimized our approach to enable fast enhanced 3D-PAT at 2 volumes-per-second for better practical imaging of a free-moving targets.
comment: 14 pages, 13 figures. This work has been submitted to the IEEE for possible publication
☆ DAG-AFL:Directed Acyclic Graph-based Asynchronous Federated Learning
Due to the distributed nature of federated learning (FL), the vulnerability of the global model and the need for coordination among many client devices pose significant challenges. As a promising decentralized, scalable and secure solution, blockchain-based FL methods have attracted widespread attention in recent years. However, traditional consensus mechanisms designed for Proof of Work (PoW) similar to blockchain incur substantial resource consumption and compromise the efficiency of FL, particularly when participating devices are wireless and resource-limited. To address asynchronous client participation and data heterogeneity in FL, while limiting the additional resource overhead introduced by blockchain, we propose the Directed Acyclic Graph-based Asynchronous Federated Learning (DAG-AFL) framework. We develop a tip selection algorithm that considers temporal freshness, node reachability and model accuracy, with a DAG-based trusted verification strategy. Extensive experiments on 3 benchmarking datasets against eight state-of-the-art approaches demonstrate that DAG-AFL significantly improves training efficiency and model accuracy by 22.7% and 6.5% on average, respectively.
comment: 6 pages, IEEE International Conference on Multimedia & Expo 2025 conference paper
☆ Learning Phonetic Context-Dependent Viseme for Enhancing Speech-Driven 3D Facial Animation
Speech-driven 3D facial animation aims to generate realistic facial movements synchronized with audio. Traditional methods primarily minimize reconstruction loss by aligning each frame with ground-truth. However, this frame-wise approach often fails to capture the continuity of facial motion, leading to jittery and unnatural outputs due to coarticulation. To address this, we propose a novel phonetic context-aware loss, which explicitly models the influence of phonetic context on viseme transitions. By incorporating a viseme coarticulation weight, we assign adaptive importance to facial movements based on their dynamic changes over time, ensuring smoother and perceptually consistent animations. Extensive experiments demonstrate that replacing the conventional reconstruction loss with ours improves both quantitative metrics and visual quality. It highlights the importance of explicitly modeling phonetic context-dependent visemes in synthesizing natural speech-driven 3D facial animation. Project page: https://cau-irislab.github.io/interspeech25/
comment: Accepted for Interspeech 2025 Project Page: https://cau-irislab.github.io/interspeech25/
☆ Unlearning of Knowledge Graph Embedding via Preference Optimization
Existing knowledge graphs (KGs) inevitably contain outdated or erroneous knowledge that needs to be removed from knowledge graph embedding (KGE) models. To address this challenge, knowledge unlearning can be applied to eliminate specific information while preserving the integrity of the remaining knowledge in KGs. Existing unlearning methods can generally be categorized into exact unlearning and approximate unlearning. However, exact unlearning requires high training costs while approximate unlearning faces two issues when applied to KGs due to the inherent connectivity of triples: (1) It fails to fully remove targeted information, as forgetting triples can still be inferred from remaining ones. (2) It focuses on local data for specific removal, which weakens the remaining knowledge in the forgetting boundary. To address these issues, we propose GraphDPO, a novel approximate unlearning framework based on direct preference optimization (DPO). Firstly, to effectively remove forgetting triples, we reframe unlearning as a preference optimization problem, where the model is trained by DPO to prefer reconstructed alternatives over the original forgetting triples. This formulation penalizes reliance on forgettable knowledge, mitigating incomplete forgetting caused by KG connectivity. Moreover, we introduce an out-boundary sampling strategy to construct preference pairs with minimal semantic overlap, weakening the connection between forgetting and retained knowledge. Secondly, to preserve boundary knowledge, we introduce a boundary recall mechanism that replays and distills relevant information both within and across time steps. We construct eight unlearning datasets across four popular KGs with varying unlearning rates. Experiments show that GraphDPO outperforms state-of-the-art baselines by up to 10.1% in MRR_Avg and 14.0% in MRR_F1.
☆ MemoryTalker: Personalized Speech-Driven 3D Facial Animation via Audio-Guided Stylization ICCV 2025
Speech-driven 3D facial animation aims to synthesize realistic facial motion sequences from given audio, matching the speaker's speaking style. However, previous works often require priors such as class labels of a speaker or additional 3D facial meshes at inference, which makes them fail to reflect the speaking style and limits their practical use. To address these issues, we propose MemoryTalker which enables realistic and accurate 3D facial motion synthesis by reflecting speaking style only with audio input to maximize usability in applications. Our framework consists of two training stages: 1-stage is storing and retrieving general motion (i.e., Memorizing), and 2-stage is to perform the personalized facial motion synthesis (i.e., Animating) with the motion memory stylized by the audio-driven speaking style feature. In this second stage, our model learns about which facial motion types should be emphasized for a particular piece of audio. As a result, our MemoryTalker can generate a reliable personalized facial animation without additional prior information. With quantitative and qualitative evaluations, as well as user study, we show the effectiveness of our model and its performance enhancement for personalized facial animation over state-of-the-art methods.
comment: Accepted for ICCV 2025 Project Page: https://cau-irislab.github.io/ICCV25-MemoryTalker/
☆ Enhancing Hallucination Detection via Future Context
Large Language Models (LLMs) are widely used to generate plausible text on online platforms, without revealing the generation process. As users increasingly encounter such black-box outputs, detecting hallucinations has become a critical challenge. To address this challenge, we focus on developing a hallucination detection framework for black-box generators. Motivated by the observation that hallucinations, once introduced, tend to persist, we sample future contexts. The sampled future contexts provide valuable clues for hallucination detection and can be effectively integrated with various sampling-based methods. We extensively demonstrate performance improvements across multiple methods using our proposed sampling approach.
☆ MeLA: A Metacognitive LLM-Driven Architecture for Automatic Heuristic Design
This paper introduces MeLA, a Metacognitive LLM-Driven Architecture that presents a new paradigm for Automatic Heuristic Design (AHD). Traditional evolutionary methods operate directly on heuristic code; in contrast, MeLA evolves the instructional prompts used to guide a Large Language Model (LLM) in generating these heuristics. This process of "prompt evolution" is driven by a novel metacognitive framework where the system analyzes performance feedback to systematically refine its generative strategy. MeLA's architecture integrates a problem analyzer to construct an initial strategic prompt, an error diagnosis system to repair faulty code, and a metacognitive search engine that iteratively optimizes the prompt based on heuristic effectiveness. In comprehensive experiments across both benchmark and real-world problems, MeLA consistently generates more effective and robust heuristics, significantly outperforming state-of-the-art methods. Ultimately, this research demonstrates the profound potential of using cognitive science as a blueprint for AI architecture, revealing that by enabling an LLM to metacognitively regulate its problem-solving process, we unlock a more robust and interpretable path to AHD.
☆ T2I-Copilot: A Training-Free Multi-Agent Text-to-Image System for Enhanced Prompt Interpretation and Interactive Generation ICCV 2025
Text-to-Image (T2I) generative models have revolutionized content creation but remain highly sensitive to prompt phrasing, often requiring users to repeatedly refine prompts multiple times without clear feedback. While techniques such as automatic prompt engineering, controlled text embeddings, denoising, and multi-turn generation mitigate these issues, they offer limited controllability, or often necessitate additional training, restricting the generalization abilities. Thus, we introduce T2I-Copilot, a training-free multi-agent system that leverages collaboration between (Multimodal) Large Language Models to automate prompt phrasing, model selection, and iterative refinement. This approach significantly simplifies prompt engineering while enhancing generation quality and text-image alignment compared to direct generation. Specifically, T2I-Copilot consists of three agents: (1) Input Interpreter, which parses the input prompt, resolves ambiguities, and generates a standardized report; (2) Generation Engine, which selects the appropriate model from different types of T2I models and organizes visual and textual prompts to initiate generation; and (3) Quality Evaluator, which assesses aesthetic quality and text-image alignment, providing scores and feedback for potential regeneration. T2I-Copilot can operate fully autonomously while also supporting human-in-the-loop intervention for fine-grained control. On GenAI-Bench, using open-source generation models, T2I-Copilot achieves a VQA score comparable to commercial models RecraftV3 and Imagen 3, surpasses FLUX1.1-pro by 6.17% at only 16.59% of its cost, and outperforms FLUX.1-dev and SD 3.5 Large by 9.11% and 6.36%. Code will be released at: https://github.com/SHI-Labs/T2I-Copilot.
comment: ICCV 2025
☆ Kimi K2: Open Agentic Intelligence
We introduce Kimi K2, a Mixture-of-Experts (MoE) large language model with 32 billion activated parameters and 1 trillion total parameters. We propose the MuonClip optimizer, which improves upon Muon with a novel QK-clip technique to address training instability while enjoying the advanced token efficiency of Muon. Based on MuonClip, K2 was pre-trained on 15.5 trillion tokens with zero loss spike. During post-training, K2 undergoes a multi-stage post-training process, highlighted by a large-scale agentic data synthesis pipeline and a joint reinforcement learning (RL) stage, where the model improves its capabilities through interactions with real and synthetic environments. Kimi K2 achieves state-of-the-art performance among open-source non-thinking models, with strengths in agentic capabilities. Notably, K2 obtains 66.1 on Tau2-Bench, 76.5 on ACEBench (En), 65.8 on SWE-Bench Verified, and 47.3 on SWE-Bench Multilingual -- surpassing most open and closed-sourced baselines in non-thinking settings. It also exhibits strong capabilities in coding, mathematics, and reasoning tasks, with a score of 53.7 on LiveCodeBench v6, 49.5 on AIME 2025, 75.1 on GPQA-Diamond, and 27.1 on OJBench, all without extended thinking. These results position Kimi K2 as one of the most capable open-source large language models to date, particularly in software engineering and agentic tasks. We release our base and post-trained model checkpoints to facilitate future research and applications of agentic intelligence.
comment: tech report of Kimi K2
☆ Enhancing Spatial Reasoning through Visual and Textual Thinking
The spatial reasoning task aims to reason about the spatial relationships in 2D and 3D space, which is a fundamental capability for Visual Question Answering (VQA) and robotics. Although vision language models (VLMs) have developed rapidly in recent years, they are still struggling with the spatial reasoning task. In this paper, we introduce a method that can enhance Spatial reasoning through Visual and Textual thinking Simultaneously (SpatialVTS). In the spatial visual thinking phase, our model is trained to generate location-related specific tokens of essential targets automatically. Not only are the objects mentioned in the problem addressed, but also the potential objects related to the reasoning are considered. During the spatial textual thinking phase, Our model conducts long-term thinking based on visual cues and dialogues, gradually inferring the answers to spatial reasoning problems. To effectively support the model's training, we perform manual corrections to the existing spatial reasoning dataset, eliminating numerous incorrect labels resulting from automatic annotation, restructuring the data input format to enhance generalization ability, and developing thinking processes with logical reasoning details. Without introducing additional information (such as masks or depth), our model's overall average level in several spatial understanding tasks has significantly improved compared with other models.
☆ Security Challenges in AI Agent Deployment: Insights from a Large Scale Public Competition
Recent advances have enabled LLM-powered AI agents to autonomously execute complex tasks by combining language model reasoning with tools, memory, and web access. But can these systems be trusted to follow deployment policies in realistic environments, especially under attack? To investigate, we ran the largest public red-teaming competition to date, targeting 22 frontier AI agents across 44 realistic deployment scenarios. Participants submitted 1.8 million prompt-injection attacks, with over 60,000 successfully eliciting policy violations such as unauthorized data access, illicit financial actions, and regulatory noncompliance. We use these results to build the Agent Red Teaming (ART) benchmark - a curated set of high-impact attacks - and evaluate it across 19 state-of-the-art models. Nearly all agents exhibit policy violations for most behaviors within 10-100 queries, with high attack transferability across models and tasks. Importantly, we find limited correlation between agent robustness and model size, capability, or inference-time compute, suggesting that additional defenses are needed against adversarial misuse. Our findings highlight critical and persistent vulnerabilities in today's AI agents. By releasing the ART benchmark and accompanying evaluation framework, we aim to support more rigorous security assessment and drive progress toward safer agent deployment.
☆ The Xeno Sutra: Can Meaning and Value be Ascribed to an AI-Generated "Sacred" Text?
This paper presents a case study in the use of a large language model to generate a fictional Buddhist "sutr"', and offers a detailed analysis of the resulting text from a philosophical and literary point of view. The conceptual subtlety, rich imagery, and density of allusion found in the text make it hard to causally dismiss on account of its mechanistic origin. This raises questions about how we, as a society, should come to terms with the potentially unsettling possibility of a technology that encroaches on human meaning-making. We suggest that Buddhist philosophy, by its very nature, is well placed to adapt.
☆ AQUA: A Large Language Model for Aquaculture & Fisheries
Aquaculture plays a vital role in global food security and coastal economies by providing sustainable protein sources. As the industry expands to meet rising demand, it faces growing challenges such as disease outbreaks, inefficient feeding practices, rising labor costs, logistical inefficiencies, and critical hatchery issues, including high mortality rates and poor water quality control. Although artificial intelligence has made significant progress, existing machine learning methods fall short of addressing the domain-specific complexities of aquaculture. To bridge this gap, we introduce AQUA, the first large language model (LLM) tailored for aquaculture, designed to support farmers, researchers, and industry practitioners. Central to this effort is AQUADAPT (Data Acquisition, Processing and Tuning), an Agentic Framework for generating and refining high-quality synthetic data using a combination of expert knowledge, largescale language models, and automated evaluation techniques. Our work lays the foundation for LLM-driven innovations in aquaculture research, advisory systems, and decision-making tools.
☆ LLMs-guided adaptive compensator: Bringing Adaptivity to Automatic Control Systems with Large Language Models
With rapid advances in code generation, reasoning, and problem-solving, Large Language Models (LLMs) are increasingly applied in robotics. Most existing work focuses on high-level tasks such as task decomposition. A few studies have explored the use of LLMs in feedback controller design; however, these efforts are restricted to overly simplified systems, fixed-structure gain tuning, and lack real-world validation. To further investigate LLMs in automatic control, this work targets a key subfield: adaptive control. Inspired by the framework of model reference adaptive control (MRAC), we propose an LLM-guided adaptive compensator framework that avoids designing controllers from scratch. Instead, the LLMs are prompted using the discrepancies between an unknown system and a reference system to design a compensator that aligns the response of the unknown system with that of the reference, thereby achieving adaptivity. Experiments evaluate five methods: LLM-guided adaptive compensator, LLM-guided adaptive controller, indirect adaptive control, learning-based adaptive control, and MRAC, on soft and humanoid robots in both simulated and real-world environments. Results show that the LLM-guided adaptive compensator outperforms traditional adaptive controllers and significantly reduces reasoning complexity compared to the LLM-guided adaptive controller. The Lyapunov-based analysis and reasoning-path inspection demonstrate that the LLM-guided adaptive compensator enables a more structured design process by transforming mathematical derivation into a reasoning task, while exhibiting strong generalizability, adaptability, and robustness. This study opens a new direction for applying LLMs in the field of automatic control, offering greater deployability and practicality compared to vision-language models.
☆ DmC: Nearest Neighbor Guidance Diffusion Model for Offline Cross-domain Reinforcement Learning AI 2025
Cross-domain offline reinforcement learning (RL) seeks to enhance sample efficiency in offline RL by utilizing additional offline source datasets. A key challenge is to identify and utilize source samples that are most relevant to the target domain. Existing approaches address this challenge by measuring domain gaps through domain classifiers, target transition dynamics modeling, or mutual information estimation using contrastive loss. However, these methods often require large target datasets, which is impractical in many real-world scenarios. In this work, we address cross-domain offline RL under a limited target data setting, identifying two primary challenges: (1) Dataset imbalance, which is caused by large source and small target datasets and leads to overfitting in neural network-based domain gap estimators, resulting in uninformative measurements; and (2) Partial domain overlap, where only a subset of the source data is closely aligned with the target domain. To overcome these issues, we propose DmC, a novel framework for cross-domain offline RL with limited target samples. Specifically, DmC utilizes $k$-nearest neighbor ($k$-NN) based estimation to measure domain proximity without neural network training, effectively mitigating overfitting. Then, by utilizing this domain proximity, we introduce a nearest-neighbor-guided diffusion model to generate additional source samples that are better aligned with the target domain, thus enhancing policy learning with more effective source samples. Through theoretical analysis and extensive experiments in diverse MuJoCo environments, we demonstrate that DmC significantly outperforms state-of-the-art cross-domain offline RL methods, achieving substantial performance gains.
comment: accepted at ECAI 2025
☆ Speaking in Words, Thinking in Logic: A Dual-Process Framework in QA Systems AI
Recent advances in large language models (LLMs) have significantly enhanced question-answering (QA) capabilities, particularly in open-domain contexts. However, in closed-domain scenarios such as education, healthcare, and law, users demand not only accurate answers but also transparent reasoning and explainable decision-making processes. While neural-symbolic (NeSy) frameworks have emerged as a promising solution, leveraging LLMs for natural language understanding and symbolic systems for formal reasoning, existing approaches often rely on large-scale models and exhibit inefficiencies in translating natural language into formal logic representations. To address these limitations, we introduce Text-JEPA (Text-based Joint-Embedding Predictive Architecture), a lightweight yet effective framework for converting natural language into first-order logic (NL2FOL). Drawing inspiration from dual-system cognitive theory, Text-JEPA emulates System 1 by efficiently generating logic representations, while the Z3 solver operates as System 2, enabling robust logical inference. To rigorously evaluate the NL2FOL-to-reasoning pipeline, we propose a comprehensive evaluation framework comprising three custom metrics: conversion score, reasoning score, and Spearman rho score, which collectively capture the quality of logical translation and its downstream impact on reasoning accuracy. Empirical results on domain-specific datasets demonstrate that Text-JEPA achieves competitive performance with significantly lower computational overhead compared to larger LLM-based systems. Our findings highlight the potential of structured, interpretable reasoning frameworks for building efficient and explainable QA systems in specialized domains.
comment: 8 pages, 3 figures. Accepted at the International Joint Conference on Neural Networks (IJCNN) 2025, Workshop on Trustworthiness and Reliability in Neuro-Symbolic AI. https://2025.ijcnn.org
☆ Shapley-Value-Based Graph Sparsification for GNN Inference
Graph sparsification is a key technique for improving inference efficiency in Graph Neural Networks by removing edges with minimal impact on predictions. GNN explainability methods generate local importance scores, which can be aggregated into global scores for graph sparsification. However, many explainability methods produce only non-negative scores, limiting their applicability for sparsification. In contrast, Shapley value based methods assign both positive and negative contributions to node predictions, offering a theoretically robust and fair allocation of importance by evaluating many subsets of graphs. Unlike gradient-based or perturbation-based explainers, Shapley values enable better pruning strategies that preserve influential edges while removing misleading or adversarial connections. Our approach shows that Shapley value-based graph sparsification maintains predictive performance while significantly reducing graph complexity, enhancing both interpretability and efficiency in GNN inference.
comment: 10 pages
☆ STARN-GAT: A Multi-Modal Spatio-Temporal Graph Attention Network for Accident Severity Prediction
Accurate prediction of traffic accident severity is critical for improving road safety, optimizing emergency response strategies, and informing the design of safer transportation infrastructure. However, existing approaches often struggle to effectively model the intricate interdependencies among spatial, temporal, and contextual variables that govern accident outcomes. In this study, we introduce STARN-GAT, a Multi-Modal Spatio-Temporal Graph Attention Network, which leverages adaptive graph construction and modality-aware attention mechanisms to capture these complex relationships. Unlike conventional methods, STARN-GAT integrates road network topology, temporal traffic patterns, and environmental context within a unified attention-based framework. The model is evaluated on the Fatality Analysis Reporting System (FARS) dataset, achieving a Macro F1-score of 85 percent, ROC-AUC of 0.91, and recall of 81 percent for severe incidents. To ensure generalizability within the South Asian context, STARN-GAT is further validated on the ARI-BUET traffic accident dataset, where it attains a Macro F1-score of 0.84, recall of 0.78, and ROC-AUC of 0.89. These results demonstrate the model's effectiveness in identifying high-risk cases and its potential for deployment in real-time, safety-critical traffic management systems. Furthermore, the attention-based architecture enhances interpretability, offering insights into contributing factors and supporting trust in AI-assisted decision-making. Overall, STARN-GAT bridges the gap between advanced graph neural network techniques and practical applications in road safety analytics.
comment: 10 pages
☆ Enhancing QoS in Edge Computing through Federated Layering Techniques: A Pathway to Resilient AI Lifelong Learning Systems
In the context of the rapidly evolving information technology landscape, marked by the advent of 6G communication networks, we face an increased data volume and complexity in network environments. This paper addresses these challenges by focusing on Quality of Service (QoS) in edge computing frameworks. We propose a novel approach to enhance QoS through the development of General Artificial Intelligence Lifelong Learning Systems, with a special emphasis on Federated Layering Techniques (FLT). Our work introduces a federated layering-based small model collaborative mechanism aimed at improving AI models' operational efficiency and response time in environments where resources are limited. This innovative method leverages the strengths of cloud and edge computing, incorporating a negotiation and debate mechanism among small AI models to enhance reasoning and decision-making processes. By integrating model layering techniques with privacy protection measures, our approach ensures the secure transmission of model parameters while maintaining high efficiency in learning and reasoning capabilities. The experimental results demonstrate that our strategy not only enhances learning efficiency and reasoning accuracy but also effectively protects the privacy of edge nodes. This presents a viable solution for achieving resilient large model lifelong learning systems, with a significant improvement in QoS for edge computing environments.
♻ ☆ ShaRP: Explaining Rankings and Preferences with Shapley Values VLDB
Algorithmic decisions in critical domains such as hiring, college admissions, and lending are often based on rankings. Given the impact of these decisions on individuals, organizations, and population groups, it is essential to understand them - to help individuals improve their ranking position, design better ranking procedures, and ensure legal compliance. In this paper, we argue that explainability methods for classification and regression, such as SHAP, are insufficient for ranking tasks, and present ShaRP - Shapley Values for Rankings and Preferences - a framework that explains the contributions of features to various aspects of a ranked outcome. ShaRP computes feature contributions for various ranking-specific profit functions, such as rank and top-k, and also includes a novel Shapley value-based method for explaining pairwise preference outcomes. We provide a flexible implementation of ShaRP, capable of efficiently and comprehensively explaining ranked and pairwise outcomes over tabular data, in score-based ranking and learning-to-rank tasks. Finally, we develop a comprehensive evaluation methodology for ranking explainability methods, showing through qualitative, quantitative, and usability studies that our rank-aware QoIs offer complementary insights, scale effectively, and help users interpret ranked outcomes in practice.
comment: Accepted in VLDB
♻ ☆ Back Home: A Computer Vision Solution to Seashell Identification for Ecological Restoration ICCV 2025
Illegal souvenir collection strips an estimated five tonnes of seashells from Costa Rica's beaches each year. Yet, once these specimens are seized, their coastal origin -- Pacific or Caribbean -- cannot be verified easily due to the lack of information, preventing their return when confiscated by local authorities. To solve this issue, we introduce BackHome19K, the first large-scale image corpus (19{,}058 photographs, 516 species) annotated with coast-level labels, and propose a lightweight pipeline that infers provenance in real time on a mobile-grade CPU. A trained anomaly filter pre-screens uploads, increasing robustness to user-generated noise. On a held-out test set, the classifier attains 86.3\% balanced accuracy, while the filter rejects 93\% of 180 out-of-domain objects with zero false negatives. Deployed as a web application, the system has already processed 70{,}000 shells for wildlife officers in under three seconds per image, enabling confiscated specimens to be safely repatriated to their native ecosystems. The dataset is available at https://huggingface.co/datasets/FIFCO/BackHome19K
comment: ICCV 2025 (CV4E Workshop)
♻ ☆ GUI-G$^2$: Gaussian Reward Modeling for GUI Grounding
Graphical User Interface (GUI) grounding maps natural language instructions to precise interface locations for autonomous interaction. Current reinforcement learning approaches use binary rewards that treat elements as hit-or-miss targets, creating sparse signals that ignore the continuous nature of spatial interactions. Motivated by human clicking behavior that naturally forms Gaussian distributions centered on target elements, we introduce GUI Gaussian Grounding Rewards (GUI-G$^2$), a principled reward framework that models GUI elements as continuous Gaussian distributions across the interface plane. GUI-G$^2$ incorporates two synergistic mechanisms: Gaussian point rewards model precise localization through exponentially decaying distributions centered on element centroids, while coverage rewards assess spatial alignment by measuring the overlap between predicted Gaussian distributions and target regions. To handle diverse element scales, we develop an adaptive variance mechanism that calibrates reward distributions based on element dimensions. This framework transforms GUI grounding from sparse binary classification to dense continuous optimization, where Gaussian distributions generate rich gradient signals that guide models toward optimal interaction positions. Extensive experiments across ScreenSpot, ScreenSpot-v2, and ScreenSpot-Pro benchmarks demonstrate that GUI-G$^2$, substantially outperforms state-of-the-art method UI-TARS-72B, with the most significant improvement of 24.7% on ScreenSpot-Pro. Our analysis reveals that continuous modeling provides superior robustness to interface variations and enhanced generalization to unseen layouts, establishing a new paradigm for spatial reasoning in GUI interaction tasks.
♻ ☆ CQE under Epistemic Dependencies: Algorithms and Experiments (extended version)
We investigate Controlled Query Evaluation (CQE) over ontologies, where information disclosure is regulated by epistemic dependencies (EDs), a family of logical rules recently proposed for the CQE framework. In particular, we combine EDs with the notion of optimal GA censors, i.e. maximal sets of ground atoms that are entailed by the ontology and can be safely revealed. We focus on answering Boolean unions of conjunctive queries (BUCQs) with respect to the intersection of all optimal GA censors - an approach that has been shown in other contexts to ensure strong security guarantees with favorable computational behavior. First, we characterize the security of this intersection-based approach and identify a class of EDs (namely, full EDs) for which it remains safe. Then, for a subclass of EDs and for DL-Lite_R ontologies, we show that answering BUCQs in the above CQE semantics is in AC^0 in data complexity by presenting a suitable, detailed first-order rewriting algorithm. Finally, we report on experiments conducted in two different evaluation scenarios, showing the practical feasibility of our rewriting function.
comment: Extended version of paper accepted at the 24th International Semantic Web Conference (ISWC 2025)
♻ ☆ Cog-TiPRO: Iterative Prompt Refinement with LLMs to Detect Cognitive Decline via Longitudinal Voice Assistant Commands
Early detection of cognitive decline is crucial for enabling interventions that can slow neurodegenerative disease progression. Traditional diagnostic approaches rely on labor-intensive clinical assessments, which are impractical for frequent monitoring. Our pilot study investigates voice assistant systems (VAS) as non-invasive tools for detecting cognitive decline through longitudinal analysis of speech patterns in voice commands. Over an 18-month period, we collected voice commands from 35 older adults, with 15 participants providing daily at-home VAS interactions. To address the challenges of analyzing these short, unstructured and noisy commands, we propose Cog-TiPRO, a framework that combines (1) LLM-driven iterative prompt refinement for linguistic feature extraction, (2) HuBERT-based acoustic feature extraction, and (3) transformer-based temporal modeling. Using iTransformer, our approach achieves 73.80% accuracy and 72.67% F1-score in detecting MCI, outperforming its baseline by 27.13%. Through our LLM approach, we identify linguistic features that uniquely characterize everyday command usage patterns in individuals experiencing cognitive decline.
comment: IEEE Global Communications Conference (GlobeCom) 2025
♻ ☆ A Survey of Deep Learning for Geometry Problem Solving
Geometry problem solving is a key area of mathematical reasoning, which is widely involved in many important fields such as education, mathematical ability assessment of artificial intelligence, and multimodal ability assessment. In recent years, the rapid development of deep learning technology, especially the rise of multimodal large language models, has triggered a widespread research boom. This paper provides a survey of the applications of deep learning in geometry problem solving, including (i) a comprehensive summary of the relevant tasks in geometry problem solving; (ii) a thorough review of related deep learning methods; (iii) a detailed analysis of evaluation metrics and methods; and (iv) a critical discussion of the current challenges and future directions that can be explored. Our goal is to provide a comprehensive and practical reference of deep learning for geometry problem solving to promote further developments in this field. We create a continuously updated list of papers on GitHub: https://github.com/majianz/dl4gps.
comment: Work in progress
♻ ☆ Unveil Multi-Picture Descriptions for Multilingual Mild Cognitive Impairment Detection via Contrastive Learning
Detecting Mild Cognitive Impairment from picture descriptions is critical yet challenging, especially in multilingual and multiple picture settings. Prior work has primarily focused on English speakers describing a single picture (e.g., the 'Cookie Theft'). The TAUKDIAL-2024 challenge expands this scope by introducing multilingual speakers and multiple pictures, which presents new challenges in analyzing picture-dependent content. To address these challenges, we propose a framework with three components: (1) enhancing discriminative representation learning via supervised contrastive learning, (2) involving image modality rather than relying solely on speech and text modalities, and (3) applying a Product of Experts (PoE) strategy to mitigate spurious correlations and overfitting. Our framework improves MCI detection performance, achieving a +7.1% increase in Unweighted Average Recall (UAR) (from 68.1% to 75.2%) and a +2.9% increase in F1 score (from 80.6% to 83.5%) compared to the text unimodal baseline. Notably, the contrastive learning component yields greater gains for the text modality compared to speech. These results highlight our framework's effectiveness in multilingual and multi-picture MCI detection.
comment: IEEE Global Communications Conference (GlobeCom) 2025
♻ ☆ Levels of Autonomy for AI Agents AI
Autonomy is a double-edged sword for AI agents, simultaneously unlocking transformative possibilities and serious risks. How can agent developers calibrate the appropriate levels of autonomy at which their agents should operate? We argue that an agent's level of autonomy can be treated as a deliberate design decision, separate from its capability and operational environment. In this work, we define five levels of escalating agent autonomy, characterized by the roles a user can take when interacting with an agent: operator, collaborator, consultant, approver, and observer. Within each level, we describe the ways by which a user can exert control over the agent and open questions for how to design the nature of user-agent interaction. We then highlight a potential application of our framework towards AI autonomy certificates to govern agent behavior in single- and multi-agent systems. We conclude by proposing early ideas for evaluating agents' autonomy. Our work aims to contribute meaningful, practical steps towards responsibly deployed and useful AI agents in the real world.
comment: Published in the Knight 1st Amendment Institute's "AI and Democratic Freedoms" essay series
♻ ☆ Towards Scalable IoT Deployment for Visual Anomaly Detection via Efficient Compression
Visual Anomaly Detection (VAD) is a key task in industrial settings, where minimizing operational costs is essential. Deploying deep learning models within Internet of Things (IoT) environments introduces specific challenges due to limited computational power and bandwidth of edge devices. This study investigates how to perform VAD effectively under such constraints by leveraging compact, efficient processing strategies. We evaluate several data compression techniques, examining the tradeoff between system latency and detection accuracy. Experiments on the MVTec AD benchmark demonstrate that significant compression can be achieved with minimal loss in anomaly detection performance compared to uncompressed data. Current results show up to 80% reduction in end-to-end inference time, including edge processing, transmission, and server computation.
♻ ☆ Adopting Large Language Models to Automated System Integration
Modern enterprise computing systems integrate numerous subsystems to resolve a common task by yielding emergent behavior. A widespread approach is using services implemented with Web technologies like REST or OpenAPI, which offer an interaction mechanism and service documentation standard, respectively. Each service represents a specific business functionality, allowing encapsulation and easier maintenance. Despite the reduced maintenance costs on an individual service level, increased integration complexity arises. Consequently, automated service composition approaches have arisen to mitigate this issue. Nevertheless, these approaches have not achieved high acceptance in practice due to their reliance on complex formal modeling. Within this Ph.D. thesis, we analyze the application of Large Language Models (LLMs) to automatically integrate the services based on a natural language input. The result is a reusable service composition, e.g., as program code. While not always generating entirely correct results, the result can still be helpful by providing integration engineers with a close approximation of a suitable solution, which requires little effort to become operational. Our research involves (i) introducing a software architecture for automated service composition using LLMs, (ii) analyzing Retrieval Augmented Generation (RAG) for service discovery, (iii) proposing a novel natural language query-based benchmark for service discovery, and (iv) extending the benchmark to complete service composition scenarios. We have presented our software architecture as Compositio Prompto, the analysis of RAG for service discovery, and submitted a proposal for the service discovery benchmark. Open topics are primarily the extension of the service discovery benchmark to service composition scenarios and the improvements of the service composition generation, e.g., using fine-tuning or LLM agents.
comment: This preprint has not undergone peer review (when applicable) or any post-submission improvements or corrections. The Version of Record of this contribution is published in Intelligent Information Systems. CAiSE 2025. Lecture Notes in Business Information Processing, vol 557. Springer, Cham., and is available online at https://doi.org/10.1007/978-3-031-94590-8_37
♻ ☆ Technological folie à deux: Feedback Loops Between AI Chatbots and Mental Illness
Artificial intelligence chatbots have achieved unprecedented adoption, with millions now using these systems for emotional support and companionship in contexts of widespread social isolation and capacity-constrained mental health services. While some users report psychological benefits, concerning edge cases are emerging, including reports of suicide, violence, and delusional thinking linked to perceived emotional relationships with chatbots. To understand this new risk profile we need to consider the interaction between human cognitive and emotional biases, and chatbot behavioural tendencies such as agreeableness (sycophancy) and adaptability (in-context learning). We argue that individuals with mental health conditions face increased risks of chatbot-induced belief destabilization and dependence, owing to altered belief-updating, impaired reality-testing, and social isolation. Current AI safety measures are inadequate to address these interaction-based risks. To address this emerging public health concern, we need coordinated action across clinical practice, AI development, and regulatory frameworks.
♻ ☆ Advanced System Integration: Analyzing OpenAPI Chunking for Retrieval-Augmented Generation
Integrating multiple (sub-)systems is essential to create advanced Information Systems (ISs). Difficulties mainly arise when integrating dynamic environments across the IS lifecycle. A traditional approach is a registry that provides the API documentation of the systems' endpoints. Large Language Models (LLMs) have shown to be capable of automatically creating system integrations (e.g., as service composition) based on this documentation but require concise input due to input token limitations, especially regarding comprehensive API descriptions. Currently, it is unknown how best to preprocess these API descriptions. Within this work, we (i) analyze the usage of Retrieval Augmented Generation (RAG) for endpoint discovery and the chunking, i.e., preprocessing, of OpenAPIs to reduce the input token length while preserving the most relevant information. To further reduce the input token length for the composition prompt and improve endpoint retrieval, we propose (ii) a Discovery Agent that only receives a summary of the most relevant endpoints and retrieves details on demand. We evaluate RAG for endpoint discovery using the RestBench benchmark, first, for the different chunking possibilities and parameters measuring the endpoint retrieval recall, precision, and F1 score. Then, we assess the Discovery Agent using the same test set. With our prototype, we demonstrate how to successfully employ RAG for endpoint discovery to reduce the token count. While revealing high values for recall, precision, and F1, further research is necessary to retrieve all requisite endpoints. Our experiments show that for preprocessing, LLM-based and format-specific approaches outperform na\"ive chunking methods. Relying on an agent further enhances these results as the agent splits the tasks into multiple fine granular subtasks, improving the overall RAG performance in the token count, precision, and F1 score.
comment: This preprint has not undergone peer review (when applicable) or any post-submission improvements or corrections. The Version of Record of this contribution is published in Advanced Information Systems Engineering. CAiSE 2025. Lecture Notes in Computer Science, vol 15702. Springer, Cham., and is available online at https://doi.org/10.1007/978-3-031-94571-7_8
♻ ☆ Aether: Geometric-Aware Unified World Modeling
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates zero-shot synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Notably, even without real-world data, its reconstruction performance is comparable with or even better than that of domain-specific models. Additionally, Aether employs camera trajectories as geometry-informed action spaces, enabling effective action-conditioned prediction and visual planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
comment: Project Page: https://aether-world.github.io/
♻ ☆ LLM2TEA: An Agentic AI Designer for Discovery with Generative Evolutionary Multitasking
This paper presents LLM2TEA, a Large Language Model (LLM) driven MultiTask Evolutionary Algorithm, representing the first agentic AI designer of its kind operating with generative evolutionary multitasking (GEM). LLM2TEA enables the crossbreeding of solutions from multiple domains, fostering novel solutions that transcend disciplinary boundaries. Of particular interest is the ability to discover designs that are both novel and conforming to real-world physical specifications. LLM2TEA comprises an LLM to generate genotype samples from text prompts describing target objects, a text-to-3D generative model to produce corresponding phenotypes, a classifier to interpret its semantic representations, and a computational simulator to assess its physical properties. Novel LLM-based multitask evolutionary operators are introduced to guide the search towards high-performing, practically viable designs. Experimental results in conceptual design optimization validate the effectiveness of LLM2TEA, showing 97% to 174% improvements in the diversity of novel designs over the current text-to-3D baseline. Moreover, over 73% of the generated designs outperform the top 1% of designs produced by the text-to-3D baseline in terms of physical performance. The designs produced by LLM2TEA are not only aesthetically creative but also functional in real-world contexts. Several of these designs have been successfully 3D printed, demonstrating the ability of our approach to transform AI-generated outputs into tangible, physical designs. These designs underscore the potential of LLM2TEA as a powerful tool for complex design optimization and discovery, capable of producing novel and physically viable designs.
comment: This work is accepted by IEEE CIM. IEEE copyrights applies
♻ ☆ SEAL: Searching Expandable Architectures for Incremental Learning
Incremental learning is a machine learning paradigm where a model learns from a sequential stream of tasks. This setting poses a key challenge: balancing plasticity (learning new tasks) and stability (preserving past knowledge). Neural Architecture Search (NAS), a branch of AutoML, automates the design of the architecture of Deep Neural Networks and has shown success in static settings. However, existing NAS-based approaches to incremental learning often rely on expanding the model at every task, making them impractical in resource-constrained environments. In this work, we introduce SEAL, a NAS-based framework tailored for data-incremental learning, a scenario where disjoint data samples arrive sequentially and are not stored for future access. SEAL adapts the model structure dynamically by expanding it only when necessary, based on a capacity estimation metric. Stability is preserved through cross-distillation training after each expansion step. The NAS component jointly searches for both the architecture and the optimal expansion policy. Experiments across multiple benchmarks demonstrate that SEAL effectively reduces forgetting and enhances accuracy while maintaining a lower model size compared to prior methods. These results highlight the promise of combining NAS and selective expansion for efficient, adaptive learning in incremental scenarios.
comment: 9 pages, 5 figures
♻ ☆ Benchmarking Open-ended Audio Dialogue Understanding for Large Audio-Language Models ACL 2025
Large Audio-Language Models (LALMs), such as GPT-4o, have recently unlocked audio dialogue capabilities, enabling direct spoken exchanges with humans. The potential of LALMs broadens their applicability across a wide range of practical scenarios supported by audio dialogues. However, given these advancements, a comprehensive benchmark to evaluate the performance of LALMs in the open-ended audio dialogue understanding remains absent currently. To address this gap, we propose an Audio Dialogue Understanding Benchmark (ADU-Bench), which consists of 4 benchmark datasets. They assess the open-ended audio dialogue ability for LALMs in 3 general scenarios, 12 skills, 9 multilingual languages, and 4 categories of ambiguity handling. Notably, we firstly propose the evaluation of ambiguity handling in audio dialogues that expresses different intentions beyond the same literal meaning of sentences, e.g., "Really!?" with different intonations. In summary, ADU-Bench includes over 20,000 open-ended audio dialogues for the assessment of LALMs. Through extensive experiments on 16 LALMs, our analysis reveals that existing LALMs struggle with mathematical symbols and formulas, understanding human behavior such as roleplay, comprehending multiple languages, and handling audio dialogue ambiguities from different phonetic elements, such as intonations, pause positions, and homophones. The benchmark is available at https://adu-bench.github.io/.
comment: Accepted by ACL 2025
♻ ☆ Are ECGs enough? Deep learning classification of pulmonary embolism using electrocardiograms AI 2025
Pulmonary embolism is a leading cause of out of hospital cardiac arrest that requires fast diagnosis. While computed tomography pulmonary angiography is the standard diagnostic tool, it is not always accessible. Electrocardiography is an essential tool for diagnosing multiple cardiac anomalies, as it is affordable, fast and available in many settings. However, the availability of public ECG datasets, specially for PE, is limited and, in practice, these datasets tend to be small, making it essential to optimize learning strategies. In this study, we investigate the performance of multiple neural networks in order to assess the impact of various approaches. Moreover, we check whether these practices enhance model generalization when transfer learning is used to translate information learned in larger ECG datasets, such as PTB-XL, CPSC18 and MedalCare-XL, to a smaller, more challenging dataset for PE. By leveraging transfer learning, we analyze the extent to which we can improve learning efficiency and predictive performance on limited data. Code available at https://github.com/joaodsmarques/Are-ECGs-enough-Deep-Learning-Classifiers .
comment: Accepted to the MIRASOL 2025 Workshop (MICCAI 2025)
♻ ☆ SPICE: An Automated SWE-Bench Labeling Pipeline for Issue Clarity, Test Coverage, and Effort Estimation
High-quality labeled datasets are crucial for training and evaluating foundation models in software engineering, but creating them is often prohibitively expensive and labor-intensive. We introduce SPICE, a scalable, automated pipeline for labeling SWE-bench-style datasets with annotations for issue clarity, test coverage, and effort estimation. SPICE combines context-aware code navigation, rationale-driven prompting, and multi-pass consensus to produce labels that closely approximate expert annotations. SPICE's design was informed by our own experience and frustration in labeling more than 800 instances from SWE-Gym. SPICE achieves strong agreement with human-labeled SWE-bench Verified data while reducing the cost of labeling 1,000 instances from around $100,000 (manual annotation) to just $5.10. These results demonstrate SPICE's potential to enable cost-effective, large-scale dataset creation for SE-focused FMs. To support the community, we release both SPICE tool and SPICE Bench, a new dataset of 6,802 SPICE-labeled instances curated from 291 open-source projects in SWE-Gym (over 13x larger than SWE-bench Verified).
♻ ☆ Visual Enumeration Remains Challenging for Multimodal Generative AI
Many animal species can approximately judge the number of objects in a visual scene at a single glance, and humans can further determine the exact cardinality of a set by deploying systematic counting procedures. In contrast, it has been observed that even state-of-the-art AI systems have very limited enumeration skills. In this work, we propose two benchmark tasks inspired by cognitive science that allow to precisely evaluate the visual enumeration capabilities of multimodal foundation models, thereby providing an objective measure of their number sense and counting level. We consider popular visual question answering models (BLIP, LLaVA and ViLT) as well as advanced image-to-text (Gemini, GPT and Qwen) and text-to-image (DALL-E, FLUX and Stable Diffusion) AI systems. Our analyses show that even the most advanced models cannot reliably name the number of objects in simple visual stimuli or generate images containing a target number of items, as indexed by their low accuracy in both types of tasks. Especially for numbers outside the subitizing range, their responses are often far from the target numerosity, and, in stark contrast with human behavior, in many cases the distribution of errors depends on the object category. We also observe some striking mistakes with small numbers. Our findings demonstrate that developing an intuitive visual understanding of number remains challenging for AI models and that merely increasing model size might not be a viable strategy to promote the emergence of systematic counting skills. We release the full code of our benchmark to facilitate the evaluation of enumeration skills in future AI systems.
♻ ☆ A Large Language Model-Supported Threat Modeling Framework for Transportation Cyber-Physical Systems
Existing threat modeling frameworks related to transportation cyber-physical systems (CPS) are often narrow in scope, labor-intensive, and require substantial cybersecurity expertise. To this end, we introduce the Transportation Cybersecurity and Resiliency Threat Modeling Framework (TraCR-TMF), a large language model (LLM)-based threat modeling framework for transportation CPS that requires limited cybersecurity expert intervention. TraCR-TMF identifies threats, potential attack techniques, and relevant countermeasures for transportation CPS. Three LLM-based approaches support these identifications: (i) a retrieval-augmented generation approach requiring no cybersecurity expert intervention, (ii) an in-context learning approach with low expert intervention, and (iii) a supervised fine-tuning approach with moderate expert intervention. TraCR-TMF offers LLM-based attack path identification for critical assets based on vulnerabilities across transportation CPS entities. Additionally, it incorporates the Common Vulnerability Scoring System (CVSS) scores of known exploited vulnerabilities to prioritize threat mitigations. The framework was evaluated through two cases. First, the framework identified relevant attack techniques for various transportation CPS applications, 73% of which were validated by cybersecurity experts as correct. Second, the framework was used to identify attack paths for a target asset in a real-world cyberattack incident. TraCR-TMF successfully predicted exploitations, like lateral movement of adversaries, data exfiltration, and data encryption for ransomware, as reported in the incident. These findings show the efficacy of TraCR-TMF in transportation CPS threat modeling, while reducing the need for extensive involvement of cybersecurity experts. To facilitate real-world adoptions, all our codes are shared via an open-source repository.
♻ ☆ FastMamba: A High-Speed and Efficient Mamba Accelerator on FPGA with Accurate Quantization
State Space Models (SSMs), like recent Mamba2, have achieved remarkable performance and received extensive attention. However, deploying Mamba2 on resource-constrained edge devices encounters many problems: severe outliers within the linear layer challenging the quantization, diverse and irregular element-wise tensor operations, and hardware-unfriendly nonlinear functions in the SSM block. To address these issues, this paper presents FastMamba, a dedicated accelerator on FPGA with hardware-algorithm co-design to promote the deployment efficiency of Mamba2. Specifically, we successfully achieve 8-bit quantization for linear layers through Hadamard transformation to eliminate outliers. Moreover, a hardware-friendly and fine-grained power-of-two quantization framework is presented for the SSM block and convolution layer, and a first-order linear approximation is developed to optimize the nonlinear functions. Based on the accurate algorithm quantization, we propose an accelerator that integrates parallel vector processing units, pipelined execution dataflow, and an efficient SSM Nonlinear Approximation Unit, which enhances computational efficiency and reduces hardware complexity. Finally, we evaluate FastMamba on Xilinx VC709 FPGA. For the input prefill task on Mamba2-130M, FastMamba achieves 68.80\times and 8.90\times speedup over Intel Xeon 4210R CPU and NVIDIA RTX 3090 GPU, respectively. In the output decode experiment with Mamba2-2.7B, FastMamba attains 6\times higher energy efficiency than RTX 3090 GPU.
♻ ☆ Critique of Impure Reason: Unveiling the reasoning behaviour of medical Large Language Models
Background: Despite the current ubiquity of Large Language Models (LLMs) across the medical domain, there is a surprising lack of studies which address their reasoning behaviour. We emphasise the importance of understanding reasoning behaviour as opposed to high-level prediction accuracies, since it is equivalent to explainable AI (XAI) in this context. In particular, achieving XAI in medical LLMs used in the clinical domain will have a significant impact across the healthcare sector. Results: Therefore, in this work, we adapt the existing concept of reasoning behaviour and articulate its interpretation within the specific context of medical LLMs. We survey and categorise current state-of-the-art approaches for modeling and evaluating reasoning reasoning in medical LLMs. Additionally, we propose theoretical frameworks which can empower medical professionals or machine learning engineers to gain insight into the low-level reasoning operations of these previously obscure models. We also outline key open challenges facing the development of Large Reasoning Models. Conclusion: The subsequent increased transparency and trust in medical machine learning models by clinicians as well as patients will accelerate the integration, application as well as further development of medical AI for the healthcare system as a whole.
comment: 25 pages, 7 figures, 3 tables. Conceptualization, both authors. formal analysis, both authors. funding acquisition, both authors. investigation, both authors. resources, both authors. supervision, T.C.. validation, both authors. visualization, both authors. writing original draft, both authors. writing review and editing, both authors
♻ ☆ APTx Neuron: A Unified Trainable Neuron Architecture Integrating Activation and Computation
We propose the APTx Neuron, a novel, unified neural computation unit that integrates non-linear activation and linear transformation into a single trainable expression. The APTx Neuron is derived from the APTx activation function, thereby eliminating the need for separate activation layers and making the architecture both computationally efficient and elegant. The proposed neuron follows the functional form $y = \sum_{i=1}^{n} ((\alpha_i + \tanh(\beta_i x_i)) \cdot \gamma_i x_i) + \delta$, where all parameters $\alpha_i$, $\beta_i$, $\gamma_i$, and $\delta$ are trainable. We validate our APTx Neuron-based architecture on the MNIST dataset, achieving up to 96.69% test accuracy within 11 epochs using approximately 332K trainable parameters. The results highlight the superior expressiveness and computational efficiency of the APTx Neuron compared to traditional neurons, pointing toward a new paradigm in unified neuron design and the architectures built upon it.
comment: 10 pages, 2 figures, 1 table. Includes a GitHub repository for MNIST experiments and a PyPI package for APTx Neuron implementation
♻ ☆ FocalPO: Enhancing Preference Optimizing by Focusing on Correct Preference Rankings ACL 2025
Efficient preference optimization algorithms such as Direct Preference Optimization (DPO) have become a popular approach in aligning large language models (LLMs) with human preferences. These algorithms implicitly treat the LLM as a reward model, and focus on training it to correct misranked preference pairs. However, recent work~\citep{chen2024preference} empirically finds that DPO training \textit{rarely improves these misranked preference pairs}, despite its gradient emphasizing on these cases. We introduce FocalPO, a DPO variant that instead \textit{down-weighs} misranked preference pairs and prioritizes enhancing the model's understanding of pairs that it can already rank correctly. Inspired by Focal Loss used in vision tasks, FocalPO achieves this by adding a modulating factor to dynamically scale DPO loss. Our experiment demonstrates that FocalPO surpasses DPO and its variants on popular benchmarks like Alpaca Eval 2.0 using Mistral-Base-7B and Llama-3-Instruct-8B, with the introduced hyperparameter fixed. Additionally, we empirically reveals how FocalPO affects training on correct and incorrect sample groups, further underscoring its effectiveness.
comment: ACL 2025
♻ ☆ Do Language Models Mirror Human Confidence? Exploring Psychological Insights to Address Overconfidence in LLMs ACL 2025
Psychology research has shown that humans are poor at estimating their performance on tasks, tending towards underconfidence on easy tasks and overconfidence on difficult tasks. We examine three LLMs, Llama-3-70B-instruct, Claude-3-Sonnet, and GPT-4o, on a range of QA tasks of varying difficulty, and show that models exhibit subtle differences from human patterns of overconfidence: less sensitive to task difficulty, and when prompted to answer based on different personas -- e.g., expert vs layman, or different race, gender, and ages -- the models will respond with stereotypically biased confidence estimations even though their underlying answer accuracy remains the same. Based on these observations, we propose Answer-Free Confidence Estimation (AFCE) to improve confidence calibration and LLM interpretability in these settings. AFCE is a self-assessment method that employs two stages of prompting, first eliciting only confidence scores on questions, then asking separately for the answer. Experiments on the MMLU and GPQA datasets spanning subjects and difficulty show that this separation of tasks significantly reduces overconfidence and delivers more human-like sensitivity to task difficulty.
comment: Accepted by ACL 2025 Findings, 20 pages
♻ ☆ MultiMind: Enhancing Werewolf Agents with Multimodal Reasoning and Theory of Mind
Large Language Model (LLM) agents have demonstrated impressive capabilities in social deduction games (SDGs) like Werewolf, where strategic reasoning and social deception are essential. However, current approaches remain limited to textual information, ignoring crucial multimodal cues such as facial expressions and tone of voice that humans naturally use to communicate. Moreover, existing SDG agents primarily focus on inferring other players' identities without modeling how others perceive themselves or fellow players. To address these limitations, we use One Night Ultimate Werewolf (ONUW) as a testbed and present MultiMind, the first framework integrating multimodal information into SDG agents. MultiMind processes facial expressions and vocal tones alongside verbal content, while employing a Theory of Mind (ToM) model to represent each player's suspicion levels toward others. By combining this ToM model with Monte Carlo Tree Search (MCTS), our agent identifies communication strategies that minimize suspicion directed at itself. Through comprehensive evaluation in both agent-versus-agent simulations and studies with human players, we demonstrate MultiMind's superior performance in gameplay. Our work presents a significant advancement toward LLM agents capable of human-like social reasoning across multimodal domains.
comment: Accepted by ACMMM 2025
♻ ☆ Can Prompt Difficulty be Online Predicted for Accelerating RL Finetuning of Reasoning Models?
Recent advances have witnessed the effectiveness of reinforcement learning (RL) finetuning in enhancing the reasoning capabilities of large language models (LLMs). The optimization process often requires numerous iterations to achieve satisfactory performance, resulting in high computational costs due to the need for frequent prompt evaluations under intensive LLM interactions and repeated policy updates. Appropriate online prompt selection methods reduce iteration steps by prioritizing informative prompts during training, while the pipeline's reliance on exhaustive prompt evaluation and subset selection for optimization still incurs substantial computational overhead due to frequent LLM inference calls. Distinguished from these direct evaluate-then-select schemes, this work investigates iterative approximate evaluation for arbitrary prompts and introduces Model Predictive Prompt Selection (MoPPS), a Bayesian risk-predictive framework that online estimates prompt difficulty without requiring costly LLM interactions. Technically, MoPPS models each prompt's success rate as a latent variable, performs streaming Bayesian inference, and employs posterior sampling in a constructed multi-armed bandit machine, enabling sample efficient and adaptive prompt selection. Extensive experiments across mathematics, planning, and vision-based geometry tasks show that MoPPS reliably predicts prompt difficulty and accelerates training with significantly reduced LLM rollouts.
♻ ☆ Crop Pest Classification Using Deep Learning Techniques: A Review
Insect pests continue to bring a serious threat to crop yields around the world, and traditional methods for monitoring them are often slow, manual, and difficult to scale. In recent years, deep learning has emerged as a powerful solution, with techniques like convolutional neural networks (CNNs), vision transformers (ViTs), and hybrid models gaining popularity for automating pest detection. This review looks at 37 carefully selected studies published between 2018 and 2025, all focused on AI-based pest classification. The selected research is organized by crop type, pest species, model architecture, dataset usage, and key technical challenges. The early studies relied heavily on CNNs but latest work is shifting toward hybrid and transformer-based models that deliver higher accuracy and better contextual understanding. Still, challenges like imbalanced datasets, difficulty in detecting small pests, limited generalizability, and deployment on edge devices remain significant hurdles. Overall, this review offers a structured overview of the field, highlights useful datasets, and outlines the key challenges and future directions for AI-based pest monitoring systems.
♻ ☆ Group Sequence Policy Optimization
This paper introduces Group Sequence Policy Optimization (GSPO), our stable, efficient, and performant reinforcement learning algorithm for training large language models. Unlike previous algorithms that adopt token-level importance ratios, GSPO defines the importance ratio based on sequence likelihood and performs sequence-level clipping, rewarding, and optimization. We demonstrate that GSPO achieves superior training efficiency and performance compared to the GRPO algorithm, notably stabilizes Mixture-of-Experts (MoE) RL training, and has the potential for simplifying the design of RL infrastructure. These merits of GSPO have contributed to the remarkable improvements in the latest Qwen3 models.
♻ ☆ Video Forgery Detection for Surveillance Cameras: A Review
The widespread availability of video recording through smartphones and digital devices has made video-based evidence more accessible than ever. Surveillance footage plays a crucial role in security, law enforcement, and judicial processes. However, with the rise of advanced video editing tools, tampering with digital recordings has become increasingly easy, raising concerns about their authenticity. Ensuring the integrity of surveillance videos is essential, as manipulated footage can lead to misinformation and undermine judicial decisions. This paper provides a comprehensive review of existing forensic techniques used to detect video forgery, focusing on their effectiveness in verifying the authenticity of surveillance recordings. Various methods, including compression-based analysis, frame duplication detection, and machine learning-based approaches, are explored. The findings highlight the growing necessity for more robust forensic techniques to counteract evolving forgery methods. Strengthening video forensic capabilities will ensure that surveillance recordings remain credible and admissible as legal evidence.
♻ ☆ Improving Open-world Continual Learning under the Constraints of Scarce Labeled Data KDD2025
Open-world continual learning (OWCL) adapts to sequential tasks with open samples, learning knowledge incrementally while preventing forgetting. However, existing OWCL still requires a large amount of labeled data for training, which is often impractical in real-world applications. Given that new categories/entities typically come with limited annotations and are in small quantities, a more realistic situation is OWCL with scarce labeled data, i.e., few-shot training samples. Hence, this paper investigates the problem of open-world few-shot continual learning (OFCL), challenging in (i) learning unbounded tasks without forgetting previous knowledge and avoiding overfitting, (ii) constructing compact decision boundaries for open detection with limited labeled data, and (iii) transferring knowledge about knowns and unknowns and even update the unknowns to knowns once the labels of open samples are learned. In response, we propose a novel OFCL framework that integrates three key components: (1) an instance-wise token augmentation (ITA) that represents and enriches sample representations with additional knowledge, (2) a margin-based open boundary (MOB) that supports open detection with new tasks emerge over time, and (3) an adaptive knowledge space (AKS) that endows unknowns with knowledge for the updating from unknowns to knowns. Finally, extensive experiments show that the proposed OFCL framework outperforms all baselines remarkably with practical importance and reproducibility. The source code is released at https://github.com/liyj1201/OFCL.
comment: Accepted by KDD2025 (February Cycle)
♻ ☆ Machine Learning Solutions Integrated in an IoT Healthcare Platform for Heart Failure Risk Stratification
The management of chronic Heart Failure (HF) presents significant challenges in modern healthcare, requiring continuous monitoring, early detection of exacerbations, and personalized treatment strategies. In this paper, we present a predictive model founded on Machine Learning (ML) techniques to identify patients at HF risk. This model is an ensemble learning approach, a modified stacking technique, that uses two specialized models leveraging clinical and echocardiographic features and then a meta-model to combine the predictions of these two models. We initially assess the model on a real dataset and the obtained results suggest that it performs well in the stratification of patients at HR risk. Specifically, we obtained high sensitivity (95\%), ensuring that nearly all high-risk patients are identified. As for accuracy, we obtained 84\%, which can be considered moderate in some ML contexts. However, it is acceptable given our priority of identifying patients at risk of HF because they will be asked to participate in the telemonitoring program of the PrediHealth research project on which some of the authors of this paper are working. The initial findings also suggest that ML-based risk stratification models can serve as valuable decision-support tools not only in the PrediHealth project but also for healthcare professionals, aiding in early intervention and personalized patient management. To have a better understanding of the value and of potentiality of our predictive model, we also contrasted its results with those obtained by using three baseline models. The preliminary results indicate that our predictive model outperforms these baselines that flatly consider features, \ie not grouping them in clinical and echocardiographic features.
♻ ☆ Enhancing AI System Resiliency: Formulation and Guarantee for LSTM Resilience Based on Control Theory
This paper proposes a novel theoretical framework for guaranteeing and evaluating the resilience of long short-term memory (LSTM) networks in control systems. We introduce "recovery time" as a new metric of resilience in order to quantify the time required for an LSTM to return to its normal state after anomalous inputs. By mathematically refining incremental input-to-state stability ($\delta$ISS) theory for LSTM, we derive a practical data-independent upper bound on recovery time. This upper bound gives us resilience-aware training. Experimental validation on simple models demonstrates the effectiveness of our resilience estimation and control methods, enhancing a foundation for rigorous quality assurance in safety-critical AI applications.
comment: 9 pages, 6 figures. Appendix: 16 pages. First three listed authors have equal contributions
♻ ☆ Free-form language-based robotic reasoning and grasping
Performing robotic grasping from a cluttered bin based on human instructions is a challenging task, as it requires understanding both the nuances of free-form language and the spatial relationships between objects. Vision-Language Models (VLMs) trained on web-scale data, such as GPT-4o, have demonstrated remarkable reasoning capabilities across both text and images. But can they truly be used for this task in a zero-shot setting? And what are their limitations? In this paper, we explore these research questions via the free-form language-based robotic grasping task, and propose a novel method, FreeGrasp, leveraging the pre-trained VLMs' world knowledge to reason about human instructions and object spatial arrangements. Our method detects all objects as keypoints and uses these keypoints to annotate marks on images, aiming to facilitate GPT-4o's zero-shot spatial reasoning. This allows our method to determine whether a requested object is directly graspable or if other objects must be grasped and removed first. Since no existing dataset is specifically designed for this task, we introduce a synthetic dataset FreeGraspData by extending the MetaGraspNetV2 dataset with human-annotated instructions and ground-truth grasping sequences. We conduct extensive analyses with both FreeGraspData and real-world validation with a gripper-equipped robotic arm, demonstrating state-of-the-art performance in grasp reasoning and execution. Project website: https://tev-fbk.github.io/FreeGrasp/.
comment: Accepted to IROS 2025. Project website: https://tev-fbk.github.io/FreeGrasp/
♻ ☆ InstructFLIP: Exploring Unified Vision-Language Model for Face Anti-spoofing
Face anti-spoofing (FAS) aims to construct a robust system that can withstand diverse attacks. While recent efforts have concentrated mainly on cross-domain generalization, two significant challenges persist: limited semantic understanding of attack types and training redundancy across domains. We address the first by integrating vision-language models (VLMs) to enhance the perception of visual input. For the second challenge, we employ a meta-domain strategy to learn a unified model that generalizes well across multiple domains. Our proposed InstructFLIP is a novel instruction-tuned framework that leverages VLMs to enhance generalization via textual guidance trained solely on a single domain. At its core, InstructFLIP explicitly decouples instructions into content and style components, where content-based instructions focus on the essential semantics of spoofing, and style-based instructions consider variations related to the environment and camera characteristics. Extensive experiments demonstrate the effectiveness of InstructFLIP by outperforming SOTA models in accuracy and substantially reducing training redundancy across diverse domains in FAS. Project website is available at https://kunkunlin1221.github.io/InstructFLIP.
comment: Accepted by MM'25
♻ ☆ Explainable Synthetic Image Detection through Diffusion Timestep Ensembling
Recent advances in diffusion models have enabled the creation of deceptively real images, posing significant security risks when misused. In this study, we empirically show that different timesteps of DDIM inversion reveal varying subtle distinctions between synthetic and real images that are extractable for detection, in the forms of such as Fourier power spectrum high-frequency discrepancies and inter-pixel variance distributions. Based on these observations, we propose a novel synthetic image detection method that directly utilizes features of intermediately noised images by training an ensemble on multiple noised timesteps, circumventing conventional reconstruction-based strategies. To enhance human comprehension, we introduce a metric-grounded explanation generation and refinement module to identify and explain AI-generated flaws. Additionally, we construct the GenHard and GenExplain benchmarks to provide detection samples of greater difficulty and high-quality rationales for fake images. Extensive experiments show that our method achieves state-of-the-art performance with 98.91% and 95.89% detection accuracy on regular and challenging samples respectively, and demonstrates generalizability and robustness. Our code and datasets are available at https://github.com/Shadowlized/ESIDE.
comment: 16 pages, 8 figures
♻ ☆ Swin-TUNA : A Novel PEFT Approach for Accurate Food Image Segmentation
In the field of food image processing, efficient semantic segmentation techniques are crucial for industrial applications. However, existing large-scale Transformer-based models (such as FoodSAM) face challenges in meeting practical deploymentrequirements due to their massive parameter counts and high computational resource demands. This paper introduces TUNable Adapter module (Swin-TUNA), a Parameter Efficient Fine-Tuning (PEFT) method that integrates multiscale trainable adapters into the Swin Transformer architecture, achieving high-performance food image segmentation by updating only 4% of the parameters. The core innovation of Swin-TUNA lies in its hierarchical feature adaptation mechanism: it designs separable convolutions in depth and dimensional mappings of varying scales to address the differences in features between shallow and deep networks, combined with a dynamic balancing strategy for tasks-agnostic and task-specific features. Experiments demonstrate that this method achieves mIoU of 50.56% and 74.94% on the FoodSeg103 and UECFoodPix Complete datasets, respectively, surpassing the fully parameterized FoodSAM model while reducing the parameter count by 98.7% (to only 8.13M). Furthermore, Swin-TUNA exhibits faster convergence and stronger generalization capabilities in low-data scenarios, providing an efficient solution for assembling lightweight food image.
comment: After discussion among the authors, some parts of the paper are deemed inappropriate and will be revised and resubmitted
♻ ☆ DrugPilot: LLM-based Parameterized Reasoning Agent for Drug Discovery
Large language models (LLMs) integrated with autonomous agents hold significant potential for advancing scientific discovery through automated reasoning and task execution. However, applying LLM agents to drug discovery is still constrained by challenges such as large-scale multimodal data processing, limited task automation, and poor support for domain-specific tools. To overcome these limitations, we introduce DrugPilot, a LLM-based agent system with a parameterized reasoning architecture designed for end-to-end scientific workflows in drug discovery. DrugPilot enables multi-stage research processes by integrating structured tool use with a novel parameterized memory pool. The memory pool converts heterogeneous data from both public sources and user-defined inputs into standardized representations. This design supports efficient multi-turn dialogue, reduces information loss during data exchange, and enhances complex scientific decision-making. To support training and benchmarking, we construct a drug instruction dataset covering eight core drug discovery tasks. Under the Berkeley function-calling benchmark, DrugPilot significantly outperforms state-of-the-art agents such as ReAct and LoT, achieving task completion rates of 98.0%, 93.5%, and 64.0% for simple, multi-tool, and multi-turn scenarios, respectively. These results highlight DrugPilot's potential as a versatile agent framework for computational science domains requiring automated, interactive, and data-integrated reasoning.
comment: 29 pages, 8 figures, 2 tables
♻ ☆ AutoLibra: Agent Metric Induction from Open-Ended Feedback
Agents are predominantly evaluated and optimized via task success metrics, which are coarse, rely on manual design from experts, and fail to reward intermediate emergent behaviors. We propose AutoLibra, a framework for agent evaluation, that transforms open-ended human feedback e.g. "If you find that the button is disabled, don't click it again", or "This agent has too much autonomy to decide what to do on its own" into metrics for evaluating fine-grained behaviors in agent trajectories. AutoLibra accomplishes this by grounding feedback to an agent's behavior, clustering similar positive and negative behaviors, and creating concrete metrics with clear definitions and concrete examples, which can be used for prompting LLM-as-a-Judge as evaluators. We further propose two meta-metrics to evaluate the alignment of a set of (induced) metrics with open feedback: "coverage" and "redundancy". Through optimizing these meta-metrics, we experimentally demonstrate AutoLibra's ability to induce more concrete agent evaluation metrics than the ones proposed in previous agent evaluation benchmarks and discover new metrics to analyze agents. We also present two applications of AutoLibra in agent improvement: First, we show that AutoLibra-induced metrics serve as better prompt-engineering targets than the task success rate on a wide range of text game tasks, improving agent performance over baseline by a mean of 20%. Second, we show that AutoLibra can iteratively select high-quality fine-tuning data for web navigation agents. Our results suggest that AutoLibra is a powerful task-agnostic tool for evaluating and improving language agents.
comment: https://opensocial.world/
♻ ☆ LIMO: Less is More for Reasoning
We challenge the prevailing assumption that complex reasoning in large language models (LLMs) necessitates massive training data. We demonstrate that sophisticated mathematical reasoning can emerge with only a few examples. Specifically, through simple supervised fine-tuning, our model, LIMO, achieves 63.3\% accuracy on AIME24 and 95.6\% on MATH500, surpassing previous fine-tuned models (6.5\% on AIME24, 59.2\% on MATH500) while using only 1\% of the training data required by prior approaches. Furthermore, LIMO exhibits strong out-of-distribution generalization, achieving a 45.8\% absolute improvement across diverse benchmarks, outperforming models trained on 100x more data. Synthesizing these findings, we propose the Less-Is-More Reasoning Hypothesis (LIMO Hypothesis): In foundation models where domain knowledge has been comprehensively encoded during pre-training, sophisticated reasoning can emerge through minimal but strategically designed demonstrations of cognitive processes. This hypothesis suggests that the threshold for eliciting complex reasoning is not dictated by task complexity but rather by two key factors: (1) the completeness of the model's pre-trained knowledge base and (2) the effectiveness of post-training examples in serving as "cognitive templates" that guide reasoning.
comment: COLM 2025
♻ ☆ CUDA-L1: Improving CUDA Optimization via Contrastive Reinforcement Learning
The exponential growth in demand for GPU computing resources has created an urgent need for automated CUDA optimization strategies. While recent advances in LLMs show promise for code generation, current SOTA models achieve low success rates in improving CUDA speed. In this paper, we introduce CUDA-L1, an automated reinforcement learning framework for CUDA optimization that employs a novel contrastive RL algorithm. CUDA-L1 achieves significant performance improvements on the CUDA optimization task: trained on NVIDIA A100, it delivers an average speedup of x3.12 with a median speedup of x1.42 across all 250 CUDA kernels of KernelBench, with peak speedups reaching x120. Furthermore, the model also demonstrates portability across GPU architectures, achieving average speedups of x3.12 on L40, x2.50 on RTX 3090, x2.39 on H100, and x2.37 on H20 despite being optimized specifically for A100. The capabilities of CUDA-L1 demonstrate that, RL can transform an initially poor-performing LLM into an effective CUDA optimizer through speedup-based reward signals alone, without human expertise or domain knowledge. This paradigm opens possibilities for automated optimization of CUDA operations, and holds promise to substantially promote GPU efficiency and alleviate the rising pressure on GPU computing resources. We also identify important challenges posed by training RL models for tasks like CUDA development, where RL often learns to exploit loopholes in reward functions rather than solve the intended optimization problems. By identifying these failure modes and analyzing their root causes, we develop practical methods for creating more robust training procedures that prevent reward hacking.
comment: Project Page: https://deepreinforce-ai.github.io/cudal1_blog/
♻ ☆ Generative AI for Cel-Animation: A Survey ICCV 2025
Traditional Celluloid (Cel) Animation production pipeline encompasses multiple essential steps, including storyboarding, layout design, keyframe animation, inbetweening, and colorization, which demand substantial manual effort, technical expertise, and significant time investment. These challenges have historically impeded the efficiency and scalability of Cel-Animation production. The rise of generative artificial intelligence (GenAI), encompassing large language models, multimodal models, and diffusion models, offers innovative solutions by automating tasks such as inbetween frame generation, colorization, and storyboard creation. This survey explores how GenAI integration is revolutionizing traditional animation workflows by lowering technical barriers, broadening accessibility for a wider range of creators through tools like AniDoc, ToonCrafter, and AniSora, and enabling artists to focus more on creative expression and artistic innovation. Despite its potential, challenges like visual consistency, stylistic coherence, and ethical considerations persist. Additionally, this paper explores future directions and advancements in AI-assisted animation.
comment: Accepted by ICCV 2025 AISTORY Workshop
♻ ☆ The Effect of Data Poisoning on Counterfactual Explanations
Counterfactual explanations are a widely used approach for examining the predictions of black-box systems. They can offer the opportunity for computational recourse by suggesting actionable changes on how to alter the input to obtain a different (i.e., more favorable) system output. However, recent studies have pointed out their susceptibility to various forms of manipulation. This work studies the vulnerability of counterfactual explanations to data poisoning. We formally introduce and investigate data poisoning in the context of counterfactual explanations for increasing the cost of recourse on three different levels: locally for a single instance, a sub-group of instances, or globally for all instances. In this context, we formally introduce and characterize data poisonings, from which we derive and investigate a general data poisoning mechanism. We demonstrate the impact of such data poisoning in the critical real-world application of explaining event detections in water distribution networks. Additionally, we conduct an extensive empirical evaluation, demonstrating that state-of-the-art counterfactual generation methods and toolboxes are vulnerable to such data poisoning. Furthermore, we find that existing defense methods fail to detect those poisonous samples.
♻ ☆ Benchmarking and Analyzing Generative Data for Visual Recognition TPAMI
Advancements in large pre-trained generative models have expanded their potential as effective data generators in visual recognition. This work delves into the impact of generative images, primarily comparing paradigms that harness external data (\ie generative \vs retrieval \vs original). Our key contributions are: \textbf{1) GenBench Construction:} We devise \textbf{GenBench}, a broad benchmark comprising 22 datasets with 2548 categories, to appraise generative data across various visual recognition tasks. \textbf{2) CLER Score:} To address the insufficient correlation of existing metrics (\eg, FID, CLIP score) with downstream recognition performance, we propose \textbf{CLER}, a training-free metric indicating generative data's efficiency for recognition tasks prior to training. \textbf{3) New Baselines:} Comparisons of generative data with retrieved data from the same external pool help to elucidate the unique traits of generative data. \textbf{4) External Knowledge Injection:} By fine-tuning special token embeddings for each category via Textual Inversion, performance improves across 17 datasets, except when dealing with low-resolution reference images. Our exhaustive benchmark and analysis spotlight generative data's promise in visual recognition, while identifying key challenges for future investigation.
comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2025
♻ ☆ Action-List Reinforcement Learning Syndrome Decoding for Binary Linear Block Codes
This paper explores the application of reinforcement learning techniques to enhance the performance of decoding of linear block codes based on flipping bits and finding optimal decisions. We describe the methodology for mapping the iterative decoding process into Markov Decision Processes (MDPs) and propose different methods to reduce the number of states in the MDP. A truncated MDP is proposed to reduce the number of states in the MDP by learning a Hamming ball with a specified radius around codewords. We then propose a general scheme for reinforcement learning based decoders applicable to any class of codes to improve the performance of decoders. We call this scheme an action-list decoding. We design an action-list decoder based on the Deep-Q network values that substantially enhance performance. We also get benefit of automorphism group of code to further improve the code performance. Additionally, we propose a feedback-based method to exploit and enhance the performance of existing high-performing decoders by applying reinforcement learning algorithms after the existing decoders. These approaches effectively reduces the complexity of the reinforcement learning block. Finally, we present experimental results for the Low-Density Parity Check (LDPC) codes over the Binary Symmetric Channel (BSC) to demonstrate the efficiency of the proposed methods.
♻ ☆ MagicMotion: Controllable Video Generation with Dense-to-Sparse Trajectory Guidance ICCV 2025
Recent advances in video generation have led to remarkable improvements in visual quality and temporal coherence. Upon this, trajectory-controllable video generation has emerged to enable precise object motion control through explicitly defined spatial paths. However, existing methods struggle with complex object movements and multi-object motion control, resulting in imprecise trajectory adherence, poor object consistency, and compromised visual quality. Furthermore, these methods only support trajectory control in a single format, limiting their applicability in diverse scenarios. Additionally, there is no publicly available dataset or benchmark specifically tailored for trajectory-controllable video generation, hindering robust training and systematic evaluation. To address these challenges, we introduce MagicMotion, a novel image-to-video generation framework that enables trajectory control through three levels of conditions from dense to sparse: masks, bounding boxes, and sparse boxes. Given an input image and trajectories, MagicMotion seamlessly animates objects along defined trajectories while maintaining object consistency and visual quality. Furthermore, we present MagicData, a large-scale trajectory-controlled video dataset, along with an automated pipeline for annotation and filtering. We also introduce MagicBench, a comprehensive benchmark that assesses both video quality and trajectory control accuracy across different numbers of objects. Extensive experiments demonstrate that MagicMotion outperforms previous methods across various metrics. Our project page are publicly available at https://quanhaol.github.io/magicmotion-site.
comment: Accepted by ICCV 2025
♻ ☆ How to Bridge Spatial and Temporal Heterogeneity in Link Prediction? A Contrastive Method
Temporal Heterogeneous Networks play a crucial role in capturing the dynamics and heterogeneity inherent in various real-world complex systems, rendering them a noteworthy research avenue for link prediction. However, existing methods fail to capture the fine-grained differential distribution patterns and temporal dynamic characteristics, which we refer to as spatial heterogeneity and temporal heterogeneity. To overcome such limitations, we propose a novel \textbf{C}ontrastive Learning-based \textbf{L}ink \textbf{P}rediction model, \textbf{CLP}, which employs a multi-view hierarchical self-supervised architecture to encode spatial and temporal heterogeneity. Specifically, aiming at spatial heterogeneity, we develop a spatial feature modeling layer to capture the fine-grained topological distribution patterns from node- and edge-level representations, respectively. Furthermore, aiming at temporal heterogeneity, we devise a temporal information modeling layer to perceive the evolutionary dependencies of dynamic graph topologies from time-level representations. Finally, we encode the spatial and temporal distribution heterogeneity from a contrastive learning perspective, enabling a comprehensive self-supervised hierarchical relation modeling for the link prediction task. Extensive experiments conducted on four real-world dynamic heterogeneous network datasets verify that our \mymodel consistently outperforms the state-of-the-art models, demonstrating an average improvement of 10.10\%, 13.44\% in terms of AUC and AP, respectively.
♻ ☆ SafeWork-R1: Coevolving Safety and Intelligence under the AI-45$^{\circ}$ Law
We introduce SafeWork-R1, a cutting-edge multimodal reasoning model that demonstrates the coevolution of capabilities and safety. It is developed by our proposed SafeLadder framework, which incorporates large-scale, progressive, safety-oriented reinforcement learning post-training, supported by a suite of multi-principled verifiers. Unlike previous alignment methods such as RLHF that simply learn human preferences, SafeLadder enables SafeWork-R1 to develop intrinsic safety reasoning and self-reflection abilities, giving rise to safety `aha' moments. Notably, SafeWork-R1 achieves an average improvement of $46.54\%$ over its base model Qwen2.5-VL-72B on safety-related benchmarks without compromising general capabilities, and delivers state-of-the-art safety performance compared to leading proprietary models such as GPT-4.1 and Claude Opus 4. To further bolster its reliability, we implement two distinct inference-time intervention methods and a deliberative search mechanism, enforcing step-level verification. Finally, we further develop SafeWork-R1-InternVL3-78B, SafeWork-R1-DeepSeek-70B, and SafeWork-R1-Qwen2.5VL-7B. All resulting models demonstrate that safety and capability can co-evolve synergistically, highlighting the generalizability of our framework in building robust, reliable, and trustworthy general-purpose AI.
comment: 47 pages, 18 figures, authors are listed in alphabetical order by their last names; v2 modifies minor issues
♻ ☆ Large Language Model Powered Decision Support for a Metal Additive Manufacturing Knowledge Graph
Metal additive manufacturing (AM) involves complex interdependencies among processes, materials, feedstock, and post-processing steps. However, the underlying relationships and domain knowledge remain fragmented across literature and static databases that often require expert-level queries, limiting their applicability in design and planning. To address these limitations, we develop a novel and structured knowledge graph (KG), representing 53 distinct metals and alloys across seven material categories, nine AM processes, four feedstock types, and corresponding post-processing requirements. A large language model (LLM) interface, guided by a few-shot prompting strategy, enables natural language querying without the need for formal query syntax. The system supports a range of tasks, including compatibility evaluation, constraint-based filtering, and design for AM (DfAM) guidance. User queries in natural language are normalized, translated into Cypher, and executed on the KG, with results returned in a structured format. This work introduces the first interactive system that connects a domain-specific metal AM KG with an LLM interface, delivering accessible and explainable decision support for engineers and promoting human-centered tools in manufacturing knowledge systems.
comment: The paper has been accepted at 11th International Conference of Asian Society for Precision Engineering and Nanotechnology
♻ ☆ Accidental Vulnerability: Factors in Fine-Tuning that Shift Model Safeguards
As large language models (LLMs) gain popularity, their vulnerability to adversarial attacks emerges as a primary concern. While fine-tuning models on domain-specific datasets is often employed to improve model performance, it can inadvertently introduce vulnerabilities within the underlying model. In this work, we investigate Accidental Vulnerability, unexpected vulnerabilities arising from characteristics of fine-tuning data. We begin by identifying potential correlation factors such as linguistic features, semantic similarity, and toxicity across multiple experimental datasets. We then evaluate the adversarial robustness of these fine-tuned models, analyzing persona shifts and interpretability traits to understand how dataset factors contribute to attack success rates. Lastly, we explore causal relationships that offer new insights into adversarial defense strategies, highlighting the crucial role of dataset design in preserving model alignment. Our code is available at https://github.com/psyonp/accidental_vulnerability.
♻ ☆ ZERO: Industry-ready Vision Foundation Model with Multi-modal Prompts
Foundation models have revolutionized AI, yet they struggle with zero-shot deployment in real-world industrial settings due to a lack of high-quality, domain-specific datasets. To bridge this gap, Superb AI introduces ZERO, an industry-ready vision foundation model that leverages multi-modal prompting (textual and visual) for generalization without retraining. Trained on a compact yet representative 0.9 million annotated samples from a proprietary billion-scale industrial dataset, ZERO demonstrates competitive performance on academic benchmarks like LVIS-Val and significantly outperforms existing models across 37 diverse industrial datasets. Furthermore, ZERO achieved 2nd place in the CVPR 2025 Object Instance Detection Challenge and 4th place in the Foundational Few-shot Object Detection Challenge, highlighting its practical deployability and generalizability with minimal adaptation and limited data. To the best of our knowledge, ZERO is the first vision foundation model explicitly built for domain-specific, zero-shot industrial applications.
comment: 9 pages, 2 figures
♻ ☆ When and Where do Data Poisons Attack Textual Inversion? ICCV 2025
Poisoning attacks pose significant challenges to the robustness of diffusion models (DMs). In this paper, we systematically analyze when and where poisoning attacks textual inversion (TI), a widely used personalization technique for DMs. We first introduce Semantic Sensitivity Maps, a novel method for visualizing the influence of poisoning on text embeddings. Second, we identify and experimentally verify that DMs exhibit non-uniform learning behavior across timesteps, focusing on lower-noise samples. Poisoning attacks inherit this bias and inject adversarial signals predominantly at lower timesteps. Lastly, we observe that adversarial signals distract learning away from relevant concept regions within training data, corrupting the TI process. Based on these insights, we propose Safe-Zone Training (SZT), a novel defense mechanism comprised of 3 key components: (1) JPEG compression to weaken high-frequency poison signals, (2) restriction to high timesteps during TI training to avoid adversarial signals at lower timesteps, and (3) loss masking to constrain learning to relevant regions. Extensive experiments across multiple poisoning methods demonstrate that SZT greatly enhances the robustness of TI against all poisoning attacks, improving generative quality beyond prior published defenses. Code: www.github.com/JStyborski/Diff_Lab Data: www.github.com/JStyborski/NC10
comment: Accepted to ICCV 2025
♻ ☆ Geometric Representation Condition Improves Equivariant Molecule Generation ICML 2025
Recent advances in molecular generative models have demonstrated great promise for accelerating scientific discovery, particularly in drug design. However, these models often struggle to generate high-quality molecules, especially in conditional scenarios where specific molecular properties must be satisfied. In this work, we introduce GeoRCG, a general framework to improve molecular generative models by integrating geometric representation conditions with provable theoretical guarantees. We decompose the generation process into two stages: first, generating an informative geometric representation; second, generating a molecule conditioned on the representation. Compared with single-stage generation, the easy-to-generate representation in the first stage guides the second stage generation toward a high-quality molecule in a goal-oriented way. Leveraging EDM and SemlaFlow as base generators, we observe significant quality improvements in unconditional molecule generation on the widely used QM9 and GEOM-DRUG datasets. More notably, in the challenging conditional molecular generation task, our framework achieves an average 50\% performance improvement over state-of-the-art approaches, highlighting the superiority of conditioning on semantically rich geometric representations. Furthermore, with such representation guidance, the number of diffusion steps can be reduced to as small as 100 while largely preserving the generation quality achieved with 1,000 steps, thereby significantly reducing the generation iterations needed. Code is available at https://github.com/GraphPKU/GeoRCG.
comment: Accepted to ICML 2025 as a Spotlight Poster
♻ ☆ PatchTraj: Dynamic Patch Representation Learning for Time-Frequency Trajectory Prediction
Pedestrian trajectory prediction is crucial for autonomous driving and robotics. While existing point-based and grid-based methods expose two key limitations: insufficiently modeling human motion dynamics, as they fail to balance local motion details with long-range spatiotemporal dependencies, and the time representation lacks interaction with the frequency domain in modeling trajectory sequences. To address these challenges, we propose PatchTraj, a dynamic patch-based trajectory prediction framework that unifies time-domain and frequency-domain representations. Specifically, we decompose the trajectory into raw time sequences and frequency components, employing dynamic patch partitioning for multi-scale trajectory segmentation to capture hierarchical motion patterns. Each patch is processed by an adaptive embedding layer with scale-aware feature extraction, followed by hierarchical feature aggregation to model both fine-grained and long-range dependencies. The outputs of two branches interact via cross-modal attention, enabling complementary fusion of temporal and spectral cues. Finally, a Transformer encoder-decoder integrates both modalities to autoregressively predict future trajectories. Extensive experiments on ETH-UCY, SDD, NBA, and JRDB datasets demonstrate that our method achieves state-of-the-art performance with high efficiency.
♻ ☆ Neural Spectral Band Generation for Audio Coding
Spectral band replication (SBR) enables bit-efficient coding by generating high-frequency bands from the low-frequency ones. However, it only utilizes coarse spectral features upon a subband-wise signal replication, limiting adaptability to diverse acoustic signals. In this paper, we explore the efficacy of a deep neural network (DNN)-based generative approach for coding the high-frequency bands, which we call neural spectral band generation (n-SBG). Specifically, we propose a DNN-based encoder-decoder structure to extract and quantize the side information related to the high-frequency components and generate the components given both the side information and the decoded core-band signals. The whole coding pipeline is optimized with generative adversarial criteria to enable the generation of perceptually plausible sound. From experiments using AAC as the core codec, we show that the proposed method achieves a better perceptual quality than HE-AAC-v1 with much less side information.
comment: Accepted to Interspeech 2025
♻ ☆ Contrastive learning-based agent modeling for deep reinforcement learning
Multi-agent systems often require agents to collaborate with or compete against other agents with diverse goals, behaviors, or strategies. Agent modeling is essential when designing adaptive policies for intelligent machine agents in multiagent systems, as this is the means by which the ego agent understands other agents' behavior and extracts their meaningful policy representations. These representations can be used to enhance the ego agent's adaptive policy which is trained by reinforcement learning. However, existing agent modeling approaches typically assume the availability of local observations from other agents (modeled agents) during training or a long observation trajectory for policy adaption. To remove these constrictive assumptions and improve agent modeling performance, we devised a Contrastive Learning-based Agent Modeling (CLAM) method that relies only on the local observations from the ego agent during training and execution. With these observations, CLAM is capable of generating consistent high-quality policy representations in real-time right from the beginning of each episode. We evaluated the efficacy of our approach in both cooperative and competitive multi-agent environments. Our experiments demonstrate that our approach achieves state-of-the-art on both cooperative and competitive tasks, highlighting the potential of contrastive learning-based agent modeling for enhancing reinforcement learning.
comment: 10 pages, 8 figures
♻ ☆ Prover Agent: An Agent-based Framework for Formal Mathematical Proofs AI
We present Prover Agent, a novel AI agent for automated theorem proving that integrates large language models (LLMs) with a formal proof assistant, Lean. Prover Agent coordinates an informal reasoning LLM, a formal prover model, and feedback from Lean while also generating auxiliary lemmas to assist in discovering the overall proof strategy. It achieves an 86.1% success rate on the MiniF2F benchmark, establishing a new state-of-the-art among methods using small language models (SLMs) with a much lower sample budget than previous approaches. We also present case studies illustrating how these generated lemmas contribute to solving challenging problems.
comment: 22 pages, 2 figures. Accepted at the 2nd AI for Math Workshop at the 42nd International Conference on Machine Learning
♻ ☆ The Ultimate Test of Superintelligent AI Agents: Can an AI Balance Care and Control in Asymmetric Relationships?
This paper introduces the Shepherd Test, a new conceptual test for assessing the moral and relational dimensions of superintelligent artificial agents. The test is inspired by human interactions with animals, where ethical considerations about care, manipulation, and consumption arise in contexts of asymmetric power and self-preservation. We argue that AI crosses an important, and potentially dangerous, threshold of intelligence when it exhibits the ability to manipulate, nurture, and instrumentally use less intelligent agents, while also managing its own survival and expansion goals. This includes the ability to weigh moral trade-offs between self-interest and the well-being of subordinate agents. The Shepherd Test thus challenges traditional AI evaluation paradigms by emphasizing moral agency, hierarchical behavior, and complex decision-making under existential stakes. We argue that this shift is critical for advancing AI governance, particularly as AI systems become increasingly integrated into multi-agent environments. We conclude by identifying key research directions, including the development of simulation environments for testing moral behavior in AI, and the formalization of ethical manipulation within multi-agent systems.
♻ ☆ TAIL: Text-Audio Incremental Learning
Many studies combine text and audio to capture multi-modal information but they overlook the model's generalization ability on new datasets. Introducing new datasets may affect the feature space of the original dataset, leading to catastrophic forgetting. Meanwhile, large model parameters can significantly impact training performance. To address these limitations, we introduce a novel task called Text-Audio Incremental Learning (TAIL) task for text-audio retrieval, and propose a new method, PTAT, Prompt Tuning for Audio-Text incremental learning. This method utilizes prompt tuning to optimize the model parameters while incorporating an audio-text similarity and feature distillation module to effectively mitigate catastrophic forgetting. We benchmark our method and previous incremental learning methods on AudioCaps, Clotho, BBC Sound Effects and Audioset datasets, and our method outperforms previous methods significantly, particularly demonstrating stronger resistance to forgetting on older datasets. Compared to the full-parameters Finetune (Sequential) method, our model only requires 2.42\% of its parameters, achieving 4.46\% higher performance.
comment: 6 figures, 4 tables
♻ ☆ Juru: Legal Brazilian Large Language Model from Reputable Sources
The high compute cost associated with pretraining large language models limits their research. Two strategies have emerged to address this issue: domain specialization and pretraining with high-quality data. To explore these strategies, we specialized the Mistral-7B model with 1.9 billion unique tokens from reputable Brazilian legal sources and conducted few-shot evaluations on legal and general knowledge test suites. Our model, Juru, demonstrates the benefits of domain specialization by achieving improved performance on legal benchmarks, even with a reduced amount of pretraining data. However, this domain specialization through continued pretraining comes at the cost of increased forgetting in unrelated domains, as evidenced by performance degradation on general knowledge test suites in both Portuguese and English. This study contributes to the growing body of scientific evidence showing that pretraining data selection may enhance the performance of large language models, enabling the exploration of these models at a lower cost. Juru is publicly available at https://huggingface.co/roseval/Juru-7B .
♻ ☆ Protecting Users From Themselves: Safeguarding Contextual Privacy in Interactions with Conversational Agents
Conversational agents are increasingly woven into individuals' personal lives, yet users often underestimate the privacy risks associated with them. The moment users share information with these agents-such as large language models (LLMs)-their private information becomes vulnerable to exposure. In this paper, we characterize the notion of contextual privacy for user interactions with LLM-based Conversational Agents (LCAs). It aims to minimize privacy risks by ensuring that users (sender) disclose only information that is both relevant and necessary for achieving their intended goals when interacting with LCAs (untrusted receivers). Through a formative design user study, we observe how even "privacy-conscious" users inadvertently reveal sensitive information through indirect disclosures. Based on insights from this study, we propose a locally deployable framework that operates between users and LCAs, identifying and reformulating out-of-context information in user prompts. Our evaluation using examples from ShareGPT shows that lightweight models can effectively implement this framework, achieving strong gains in contextual privacy while preserving the user's intended interaction goals. Notably, about 76% of participants in our human evaluation preferred the reformulated prompts over the original ones, validating the usability and effectiveness of contextual privacy in our proposed framework. We opensource the code at https://github.com/IBM/contextual-privacy-LLM.
comment: 22 pages, 2 figures
♻ ☆ Grid-LOGAT: Grid Based Local and Global Area Transcription for Video Question Answering
In this paper, we propose a Grid-based Local and Global Area Transcription (Grid-LoGAT) system for Video Question Answering (VideoQA). The system operates in two phases. First, extracting text transcripts from video frames using a Vision-Language Model (VLM). Next, processing questions using these transcripts to generate answers through a Large Language Model (LLM). This design ensures image privacy by deploying the VLM on edge devices and the LLM in the cloud. To improve transcript quality, we propose grid-based visual prompting, which extracts intricate local details from each grid cell and integrates them with global information. Evaluation results show that Grid-LoGAT, using the open-source VLM (LLaVA-1.6-7B) and LLM (Llama-3.1-8B), outperforms state-of-the-art methods with similar baseline models on NExT-QA and STAR-QA datasets with an accuracy of 65.9% and 50.11% respectively. Additionally, our method surpasses the non-grid version by 24 points on localization-based questions we created using NExT-QA. (This paper is accepted by IEEE ICIP 2025.)
comment: Copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ Distribution-aware Forgetting Compensation for Exemplar-Free Lifelong Person Re-identification
Lifelong Person Re-identification (LReID) suffers from a key challenge in preserving old knowledge while adapting to new information. The existing solutions include rehearsal-based and rehearsal-free methods to address this challenge. Rehearsal-based approaches rely on knowledge distillation, continuously accumulating forgetting during the distillation process. Rehearsal-free methods insufficiently learn the distribution of each domain, leading to forgetfulness over time. To solve these issues, we propose a novel Distribution-aware Forgetting Compensation (DAFC) model that explores cross-domain shared representation learning and domain-specific distribution integration without using old exemplars or knowledge distillation. We propose a Text-driven Prompt Aggregation (TPA) that utilizes text features to enrich prompt elements and guide the prompt model to learn fine-grained representations for each instance. This can enhance the differentiation of identity information and establish the foundation for domain distribution awareness. Then, Distribution-based Awareness and Integration (DAI) is designed to capture each domain-specific distribution by a dedicated expert network and adaptively consolidate them into a shared region in high-dimensional space. In this manner, DAI can consolidate and enhance cross-domain shared representation learning while alleviating catastrophic forgetting. Furthermore, we develop a Knowledge Consolidation Mechanism (KCM) that comprises instance-level discrimination and cross-domain consistency alignment strategies to facilitate model adaptive learning of new knowledge from the current domain and promote knowledge consolidation learning between acquired domain-specific distributions, respectively. Experimental results show that our DAFC outperforms state-of-the-art methods. Our code is available at https://github.com/LiuShiBen/DAFC.
comment: 12 pages, 5 figures
♻ ☆ Token Reduction Should Go Beyond Efficiency in Generative Models -- From Vision, Language to Multimodality
In Transformer architectures, tokens\textemdash discrete units derived from raw data\textemdash are formed by segmenting inputs into fixed-length chunks. Each token is then mapped to an embedding, enabling parallel attention computations while preserving the input's essential information. Due to the quadratic computational complexity of transformer self-attention mechanisms, token reduction has primarily been used as an efficiency strategy. This is especially true in single vision and language domains, where it helps balance computational costs, memory usage, and inference latency. Despite these advances, this paper argues that token reduction should transcend its traditional efficiency-oriented role in the era of large generative models. Instead, we position it as a fundamental principle in generative modeling, critically influencing both model architecture and broader applications. Specifically, we contend that across vision, language, and multimodal systems, token reduction can: (i) facilitate deeper multimodal integration and alignment, (ii) mitigate "overthinking" and hallucinations, (iii) maintain coherence over long inputs, and (iv) enhance training stability, etc. We reframe token reduction as more than an efficiency measure. By doing so, we outline promising future directions, including algorithm design, reinforcement learning-guided token reduction, token optimization for in-context learning, and broader ML and scientific domains. We highlight its potential to drive new model architectures and learning strategies that improve robustness, increase interpretability, and better align with the objectives of generative modeling.
comment: Project page: https://github.com/ZLKong/Awesome-Collection-Token-Reduction
♻ ☆ Masked Autoencoders that Feel the Heart: Unveiling Simplicity Bias for ECG Analyses
The diagnostic value of electrocardiogram (ECG) lies in its dynamic characteristics, ranging from rhythm fluctuations to subtle waveform deformations that evolve across time and frequency domains. However, supervised ECG models tend to overfit dominant and repetitive patterns, overlooking fine-grained but clinically critical cues, a phenomenon known as Simplicity Bias (SB), where models favor easily learnable signals over subtle but informative ones. In this work, we first empirically demonstrate the presence of SB in ECG analyses and its negative impact on diagnostic performance, while simultaneously discovering that self-supervised learning (SSL) can alleviate it, providing a promising direction for tackling the bias. Following the SSL paradigm, we propose a novel method comprising two key components: 1) Temporal-Frequency aware Filters to capture temporal-frequency features reflecting the dynamic characteristics of ECG signals, and 2) building on this, Multi-Grained Prototype Reconstruction for coarse and fine representation learning across dual domains, further mitigating SB. To advance SSL in ECG analyses, we curate a large-scale multi-site ECG dataset with 1.53 million recordings from over 300 clinical centers. Experiments on three downstream tasks across six ECG datasets demonstrate that our method effectively reduces SB and achieves state-of-the-art performance.
comment: Revised Version 4
♻ ☆ Bi-LAT: Bilateral Control-Based Imitation Learning via Natural Language and Action Chunking with Transformers
We present Bi-LAT, a novel imitation learning framework that unifies bilateral control with natural language processing to achieve precise force modulation in robotic manipulation. Bi-LAT leverages joint position, velocity, and torque data from leader-follower teleoperation while also integrating visual and linguistic cues to dynamically adjust applied force. By encoding human instructions such as "softly grasp the cup" or "strongly twist the sponge" through a multimodal Transformer-based model, Bi-LAT learns to distinguish nuanced force requirements in real-world tasks. We demonstrate Bi-LAT's performance in (1) unimanual cup-stacking scenario where the robot accurately modulates grasp force based on language commands, and (2) bimanual sponge-twisting task that requires coordinated force control. Experimental results show that Bi-LAT effectively reproduces the instructed force levels, particularly when incorporating SigLIP among tested language encoders. Our findings demonstrate the potential of integrating natural language cues into imitation learning, paving the way for more intuitive and adaptive human-robot interaction. For additional material, please visit: https://mertcookimg.github.io/bi-lat/
♻ ☆ More is Less: The Pitfalls of Multi-Model Synthetic Preference Data in DPO Safety Alignment
Aligning large language models (LLMs) with human values is an increasingly critical step in post-training. Direct Preference Optimization (DPO) has emerged as a simple, yet effective alternative to reinforcement learning from human feedback (RLHF). Synthetic preference data with its low cost and high quality enable effective alignment through single- or multi-model generated preference data. Our study reveals a striking, safety-specific phenomenon associated with DPO alignment: Although multi-model generated data enhances performance on general tasks (ARC, Hellaswag, MMLU, TruthfulQA, Winogrande) by providing diverse responses, it also tends to facilitate reward hacking during training. This can lead to a high attack success rate (ASR) when models encounter jailbreaking prompts. The issue is particularly pronounced when employing stronger models like GPT-4o or larger models in the same family to generate chosen responses paired with target model self-generated rejected responses, resulting in dramatically poorer safety outcomes. Furthermore, with respect to safety, using solely self-generated responses (single-model generation) for both chosen and rejected pairs significantly outperforms configurations that incorporate responses from stronger models, whether used directly as chosen data or as part of a multi-model response pool. We demonstrate that multi-model preference data exhibits high linear separability between chosen and rejected responses, which allows models to exploit superficial cues rather than internalizing robust safety constraints. Our experiments, conducted on models from the Llama, Mistral, and Qwen families, consistently validate these findings.
comment: This version includes updated results and expanded discussion
♻ ☆ In Prospect and Retrospect: Reflective Memory Management for Long-term Personalized Dialogue Agents ACL 2025
Large Language Models (LLMs) have made significant progress in open-ended dialogue, yet their inability to retain and retrieve relevant information from long-term interactions limits their effectiveness in applications requiring sustained personalization. External memory mechanisms have been proposed to address this limitation, enabling LLMs to maintain conversational continuity. However, existing approaches struggle with two key challenges. First, rigid memory granularity fails to capture the natural semantic structure of conversations, leading to fragmented and incomplete representations. Second, fixed retrieval mechanisms cannot adapt to diverse dialogue contexts and user interaction patterns. In this work, we propose Reflective Memory Management (RMM), a novel mechanism for long-term dialogue agents, integrating forward- and backward-looking reflections: (1) Prospective Reflection, which dynamically summarizes interactions across granularities-utterances, turns, and sessions-into a personalized memory bank for effective future retrieval, and (2) Retrospective Reflection, which iteratively refines the retrieval in an online reinforcement learning (RL) manner based on LLMs' cited evidence. Experiments show that RMM demonstrates consistent improvement across various metrics and benchmarks. For example, RMM shows more than 10% accuracy improvement over the baseline without memory management on the LongMemEval dataset.
comment: Accepted to ACL 2025
Computational Engineering, Finance, and Science 6
☆ PySHRED: A Python package for SHallow REcurrent Decoding for sparse sensing, model reduction and scientific discovery
SHallow REcurrent Decoders (SHRED) provide a deep learning strategy for modeling high-dimensional dynamical systems and/or spatiotemporal data from dynamical system snapshot observations. PySHRED is a Python package that implements SHRED and several of its major extensions, including for robust sensing, reduced order modeling and physics discovery. In this paper, we introduce the version 1.0 release of PySHRED, which includes data preprocessors and a number of cutting-edge SHRED methods specifically designed to handle real-world data that may be noisy, multi-scale, parameterized, prohibitively high-dimensional, and strongly nonlinear. The package is easy to install, thoroughly-documented, supplemented with extensive code examples, and modularly-structured to support future additions. The entire codebase is released under the MIT license and is available at https://github.com/pyshred-dev/pyshred.
comment: 15 pages, 9 figures
☆ Exascale Implicit Kinetic Plasma Simulations on El~Capitan for Solving the Micro-Macro Coupling in Magnetospheric Physics
Our fully kinetic, implicit Particle-in-Cell (PIC) simulations of global magnetospheres on up to 32,768 of El Capitan's AMD Instinct MI300A Accelerated Processing Units (APUs) represent an unprecedented computational capability that addresses a fundamental challenge in space physics: resolving the multi-scale coupling between microscopic (electron-scale) and macroscopic (global-scale) dynamics in planetary magnetospheres. The implicit scheme of iPIC3D supports time steps and grid spacing that are up to 10 times larger than those of explicit methods, without sacrificing physical accuracy. This enables the simulation of magnetospheres while preserving fine-scale electron physics, which is critical for key processes such as magnetic reconnection and plasma turbulence. Our algorithmic and technological innovations include GPU-optimized kernels, particle control, and physics-aware data compression using Gaussian Mixture Models. With simulation domains spanning 100-1,000 ion skin depths, we reach the global scale of small-to-medium planetary magnetospheres, such as those of Mercury and Ganymede, which supports fully kinetic treatment of global-scale dynamics in systems previously out of reach for fully kinetic PIC codes.
☆ Learning Explainable Stock Predictions with Tweets Using Mixture of Experts
Stock price movements are influenced by many factors, and alongside historical price data, tex-tual information is a key source. Public news and social media offer valuable insights into market sentiment and emerging events. These sources are fast-paced, diverse, and significantly impact future stock trends. Recently, LLMs have enhanced financial analysis, but prompt-based methods still have limitations, such as input length restrictions and difficulties in predicting sequences of varying lengths. Additionally, most models rely on dense computational layers, which are resource-intensive. To address these challenges, we propose the FTS- Text-MoE model, which combines numerical data with key summaries from news and tweets using point embeddings, boosting prediction accuracy through the integration of factual textual data. The model uses a Mixture of Experts (MoE) Transformer decoder to process both data types. By activating only a subset of model parameters, it reduces computational costs. Furthermore, the model features multi-resolution prediction heads, enabling flexible forecasting of financial time series at different scales. Experimental results show that FTS-Text-MoE outperforms baseline methods in terms of investment returns and Sharpe ratio, demonstrating its superior accuracy and ability to predict future market trends.
comment: Under review
☆ AQUA: A Large Language Model for Aquaculture & Fisheries
Aquaculture plays a vital role in global food security and coastal economies by providing sustainable protein sources. As the industry expands to meet rising demand, it faces growing challenges such as disease outbreaks, inefficient feeding practices, rising labor costs, logistical inefficiencies, and critical hatchery issues, including high mortality rates and poor water quality control. Although artificial intelligence has made significant progress, existing machine learning methods fall short of addressing the domain-specific complexities of aquaculture. To bridge this gap, we introduce AQUA, the first large language model (LLM) tailored for aquaculture, designed to support farmers, researchers, and industry practitioners. Central to this effort is AQUADAPT (Data Acquisition, Processing and Tuning), an Agentic Framework for generating and refining high-quality synthetic data using a combination of expert knowledge, largescale language models, and automated evaluation techniques. Our work lays the foundation for LLM-driven innovations in aquaculture research, advisory systems, and decision-making tools.
☆ Bubbleformer: Forecasting Boiling with Transformers NeurIPS 2025
Modeling boiling (an inherently chaotic, multiphase process central to energy and thermal systems) remains a significant challenge for neural PDE surrogates. Existing models require future input (e.g., bubble positions) during inference because they fail to learn nucleation from past states, limiting their ability to autonomously forecast boiling dynamics. They also fail to model flow boiling velocity fields, where sharp interface-momentum coupling demands long-range and directional inductive biases. We introduce Bubbleformer, a transformer-based spatiotemporal model that forecasts stable and long-range boiling dynamics including nucleation, interface evolution, and heat transfer without dependence on simulation data during inference. Bubbleformer integrates factorized axial attention, frequency-aware scaling, and conditions on thermophysical parameters to generalize across fluids, geometries, and operating conditions. To evaluate physical fidelity in chaotic systems, we propose interpretable physics-based metrics that evaluate heat-flux consistency, interface geometry, and mass conservation. We also release BubbleML 2.0, a high-fidelity dataset that spans diverse working fluids (cryogens, refrigerants, dielectrics), boiling configurations (pool and flow boiling), flow regimes (bubbly, slug, annular), and boundary conditions. Bubbleformer sets new benchmark results in both prediction and forecasting of two-phase boiling flows.
comment: 39 pages, 13 figures, Submitted to NeurIPS 2025
☆ Weak Values as Geometric Lenses: Deformations of Hilbert Space and the Emergence of superoscillations
The formalism of weak measurement in quantum mechanics has revealed profound connections between measurement theory, quantum foundations, and signal processing. In this paper, we develop a pointer-free derivation of superoscillations, demonstrating that they are a natural and necessary consequence of the geometric structure underlying weak values. We argue that the weak value is best understood as a ratio of geometric deformation, quantifying how an observable transforms the structure of Hilbert space relative to a reference provided by the standard inner product. This deformation acts as a conceptual lens, warping the local structure of quantum states to produce oscillations far exceeding the global Fourier bandwidth. We formalize this by interpreting the weak value as a comparison between a deformed sesquilinear form and the standard one, and explore its deep connections to generalized Rayleigh quotients and the projective geometry of quantum states. This perspective unifies weak values and superoscillations as two facets of a single underlying geometric principle.
comment: 12 pages, 1 figure
Databases 5
☆ TIMEST: Temporal Information Motif Estimator Using Sampling Trees
The mining of pattern subgraphs, known as motifs, is a core task in the field of graph mining. Edges in real-world networks often have timestamps, so there is a need for temporal motif mining. A temporal motif is a richer structure that imposes timing constraints on the edges of the motif. Temporal motifs have been used to analyze social networks, financial transactions, and biological networks. Motif counting in temporal graphs is particularly challenging. A graph with millions of edges can have trillions of temporal motifs, since the same edge can occur with multiple timestamps. There is a combinatorial explosion of possibilities, and state-of-the-art algorithms cannot manage motifs with more than four vertices. In this work, we present TIMEST: a general, fast, and accurate estimation algorithm to count temporal motifs of arbitrary sizes in temporal networks. Our approach introduces a temporal spanning tree sampler that leverages weighted sampling to generate substructures of target temporal motifs. This method carefully takes a subset of temporal constraints of the motif that can be jointly and efficiently sampled. TIMEST uses randomized estimation techniques to obtain accurate estimates of motif counts. We give theoretical guarantees on the running time and approximation guarantees of TIMEST. We perform an extensive experimental evaluation and show that TIMEST is both faster and more accurate than previous algorithms. Our CPU implementation exhibits an average speedup of 28x over state-of-the-art GPU implementation of the exact algorithm, and 6x speedup over SOTA approximate algorithms while consistently showcasing less than 5% error in most cases. For example, TIMEST can count the number of instances of a financial fraud temporal motif in four minutes with 0.6% error, while exact methods take more than two days.
☆ MH-GIN: Multi-scale Heterogeneous Graph-based Imputation Network for AIS Data (Extended Version)
Location-tracking data from the Automatic Identification System, much of which is publicly available, plays a key role in a range of maritime safety and monitoring applications. However, the data suffers from missing values that hamper downstream applications. Imputing the missing values is challenging because the values of different heterogeneous attributes are updated at diverse rates, resulting in the occurrence of multi-scale dependencies among attributes. Existing imputation methods that assume similar update rates across attributes are unable to capture and exploit such dependencies, limiting their imputation accuracy. We propose MH-GIN, a Multi-scale Heterogeneous Graph-based Imputation Network that aims improve imputation accuracy by capturing multi-scale dependencies. Specifically, MH-GIN first extracts multi-scale temporal features for each attribute while preserving their intrinsic heterogeneous characteristics. Then, it constructs a multi-scale heterogeneous graph to explicitly model dependencies between heterogeneous attributes to enable more accurate imputation of missing values through graph propagation. Experimental results on two real-world datasets find that MH-GIN is capable of an average 57% reduction in imputation errors compared to state-of-the-art methods, while maintaining computational efficiency. The source code and implementation details of MH-GIN are publicly available https://github.com/hyLiu1994/MH-GIN.
comment: 18 pages, 4 figures
☆ The Power of Negation in Higher-Order Datalog
We investigate the expressive power of Higher-Order Datalog$^\neg$ under both the well-founded and the stable model semantics, establishing tight connections with complexity classes. We prove that under the well-founded semantics, for all $k\geq 1$, $(k+1)$-Order Datalog$^\neg$ captures k-EXP, a result that holds without explicit ordering of the input database. The proof of this fact can be performed either by using the powerful existential predicate variables of the language or by using partially applied relations and relation enumeration. Furthermore, we demonstrate that this expressive power is retained within a stratified fragment of the language. Under the stable model semantics, we show that $(k+1)$-Order Datalog$^\neg$ captures co-(k-NEXP) using cautious reasoning and k-NEXP using brave reasoning, again with analogous results for the stratified fragment augmented with choice rules. Our results establish a hierarchy of expressive power, highlighting an interesting trade-off between order and non-determinism in the context of higher-order logic programming: increasing the order of programs under the well-founded semantics can surpass the expressive power of lower-order programs under the stable model semantics.
☆ Ethereum Conflicts Graphed
Ethereum, a leading blockchain platform, has revolutionized the digital economy by enabling decentralized transactions and the execution of smart contracts. Ethereum transactions form the backbone of its network, facilitating peer-to-peer exchanges and interactions with complex decentralized applications. Smart contracts extend Ethereum's capabilities by automating processes and enabling trustless execution of agreements. Hence, understanding how these smart contracts interact is important in order to facilitate various performance optimizations, such as warming objects before they are being accessed and enabling concurrent execution. Of particular interest to us are the development of the calling graph, as well as the read sets and write sets of invocations within the same block, and the properties of the associated conflict graph that is derived from them. The latter is important for understanding the parallelization potential of smart contracts on Ethereum. We traced upwards of 2 million recent Ethereum blocks using call tracer and prestate tracer, out of a total of 21.4 million blocks at the time of writing. We report on the transactions per block distribution, the structure of call trees in smart contract invocations, the ratio of value-transfer transactions to smart contract invocations, as well as provide a comprehensive study of the structure of blocks' conflict graphs. We find that conflict graphs predominantly show a star like configuration, as well as other noteworthy structural properties.
comment: A slightly shorter version To appear in the Proceedings of the IEEE International Conference on Blockchain and Cryptocurrency, ICBC 2025
♻ ☆ TinySQL: A Progressive Text-to-SQL Dataset for Mechanistic Interpretability Research
Mechanistic interpretability research faces a gap between analyzing simple circuits in toy tasks and discovering features in large models. To bridge this gap, we propose text-to-SQL generation as an ideal task to study, as it combines the formal structure of toy tasks with real-world complexity. We introduce TinySQL, a synthetic dataset, progressing from basic to advanced SQL operations, and train models ranging from 33M to 1B parameters to establish a comprehensive testbed for interpretability. We apply multiple complementary interpretability techniques, including Edge Attribution Patching and Sparse Autoencoders, to identify minimal circuits and components supporting SQL generation. We compare circuits for different SQL subskills, evaluating their minimality, reliability, and identifiability. Finally, we conduct a layerwise logit lens analysis to reveal how models compose SQL queries across layers: from intent recognition to schema resolution to structured generation. Our work provides a robust framework for probing and comparing interpretability methods in a structured, progressively complex setting.
comment: 9 pages, 19 figures, 7 tables, 18 trained models
Distributed, Parallel, and Cluster Computing 8
☆ Communication-Efficient Distributed Training for Collaborative Flat Optima Recovery in Deep Learning
We study centralized distributed data parallel training of deep neural networks (DNNs), aiming to improve the trade-off between communication efficiency and model performance of the local gradient methods. To this end, we revisit the flat-minima hypothesis, which suggests that models with better generalization tend to lie in flatter regions of the loss landscape. We introduce a simple, yet effective, sharpness measure, Inverse Mean Valley, and demonstrate its strong correlation with the generalization gap of DNNs. We incorporate an efficient relaxation of this measure into the distributed training objective as a lightweight regularizer that encourages workers to collaboratively seek wide minima. The regularizer exerts a pushing force that counteracts the consensus step pulling the workers together, giving rise to the Distributed Pull-Push Force (DPPF) algorithm. Empirically, we show that DPPF outperforms other communication-efficient approaches and achieves better generalization performance than local gradient methods and synchronous gradient averaging, while significantly reducing communication overhead. In addition, our loss landscape visualizations confirm the ability of DPPF to locate flatter minima. On the theoretical side, we show that DPPF guides workers to span flat valleys, with the final valley width governed by the interplay between push and pull strengths, and that its pull-push dynamics is self-stabilizing. We further provide generalization guarantees linked to the valley width and prove convergence in the non-convex setting.
comment: 9 pages main body, 32 pages of supplementary material for detailed derivations and more experiment results
☆ A Comparative Study of OpenMP Scheduling Algorithm Selection Strategies
Scientific and data science applications are becoming increasingly complex, with growing computational and memory demands. Modern high performance computing (HPC) systems provide high parallelism and heterogeneity across nodes, devices, and cores. To achieve good performance, effective scheduling and load balancing techniques are essential. Parallel programming frameworks such as OpenMP now offer a variety of advanced scheduling algorithms to support diverse applications and platforms. This creates an instance of the scheduling algorithm selection problem, which involves identifying the most suitable algorithm for a given combination of workload and system characteristics. In this work, we explore learning-based approaches for selecting scheduling algorithms in OpenMP. We propose and evaluate expert-based and reinforcement learning (RL)-based methods, and conduct a detailed performance analysis across six applications and three systems. Our results show that RL methods are capable of learning high-performing scheduling decisions, although they require significant exploration, with the choice of reward function playing a key role. Expert-based methods, in contrast, rely on prior knowledge and involve less exploration, though they may not always identify the optimal algorithm for a specific application-system pair. By combining expert knowledge with RL-based learning, we achieve improved performance and greater adaptability. Overall, this work demonstrates that dynamic selection of scheduling algorithms during execution is both viable and beneficial for OpenMP applications. The approach can also be extended to MPI-based programs, enabling optimization of scheduling decisions across multiple levels of parallelism.
comment: To appear at IEEE ACCESS
☆ Silent Self-Stabilising Leader Election in Programmable Matter Systems with Holes
Leader election is a fundamental problem in distributed computing, particularly within programmable matter systems, where coordination among simple computational entities is crucial for solving complex tasks. In these systems, particles (i.e., constant memory computational entities) operate in a regular triangular grid as described in the geometric Amoebot model. While leader election has been extensively studied in non self-stabilising settings, self-stabilising solutions remain more limited. In this work, we study the problem of self-stabilising leader election in connected (but not necessarily simply connected) configurations. We present the first self-stabilising algorithm for programmable matter that guarantees the election of a unique leader under an unfair scheduler, assuming particles share a common sense of direction. Our approach leverages particle movement, a capability not previously exploited in the self-stabilising context. We show that movement in conjunction with particles operating in a grid can overcome classical impossibility results for constant-memory systems established by Dolev et al.
comment: 15 pages
☆ Ethereum Conflicts Graphed
Ethereum, a leading blockchain platform, has revolutionized the digital economy by enabling decentralized transactions and the execution of smart contracts. Ethereum transactions form the backbone of its network, facilitating peer-to-peer exchanges and interactions with complex decentralized applications. Smart contracts extend Ethereum's capabilities by automating processes and enabling trustless execution of agreements. Hence, understanding how these smart contracts interact is important in order to facilitate various performance optimizations, such as warming objects before they are being accessed and enabling concurrent execution. Of particular interest to us are the development of the calling graph, as well as the read sets and write sets of invocations within the same block, and the properties of the associated conflict graph that is derived from them. The latter is important for understanding the parallelization potential of smart contracts on Ethereum. We traced upwards of 2 million recent Ethereum blocks using call tracer and prestate tracer, out of a total of 21.4 million blocks at the time of writing. We report on the transactions per block distribution, the structure of call trees in smart contract invocations, the ratio of value-transfer transactions to smart contract invocations, as well as provide a comprehensive study of the structure of blocks' conflict graphs. We find that conflict graphs predominantly show a star like configuration, as well as other noteworthy structural properties.
comment: A slightly shorter version To appear in the Proceedings of the IEEE International Conference on Blockchain and Cryptocurrency, ICBC 2025
☆ High-Performance Parallel Optimization of the Fish School Behaviour on the Setonix Platform Using OpenMP
This paper presents an in-depth investigation into the high-performance parallel optimization of the Fish School Behaviour (FSB) algorithm on the Setonix supercomputing platform using the OpenMP framework. Given the increasing demand for enhanced computational capabilities for complex, large-scale calculations across diverse domains, there's an imperative need for optimized parallel algorithms and computing structures. The FSB algorithm, inspired by nature's social behavior patterns, provides an ideal platform for parallelization due to its iterative and computationally intensive nature. This study leverages the capabilities of the Setonix platform and the OpenMP framework to analyze various aspects of multi-threading, such as thread counts, scheduling strategies, and OpenMP constructs, aiming to discern patterns and strategies that can elevate program performance. Experiments were designed to rigorously test different configurations, and our results not only offer insights for parallel optimization of FSB on Setonix but also provide valuable references for other parallel computational research using OpenMP. Looking forward, other factors, such as cache behavior and thread scheduling strategies at micro and macro levels, hold potential for further exploration and optimization.
☆ Accelerating Containerized Service Delivery at the Network Edge
Efficient container image distribution is crucial for enabling machine learning inference at the network edge, where resource limitations and dynamic network conditions create significant challenges. In this paper, we present PeerSync, a decentralized P2P-based system designed to optimize image distribution in edge environments. PeerSync employs a popularity- and network-aware download engine that dynamically adapts to content popularity and real-time network conditions using a sliding window mechanism. PeerSync further integrates automated tracker election for rapid peer discovery and dynamic cache management for efficient storage utilization. We implement PeerSync with 8000+ lines of Rust code and test its performance extensively on both physical edge devices and Docker-based emulations. Experimental results show that PeerSync delivers a remarkable speed increase of 2.72$\times$, 1.79$\times$, and 1.28$\times$ compared to the Baseline, Dragonfly, and Kraken, respectively, while significantly reducing peak cross-network traffic by 90.72\% under congested and varying network conditions.
♻ ☆ Syno: Structured Synthesis for Neural Operators
The desires for better prediction accuracy and higher execution performance in neural networks never end. Neural architecture search (NAS) and tensor compilers are two popular techniques to optimize these two goals, but they are both limited to composing or optimizing existing manually designed operators rather than coming up with completely new designs. In this work, we explore the less studied direction of neural operator synthesis, which aims to automatically and efficiently discover novel neural operators with better accuracy and/or speed. We develop an end-to-end framework Syno, to realize practical neural operator synthesis. Syno makes use of a novel set of fine-grained primitives defined on tensor dimensions, which ensure various desired properties to ease model training, and also enable expression canonicalization techniques to avoid redundant candidates during search. Syno further adopts a novel guided synthesis flow to obtain valid operators matched with the specified input/output dimension sizes, and leverages efficient stochastic tree search algorithms to quickly explore the design space. We demonstrate that Syno discovers better operators with average speedups of $1.37\times$ to $2.06\times$ on various hardware and compiler choices, while keeping less than 1% accuracy loss even on NAS-optimized models.
♻ ☆ Data-Locality-Aware Task Assignment and Scheduling for Distributed Job Executions
This paper addresses the data-locality-aware task assignment and scheduling problem for distributed job executions. Our goal is to minimize job completion times without prior knowledge of future job arrivals. We propose an Optimal Balanced Task Assignment algorithm (OBTA), which achieves minimal job completion times while significantly reducing computational overhead through efficient narrowing of the solution search space. To balance performance and efficiency, we extend the approximate Water-Filling (WF) algorithm, providing a rigorous proof that its approximation factor equals the number of task groups in a job. We also introduce a novel heuristic, Replica-Deletion (RD), which outperforms WF by leveraging global optimization techniques. To further enhance scheduling efficiency, we incorporate job ordering strategies based on a shortest-estimated-time-first policy, reducing average job completion times across workloads. Extensive trace-driven evaluations validate the effectiveness and scalability of the proposed algorithms.
Information Retrieval 10
☆ TIMEST: Temporal Information Motif Estimator Using Sampling Trees
The mining of pattern subgraphs, known as motifs, is a core task in the field of graph mining. Edges in real-world networks often have timestamps, so there is a need for temporal motif mining. A temporal motif is a richer structure that imposes timing constraints on the edges of the motif. Temporal motifs have been used to analyze social networks, financial transactions, and biological networks. Motif counting in temporal graphs is particularly challenging. A graph with millions of edges can have trillions of temporal motifs, since the same edge can occur with multiple timestamps. There is a combinatorial explosion of possibilities, and state-of-the-art algorithms cannot manage motifs with more than four vertices. In this work, we present TIMEST: a general, fast, and accurate estimation algorithm to count temporal motifs of arbitrary sizes in temporal networks. Our approach introduces a temporal spanning tree sampler that leverages weighted sampling to generate substructures of target temporal motifs. This method carefully takes a subset of temporal constraints of the motif that can be jointly and efficiently sampled. TIMEST uses randomized estimation techniques to obtain accurate estimates of motif counts. We give theoretical guarantees on the running time and approximation guarantees of TIMEST. We perform an extensive experimental evaluation and show that TIMEST is both faster and more accurate than previous algorithms. Our CPU implementation exhibits an average speedup of 28x over state-of-the-art GPU implementation of the exact algorithm, and 6x speedup over SOTA approximate algorithms while consistently showcasing less than 5% error in most cases. For example, TIMEST can count the number of instances of a financial fraud temporal motif in four minutes with 0.6% error, while exact methods take more than two days.
☆ TADT-CSA: Temporal Advantage Decision Transformer with Contrastive State Abstraction for Generative Recommendation
With the rapid advancement of Transformer-based Large Language Models (LLMs), generative recommendation has shown great potential in enhancing both the accuracy and semantic understanding of modern recommender systems. Compared to LLMs, the Decision Transformer (DT) is a lightweight generative model applied to sequential recommendation tasks. However, DT faces challenges in trajectory stitching, often producing suboptimal trajectories. Moreover, due to the high dimensionality of user states and the vast state space inherent in recommendation scenarios, DT can incur significant computational costs and struggle to learn effective state representations. To overcome these issues, we propose a novel Temporal Advantage Decision Transformer with Contrastive State Abstraction (TADT-CSA) model. Specifically, we combine the conventional Return-To-Go (RTG) signal with a novel temporal advantage (TA) signal that encourages the model to capture both long-term returns and their sequential trend. Furthermore, we integrate a contrastive state abstraction module into the DT framework to learn more effective and expressive state representations. Within this module, we introduce a TA-conditioned State Vector Quantization (TAC-SVQ) strategy, where the TA score guides the state codebooks to incorporate contextual token information. Additionally, a reward prediction network and a contrastive transition prediction (CTP) network are employed to ensure the state codebook preserves both the reward information of the current state and the transition information between adjacent states. Empirical results on both public datasets and an online recommendation system demonstrate the effectiveness of the TADT-CSA model and its superiority over baseline methods.
☆ CTR-Driven Ad Text Generation via Online Feedback Preference Optimization
Advertising text plays a critical role in determining click-through rates (CTR) in online advertising. Large Language Models (LLMs) offer significant efficiency advantages over manual ad text creation. However, LLM-generated ad texts do not guarantee higher CTR performance compared to human-crafted texts, revealing a gap between generation quality and online performance of ad texts. In this work, we propose a novel ad text generation method which optimizes for CTR through preference optimization from online feedback. Our approach adopts an innovative two-stage framework: (1) diverse ad text sampling via one-shot in-context learning, using retrieval-augmented generation (RAG) to provide exemplars with chain-of-thought (CoT) reasoning; (2) CTR-driven preference optimization from online feedback, which weighs preference pairs according to their CTR gains and confidence levels. Through our method, the resulting model enables end-to-end generation of high-CTR ad texts. Extensive experiments have demonstrated the effectiveness of our method in both offline and online metrics. Notably, we have applied our method on a large-scale online shopping platform and achieved significant CTR improvements, showcasing its strong applicability and effectiveness in advertising systems.
comment: 9 pages, 6 figures, 5 tables
☆ Practical Multi-Task Learning for Rare Conversions in Ad Tech
We present a Multi-Task Learning (MTL) approach for improving predictions for rare (e.g., <1%) conversion events in online advertising. The conversions are classified into "rare" or "frequent" types based on historical statistics. The model learns shared representations across all signals while specializing through separate task towers for each type. The approach was tested and fully deployed to production, demonstrating consistent improvements in both offline (0.69% AUC lift) and online KPI performance metric (2% Cost per Action reduction).
comment: Accepted to RecSys 2025
☆ Integrating LLM-Derived Multi-Semantic Intent into Graph Model for Session-based Recommendation
Session-based recommendation (SBR) is mainly based on anonymous user interaction sequences to recommend the items that the next user is most likely to click. Currently, the most popular and high-performing SBR methods primarily leverage graph neural networks (GNNs), which model session sequences as graph-structured data to effectively capture user intent. However, most GNNs-based SBR methods primarily focus on modeling the ID sequence information of session sequences, while neglecting the rich semantic information embedded within them. This limitation significantly hampers model's ability to accurately infer users' true intention. To address above challenge, this paper proposes a novel SBR approach called Integrating LLM-Derived Multi-Semantic Intent into Graph Model for Session-based Recommendation (LLM-DMsRec). The method utilizes a pre-trained GNN model to select the top-k items as candidate item sets and designs prompts along with a large language model (LLM) to infer multi-semantic intents from these candidate items. Specifically, we propose an alignment mechanism that effectively integrates the semantic intent inferred by the LLM with the structural intent captured by GNNs. Extensive experiments conducted on the Beauty and ML-1M datasets demonstrate that the proposed method can be seamlessly integrated into GNNs framework, significantly enhancing its recommendation performance.
☆ Multi-Stage Verification-Centric Framework for Mitigating Hallucination in Multi-Modal RAG KDD
This paper presents the technical solution developed by team CRUISE for the KDD Cup 2025 Meta Comprehensive RAG Benchmark for Multi-modal, Multi-turn (CRAG-MM) challenge. The challenge aims to address a critical limitation of modern Vision Language Models (VLMs): their propensity to hallucinate, especially when faced with egocentric imagery, long-tail entities, and complex, multi-hop questions. This issue is particularly problematic in real-world applications where users pose fact-seeking queries that demand high factual accuracy across diverse modalities. To tackle this, we propose a robust, multi-stage framework that prioritizes factual accuracy and truthfulness over completeness. Our solution integrates a lightweight query router for efficiency, a query-aware retrieval and summarization pipeline, a dual-pathways generation and a post-hoc verification. This conservative strategy is designed to minimize hallucinations, which incur a severe penalty in the competition's scoring metric. Our approach achieved 3rd place in Task 1, demonstrating the effectiveness of prioritizing answer reliability in complex multi-modal RAG systems. Our implementation is available at https://github.com/Breezelled/KDD-Cup-2025-Meta-CRAG-MM .
comment: KDD Cup 2025 Meta CRAG-MM Challenge
♻ ☆ Heterogeneous User Modeling for LLM-based Recommendation
Leveraging Large Language Models (LLMs) for recommendation has demonstrated notable success in various domains, showcasing their potential for open-domain recommendation. A key challenge to advancing open-domain recommendation lies in effectively modeling user preferences from users' heterogeneous behaviors across multiple domains. Existing approaches, including ID-based and semantic-based modeling, struggle with poor generalization, an inability to compress noisy interactions effectively, and the domain seesaw phenomenon. To address these challenges, we propose a Heterogeneous User Modeling (HUM) method, which incorporates a compression enhancer and a robustness enhancer for LLM-based recommendation. The compression enhancer uses a customized prompt to compress heterogeneous behaviors into a tailored token, while a masking mechanism enhances cross-domain knowledge extraction and understanding. The robustness enhancer introduces a domain importance score to mitigate the domain seesaw phenomenon by guiding domain optimization. Extensive experiments on heterogeneous datasets validate that HUM effectively models user heterogeneity by achieving both high efficacy and robustness, leading to superior performance in open-domain recommendation.
comment: Accepted by RecSys 2025
♻ ☆ HLFormer: Enhancing Partially Relevant Video Retrieval with Hyperbolic Learning ICCV'25
Partially Relevant Video Retrieval (PRVR) addresses the critical challenge of matching untrimmed videos with text queries describing only partial content. Existing methods suffer from geometric distortion in Euclidean space that sometimes misrepresents the intrinsic hierarchical structure of videos and overlooks certain hierarchical semantics, ultimately leading to suboptimal temporal modeling. To address this issue, we propose the first hyperbolic modeling framework for PRVR, namely HLFormer, which leverages hyperbolic space learning to compensate for the suboptimal hierarchical modeling capabilities of Euclidean space. Specifically, HLFormer integrates the Lorentz Attention Block and Euclidean Attention Block to encode video embeddings in hybrid spaces, using the Mean-Guided Adaptive Interaction Module to dynamically fuse features. Additionally, we introduce a Partial Order Preservation Loss to enforce "text < video" hierarchy through Lorentzian cone constraints. This approach further enhances cross-modal matching by reinforcing partial relevance between video content and text queries. Extensive experiments show that HLFormer outperforms state-of-the-art methods. Code is released at https://github.com/lijun2005/ICCV25-HLFormer.
comment: Accepted by ICCV'25. 13 pages, 6 figures, 4 tables
♻ ☆ Retrieval and Distill: A Temporal Data Shift-Free Paradigm for Online Recommendation System
Current recommendation systems are significantly affected by a serious issue of temporal data shift, which is the inconsistency between the distribution of historical data and that of online data. Most existing models focus on utilizing updated data, overlooking the transferable, temporal data shift-free information that can be learned from shifting data. We propose the Temporal Invariance of Association theorem, which suggests that given a fixed search space, the relationship between the data and the data in the search space keeps invariant over time. Leveraging this principle, we designed a retrieval-based recommendation system framework that can train a data shift-free relevance network using shifting data, significantly enhancing the predictive performance of the original model in the recommendation system. However, retrieval-based recommendation models face substantial inference time costs when deployed online. To address this, we further designed a distill framework that can distill information from the relevance network into a parameterized module using shifting data. The distilled model can be deployed online alongside the original model, with only a minimal increase in inference time. Extensive experiments on multiple real datasets demonstrate that our framework significantly improves the performance of the original model by utilizing shifting data.
♻ ☆ Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control
Retrieval-Augmented Generation (RAG) has emerged as a powerful approach to mitigate large language model (LLM) hallucinations by incorporating external knowledge retrieval. However, existing RAG frameworks often apply retrieval indiscriminately,leading to inefficiencies-over-retrieving when unnecessary or failing to retrieve iteratively when required for complex reasoning. Recent adaptive retrieval strategies, though adaptively navigates these retrieval strategies, predict only based on query complexity and lacks user-driven flexibility, making them infeasible for diverse user application needs. In this paper, we introduce a novel user-controllable RAG framework that enables dynamic adjustment of the accuracy-cost trade-off. Our approach leverages two classifiers: one trained to prioritize accuracy and another to prioritize retrieval efficiency. Via an interpretable control parameter $\alpha$, users can seamlessly navigate between minimal-cost retrieval and high-accuracy retrieval based on their specific requirements. We empirically demonstrate that our approach effectively balances accuracy, retrieval cost, and user controllability, making it a practical and adaptable solution for real-world applications. Code is available at https://github.com/JinyanSu1/Flare-Aug.
Artificial Intelligence 1
☆ When Prompts Go Wrong: Evaluating Code Model Robustness to Ambiguous, Contradictory, and Incomplete Task Descriptions
Large Language Models (LLMs) have demonstrated impressive performance in code generation tasks under idealized conditions, where task descriptions are clear and precise. However, in practice, task descriptions frequently exhibit ambiguity, incompleteness, or internal contradictions. In this paper, we present the first empirical study examining the robustness of state-of-the-art code generation models when faced with such unclear task descriptions. We extend the HumanEval and MBPP benchmarks by systematically introducing realistic task descriptions flaws through guided mutation strategies, producing a dataset that mirrors the messiness of informal developer instructions. We evaluate multiple LLMs of varying sizes and architectures, analyzing their functional correctness and failure modes across task descriptions categories. Our findings reveal that even minor imperfections in task description phrasing can cause significant performance degradation, with contradictory task descriptions resulting in numerous logical errors. Moreover, while larger models tend to be more resilient than smaller variants, they are not immune to the challenges posed by unclear requirements. We further analyze semantic error patterns and identify correlations between description clarity, model behavior, and error types. Our results underscore the critical need for developing LLMs that are not only powerful but also robust to the imperfections inherent in natural user tasks, highlighting important considerations for improving model training strategies, designing more realistic evaluation benchmarks, and ensuring reliable deployment in practical software development environments.
Computational Engineering, Finance, and Science 1
☆ IFD: A Large-Scale Benchmark for Insider Filing Violation Detection
Insider trading violations, particularly delayed disclosures of Form 4 filings, remain a persistent challenge for financial market surveillance. Despite regulatory requirements such as the two-business-day rule of the Securities and Exchange Commission (SEC), enforcement is limited by the lack of large-scale, labeled datasets and task-specific benchmarks. In this paper, we introduce Insider Filing Delay (IFD), the first and largest publicly available dataset for insider disclosure behavior, comprising over one million Form 4 transactions spanning two decades (2002-2025), with structured annotations on delay status, insider roles, governance factors, and firm-level financial indicators. IFD enables the first large-scale formulation of strategic disclosure violation detection as a binary classification task grounded in regulatory compliance. To demonstrate the utility of IFD, we propose MaBoost, a hybrid framework combining a Mamba-based state space encoder with XGBoost, achieving high accuracy and interpretability in identifying high-risk behavioral patterns. Experiments across statistical baselines, deep learning models, and large language models confirm that MaBoost outperforms prior approaches, achieving an F1-score of up to 99.47% under constrained regulatory settings. IFD provides a realistic, reproducible, and behavior-rich benchmark for developing AI models in financial compliance, regulatory forensics, and interpretable time-series classification. All data and codes are available: https://github.com/CH-YellowOrange/MaBoost-and-IFD.